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ABSTRACT

The objective of this study is to propose and evaluate a set of modifications to enhance a machine-learning-

based method for forecasting day-ahead solar irradiation. To assess the proposed modifications, they were

implemented in an initial forecast method, and their effectiveness was analyzed using two years of data on a

national scale in Japan. In addition, the accuracy of the modified method was compared with one of the

forecast methods for solar irradiation used by the Japan Meteorological Agency (JMA), namely, the me-

soscale model (MSM). Such forecasts were made publicly available only recently, which makes this study one

of the first ones to compare them with machine-learning-based forecasts. The annual root-mean-square error

(RMSE) of local forecasts of the JMA-MSM varied from 0.1 to 0.14 kWhm22; the regional equivalent varied

from 0.062 to 0.091 kWhm22. In comparison with these results, the modified model achieved an average

RMSE reduction of 7.5%on the local scale and 16%on the regional scale. Themodifiedmodel also had a skill

score that was 23%higher than that of the JMAmodel. Furthermore, the performance of the JMAmodel had

strong spatial and seasonal dependencies, which were reduced in the machine-learning-based forecasts. The

results show that the proposed modifications are effective in reducing large forecasts errors, but they cannot

compensate for situations in which the input data used to make the forecasts are highly inaccurate.

1. Introduction

The worldwide dissemination of photovoltaic (PV)

power systems in the current decade has been remark-

able. Just between 2010 and 2017, the worldwide in-

stalled capacity of PV power increased from 40 to

403GW (International Energy Agency 2018). Such

growth, associated with the intrinsic weather-dependent

variability typical of PV power generation, has caused a

strong demand for improvements in day-ahead fore-

casting of solar irradiation.

Day-ahead forecasts of solar irradiation are essential

to support the stability of power grids in scenarios of

high penetration of PV power and in countries with

day-ahead markets. In Japan, for example, such fore-

casts are employed to schedule the curtailment of resi-

dential and nonresidential PV power in regions with

high penetration of PV and insufficient grid flexibility

and power demand in order to consume all generation

(Ministry of Economy, Trade and Industry 2014). Due

to the characteristics of the Japanese PV power cur-

tailment system, errors in the day-ahead forecasts of

solar irradiation can cause economic losses to the PV

systems’ owners as well as power supply–demand issues

to the power grid operators.

One of the following three approaches is usually

adopted to forecast solar irradiation one day ahead of

time. In the first approach, the forecast is performed

directly from the numerical weather prediction (NWP)

models. Examples of such models include the ones de-

veloped by the European Centre for Medium-Range
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Weather Forecasts (ECMWF), the Weather Research

and Forecasting (WRF) Model of the U.S. National

Center for Atmospheric Research (Powers et al. 2017),

and the nonhydrostatic model (NHM) of the Japan

Meteorological Agency (JMA; Saito et al. 2007). Such

models are continuously developed, themain purpose of

which is to achieve better weather predictions in gen-

eral. Recently, however, with the growth of PV systems,

NWP solar irradiation models have received consider-

able attention. For example, a version of the WRF

focused on solar resources (WRF-Solar) has been

developed (Jiménez et al. 2016a,b), and it is already

being updated (Golnas 2018). Another example comes

from the JMA, which in February 2017 replaced its

original mesoscale model called NHM (Saito et al. 2007)

with a new model called a system based on a unified

concept for atmosphere (ASUCA; JapanMeteorological

Agency 2014). This newmodel is expected to increase the

accuracy of low-level cloud forecasts by implementing

horizontal discretization of the atmosphere with a finite-

difference method (the NHM used a spectral approach).

The second approach often adopted to forecast solar

irradiation one day ahead of time is to use NWP data

as predictors and machine learning or statistical models

to obtain the solar irradiation as the output, as in

Antonanzas et al. (2016) and Voyant et al. (2017). The

following are examples of other methods employing this

approach. Pereira et al. (2019) developed an artificial

neural network (ANN) to postprocess up to 72 h-ahead

forecasts of the global horizontal irradiation obtained

using the ECMWF NWP model. The authors trained

their ANN to correct the forecasts according to several

weather-related variables. For 103 days of data and four

locations in Portugal, they showed that their corrective

algorithm increased the forecast skill by 23% when

compared with forecasts without postprocessing. Qing

and Niu (2018) proposed a method based on long short-

term memory (LSTM) networks to forecast day-ahead

solar irradiance. They compared the performance of

their method with that of persistence, linear regression,

and ANN-based models with over six months of data

from the island of Cape Verde. The authors found that

the LSTM method outperformed the ANN, achieving

a root-mean-square error (RMSE) of 122.7 against

150.2Wm22 for the ANN. In the same study, using a

dataset with 11 years of data from the National Renewable

Energy Laboratory (NREL), the authors showed that

their method yielded an RMSE 42.7% lower than the

methods based on ANNs. Srivastava and Lessmann

(2018) also tested the performance of LSTM networks

in day-ahead forecasts of global horizontal irradiance

(GHI) but using satellite data. They compared the

performance of LSTM against persistence, ANN, and

gradient boosting regression methods over 21 loca-

tions in Europe and the United States and one year of

test data. The authors found that the LSTM yielded a

median reduction of the forecasts’ RMSE of 8.6%

when compared with the ANN and gradient boosting

regression-related forecasts (maximum RMSE re-

duction of 18% in one location and maximum RMSE

increase of 7.1% in another).

Currently, the potential benefits of machine-learning

techniques that use random projections of the inputs

into high-dimensional space, such as extreme learning

machines (ELM) and reservoir computing, are also be-

ing explored in the problem of PV power forecasts. Such

techniques can also be extended to the problem of

solar irradiation forecasts. The main advantage of

these techniques is that they significantly simplify the

training process, as they require only the updating

of the weights of the output layer. For example,

Le Cadre et al. (2015) proposed the use of ELM and

an information-based rule to generate day-ahead prob-

abilistic PV power generation forecasts. Li et al. (2015)

used ELM to forecast the hourly PV power generation

of a system in Shanghai, China, for 6 months. They

created three models based on the weather conditions

and employed the most suitable one according to the

predicted weather of each target day. Their method

outperformed a reference ANN-based model by ap-

proximately 5% in terms of a normalized RMSE.

