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Abstract

The awareness of a specified finger touching an object expands the dimension of touch

interaction design. This paper provides a novel approach that implements fast, ac-

curate, and low-cost finger identification on touching a conductive object. Utilizing

hand tissue as a radio frequency signal waveguide, and an analog process to compare

the phase and magnitude difference between frequency components in the signal, we

designed a signal emitting wristband and a compact detector circuit to bind the fin-

ger identification functionality to a conductor. we also show the process of retrieving

finger identity from the analog data. Our system demonstrates its ability to support

future interfaces on a tight screen such as a smartwatch or a wide variety of daily

context.



概要

どの指が物体に触れているか識別することができれば，指によるインタラクショ

ンの幅が大きく広がる．本稿では，導電性の物体にユーザが触れたときに，どの

指が触れたかを速く正確に特定する手法を紹介する．本研究において我々は，信

号を出力するリストバンドと信号を検知するコンパクトな回路を設計し，導電性

の物体に触れた指を特定するシステムを構築した．本システムでは，手の皮膚組

織を高周波の信号を伝える導波管として用い，伝わった複数周波数帯の信号の位

相や振幅を処理して比較することで，導電性の物体に触れた指を特定することが

可能となっている．本稿では，複数周波数帯の信号から指を特定する手法を述べ

たのち，本システムがスマートウォッチなど日常で用いるデバイスに利用できる

可能性について議論する．最後に，本システムを用いた将来のインターフェース

の可能性について述べる．
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Chapter 1

Introduction

1.1 Background

Touching with finger is a natural and commonly accepted way to interact with objects.

Such interaction applies to touch screens, touch buttons, and functional materials that

capture finger movements. Especially for the touchscreen, a touch carries more infor-

mation than an (x, y) coordinate and a timestamp [3]. There is also research devoted to

extending the modality of touching, such as multi-touch, gestural movement [12, 15],

palm-or-knuckle-touch [23], or extra finger properties, i.e. pitch or roll orientation [18].

Finger identification, finger aware interaction [15, 21], or finger specific interaction

[3] is one of the methods to enhance touch interaction by determining the specific

finger used for a certain touch event. In general, the term ”finger identification” may

refer to identifying the person or the hand used that is operating a device [13]. In this

paper, however, this term is confined to recognizing the finger on a same hand used

for touching. This method allows for more information to stack on a single touch(i.e.

different fingers imply different functions) [3, 8].

Numerous work examined how to distinguish among fingers of the same hand by

electronic hardware. Approaches include optical recognition [10, 14, 15, 21], fingerprint
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recognition [13], and capacitive sensing [9, 16], yet all brought in certain drawbacks.

This paper introduces a new method that achieves swift, accurate, and versatile finger

identification with an additional wristband on the user.

1.2 Motivation

Despite the previous examinations on the practice of finger identification with special-

ized hardware, most of which being wearables on fingers, palms, or arms, in real life,

seldom will people be likely to equip those optical trackers or bulky sensors on their

body when operating a device. We are interested in achieving finger identification

with the most traditional form of wearables: the widely accepted wristband, as the

equipment for finger identification.

To fully exploit the convenience of a wristband, we survey on the topic of capaci-

tive sensing. The capacitive techniques allows fast and indirect observations over the

electromagnetic field (EM field) around a certain space. We introduce the method of

using two frequencies for signal feature detection, and hypothesize that the phase and

magnitude information of such a signal could reveal the finger identity during a touch

on a piece of conductive material. We then fabricate a combined system of hardware

and software to detect the signal features, and describe the method to measure and

project them to the corresponding finger identity.

1.3 Research Questions and Scope

Our main research questions are as follows:

• Can we identify a finger via capacitive sensing without attaching anything to

the finger directly?

• What hardware and algorithm do we need for the finger identification?
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• What features contribute the most accuracy to the identification?

To provide an answer to these questions, we devise a system consisting of a wrist-

band (emitter), a detector (sensor), and an algorithm to provide the finger identity

detection results. We choose the scene of touching a metal pad and measured the

accuracy of finger identification in this controlled environment.

1.4 Contributions

The contributions of this work are as follows:

• Proposing a hardware system to identify fingers using capacitive sensing.

• Quantitative evaluations of the system under controlled experiments.

1.5 Overview

In this thesis, we explain our design and experiment process of a capacitive sensing

based finger identification system.

Chapter 2 classifies the current finger identification methods and lists the important

capacitive sensing works related to our system. Chapter 3 explains the principles of our

system, and presents a pilot study to prove its feasibility. Chapter 4 introduces the first

version of our system design. Chapter 5 describes out experiments and results on our

first design. Chapter 6 explains the second version of our system design, based on the

first version. Chapter 7 demonstrates the informal user study on the second version of

the system. Chapter 8 summarizes our work and provides further discussions. Finally,

Chapter 9 concludes our research work.



Chapter 2

Related Work

2.1 Finger Identification

There are two kinds of method to identify a finger: passive or active. The main char-

acteristic of either method is that a passive method takes advantage of the information

collected from the touch action itself, and an active method injects designed informa-

tion to the touch action on purpose that benefits the finger identification. A passive

method, also known as freehand detection, does not add extra sensor or actuator on

the hand; an active method requires external instruments on the hand, which reduces

mobility but may increase accuracy.

2.1.1 Passive Method

The most common and natural way for finger identification is a computer-vision-based

detector, such as a depth camera. Related devices, i.e. Kinect1 and LeapMotion2, offer

hand skeleton data. Mapping the skeleton data to the spatial coordinate of a screen

or an object, we may decide which finger the user is using on a touch.
1Kinect, Microsoft, https://developer.microsoft.com/en-us/windows/kinect
2LeapMotion, ultraleap, https://www.ultraleap.com/

https://developer.microsoft.com/en-us/windows/kinect
https://www.ultraleap.com/
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Glass+Skin [21] examined the finger identification during menu selection action.

They used a camera to capture the fingertip positions and directly compare them

to the touch events in the device. In this work, they did not mention the accuracy

because the finger identification technology is only one minor stage of their user study

analysis.

