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Abstract 

Optical performance monitoring (OPM) is an important issue for proper operation of next-

generation optical networks. Among various monitored parameters, the optical signal-to-noise 

ratio (OSNR) and fiber transmission impairments such as chromatic dispersion (CD), 

polarization mode dispersion (PMD), and polarization dependent loss (PDL) are paid special 

attention, because they serve information of the channel quality, which helps to manage the 

network. Several methods have been proposed for monitoring tasks, which are based on pilot 

tones, RF tones, asynchronous histogram, and fiber nonlinear effects. Most of them need costly 

devices, tap optical power from the channel, and introduce transmission overhead. On the other 

hand, in this research, we investigate OPM based on digital coherent receivers, which overcomes 

such difficulties and ensures cost-efficient, robust and reliable monitoring. 

Linear channel impairments such as CD, PMD, and PDL are monitored from the transfer 

functions of adaptive filters. A digital coherent receiver allows polarization demultiplexing and 

equalization of all these impairments by using four finite-impulse-response (FIR) filters 

structured in a two-by-two butterfly configuration. After the filters are adapted by a suitable 

algorithm, we can construct a frequency-dependent two-by-two matrix with four elements, which 

are transfer functions of the adapted four FIR filters. The inverse of this matrix is called the 

monitoring matrix and can be approximated as the transfer matrix of the channel, and contains 

combined effects of CD, PMD and PDL. A precise algorithm is required to separate out the 

impairments from this matrix. We propose a simple and unified algorithm to separate out CD, 

differential group delay (DGD), PDL, and second-order PMD from the monitoring matrix. The 

components of second-order PMD, polarization-dependent chromatic dispersion (PCD) and 

depolarization (DEP) of principal states of polarization are obtained separately. This algorithm 

has an advantage that individual impairment can be estimated directly from the monitoring 

matrix without any matrix decomposition; thus it enables accurate estimation of the impairments, 

even when the transmitted signal suffers from distortion stemming from various origins. Also, no 

additional hardware is required for our proposed algorithm.  

For filter adaptation, we use the constant-modulus algorithm (CMA), as it enables long-tap- 

filter adaptation efficiently even in the presence of large laser phase noise unlike the commonly 

used decision-directed least-mean-square (DD-LMS) algorithm. However, CMA can suffer from 
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the singularity problem which means both the output ports of butterfly configuration converge to 

the same polarization tributary. Consequently, we avoid the singularity problem by introducing 

the training mode in CMA. In the training mode, the LMS algorithm is used to determine in 

which output port of the butterfly configuration each polarization tributary appears, and after 

such initial training the algorithm is switched to the blind CMA to enable high-order-filter 

adaptation.  The multi-impairment monitoring algorithm and the singularity-free operation of 

CMA with the training mode, which we have proposed in this thesis, are verified by dual-

polarization quadrature phase-shift keying (QPSK) transmission experiments.  

For such an impairment-monitoring method, the delay tap length of filters should be long 

enough to compensate for all the impairments. However, the computational complexity of FIR 

filters increases with the number of taps. The frequency-domain approach can reduce this 

computational cost by block-by-block processing and fast implementation of discrete Fourier 

transform (DFT). However, the adaptive frequency-domain equalizer (FDE) has hardly been 

investigated for optical communication systems. We have proposed a novel adaptive FDE based 

on CMA, which maintains all the advantages of the adaptive TDE based on FIR filters. Even in 

the block processing mode of FDE, it can work on the twofold-oversampled input sequence by 

introducing even and odd sub-equalizers. Therefore, when we configure this filter in the butterfly 

structure, we can achieve adaptive equalization together with polarization demultiplexing and 

adjustment of the arbitrary initial sampling phase of analog-to-digital converters (ADCs) so that 

the best symbol-spaced sequence is produced. The equalization performance of the proposed 

adaptive FDE as well as multi-impairment monitoring from the equalizer is verified by dual-

polarization QPSK transmission experiments.  

 We have proposed a novel OSNR monitoring method. This is based on the analysis of 

higher-order statistical moments of adaptive-equalizer output in digital coherent receivers. After 

equalization and clock recovery by an adaptive equalizer, symbol-spaced signal samples and 

noise samples have well-defined but dissimilar statistical properties. In our proposed algorithm, 

we measure the second- and fourth-order moments of the adaptive-equalizer output. Then, by 

using the known statistics of the phase-modulated signal in the QPSK format and amplified 

spontaneous emission (ASE) noise, we estimate the OSNR. The proposed method is simple and 

accurate. We also experimentally verify this monitoring algorithm with 10-Gsymbol/s QPSK 

transmission experiments. 
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内容概観 

光パフォーマンスモニタリングは次世代光ネットワークを構築するための重要な技術で

ある．適切にネットワークを運用するためには，受信信号の光信号対雑音比(OSNR) や

伝送路の波長分散(CD)，偏波モード分散(PMD)，偏波依存損失(PDL)などを観測する必

要がある．これまで，パイロットトーン，RF トーン，非同期ヒストグラム，ファイバ

非線形効果などに基づく観測手法が提案されている．しかし，これらの多くは高価で煩

雑なシステムとなってしまうという欠点があった．一方，我々はディジタルコヒーレン

ト受信器を用いたモニタリング技術を提案し，低コストかつ信頼できるモニタリングを

可能とした． 

CD，PMD，そして PDL のような線形な伝送路障害は適応フィルタの伝達関数から

求めることができる．ディジタルコヒーレント受信器では，検波後にバタフライ構成の

FIR フィルタを用いることで，偏波多重分離及び等化が可能である．フィルタを適切な

アルゴリズムにより適応させることで，FIR フィルタの伝達関数を示す周波数依存の 2

×2 の行列を構築できる．この逆伝達関数はモニタリング行列と呼ばれ，これから CD，

PMD，PDL の情報を含む伝送路の伝達関数を推定することができる．我々は CD，

DGD，PDL，そして 2 次 PMD を分離する簡易なアルゴリズムを提案した．2 次 PMD の

構成要素である偏波依存波長分散および主偏波状態の偏波解消を独立に得ることができ

る．このアルゴリズムは行列分解することなくモニタリング行列から個別の伝送路障害

を求めることができる．様々な伝送路障害が同時に存在していようとも，正しい推定を

簡易なアルゴリズムで行うことができる． 

フィルタの適応アルゴリズムとして，我々は CMA を用いた．これは DD-LMS アル

ゴリズムと比較して，位相雑音が存在しても安定に動作するためである．しかし，

CMA はバタフライ構成の出力が同じ偏波に収束するという特異点問題を持つ．したが

って，我々は CMA にトレーニングモードを導入することによってこの特異点問題を解

決した．トレーニングモードでは，LMS アルゴリズムを用いることで各偏波チャネル

がどのポートから出力されるかを決定する．その後，位相無依存であるブラインド
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CMA に切り替えることで，高次フィルタを用いることができる．本稿で提案するモニ

タリングアルゴリズムの有効性は QPSK 信号の伝送実験を行うことで確認した． 

伝送路障害モニタリングを正しく行うためには，フィルタタップ長は十分長くなけ

ればならない．しかし，FIR フィルタの計算コストはタップ数とともに増加する．一方

で，周波数領域での処理は．ブロック処理および DFT の高速実装によって計算コスト

を減少させることができる．しかし，これまで周波数領域における適応等化器は光通信

分野ではほとんど研究されていなかった．このような状況下で，我々は CMA に基づく

新たな適応 FDE を提案した．本提案手法は，偶数次及び奇数次のサブ等化器を用いて

いる．本手法を用いることで，偏波多重分離及び ADC のサンプリング位相の調整を行

うことができる．偏波多重 QPSK 信号の伝送実験を行うことで，我々が提案する適応

FDE の性能を評価した． 

我々は新しい OSNR モニタリング技術を提案した．これは適応等化器出力の高次の

統計学的モーメントを解析することで行われる．適応等化器の等化及びクロック再生後

信号及び雑音は異なる統計的性質を持つ．我々のアルゴリズムでは 2 次および 4 次のモ

ーメントを測定する．その後，位相変調信号および ASE の統計的性質を用いることで

OSNR を推定する．我々は本方式の有効性を 10Gsymbol/s QPSK の伝送実験で確認した． 
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Chapter 1 

Introduction 

 

1.1 Overview 

The ever growing demand of internet traffic is the main driver in the deployment of higher 

capacity optical networks. Such high capacity-networks are being realized by using the 

advancement of technology such as erbium-doped fiber amplifier (EDFA), dense wavelength-

division-multiplexing (DWDM) and advanced modulation schemes. Thus, the capacity of 

networks has been increased well beyond several Tb/s [1]. Meanwhile, introducing optical 

switches, the optical networks are becoming more flexible, reconfigurable and transparent. The 

stable operation of such networks are quite challenging as network paths are not static and 

channel degrading effects can change over time. A short service disruption of high capacity 

networks may affect an enormous amount of data. Optical performance monitoring (OPM), 

which refers to the physical layer monitoring for optical signal quality,  is necessary to detect and 

prevent error to assure an agreed quality of service (QoS) to consumers [2, 3, 4, 5].  

