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Abstract: Although various uncertainties in geotechnical engineering can be incorporated into geotechnical reliability-based design 

(RBD) in a straightforward manner using full probabilistic design approach, it is nontrivial to obtain feasible designs for different 

design scenarios when the spatial variability of soil parameters is considered in geotechnical design. This paper develops an efficient 

RBD updating approach for piles in spatially variable soils, which uses sample reweighting technique and equivalent variance 

technique. The proposed approach updates feasible designs and design points for different design scenarios based on a single run of 

direct MCS, avoiding repeatedly performing direct MCS for each design scenario. A drilled shaft design example is used to illustrate 

the proposed approach.  
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1. Introduction 
There are various uncertainties (e.g., uncertainties in 
geotechnical properties and loads, etc.) in geotechnical 
engineering (e.g., Baecher and Christian 2003) affecting 
decision making in geotechnical design process. It is 
necessary to incorporate these uncertainties into 
geotechnical design to determine a rational design. 
Reliability-based design (RBD) approaches can deal, 
rationally, with these uncertainties. Several 
semi-probabilistic RBD codes and/or methodologies have 
been developed in geotechnical engineering in the past 
few decades, such as load and resistance factor design 
(LRFD) (Paikowsky 2004; Fenton et al. 2016) and the 
multiple resistance factor design (MRFD) (Phoon et al. 
2003a, 2003b). These semi-probabilistic RBD codes 
and/or methodologies use load and resistance factors (or 
partial factors) to implicitly consider uncertainties in 
geotechnical engineering. However, these factors must be 
calibrated given some assumptions and simplifications 
(Wang et al. 2011) before used in practice. This renders 
difficulties in implementing semi-probabilistic RBD 
approach in geotechnical practice because of a wide range 
of design scenarios due to site-specific nature and 
relatively large variability of geotechnical materials.  

Among various geotechnical-related uncertainties, it 
has been demonstrated in literature that the spatial 
variability of soil properties significantly affects the 
performance of geotechnical structures (Phoon and 
Kulhawy 1999; Fenton and Griffiths 2002; Li et al. 2014; 
Xiao et al. 2017). However, it is very difficult to directly 
incorporate the effects of spatial variability into the 
design process using semi-probabilistic RBD codes 
and/or methodologies. The problem can be tackled with 
relative ease using the full probabilistic RBD approaches. 
Under a full probabilistic design framework, the statistics 
and probability distributions of loads and geotechnical 

parameters, which are used to evaluate the failure 
probability Pf of each possible design in design domain, 
can be changed according to the design scenarios (Wang 
et al. 2011; Wang and Cao 2013; Phoon et al. 2016). The 
full probabilistic design approach identifies feasible 
designs as those with Pf less than the target probability of 
failure PT prescribed in the design scenario.  

Monte Carlo simulation (MCS) is a robust method to 
evaluate the failure probability in full probabilistic design. 
Several MCS-based full probabilistic design approaches 
have been developed for geotechnical engineering (Wang 
2011; Wang et al. 2011; Wang and Cao 2013; Li et al. 
2016; Gao et al. 2019). Feasible designs can be obtained 
for a given design scenario using these approaches. For 
different design scenarios, feasible designs might be 
different. Hence, repeated runs of full probabilistic RBD 
are often required to obtain the respective feasible designs 
for each design scenario. This requires extensive 
computational efforts and is not a trivial task obviously. 
To avoid repeatedly implementing MCS-based reliability 
evaluations, sample reweighting technique is used to 
calculate the failure probabilities of possible designs for 
different design scenarios (Cao et al. 2019). However, it 
remains a challenging task to use the sample reweighting 
technique when random field theory is employed to 
explicitly model the spatial variability of soil parameters 
because sample reweighting technique is not applicable to 
high dimension problems. 

