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Abstract: Life-cycle oriented structural design required the consideration of time effects regarding the safety and 
reliability. In order to account for time effects properly in the design optimization process, computationally efficient 
methods must be devised. The paper establishes the framework for time-variant reliability analysis from a conceptual 
perspective. It then discusses several mainly Monte-Carlo based computational reliability methods in detail. The 
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1. Introduction 
The design of structures and infrastructural systems 
increasingly requires the consideration of life-cycle 
aspects. From a safety perspective, this implies that 
reliability analysis must take into account all possible 
time-dependent factors affecting the performance of 
these systems. This leads to so-called time-variant 
reliability analysis. Moreover, life-cycle considerations 
play an important role in the optimal design of structures 
and their maintenance planning (Frangopol, Kallen, and 
Noortwijk 2004; Macke and Higuchi 2007). 
In this context it is essential to take into account the time-
dependence of the statistical uncertainty of loads and 
resistances in the expected life-time of a structure. This is 
particularly important for overall life-cycle cost 
minimization including the impact of maintenance 
planning and repair strategies. A very comprehensive 
survey on life-cycle oriented structural optimization 
utilizing a probabilistic basis is given by (Frangopol and 
Maute 2003; Frangopol, Kallen, and Noortwijk 2004). 
Further studies involving optimization under random 
actions and maintenance include (Higuchi and Bucher 
2004; Bucher and Frangopol 2007; Bucher 2009c). At a 
fairly theoretical level, the optimal design of structures 
under consideration of time-variant reliability constraints 
is in the focus of the work by (Kuschel and Rackwitz 
2000). This is followed up on in (Streicher and Rackwitz 
2004). 
In the above-mentioned approaches, it is necessary to 
have access to statistical information on the state of the 
structure, mainly regarding deterioration due to corrosive 
effects or damage due to possibly large loads. For this 
purpose, it is useful to introduce the results of structural 
monitoring on a probabilistic basis. Some discussion of 
the effect of monitoring on time-variant reliability 
estimates can be found in (Bucher 2010; Catbas, Gokce, 
and Frangopol 2013). 
When designing structures for a desired or required level 
of safety it is one of the most challenging tasks to 
compute small probabilities related to potential structural 
failures with both reasonable accuracy and efficacy. As 
usually the level of safety is not reached within one 
design cycle but rather through an iterative process, the 
efficacy requirement becomes especially important. In 

order to be able to apply methods from probability theory 
and statistics, it is required to express the randomness of 
all parameters 𝑋", 𝑖 = 1…𝑛  in terms of probability 
density or probability distribution functions. The simplest 
possible statistical characterization in terms of mean 
value as and standard deviations is usually not sufficient. 
Hence we assume that for each random variable 𝑋" we 
know the probability density function 𝑓*+(𝑥"), and that 
we also know the joint probability density function of all 
random variables 𝑓*/,…*0(𝑥1,…𝑥2). 
The safety analysis (or its complementary, the failure 
analysis) tries to identify the probability that rare 
combinations of the basic variables lead to structural 
failure. If properly designed, this failure probability 
should be rather small (say of the order 1045 per year). 
The actual value would have to depend on the 
consequences of failure, thus introducing a cost element 
into the design. On this basis, the target safety level can 
be based on minimal expected cost during the structural 
life time including initial cost, cost of maintenance, and 
cost of failure if it occurs. Typically, large failure costs 
lead to higher target safety levels (or smaller failure 
probabilities). Since the expected cost of failure can be 
computed as the product of failure probability and cost of 
failure, again there is a need to be able to compute small 
probabilities efficiently. A general review of structural 
reliability analysis methods is given in (Rackwitz 2001). 
Specific aspects regarding the material and type of 
structure as well as possible deterioration mechanisms 
play an important role in the choice of appropriate 
methods. As an example, the consequences of time-
dependent randomness on the service life of concrete 
bridges are discussed in (Enright and Frangopol 1998) 
whereas time-variant reliability profiles for steel bridges 
are discussed in (Czarnecki and Nowak 2008). Corrosion 
in a marine or otherwise aggressive environment and its 
effect on reliability is considered together with repair 
actions in (Soares and Garbatov 1999). An application of 
time-variant reliability analysis to cooling towers in 
conjunction with the finite element method is shown in 
(Sudret, Defaux, and Pendola 2005). 
The focus of this paper is on conceptual and 
computational details of various simulation methods for 
the estimation of small probabilities from reasonably 
small sample sets, for both time-invariant and time-
variant problem classes. Some of the findings as reported 
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here have been published previously by the author 
(Bucher, 2012).The major advantage of such Monte-
Carlo based simulation techniques is that there are 
virtually no restrictions on the area of applicability. 
Essentially, these sampling techniques consist of simple 
repetition of the deterministic analysis with suitably 
modified parameters. Unfortunately, this enormous 
flexibility comes with an increase in computational effort. 
Specialized simulation techniques allow control over the 
effort required thus rendering advanced Monte-Carlo 
methods quite competitive. 
Clearly, there are cases in which immediate application 
of Monte Carlo methods are not actually feasible. This 
will most likely occur whenever the structural model 
under consideration requires substantial computational 
resources for one single run. In such cases, response 
surface methodology may provide a convenient way for 
obtaining reasonable accurate answers with acceptable 
computational effort (Bucher and Macke 2005). The 
application and necessary improvements for the response 
surface method in the context of time-variant reliability 
analysis is discussed e.g. in (Gupta and Manohar 2004). 
 
2. Time-variant reliability 
 
2.1 Concept and definitions 
 
When considering the reliability of structures or 
infrastructure systems, the performance over the life-time 
is significantly affected by deterioration due to corrosion 
or repeated overloading. Naturally, the magnitude of the 
deterioration depends on the time passed since the 
structure was built, and consequently the probability of 
failure will increase with increasing time. Methods for 
time-variant reliability attempt to address this problem in 
a computationally efficient manner. For the ease of 
presentations, in this section it will be assumed that the 
reliability problem can be simplified to 

𝑔(𝑅, 𝑆) = 𝑅 − 𝑆 
in which 𝑅 denotes the structural resistance, and 𝑆 is the 
load effect. Both variables may either be constant or 
change over time. Cases with 𝑆 = const. are fairly simply 
treatable and are therefore not considered in the 
following. 
The remaining time-variant reliability problems may 
roughly be categorized as follows: 
• The loading is applied repeatedly in time with 

randomly changing intensity 𝑆(𝑡), the resistance 𝑅 
is constant over time. Here the main problem lies 
in the determination of the possible correlation 
between different load applications. 