Hossain et al. (2017) used ELM to forecast the PV

power of three residential systems in Malaysia. They

tested their model with three months of data and

found that the ELM-based model outperformed both

support vector regression (SVR) and ANN models.

For the solar irradiance forecast itself, Basterrech

et al. (2013) developed an echo state network and

differential polynomial neural networks to forecast

the day-ahead solar irradiance in the Czech Republic.

They found that both methods achieved similar perfor-

mance for a test set of seven days. Alomar et al. (2016)

used reservoir computing to predict daily global solar

irradiation from air temperature data. They used four

years of data for training and one year for testing and

found that their model outperformed regression-based

empirical models by approximately 6% in terms of a

normalized RMSE.

The third approach that is often used for solar irra-

diation forecasts is to increase the complexity of the

forecast models, using meta aggregators to generate

ensembles of forecasts done with the first or second

approaches. An example of this kind of approach is the

Watt-sun forecasting system based on a multiexpert

learning approach for multihorizon forecasts of solar

irradiation and PV power (Hamann 2017). This system
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combines the North American Mesoscale Forecast

System, the National Centers for Environmental

Prediction, and the Global Forecast System data

with random forests, support vector machines, and

linear models, in a 12-member ensemble forecast.

According to Hamann (2017), the Watt-sun system can

yield forecasts of solar power with amean absolute error

of 20% lower than forecasts based on the ECMWF

(evaluations based on two-day-ahead forecasts for three

locations in the United States, andmore than six months

of data). Uno et al. (2018) used a grand ensemble

technique based on four leading NWP models from

around the world to evaluate the potential error reduc-

tion in the daily forecasts of solar irradiation in the

Kanto region in Japan, with a horizon from 1 to 6 days

ahead of time. They showed that an ensemble of models

with coarse grid spacings (40, 140, and 110 km2) can yield

forecast errors as low as those provided by a 25-km2

model. Perez et al. (2018) developed a technique based

on historical satellite data and a multimodel blending of

four advanced NWP models to improve the day-ahead

forecast of solar irradiation. They showed that their

technique, over a period of nine months and seven lo-

cations in the United States, was able to yield forecasts

with an RMSE 1.7% lower than their reference model.

The literature available on this topic shows that

although advances have been made, forecast error

characterization and error reduction in the day-ahead

horizon remains an open problem. Because of the

eventual occurrence of large errors, their reduction

is a constant objective. Nonetheless, even the quan-

tification of advances achieved by new methods is a

difficult task in some regions of the world, due to the

lack of publicly available forecasts of solar irradiation

that can be used as a common baseline. This was the case

in Japan until December 2017, when the JMA started to

make publicly available its mesoscale model forecasts of

solar irradiation (Japan Meteorological Agency 2017).

In consonance with the need to improve day-ahead

forecasts of solar irradiation, and to characterize such

improvements using a publicly available standard, this

study has two objectives. The first one aims to evaluate

the impact of the three modifications on improving a

forecast model based on the application of machine

learning with NWP data. To verify the potential of

these modifications, we implemented them on a fore-

cast model developed previously (Fonseca et al. 2015)

and verified how the forecast error changed after the

implementation. The second objective aims to provide

a countrywide characterization of the performance of

day-ahead forecasts of solar irradiation in Japan, using

the initial model, the modified model, and forecasts

from the JMA mesoscale model (MSM) (which are

bound to become the standard baseline in Japan after

becoming publicly available). To do that, we compared

the performance of the three forecast models in 2016

and 2017 at 41 locations distributed across all the main

regions of Japan. Furthermore, we evaluated the fore-

cast accuracy on local as well as on regional scales.

Although assessments of the observed solar irradiation

in Japan as well as the stand-alone seasonal evaluations

of the JMA NWP models have been studied before

(Watanabe et al. 2016; Ohtake et al. 2015, 2018), to

the best of our knowledge, this is the first compre-

hensive countrywide evaluation of machine-learning-

based forecasts using the JMA-MSM forecasts as the

baseline. Thus, aside from showing the potential of the

proposed enhancement techniques, the analysis can also

be a useful reference to other researchers when com-

paring the performance of day-ahead forecasts of solar

irradiation in different parts of the world.

This paper is organized as follows: in section 2,

day-ahead solar irradiation forecast models used are

introduced; in section 3, forecast targets (regional and

local) are described; in section 4, the performance

metrics employed are presented; and in section 5, the

results are presented and discussed. The conclusions of

the study are presented in section 6.

2. Forecast models

The forecast models used in this study are the per-

sistence model, the JMA-MSM, the initial machine-

learning model developed previously, and a new model

modified with enhancement techniques. The persistence

model was used to provide an easily reproducible ref-

erence to which the skill of the other three models could

be compared.

a. Day-ahead persistence forecasts

Forecasts with persistence are done by using the

values regarded as the observed ones for a day as the

predictions for the next day. In persistence-based fore-

casts, it is assumed that the weather conditions of a day

will persist or be the same for the next day. In the day-

ahead horizon, any other nonnaive forecast method

should generally outperform persistence to justify its

application. Thus, persistence was used only to evaluate

the skill of the other three models.

b. NWP forecasts: The JMA-MSM

The mesoscale model of the JMA entered into oper-

ation in May 2005 with the development of the NHM

(Saito et al. 2006). A detailed description of it can be

found in Saito et al. (2007). The spatial domain of

the model covers the region between 22.48 and 47.68N
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latitudes and 1208 and 1508E longitudes, with an effec-

tive grid spacing of 25 km2 (a total area of approximately

10 900km2 including and surrounding Japan). The ap-

proximate model top is 22 km with 50 vertical levels. A

data assimilation technique using a coarser spatial res-

olution model, the JMA global spectral model (GSM) is

used to initialize the MSM. In its current version, 39-h-

ahead forecasts are provided 6 times per day. For op-

erational reasons, the forecasts are released with a la-

tency of approximately 2.5 h from each initial time

(Japan Meteorological Business Support Center 2019).