Touch180 [14] installed a fish-eye camera at the bottom of the touchscreen for

hand shape capturing, and trained a VGG16 CNN model to map the gesture to the

touch input. This method showed an accuracy of 98.56% on single-finger input over a

smartphone-sized touch screen.

The geometric properties of human hands are helpful to the identification. Au et

al. [1] devised a geometric information based finger identification system on a touch

screen when all five fingers of one hand are on the screen. Their system had a 96.0%

accuracy and 1 second reaction time over four finger commands. They also mentioned

that this method is capable of detecting the left or right hand. In such a system, a

user has to put fingers as predetermined shapes so that the system can discover the

geometric relations.

Benko et al. [2] showed that muscle sensing on the forearm is applicable to fin-

ger identification, achieving 90% accuracy among five fingers with a latency of only

300ms. Although they attached electrodes on the forearm, the method operates by

only receiving the signal from the electrodes, therefore it is also a passive method.

In this work, they managed to achieve both finger identification and touch pressure

sensing, and also provided several applications on user interface interaction.

Fingerprint is a unique feature of each finger that allows identification. Fiberio [13]

is an example of sensing the fingerprint on a touch screen. Under a projector screen, it

has a fiber optic plate as a light waveguide to illuminate the fingerprint, which is then

captured by a high-resolution camera. By classifying the fingerprint, Fiberio could

identify several fingers at once.
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As for another branch of the methodology, the capacitive images collected from

the touch screen carry plenty of features to retrieve the finger identity that touches a

certain position on the screen. Le et al. [16] investigated the possibility of identifying

images of fingers on a typical capacitive touch screen with CNN, with a 92% accu-

racy on discriminating left/right thumb. The capacitive method has vast potential of

detecting finger features, including finger shape, orientation, tilt, and finger knuckles

[23].

TriTap [9] applied a similar method to a smartwatch touch screen, harvesting an

accuracy up to 98% over three fingers. Different from the previous work, this work

used geometric information extracted from the capacitive image rather than an end-to-

end model for classification. The author argued that on a smartwatch, such a method

is more practical for a small screen that is hard to manipulate with more than one

finger.

2.1.2 Active Method

For the most brutal way of adding information to each finger, optical trackers are

reliable for finger identification because they introduce visual differences to fingers

that are easy to detect. InfiniTouch [15] created a precise association between the

touch pattern on the screen and the gesture by reflective trackers of an OptiTrack 3

system. A CNN model maps the gesture model to the touch screen events, where they

found that the classification error mainly depends on the finger placement. Goguey et

al. [10] also used colorful markers for a computer vision detector to detect the finger

identity during a touch among three fingers.

When we attach wearable sensors or actuators to a hand, there will be broader

possibilities for accurate feature extraction. One way to deal with the sensor data is

to measure the distance of the fingertip to the touch surface. FingMag [20] used a
3OptiTrack, https://optitrack.com/
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magnet on the finger and a magnetometer on the device to obtain a 96% identification

accuracy among three fingers. The researchers chose a smartwatch as the device, and

merged the data collected from the magnetometer and the touchscreen to a CNN

network. This method worked even under extreme angles of the finger touching the

screen.

DualKey [11] mainly focused on using the index or middle finger for text entry on

a smartwatch screen with keyboard. It made use of an IR camera on one of the fingers

to measure the distance from the screen and achieved a 99.5% accuracy for a single

touch among the first two fingers only.

Another side of the wearable device is to present each finger with a unique invisible

signal. A device may identify the finger on touch by explaining the received signal

as the associated finger. The work Beauty tech nails [25] stuck RF-ID chips on each

fingernail to communicate with an RF-ID receiver when touching it. An RF-ID chip

is light, non-invasive, and user-friendly enough for a beauty product while keeps the

function of offering each finger a customizable identity.

FingeRing [6] illustrated that the accelerometers on fingers are suitable for finger

identification. A good point of using the accelerometer is that the object you are

touching will not restrict the performance of finger identification. WhichFingers [17]

also used such an opinion of adding vibration sensors to the finger for identification

when touching a keyboard or a trackpad.

2.2 Capacitive Touch Sensing

Sensing the touch of a finger while utilizing the human body as an electrical signal

conduit has always been a research topic. Human body emits bio-electrical signals and,

in the meantime, acts as an antenna that captures the surrounding electronic-magnetic

fields over a broad spectrum.
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Touché [22] introduced the method to detect the way how human body in interact-

ing with an object via spectrum-based detection, which is the amplitude distribution

of body conducted signal. In this work, they used a frequency sweep technique to

implement an inexpensive and robust spectrum detector. The result showed that such

a system can recognize a rich set of capacitive context, and the accuracy reached 99%

after classifier model training.

More work that take advantage of impedance-based capacitive sensing include the

work from Suzuki et al. [24] that senses the touch position on the forearm by several

groups of electrodes. Another work from Zhang et al. [26] depicted that it is possible to

sense high-resolution structural properties using impedance tomography, by measuring

the impedance features through scanning several pairs of electrodes.

DiamondTouch [4] also exploited human body to transfer time domain encoded

information. The user sits on a chair that emits a certain signal sequence, and the

electrical information for recognition flows through the body to the fingertip. A ca-

pacitive detector array receives the signal and decodes it into personal identity. This

work allows several users to operate a same screen without the need to wear anything

while the system keeps tracking each person’s touch actions.

Capacitive sensing also applies to on-body positioning technologies. These tech-

nologies map the phase, signal magnitude, and magnetic vector information to a spatial

coordinate or an angular posture. In fact, FingMag [20] is the example that installed

this technology to finger identification. SkinTrack by Zhang et al. [27] used an RF

emitter ring and several phase detectors on the wrist to get the position of finger touch

on the hand or arm. They reported a 7.6mm standard deviation for positioning error.

AuraRing [19] created a magnetic emitter ring and a wristband sensor to reconstruct a

5-degree-of-freedom(DoF) motion of the finger, where the dynamic accuracy is 4.4mm.



