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Abstract: This paper presents a simulation-based method to assess the reliability of linear structures with parameter uncertainties 
subject to Gaussian process excitation. The focus is on estimating failure probabilities of series systems, where structural failure is 
defined as a union of multiple first-passage failure events. The proposed approach estimates the system failure probability conditional 
on a given value of the uncertain structural parameters by importance sampling. To determine the failure probability involving 
parameter uncertainties, an integration of the conditional probability over the space of uncertain parameters is required. The novel 
contribution lies in the development of an adaptive importance sampling strategy based on the cross entropy method to efficiently 
perform this integration. A numerical example demonstrates the performance of the proposed method.  
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1. Introduction 
Reliability assessment of dynamically excited structures is 
a challenging problem because of uncertainties in the 
external load and structural properties. In structural 
dynamics, failure is usually defined in terms of the first 
passage of a structural response over a specified threshold. 
This paper focuses on estimating failure probabilities of 
series systems, where the structure failure event is a union 
of multiple failure modes, each corresponding to a 
different first-passage failure. Monte Carlo simulation 
(MCS) methods can be applied to solve this class of 
problems. The main challenge in applying MCS lies in 
controlling the sampling variance of the failure probability 
estimator; the aim is to obtain probability estimates of 
acceptable accuracy with a small number of dynamic 
model runs.  

For the particular case where the structural behavior is 
linear and the applied dynamic load is modeled as a 
Gaussian random process, efficient sampling methods 
have been developed that take advantage of the linearity of 
the structural response with respect to the Gaussian 
loading. Jensen and Valdebenito (2010) and Valdebenito 
et al. (2014) propose importance sampling (IS) techniques 
based on this approach. The application of line sampling in 
this context has been explored by Pradlwarter and 
Schueller (2010). These methods require system specific 
information to facilitate reliability estimation. In (Jensen 
and Valdebenito 2010, Pradlwarter and Schueller 2010), a 
pseudo-design point with respect to the uncertain structural 
parameters has to be identified. These approaches can be 
effective when there is a unique design point contributing 
to the failure probability. The IS method in (Valdebenito 
et al. 2014) makes use of a surrogate model for the 
probability of failure as a function of the uncertain 
structural parameters. The performance of the method thus 
relies on the proper choice of the surrogate model, which 
is not always a straightforward task. 

The present contribution develops an adaptive 
importance sampling method to estimate the series system 
reliability of uncertain linear structures subject to Gaussian 

loading. The proposed approach is based on the cross 
entropy (CE) method. The CE method performs a pre-
sampling step to determine the parameters of a near-
optimal IS density through minimizing the Kullback-
Leibler (KL) divergence between the theoretically optimal 
IS density and a chosen parametric family of densities. 
Unlike the existing studies discussed earlier, the proposed 
method can be used as a black-box algorithm, as it does not 
require problem-specific adjustments. It is therefore more 
robust and generally applicable to any linear dynamical 
system. 

2. Problem Formulation 

2.1 Dynamical System 
An n degrees-of-freedom linear structure, discretized from 
a continuum system, e.g., by the finite element method, is 
governed by the equation  

 𝐌(𝚯)𝑿̈(𝑡) + 𝐂(𝚯)𝑿̇(𝑡) + 𝐊(𝚯)𝑿(𝑡) = 𝑫𝑓(𝑡),  (1) 

where 𝑿 , 𝑿̇  and 𝑿̈  are the 𝑛 × 1  displacement, 
velocity and acceleration vectors; 𝐌, 𝐂 and 𝐊 are the 
mass, damping and stiffness matrices of dimension 𝑛 × 𝑛; 
𝚯  is an 𝑛𝜽 × 1  vector of basic random variables that 
models the uncertain structural parameters; 𝑓  is the 
random dynamic excitation acting on the structure over a 
time span 𝑡 ∈ [0, 𝑇] ; and 𝑫  is an 𝑛	 × 1  vector that 
couples the external excitation with the degrees of freedom 
of the structure. We assume that the components of 𝚯 are 
independent and identically distributed (i.i.d.) standard 
normal random variables. Structural parameters that 
follow a non-Gaussian distribution or are mutually 
dependent can be generated by an iso-probabilistic 
transformation of the basic standard normal random 
variables (Hohenbichler and Rackwitz 1981).  