1.1.1 Need of OPM 

OPM plays an important role for physical layer fault management and signal quality 

measurement. Not only that, OPM can enable different network management functionalities for 

next generation optical networks.  

 Many impairments on optical signal are time-varying due to change of environment, drift on 

components, rapid reconfiguration of network paths etc. Also, the fiber impairments depends on 

several complex interaction of linear and nonlinear effects which in turns depend on signal 

power, data rata and modulation formats. OPM can provide the real-time information of status of 

the network health. It ensures fault forecasting, detection, localization, diagnosis and resilience 

mechanism activation. Thus, OPM enables robust and stable operation of network to minimize 

the downtime while maximize the network availability.  
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 OPM is required to allow scalability of the network. With the increasing bit-rate of the 

network the 'window of operability' [6] of the transmission system tends to shrink. For example, 

with increasing bit-rate, fiber transmission impairments such as chromatic dispersion (CD), 

polarization-mode dispersion (PMD) etc. reduce this window. Increasing the number of WDM 

channels further threaten to close the window due to fiber nonlinear effects. OPM is a potential 

mean of either widening this window or helping to maintain the channel operation within a small 

window.  

 The future networks are going to support different applications, because it is inefficient to 

use separate optical networks for each applications. Such transparent networks are going to 

cover different types of traffic and data formats. The network might require transmitting different 

modulation formats, wide range of data rates and variable QoS. Therefore, OPM should 

accommodate transparency [7].       

 For reconfigurable networks, currently the routing is done based on the shortest-path 

calculation or on path that satisfies certain QoS constraints. However, it will be more 

advantageous for network controller to take into account the physical state of the links into 

consideration for routing algorithm. For multivariable routing table, each link and optically-

transparent node has a set of parameters such as fiber length, signal degradation, amplification, 

channel impairments and transients to calculate the 'cost function' of routing table. Therefore, 

OPM is required to provide the information of channel status and parameters so that the routing 

tables can dynamically reflect the state of physical links. This impairment-aware routing [8] 

would enables significant improvement in the blocking algorithm and the wavelength assignment 

algorithm [9].  

 The future networks might allow plug-and-play operation of an optical node to an existing 

network. Such self-manage networks should intelligently monitor the state of networks to 

automatically diagnosis and repair network fault, route traffic and dynamically allocate 

resources. Therefore, OPM is essential for ensuring high quality of operation of intelligent 

networks [7].  

 Thus, OPM will be not just a feature but a necessity for the next generation optical networks. 

The prerequisite is OPM should communicate with the higher control layer for optical network 

management (ONM) which will use the monitoring information to implement several 

functionalities for proper operation of the networks [10]. 
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1.1.2 Existing OPM Methods 

Previously, for performance monitoring, the bit-interleaved parity (BIP) bytes in SDH/SONET 

layer was widely used [11]. However, WDM network are now evolving from point-to-point link 

to dynamically-reconfigurable all optical networks; hence, it is not possible to monitor BIP bytes 

until signals reach end terminals [12]. For such networks, quality of the signal becomes more 

vulnerable to the optical layer impairments. Thus, for proper operation and management of the 

network, physical layer monitoring (ie, OPM) is more important. The broad spectrum of OPM 

includes a plethora of parameters to be monitored which consist of signal quality such as channel 

power, optical signal-to-noise ratio (OSNR), BER, Q-factor etc. monitoring and signal 

degradation parameters such as CD, PMD, polarization-dependent loss (PDL) and nonlinearity 

monitoring. However, in this research, we restrict our investigation in the OSNR and the linear 

impairments monitoring only, which are the most important aspects of OPM. 

 For dispersion (CD and PMD) monitoring, several methods have been demonstrated so far. 

One method is to insert a subcarrier (RF tone) at the transmitter, and then measures the resulting 

delay of the subcarrier sidebands relative to the baseband. Finally, the CD value is monitored 

from this delay [13, 14, 15]. It is also possible to estimate the PMD by spectral analysis of such 

RF tone, because the RF power is a function of PMD [16, 17, 18]. Such method is simple and 

applicable to WDM system; however, it requires modification of transmitter and additional 

consideration to separate the CD and PMD.  An alternative technique is extraction of clock 

component from the photodetected data and monitors its RF power [19, 20]. Though this 

technique does not require transmitter modification, it is bit rate and modulation format 

dependent. Simultaneous CD and PMD monitoring based on the RF clock-tone power is 

demonstrated for NRZ OOK and DPSK signals [21]. The RF power is measured at the output 

ports of Mach-Zehnder delay line interferometer (DLI) with a quarter bit delay. By appropriately 

adding and subtracting clock power at constructive and destructive port of DLI, CD and PMD 

can be estimated. Another promising dispersion monitoring technique is the analysis of 

asynchronous amplitude histogram (AAH) [22]. With a sufficient number of random samples, 

AAH can evenly represents the pulse amplitude distribution and several parameters can be 

monitored without any clock recovery. However, this technique is also modulation format 

dependent. The others CD and PMD monitoring methods include measurements of relative 

group delay between vestigial sideband (VSB) signals [23], pilot tone assisted monitoring [24], 
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utilization of nonlinear effects of fiber [25], using artificial neural networks (ANN) [26], 

measurement of degree of polarization [27],  heterodyne detection and processing of IF signals 

[28], etc. 

 As for the OSNR monitoring methods, it can be broadly classified into two categories: out-

of-band and in-band monitoring, depending on whether the noise power is measured outside or 

within the wavelength channel pass band. The traditional out-of-band monitoring technique 

involves measuring and interpolating noise power from adjacent channel by measuring optical 

spectrum [29]. Though such method is simple, out-of-band monitoring is not always reliable. 

Because, in a dynamically reconfigurable WDM network, the linearly interpolated ASE noise 

may not be the real ASE noise in the channels of interest, since in such WDM network each 

channel may traverse different routes and different numbers of erbium-doped fiber amplifiers 

(EDFAs), optical filters, OADMs/OXCs, etc. Therefore, the in-band OSNR monitoring is highly 

motivated. There are several methods for the in-band OSNR monitoring. One of such method is 

the polarization nulling method [30, 31] which makes use of the fact that the signal component is 

polarized while the ASE noise component is unpolarized. By using the polarization controller 

and polarizer, the output is adjusted to measure total power and noise power. However, generally 

the performance of such method degrades severely under the influence of large PMD and PDL. 

Another method for the in-band OSNR monitoring is to use the subcarrier in each wavelength 

signal. The electrical carrier-to-noise ratio (CNR) of the subcarrier is determined and the OSNR 

is obtained through mathematical relation with the CNR [13]. However, this technique requires 

transmitter modifications. Electronic technique such as asynchronous histogram method is also 

an attractive option for the OSNR monitoring; however, this method is modulation format 

dependent [32]. Other OSNR monitoring methods include optical parametric amplification based 

schemes [33], artificial neural network based monitoring [26], uncorrelated beat noise estimation 

method [34] etc.      

Recently, digital signal processing (DSP) based OPM in digital coherent receivers has been 

investigated in several literatures [35, 36, 37, 38]. Most of them are fiber transmission 

impairments monitoring from adaptive FIR filters. The method is based on the analysis of 

transfer functions of the adaptive finite-impulse-response (FIR) filters structured in a two-by-two 

butterfly configuration. After the filters are adapted, a frequency dependent two-by-two matrix is 

formed with four elements, which are transfer functions of the adapted four FIR filters. The 
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inverse of this matrix is called monitoring matrix and can be approximated as the transfer matrix 

of the channel, and contains combined effects of CD, PMD and PDL. A precise algorithm is 

required to separate all impairments from this matrix. Reference [35] neglects the effect of PDL 

when determining CD and differential group delay (DGD) between two principal states of 

polarization (PSPs). Thus, the fiber transmission matrix is considered as unitary matrix. Then, 

the DGD is estimated by manipulating the elements of unitary matrix and sinusoidal curve fitting. 