• The loading is applied repeatedly in time with 
randomly changing intensity 𝑆(𝑡), the resistance 
changes over time due to load-independent 
deterioration such as e.g. corrosion. 

• The loading is applied repeatedly in time with 
randomly changing intensity 𝑆(𝑡), the resistance 
changes over time due to load-dependent 
deterioration such as e.g. low/high cycle fatigue. 

These cases are schematically sketched in Fig. 1. All the 

cases can be characterized as first-passage problems, i.e. 
failure occurs whenever the current load effect exceeds 
the current resistance for the first time. 

 
Figure 1. Classification of time-variant reliability 

problems 
 
The cases as described here are further complicated if 
inspection and repair strategies are taken into account. 
Repair should basically increase the structural resistance 
whenever inspection reveals possible damage, either due 
to corrosion or excessive loading. This is not considered 
in the following. The complexity of Case A is mainly 
determined by the correlation structure of 𝑆(𝑡). If the 
loading process consists of a sequence of independent 
pulses (such as a Poisson process) then the first-passage 
problem can be reduced to a sequence of independent 
failure events whose individual probabilities may 
possibly be computed even in analytical form. If the load 
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application does not lead to immediate load effects, but is 
delayed and accumulated over a long time period (such 
as due to inertia and damping in the case of dynamic 
response to random excitation), then the first passage 
problem needs to be formulated in terms of a high-
dimensional reliability problem. For Case B, the situation 
is fairly similar, the essential difference being the 
changing probability of individual failure events. Still, 
there is the possibility of achieving accurate results with 
rather small efforts. In Case C, however, the resistance 
and the load are physically coupled, and therefore 
statistically dependent. It is usually not possible to 
remove that dependence without crude oversimplification 
of the problem. Therefore, in this case a high-
dimensional reliability problem arises in which all load 
applications had to be considered simultaneously in one 
high-dimensional random vector. 
Common to all types as mentioned above is that the 
reliability problem can be expressed as a first-passage 
problem. This means that the time-dependent first 
passage probability 

𝑃<(𝑡) = 𝐏𝐫𝐨𝐛A inf
B∈[E,F]

{𝑅(𝜏) − 𝑆(𝜏)} ≤ 0L (1) 

needs to be computed for all values of 𝑡 between 0 and 
the expected service life 𝑇. 
 
2.2. Crossing rate approach 
 
The computation of the first passage probability as 
defined in Eq. 1 can be substantially simplified if the so-
called expected up-crossing rate (first-passage rate) 
approach is applied. Simply speaking, this implies that 
passage events are assumed to occur independently such 
that the up-crossing process can be described as Poisson 
process. If we define the random process 𝑍(𝑡) = 𝑅(𝑡) −
𝑆(𝑡) (safety margin), then the first passage probability 
can be written as 

𝑃<(𝑡) = 𝐏𝐫𝐨𝐛 A inf
B∈[E,F]

𝑍(𝜏) ≤ 0L (2) 

For the special case that 𝑍(𝑡) is a stationary random 
process, the expected number of zero crossing of the 
safety margin per unit time (i.e. the zero-crossing rate) 
can be computed from the power spectral density 
function 𝑆PP(𝜔) of the safety margin (Rice 1944): 

𝜈E =
1
2𝜋

T
∫ 𝜔VW
4W 𝑆PP(𝜔)d𝜔

∫ 𝑆PP
W
4W (𝜔)d𝜔

(3) 

For non-stationary processes as given in cases B and C 
above, this concept needs to be adapted. If the joint 
probability density function 𝑓PṖ(𝑧, 𝑧̇)  of the safety 
margin 𝑍 and its time derivative 𝑍̇ is known, then the 
expected zero crossing rate of 𝑍  can alternatively be 
computed from (Rice 1944; Lin 1976): 
𝜈E = ∫ 𝑧̇W

E 𝑓PṖ(0, 𝑧̇)d𝑧̇ (4) 
Unfortunately, the required joint density is not available 
readily for relevant practical situations. A reasonable 
simplification can be based on the assumption that 𝑍 and 

𝑍̇ are independent, which is true for stationary Gaussian 
processes. In this case, the expressions of the last two 
equations yield identical results. For non-Gaussian 
situations, the probability densities need to be computed 
by numerical means. This can actually be achieved by re-
formulating the problem in terms of a time-independent 
reliability analysis. 
Based on the Poisson assumption and with the expected 
uncrossing rate, the first-passage probability may be 
approximated by 

𝑃<(𝑡) = [1
F

E

− exp(−𝜈E𝜏)d𝜏 (4) 

This excludes the case of instantaneous initial failure 
which is not related to time effects. 
An excellent overview of the expected uncrossing rate 
approach is given by (Beck and Melchers 2004). The 
same authors also discuss the situation of the so-called 
Barrier failure dominance (BFD) which characterizes 
those problems where an out-crossing or overload failure 
is more likely to be caused by a very small realization of 
the barrier (resistance) than by an exceptionally large 
realization of the load process” (Beck and Melchers 
2005). This means that in many cases the resistance 
variation may be significantly more important than the 
load variation. 
From a computational perspective, it may be 
advantageous to treat the zero-crossing rates as 
mentioned above as functions of the particular value of 
the resistance 𝑅  so that the up-crossing rates and the 
probabilities may be interpreted as conditional on 𝑅 . 
Unconditional probabilities can subsequently be obtained 
by integrating over the probability density of 𝑅: 

𝑃<(𝑡) = [𝑃<
]

(𝑡|𝑟)𝑓](𝑟)d𝑟 (5) 

 
3. Simulation Methods 
 
3.1. Definitions 
 
Generally, failure (i.e. an undesired or unsafe state of the 
structure) is defined in terms of a limit state function 
𝑔(. ), i.e. by the set ℱ = {𝐗:𝑔(𝐗) ≤ 0}. Frequently, 𝑍 =
𝑔(𝐗) is called safety margin. The vector 𝐗 contains the 
basic variables, i.e. all random variables relevant for the 
problem at hand. It is assumed that the joint probability 
density function 𝑓𝐗(𝐱) is known. 
From the simple problem as shown in Fig. 2 it can 
already be seen that the definition of the limit state 
function is not unique, i.e. there are several ways of 
expressing the failure condition 

ℱ = fg𝐹, 𝐿,𝑀klm:𝐹𝐿 ≥ 𝑀klo

= pg𝐹, 𝐿,𝑀klm: 1 −
𝐹𝐿
𝑀kl

≤ 0q
(6) 
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Figure 2. Failure condition for a cantilever. 
 