Chapter 3

Sensing Principle and Pilot Study

3.1 Sensing Principle

Our method for finger identification relies on the difference of spatial position among

fingers, and the features of EM wave propagating through human tissue. [7]

Human body may act as a waveguide for high-frequency signals. The group delay

as well as the amplitude changes according to the signal traveling length [26]. If we

emit one signal at the frequency f to a certain location near the hand, the phase

and magnitude difference of the signal between the source and the fingertip carries

the information of from which path the signal traveled. However, this requires an

apparatus to be connected directly to the signal source on the body - restricting the

mobility of the user’s hand.

If we emit two signals at different locations on the skin, at the precise frequency of

f and 2f , as the distance from each signal source to the fingertip varies among fingers,

the signal received at the fingertip should be a combination of f and 2f components

with a phase and magnitude difference - each component carries the information of

which path it chooses. By splitting and measuring the features of the signal - done

at only the fingertip, we may overcome the restrictions of using a single frequency.
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Fig. 3.1 The schematic of signal propagating through the hand. Different routes result
in different phase difference (group delay) and attenuation

The f value should be high enough to show apparent phase and magnitude difference

among different signal routes, but not so high that the hand will act as an antenna

that escapes the signal.

We did a theoretical calculation on whether such a technique produces detectable

signal features at the dimensions of a hand.

According to electrophysiological measurings from human body tissues [7], the

bone cortical and fat has the lowest relative permittivity εr of about 15 to 20 at the

frequency f of 100 MHz. The conductivity of the finger tissue σ at this frequency

is around 0.07 S/m. We assume that human body tissues possess a permeability of

the water, which is near the absolute permeability constant. This gives an EM wave

propagating attenuation constant α and phase constant β of:
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Fig. 3.2 The permittivity and conductivity values of bone cortical (left) and fat (right)
at different frequencies.[7]

α = ω
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)

where µ0 is the permeability constant, ε is the absolute permittivity of the tissue,

and ω is the angular frequency of the signal. We have:

2.82 Np/m ≤ α ≤ 3.17 Np/m, 8.71 rad/m ≤ β ≤ 9.77 rad/m

which means an attenuation between -0.25 to -0.28 dB/cm and a phase difference

of 5.0 to 5.6 ◦/cm [7, 5], desirable for measuring with feasible hardware. This frequency
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gives a half wavelength of around 35 cm, much longer than an ordinary palm so that

the signal will not radiate efficiently into the air. Of course, due to the individual

difference of electrophysiological properties between the hands, and the limitations of

measuring conditions, we mainly focus on whether there will be a detectable difference

for our finger identification. We first used existing equipment to examine our idea.

3.2 Pilot Study for Sensing Principle Validation

To evaluate the feasibility of our theory, we designed an experiment to test the esti-

mated phase difference at the fingertip. We chose to examine the phase part because

it is the most resistant to environmental noise. The magnitude measuring involves

too much exterior interference, and we suppose that if the phase detection works, the

magnitude detection will work as well, which allows us to enter further studies. This

experiment involves a signal emitting wristband as the wearable hardware part. If our

theory mentioned in the previous section works, emit two signals at different sides of

the wrist, and we will be able to get a compound signal at every certain fingertip.

We may collect the signal waveform at the fingertip by instruments, and calculate the

phase difference from the waveform mathematically.

3.2.1 Hardware Design

According to the calculations in the previous section, and the signal conditioning

approaches we have, we experimented under the condition of 2f = 98 MHz. We made

a wristband generating rising-edge-aligned 49 MHz and 98 MHz signals at a peak-to-

peak voltage of 5 V.

The emitter is a wristband to be tightened at the place outside the carpal bones

over the skin. The two electrodes connected to the two output ports of the signal
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Fig. 3.3 The circuit diagram of the wristband used in the pilot study

generator are placed over the skin so that each electrode is on either left or right side

of the wrist.

To form a stable signal generator, we used an ICS501 clock generator IC oscillating

at a stable frequency at around f = 12.25 MHz, and an ICS570 clock buffer IC to

multiply the frequency to 98 MHz. The phase-locked loop (PLL) structure assures

the rising edges of the 49 MHz and 98 MHz rails to occur at the same time, as Fig.3.3

shows. A crystal determines the clock frequency and allows us to tune the performance

of the clock generator. We can observe a waveform of generated signal as Fig.3.4,

which shows a raw 5 V peak-to-peak output voltage swing (although there show some

attenuations according to the limited oscilloscope bandwidth of 50 MHz).

We power the emitter part with a Li-ion battery to separate it from noises intro-

duced from the AC power line. To get a better separation between the two signal rails,

we modified the source termination resistor recommended in the ICS570 datasheet

from 27ohm to a direct short, which reduced the load effect of either signal rail to

another. Notice that, in fact, this emitter configuration generates a square wave on

each rail with certain distortions among harmonic frequency components due to the

equivalent capacitive load of the hand tissues. This does not violate our target of
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Fig. 3.4 The output waveform of the wristband measured by an oscilloscope. Yellow:
49 MHz signal. Cyan: 98 MHz signal.

generating two signals of f and 2f , as a square wave only consists of odd-order har-

monics so that the two rails contains entirely different frequency components, and

the harmonics over order 3 (frequency over 147 MHz) could not pass the filters in the

detector part, which we will explain later in the detector chapter.

3.2.2 Experiment Design

We recruited 1 participant as the tester of the wristband part in this pilot study. In

this section, we will describe how do we evaluate the feasibility of the phase-measuring

idea using an oscilloscope.

3.2.3 Experiment Process

We use a 2 cm×2 cm PCB board with copper foil as the touchpad to collect signal from

the fingertip in this experiment. The copper foil is AC coupled to the oscilloscope probe

and ground at the impedance of 100 pF + 1 kOhm (turning frequency at 1.6 MHz),

which efficiently filters the AC power line noise.
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Fig. 3.5 The participant is wearing the wristband. The blue PCB is the signal gener-
ator, connecting to two electrodes (only one shown in the figure) by copper wire. The
signal generator is DC powered by the red-white cable pair.

We ask the participant to wear the wristband during the experiment. In order to

maintain the environmental conditions to be stable during each round, we bound the

wristband prototype tight at the wrist, which may cause certain uncomfortableness.