Let {ℎ<; i = 1,… ,𝑚}  be 𝑚  critical structural 
responses that are of interest, e.g., displacements, 
accelerations. For a particular value of the uncertain 
parameters specified by 𝚯 = 𝜽, the relationship between 
the input excitation and the 𝑖-th output response of interest 
is linear and is represented by a convolution integral as 
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 ℎ<(𝑡, 𝜽) = ∫ 𝐾<(𝑡 − 𝜏; 𝜽)𝑓(𝜏)𝑑𝜏.
I
J  (2) 

In the above equation 𝐾<(𝑡; 𝜽)  is the impulse response 
function for the response ℎ<  at time 𝑡  due to a unit 
impulse applied at time 0, where zero initial conditions 
have been assumed without loss of generality.  

In practical applications, the dynamic response of the 
structure is calculated at discrete time steps by numerical 
integration. Let {𝑡K, … , 𝑡LM}  be a set of discrete time 
points at a uniform time spacing Δ𝑡 = 𝑇/(𝑛P − 1) over 
the duration [0, 𝑇].  The excitation in discrete-time is 
taken to be a band-limited Gaussian white noise: 

  𝑓(𝑡Q) = R2𝜋𝑆 Δ𝑡⁄ ΞQ, (3) 

where 𝑆 is the spectral intensity, and {ΞQ; 𝑘 = 1,… , 𝑛P} 
are i.i.d. standard Gaussian random variables which are 
collectively represented by the 𝑛P -dimensional vector 
𝚵 = {ΞK;… ; ΞLM} . The 𝑖 -th dynamic response of the 
structure at time 𝑡Q is then written as       

 ℎ<(𝑡Q, 𝜽, 𝚵) = ∑ 𝐾<(𝑡Q − 𝑡[; 𝜽)√2𝜋𝑆Δ𝑡Ξ[Q
[]K . (4) 

2.2 Series system reliability 
In reliability estimation of dynamical systems, an 
important problem is the computation of the first-passage 
probability, which is the probability that any one of the 𝑚 
output responses {ℎ<, 𝑖 = 1,… ,𝑚}  exceeds a 
corresponding threshold level ℎ<∗ within the time duration 
𝑇. The system level failure event 𝐹 is therefore expressed 
as  

 𝐹 = ⋃ 𝐹<a
<]K , (5) 

where  

𝐹< = {θ ∈ RL𝜽, 𝝃 ∈ RLM: max
Q]K,…,LM

|ℎ<(𝑡Q, 𝜽, 𝝃)| ≥ ℎ<∗} (6) 

denotes first-passage failure with respect to the i-th 
response measure. The probability of occurrence of 𝐹 is 
defined by means of the multi-dimensional integral  

 𝑃l = ∫ 𝑃l|𝚯(𝜽)𝑝𝚯(𝜽)𝑑𝜽𝜽∈no𝜽 , (7) 

where 

 𝑃l|𝚯(𝜽) = ∫ I{(𝜽, 𝝃) ∈ 𝐹}𝝃∈noM 𝑝𝚵(𝝃)𝑑𝝃 (8) 

is the system failure probability conditional on the 
particular realization 𝚯 = 𝜽  of the uncertain structural 
parameters. In the above equations, 𝑝𝚵(𝝃) and 𝑝𝚯(𝜽) 
denote the joint probability density functions (PDF) of 𝚵 
and 𝚯, respectively, and I{(𝜽, 𝝃) ∈ 𝐹} is the indicator 
function for the failure event which takes the value 1 if 
(𝜽, 𝝃) ∈ 𝐹 and is 0 otherwise. 

In principle, one can evaluate both 𝑃l|𝚯(𝜽) and 𝑃l 
by crude MCS. However, when these probabilities are 
small, which is typically the case in engineering problems, 
crude MCS requires a large number of samples to estimate 
these quantities with sufficient accuracy. In the subsequent 
sections, we formulate an alternative strategy based on IS 
to efficiently estimate the failure probability of the series 
system. In Sec. 3 we discuss a procedure to evaluate the 
conditional failure probability 𝑃l|𝚯(𝜽) . The proposed 
approach for computing the unconditional failure 

probability by efficiently solving Eq. 7 is subsequently 
described in Sec. 4.  