However, such approach is rather complicated, because it needs some adjustment of the matrix 

element and sophisticated technique for curve fittings. Moreover, in presence of PDL, the 

transfer matrix is no longer a unitary matrix and the proposed scheme failed to monitor DGD 

accurately. An extension work of [35] is presented in [36] where PDL monitoring is included. 

However, in the proposed scheme, an OSNR monitor is needed prior to the PDL estimation.  

In [37] a similar approach is followed for CD and DGD monitoring where the effect of PDL 

is excluded for DGD monitoring algorithm. For PDL monitoring a complicated procedure is 

followed which requires estimation of power ratio and loss of orthogonality between two 

polarization tributaries. Ref. [38] requires matrix decomposition before separating out individual 

impairment.  

It should be noted here that none of the above mentioned works have investigated 

monitoring of the second-order PMD. An accurate OSNR estimation technique in digital 

coherent receivers has also not been investigated. 

1.2 Objectives of This Research 

The objectives of this research are to enable OPM in digital coherent receivers. The main 

motivations are as follows: 

 Develop novel algorithms to enable multi-impairment monitoring from adaptive FIR 

filters  

The new algorithm should be capable of monitoring all linear impairments, namely, CD, DGD, 

PDL and second-order PMD. It should be simple and efficient, and avoid any extra devices for 

monitoring. Also, a reliable and efficient filter adaptation algorithm is to be developed to ensure 

monitoring accuracy. 
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 Find new ways to efficiently implement long tap filters to enhance multi-impairment 

monitoring range 

To reduce the computational complexity of conventional equalizers based on time-domain FIR 

filters, adaptive frequency-domain equalizer (FDE) can be employed. However, adaptive FDE 

has hardly been investigated for digital coherent receivers. Hence, an adaptive FDE should be 

developed that will be compatible to coherent communication systems. Efficient multi-

impairment monitoring with large range could be enabled with such adaptive FDE. 

 Develop new ideas for monitoring of OSNR in digital coherent receivers 

The new OSNR monitoring technique in digital coherent receivers should be simple and 

accurate. It should be able to estimate in-band OSNR for any bit rate and commonly used 

modulation formats.  

1.3 Thesis Organization 

This thesis is organized in six chapters, including the current introduction chapter which contains 

research overview, objectives of this research and layout of this thesis dissertation. 

In chapter 2, the background knowledge of digital coherent receivers, which is necessary to 

understand the rest of the thesis, is introduced. In Sec. 2.1, the principle of coherent detection is 

introduced followed by a detailed description of the phase diversity and phase and polarization 

diversity homodyne receiver scheme. In Sec. 2.2, the concept of digital coherent receivers is 

explained. Also, the description of different DSP circuits in the digital coherent receivers is 

reported. Section 2.3 summarized this chapter. 

In chapter 3, our proposed multi-impairment monitoring technique from adaptive FIR filters is 

focused. Section 3.1 outlines a theoretical background related to this chapter. It includes detailed 

explanations of conventional adaptive equalization algorithms and the channel model for optical 

signal transmission, which is later used for developing the monitoring algorithm. In Sec. 3.2, we 

introduce our proposed equalization algorithm (CMA with the training mode) that is used 

throughout the thesis. Section 3.3 describes the novel multi-impairment algorithm that separates 

out all linear impairments from the transfer function of adapted FIR filters. In Sec. 3.4 
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experimental verifications of our proposed equalization and monitoring algorithms are 

demonstrated. Section 3.5 summarizes this chapter. 

In chapter 4, a novel frequency-domain approach of adaptive equalization is introduced and 

muti-impairment monitoring from such adaptive FDE is demonstrated. Section 4.1 explains the 

theoretical background necessary to develop the adaptive FDE later in this chapter.  Section 4.2 

presents detailed theoretical and mathematical description of our proposed adaptive FDE. 

Section 4.3 compares the computational cost of the adaptive FDE with its counter part of the 

conventional time-domain equalizer (TDE). Section 4.4 describes the multi-impairment 

monitoring method from the proposed adaptive FDE. In Sec. 4.5, experimental verification is 

demonstrated. Both equalization and monitoring performance are shown and discussed. Section 

4.6 summarizes this chapter. 

In chapter 5, a new method of OSNR monitoring is discussed. Section 5.1 describes the 

theoretical background to understand the rest of the chapter. Section 5.2 focuses on the proposed 

OSNR monitoring algorithm. It is based on the second- and fourth-order statistical moments of 

the output signal from the adaptive equalizer. In Sec. 5.3 the experimental results regarding the 

proposed OSNR monitoring method is discussed. Section 5.4 summarizes the chapter. 

In Chapter 6, the conclusions of this thesis are drawn and some future works are outlined. 
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Chapter 2 

Background of Digital Coherent Receivers 

 

The employment of coherent receivers in optical communication systems became popular in 

1980s [1]. The main drive of such research was for improving receiver sensitivity over intensity 

modulation/direct detection (IM/DD) system due to scarcity of efficient optical amplifier. With a 

sufficient local oscillator (LO) power, the shot-noise limited receiver sensitivity was achieved. 

However, the advent of Erbium doped fiber amplifier (EDFA), the shot-noise limited receiver 

sensitivity of the coherent receiver became less important as the signal-to-noise ratio (SNR) of 

the signal transmitted through the amplifier chain is determined from accumulated amplified 

spontaneous emission (ASE) noise rather than the shot noise. Even in the unrepeated 

transmission, the EDFA can be used as pre-amplifier, thus eliminating the need of coherent 

receivers for its better sensitivity.  For this reason, the further research and development 

activities regarding coherent communication systems have been interrupted for about 20 years.  

Nowadays, the employment of higher-order modulation formats is becoming a necessity for 

its higher spectral efficiency to meet ever increasing bandwidth demand.  In fact, such complex 

modulation format can be employed with coherent receivers, because such receivers can retrieve 

whole complex field of the received lightwave. Thus, research of coherent systems again comes 

in center of attention. The alternative of the coherent detection, the delay detection [2] is not so 

attractive, because beyond QPSK such scheme can hardly be realized due to higher complexity. 

The main obstacles for practical implementation of traditional coherent receivers are phase 

and polarization tracking. Due to the fiber birefringence, the output state of polarization (SOP) in 

the fiber fluctuates without matching the SOP of LO. Phase locking is also necessary. Dynamic 

control of SOP requires bulky and costly devices and use of optical phase lock loop (OPLL) for 

phase tracking is not practically feasible due to high complexity and stringent requirements for 

laser linewidth.     

On the other hand, phase and polarization diversity homodyne detection followed by digital 

signal processing (DSP) eliminates such obstacles of SOP and phase tracking [3, 4, and ref. 

therein]. Such a DSP-based coherent optical receiver is generally termed as a digital coherent 
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receiver. The recent deployment in DSP integration makes it practically viable. Any kind of 

multilevel modulation can be employed with such receivers [5, 6, 7, 8, 9, 10]. More importantly, 

all of fiber transmission impairments can be compensated for in electric domain [11, 12, 13, 14, 

15]; thus a dispersion compensation fiber (DCF) and an optical polarization mode dispersion 

(PMD) compensator can be eliminated from the link. 

Note that, due to the requirements of high speed ADCs and DSP circuits, most of the 

experimental demonstrations based on digital coherent receivers have been done offline. 

However, several demonstrations of real-time operation of such receivers have also been 

reported by using either application-specific integrated circuit (ASIC) [16, 17, 18] or field-

programmable gate array (FPGA) [19, 20, 21, 22]. 

This chapter provides the background theory of such DSP-based coherent optical receivers 

which will be necessary to understand the rest of the thesis. Section 2.2 provides the principle of 

coherent detection and Sec. 2.3 provides the concept of digital coherent receivers and a brief 

description of DSP functions in such receivers. Section 2.4 summarizes this chapter.        

2.1 Principle of Coherent Detection 

2.1.1 Coherent Detection 

The fundamental concept of coherent detection is to mix the electric field of modulated signal 

light and continuous-wave local oscillator (LO). Let the optical signal from the transmitter be 

expressed as  

 
     exp ,s s sE t A t j t

 
(2.1) 

where As(t) is the complex amplitude and ωs is angular frequency. Similarly, the electric field of 

LO is given as 

 
     exp ,LO Lo LOE t A t j t

 
(2.2) 

where ALO(t) is the complex amplitude and ωLO is angular frequency of the LO. Note that the 

complex amplitude As and ALO is related to their power of optical field Ps and PLO, respectively 

as 
2

/ 2s sP A  and
2

/ 2LO LOP A . 