The failure probability is defined as the probability of the 
occurrence of ℱ: 

𝑝t = 𝐏𝐫𝐨𝐛[{𝐗:𝑔(𝐗) ≤ 0}] (7) 
 
This quantity is unique, i.e. not depending on the 
particular choice of the limit state function. The failure 
probability can be written in the form of a multi-
dimensional integral: 

𝑝t = 𝐏𝐫𝐨𝐛[𝑔(𝑋1,…𝑋2) ≤ 0] = [ 𝑓𝐗
v(𝐗)wE

(𝐱)d𝐱 (𝟖)
 

The computational challenge in determining the integral 
of Eq. 8 lies in evaluating the limit state function 𝑔(𝐱), 
which for non-linear systems usually requires an 
incremental/iterative numerical approach. In this context, 
it is essential to realize that the limit state function 𝑔(𝐱) 
serves the sole purpose of defining the bounds of 
integration in Eq. (8). As an example, consider a 2-
dimensional problem with standard normal random 
variables 𝑋1  and 𝑋V , and a limit state function 
𝑔(𝑥1, 𝑥V) = 3 − 𝑥1 − 𝑥V . In Figure 3 the integrand of 
Eq. 8 in the failure domain is displayed. It is clearly 
visible that only a very narrow region around the so-
called design point 𝐱∗ really contributes to the value of 
the integral, i.e., the probability of failure 𝑃(ℱ). This 
makes is difficult to locate integration points for 
numerical integration procedures appropriately. 

 
Figure 3. Integrand for calculating the probability of 

failure for 𝑔(𝑥1, 𝑥V) = 3 − 𝑥1 − 𝑥V. 

 
3.2. Monte Carlo simulation 
 
The definition of the failure probability as given in Eq. 8 
can be written as an expected value 

𝑝t = [ …
W

4W

[ 𝐼v

W

4W

(𝑥1 …𝑥2) ⋅ 𝑓*/…*0(𝑥1 …𝑥2)𝑑𝑥1 …𝑑𝑥2(9) 

in which 𝐼v(𝑥1 …𝑥2) = 1 if 𝑔(𝑥1 …𝑥2) ≤ 0 and 𝐼v(. ) =
0 else. 
In order to determine 𝑝t  in principle all available 
statistical methods for estimation of expected values are 
applicable. If 𝑚 independent samples 𝐱(�) of the random 
vector 𝐗 are available then the estimator 

𝑝‾t =
1
𝑚
�𝐼v

�

��1

g𝐱(�)m (10) 

yields a consistent and unbiased estimate for 𝑝t . 
The problem associated with this approach is this: For 
small values of 𝑝t  and small values of 𝑚 the confidence 
of the estimate is very low. The variance 𝜎k‾�

V  of the 
estimate 𝑝‾t  can be determined from 

𝜎k‾�
V =

𝑝t
𝑚 −

𝑝tV

𝑚 ≈
𝑝t
𝑚 → 𝜎k‾� = �

𝑝t
𝑚

(11) 

It is to be noted that the required number 𝑚  of 
simulations is independent of the dimension 𝑛  of the 
problem! Based on the failure probability, a generalized 
reliability index 𝛽�  can be defined as 

𝛽� = −𝛷41g𝑝tm (12) 
 
3.3. Importance Sampling (Weighted Simulation) 
 
In order to reduce the standard deviation 𝜎k‾�  of the 
estimator to the order of magnitude of the probability of 
failure itself 𝑚  must be in the range of 𝑚 = 1

k�
. For 

values of 𝑝t  in the range of 104� this cannot be achieved 
if each evaluation of the limit state function requires a 
complex structural analysis. Alternatively, strategies are 
employed which increase the “hit-rate” by artificially 
producing more samples in the failure domain than 
should occur according to the distribution functions. One 
way to approach this solution is the introduction of a 
positive weighting function ℎ𝐘(𝐱)  which can be 
interpreted as density function of a random vector 𝐘. 
Samples are taken according to ℎ𝐘(𝐱). 
The probability of failure is then estimated from 
 

𝑝‾t =
1
𝑚
�

𝑓𝐗(𝐱)
ℎ𝐘(𝐱)

�

��1

𝐼v(𝐱) = 𝐄 �
𝑓𝐗(𝐱)
ℎ𝐘(𝐱)

𝐼v(𝐱)� (13) 

 
From the estimation procedure as outlined it can be seen 
that the variance of the estimator 𝑝‾t  becomes 

𝜎k‾�
V =

1
𝑚𝐄�

𝑓𝐗(𝐱)V

ℎ𝐘(𝐱)V
𝐼v(𝐱)� (14) 

!"# $!% &

-5-4-3-2-1 0 1 2 3 4 5
-5-4-3-2

-10123
45

Variable 01
Variable 0 2 1(3) > 0 1(3) < 0
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A useful choice of ℎ𝐘(𝐱) should be based on minimizing 
𝜎k‾�
V . Ideally, the weighting function should reduce the 

sampling error to zero. However, this cannot be achieved 
in reality since such a function must have the property 

ℎ𝐘(𝐱) = �
1
𝑝t
𝑓𝐗(𝐱) 𝑔(𝐱) ≤ 0

0 𝑔(𝐱) > 0
(15) 

This property requires the knowledge of 𝑝t  which, of 
course, is unknown. Special updating procedures such as 
adaptive sampling (Bucher 1988) can help to alleviate 
this problem. 
For simplicity, consider a one-dimensional problem. Let 
𝑋 be normally distributed with 

𝑓*(𝑥) =
1
√2𝜋

exp�−
𝑥V

2 �
(16) 

Assume that the limit state function is given by 𝑔(𝑥) =
𝛽 − 𝑥. We will try to find an optimal sampling density 
function in the form  

ℎ�(𝑥) =
1
√2𝜋

exp�−
(𝑥 − 𝑌‾)V

2 � (17) 

In this form, 𝑌‾  will be chosen to minimize the variance 
of the estimated failure probability. 
This variance can be calculated directly by evaluating the 
expectations given above: 

𝜎k‾�
V =

1
𝑚
[

𝑓*(𝑥)V

ℎ�(𝑥)V
W

�
ℎ�(𝑥)d𝑥

=
1
𝑚
[

1
√2𝜋

W

�
exp�−

2𝑥V

2 +
(𝑥 − 𝑌‾)V

2 �d𝑥

=
1
𝑚 exp(𝑌‾V)𝛷[−(𝛽 + 𝑌‾)]