This paper presents an efficient RBD updating 
approach for piles in spatially variable soils, and only a 
single run of direct MCS is required to obtain respective 
feasible designs and design points of all the design 
scenarios. The updated feasible designs are obtained 
using sample reweighting technique, in which only the 
samples that produced by direct MCS are used repeatedly 
but without re-calculating the responses of possible 
designs for different design scenarios, so that the 
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computational efficiency is significantly improved. The 
spatial variability of soil parameters is modeled using the 
equivalent variance technique to reduce the dimension of 
uncertainty parameters. The design point of different 
design scenarios is updated according to the samples of 
direct MCS without repeatedly performing simulations 
for different design scenarios which provides the 
information of the failure domain and parameter 
sensitivity (Low 2017). The paper starts with descriptions 
of the proposed approach, and then followed by an 
illustration of the proposed approach using a drilled shaft 
design example.  

2. Expanded RBD for a Given Design Scenario 
For a given design scenario Yi, the expanded RBD 
approach (Wang 2011; Wang et al. 2011) based on direct 
MCS is adopted to calculate failure probabilities of 
different possible designs in this study. In the context of 
expanded RBD, the design parameters d (e.g., the 
diameter and length of pile) of geotechnical structures are 
artificially considered as independent discrete random 
variables d(t), t = 1, 2, …, nd, with a uniform probability 

mass function P(d(t)). Let F(t) denotes the failure event of 
d(t). Then, the process of RBD is viewed as a process of 
evaluating conditional failure probabilities P(F(t)|d(t), Yi) 
of all the possible designs given Yi and identifying 
feasible designs. The failure probability, P(F(t)|d(t), Yi), of 
d(t) can be calculated using the Bayes’ theorem as follow 
(Ang and Tang 2007; Wang 2011; Wang et al. 2011): 
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where P(d(t)|F, Yi) is the conditional probability of d(t) 
given Yi and failure; P(F|Yi) is failure probability given Yi. 
Based on the statistical information of uncertainty 
parameters X (e.g., materials parameters and loads 
parameters) obtained from the site-specific design 
scenario Yi and the possible ranges of design parameters, 
the random samples of X and d can be generated by MCS 
to calculate the performance functions of different 
possible designs. Then, P(F(t)|d(t), Yi) can be expressed as 
(Wang et al. 2011):  

 

( ) ( )

( ) ( )
( / )( / )

( | , )
1 /

t t
f f f ft t

i d

d

n n n n n
P F d Y n

n n
   (2) 

where n and nf are the numbers of direct MCS samples 

and failure samples, respectively; ( )t
fn  is the number of 

failure samples of d(t); nd is the number of possible 

discrete values of d.  

In the process of expanded RBD, the failure samples 

of all the possible designs will be identified, and their 

corresponding values of the joint probability density 

function (PDF) of X are calculated. The design point of 

each design can be approximately determined as the 

failure sample with the maximum joint PDF value (Gao et 

al. 2019). However, the accuracy of results of the design 

point depends on the number of failure samples. It may 

require significant computational costs to generate failure 

samples of possible designs, especially for the feasible 

designs of interest that have relatively small failure 

probabilities. For different design scenarios, repeated 

simulations of the above process are required for each 

design scenario to obtain respective feasible designs and 

design points, which is often a difficult task. The next 

section presents an efficient method to update the feasible 

designs and design points for different design scenarios 

based on direct MCS samples that have been generated in 

the expanded RBD for the given design scenario. 