During the experiment process, the participant presses a certain finger on the touch-

pad, keeping the shape of the hand relatively stable, while we save the waveform on

the oscilloscope into a USB disk, and record the corresponding finger identity (thumb

to little finger). The order of the finger is decided by the participant solely, but has

to be in total 20 times for each finger, 100 waveforms in total. Each waveform is a list

of normalized voltage values in time sequential order.
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Fig. 3.6 The data recorded by the oscilloscope (blue) and the function fitting result
(yellow)

3.2.4 Data Analysis

To extract the phase difference information from the waveform, we assume that the

voltage signal follows the model of:

f(t) = a sin(ωt+ c) + b sin(2ωt+ d) + q

where ω is the normalized angular frequency of the signal. a and b are the mag-

nitudes of the two basic frequency components. c and d are the phase of the two

basic frequency components. q is the DC component of the signal. Notice that this

model omits the harmonic frequency components over 3rd order because they can be

treated as noises during the model fitting and that uncorrelated components would

not contribute to the model parameter.

We use FindFit function in Mathematica to fit the model to each waveform se-

quence. FindFit function calls a least squares fitting process, and leaves the or-

thogonal components in the data as residuals. The phase difference of the two basic

frequencies has the form of 2c−d, modulo- 2π to clamp the value into a single period.
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Fig. 3.7 The whisker box chart (with 1one standard variance error bar) and histogram
for the data of each finger identity. Each chart from left to right: thumb to little
finger. The Y-axis is the 2c− d value with an amplification factor, without a unit.

For the calculated phase difference values of a same finger identity, we gather them

and plot a labeled histogram for each finger.

3.2.5 Results

The histogram of finger identity vs. phase difference distribution in this experiment

is as Fig.3.7. We can see that there is a distinguishable average phase difference

fluctuation among finger identities, and that the difference value follows the spatial

position of the finger - whether it could be utilized for discriminating the identity

remains to be checked by more decent hardware.

However, we also notice that there exist some “double peaks” in the distribution.

This may result from the wristband slipping around the skin near the wrist during

data collection, which causes unstable signal route. This requires us to design a more

solid wristband that doesn’t slip too much on the skin.

Due to the result of phase difference checking, we may also infer that magnitude

difference shall follow similar rules, that provide us information to classify the finger

identity results.
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3.3 Summary

We assumed that we may use the relative phase and magnitude difference of the RF

signal to identify which finger the user is touching a touchpad with. Through a pilot

study, we discovered that the phase difference of two frequencies in a signal is capable

of determining the identity of the finger where the signal is emitted.



Chapter 4

System Design Version 1

4.1 Detector Configuration

The detector determines the finger by checking the phase and magnitude differences

of frequency components in the incoming signal. On receiving the signal from a finger,

the detector part first split the signal into the f and 2f frequency rails. A multiplier

stage then doubles the frequency of the f rail into 2f for comparison. Afterwards,

a phase-magnitude detector may measure the phase and magnitude difference of the

original 2f rail against the doubled f rail. By performing analog-digital conversion

on the phase and magnitude detection result, we may further examine the features of

the signal source, which indicates the corresponding finger.

According to the properties of the Lissajous figures，to fully utilize the precise

twice-the-frequency relation between two frequency components, we have to look into

the working principle of the detector. The phase-magnitude detector works by an

analog multiplier core. Suppose we have two sinusoidal signals of frequency ω1 and
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Fig. 4.1 Left: the flow chart of the detector functional blocks. Right: the photo of the
detector PCB.

ω2, while the latter is shifted with a phase of φ, the detector generates a following

analog function:

sin(ω1t) sin(ω2t+ φ) =
1

2
cos[φ− (ω1 − ω2)t]−

1

2
cos[φ+ (ω1 + ω2)t] (4.1)

Notice that the second cosine part is a signal of very high frequency, which can be

efficiently filtered out by a capacitor. The first part is stable when, and only when,

ω1 = ω2, so that it is unrelated with time variant t. By doubling the f rail, we may

get a signal with the precise 2f component, thus providing the analog function with

two signals of exactly the same frequency, suitable for phase detection.

The detector hardware consists of 5 stages: pre-amplification, filtering, multipli-

cation(frequency doubler), phase-magnitude detection, and analog digital conversion

(ADC) stage. Through careful circuit design, the bandwidths of all stages extend to

the range that fully covers the input signal specifications to preserve signal integrity.

The input interface of the detector is a 50 Ohm terminated RF connector. The previ-

ous 4 stages are assembled on a piece of PCB, powered by a ±5 V DC power module.

In the following paragraphs, we will introduce the implementation of each stage.
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Fig. 4.2 The circuit diagram of the detector, first version

The pre-amplification stage acts as an amplifier and an impedance converter. This

stage is made of a high-gain stage and a power-boost stage. Before the high-gain stage,

a capacitor in series with the load termination resistor forms a high-pass filter cutting

off at 1 MHz that filters out low-frequency noises, including the 50/60 Hz power line

signal. Suppose we have an input signal of 10 mVpp. The high-gain stage is an OPA847

amplifier tuned to a gain of A = +20 V/V, which means a maximum 1.5 Vpp signal

to drive the power-boost stage. The power-boost stage uses an OPA698 amplifier as

a voltage follower to deliver enough signal power to the filtering stage.
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The filtering stage splits the amplified signal into the 49 MHz and 98 MHz rails

by two 3rd-order band-pass passive filters, where we expect to two rails to achieve

over 20 dB separation. Fig.4.3 shows the predicted and measured filter Bode plot by a

spectrum analyzer, proving that the filter design is successful. The aberration from the

theoretical value may derive from the output resistance of the pre-amplification stage,

or the impedance mismatch of the electronic components. The band-pass structure

guarantees the frequency components out of this range, either higher or lower, to leave

the following stage, in order not to disturb the detection result. Each filter follows

an additional OPA820 amplifier as the output impedance buffer to drive the following

stages.

Fig. 4.3 The calculated (left) and measured (right) Bode plot of the filtering stage.
Red: 49MHz channel, Blue: 98MHz channel

In order to get a second-order harmonic from the 49 MHz rail, a couple of ways

could be used: passing the signal through a biased diode, introducing full-wave precise

rectifier, or using a frequency multiplier, etc. As long as there is a doubled frequency

component in the output signal, and the another rail (98 MHz rail) contains pure

98 MHz signal, recalling formula (4.1), we may ignore the other components and re-

trieve the phase difference information. Considering the frequency limit and signal

amplitude restrictions, we choose the multiplier plan, which brings a certain draw-
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back: the output magnitude difference isn’t proportional to the input signal anymore

(In fact it becomes quadratic), but this affects little to the final result.