(18) 

Differentiation with respect to 𝑌‾  yields 
𝜕
𝜕𝑌‾ �𝜎k‾�

V � = 0

→ 2𝑌‾𝛷[−(𝛽 + 𝑌‾)] −
1
√2𝜋

exp�−
(𝛽 + 𝑌‾)V

2 � = 0
(19) 

Using the following asymptotic (as 𝑧 → ∞ ) 
approximation for 𝛷(. )  (Mill’s ratio, see e.g. 
(Abramowitz and Stegun 1970)) 

𝛷(−𝑧) ≈
1

𝑧√2𝜋
exp�−

𝑧V

2 �
(20) 

an asymptotic solution to the minimization problem is 
given by 

2𝑌‾
𝛽 + 𝑌‾ − 1 = 0 → 𝑌‾ = 𝛽 (21) 

This means that centering the weighting function at the 
design point will yield the smallest variance for the 
estimated failure probability. For a value of 𝛽 = 3.0 the 
variance is reduced by a factor of 164 as compared to 
plain Monte Carlo simulation which means that the 
computational effort to obtain a certain level of 
confidence is reduced substantially. 
 

3.4. Importance Sampling at the Design Point 
 
Based on the previous FORM analysis it may be 
attempted to obtain a general importance sampling 
concept. This can be accomplished in two steps: 
1. Determine the design point 𝐱∗  as shown in the 

context of the FORM-procedure. 
2. Choose a weighting function (sampling density) 

ℎ𝐘(𝐱) with the statistical moments 𝐸[𝐘] = 𝐱∗ and 
𝐂𝐘𝐘 = 𝐂𝐗𝐗  in the following form (multi-
dimensional Gaussian distribution, cf. Fig. 4): 

ℎ𝐘(𝐱) =
1

(2𝜋)
2
V£det𝐂𝐗𝐗

⋅ exp A−
1
2 (𝐱 − 𝐱

∗)¤𝐂𝐗𝐗41(𝐱 − 𝐱∗)L
(22) 

3. Perform random sampling and statistical estimation 
according to Eq. 13. 

 
Figure 4. Original and importance sampling probability 

density functions. 
 
The efficiency of this concept depends on the 
geometrical shape of the limit state function. In particular, 
limit state functions with high curvatures or almost 
circular shapes cannot be covered very well. 
It is also interesting to note that the concept of 
importance sampling can very well be extended for 
application in the context of dynamic problems (first 
passage failure) as shown below. 
Example: Linear limit state function 
Consider a reliability problem described by two 
independent standardized Gaussian random variables 𝑋1 
and 𝑋V. Let failure be defined by the limit state function 
 

𝑔(𝑋1, 𝑋V) = 3 − 𝑋1 − 𝑋V (23) 
 
The design point for this problem is located at 𝐱∗ =
[1.5,1.5]¤ . A crude Monte Carlo run results in 𝑝t =
0.015, an importance sampling run with 200 samples 
results in 𝑝t = 0.0175. 

!1
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Figure 5: Plain Monte Carlo (top) and Importance 

Sampling (bottom). 
 
The corresponding 200 sample points are shown in Fig. 5 
for crude Monte Carlo as well as for importance 
sampling. The exact result for this problem is 𝑝t =
𝛷(−1.5√2) = 0.01695 
 
3.5. Asymptotic Sampling 
 
3.5.1 General concept 
 
The following approach has been presented in (Bucher 
2009a, 2009b). It relies on the asymptotic behavior of the 
failure probability in 𝑛-dimensional i.i.d Gaussian space 
as the reliability index 𝛽 tends to infinity (see (Breitung 
1984)). This can equivalently be expressed by the limit 
that the standard deviation 𝜎 of the variables and hence 
the failure probability 𝑃¥  approaches zero. Breitung also 
states that the generalized reliability index 𝛽�  as defined 
in Eq. 12 is asymptotically equal to the linearized 
reliability index 𝛽 as both tend to infinity. 
Consider a (possibly highly nonlinear) limit state 
function 𝑔(𝐗) in which 𝑔 < 0 denotes failure. Let 𝜎 be 
the standard deviation of the i.i.d. Gaussian variables 
𝑋�, 𝑘 = 1…𝑛. We are going to determine the functional 
dependence of the generalized safety index 𝛽  on the 

standard deviation 𝜎 by using an appropriate sampling 
technique. This is aided by some analytical 
considerations in which we study the case of a linear 
limit state function. Let 

𝑔(𝐗) = −�
𝑢"
𝑠"

2

"�1

+ 1 (24) 

as used previously in the section on FORM. If 𝐗 is a 
vector of standardized Gaussian variables, then we have 

1
𝛽V =

�
1
𝑠"V

2

"�1

(25) 

If we now change the standard deviation from unity to a 
value of 1/𝑓 for all variables 𝑥" and keep the limit state 
function as it was, then we can relate this to standard 
variables 𝑈" = 𝑓𝑋"  such that 

𝑔(𝐔) = −�
𝑈"
𝑓𝑠"

2

"�1

+ 1 (26) 

and the reliability index is given by 

1
𝛽V =

�
1

𝑓V𝑠"V

2

"�1

(27) 

The geometric relations are shown in Fig. 7. 

 
Figure 6. Linear limit state under scaling of standard 

deviation. 
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Upon comparing this result to the case of unit standard 
deviations we observe 

𝛽(𝑓) = 𝑓 ⋅ 𝛽(1) (28) 
in which 𝛽(1) is the safety index evaluated for 𝑓 = 1. 
This means that in order to obtain a good estimate for 
𝛽(1), we can compute the safety index for a smaller 
value of the scale 𝑓 using Monte Carlo simulation and 
then simply extrapolate by multiplying the obtained 
result with 𝑓. Further details are given in (Bucher 2009a, 
2009b). While this result is exact for linear limit state 
functions, it holds only asypmtotically as 𝛽 → ∞  for 
general nonlinear cases as shown by (Breitung 1984). 
Therefore, the concept of asymptotic sampling utilizes 
the asymptotic behavior of the safety index 𝛽  by 
applying an extrapolation technique. Here the (assumed) 
functional dependence for 𝛽 is chosen as 

𝛽 = 𝐴 ⋅ 𝑓 +
𝐵
𝑓

(29) 

This choice is motivated in order to ensure 
asymptotically linear behavior as 𝑓 → ∞  (which is 
equivalent to 𝜎 → 0). As the coefficients 𝐴  and 𝐵  are 
conveniently determined from a least-squares fit using 
Monte Carlo estimates of 𝛽  for different values of 𝑓 
(typically for values of 𝑓 < 1) as support points. For this 
fitting process, Eq. 29 is rewritten in terms of a scaled 
safety index as 

𝛽
𝑓 = 𝐴 +

𝐵
𝑓V

(30) 

This is illustrated qualitatively in Fig. 7. 