3. Probability of failure conditional on 𝚯 = 𝜽 
In this section, we discuss the evaluation of the probability 
of failure conditional on a given value of the uncertain 
structural parameters 𝚯 = 𝜽 . Let the event 𝐹<,Q(𝜽) 
denote exceedance of the threshold level ℎ<∗  by the i-th 
structural response at time 𝑡	 = 	 𝑡Q. Occurrence of any one 
of the instantaneous failure events {𝐹<,Q(𝜽); 𝑘 =
1,… , 𝑛P, 𝑖 = 1,… ,𝑚}  leads to failure of the structure. 
Therefore, the system level failure event conditional on 
𝚯 = 𝜽 is expressed as  

 𝐹(𝜽) 	= 	⋃ ⋃ 𝐹<,Q(𝜽)
LM
Q]K

a
<]K ,  (9) 

where 𝐹<,Q(𝜽) 	= 	 {𝝃 ∈ RLM: |ℎ<(𝑡Q, 𝜽, 𝝃)| ≥ ℎ<∗}.  
We estimate the probability of occurrence of 𝐹(𝜽) by 

IS using the IS density proposed in (Au and Beck 2001). 
This IS density is expressed as 

 ℎ𝚵(𝝃|𝜽) = ∑ ∑ 𝑤<,Q(𝜽)𝑝𝚵 r𝝃s𝐹<,Q(𝜽)t
LM
Q]K

a
<]K , (10) 

where 𝑝𝚵 r𝝃s𝐹<,Q(𝜽)t is the PDF of 𝑝𝚵(𝝃) truncated on 
the failure domain 𝐹<,Q(𝜽) , and {𝑤<,Q(𝜽); 𝑘 =
1,… , 𝑛P, 𝑖 = 1,… ,𝑚} are normalized weights associated 
with the instantaneous failure events. The weight 𝑤<,Q(𝜽) 
is defined as     

 𝑤<,Q(𝜽) = Prw𝐹<,Q(𝜽)x ∑ ∑ Prw𝐹y,[(𝜽)x
LM
[]K

a
y]Kz , (11) 

where Prw𝐹<,Q(𝜽)x  is the probability content of the 
domain of 𝐹<,Q(𝜽). The probability of 𝐹<,Q(𝜽) is given by 

 Prw𝐹<,Q(𝜽)x = 2Φw−𝛽<,Q(𝜽)x, (12) 

where 𝛽<,Q(𝜽) = ℎ<∗ }∑ 𝐾<~(𝑡Q − 𝑡[; 𝜽)2𝜋𝑆Δ𝑡Q
[]Kz  is the 

Euclidean norm of the design point associated with the 
domain 𝐹<,Q� (𝜽) 	= 	 {𝝃 ∈ RLM: ℎ<(𝑡Q, 𝜽, 𝝃) ≥ ℎ<∗}. 

Using the IS density described in Eqs. 10-12, the 
following modified expression for the conditional 
probability of failure 𝑃l|𝚯(𝜽) is obtained: 

𝑃l|𝚯(𝜽) = ∫ I{(𝜽, 𝝃) ∈ 𝐹} �𝚵(𝝃)
�𝚵�𝝃�𝜽�𝝃∈noM ℎ𝚵(𝝃|𝜽)𝑑𝝃  

= ∫ ��(𝜽)
∑ ∑ ��(𝜽,𝝃)∈l�,�(𝜽)�

oM
���

�
���

𝝃∈noM ℎ𝚵(𝝃|𝜽)𝑑𝝃 (13) 

where 𝑃�(𝜽) = ∑ ∑ Prw𝐹y,[(𝜽)x
LM
[]K

a
y]K 	. The above integral 

is estimated by Monte Carlo integration by generating 
random samples of 𝚵 from ℎ𝚵(𝝃|𝜽) using the algorithm 
proposed in (Au and Beck 2001).  