The JMA releases MSM-based predictions of several

weather-related variables in 16 vertical layers of pres-

sure (from 100 to 1000hPa) and at the surface level.

Until December 2017, the published surface-level data

included only mean sea level atmospheric pressure, surface

atmospheric pressure, relative humidity, accumulated pre-

cipitation, and cloudiness. All the predictions have a tem-

poral resolution of 1 h. These data are made available

through a gridpoint value mesoscale model prediction

(GPV-MSM) dataset. Solar irradiation predictions from

the MSM started being released to the public through the

GPV-MSM dataset only from December 2017 onward.

Solar irradiation forecasts of the MSM are calculated

using a radiative transfer scheme based on a 22-band

model, including the parameterizations of several ele-

ments affecting solar irradiation. The difference in the

optical characteristics of ice and water particles, as well

as the monthly profiles of aerosols in the targeted areas,

is also considered in the scheme. The effect of clouds

with a size smaller than the model resolution is esti-

mated with a partial condensation model proposed by

Sommeria and Deardorff (1977).

Last, it should be mentioned that, although solar ir-

radiation forecasts of the JMA were made publicly

available only after 2017, since a part of this study was

carried out within a Japan Science and Technology

Agency–sponsored research project in which the JMA

participated, access to its day-ahead solar irradiation

forecasts from before 2017 was granted.

c. Machine-learning-based forecasts 1: The
initial model

Until December 2017, the JMA did not publicly re-

lease solar irradiation forecasts; hence to forecast solar

irradiation, we previously proposed a machine-learning-

based forecast method that used the available NWPdata

(Fonseca et al. 2011). The machine-learning algorithm

used was the n-SVR proposed by Schölkopf et al. (1998).
The objective of SVR is to fit as many instances of the

data as possible within the margins set with a fixed distance

between them while controlling the number of outliers

that can be left outside the margins. A hyperparameter

« controls the distance between the margins (which is

also called the « tube); in the n-SVR formulation, this

parameter is automatically set during the training

procedure. Mathematically, for each instance of the

data i, the n-SVR maps input variables x into a high-

dimensional space with a map function f and a bias b, as

shown in Eq. (1):

y
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In Eqs. (4) and (5), C is the cost hyperparameter that

controls how the errors are handled by the model, and

n controls the fraction of instances that can become

support vectors (used to build the margins contain-

ing the instances) during training. Besides these two

hyperparameters, a kernel function also has to be

chosen. In this forecast model, the Gaussian radial

basis function was selected as the kernel. To set the

hyperparameters, a model ensemble like that proposed

in Fonseca et al. (2015) was used. One forecast model

was built per targeted day using data of the 60 preceding

days as the training dataset (this value was based on

evaluations with regard to the training data size). Thus,

the forecast for each day was done using a model trained

with the most recent data available.

A training dataset consists of NWP data, which are

used as input data, and observed values of solar irradi-

ation, which are used in the calculation of the forecast

errors during training. The input–output variables of the

initial model are given in Table 1. All the input variables
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were normalized by their maximum historical values in

Japan. Solar irradiation is the only variable in the study that

had forecast andobserved values.Observed values are used

only in the calculation of forecast errors during the training

stage and the performance evaluations. Last, NWP fore-

casts of solar irradiation are not used at all in the approach.

This model was regarded as the initial model. It

was implemented in the Python programming language

(version 3.6) using the port of a library for support

vector machines (LIBSVM; Chang and Lin 2001) for

scikit-learn (Pedregosa et al. 2011).

As the initial model uses NWP data as the input, it

has a role similar to that of a radiative transfer scheme

in a weather forecast system. NWP solar irradiation is

not used at all. Thus, it is suitable for situations where

numerical predictions of solar irradiation are not avail-

able. Last, with regard to the use of the SVR itself, it was

chosen because it showed good results against an ANN

(Fonseca et al. 2011). The suitability of SVR in solar

irradiation forecasting has also been shown by other

researchers (Voyant et al. 2017; Lauret et al. 2015;

Cheng et al. 2014; Zendehboudi et al. 2018).

d. Machine-learning-based forecasts 2: The
modified model

Although the initial model presented in section 2c per-

formed well (Fonseca et al. 2011), further improvements

are desired. To achieve better performance, we considered

threemodifications to improve the accuracy of the forecasts

of the initialmodel. The firstmodification is the use of three

additional numerically predicted weather-related variables

as the input variables. The variables added were the at-

mospheric pressure, wind velocity in the north–south di-

rection, and wind velocity in the east–west direction. These

three variables contain day-ahead predictions done with

the JMA-MSM, and they were retrieved from the GPV-

MSM dataset following the same approach adopted for

the other NWP input data described in section 2c.

The second modification is aimed at customizing the

learning of the model by selecting target-dependent

training patterns. The use of 60 days of data preceding

a targeted day, as proposed in the initial model, has two

main advantages. First, it imposes a small burden with

regard to the storage of data, as only two months are

needed to make forecasts for a whole day. Second, the

continuous use of the most recent past data to train a

forecast model ensures that the most recent weather

trends are always available to the machine-learning al-

gorithm. However, this approach also has the disad-

vantage of forcing the forecast model to learn all the

weather patterns in the set of 60 days of training data,

regardless of their similarity to the ones targeted. The

result is that a forecast model trained to forecast a day

expected to be sunnymight also end up learning patterns

from cloudy and rainy days.