3. RBD Updating for Different Design Scenarios 

3.1 RBD updating 
As the design scenario varies from Yi to Yj, the P(F(t)|d(t), 
Yj) shall be calculated accordingly. In this study, a sample 
reweighting technique is employed to calculate P(F(t)|d(t), 
Yj) instead of repeating direct MCS for the new design 
scenario. Let f(X|Yi) and f(X|Yj) denote the joint PDF of X 
given Yi and Yj, respectively. P(F(t)|d(t), Yj) can be 
re-written as (Baecher and Christian 2003; Fonseca et al. 
2007; Cao et al. 2019): 
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In the context of direct MCS, Eq. (3) can be written as: 
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where ( ) ( )
, , 1,2, ,t t

i kX k n  are the samples of X generated 

from f(X|Yi) during the expanded RBD given Yi; 
( ) ( ) ( )

,( | , )t t t
i kI F X d  is an indicator function which is equal 

to 1 when F(t) occurs and is equal to 0 when F(t) does not 

occur. The ratio of f(X|Yj) over f(X|Yi) are calculated at 
( )
,
t

i kX  to adjust the weighting of the samples 

( ) ( )
, , 1,2, ,t t

i kX k n . Since ( ) ( ) ( )
,( | , )t t t

i kI F X d  in Eq. (4) has 

been calculated in the expanded RBD for Yi, only the 

ratio of f(X|Yj) over f(X|Yi) at failure samples of X 

generated from f(X|Yi) is required, which avoids 

generating samples of X from f(X|Yj) to evaluate the 

corresponding performance functions and indicator 

functions. After the failure samples of X generated from 

f(X|Yi) are identified from the expanded RBD, P(F(t)|d(t), 

Yj) can be updated without repeating direct MCS for the 

expanded RBD given the new design scenario, leading to 

significant computational saving. Then, feasible designs 

can be updated according to the updated failure 

probabilities of possible designs. 
Note that failure samples of each design generated 

from f(X|Yi) by expanded RBD are the key to update 
P(F(t)|d(t), Yj) of the new design scenario. As shown in 
Eq.(4), it requires that these failure samples shall cover 
the failure region corresponding to the new design 
scenario. However, for high dimension problems, it is a 
challenging task to cover the failure region of each design 
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under the new design scenario with the failure samples 
generated from f(X|Yi). Hence, it is difficult to update 
failure probabilities for the new design scenario using the 
sample reweighting technique when the spatial variability 
of soil parameters is modeled using the random field 
theory, because random field modeling is usually 
discretized into a number of random variables, leading to 
a high dimension problem. 

3.2 Incorporating spatial variability into RBD updating 
To model the spatial variability of soil parameters, the 
equivalent variance technique (EVT) is adopted in this 
study. Consider, for example, a drilled shaft in soil layer 
considering spatial variability of soil parameters Z. Fig. 1 
shows the influence zones for evaluating the drilled shaft 
capacity. In the EVT, spatial variability of Z is modeled 
by Zside and Ztip, which represent the spatial averages of Z 
over their respective influence zones (Vanmarcke 1977; 
Wang and Cao 2013). As a result, the dimension of 
uncertainty parameters is reduced, making it feasible to 
update failure probabilities using the sample reweighting 
technique for the new design scenario when spatial 
variability of soil parameters is considered. For the sake 
of conciseness, details of the EVT for modeling spatial 
variability of soil parameters are not presented herein, and 
are referred to Wang and Cao (2013). 
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Figure 1. Illustration of influence zones for evaluating the 

drilled shaft capacity. 

3.3 Design point updating 
As mentioned in the previous subsection, feasible 
designs can be updated when the design scenario varies 
from Yi to Yj. The design point corresponding to the 
target failure probability can also be updated according to 
the updated design. If failure samples generated by the 
direct MCS for different designs cover their respective 
failure regions for the new design scenario, it is trivial to 
make use of these failure samples to update the design 
point instead of repeated direct MCS runs for the new 
design scenario. Consider, for example, a drilled shaft 
considering spatial variability of soil parameters Z. After 
the failure samples of Zside and Ztip generated from f(X|Yi) 
are identified from expanded RBD, it only requires to 
re-calculate the joint PDF of Zside and Ztip at these failure 
samples for the new design scenario. Then, the design 

point of Zside and Ztip can be updated as the failure sample 
with the maximum joint PDF value given the new design 
scenario. 