4. Probability of failure considering uncertainty in the 
structural parameters 
Evaluation of the probability of failure of the uncertain 
linear structure requires integration of the conditional 
failure probability 𝑃l|𝚯(𝜽)  over the whole domain of 
𝑝𝚯(𝜽). This leads to the integral in Eq. 7. We evaluate this 
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integral by IS. Let ℎ𝚯(𝜽) be the IS density for 𝚯. The 
integral in Eq. 7 is written in modified form  

 𝑃l = ∫ 𝑃l|𝚯(𝜽)𝑊(𝜽)ℎ𝚯(𝜽)𝑑𝜽𝜽∈no𝜽 ,  (14) 

where 𝑊(𝜽) = 	𝑝𝚯(𝜽) ℎ𝚯(𝜽)⁄  is the importance weight 
function. The coefficient of variation (CV) of the IS 
estimator of 𝑃l based on Eq. 14 depends on the choice of 
ℎ𝚯(𝜽). The optimal IS density that leads to an estimator 
with zero variance is given by  

 ℎ𝚯∗ (𝜽) =
K
��
𝑃l|𝚯(𝜽)𝑝𝚯(𝜽). (15) 

In this study we propose an IS density ℎ𝚯(𝜽) that is a 
close approximation of ℎ𝚯∗ (𝜽) and is constructed by the 
CE method.  

4.1 IS density for 𝜣 based on the cross entropy method 
The CE method is an adaptive approach that determines an 
IS density through minimizing the KL divergence between 
the theoretically optimal IS density ℎ𝚯∗ (𝜽) and a chosen 
parametric family of distributions. Let ℎ𝚯(𝜽; 𝝂)  be a 
family of parametric densities, where 𝝂 ∈ 𝒱  is the 
parameter vector. The KL divergence between ℎ𝚯∗ (𝜽) and 
ℎ𝚯(𝜽; 𝝂) is defined as (Rubinstein and Kroese 2017) 

 𝐷�ℎ𝚯∗ (𝜽), ℎ𝚯(𝜽; 𝝂)� = E�𝚯∗ �ln r
�𝚯
∗ (𝜽)

�𝚯(𝜽;𝝂)
t�. (16) 

The basic idea in the CE method is to determine the 
parameter vector 𝝂 ∈ 𝒱  through minimizing the KL 
divergence of Eq. 16, i.e. through solving 

 𝝂 = argmin	
𝒂∈𝒱

𝐷�ℎ𝚯∗ (𝜽), ℎ𝚯(𝜽; 𝒂)�. (17) 

Upon substituting the expression of ℎ𝚯∗ (𝜽) in Eq. 15, the 
optimization problem in Eq. 17 becomes equivalent to  

 𝝂 = argmax	
𝒂∈𝒱

E�𝚯w𝑃l|𝚯(𝜽)ln�ℎ𝚯(𝜽; 𝒂)�x. (18) 

The above optimization can be solved by approximating 
the expectation in Eq. 18 using a set of samples from 
𝑝𝚯(𝜽) . To obtain a good sample approximation, a 
considerable number of these samples should come from 
the high probability region of ℎ𝚯∗ (𝜽), i.e. the region where 
the value of 𝑃l|𝚯(𝜽)𝑝𝚯(𝜽) is large. Ensuring this could 
require a large number of samples to be drawn from 
𝑝𝚯(𝜽) , which makes the direct solution of Eq. 18 
computationally impractical. 

In order to circumvent this problem, we solve the CE 
optimization in Eq. 18 using a multi-level approach. We 
introduce a sequence of intermediate target densities 
{ℎ𝚯Q(𝜽); 𝑘 = 1,… , 𝐿} that gradually approach the optimal 
IS density. These intermediate densities are defined as 

 ℎ𝚯Q(𝜽) =
K
��
𝑃l|𝚯(𝜽)��𝑝𝚯(𝜽), (19) 

where 0 < 𝛾K < ⋯ < 𝛾¢ = 1 and 𝐶Q is the normalizing 
constant of ℎ𝚯Q(𝜽) . The idea is to solve the CE 
optimization sequentially for each of the intermediate 
target densities, which leads to a sequence of parameter 
vectors {𝝂Q, 𝑘 = 1,… , 𝐿}. The final parameter vector 𝛎¢ 
should approximate well the solution of Eq. 18. 