To address this problem, we propose to increase the

initial database available to train a model to one year

of past input–output data and to implement a training

pattern selection procedure. In this procedure, for each

hour of a targeted day, the hours most similar to it, in

terms of the input data, are searched and a specific

forecast model for the targeted hour is built. The

Euclidean distance is used as a similarity metric, and

720 h of training data are selected from the initial data-

base. The following input variables were used in the

Euclidean distance calculations of similarity between

any 2h: predicted cloudiness (three levels), predicted

humidity, predicted temperature, and predicted extra-

terrestrial solar irradiance (top-of-atmosphere GHI).

The number of hours and variables used were set based

on evaluations with spare data.

With this procedure, we expect that the forecast

models will be able to characterize better the solar

irradiation of distinctive weather patterns. However,

there are two main limitations when using this or any

other training pattern selection technique for a solar

irradiation forecast. The first limitation comes from the

assumption of similarity itself. It is assumed that the past

year of datawill contain enough hours that are sufficiently

similar to the targeted hour, in terms of the input data of

the forecasts, so that the targeted hour weather pattern

will be properly learned. If the input data of the targeted

hour are atypical or rare, the training data selection will

not be effective. The second limitation is that the training

TABLE 1. Input and output variables of the initial machine-learning-based forecast model.

Variables Source

Inputa (predictors) 3-level cloudiness, temperatureb, and humidityb JMA-MSM surface level predictions done at 1200 JST

of the day preceding the targeted days

Extraterrestrial solar irradianceb Calculated with a theoretical model

Output (target variable) 1-h accumulated solar irradiation (kWhm22)c —

aAll predictors were normalized.
b Values for the targeted period and the hour preceding the targeted one are used as input.
c Output values are compared with observed values at JMA weather stations and used to calculate forecast errors.
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pattern selection should not improve a forecast if the

input data of a targeted hour is completely inaccurate.

The motivation for the third modification is based on

the analysis of examples of large forecast errors ob-

tained with the initial model for different locations and

time. By analyzing such errors, we observed among

many patterns two distinct ones. In some cases, although

one of the cloudiness variables had a high value (indi-

cating cloudy weather), the model was forecasting high

levels of solar irradiation. In other cases, one of the three

cloudiness variables was simply wrong, causing the

model to forecast low solar irradiation values when they

should be high. Examples of these patterns in three lo-

cations in Japan are in Fig. 1. In the left panel of Fig. 1,

the realized solar irradiation values suggest that the

predicted midlevel cloudiness values were incorrect

around noontime, causing a strong underestimation of

the realized value. The overestimation in the center and

right panels of Fig. 1 suggests that the model ignored the

high-level cloudiness predictions in favor of low and

midlevel ones, resulting again in large forecast errors.

Because of the limitations of the JMA-MSM (and any

other current NWP model), the accuracy of the three

cloudiness predictors in the day-ahead horizon is highly

variable. The result is that the day-ahead predicted

cloudiness can be highly inaccurate. In spite of that,

when a machine-learning model is trained with data of

these variables, it will learn their correlation with solar

irradiation and will give weight to one variable more

than another accordingly. For example, Table 2 has the

correlation between cloudiness and solar irradiation

normalized by extraterrestrial irradiance for the same

three locations of Fig. 1, using 3 years of data. For

these three locations the machine-learning model,

when trained with each location’s data, should give a

high weight to midlevel cloudiness and a low weight

to high-level cloudiness information.

Although, this is the expected characterization of the

effect of the three MSM cloudiness variables, the pre-

dicted cloudiness that receives the highest weight is not

always the most accurate variable of the three cloudi-

ness variables. Thus, in cases where it is inaccurate, we

hypothesize that the initial model will likely yield solar

irradiation forecast with a large error, as was shown

in the case for midlevel cloudiness in Sapporo, Japan

(Fig. 1, left panel). On the other hand, although the

cloudiness variable that receives the lowest weighting is

not always inaccurate, we hypothesize that its informa-

tion will be generally ignored by the initial model, as

what happened in Tokyo, Japan (Fig. 1, center panel),

and Fukuoka, Japan (Fig. 1, right panel). Since the three

cloudiness variables were not measured, direct evidence

of this problem cannot be provided. However, if this

problem is happening, devising a method to prevent too

FIG. 1. Inaccurate day-ahead predictions of solar irradiation forecasts and the corresponding cloudiness used as predictors

[three locations in (left) northern (Sapporo), (center) central (Tokyo), and (right) southwestern (Fukuoka) regions in Japan].

TABLE 2. Correlation coefficient among each of the three day-

ahead cloudiness predictors and the solar irradiation normalized by

extraterrestrial solar irradiance during three years (2012–14) and

three cities in Japan (only for hours with extraterrestrial irradiance

greater than 0 in each location).

Sapporo

(northern Japan) Tokyo

Fukuoka

(western Japan)

Low-level cloudiness 20.33 20.49 20.41

Mid-level cloudiness 20.37 20.52 20.52

High-level cloudiness 20.29 20.38 20.28

1016 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59



much or too little weighting of such variables by the

initial model should cause a reduction of the forecast

error. That is the purpose of the third modification.

The third modification proposed is based on a three-

member ensemble approach. Instead of training a single

model with the three predicted cloudiness values as input

variables, three models are trained, each with only two

cloudiness variables. After that, the three models are used

to make a forecast, and the three results are averaged.

The differences between the modified and initial

models can be visualized by comparing Figs. 2a and 2b.

In this study, the combined effect of all three modifica-

tions together is presented. A preliminary analysis of the

individual effects of themodifications was presented in a

workshop (Fonseca et al. 2018).