Fig. 4.4 The transfer properties of two phase-magnitude detectors (AD8302) in our
circuit design. The black and yellow lines indicate the phase difference - output voltage
relationships of two detectors placed at a 90 degree phase shift between them.

In the frequency doubler design, the filter stage feeds the 49 MHz rail to an AD835

multiplier connected as a frequency doubler. From here, a doubled 98 MHz signal

comes out, with a fixed phase shift relative to the input signal. This doubled signal

then goes to the detector part along with the filtered-out 98 MHz signal. We used

the AD8302 analog RF phase-gain detector IC as the detector stage, which outputs

analog voltages proportional to the relative logarithmic magnitude gain and the phase

difference. According to the datasheet, an AD8302 can only distinguish the phase

difference within 0◦ to 180◦, and thus, we used two AD8302s in parallel. To make

the best of each AD8302 phase detection range, we devised a pair of RC networks to

further split one of the 98MHz rails into two sub-rails whose phase is orthogonal to

each other, and transmit them to the two detectors. The transfer properties is shown

as Fig.4.4. This design enables us to retrieve the whole 360◦ phase information.
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Fig. 4.5 The webpage for data collection and visualization in our system. Each colored
dot is a data point of one single touch. The distance to the origin is the magnitude
difference between two frequency components. The angle with x-axis is the relative
phase difference. The color of the point represents the ground truth of the finger
identity which we recorded by the buttons below the graph.

Finally, several additional rail-to-rail amplifiers expand the detector outputs into

a full 0 ∼ 5 V range, suitable for precise ADC operation. We use an Arduino Pro Mini

module for the ADC application in order to read the values on a PC.

4.2 Software Configuration

We connect the Arduino serial port to a Python server to collect and filter data, and

pass it on to the analysis and visualization part. The server reads and buffers data

from the USB port, and distribute a sequence of data on a local network.

The data analysis and visualization part is a webpage (Fig.4.5) based on JavaScript.

On the webpage lays a polar coordinate graph indicating the relative magnitude and
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phase difference. There are also several buttons representing a finger identity class

for data logging. Inside the webpage script, we implemented a k-nearest neighbors

(k-NN) classifier taking the phase and magnitude differences as input, and the finger

identity (1 to 5) as the output. There are also buttons controlling the training and

examination process of the classifier.



Chapter 5

User Study 1

5.1 Experiment Process

The experiment consists of two stages: training and validation, both operated on the

data analysis and visualization UI. For the touch target object, we chose a metal pad

connected to the detector with a 50Ω transmission cable. We tightened the wristband

to the wrist of the participant before the training stage. During the experiment, we

asked the participant to keep the wrist firm so that the hand shape remains relatively

solid, and move the palm by the arm.

During the training stage, the participant placed each of the five fingers on the

metal pad by turns, while we click to save the finger identity number. We collected

50 data points in total, while the classifier trained an 8-NN model for identification.

During the validation stage, the participant placed random fingers on the metal

pad, meanwhile recording the ground truth data on the UI. We collected a test dataset

of 26 data point per finger, which is 130 data point in total.

After collecting the test dataset in the web UI, we downloaded the dataset contain-

ing the classification results and ground truth values of each data point. We printed
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Fig. 5.1 The user is wearing our wristband (first version) during the experiment

out the visualization from the UI and the confusion matrix of the test dataset as the

evaluation of our system.

5.2 Result

The visualization of the collected magnitude and phase difference data in 2D space

and the classification results in confusion matrix format are as follows. We cropped

out the valid part from the polar coordinate in the UI:

From the visualization 5.2 we could see that the data of the same finger gathered

in clusters, which indicates that the data followed certain distributions. According to

the test data, we achieved a 92.2% accuracy and 91.9% F1 score among five fingers.

Noticing that the error mainly comes from the middle and ring finger, if we only focus

on the first three fingers (thumb, index, middle), the accuracy would rise to 97.6%.
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Fig. 5.2 Left: The visualization of the collected data points from each finger (test set).
Right: The confusion matrix of the test result.

5.3 Summary

Based on a small test dataset, our capacitive sensing method has the ability to dis-

tinguish between different fingers. We will move to a newer design and a more decent

analysis in the following chapter.



Chapter 6

System Design Version 2

From the previous studies, we know that the magnitude and phase difference do con-

tribute to finger identification, and there is potential for a system efficiency improve-

ment. Based on the experience we acquired from the experiment on system design

version one, we proposed system design version 2, which features the following prop-

erties:

• Using a higher basic frequency of f = 72 MHz, which is still below the signal

emission frequency threshold of the arm so that the arm does not act as an

antenna, but achieves better separation between the two frequency rails. This

frequency makes the most capability of the electronic components we have.

• Using surface acoustic wave (SAW) filters as the frequency splitter.

• Adding an absolute signal magnitude detector to the design.

6.1 Emitter Configuration

We designed the second version of emitter as a battery-powered block that generates

two rails of 72 MHz and 144 MHz signals. To maintain a stable voltage of 3.3 V from

the battery, whose voltage will decrease as it discharges and can be either lower or
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Fig. 6.1 The circuit diagram for the second version of the wristband. J1 is the battery
power input.

Fig. 6.2 Left: The complete PCB board of the emitter. Right: The assembled wrist-
band wearing on the wrist. The battery is on the back side of the wrist. (not shown)
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Fig. 6.3 The waveform observed from the signal emitter output. Yellow: 72 MHz rail.
Cyan: 144 MHz rail.

higher than the desired voltage at any time, we use an LTC3531 IC as the DC-DC

power manager. The working frequency of LTC3531 is only several kilohertz - much

lower than our target signal frequency, which causes no spectrum conflict.