 Generally, a balanced detection is used in coherent detection to suppress the DC components 

and maximize signal photo-current. Such a scheme is shown in Fig. 2.1 where a 3-dB coupler is 
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used to add a 180° phase shift to either signal field or LO field. Considering LO and signal are 

copolarized, the electric fields incident on the upper and lower photodiodes are expressed as 

 
      1

1
,

2
s LOE t E t E t 

 

(2.3) 

 
      2

1
.

2
s LOE t E t E t    (2.4) 

Considering a PSK modulated signal, the signal phase, θsig(t) is given as ( ) ( ) ( )sig s snt t t    , 

where θs is the phase modulation and θsn is the phase noise. We also define the total phase noise 

θn as ( ) ( ) ( )n sn LOt t t    , θLO being the phase of LO. With these notations, the photo-currents 

can be written as 

 
    1 1Re

ms

I t R E t   
  

 
        2 cos ,

2
S LO s LO IF s n

R
P t P P t P t t t       
   

(2.5) 

 
    2 2Re

ms

I t R E t   
  

 
        2 cos ,

2
S LO s LO IF s n

R
P t P P t P t t t       
   

(2.6) 

where 'ms' denotes the mean square with respect to optical frequencies, 'Re' is the real part and 

ωIF is the IF given by IF s LO    , respectively. The responsitivity of the photodiodes R is 

given as  

 

,
s

e
R







 

(2.7) 

where   stands for Plank's constant, e is the charge of electron, and η is the quantum efficiency 

of the photo-diode. 
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  The balanced detector output can be found from Eq. (2.5) and (2.6) as 

 
            1 2 2 cos .s LO IF s nI t I t I t R P t P t t t      

 
(2.8) 

 

Fig. 2.1: Configuration of coherent receiver that measures beat between the signal and LO 

 Depending on the value of ωIF, coherent detection can be classified as either heterodyne or 

homodyne detection. In case of heterodyne detection, / 2IF b  , where ωb is modulation 

bandwidth of the optical carrier determined by the bit rate. As shown in Eq. (2.8) the electric 

field of the signal light is down-converted to an IF signal that includes both amplitude and phase 

information. We can determine the complex amplitude on exp(jωIFt) from Eq. (2.8) as  

         2 exp .C s LO s nI t R P t P j t t  
 

(2.9) 

As shown in Eq. (2.9), IC(t) is equivalent to As(t) except the incremental phase noise stemming 

from LO. There are several methods to demodulate Ic(t) such as envelope (non-coherent) 

detection, differential (delay) detection and synchronous (coherent) detection. 

 On the other hand, in case of homodyne detection, ωIF=0. The photocurrent can be written 

from Eq. (2.7) as  

 
        2 cos .s LO s nI t R P t P t t  

 
(2.10) 

As shown in Eq. (2.10), in order to decode the symbol correctly, the LO phase must track with 

the transmitter phase noise so that θn can be zero. Such function can be realized by an OPLL; 

however, such loop is not simple and adds complexity to the homodyne receiver. Moreover, Eq. 

(2.10) gives only the cosine component (in-phase component with respect to the LO phase) and 

Polarization
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I1

I2
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the sine component (the quadrature component) cannot be detected. Therefore, this type of 

homodyne receiver cannot extract the complex amplitude of the signal.  

2.1.2 Phase Diversity Homodyne Receiver 

Preparing another LO, whose phase is shifted by 90°, in the homodyne receiver, we can extract 

both sine and cosine components. This function can be achieved by introducing a 90° optical 

hybrid. As shown in Fig. 2.2, by using a 90° hybrid, we can obtain four outputs E1, E2, E3, and E4 

from two inputs Es and ELO as 

 
      1

1
,

2
s LOE t E t E t 

 
(2.11) 
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,

2
s LOE t E t E t 

 
(2.12) 

 
      3

1
,

2
s LOE t E t jE t 

 
(2.13) 

 
      4

1
.

2
s LOE t E t jE t 

 
(2.14) 

 

Fig. 2.2: Configuration of phase diversity homodyne receiver 

Correspondingly, the photo-currents from balanced photodetectors are given as 

          1 2( ) ( ) cos ,I I I s LO s nI t I t I t R P t P t t    
 

(2.15) 
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        1 2( ) ( ) sin .Q Q Q s LO s nI t I t I t R P t P t t    

 
(2.16) 

From Eqs. (2.15) and (2.16), we can obtain the complex amplitude as 

 
            exp ,

SC I Q LO s nI t I t jI t R P t P t t    
 

(2.17)  

which is equivalent to the complex amplitude of the optical signal except for the phase noise 

increase.  

 This type of receiver is commonly termed as “phase diversity homodyne receiver” [23] 

because the signal amplitude can be determined independently from the measured sine and 

cosine components. It is also termed as “intradyne receiver” [24] because the optical complex 

amplitude is restored in the baseband without frequency and phase locking. 

 The complex amplitude IC(t) given by Eq. (2.17) can be demodulated by using the similar 

techniques used for heterodyne detection- envelope (non-coherent) detection, differential (delay) 

detection and synchronous (coherent) detection. Note that, we can avoid OPLL used in 

synchronous detection, if we estimate the phase noise through DSP on the homodyne detected 

signal given by Eq. (2.17). This is the basic idea of „digital coherent receiver‟ which will be 

discussed later in this chapter. 

 Both the phase diversity homodyne receiver and the heterodyne receiver can restore full 

information on the optical complex amplitude; however, the homodyne receiver is best suited for 

digital coherent receivers because it generates the baseband signal directly, whereas the 

heterodyne receiver deals with a rather high intermediate frequency.     

2.1.3 Homodyne Receiver Employing Phase and Polarization Diversities 

The state of polarization of the incoming signal plays no role on in direct detection receiver. The 

photo-current of such receiver depends only on the number of incident photons. On the other 

hand, in case of the coherent receiver, the receiver sensitivity is dependent on SOP of the 

incoming signal. In practical systems, it is unlikely that SOP of the incoming signal will be 

always aligned to that of LO. This is because SOP of incoming signal changes with the random 

variation of fiber birefringence, while that of LO is determined by the laser and remains fixed. 

The polarization-diversity receiver architecture can solve this polarization mismatch problem 

[25].   
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Fig. 2.3: Schematic of homodyne receiver employing phase and polarization diversity  

 The homodyne receiver that employs both phase and polarization diversities is shown in Fig. 

2.3. The incoming signal having an arbitrary SOP is first separated into two linear polarization 

components by a polarization beam splitter (PBS). Let the x- and y- polarization components 

after the PBS are given as 

 

 

 

   

 
 

exp
exp ,
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ssx

s

sy s

A t jE t
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 
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

  
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(2.18)  

where α is power splitting ratio of two polarization components and δ is the phase difference 

between them. These parameters are time-varying and depend on the fiber birefringence. On the 

other hand, x- and y-polarization components of LO can be written as 
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(2.19) 

Two 90° optical hybrids in Fig. 2.3 generate eight electric fields E1,2, …,8 at the double balanced 

photodiodes PD1-PD4 as 
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where ELO=ELO,x=ELO,y. Correspondingly, the photo-currents from PD1 to PD4 are given as 
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We can measure complex amplitudes of the two polarization components by using Eqs. (2.24)-

(2.27) as 
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(2.29) 

from which the complex amplitude can be constructed in a polarization-independent manner. 

This can be done with no notable penalty by the maximal-ratio combiner method [26, 27].   

2.2 Concept of Digital Coherent Receivers 

2.2.1 Basic Concept of Digital Coherent Receiver 

The basic concept of digital coherent receivers is depicted in Fig. 2.4. First, the incoming signal 

is linearly detected by a phase and polarization diversity coherent optical receiver. With such 
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scheme, both the complex amplitude and SOP of the signal are detected. Then, the complex 

amplitude is converted to digital data by analog-to-digital converters (ADCs) and processed by 

the DSP. The progress in speed, performance and reliability of integrated circuits makes the DSP 

circuit practically feasible to recover the complex amplitude from homodyne-detected baseband 

signals.  