3. Target locations’ description

Forecasts were done for 41 locations in Japan from the

northernmost area, Hokkaido, to the southernmost one,

Okinawa. They were done for every day, from 0500 to

2000 local time (UTC 1 9 h), of the target period, from

1 January 2016 to 31 December 2017. Days with missing

or faulty input or output data were excluded. The

median of faulty days was 4 days per location with a

minimum of 3 days and a maximum of 16 days over the

2 years of data studied.

To train the forecast models, the observed solar irra-

diation data from the JMA weather stations at each lo-

cation were used. The data from the GPV-MSM closest

grid point to the corresponding JMA weather stations

were used as the input data.

Regional forecasts were also done to characterize

the accuracy of methods at the regional level and to

estimate the regional smoothing effect of the forecast

error in Japan. They were calculated by averaging the

corresponding values of individual locations within

each targeted region. Both the machine-learning fore-

casts and the JMA-MSM regional forecasts were cal-

culated in the same way. The target locations and

regions are shown in Fig. 3.

Regional forecasts of solar irradiation are of particu-

lar interest to power utilities and stakeholders in the PV

power market in Japan. Thus, the regional division

adopted the geopolitical division of regions in Japan

with their division according to the original operation

area of the power utilities, and the availability of

data. For example, since the power services of Niigata

Prefecture (index 12 in Fig. 3) are managed by the same

utility company that manages the power services of the

entire Tohoku region, Niigata was added to the Tohoku

region in the regional error calculations. The same was

done for Kofu (index 22 in Fig. 3), which is in the Chubu

region but is served by the power utility that provides

services for all of Kanto region. Finally, the regions of

Kansai, Chugoku, and Shikoku Island were regarded

as a single region (the yellow area called Ks 1 Ch 1 Sh

between Chubu andKyushu in Fig. 3), because there are

only a few weather stations measuring the solar irradi-

ation in these regions individually.

4. Performance metrics

The performance of the forecast models was analyzed

using the skill score (SS) defined inEq. (6) and theRMSE

in kilowatt hours per meter squared, given by Eq. (7):

SS5 12

1/n�
n

i51

(H
fct,i

2H
msd,i

)2

1/n�
n

i51

(H
ref,i

2H
msd,i

)2
and (6)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(H
fct,i

2H
msd,i

)2

s
. (7)

FIG. 2. (a) Initial and (b) modified machine-learning-based models used to forecast day-ahead solar irradiation.
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In Eqs. (6) and (7), Hfct,i is the forecast of the global

horizontal solar irradiation at hour i in kilowatt hours per

meter squared, andHmsd,i is the observed value of the same

quantity at hour i, also in kilowatt hours permeter squared.

In Eq. (6),Href,i is the forecast of the global horizontal solar

irradiation provided by a reference model. In these equa-

tions, n is the total number of hours for which the calcula-

tion was performed. As mentioned in section 2a, the day-

ahead persistence of solar irradiation was used as an initial

reference. However, the skill of the machine-learning

models was also directly compared with the JMA-MSM

forecasts. Hence, the reference model used in the SS cal-

culations is always indicated in the related results.

For the RMSE, two normalized versions of it are also

calculated. The first one, called RMSEn, is the RMSE

of a series of forecasts divided by the standard devia-

tion of the observed values of the same location and

period. As any mean error is a measure of deviation or

dispersion (from observed values), it stands to reason

to use as a normalizing factor, a typical measure of

dispersion. However, as many similar studies use the

mean of observed values as a normalizing factor, to

facilitate comparisons with other studies available in

the technical literature, we also present the RMSE

normalized by such mean, defined here as the RMSEM.

Forecast error is defined as the difference between the

forecast value and what was regarded as the observed

value. A positive value indicates an overestimation, and a

negative value indicates an underestimation of the ob-

served value. The Pearson correlation coefficient was used

to evaluate the linear correlation between the forecast and

observed values. Similar to the case of the RMSEn, the

standard deviations of the forecast values, when presented,

were also normalized by the standard deviation of the

observed values of solar irradiation for each location in

the target period. Thus, a standard deviation of one for the

forecasts of a given locationmeans that they have the same

standard deviation as that of the observed values. Finally,

the concept of outliers was also used to identify and eval-

uate large forecast errors. Their definition follows the one

used in the constructionof aboxplot.Anoutlierwas regarded

as any forecast error outside the whiskers of the boxplot.

The whiskers extend to the last point within 1.5 times the

interquartile range of a forecast error distribution coun-

ted from the first and third quantiles, respectively.

5. Results

In this section, the results are divided into two sections,

namely, local and regional forecasts. Local forecasts are

FIG. 3. (left) Location of the day-ahead forecast targets on local and regional scales in Japan. (right) Table with the respective location

name, latitude (8N), and longitude (8E).
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those made for a single location point (the red dots in

Fig. 3). Regional forecasts are those obtained by up-

scaling the local forecasts within the five regions, as

shown in Fig. 3.

a. Local forecasts

To show the performance of the forecast models at a

local scale throughout the country, a Taylor diagram of

each model’s results for each location during the 2-yr

period studied is presented in Fig. 4a. In Figs. 4b–d, the

area of the diagram containing the results is magnified,

and the results of pairs of models are plotted in them to

visualize their differences.

Figure 4a shows that on the local scale, the persistence-

based forecast in Japan has a correlation coefficient with

observed values varying from approximately 0.68 to 0.77.

Moreover, the RMSEn of the persistence model varied

from 0.65 to 0.82 standard deviations of the respective

observed values.

Focusing on the three forecast models studied, Fig. 4a

shows that they had an RMSEn ranging from 0.35 to

0.45, normalized standard deviations higher than 0.90,

and a correlation coefficient between forecasts and ob-

served values higher than 0.85. With regard to the exact

variation of the RMSEn of the day-ahead solar irradiation

forecasts, it varied from 0.505 to 0.385 (23.7%) with the

JMA-MSM, from 0.470 to 0.378 (19.6%) with the initial

model, and from 0.446 to 0.366 (17.9%) with the

modified model.