To determine 𝝂Q  we minimize the KL divergence 
between ℎ𝚯Q(𝜽)  and ℎ𝚯(𝜽; 𝝂) , which results in the 
following optimization problem 

 𝝂Q = argmax	
𝒂∈𝒱

E�𝚯w𝑃l|𝚯(𝜽)
��ln�ℎ𝚯(𝜽; 𝒂)�x. (20) 

The expectation in Eq. 20 is approximated by IS using a 
set of samples drawn from ℎ𝚯(𝜽; 𝝂¥Q¦K)	, 𝝂¥Q¦K being the 
solution of the problem in the previous step. The sample 
counter-part of the CE optimization problem in Eq. 20 is 
given by  

 𝝂¥Q 	= argmax	
𝒂∈𝒱

∑ 𝑊Q(𝜽<; 𝝂¥Q¦K)ln rℎ𝚯(𝜽<; 𝒂)t§
<]K .(21) 

Here 𝑊Q(𝜽; 𝝂¥Q¦K) = 𝑃l|𝚯(𝜽)�� 𝑝𝚯(𝜽) ℎ𝚯(𝜽; 𝝂¥Q¦K)⁄  and 
{𝜽<, 𝑖 = 1,… ,𝑁}  are i.i.d. samples drawn from 
ℎ𝚯(𝜽; 𝝂¥Q¦K) . A default choice of ℎ𝚯(𝜽; 𝝂¥J)  is the 
nominal density 𝑝𝚯(𝜽).  

At each intermediate sampling step, we select the 
parameter 𝛾Q  adaptively such that the sample CV 𝛿ª«� 
of the weights {𝑊Q(𝜽<; 𝝂¥Q¦K), 𝑖 = 1,… ,𝑁} is equal to a 
target value 𝛿I¬y­®I. Hence, at each iteration one solves 
the optimization problem 

 𝛾Q = argmin
�∈(��¯�,K)

�𝛿ª«�(𝛾) 	−	𝛿I¬y­®I�
~
. (22) 

We note that Eq. 22 is equivalent to requiring that the 
number of effective samples available to fit the parametric 
density at each sampling iteration is equal to a target value 
(Latz et al. 2018). The choice of the value of 𝛿I¬y­®I is 
discussed in (Papaioannou et al. 2016, 2019). In the present 
study we set 𝛿I¬y­®I  to 1.5. The adaptive procedure is 
stopped when the value of 𝛾Q determined based on Eq. 22 
is equal to 1. After convergence, the final parameter vector 
𝝂¥¢  is determined by solving Eq. 21 with 𝛾¢ = 1 . The 
sampling density ℎ𝚯(𝜽; 𝝂¥¢) is taken as the IS density for 
estimating the probability of failure.  

Finally, we note that determination of the IS density for 
𝚯  based on the above described procedure requires 
repeated evaluations of the conditional probability 
𝑃l|𝚯(𝜽). One could evaluate 𝑃l|𝚯(𝜽) by IS according to 
Eq. 10. However, to ensure smooth convergence of the CE 
method, the sampling variance of the estimate of 𝑃l|𝚯(𝜽) 
should be small. This requires a sufficient number of 
samples to be used in the IS estimator for 𝑃l|𝚯(𝜽), which, 
in turn, increases the number of evaluations of the 
dynamical system. In order to reduce the computational 
effort, we employ an analytical approximation of 𝑃l|𝚯(𝜽) 
during CE optimization, instead of estimating it by IS. This 
approach is based on the extended Poisson approximation 
described in (Song and Der Kiureghian 2006). The IS 
estimator for 𝑃l|𝚯(𝜽)  described in Section 3 is only 
applied once the final IS density for 𝚯 is obtained.  

4.2 IS estimator for the probability of failure 
The probability of failure is estimated based on Eq. 14 by 
substituting ℎ𝚯(𝜽; 𝝂¥¢) for ℎ𝚯(𝜽) and the expression in 
Eq. 13 for 𝑃l|𝚯(𝜽) , respectively. This leads to the 
following IS estimator for 𝑃l: 

 𝑃°l = 	
K
§±
∑ 𝑃�(𝜽<) ² K

∑ ∑ ���𝜽�,𝝃��∈l³,��𝜽���
oM
���

�
³��

´§±
<]K 𝑊(𝜽<), 

                                          (23) 

where 𝑊(𝜽) = 	𝑝𝚯(𝜽) ℎ𝚯(𝜽; 𝝂¥¢)⁄  and {(𝜽<, 𝝃<), 𝑖 =
1,… ,𝑁µ} are i.i.d. samples drawn from the joint density 
ℎ𝚯,𝚵(𝜽, 𝝃) = ℎ𝚵(𝝃|𝜽)ℎ𝚯(𝜽; 𝝂¥¢). Here ℎ𝚵(𝝃|𝜽) is the IS 
density of 𝚵 conditional on 𝚯 = 𝜽 defined in Eq. 10 and 
𝑃�(𝜽) = ∑ ∑ Prw𝐹¶,Q(𝜽)x