 

Fig. 2.4: Concept of digital coherent receiver  

 The combination of the optical IQ modulator and the IQ demodulator realizes the linear 

optical communication system. At the transmitter, a vector in the complex plain is defined using 

two voltages driving the IQ modulator. This vector is then mapped on the phasor of the optical 

carrier through the IQ modulator and such complex signal is completely restored by the digital 

coherent receiver. This is exactly the linear system, where IQ information is preserved even with 

the E/O or O/E conversion process. 

2.2.2 Digital Signal Processing 

Considering the dual-polarization transmission system, to recover the information from the 

modulated signals, the DSP circuits must perform the following operations: 

 Sampling and digitizing the analog signal by ADCs, 

 Compensation for static channel impairments, 
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 Polarization demultiplexing, 

 Clock-recovery, 

 Equalization of time-varying linear impairments, 

 Estimation of carrier phase and IF offset, 

 Decoding. 

Throughout this thesis, the above operations are achieved using the functional blocks shown in 

Fig. 2.5. 

 

Fig. 2.5: Functional blocks in a DSP core of digital coherent receivers 

Sampling and digitizing 

After coherent detection of the incoming signal by a phase and polarization diversity receiver, 

four ADCs convert I and Q data of two polarization tributaries. In order to recover the signal 

information, the sampling frequency of the ADCs should be at least equal to the symbol rate of 

the system, provided that the ADCs are synchronized by any clock recovery technique. In 

systems that do not use a clock recovery stage before the analog-to-digital conversion, the 

sampling frequency of the ADCs is generally double the symbol rate. With a two-fold 

oversampled sequence, an adaptive filter can essentially perform clock recovery [28]. Moreover, 

such oversampling reduces the aliasing effect [29]. Dual-polarization QPSK modulation format 
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is considered for the candidate of future 100-Gbits/s Ethernet standard and recent advancement 

of the ADC speed allows two-fold oversampling even for such systems [30]. 

Fixed Filtering 

A fixed filter is used for equalization of linear static-channel impairments, mainly CD 

compensation. The CD is one of the most impairing phenomena that affect a signal transmitted 

through an optical fiber. For digital coherent receivers, CD can be compensated by either in the 

optical domain by DCFs or in the digital domain by using digital filters. However, the latter one 

is more suitable because system installation can be made more cost-effective and also tolerant to 

fiber nonlinear effects [31,32].  

 Since CD varies very slowly in a fiber link, the CD equalizer is generally implemented by a 

fixed filter prior to an adaptive filter. Usually, two types of equalizers are investigated for the CD 

compensation: time-domain equalizer (TDE) [33, 34] or frequency-domain equalizer (FDE) [35]. 

The choice between TDE and FDE mainly depends on the maximum dispersion in the channel 

and the resulting filter length [36]. Generally, complexity of a FDE grows much slower with the 

amount of CD; therefore, FDE is suitable for long-haul transmission where accumulated 

dispersion is very large. 

 For both the approaches, the knowledge of accumulated dispersion value is necessary. The 

CD transfer function can be expressed, in the case of the second order approximation, as [37]: 
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where λ is the carrier wavelength, D is dispersion parameter, L is fiber link length, and c is the 

speed of light. Thus, the dispersion compensating filter can be designed as an all-pass filter with 

the transfer function 
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(2.31) 

 Another approach to find the filter transfer function is to estimate the CD at the start up by 

using some adaptive [38] or non-adaptive algorithms [39] and then to use the estimated value for 

fixed filtering. 
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 For TDE implementation, a finite-impulse-response (FIR) filter can be used with a tapped 

delay line as shown in Fig. 2.6. If we assume that the number of taps is large, then the discrete 

impulse response of the filter can be approximated as the continuous time impulse response. 

Savory [33] has obtained a simple closed form solution for the tap weights that also provides an 

upper bound on the number of taps required for a given value of dispersion. The form of the tap 

weights are as follows:  
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(2.32) 

where hk is the taps weight, k is a sub-index indicating the number of the tap, and T is the 

sampling time interval T = 1/fs. The operator x   means the largest integer not exceeding x.  

 

Fig. 2.6: Structure of FIR filter. τ denotes the delay time. 

 Note that, the infinite-impulse-response (IIR) filter can also be used, where the required 

numbers of taps are less than those of FIR filters [40]. However, the inherent feedback loop 

makes this approach almost impossible to implement in high speed applications with parallelized 

processing. 

 In case of FDE implementation, the input signal is transformed in the frequency domain, 

multiplied by filter transfer function as in Eq. (2.31) and then transformed back into the time 
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domain as shown in Fig. 2.7. Such multiplication in the frequency domain relates to the circular 

convolution in the time domain; however, we can extract the linearly-convoluted terms from the 

circularly-convoluted output by using the overlap-save method [41, 42]. Demonstration of such 

approach can be found in [35]. 

 

Fig. 2.7: Schematics of frequency-domain fixed equalizer 

Adaptive Filtering 

In contrast to CD which can be considered as a constant impairment, the polarization related 

effects are time-varying; thus, polarization state manipulation and PMD compensation should be 

done adaptively. The problem of compensation for polarization rotation digitally was 

investigated first by Betti [43] and later demonstrated by utilizing the formalism of the multiple 

input multiple output (MIMO) system [44, 45]. This is a case of 2x2 MIMO and four filters are 

connected in the two-by-two butterfly configuration for such purpose as shown in Fig. 2.8. 

 When the inputs ux,y(n) are two-fold oversampled, update of filter tap coefficients hp(m) is 

done per every two samples, where p = xx, xy, yx or yy and the symbol-spaced sample index m is 

related to n as n=2m or 2m+1. The filter outputs are downsampled by a factor of two to retain 

symbol-spaced output, vx,y(m). With such a scenario, apart from equalization of linear 

impairments, the adaptive filter can perform the polarization demultiplexing [46, 47, 48] and 

clock recovery [28, 49] simultaneously. 
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Fig. 2.8: Schematic of two-by-two butterfly structured adaptive FIR filter 

 Let the polarization-multiplexed signal Uin=[uin,x(n) uin,y(n)]
T
 is launched on a fiber for 

transmission, where  uin,x(n) and uin,y(n) represent complex amplitudes of the signal electric field 

in the x- and y- polarization tributary, respectively. After transmission through fiber, the 

polarization of the light wave is usually not preserved. In absence of polarization-dependent loss, 

the output electrical fields at the receiver ux(n) and uy(n) can be related to the input electrical 

fields by 
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where J is the unitary matrix representing fiber birefringence. The polarization of light wave in 

fiber generally drifts with time. However, the rate of this polarization drift is usually slower than 

the data rate. Therefore, demultiplexing of two polarization tributaries can be done by using four 

adaptive filters which correspond to four elements of the matrix J
-1

. The adaptive control of the 

matrix elements can be done by using decision-directed least-mean-square (DD-LMS) algorithm 

[50], provided that a training sequence is available. The constant-modulus algorithm (CMA) [51] 

is also a popular choice for such purpose as it can operate on the blind mode. Details of the filter 

adaptation algorithms will be discussed in chapter 3. 

 Usually the received sequence is sampled by free-running analog-to-digital converters 

(ADCs) operated at the rate twice the symbol rate (i.e., twofold oversampling) because such 

oversampling significantly reduces the aliasing effect. In this case, the clock recovery can be 
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performed as follows: First, data sampled by AD converters are interpolated in the time domain. 

Then, the clock is extracted from the up-sampled data through DFT, and it re-samples the data so 

as to keep one sample within one symbol interval. The re-sampled data are sent to the DSP 

circuit for further signal processing including adaptive FIR filters with one-symbol-spaced delay 

taps. However, we can simplify the DSP circuits by removing such clock-recovery scheme as 

adaptive FIR filters can also do the same functionality as far as clock frequencies are 

synchronized between the transmitter and the receiver. This is because during the filter-tap 

adaptation process, the sampled waveform is continuously time-shifted so that sampling instance 

for the symbol-spaced sequence comes to the best position in symbol duration. Such function is 

essentially the clock-recovery process.  

Carrier Phase Estimation 

The digital phase estimation can use feed-forward (FF) techniques [52, 53] or closed loop 

concepts [54]. Again, the estimation can be aided by pilot sequences or non-data-aided. The 

main approach used in modern coherent receivers is based on non-data-aided FF techniques. In 

this section, only M-th power algorithm [55] is discussed which is a popular choice for M-ary 

PSK modulated signals. 

 Since the linewidth of semiconductor distributed feedback (DFB) lasers varies much more 

slowly than the phase modulation, it is possible to obtain an accurate phase estimate by 

averaging the carrier phase over many symbol intervals.  