Furthermore, in Fig. 4a, it can be seen that the JMA-

MSM showed poor performance in Naha (index 41 in

Fig. 3), reaching an RMSEn of 0.5 standard deviations of

the observed values. One reason for this poor perfor-

mance is that its 5 km by 5km grid spacing is not high

enough to characterize the weather of small islands.

Another reason is the tendency that the JMA-MSM

has of not properly reproducing clouds typical of

subtropical climate. For example, Ohtake et al. (2015)

showed that the JMA-MSM forecasts have a bias in

the direction of overestimation of solar irradiation,

whenever the observed weather in the area of Okinawa

had cumulonimbus clouds.

Machine-learning models are trained with the past

data of their target location. Thus, they can learn (even if

partially) the characteristics of their target location and

are less affected by the limitations of physical models.

Figure 4a shows that the machine-learning models’

forecasts for Naha have RMSEn values consistent

with the values found for other locations with the

same models.

FIG. 4. (a) Full Taylor diagram of local day-ahead solar irradiation forecasts for 41 locations in Japan done with

the three models and with persistence (2 years). (b)–(d) Magnification of the area, comparing the performance of

two models at a time.
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Figure 4b shows that the JMA-MSM model had

a performance similar to the initial machine-learning

model only in a few locations. Moreover, the JMA-

MSM forecasts were spread in the direction of the

standard deviation axis with an RMSEn higher than

0.400 and a correlation above 0.90. In contrast, the initial

model forecasts had less variation in the former and

more variation in their RMSEn and correlation coeffi-

cient. Still, Fig. 4b shows that the RMSEn of the initial

model forecasts was generally lower than that of the

JMA-MSM model. The median of the RMSEn of the

JMA-MSM forecasts throughout the country was 0.430

compared to 0.417 of the initial model. In comparison,

Figs. 4c and 4d show that the modified model provided a

further reduction of the RMSEn and further improve-

ment of the correlation coefficient. With the modified

model, the forecasts of 24 locations had an RMSEn

lower than 0.400 and a correlation coefficient higher

than 0.925. Such performance was achieved only for

eight locations with the JMA-MSM model. Even

for locations with RMSEn values greater than 0.400,

Figs. 4b–d show that the modified model improves the

correlation coefficients and the RMSEn of the forecasts

(the median of the RMSEn of the forecasts of the

modified model was 0.396).

On the other hand, the modified model caused a slight

reduction in the standard deviation of the forecasts

compared with the initial model’s results. Themedian of

the normalized standard deviation of the forecasts with

the modified model was 0.928. With the JMA-MSM, it

was 0.953, and with the initial model, it was 0.947. We

hypothesize that this reduction is related to the ensem-

ble procedure described in section 2d.

In Fig. 5a, the RMSE (kWhm22) for 41 locations are

provided. The locations are ordered according to the

latitude from high to low (the same ordering used in

Fig. 3). The corresponding percentage variations of the

RMSE values of the machine-learning models based on

the JMA-MSM results are plotted in Fig. 5b.

A general increase in the RMSE with the decrease in

latitude is observed in Fig. 5a. TheRMSE of JMA-MSM

ranges fromaround0.105kWhm22 atHokkaido to around

0.115kWhm22 at Oita (index 36 in Fig. 3): a variation of

9.52% fromHokkaido toKyushu Island. IncludingNaha in

Okinawa in the evaluationmakes the totalRMSEvariation

range from 0.105 to 0.139kWhm22 (32.4%). The same

variation was from 0.101 to 0.129kWhm22 (27.7%) with

the initialmodel and from0.098 to 0.123kWhm22 (25.5%)

with the modified model.

In addition, Fig. 5b shows that the initial model yields

better forecasts than the JMA-MSM model in all but

7 of the 41 locations studied. The results in Fig. 5 also

show that the initial model’s forecasts RMSE varied

from 23% to 13% of the JMA-MSM forecasts RMSE

(error reduction in 7 of 13 locations) in Hokkaido and

Tohoku. However, for the rest of the country, the initial

FIG. 5. (a) RMSE for 2 years of day-ahead forecasts of solar irradiation for 41 locations in

Japan with three methods, and (b) the respective percent variation based on JMA-MSM

forecast results.
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model always had lower RMSE values than those for the

JMA-MSM.

When compared with the results of the initial model,

the results of the modified model showed reductions in

the RMSE of the forecasts for all locations studied in

Japan. When the baseline was the JMA-MSM model,

even in the seven locations in which it outperformed the

initial model, such trends were reversed with the modi-

fied model. Still using the JMA-MSM as the baseline,

the RMSE was reduced with the modified model by al-

most 12.5% in the best case and 1.15% in the worst case.

To facilitate comparisons with other studies, Table 3

contains a summary of the RMSE values presented in

Fig. 5, normalized by the mean of their respective

observed values RMSEM.

An important characteristic of a forecast model is its

ability to consistently provide forecasts with low error.

One way to assess such ability is to study the large

forecast errors associated with a given model. In this

study, we used the statistical definition presented in

section 4. We focused on two characteristics of the

outliers, namely, their average value and frequency. In

Figs. 6 and 7, both characteristics are shown per location

and per model.

Figure 6a shows that the average value of the outliers

varied from 0.175 to 0.275 kWhm22, with frequent

values around 0.20 kWhm22. In other words, the aver-

age values of large day-ahead forecast errors were

around 20% of the maximum value of solar irradiation

in Japan (where the peak value is around 1kWhm22).

TABLE 3. Five-number summary for the RMSEM (normalized by the mean of the observed values) of each forecast model over all

41 locations studied.