 
Figure 7. Basic concept of Asymptotic Sampling. 

 
One major advantage of this approach is its independence 
of the dimensionality. The accuracy is governed only by 
the relation between the number of samples and the 
probability of failure as well as the particular geometry 
of the limit state surface 𝑔(𝐔) = 0. 
In this context it is essential to use a sampling method 
which provides very stable results. One obvious choice is 
Latin Hypercube Sampling (LHS) (Imam and Conover 
1982; Florian 1992). Alternatively, pseudo-random 
sequences with low discrepancy (Niederreiter 1992; 
Sobol and Asotsky 2003) can be utilized. In particular, 
randomized Sobol sequences using an algorithm as 

discussed in (Bratley and Fox 1988) and (Hong and 
Hickernell 2003) are very useful (Bucher 2009a). 
It also should be noted that a conceptually similar 
approach on the basis of expected upcrossing rates is 
applied in (Naess and Gaidai 2008; Naess, Gaidai, and 
Batsevych 2010). 
As an example, consider a high-dimensional linear 
problem. This example serves as a test case to 
demonstrate the independence of the dimensionality. The 
limit state function is 

𝑔(𝐗) = 5√𝑛 −�𝑋�

2

��1

(31) 

in which 𝑛  is the number of random variables. All 
random variables are i.i.d. standard Gaussian. The 
problem has a safety index of 𝛽 = 5 or 𝑃¥ = 3 ⋅ 104¯, 
independent of 𝑛. Table 1 shows the mean values and 
standard deviations of the safety index as computed from 
asymptotic sampling (20 repetitions with 1000 Monte 
Carlo samples each) for different dimension 𝑛. Hence 
dimension does not affect accuracy. Further examples are 
given in (Bucher 2009b). 
 

Table 1. Statistics of estimated safety index for high-
dimensional linear problem. 

 
𝑛 𝛽‾ 𝜎� 

10 4.95 0.26 
100 4.94 0.22 

1000 4.95 0.24 
10000 4.94 0.22 

100000 5.00 0.23 
 
4. First passage problem in structural dynamics 
 
4.1 Application of importance sampling 
 
In dynamic structural analysis, it is usually necessary to 
apply numerical methods based on a time discretization 
of the loads and responses. For a linear multi-degree-of-
freedom system the equations of motion can be written in 
matrix-vector form as 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 = 𝐅(𝑡) (32) 
together with appropriate initial conditions for 𝐱 and 𝐱̇. 
Here, the vectors 𝐗  and 𝐗̇  have the dimension 𝑛 , the 
symmetric and non-negative matrices 𝐌, 𝐂 and 𝐊 have 
the size 𝑛 × 𝑛 , and 𝐅(𝑡)  is an 𝑛 -dimensional vector 
valued random process. We assume that at least the 
second order statistics of 𝐅 are known. For the sake of 
notational simplicity, the subsequent derivations will be 
limited to the case where the vector 𝐅 can be represented 
by one scalar excitation 𝐹(𝑡)  only. Again, this is an 
assumption most frequently made in the earthquake 
analysis of structures 

𝐅 = 𝐏𝐹(𝑡) (33) 
The process 𝐹(𝑡) has a given auto-covariance function 
𝑅¥¥(𝑡1, 𝑡V) 

𝑅¥¥(𝑡1, 𝑡V) = 𝐄[𝐹(𝑡1)𝐹(𝑡V)] (34) 

0 0.2 0.4 0.6 0.8 1Factor /Scaled s
afety ind

ex :// Monte Carlo estimates

Regression curveExtrapolation to / =  1
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The discretization of the loading process 𝐹(𝑡) in time by 
means of discrete random variables 𝐹�; 𝑘 = 1…𝑛 at time 
values 𝑡ℓ typically leads to a large number 𝑛 of random 
variables. The response 𝐱(𝑡)  is then automatically 
discretized as well, i.e. in terms of its values 𝐱ℓ; ℓ = 1,𝑚 
at time points 𝑡ℓ. In the following, we assume 𝑛 = 𝑚 =
𝑁. 
For quiescent initial conditions, the response of the 
system (32) at any time 𝑡  can be calculated from 
Duhamel’s integral 

𝐱(𝑡) = [ 𝐡
F

E
(𝑡 − 𝜏)𝐏𝐹(𝜏)𝑑𝜏 (35) 

in which 𝐡(𝑢) is the impulse response function matrix of 
the system. One particular component 𝑥" of the vector 𝐱 
can be calculated from 

𝑥"(𝑡) =�[ ℎ"�
F

E

2

��1

(𝑡 − 𝜏)𝑃�𝐹(𝜏)𝑑𝜏 (36) 

From this equation, linear combinations 𝑦(𝑡) of the 𝑥"(𝑡) 
(such as required e.g. for the analysis of internal forces) 
can be calculated quite easily 

𝑦(𝑡) =�𝑐"

»

"�1

𝑥"(𝑡) (37) 

The first passage problem can then be formulated as the 
probability that the largest of the response variables 
becomes larger than a predefined threshold level 𝜉 

𝑃< = 𝐏𝐫𝐨𝐛½ max
ℓ�1,…�

𝑥",ℓ > 𝜉¾ (38) 

in which it is to be noted that 𝑥",ℓ depends on all load 
variables 𝐹� with a time 𝑡� ≤ 𝑡ℓ, but not those with 𝑡� >
𝑡ℓ (principle of causality). 
Utilizing a time-discrete representation (frequently called 
lumped-impulse procedure), the excitation 𝐹(𝑡) can be 
represented by a random pulse train (Lin 1976): 

𝐹(𝑡) =�𝐹
¿

À�1

g𝜏Àm𝛥𝑡𝛿g𝑡 − 𝜏Àm (39) 

in which 𝛥𝑡 is the time step and 𝛿(. ) denotes Dirac’s 
Delta function. Consequently, the response 𝑥"(𝑡) for 𝑡 ∈
[0, 𝑇<] can be written as (cf. Eq. 35) 