 The phase of the complex amplitude obtained from Eq. (2.17) contains both the phase 

modulation ( )s m  and the phase noise ( )n m . The procedure to estimate ( )n m  is shown in Fig. 

2.9. We take the M-th power of v(m), because the phase modulation is removed from v
4
(m) in the 

M-ary PSK modulation format. Averaging v
4
(m) over 2k+1 samples constitutes a phase estimate 

as  
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(2.34) 

The phase modulation ( )s m  is determined by subtracting ( )m  from the measured phase of 

( )e m . The phase modulation is then discriminated among M symbols. 
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Fig. 2.9: Block diagram of M-th power carrier phase recovery scheme 

 The phase of the symbol thus obtained has the ambiguity of 2π/M, because we cannot know 

the absolute phase. However, we can avoid the phase-ambiguity problem if the data are 

differentially precoded, although the bit error rate is doubled by error multiplication. 

 The phase estimate ( )e m  ranges between –π/M and + π/M. Therefore, if ( )e m exceeds 

π/M, the phase jump of 2π/M occurs as shown in Fig. 2.10. To cope with this problem, the 

correction for the phase jump is done as follows: 
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where f(x) is defined as 
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This adjustment ensures that the phase estimate follows the trajectory of the physical phase and 

cycle slips are avoided [53]. 
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Fig. 2.10: Phase jump and its correction during phase estimation process 

 As modulation formats move beyond QPSK to high-order QAM, the requirements on the 

laser linewidth become increasingly stringent [56]. Using conventional wireless approaches such 

as decision-directed phase locked loops can increase the tolerance range significantly for 16-

QAM [6, 54, 57]. Also some other hardware efficient carrier-recovery schemes have been 

proposed with similar performance [58]. 

 2.3 Chapter Summary  
The background of digital coherent optical receivers is reviewed. First, the principle of coherent 

receivers is discussed. Then, the detailed description of the phase and polarization diversity 

homodyne receiver with digital signal processing is presented. Finally, explanations of different 

DSP algorithms used in this thesis are reviewed.   
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Chapter 3 

Multi-Impairment Monitoring from Adaptive FIR Filters 

 

The digital coherent receiver enables equalization of all deterministic linear impairments by 

using four finite-impulse-response (FIR) filters structured in a two-by-two butterfly 

configuration. After the filters are adapted by a suitable algorithm, we can construct a frequency-

dependent two-by-two matrix with four elements, which correspond to transfer functions of the 

adapted four FIR filters. This matrix is nothing but the inverse transfer matrix of the channel and 

contains combined effects of chromatic dispersion (CD), polarization mode dispersion (PMD) 

and polarization dependent loss (PDL). The challenge is to develop a precise algorithm for 

sorting out the individual impairment from this monitoring matrix. We propose a novel and 

unified algorithm to monitor CD, first- and second- order PMD and PDL from this monitoring 

matrix. As of second-order PMD, its two components, polarization dependent chromatic 

dispersion (PCD) and depolarization (DEP) of two principle states of polarization (PSPs), are 

estimated separately. 

 This chapter is organized as follows: Sec. 3.1 gives the theoretical background that is 

necessary to understand the rest of the chapter. Section 3.2 introduces the proposed novel 

equalization algorithm. Section 3.3 describes the proposed multi-impairment algorithm from the 

monitoring matrix. Section 3.4 illustrates the experimental verification of both equalization and 

monitoring algorithms and finally Sec. 3.5 summarizes this chapter. 

 In the rest of the chapter, vectors and matrices are in boldface letters; superscripts (•)
*
, (•)

T
,  

(•)
-1

, and (•)
†
 denote complex conjugate, transpose, inverse, and Hermitian transpose, 

respectively; subscript (•)ω is the numerical differentiation with respect to the angular frequency 

ω; and functions DFT (•), arg (•), and det (•) denote discrete Fourier transform, argument, and 

determinant,  respectively.   

3.1 Theoretical Background 

3.1.1 Adaptive Equalization Algorithms 

Though several algorithms have been investigated for filter adaptation in digital coherent 

receivers, gradient-decent-based algorithms such as the least-mean-square (LMS) algorithm [1, 
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2] and the constant-modulus algorithm (CMA) [3, 4] are most popular. In the following, these 

two algorithms are described.  

 Let the filter input vectors be given as 

 
 ( ) ( ) ( 1) ( ) ,

T

x x x xm u m u m u m N   u
 

(3.1) 

 ( ) ( ) ( 1) ( ) ,
T

y y y ym u m u m u m N     u  (3.2) 

where ux(m) and uy(m) denote the m-th sample of the received complex amplitude of the electric 

field from the x- and y- port of the homodyne receiver comprising phase and polarization 

diversities, and N is the number of delay taps. The tap coefficient vector is given as 

 ,0 ,1 ,( ) ( ) ( ) ( )
T

p p p p Nm h m h m h m   h  ,  (3.3) 

where, p = xx, xy, yx or yy. Then, the outputs from two ports of butterfly configuration are given 

by 

 
( ) ( ) ( ) ( ) ( ),T T

x xx x xy y
v m m m m m h h uu

 
(3.4)

 ( ) ( ) ( ) ( ) ( ).T T

y yx x yy y
v m m m m m h hu u

 
(3.5)  

As derived in appendix A1, for the LMS algorithm, the tap weights are updated with a step size 

parameter µ as 

 *( 1) ( ) ( ) ( ),xx xx x xm m e m m  h h u
 

(3.6)

 
*( 1) ( ) ( ) ( ),xy xy x ym m e m m  h h u

 
(3.7) 

 
*( 1) ( ) ( ) ( ),yx yx y xm m e m m  h h u

 
(3.6)

 
*( 1) ( ) ( ) ( ),yy yy y ym m e m m  h h u

 
(3.7) 

The error signals, ex,y(m), are given as 

    ( ) ,x x xe m d m v m   (3.10)   

    ( ) ,y y ye m d m v m   (3.11)   
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where dx,y(m) are the desired symbol which may either the training symbol in the training mode 

or the decoded symbol in the decision-directed  mode. 

 

Fig. 3.1: Butterfly structured FIR filters adapted by DD-LMS algorithm 

However, in the decision-directed mode, it is necessary to ensure a perfect carrier phase 

estimation and IF estimation before decision; otherwise, the performance of decision-directed 

LMS (DD-LMS) can be degraded, especially when numbers of delay taps are large. 

 On the other hand, such situation can be avoided by using the CMA. In case of the CMA, as 

shown in Appendix A2, the filter tap coefficients are updated as: 

 *( 1) ( ) ( ) ( ) ( ),xx xx x x xm m e m v m m  h h u  (3.12)

 
*( 1) ( ) ( ) ( ) ( ),xy xy x x ym m e m v m m  h h u  (3.13)

 
*( 1) ( ) ( ) ( ) ( ),yx yx y y xm m e m v m m  h h u

 (3.14)

 
*( 1) ( ) ( ) ( ) ( ),yy yy y y ym m e m v m m  h h u  (3.15) 

The error signals, ex,y(m), are given as 

    
22

2 ,x xe m R v m 
 

(3.16)

    
2

2

2 ,y ye m R v m 
 

(3.17) 

vx(m)

vy(m)uy(m)

hxx(m)

hxy(m)

hyx(m)

hyy(m)

ux(m)

CPE Decision

CPE Decision

LMS

LMS

dx(m)

dy(m)



38 
 

where 

4

2 2

{ ( ) }

{ ( ) }

E d m
R

E d m
 . Thus, R2 is generally assumed as 1 for the M-ary PSK modulation 

format. As shown by Eqs. (3.16) and (3.17), CMA cost functions 
2

, ( )x ye n are independent of the 

signal phase. Therefore, unlike DD-LMS, the performance of CMA is inherently independent of 

the carrier recovery or IF estimation circuits.  

 

Fig. 3.2: Fig. 3.1: Butterfly structure for FIR filters adapted by the CMA 

 Note that the CMA is also applicable for non-constant modulus modulation formats such as 

high-order QAM; however, modifications in Eqs. (3.16) and (3.17) can enhance the performance 

of CMA for the high-order QAM formats [5, 6, 7]. Such modified CMA is derived from the 

radius-directed adaptive algorithm proposed for wireless communication [8, 9], in which the 

error signal, for example in case of 16-QAM, can be calculated as: 

1. When 
2

, ( ) 0.6,x yv m 
  2

, ,( ) 0.2 ( ) .x y x ye m v m 
 

2. For 
2

,0.6 ( ) 1.8,x yv m 
  2

, ,( ) 1.0 ( ) .x y x ye m v m 
 

3. And when 
2

, ( ) 1.8,x yv m 
  2

, ,( ) 1.0 ( ) .x y x ye m v m 
 

We consider that the signal power is normalized to one on each polarization. 