Min 1st quantile Median 3rd quantile Max

JMA-MSM 0.415 0.467 0.490 0.506 0.552

Initial model 0.407 0.447 0.479 0.500 0.548

Modified model 0.395 0.425 0.456 0.477 0.520

FIG. 6. (a) Average value of the outliers of forecast errors per location and model; (b) percent

variation of the outliers’ average value based on JMA-MSM results.
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The forecast errors of the modified model had a lower

average value of outliers in all the locations when

compared with the initial model. Compared with the

results of the JMA-MSM model, the former had lower

average outlier values in 33 of the 41 locations targeted.

In terms of the frequency of outliers, Fig. 7 (top panel)

shows that they make up approximately 19%–27% of all

the forecast errors in Japan. Moreover, the top panel of

Fig. 7 also shows a clear trend of increasing frequency of

outliers going southward with the JMA-MSM forecasts.

With both initial and modified models, this trend is less

accentuated. Figure 7 (bottom panel) shows that the

modified model caused a reduction in the frequency of

outliers of the forecast errors in all but 5 locations. With

respect to the same criteria, the modified model also

outperformed the initial model in 30 locations. The

mean reduction in the frequency of outliers over the

JMA-MSM results was also better than the one achieved

with the initial model: 7.59% against 6.26%, respectively

(not shown in Fig. 7).

Despite the overwhelmingly positive results, the mod-

ifiedmodel had a poor performance in a few locations.As

mentioned in section 2d, the modified model should re-

sult in the reduction of forecast errors, when there is a

reasonable level of accuracy in the information provided

by the predictors (so that the training pattern selection is

effective), and when the cloudiness variables have some

level of accuracy (so that the three-member ensemble

can have a positive effect). When these assumptions

are not satisfied, the forecast errors might become

larger (as a model might end up being trained to

forecast the solar irradiation of a weather pattern un-

related to the realized one). We hypothesized that in

the few locations where the modified model had poor

performance with regard to outliers, the high level of

inaccuracy of predictors was the main cause.

In Fig. 8, we present the distribution per location of

the monthly forecast skill scores during the 2-yr period.

The notches in the boxplots follow the definition of

McGill et al. (1978). According to McGill et al. (1978),

nonoverlapping notches when comparing two or more se-

ries of data provide statistical evidence that the respective

medians are different.

In Fig. 8a, it can be seen that the JMA-MSM forecasts

throughout Japan show a noticeable low skill in July,

August, and January. In the months of April, May,

June, and October, its skill is at the same level as

the other two machine-learning models. As shown in

FIG. 7. (top)Outliers’ frequency per location andmodel; (bottom) percent variation of outliers’

frequency based on JMA-MSM results.
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Ohtake et al. (2015), the data from 2008 to 2012

suggests a strong bias of the JMA-MSM in summer

and winter. This characteristic is clearly still present

in the data of 2016 and 2017. The results in Fig. 8a also

show that in 9 of the 12 months of the year, the JMA-

MSM had outliers indicative of its lowest skill among

the three models. Although not shown in Fig. 8a, the

location with the worst forecast skill scores was usu-

ally in Hokkaido (5 months) and Naha (4 months).

These results indicate a location dependency with

regard to the skill of the JMA-MSM forecasts, in

addition to the seasonal one.

The modified model showed the highest national

forecast skill median for 9 months. However, in Fig. 8a,

the notches suggest that statistically such difference

from the results of the other two models, might be sig-

nificant only in September and February. However,

considering only the locations with the worst monthly

forecast skills, themodifiedmodel yielded the best result

in all months.We conclude from these that the proposed

modifications were particularly effective in locations

with originally poor forecast skill or high forecast errors,

and also in summer and winter when the JMA-MSM

more frequently exhibited poor performance.

Both the initial and modified models also show a re-

duction of skill in summer and winter, but the skill re-

ductions are clearly less accentuated than that shown by

the JMA-MSM model. Figure 8b shows the cumulative

effects of the less accentuated drops in skill in summer

and winter, and of the improvements achieved by the

modified model in the locations with the worst monthly

skill. They were important enough to make it yield an

outlier with the highest skill among the three models,

and also the highest national median forecast skill (this

time, with a clear indication of statistical significance).

b. Regional forecasts

A Taylor diagram with the regional results obtained

using each model is shown in Fig. 9. Comparing the re-

gional results with the local ones in Fig. 4, there was a

perceptible reduction in the forecast error regardless of

the model used. The RMSEn of the persistence model

ranged from approximately 0.55 to 0.70. For local fore-

casts, the corresponding range was 0.65–0.82. The re-

gional RMSEn for the three forecast models now varies

around the 0.25 line as compared with 0.40 in the local

case: a local to regional variation of 37.5%. The corre-

lation coefficient between the forecasts and observed

values was also better on the regional scale than on the

local one. For the three forecast models, the correlation

coefficient varied from approximately 0.95 to 0.975 on

the regional scale and from 0.90 to 0.95 on the local one.

There was also an improvement in the standard devia-

tion of the forecasts. On the local scale, the forecasts

had a standard deviation of around 92.5% of the stan-

dard deviation of the observed data. On the regional

scale, this value was around 95%.

With regard to the performances of the three models,

there was a similar trend to the one noted on the local

scale. The JMA-MSM had the highest RMSEn and

the lowest correlation coefficient in all the regions.

Moreover, the JMA-MSM regional forecasts showed

the highest RMSEn variation, a correlation variation

compared with the other two models. These results

indicate that on the regional scale also, the JMA-MSM

performance has a strong spatial and geographical

FIG. 8. (a) Monthly and (b) annual distribution of the forecast skill score of 41 locations in Japan, per forecast

model, over 2 years.
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dependency. The results in Fig. 9c also show that on the

regional scale, the modified model improved the RMSEn

and correlation coefficient in all regions, when compared

with the initial model results.

In Fig. 10, we present the RMSE for the 2-yr period

and the three models studied. For reference, in Table 4

the same RMSE is presented normalized by each re-

gion’s respective mean of observed values. Figure 10

and Table 4 indicate that the modified model yielded

meaningful reductions of the RMSE in all regions.