𝑥"(𝑡) =��ℎ"�

¿

À�1

2

��1

g𝑡 − 𝜏Àm𝑃�𝐹g𝜏Àm𝛥𝑡 (40) 

Here, an equidistant spacing with 𝑁 subdivisions of the 
interval [0, 𝑇<] is assumed. Obviously, Eq. 40 represents 
the response 𝑥"  as a linear combination of 𝑁 Gaussian 
random variables 𝐹(𝜏À); 𝑗 = 1…𝑁 . Based on this 
observation, it is clear that the probability of reaching or 
of exceeding the threshold 𝜉 at time 𝑡 can be directly and 
accurately calculated by applying the First-Order-
Reliability-Method (FORM, (Hasofer and Lind 1974)). 
Thus, the limit state condition at time 𝑡Å becomes 

𝜉 = 𝑦(𝑡Å) =�𝑐"

»

"�1

��ℎ"�

¿

À�1

¿

��1

g𝑡Å − 𝜏Àm𝑃�𝐹g𝜏Àm𝛥𝑡

=�𝐴ÅÀ

¿

À�1

𝑓À; 𝑓À = 𝐹g𝜏Àm

(41) 

The most probable combination of the 𝑓À’s leading to the 
limit state is then readily calculated by applying FORM. 
From the auto-covariance function as defined in Eq. 34 a 
discrete covariance matrix for the sequence 𝑓À; 𝑗 = 1…𝑁 
can be obtained 

𝐂𝐟𝐟 = 𝐸[𝐟𝐟¤] (42) 
which can be Cholesky-decomposed into 

𝐂𝐟𝐟 = 𝐋𝐋¤ (43) 
Here, 𝐋 is a lower triangular matrix and 𝐟 is a vector 
containing the sequence 𝑓À; 𝑗 = 1…𝑁 . The 
transformation 

𝐟 = 𝐋𝐮; 𝐮 = 𝐋41𝐟 (𝟒𝟒) 
yields a representation of Eq. 41 in terms of uncorrelated 
standardized Gaussian variables 𝑢Ê 

𝜉 = 𝑦(𝑡Å) =��𝐴ÅÀ

¿

Ê�1

¿

À�1

𝐿ÀÊ𝑢Ê =�𝑏ÅÊ

¿

Ê�1

𝑢Ê (45) 

The safety index 𝛽Å  is easily found from (see e.g. 
(Madsen, Krenk, and Lind 1986)) 

1
𝛽ÅV

=�Ì
𝑏ÅÊ
𝜉
Í
V¿

Ê�1

(46) 

The design point 𝐮𝐫∗ (the most likely combination of 
uncorrelated variables leading to failure at time 𝑡Å) is 
then calculated from 

𝑢ÅÊ∗ =
𝑏ÅÊ
𝜉 𝛽ÅV; 𝑠 = 1…𝑁 (47) 

Due to the linearity of the limit state function, the 
probability 𝑃FÎ that the response reaches or exceeds the 
threshold at time 𝑡Å is given by 

𝑃FÎ = 𝛷(−𝛽Å) (48) 
It should be emphasized that (Li and DerKiureghian 1995) 
obtained similar results for the mean outcrossing rate 
assuming filtered white noise as input. A numerical study 
performed by (Vijalapura, Conte, and Meghella 2000) 
gave an analogous result for a nonlinear SDOF-system. 
The above results are exploited in order to construct a 
useful importance sampling scheme. In complete analogy 
to the importance sampling method for static problems, 
the above design point excitations can be used as 
“importance sampling mean” excitations. This mean 
excitation is simply added to the random excitation 
process as simulated in the usual way. As there are 𝑁 
possible locations for “design points it becomes 
necessary to weigh these points appropriately. It is 
suggested to use the values of 𝛷(−𝛽�) as weights (Stix 
1983; Macke and Bucher 2003), so that the multi-modal 
importance sampling density ℎ𝐔(𝐮) in standard normal 
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space becomes 

ℎ𝐔(𝐮) =
1

∑ 𝛷(−𝛽Å)¿
Å�1

�
𝛷(−𝛽Å)

(2𝜋)
¿
V

¿

Å�1

⋅ expÐ−
1
2
�(
¿

Ê�1

𝑢ÅÊ∗ − 𝑢Ê)VÑ

(49) 

The ratio of original density 𝑓𝐔(𝐮)  to importance 
sampling density ℎ𝐔(𝐮)  for a sample function 𝑓��  as 
obtained from the uncorrelated variables 𝑢�� needs to be 
calculated based on Eq. 49. This implies that there will 
be considerable interaction between the 𝑁 design points 
as well as the 𝑁 limit state conditions. 
The extension to non-linear problems is fairly 
straightforward. Details can be found in (Macke and 
Bucher 2003; Bucher 2009b). 
 
4.1.1 Linear SDOF-System under stationary white noise 
excitation 
 
This example mainly serves the purpose of interpretation 
of the above-mentioned design point excitation. It is a 
SDOF-system with a natural frequency 𝜔E = 1 and a 
damping ratio of 5% (Naess and Skaug 2000). A time 
duration 𝑇< = 20𝜋  is considered. This duration is 
divided into 𝑁 = 200 time steps, so that 𝛥𝑡 = 𝜋/10.	Let 
𝑓(𝑡) be a stationary white noise with a two-sided power 
spectral density 𝑆E = 0.1/𝜋. Its auto-correlation function 
is given by 

𝑅tt(𝑡1, 𝑡V) = 2𝜋𝑆E𝛿(𝑡1 − 𝑡V) (50) 
A discrete representation is given in terms of 
uncorrelated random variables 𝑓À  with zero mean and 
variances 𝜎tÓ

V = 2𝜋𝑆E𝛥𝑡 . Following the above 
derivations, the design point excitation is given by 

𝑟Ê = ℎ(𝑡 − 𝜏Ê)T
𝛥𝑡
2𝜋𝑆E

𝛽V

𝜉
(51) 

This is a sequence which is basically a time-reversed 
impulse response function. For 𝑡 = 100𝛥𝑡 this is shown 
in Fig. 8. 

 
Figure 8. Design point excitation for threshold crossing 

at time 𝑡 = 10𝜋 (white excitation). 
 

The corresponding sample trajectory of 𝑥(𝑡) reaches the 
threshold 𝜉 exactly at time 𝑡 which is shown in Fig. 9. 
 

 
Figure 9. Response to design point excitation for 

threshold crossing at time 𝑡 = 10𝜋 (white excitation). 
 