 

1

1

vx(m)

vy(m)uy(m)

hxx(m)

hxy(m)

hyx(m)

hyy(m)

ux(m)

CMA

CMA
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 3.1.2 Singularity Problem of CMA  

When we apply the conventional CMA, initial tap coefficients of four filters are set to zeros 

except for the center tap of each filter which is chosen from the four elements of a two-by-two 

arbitrary unitary matrix h0 give as   

 
0

0

0 0

0 0

1
.

1

j

j

e

e





 

  

  
  

  
0h

 

(3.18) 

In this Eq. (3.18), 0  α0 1 and -π  δ0<π. Assume that the unitary matrix T is the Jones matrix of 

the fiber for transmission expressing its birefringence property, which can be written as 

 
1

,
1

j

j

e

e





 

  

  
  

  

T  (3.19) 

where α denotes the power splitting ratio between two polarization modes and δ the phase 

difference between them. Then, the initial outputs of two ports of the filters are given as [vx0, 

vy0]
T
=h0T [uin,x uin,y]

T
, where [uin,x uin,y]

T
 is the transmitted signal. Since T and h0 are unitary, vx0 

and vy0 are orthogonal to each other in the Stokes space. Let vx0 and vy0 be located in A0 and B0 

points on the Stokes space. The Stokes parameter S1 of A0 is positive in Fig. 3.3(a) while negative 

in Fig. 3.3(b). B0 is located at the antipodal point of A0. Thus, when S1>0 for A0 as shown in Fig. 

3.3(a), A0 moves towards A (linear x polarization) and B0 towards B (linear y polarization). On 

the other hand, when S1<0 for A0 as shown in Fig 3.3(b), A0 moves towards B and B0 towards A. 

That means though polarization demultiplexing is performed, the corresponding output ports of 

the butterfly structure have been interchanged. 

 

Fig. 3.3: Trajectories of polarization vectors vx0 and vy0 on the Poincare sphere. (a): S1>0 for A0 and (b): 

S1<0 for A0. After ref. [10]. 
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 However, in presence of PDL, the fiber transfer function is no longer a unitary matrix and it 

is possible to have the same sign of S1 for both A0 and B0. In such case, outputs from both ports 

converge to same polarization tributary. This situation is termed as the singularity problem 

because the matrix h0T becomes a singular matrix. For example, as shown by the polarization 

trajectories in Fig. 3.4, with -3dB PDL and h0 is given as 

  

1 0
,

0 1

 
  
 

0
h

 

(3.20)

 
the S1 values for both vx0 and vy0 are positive sign; therefore, both output tributaries converge to 

x-polarization channel and causing the singularity problem. 

  

 

Fig. 3.4: Trajectories of polarization vectors when PDL=-3 dB and h0 is given as Eq. (3.20). Red and 

blue colors corresponds to x- and y- polarization channel. After ref. [10]. 

3.1.3 Channel Model 

Considering a modest channel power to operate in the linear region or weakly nonlinear region, 

we can model the transfer function of a fiber as a concatenation of CD, PMD and PDL elements, 

given as D(ω), U(ω) and K, respectively,  and the Jones matrix T including the birefringence of 

the fiber as 

 
( ) ( ) ( ) .fiber D  H U KT

 
(3.21) 

In Eq. (3.21), the scalar function D(ω) is the CD element expressed as  

 

2
2 / 2

( ) ,
j LD e   


 (3.22) 

where β2 is the group velocity dispersion (GVD) parameter, ω the angular frequency of the 

carrier,  and L the fiber link length.  
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 The transfer matrix U(ω) represents the PMD element. The first-order PMD element U(ω) 

has the form of a unitary matrix given as 

 
/ 2

1

1 1/ 2

0
( )  ,

0

j

j

e

e

 

 






 

 
  

 
U R R

 

(3.23) 

where ∆τ is the DGD between two orthogonal principal states of polarization (PSP) and R1 is a 

unitary matrix converting  two PSP into the x- and y-polarization. 

 Although individual PDL elements may randomly distributed over the transmission system, 

the global PDL can be represented by a single Hermitian matrix K [11] as 

 max1

2 2

min

0
,

0


 

  
  

K R R

  

(3.24) 

where Γmax and Γmin are the maximum and minimum values of the transmission coefficient, 

respectively,  and  R2 is a unitary matrix converting the eigen modes for PDL into the x- and y-

polarization. Finally, T is a two-by-two unitary matrix, whose matrix elements are angular-

frequency independent as shown in Eq. (3.19). 

3.2 CMA with Training Mode 

In this work, we use the CMA for filter adaptation. However, as mentioned in the previous 

section, CMA may suffer from the singularity problem. To cope with this problem several 

methods have been proposed [10, 12, 13, 14]. In [10], [12] and [13], tap coefficients controlling 

one tributary are set according to those of the other by assuming that states of polarization (SOP) 

of two tributaries are orthogonal to each other. However, such orthogonality is not always 

assured, especially in the presence of high PDL. Moreover, such techniques do not ensure that 

each polarization tributary will converge to the desire output ports of the butterfly configuration.  

In [14], a two-stage CMA equalizer has been proposed for singularity-free operation; however, it 

induces additional complexity of the equalizer. As an alternative of CMA, the independent 

component analysis (ICA) algorithm has also been investigated for polarization demultiplexing 

[15, 16, 17]. However, such schemes have much higher computational complexity.   

 On the other hand, in this work, we propose CMA with the training mode to avoid the 

singularity problem. In the training mode, the LMS algorithm is used for updating tap 

coefficients as shown in Eqs. (3.6) - (3.9). The error signals ex,y(n) in Eqs. (3.10) and (3.11) are 
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calculated using the training signal. After the training mode, the algorithm is switched to the 

CMA instead of by the commonly used DD-LMS; thus, tap coefficients are updated by Eqs. 

(3.12) - (3.15) in the blind mode and the error signals are calculated as Eqs. (3.16) and (3.17).  

 In the proposed method, initial tap coefficients for the CMA are determined by using the 

training mode such that the output from the x-port of the filter corresponds to the x-polarization 

tributary and that from the y-port to the y-polarization tributary; therefore, we can avoid the 

singularity problem. On the other hand, switching to CMA, we can apply any high-order FIR 

filters for equalization because the CMA is inherently phase insensitive. 

3.3 Monitoring Algorithm 

In dual-polarization transmission systems, the transmitter sends complex amplitudes of both x- 

and y-polarized electric fields. While propagating through the fiber, the complex amplitudes 

suffer from effects of CD, PMD, PDL and birefringence. Then, the complex amplitudes are 

detected by a phase- and polarization-diverse homodyne receiver that preserves both the 

amplitude and phase information of the transmitted signal. Next, polarization demultiplexing and 

equalization can be done in the digital domain by using four complex-valued multi-tap FIR 

filters arranged in a two-by-two butterfly configuration. 

 In this point, we consider that the filter delay tap length is long enough compared to the 

impulse response of the channel. Therefore, after the equalization algorithm is converged, the 

monitoring matrix M(ω) can be constructed by using the discrete Fourier transforms (DFT) of 

filter-tap coefficients of the four FIR filters in the butterfly configuration as  

 

1

( ) ( )
( ) ( ) DFT .

( ) ( )

xx xy

fiber

yx yy

m m

m m
 



   
    

   

h h
M H

h h
 

(3.25) 

 The matrix M(ω) preserves the information of all of the linear impairments. In the following, 

we propose a simple algorithm, which can separate out CD, DGD, PDL, and second-order PMD, 

that is, PCD and DEP, through straightforward algebraic manipulations of this monitoring matrix. 

With such an algorithm, multi-impairment monitoring is finally enabled by the adaptive FIR 

filters.  

While deriving equations in this section, we use the general property of the matrix inversion 

(AB)
-1 

= B
-1

A
-1

, the property of a unitary matrix U
-1 

= U
†
, and the property of a Hermitian matrix 

†
K K without notice.  
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3.3.1 CD Monitoring 

The determinant of the matrix M(ω) can be expressed as 

 
2det{ ( )} ( )det{ ( )}det( )det( ).D  M U K T  (3.26) 

Since det( ) 1,U det( ) 1,T  and max mindet( )   K , Eq. (3.25) becomes 

 
2det{ ( )} ( ) .max minD   M

   
(3.27) 

Since 
max min

  is a real number, Eqs. (3.22) and (3.27) confirm that the CD value can be 

estimated by using a quadratic fitting on the unwrapped phase of det{M(ω)}. 