LM
Q]K

a
¶]K . 
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5. Numerical Illustration 
This section illustrates the performance of the proposed 
CE-based IS method by application to a numerical 
example that is a modified version of an example given in 
(Valdebenito et al. 2014). It consists of a two-story linear 
shear frame that is excited by a stochastic ground 
acceleration. The dynamic response of the structure is 
governed by Eq. 1 with 𝑿(𝑡) = 	 {𝑋K(𝑡) 𝑋~(𝑡)}¸, where 
𝑋<(𝑡) denotes the relative displacement of the i-th floor 
with respect to the support. The mass and stiffness 
matrices, respectively, are given by 

𝐌 =	�𝑚 0
0 𝑚� and 𝐊 =	 ¹𝑘K + 𝑘~ −𝑘~

−𝑘~ 𝑘~
º, 

where m is the mass of each floor and 𝑘<  is the lateral 
stiffness of the i-th floor, and the damping matrix C 
corresponds to a classical damping of 4% for the two 
modes. It is noted that 𝑫 = −{𝑚 𝑚}𝐓 . Each floor 
possesses a mass of 𝑚 = 30Mg. The stiffness parameters 
{𝑘<; 𝑖 = 1,2} are modeled as independent uniform random 
variables with marginal distribution 𝑘<~U[12,28]MN m⁄ . 
The base acceleration 𝑓(𝑡)  is modeled as a stationary 
Gaussian white noise of duration 𝑇 = 15s and spectral 
intensity 𝑆 = 10¦Ä m~ sÅ⁄ . The stochastic excitation is 
discretized at time intervals of Δ𝑡 = 0.01s , i.e. 𝑛P =
1501 . Two response measures are considered: ℎK = 
relative displacement of the first floor with respect to the 
support, and ℎ~ = relative displacement between the first 
and the second floor. The objective is to estimate the 
probability that any one of these response measures 
exceeds a specified threshold ℎ<∗ over the duration of the 
random excitation. 

The performance of the CE method is investigated for 
two choices of the parametric density family: a multi-
variate single Gaussian (SG) distribution and a two-
component Gaussian mixture (GM) distribution. A SG 
density is completely specified by the mean vector and the 
covariance matrix. In the present examples, where the 
number of uncertain structural parameters is equal to 2, the 
bi-variate SG density comprises of 5 unknown parameters 
that are determined by CE optimization. For a two-
component GM distribution, in addition to the parameters 
of the individual Gaussian densities, the normalized weight 
associated with each component has to be determined. This 
leads to a total of 11 unknown parameters for the bi-variate 
two-component GM model. For a SG distribution, the 
update rule for the unknown parameter vector 𝝂 in each 
intermediate sampling step, i.e. the solution of the 
optimization problem in Eq. 21, is determined analytically 
in closed-form (Rubinstein and Kroese 2017, Kurtz and 
Song 2013). For the GM distribution the updated values of 
𝝂  are obtained through an expectation-maximization 
algorithm (Geyer et al. 2019). The IS density for 𝚯 
obtained using the two choices of the parametric density is 
illustrated in Fig. 1 for thresholds (ℎK∗, ℎ~∗) =
(0.0052m, 0.0037m) . The solid lines represent the 
contours of the optimal IS density ℎ𝚯∗ (𝜽) , which is 
estimated from 107 direct Monte Carlo samples. The 
scattered points in Fig. 1(a) and 1(b) are samples of 𝚯  
drawn from the IS density obtained using SG and GM 
distributions, respectively. It is seen that the samples from 

the GM distribution better represent the bi-modal nature of 
ℎ𝚯∗ (𝜽).   

 

 

Figure 1. Comparison of IS density for 𝚯 from the CE method. 
Solid lines are contours of the optimal IS density ℎ𝚯∗ (𝜽). 

Scattered points are samples drawn from the IS density obtained 
using SG and two-component GM distributions. 