4. Illustrative Example 
In this section, the proposed approach is illustrated using 
a drilled shaft design example considering spatial 
variability of the effective stress friction angle  . Wang 
and Cao (2013) developed an efficient Monte Carlo 
simulations approach to design this example. As shown in 
Fig. 1, this drilled shaft example has two design 
parameters (i.e., the drilled shaft diameter B and depth D), 
and is installed in a sand layer. The unit weight γ of the 
sand is 20 kN/m3. Both at-rest coefficients of horizontal 
soil stress K0 of the sand and nominal operative in-situ 
horizontal stress coefficient ratio (K/K0)n are 1.0. The unit 
weight of concrete γcon and water γw are 24 kN/m3 and 
9.81 kN/m3, respectively. The drilled shaft is designed to 
support a vertical load with a maximum allowable value 
F50 equal to 800 kN. The allowable displacement ya in 
this example is 25 mm, which is adopted from Wang and 
Cao (2013). 

4.1 Expanded RBD for a given fluctuation scale 

In this study, the effective stress friction angle   of the 

sand is assumed to be a lognormal random variable with a 

mean 32    and coefficient of variation 

0.17COV  . As mentioned above, the spatial variability 

of   is considered in the expanded RBD using EVT. 

Let side  and tip  represent the spatial averages of   

over influence zone D and L, respectively. The spatial 

variability of   surrounding the drilled shaft can be 

approximately modelled by side  and tip . A single 

exponential correlation function is adopted to calculate 

the variance reduction factor for side  and tip  in this 

study. The vertical scale of fluctuation λ is taken as 10 m 

in expanded RBD. 
For this example, both ultimate limit state (ULS) and 

serviceability limit state (SLS) are considered. The 
factors of safety for ULS and SLS can be calculated as: 

 50( )ULS side tipFS Q Q W F    (5) 

 500.625 ( ) ( )b

SLS a side tipFS a y B Q Q W F     (6) 

where a and b are curve fitted parameters, and are equal 

to 4.0 and 0.4, respectively; sideQ  and tipQ  are side 

resistance and tip resistance, respectively; W is effective 

shaft weight, and can be calculated as 
20.25 ( )con WW B D    . For the sake of conciseness, 

calculation of sideQ  and tipQ  are referred to Wang and 

Cao (2013). 
In this study, three possible B values of 0.9 m, 1.2 m, 

and 1.5 m are considered, and the possible D values vary 
from 2.0 to 10.0 m with an increment of 0.2 m are 
considered. Based on the uncertainty model and 
deterministic model described above, the expanded RBD 
based on direct MCS is performed to evaluate failure 
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probabilities of all the possible designs. To ensure the 
accuracy of the failure probabilities, 20,000,000 random 
samples are generated during the simulation. Fig. 2 shows 
the variation of the failure probabilities as a function of D 
for B=0.9 m, 1.2 m, and 1.5 m by solid lines with circles, 
squares, and triangles, respectively. For a given value of 
B, the failure probability decreases as D increases. The 
target failure probabilities for ULS and SLS are taken as 

46.9 10ULS
TP    and 34.7 10SLS

TP   , respectively, 
which are the same as those taken by Wang and Cao 
(2013). As shown in Fig. 2, feasible designs can be 
determined as those below the lines of target failure 
probabilities. It is shown that the SLS dominates the 
feasible design in this example. Hence, the minimum 
design shaft lengths are identified as 8.6 m, 6.4 m, and 
5.0 m for B = 0.9 m, 1.2 m, and 1.5 m, respectively. 
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(b) SLS 

Figure 2. Failure probabilities of the drilled shaft design 

example estimated from the expanded RBD. 

For the three minimum design above, the design 
points of SLS are determined according to their 
respective failure samples. The failure samples 
corresponding to these three designs are identified from 
the expanded RBD, the number of which are summarized 
in Table 1. The design points are taken as the failure 

samples with the maximum joint PDF value as discussed 
in Section 2. 