Upon inspection of Eq. 46 it can easily be seen that in 
transition to continuous time for white noise excitation 
we obtain 

𝛽V =
𝜉V

∫ ℎVF
E (𝑡 − 𝜏)𝑑𝜏

=
𝜉V

𝜎ÔV(𝑡)
 → 𝛽 =

𝜉
𝜎Ô

(52) 

The first passage probabilities are evaluated based on the 
above outlined importance sampling scheme. The 
threshold level 𝜉 is varied from 0 to 10𝜎Ô. For a sample 
size of 500 the resulting first passage probabilities are 
shown in Fig. 10. This figure also shows as a dotted line 
comparative results from an approximation based on the 
upcrossing rate (Corotis, Vanmarcke, and Cornell 1972). 
It can be seen that down to the very low probability level 
of 1041Õ  the coefficient of variation of the estimated 
probabilities remains at approximately 10%. The 
standard estimation error is shown as dashed line in 
Fig. 10.  

 
Figure 10. First Passage Probability vs. Threshold Level 

for White Noise Input (500 Samples). 
 
4.1.2 Linear SDOF-System under non-white excitation 
 
For non-white excitations the picture becomes somewhat 
more complicated. As an example (Bucher 2009b), 
consider a stationary excitation with an exponential 
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autocorrelation function (Orenstein-Uhlenbeck process) 

𝑅tt(𝑡1, 𝑡V) = 𝜎tVexp�−
|𝑡1 − 𝑡V|
𝜏Ö

� (53) 

with a correlation time 𝜏Ö = 2 and a variance 𝜎tV = 0.02. 
This corresponds to a power spectral density 𝑆tt(0) =
𝜋/0.1 as in the previous example. In this case, the design 
point excitation extends into the future as shown in Fig. 
11 which is a consequence of the temporal correlation. 
The corresponding response trajectory is given in Fig. 12. 
Again, a time interval 𝛥𝑡 = 𝜋/10 is chosen for time 
discretization. 

 
Figure 11. Design point excitation for threshold crossing 

at time 𝑡 = 10𝜋 (non-white excitation). 

 
Figure 12. Response to design point excitation for 

threshold crossing at time 𝑡 = 10𝜋 (non-white 
excitation). 

 
From a sample size of 500 the first passage probabilities 
as shown in Fig. 13 are obtained. Again the c.o.v. 
remains in the range of 10%, even for probabilities as 
low as 1041Õ. 

 
Figure 13. First Passage Probability vs. Threshold Level 

for White Noise Input (500 Samples). 
 
4.2 Application of asymptotic sampling 
 
4.2.1 Linear SDOF oscillator 
 
Again, the equation of motion is given in the form of 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑤(𝑡) (54) 
𝑤(𝑡) is a stationary white noise with intensity 𝐷E which 
is represented by a sequence of i.i.d. zero mean normal 
variables 𝐹� spaced uniformly at time interval 𝛿𝑡 

𝜎¥V =
𝐷E
𝛥𝑡

(55) 

Numerical values are 𝑘 = 1 N/m, 𝑚 = 1 kg, 𝑐 = 0.1 kg/s, 
𝐷E = Ù

ÕE
 mV/sÚ, 𝛥𝑡 = 0.15 s. The total time considered is 𝑇 

= 40 s. We carry out asymptotic sampling using 5 runs 
with 1000 simulations each. The threshold values are 
varied from 1 to 5. 
The resulting probability distribution function of the peak 
absolute response of SDOF system for different sampling 
magnifications 𝑓  (1000 samples each) is shown in 
Fig. 14. Fig. 15 shows the resulting first passage 
probabilities for different threshold values. 

 
Figure 14. CDF of absolute response vs. threshold level 

for different scaling factors 𝑓 (5x1000 Samples). 
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Figure 15. First Passage Probability of SDOF systems 

under white noise. 
 
4.2.2 Nonlinear SDOF system 
 
Here we consider a Duffing oscillator described by the 
equation of motion 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘(𝑥 + 𝛾𝑥Ú) = 𝑤(𝑡) (56) 
The numerical values chosen for this example are: 𝑚 = 1 
kg, 𝑐  = 0.63 kg/s, 𝑘  = 5 N/m and 𝛾  = 105  1/mV  The 
excitation 𝑤(𝑡)  is (discrete) white noise with a total 
duration 𝑇 = 15 s. Its spectral density is 𝑆E = 0.017 mV/sÚ. 
The time step chosen is 𝛥𝑡 = 0.01 s. Hence the excitation 
process is discretized into 1500 random variables. 
The following procedure was carried out: 
• Asymptotic Sampling is based on five runs with 

each 1000 simulations. 
• Scaling factor 𝑓 was varied from 𝑓 = 1 to 𝑓 = 1/2 

in five steps. 
• Failure occurs if displacement at time 𝑇 exceeds 

the threshold 𝜉 
• Threshold values from 0.01 to 0.06 m are 

considered. 
Two sample time histories one for 𝑓 = 1 and one for 𝑓 = 
1/2, are shown in Fig. 16. It can be observed that failure 
may occur long before the end of the time interval, Also, 
the frequency characteristics are changed by the larger 
excitation intensity at 𝑓 =1/2 (frequency of oscillation 
increases), 
The results from the proposed asymptotic sampling 
method based on 5 runs with each 1000 samples (cf. 
Fig. 17, (Valdebenito, Pradlwarter, and Schuëller 2010)) 
match the full Monte Carlo results very well up to a 
threshold level of 0.04 m. At the highest threshold level 
of 0.05 m, however, the accuracy deteriorates. 
Results indicate a bias at high threshold levels leading to 
over-estimation of the exceedance probability. For a 
threshold value 𝜉 = 0.05, the reference value as obtained 
from Monte Carlo simulation is 0.7⋅104Õ (𝛽 = 4.3, from 
≈  10.000.000 samples). Asymptotic Sampling (with 
5.000 samples) yields a result of 1.3⋅104Õ (𝛽 = 4.2). The 
suspected reason for the deviation is that the failure 
domain may not be simply connected (e.g. it contains 
several ”islands” of failure). This is a situation in which 
the asymptotic property underlying the method cannot be 

exploited. 

 
Figure 16. Sample time histories for different scaling 

factors 𝑓. 
 

 
Figure 17. First passage probability for nonlinear 

oscillator (value at end of time interval). 
 