When compared with the JMA-MSM-related results,

Fig. 10 shows that RMSE reductions of up to 21.1%

FIG. 10. Two-year RMSE of regional day-ahead forecasts of solar irradiation for all regions

in Japan.

FIG. 9. (a) Full Taylor diagram of regional day-ahead solar irradiation forecasts for all regions in Japan done with

the three models, and persistence (2 years). (b)–(d) Magnification of the area, comparing the performance of two

models at a time.
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were achieved on the regional scale in the best case and

6.45% in the worst one.

The RMSE is sensitive to large errors. Thus, a stron-

ger reduction of the RMSE is an indication that the

modified method is working well during hours in which

the other two methods had large errors. Further evi-

dence of this is given in Table 5, which presents the

average values of the outliers of the regional forecast

errors. The initial machine-learning model already

yields lower average values than the JMA-MSM.

However, by using the modified model, further re-

ductions in the average values of the outliers were

achieved in all the regions.

The skill scores [Eq. (6)] of the regional forecasts,

using persistence as a reference, is shown in Fig. 11a. The

smoothing effect that occurred on the regional scale,

resulted in a higher forecast skill and lower variation

when compared with the local forecasts. The regional

skill score varied from 0.75 to 0.86, according to the

region and the forecast model, as compared with

0.40–0.80 in the local case.

The improvement in skill provided by the modified

model over the initial model was small, varying from 1%

to 2%. Still, in all the regions, the former yielded fore-

casts with the highest skill. As day-ahead persistence is

regarded as the minimum threshold, which any forecast

model is expected to outperform, the forecast skill

scores based on persistence are expected to be high, and

the difference between skill scores might look deceiv-

ingly small. To provide a better assessment, in Fig. 11b

we present the skill of the forecasts using the JMA-MSM

forecasts as a reference.

On average, the initial model had a skill 18.6% higher

than that of the JMA-MSM, reaching its maximum

value in the region comprising Kansai, Chugoku, and

Shikoku. This region showed the best results in general

because it had the largest area among the regions stud-

ied. Consequently, it also had the strongest smoothing

effect on errors. The modified model had a skill 25.3%

higher (on average) than that of the JMA-MSM. This

result demonstrates (on the regional scale as well) the

effectiveness of the modifications proposed in section 2d

in improving day-ahead forecasts of solar irradiation.

6. Conclusions

This study had two objectives: to propose a modified

model to improve the accuracy of day-ahead forecasts

of solar irradiation, and to perform a national evaluation

of the accuracy of an NWP model and two machine-

learning models in forecasting solar irradiation in the

day-ahead horizon.

For the national evaluation, the results showed that

on the local scale, the day-ahead forecasts of solar

irradiation in Japan have an annual RMSE varying

from 0.100 to 0.140kWhm22. On the regional scale,

values ranging from 0.060 to 0.070 kWhm22 were found

for the five regions studied. The skill score of the fore-

casts varied around 0.70 on the local scale and around

0.80 on the regional scale. Themonthly skill scores of the

forecasts showed that the machine-learning-based ap-

proaches were less sensitive to seasonal and spatial

variations than the JMA-MSM.

With regard to the proposed modifications, the results

show that although the initial machine-learning model

was already slightly better than the JMA-MSMmodel in

general, the proposed modifications caused a further

reduction of the RMSE and improvement of the skill

score of the forecasts. The modified method also yielded

the lowest RMSE values on the local and regional scales.

Compared with the JMA-MSM results, RMSE reduc-

tions varied from 1.15% to 12.5% on the local scale and

TABLE 5. Average value (kWhm22) of the outliers of forecast errors per region and per forecast model.

Hokkaido Tohoku Kanto Chubu Ks 1 Ch 1 Sk Kyushu

JMA-MSM 0.121 0.125 0.138 0.141 0.135 0.142

Initial model (variation

over JMA-MSM)a
0.115

(24.9%)

0.124

(20.08%)

0.131

(25.1%)

0.134

(24.9%)

0.122

(29.6%)

0.137

(23.5%)

Modified model (variation

over JMA-MSM)a
0.11

(29.1%)

0.115

(28%)

0.128

(27.2%)

0.125

(211.3%)

0.117

(213.3%)

0.131

(27.7%)

a Negative values indicate reduction of the average value of the outliers.

TABLE 4. Regional RMSE normalized by the mean of the observed values per region, RMSEM.

Hokkaido Tohoku Kanto Ks 1 Sh 1 Ch Kyushu

JMA-MSM 0.294 0.304 0.323 0.326 0.341

Initial Model 0.288 0.289 0.289 0.278 0.304

Modified Model 0.276 0.274 0.281 0.267 0.291
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from 6.45% to 21.1% on the regional scale. These values

are within the same level of improvements as that

achieved by other authors with more complex ap-

proaches in the problem of PV forecasting (Pierro et al.

2016) and solar irradiation forecasting (Perez et al.

2018). For the forecast skill score, it was improved over

the JMA-MSM by at least 10%. The analyses of outliers

indicated that the modified model reduced the average

values of large errors as well as their frequencies and

that it was effective in locations with forecasts that

originally had low skill.

Two venues for further improvements in forecasts

are anticipated based on the results of this study. One

is about the further reduction of large errors. The

proposed modifications were not effective when the

predictors were highly inaccurate. Possible solutions

to this problem include improving the predictors’ ac-

curacy or using different NWP models. The second

venue for improvement comes from the findings of the

comparisons with the JMA-MSM. In spring and autumn

months, the JMA-MSM forecasts had comparable skills

to the machine-learning models. Therefore, further im-

provements in day-ahead forecasts of solar irradiation

may be achieved by combining JMA-MSM forecasts with

those of the modified model. Both venues for improve-

ment of the forecast will be explored in further studies.
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