Table 1. Design points obtained from the expanded RBD with 

direct MCS. 

Design scheme 

(m) 

Number of failure 

samples 

Design points 

side
* tip

* 

B=0.9, D=8.6 674 22.74 22.58 

B=1.2, D=6.4 631 22.22 22.63 

B=1.5, D=5.0 604 22.48 22.42 

4.2 Updated designs and design point for different 

design scenarios with different scale of fluctuation λ 
The spatial variability of   changes as the scale of 
fluctuation λ changes. As a result, the feasible designs and 
design points also shall be updated accordingly. In this 
study, a total of 9 values of scale of fluctuation vary from 
1 to 9 m with an increment of 1 m are considered. These 
scale of fluctuation include the typical range of the 
vertical scale of fluctuation (e.g., 2m to 6 m) of in-situ 
test data on soil parameters reported by Phoon and 
Kulhawy (1999). 
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Figure 3. Failure probabilities of the drilled shaft design 

example for λ = 4m. 
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Based on the failure samples generated in the 
expanded RBD for λ = 10 m, the failure probability of 
each design is updated using Eq. (4) for different λ 
values. Fig. 3 shows the updated failure probabilities of 
possible designs obtained from the proposed approach for 
λ = 4 m that is adopted by Wang and Cao (2013). For 
validation, repeated runs of expanded RBD with 
20,000,000 random samples are also performed for each 
scale of fluctuation λ to calculate the failure probabilities 
of possible designs. Fig. 3 also include the results from 
repeated runs of the expanded RBD, which are in good 
agreement with the results obtained from the proposed 
approach. Similar to design scenario λ = 10 m, the 
minimum design shaft lengths are identified for each 
scale of fluctuation. Fig. 4 shows the results obtained 
from the proposed approach and repeated runs of 
expanded RBD by solid and open symbols, respectively. 
These two approaches give the same results, which 
validates the proposed approach. Compared with repeated 
expanded RBD for different λ values, the proposed 
approach only requires to adjust the weighting of failure 
samples, which leads to a considerable computational 
saving. 
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Figure 4. Comparison of minimum design lengths of the drilled 

shaft for different λ values obtained from the proposed approach 

and repeated runs of the expanded RBD. 

As discussed in subsection 3.3, the design points for 
different λ values are also updated using the failure 
samples generated in the expanded RBD given λ = 10 m. 
Fig. 5 shows the updated design points obtained from the 
proposed approach by solid lines. As shown in Fig. 5, the 
value of design point decreases as the vertical scale of 
fluctuation increases. For validation, repeated expanded 
RBD runs with direct MCS are also performed for each 
scale of fluctuation to calculate the design point again. 
The design points obtained from repeated expanded RBD 
runs with direct MCS are also included in Fig. 5, which 
agree well with those obtained from the proposed 
approach, which further validates the proposed approach.  

5. Summary and Conclusions 
This paper develops an efficient RBD updating approach 
for piles considering the spatial variability of soil 
parameters, which allows efficient updating feasible 

designs using direct MCS samples as the design scenario 
changes. A drilled shaft design example is used to 
illustrate the proposed approach. It was shown the 
feasible designs for different design scenarios can be 
obtained in a cost-effective manner, avoiding repeated 
direct MCS runs. The proposed approach allows 
incorporating the spatial variability of soil parameters into 
the efficient RBD updating by the sample reweighting 
technique and equivalent variance technique. The design 
point of different designs can also be updated according 
to the failure samples identified from the single run of 
direct MCS. This may be useful for calibrating load and 
resistance factors (or partial factors) for 
semi-probabilistic design, which will be further pursued 
in future study.  
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(b) Design point of tip  

Figure 5. Comparison of design points obtained from the 

proposed approach and repeated runs of the expanded RBD. 
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