 
 
4.2.3 Change failure criterion - nonlinear SDOF system 
 
If one plans to study the effect of different failure criteria, 
the asymptic sampling method provides a convenient and 
computationally very efficient approach to do so. There 
is no need to re-compute sample functions of the 
dynamic responses but the samples simply need to be 
post-processed once more. In this way, we compute the 
reliability based on maximum absolute value of dynamic 
response within time interval (rather than value at end of 
interval). Not surprisingly this leads to substantially 
smaller reliability (especially at lower threshold levels). 
The results are shown in Fig. 18. 
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Figure 18. First passage probability for nonlinear 

oscillator (maximum over time). 
 
4.2.4 Nonlinear MDOF system 
 
Here we consider a Duffing-type oscillator subjected to 
filtered modulated white noise 𝑎(𝑡)  governed by the 
following set of equations: 
𝐗̇(𝑡) = 𝐀<Þ𝐗(𝑡) + 𝐁<Þ𝑤(𝑡); 	𝑎(𝑡) = 𝐂<Þ𝐗(𝑡) (57) 

𝐀<Þ =

⎣
⎢
⎢
⎡
0 1 0 0

−𝛺1vV −2𝜁1v𝛺1v 0 0
0 0 0 1
𝛺1vV 2𝜁1v𝛺1v −𝛺VvV −2𝜁Vv𝛺Vv⎦

⎥
⎥
⎤
(58) 

𝐁<Þ = è
0
1
0
0

é (59) 

𝐂<Þ = ê𝛺1vV 2𝜁1v𝛺1v −𝛺VvV −2𝜁Vv𝛺Vvë (60) 
 
The numerical values for the parameters are 𝛺1v  =15 
rad/s, 𝜔Vv  = 0.3 rad/s, 𝜁1v = 0.8 and 𝜁Vv = 0.995. Here 
𝑤(𝑡)  is white noise with 𝐸[𝑤(𝑡)𝑤(𝑡 + 𝜏)] = 𝐼𝛿(𝜏) ⋅
ℎ(𝑡), 𝐼 = 0.08 mV/sÚ and 

ℎ(𝑡) = ì

𝑡
2 , 0𝑠 ≤ 𝑡 ≤ 2𝑠
1 , 2𝑠 ≤ 𝑡 ≤ 10𝑠
expg−0.1(𝑡 − 10)m , 𝑡 ≥ 10𝑠

(61) 

The equations of motion of the oscillator are 
𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊g𝐮(𝑡)m𝐮(𝑡) = 𝐅(𝑡) = 𝐦𝑎(𝑡) (62) 

𝐌 = è

𝑚1 0 … 0
0 𝑚V … 0
⋮ ⋮ ⋱ ⋮
0 0 0 𝑚1E

é ; 𝐦 = è

𝑚1
𝑚V
⋮

𝑚1E

é (63) 

𝐂 = è

𝑐1 + 𝑐V −𝑐V … 0
−𝑐V 𝑐V + 𝑐Ú … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑐1E

é (64) 

𝐊 =

⎣
⎢
⎢
⎡𝑘
‾1 + 𝑘‾V −𝑘‾V … 0
−𝑘‾V 𝑘‾V + 𝑘‾Ú … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑘‾1E⎦

⎥
⎥
⎤

(65) 

𝑘‾" = 𝑘"(1 + 𝜖(
𝑢"(𝑡) − 𝑢"41(𝑡)

𝛿𝑢Åñt
)V); 𝑖 = 1,⋯ ,10		(66) 

The system parameters are given as 𝛿𝑢Åñt=0.02 m, 𝜖 = 
0.1, 𝑚1 = ⋯ = 𝑚1E =10.000 kg, 𝑘1 = 𝑘V = 𝑘Ú  = 40 
MN/m, 𝑘5 = 𝑘Õ = 𝑘�=36 MN/m, 𝑘¯ = 𝑘ó = 𝑘ô = 𝑘1E = 
32 MN/m, 𝑐" = 2𝜁"£𝑚"𝑘" and 𝜁" =0.04 for 𝑖 = 1,⋯ ,10. 
The time duration 𝑇 = 20 s, time step 𝛥𝑡 = 0.005 s → 
4000 random variables. As failure criterion we define 
that the relative displacement between stories 9 and 10 
exceeds the predefined threshold value 𝜉. The range of 
threshold values considered is 0.01 – 0.05 m. Asymptotic 
sampling is carried out in 5 runs with 1000 simulations 
each 
The resulting first passage probabilities of nonlinear 
MDOF system under non-stationary colored noise (as 
estimated from a total of 5.000 samples) are shown in 
Fig. 19. The reference Monte Carlo results also shown in 
this figure results are taken from (Schuëller and 
Pradlwarter 2007). In comparison, asymptotic sampling 
reduces computer time by a factor of about 1500. In 
addition, results from subset simulation taken from (Au, 
Ching, and Beck 2007) are shown as well. These two 
point results are based on about 5000 samples. Note that 
- in contrast to asymptotic sampling - subset simulation 
cannot provide the entire dependence of the first passage 
probability at once. Hence, in this respect, asymptotic 
sampling is substantially more efficient. 

 
Figure 19. First passage probability for nonlinear MDOF 

oscillator. 
 
5. Concluding Remarks 
 
In the process of time-variant structural reliability 
analysis there is substantial need to take into account 
complex interactions of externally applied loads and 
structural resistance changes. These changes may be due 
to deterioration based on external corrosive agents, but 
also due to load-induced damage processes such as 
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fatigue. Furthermore, human-induced changes of the 
structural resistance due to maintenance and repair work 
have substantial influence on the life-cycle performance 
of the structures. 
All these effects can be subsumed into a probabilistic 
formulation describing a first-passage problem. However, 
in order to solve this problem, specific computational 
methods need to be applied. While classical first-order 
reliability analysis (FORM) or, somewhat improved 
second-order analysis (SORM) may provide valuable 
first results, these approaches are in many cases not quite 
flexible enough to accommodate complex what-if 
scenarios, particularly when dealing with maintenance 
and repair decisions. 
It turns out that Monte-Carlo based simulation methods 
certainly have all the flexibility required, but typically 
induce substantial computational effort. Efficacy of the 
simulation methods is therefore the primary property 
needed. Several highly efficient methods have been 
presented and the application to selected time-variant 
reliability problems demonstrated their use. 
Future developments will need to focus on unified 
response surface models (see e.g. Bucher 2018) which 
include design variables for the life-cycle oriented 
optimization process simultaneously with the random 
variables describing the loads and the deterioration 
processes. Together with reliability updating based on 
structural health monitoring this will allow for long-term 
strategic decisions regarding inspection and maintenance 
as well as for short-term decisions for case-based repair 
actions. 
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