The signal generation part is extremely straight forward: we use an SIT2001B os-

cillator to feed a 12 MHz square wave signal to an ICS570 IC, configured as a 6x/12x

phase-locked-loop frequency multiplier. We omitted the termination resistor recom-

mended in the official datasheet similar to the first hardware version, as the termina-

tion resistor will degrade the frequency component separation when applying signals

to the skin. The raw output waveform is like Fig.6.3 with no output load.

Moreover, we cast the model of the new wristband out of silicon gel: it enlarged

the friction of the band to the skin greatly so that it won’t slip during the experiment

even if the user twists the wrist. The two electrodes are placed on the either side of the

wrist and are connected to the PCB board with elastic metal wires as strain reliefs,

which enable stretching the wristband to fit the circumferences of different wrists.
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6.2 Detector Configuration

Fig. 6.4 The pre-amplification stage of the detector’s second version

Fig. 6.5 The frequency-splitter and doubler stage (left) and the phase-magnitude de-
tection stage (right) of the detector’s second version
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Fig. 6.6 The Bode plot of the SAW component filtering stage, after output buffering.
Red: 72MHz channel, Blue: 144MHz channel.

The second version of detector also consists of the four stages as the first version

does. We mainly introduce the differences.

At the pre-amplifier stage, we inserted an LTC5507 RF power detector to measure

the absolute input signal amplitude. The LTC5507 is sensitive to frequencies over

100 kHz to 3 GHz. This gives us a useful condition to detect whether the user is

touching the detector touchpad or not, and provide a convenient channel to measure

and fine tune the gain of each stage.

At the frequency splitter stage, we selected two SAW filters that allow either

72 MHz or 144 MHz signal to pass through a narrow band efficiently. A SAW filter

conducts RF signal through a layer of piezoelectric material as mechanical energy,

and may filter out certain frequencies at extremely high selectivity. Each filter is

terminated double sides using resistors, as a compromise of energy transfer efficiency

and circuit complexity. The measured transmission properties of the two channels are

as Fig.6.6, including the amplification factors of the output buffers.

At the frequency doubler stage, we directly send the filtered 72 MHz signal into the

AD835 multiplier with AC coupling to minimize the loss during multiplication. There

will be a DC component in the output signal, but as the output signal is AC coupled
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Fig. 6.7 The fully assembled PCB of the detector part. We prepared three pieces for
the evaluation. The square shaped metal pieces are the SAW filters used in our design.

to the phase-magnitude detector, such a component is negligible. Also, moving the

phase splitter to the original 144 MHz rail also helps enhance the signal-noise ratio by

fewer conditioning stages.

At the phase-magnitude detector stage, we connect the two magnitude measuring

output directly with resistors. We may now acquire 4 measurings from the detector: 2

orthogonal phase difference value, 1 absolute magnitude (from the RF power detector),

and 1 relative magnitude difference value (in logarithmic scale). These signals are as

well amplified, fed to the Arduino and transferred into digital values.

6.3 Software Configuration

For the new software part, we modified the classifier, data visualization UI, and train-

ing data collection process.
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6.3.1 Classifier

We implemented a 2D Gaussian classifier to replace the k-NN classifier used in the

previous version. After we notice the cluster’s shape of data from each finger identity,

we concluded that a bivariate Gaussian model might be more suitable for this task.

Our Gaussian classifier takes the raw phase and magnitude difference values as 2 input

dimensions, and try to find the µx, µy, σx, σy, ρ parameters that fits the model

p = p(x, y) =
1

2πσxσy

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
(x− µx)

2

σ2
x

+
(y − µy)

2

σ2
y

− 2ρ(x− µx)(y − µy)

σxσy

])

for each cluster of a finger identity. Practically, we could calculate log 2πp for the

reason that only the relative order matters during prediction.

According to the maximum likelihood estimation (MLE) for a Gaussian model, we

have:

µx = x

µy = y

σ2
x = x2 − µ2

x

σ2
y = y2 − µ2

y

ρ =
xy − µxµy√

σxσy

where the covariance matrix part is:

Σ =

 x2 − µ2
x xy − µxµy

xy − µxµy y2 − µ2
y


One thing to notice is that the phase difference value is a self-wrapping scale of

0 ∼ 2π, where we normalize it into 0 ∼ 1 in our algorithm. The value space shapes
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like a cylinder, and a continuous change through the preceding 0 or 1 border along

the x-axis will cause a jump in a Cartesian coordinate. We use the following modified

algorithm to deal with this discontinuity: calculate the horizontal distance of two

points by the smallest one among three values - the horizontal distance between one

point and another, one point and the position of another point in the previous cycle

(minus one), and one point and the position of another point in the following cycle

(plus one). When calculating the µx value of a class, the new value might exceed the

0 ∼ 1 range due do the addition or subtraction, thus we always take the fractal part

of the result as the new µx value to make sure that at any time, either any point or

the center of a class is within the 0 to 1 range.

The complete updating algorithm is:
Algorithm 1: Updating the µx value of a class during training

Data: a new x value, previous center µ′
x, total count N and sum Σx of

previous x values

Result: The new µx value

xList← [x− 1, x, x+ 1] ;

x0 ← argmin
x′∈xList

d(x′, µ′
x) ;

µx ← Σx+x0

N+1
;

µx ← µx mod 1 ;

6.3.2 Data Visualization

The new visualization treats the phase and magnitude values in a Cartesian coordinate

- x-axis for phase and y for magnitude , and plots the error ellipse of each finger identity

cluster.

From the previous sample UI we could also see that, in some cases, data points of

a same cluster distribute on the two edges of the graph. To perform Gaussian MLE

under such a condition, we have to update the µx and µy position according to the

nearest point. The distance across the phase axis shall be:
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Fig. 6.8 The second version of the web UI

d(u, v) = |(u− v + 0.5) mod 1− 0.5|

to make sure that the x-distance falls into the range of [0, 0.5]. Every time when a

new data point comes, we calculate the distance from the data point to the center via

the previous formula, and update the position of the center so that it always drops in

the range of [0, 1). The same distance formula applies to prediction process.
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The next modification to the interface is that we added an error ellipse to demon-

strate the confidence intervals of each class. The parameters of the ellipse should

follow:

Ox = µx

Oy = µy

r1 =
√

Kλ1

r2 =
√

Kλ2

ar1,x = arctan Σxy

λ1 − Σyy

where the λ1 and λ2 are the greater and lesser eigenvalues of the covariance matrix

Σ. ar1,x is the angle between the long main axis of the ellipse and the x-axis, which

is the angle between the eigenvector of greater eigenvalue and the x-axis. K is a

parameter related to χ2 distribution controlling the confidence of the ellipse area.