The performance of the proposed method is assessed in 
terms of the sample mean and sample CV of the estimates 
of 𝑃l, denoted by 𝑃°l and 𝛿 in this section, and in terms 
of the number of dynamical system evaluations required to 
implement the method. 𝑁�Ç denotes the total number of 
samples needed to determine the IS density for 𝚯 using 
the CE method. 𝑁µ  denotes the number of samples of 
(𝚯, 𝚵)  used to obtain a sample estimate of 𝑃l  during 
reliability estimation, i.e. when evaluating Eq. 23. It is 
noted that the dynamical system needs to be evaluated only 
once for every generated sample	𝜽.	 Therefore, 𝑁�Ç and 
𝑁µ  also indicate the number of dynamical system 
evaluations needed in the CE optimization step and the 
reliability estimation step, respectively. During CE 
optimization, the system is evaluated to compute the 
impulse response function of the critical structural 
responses ℎ<  and their velocities, which are then post-
processed to determine the Poisson approximation of 
𝑃l|𝚯(𝜽) . In the reliability estimation step, the impulse 
response functions of ℎ<  for every sample 𝜽  are 
convoluted with a sample realization of the input excitation 
to obtain a realization of the response time-histories. 𝑁P =
𝑁�Ç + 𝑁µ is the total number of system evaluations. The 
performance measures are estimated from 50 independent 
simulation runs. 
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While implementing the CE-based IS method, the 
sample size 𝑁µ  in the reliability estimation step is 
selected using two approaches which are indicated using 
the following nomenclature: (i) SG-NonAdap and GM-
NonAdap denote the case in which 𝑁µ is taken equal to 
the number of samples per level for CE optimization, i.e. 
𝑁µ = 𝑁, and (ii) SG-Adap and GM-Adap denote the case 
in which 𝑁µ  is adapted on the fly to ensure that an 
estimate of the CV of the IS estimate of 𝑃l is smaller than 
a specified target value 𝛿∗.  

The simulation results for (ℎK∗, ℎ~∗) =
(0.0045m, 0.0030m)	  and (0.0052m, 0.0037m)  are 
reported in Tables 1 and 2, respectively. The results from 
SG-Adap and GM-Adap correspond to 𝛿∗ = 0.05 . The 
number of samples per level for CE optimization is taken 
as 𝑁 = 250. The reference values for the probability of 
failure are obtained from a crude MCS using 10É 
samples. The values of 𝑁�Ç indicate that for both pairs of 
response thresholds and for both choices of the parametric 
density, the CE method requires approximately two steps 
to converge to the target density. The mean estimates 
obtained using the SG and GM distributions with the two 
choices of 𝑁µ are similar but slightly biased. However, in 
terms of the CV of the estimates and the average 
computational cost, the GM distribution performs better. 
For similar number of system evaluations, it is seen that the 
CV of the estimate obtained from GM-NonAdap is smaller 
compared to SG-NonAdap. GM-Adap requires less 
number of system evaluations than SG-Adap to converge 
to the target CV 𝛿∗. The superior performance of the GM 
distribution is due to its greater flexibility in fitting the bi-
modal nature of ℎ𝚯∗ (𝜽).  

Table 1. Results for (ℎK∗, ℎ~∗) = (0.0045m, 0.0030m) from the 
CE-based IS method using SG and GM distributions. Reference 

probability of failure is 1.41 × 10¦Å. 
 𝑃°l 𝛿 𝑁�Ç  𝑁µ 𝑁P 

SG-NonAdap 1.25x10-3 0.104 505 250 755 
SG-Adap 1.22x10-3 0.050 505 1006 1511 

GM-NonAdap 1.24x10-3 0.080 530 250 780 
GM-Adap 1.22x10-3 0.052 530 610 1140 

Table 2. Results for (ℎK∗, ℎ~∗) = (0.0052m, 0.0037m) from the 
CE-based IS method using SG and GM distributions. Reference 

probability of failure is 4.06 × 10¦Ë. 
 𝑃°l 𝛿 𝑁�Ç  𝑁µ 𝑁P 

SG-NonAdap 3.45x10-5 0.102 500 250 750 
SG-Adap 3.51x10-5 0.051 500 1110 1610 

GM-NonAdap 3.45x10-5 0.066 555 250 805 
GM-Adap 3.44x10-5 0.047 555 532 1087 

We investigate the effect of the sample size N, used per 
level during CE optimization, on the performance of the 
method. For this, different values of N in the range 125-
1000 are considered. The parametric study is conducted   
using the GM distribution. The sample means of the 
probability estimates from GM-NonAdap and GM-Adap 
for the different values of N are similar to those given in 
Tables 2 and 3, and hence are not reported separately. The  

 

 
Figure 2. Variation of 𝑁P and 𝑁�Ç with 𝑁 for (ℎK∗, ℎ~∗) =

(0.0045m, 0.0030m) using GM distribution  

variation in the sample CV of the estimates and the 
computational effort is depicted in Fig. 2 and 3. Since the 
total effort for CE optimization is proportional to the 
number of samples per level, 𝑁�Ç  increases 
monotonically with N. The difference between the vertical 
coordinates of the dotted line and the solid lines gives 𝑁µ, 
the average number of dynamical system evaluations used 
in the reliability estimation step. With increase in N, the 
number of effective samples of 𝚯  available to fit the 
parametric distribution at each intermediate sampling step 
increases. This leads to better estimation of the parameters 
of the IS density for	𝚯. For GM-NonAdap, where 𝑁µ =
𝑁, an increase in N also implies an increase in the number  

 

 
Figure 3. Variation of 𝑁P and 𝑁�Ç with 𝑁 for (ℎK∗, ℎ~∗) =

(0.0052m, 0.0037m) using GM distribution 
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of samples of (𝚯, 𝚵) used to obtain a sample estimate of 
𝑃l during reliability estimation. Due to these factors, the 
sample CV of the probability estimates obtained from GM-
NonAdap decreases as N increases. In GM-Adap, it is seen 
that the number of samples for reliability estimation 
initially decreases as N increases, particularly for 
(ℎK∗, ℎ~∗) = (0.0052m, 0.0037m). This is due to the sub-
optimality in the IS density for 𝚯 obtained with a small N, 
which leads to a greater computational effort during 
reliability estimation necessary to meet the prescribed 𝛿∗. 
As N increases, one obtains improved estimates of the 
parameter vector, and the number of samples for reliability 
estimation starts decreasing. Beyond N = 500, 𝑁µ  is 
nearly constant, which indicates that the IS density for 𝚯 
obtained using 500 samples per level is sufficiently 
optimal, and a further increase in N does not give any 
additional advantage during reliability estimation. The 
sample CV of the probability estimates obtained using 
GM-Adap remains close to the prescribed 𝛿∗	for all N. 
Finally, Figs. 2 and 3 show that the IS estimator with 
adaptive choice of 𝑁µ requires less number of dynamical 
system evaluation to meet a prescribed CV. For the case of 
(ℎK∗, ℎ~∗) = (0.0052m, 0.0037m) , it is seen that GM-
NonAdap requires about 1600 system evaluations (with N 
= 500) to achieve a sample CV of 0.05, whereas GM-Adap 
gives the same sample CV with only 1100 system 
evaluations (with N = 250). This indicates that if the goal 
is to achieve a target value of the sample CV, the adaptive 
variant of the IS estimator is more efficient provided that 
the number of samples per level N is chosen appropriately.  

6. Conclusions 
The paper presents an adaptive IS method to estimate the 
series system reliability of uncertain linear structures 
subject to Gaussian loading. The main contribution lies in 
the development of an effective IS density for the uncertain 
structural parameters using the CE method. The proposed 
method introduces a smooth transition to the optimal IS 
density by choosing a sequence of intermediate target 
densities. The sampling density for the uncertain 
parameters is determined adaptively by minimizing the KL 
divergence between the sequence of target densities and a 
chosen family of parametric distributions. The IS density 
for the structural parameters is then combined with an 
efficient IS density for the input excitation to obtain the IS 
estimator for the probability of failure.  

The CE method is implemented using the multi-variate 
single Gaussian distribution and the Gaussian mixture 
model as the parametric densities. For series systems, 
where the structural failure event is a union of multiple 
first-passage failures, the optimal IS density with respect 
to the uncertain structural parameters is usually multi-
modal in nature. In such cases, the Gaussian mixture 
distribution offers more flexibility in fitting the optimal 
density. Results from numerical studies on a two-
component series system demonstrate that the Gaussian 
mixture model outperforms the single Gaussian 
distribution, both in terms of the coefficient of variation of 

the failure probability estimate and the computational 
effort. The performance of the method in problems with a 
large number of uncertain structural parameters and 
several component failure modes is currently being 
investigated by the authors.  
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