Assuming K = 2 gives a 63% confidence inside the ellipse.

Also, because the same group of data could split into several sections along the

x-axis in some cases, we draw each same ellipse two times additionally with the Ox

value shifts ±1, as we can see on the left and right edges in Fig.6.8.

6.3.3 Automatic Data Sampler

The next modification to the user interface is that during the training process, we do

not collect each data point manually. Instead, during the participant’s pressing on

the touchpad, we collect a series of data points automatically. The script we use in

the UI detects if the absolute signal strength (measured with LTC5507 detector) is

over a threshold that indicates a press on the touchpad. If the signal is identified as

pressing-down, the script sends all the data received during this period to the classifier
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as training data. Such a process is triggered only once every time the user presses the

corresponding tag button on the UI, and stops when the user moves the finger away.

6.3.4 Calibration

We design an additional calibration step to compensate for the profile drifting: when

the wristband stays on the user’s wrist, minor physical changes such as sweat, humid-

ity, or small slipping over the skin may cause the phase-magnitude difference profiles

to change over time. The calibration stage uses a single finger profile collected in the

same way as the training stage to adjust the finger profile pattern for higher detection

accuracy. During the calibration stage, the user place only one finger on the touchpad,

and we record data points for once by the automatic data sampler.

During the training stage, we have the center for each finger profile µ
(i)
x and µ

(i)
y ,

where i = 1, 2, 3, 4, 5 indicates the finger identity. For a certain finger j, we also have

a its profile center µ′(j)
x and µ′(j)

y . For each old finger profile calculated during the

training stage using algorithm 1, we change the new profile center into:

µ′(i)
x = µ(i)

x + (µ(j)
x − µ′(j)

x ) mod 1

µ′(i)
y = µ(i)

y + (µ(j)
y − µ′(j)

y )

which aligns the center of the old profile j to the center of the newly collected

profile.
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User Study 2

We conducted an informal user study to evaluate the performance of this system. For

this user study, we first collected a dataset from the participants. All participants are

from the IIS-Lab. There are 3 participants engaged in this user study.

7.1 Finger Profile Data Collection

We collected four groups of finger profiles from each participant: the training data, the

test data immediately after training, the test data after wearing the wristband for 20

minutes, and the test data after remounting the wristband. During the whole process,

the user is blind to the training or test data. There are also three stages during the

data collection: ready stage, training stage, and test stage. The whole experiment

process for one participant is as follows.

7.1.1 Ready Stage

1. Disinfect the wristband, touchpad, and the desk.

2. Record the age, gender, and dominant hand of each user.
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Fig. 7.1 The user is touching the sensor pad of the detector, wearing the emitter
wristband. There are power and data connections to the hardware part.

Fig. 7.2 The interface for this user study.
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Table 7.1 The information of the participants in user study 2

Age Gender Dominant Hand
P1 24 Female Right
P2 23 Male Right
P3 29 Male Right

3. Set up the system, make sure it is working in the training mode. Place the

touchpad on a platform.

4. Switch on the wristband, make sure it is charged.

5. The user stretches out the dominant hand (palm downwards), and attaches the

wristband over the carpel bones, with the chip on the wristband facing upwards.

6. The user sits towards the touchpad, with the fingers open. (Do not grab or stick

two fingers together)

7.1.2 Training Stage

For each of the 5 fingers on the user’s dominant hand:

1. (The experimenter) clicks on the corresponding finger identity tag.

2. The user puts the fingertip on the touchpad, rubs the pad in several ways

(knuckle angle, wrist movement, etc.), and then leave the finger from the touch-

pad. The system will automatically start and stop recording training data.

Repeat the process by turns until every finger is recorded 3 times in total.

7.1.3 Test Stage 1: Immediate

The experimenter manually records the result and ground truth during this process.

1. (The experimenter) Switch the system into test mode.
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2. For each of the 5 fingers (from thumb to little finger) on the user’s dominant

hand, the user puts the fingertip on the touchpad in a natural way, wait for

the recording of the identification result, and then leave the finger from the

touchpad.

Repeat the process by turns for 10 rounds (50 touches) in total.

7.1.4 Test Stage 2: Delayed

After test stage 1, the user wears the wristband for 20 more minutes, and repeat the

process in test 1.

7.1.5 Test Stage 3: Remounting

After test stage 2, the user takes off the wristband for 20 minutes. Then, the user

remount the wristband where he/she feels almost the same place, and repeat the

process in test 1.

7.1.6 Collected Data

During each stage, we collect all the phase-magnitude difference profile, and save them

for the following algorithm evaluation. We visualized the collected finger profile. Fig.

7.3 shows the visualization for the profile of one participant.

7.2 Experiment Result

We ran the algorithm (without calibration) with the three groups of data collected,

and measured the accuracy over five fingers with F1 score.

F1 =
2 · precision · recall
precision + recall
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Fig. 7.3 The visualization of finger identity profile for one participant. Up-Left: train-
ing data. Up-Right: test data 1. Down-Left: test data 2. Down-Right: test data 3.
The X and Y axes are relative phase and magnitude difference.

Table 7.2 Detection accuracy of the algorithm without calibration

F1 Score Test 1 Test 2 Test 3
P1 0.75 0.53 0.61
P2 0.67 0.24 0.55
P3 0.87 0.78 0.32

Total 0.76 0.52 0.49

Table 7.2 shows the accuracy of each participant and the overall accuracy in each

test. The baseline for a random guess is F1 = 0.2.

We can achieve a 76% accuracy in the immediate test after the training stage, but

after a while, either the delayed test or the remounting test shows an accuracy decline

to about 50%. If we visualize the distribution of the training and test data, like the

left image of Fig. 7.4, we could see that a large number of data points, mainly among

the index, middle, and ring finger, are at a bias from the distribution of the training

data.

We then applied the calibration process on the middle finger, by randomly sample

a 20% subset from the middle finger profile in each test dataset and calculate the bias.

We may shift the training data pattern (the Gaussian model parameters) to a new



7.2 Experiment Result 45

Fig. 7.4 The training data error ellipse and the test data points from one participant.
Test data from test 2 (delayed test). Left: Without calibration. Right: With middle
finger for calibration.

Fig. 7.5 The accuracy of each test using different fingers for calibration.

place. Testing the algorithm on the calibrated model gives the accuracy listed in table

7.3.

From the results, we may observe a great performance improvement on especially

test 1 and test 2. The only case whose accuracy dropped is the case of test 3, partici-

pant 1. We deduce that such a result may result from a misalignment of other finger

profiles when focusing on the middle finger.

Moreover, we tested using the profile of each finger as the origin of alignment

during the calibration step. Fig 7.5 includes the overall accuracy of each test using

different fingers. From the chart, we may conclude that using the middle finger for

calibration gives the best performance among all.
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Table 7.3 Detection accuracy of the algorithm with middle finger calibration

F1 Score Test 1 Test 2 Test 3
P1 0.94 0.82 0.49
P2 0.96 0.72 0.86
P3 0.92 0.93 0.62

Total 0.94 0.82 0.66

7.3 Summary

The second version of our finger identification system is capable of detecting the finger

identity when touching a touchpad. Accompanied with a calibration process, the

accuracy is 94% immediately after training, 82% after 20 minutes’ wearing, and 66%

after the users’ remounting the wristband. Calibration gives the best performance

when using the middle finger.



Chapter 8

Discussion and Future Works

8.1 Discussion

For the results we obtained from the user studies, we may answer the initial questions

to the finger identification system.

8.1.1 Q1: What hardware and algorithm do we need for the

finger identification?

Based on the performance of the system we design, we knew that a capacitive-sensing-

based hardware is capable of extracting the features of the finger used to touch an

object. Specifically, when emitting signals at two locations around the wrist, the

phase and magnitude differences between two frequencies are reliable features for finger

identification.

We implemented two versions of hardware. As for the second version, we found

that a Gaussian model in the Cartesian space is appropriate for transforming the

signal features into a detection result. With an additional calibration step, we could

get an accuracy (in F1 score) of 94% in an immediate test, 82% in a delayed test, and
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still 66% after remounting the system. The automatic sampler in the second version

of user interface also made data collection easier.

However, it is hard to give an explicit judgement of whether the second version

outperformed the fist one. Although the accuracy results indicate that the second

version will have a higher accuracy after calibration, we lack sufficient data to ensure

this result to be statistically significant.

Compared with other methods of finger identification mentioned in chapter 2, our

method achieved all of the following features:

• Fast speed: Our method reacts to the touch on the touchpad instantly, and the

delay comes from only the data transfer from the ADC to the classifier, which

is less than 100ms in our case.

• Detecting among all fingers: Our method may distinguish the identity among

all of the 5 fingers on one hand, and may potentially extend to several hands.

• Ease of use: The user only have to wear a wristband over the wrist. There is

no additional hardware attached to extra places on the body, which means our

method will not hinder the user from manipulating the body parts, especially

to moving and feeling with fingers.

8.1.2 Q2: What features contribute the most accuracy to the

identification?

From the visualization of the training and test data, we observed the phase and mag-

nitude features both contributed to the classification. The most important factor is

the data from the middle finger, which decides the final accuracy to a greater extent.

We are still unable to explain the further factors that caused the false detection

results. Even with a calibration step, we cannot make the finger profile pattern strictly
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overlap between training and test stages. The conductive properties of the hand tissues

owns more complex behaviors than our model may describe.

8.1.3 Application Design Space

By comparing the advantages to the related works, we may find our system useful in

the following cases.

When a touch user interface involves several tools for operation, or some menus

for choosing a function with the touch (such as a right-click menu), we may assign

a function to each finger to avoid an extra selecting operation. For example, in a

sketchpad application, different fingers may represent paint brush, eraser, or transform

tools. In another case, for a number in an instant messaging application, a click on

the number with different fingers may activate a call, adding friend with this number

ID, or copying the number as a validation code. These operations are suitable for the

user interface on a tiny surface, such as a smartwatch, a pair of smart glasses, or a

Bluetooth earphone.

For another aspect, there are applications where finger identities are bound to the

value of a variable. In a virtual musical instrument case, finger identities could be

related to an audio effect such as the pitch, or the tone of the instrument. Using the

finger identity in a virtual instrument application also allows us to record the finger

used to play every note, and allow us to replay the piece or comment the musical score

with fingering information.

8.2 Future Work

In our system, there are only two frequency components of a single “doubled-frequency”

relation. The frequency selection, 49 MHz and 72 MHz in our study, are mainly based

on the convenience of circuit design. Our current calibration process only utilizes the
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profile from a single finger, which we only used for validating the idea of calibration.

This hardware detects only a single-finger touch, where we expect to be able to detect

all finger identities of a multiple touch. Also, due to the current situation, we did not

carry out a formal user study with ample data for a statistically solid conclusion.

Future work should consider the best frequency that provides the highest accu-

racy, and the possibility of adding more frequency components in the signal from the

wristband - requiring more advanced circuit design both to the wristband and the

detector.

Meanwhile, the future work should investigate the calibration algorithm of using

more fingers to generate a better pattern from the training data, or a better feature

space transform with a higher accuracy. All these evaluations should include a larger-

scale user study to guarantee statistical significance.



Chapter 9

Conclusion

Despite the large amount of previous work exploring the methods for finger identifica-

tion, a method that is swift, versatile, and easy to mount is still vacant. We created a

system that achieves all of these advantages with capacitive sensing technology. The

system only requires the user to wear a signal emitting wristband on the wrist, which

generates signals of two frequency components. We designed a hardware piece to de-

tect the relative phase and magnitude difference of the two frequency components,

and an algorithm to classify these data into finger identities. Our evaluation study

showed that such a system achieved fast and accurate finger identification among 5

fingers on one hand, with an extra calibration process.
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