3.3.2 PMD Monitoring 

Conventionally, the fiber PMD is characterized by a frequency-dependent PMD vector 


in the 

three-dimensional Stokes space and can be written as 

 
ˆ ,p  


 (3.28) 

where the unit vector p̂  points the direction of the slower PSP. 

 

Fig. 3.5: Definition of second-order PMD vector. (a): Two PMD vectors at angular frequencies   and 

   are shown in the Stokes space.  (b): Corresponding second-order PMD vector with its 

perpendicular and parallel components. This is given as the derivative of the first-order PMD vector with 

respect to the angular frequency . 

 

( )  


( ) 


 


  


|| 


p̂

p̂


(a) (b)

S2

S3

S1

( )  


( ) 

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      Figure 3.5 (a) shows two PMD vectors ( ) 


 and ( )   


 in the three-dimensional Stokes 

space, where   is a small change in the angular frequency, usually given as the DFT angular-

frequency resolution. Then, the second-order PMD vector 


can be defined as the derivative of 




with respect to   as shown in Fig. 3.5 (b). The second-order PMD vector can be resolved into 

two components as  

 
ˆ ˆ :

d
p p

d
  


  


    




  
(3.29) 

One is the DEP component p̂
 
 


 


, indicating that the pointing direction of the PMD vector 

varies with . The other is the PCD component p̂
 
  


, which represents the change in DGD 

with ω. As shown in Fig. 3.5(b), the DEP component is perpendicular to ( ) 


, while the PCD 

component is parallel to ( ) 


. 

     Consider the matrix
1

( ) ( )  


 M M .  Equation (3.26) yields   

                        
1 1( ) ( ) ( ) ( ) { ( ) ( ) }D D            M M U KT U KT   

                                  
* 1 1( ) ( ) ( ) ( ) ( )D D        U KT KT U   

 
†( ) ( ),c    U U

 (3.30) 

where the scalar term *
( ) ( )D D   is expressed as c. Substituting the explicit form of U(ω) 

given by Eq. (3.23) into Eq. (3.30), we have   

( ) / 2 / 2

1 1 1

1 1 1 1( ) / 2 / 2

0 0
( ) ( )   

0 0

j j

j j

e e
c

e e

    

    
  

   

  

   

   
      

   
M M R R R R  

 
/ 2

1

1 1/ 2

0
 .

0

j

j

e
c

e

 

 

 



  

 
  

 
R R      (3.31) 

Equation (3.31) shows that eigen values of the matrix 1

( ) ( )  


 M M , 1,2 , are associated with 

DGD while corresponding eigen vectors, 
1,2

| t  , locate the PSPs. The estimation of eigen values 

and eigen vectors from this matrix enables DGD and second-order PMD monitoring in the 

following manner. 
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DGD Monitoring 

From Eq. (3.31), it is evident that DGD at ω can be estimated as 

 1 2arg( / )
.

 



 

  

(3.32) 

The condition   p   is necessary for avoiding ambiguities that arise from the multi-valued 

argument function. This condition is generally assured for a wide range of DGD monitoring. For 

example, for 10-Gsymbol/s transmission, if we use 21-tap T/2-spaced equalizer, DGD up to 500-

ps can be estimated correctly by using Eq. (3.32). The increased number of taps extends this 

range further. 

Second-order PMD Monitoring 

Two DGD values at frequencies    and   enable the calculation of PCD by using the 

following equation:  

 

( ) ( )
.

    




  







  
(3.33) 

  Let the eigen vector 
1

| [ ],x yt s s 
 
relate to the slower PSP. Then, the corresponding Stokes 

vector S can be calculated as 

 
* * * * * *[ , , ( )],x x y y x y x y x y x ys s s s s s s s j s s s s   S

 
(3.34) 

and the unit vector p̂ can be found as ˆ / | |p  S S . Thus, unit vectors  p̂   and  p̂   enable the 

estimation of p̂
  as 

  
1 ˆ ˆ1 cos { ( ) ( )}

ˆ .
2

p p
p

  



  
 

  
(3.35) 

Eqs. (3.32) and (3.35) yield DEP as  

 ˆ .p
 
 


 


 (3.36) 

Finally, the magnitude of the total second-order PMD is determined from   

 
2 2

|| .      


 
(3.37) 
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3.3.3 PDL Monitoring 

The matrix M
†
(ω)M(ω) can be expressed from Eq. (3.25) as 

             
† †( ) ( ) { ( ) ( ) } { ( ) ( ) }D D     M M U KT U KT  

       
* † †( ) ( ){ } ( ) ( ){ }D D    KT U U KT  

       † † .T K KT  (3.38) 

Hence, Eq. (3.38) can be rewritten by using Eq. (3.23) as  

 

max† 1

2 2

min

0
( ) ( ) ( ) ( ).

0
  

 
  

 
M M TR TR

 

(3.39) 

Equation (3.39) shows that eigen values of the matrix M
†
(ω)M(ω), 1,2 , can give PDL in dB as 

1
10

2

10log .dBPDL




 
  

 
                                                                  (3.40) 

3.4 Experimental Verification 

3.4.1 Experimental Setup 

In order to validate the proposed algorithms, we conducted experiments employing a coherent 

optical receiver as shown in Fig. 3.6. The transmitter laser was a distributed-feedback laser diode 

(DFB-LD) having a center wavelength of 1552 nm and a 3-dB linewidth of 150 kHz. The laser 

for LO had the same characteristics. A NRZ-QPSK signal was generated using a LiNbO3 optical 

IQ modulator (IQM) from two streams of precoded data from an arbitrary waveform generator 

(AWG) with 2
9
-1 pseudo-random binary sequences (PRBS). Apart from second-order 

monitoring case, the transmission rate was 40Gbit/s. The dual-polarization signal was then 

produced in the split-delay-combine manner by using a polarization beam splitter (PBS) and a 

polarization beam combiner (PBC). The delay length was long enough so that the signals in two 

polarization tributaries were uncorrelated. The PDL was generated by attenuating one 

polarization tributary with a variable optical attenuator (VOA). Then, the signal passed through a 

PMD emulator (PMDE). A commercially available PMDE consisted of three programmable 

DGD sections separated by polarization controllers as shown in Fig. 3.7 was capable of 

generating all-order PMD with tunable statistics. A standard single-mode fiber (SMF) 
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accumulated CD. After the transmitted signal was pre-amplified by an erbium-doped fiber 

amplifier (EDFA), it was incident on a phase and polarization diverse coherent optical receiver. 

The received power was controlled by VOA in such a manner that the polarization tributary 

suffered more from PDL had a BER about 3 10
-4

. Outputs of the receiver were sampled and 

digitized at twice the symbol rate with analog-to-digital converters (ADCs), and stored for 

offline digital signal processing.  

 

Fig. 3.6: Schematics of the dual-polarization QPSK transmission system for verifications of the 

proposed impairment-monitoring algorithm. 

 

Fig. 3.7: Schematic of all-order PMDE used in the experiment 

3.4.2 Results Regarding Singularity Problem 

In order to examine the convergence property of the proposed CMA with the training mode, the 

signals are polarization-demultiplexed and equalized by using four butterfly-structured FIR 

filters with tap spacing of half-symbol duration. Tap coefficients are adapted by the CMA. The 
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delay tap length is 21 and the step size is 2
-9

. Then, carrier recovery is done by the 4-th power 

algorithm and decoded for BER estimation.  

 To test the convergence behavior, we need to sweep the state of polarization (SOP) of the 

incoming signal on the whole Poincaré sphere. Since the convergence property of the algorithm 

depends on the matrix h0T, we can sweep either (α0, δ0) in Eq. (3.18) or (α, δ) in Eq. (3.19) to 

examine it. For experimental simplicity, instead of sweeping α and δ in the optical domain, we 

vary α0 and δ0 in the digital domain. 

 The effect of two-dimensional sweeping of (α0, δ0) is shown in Fig. 3.8 in the presence of 

20-ps mean DGD and 1,600-ps/nm CD at different PDL values. The region where two outputs 

converge to the same tributary is marked with the black color, while the white color denotes the 

region where polarization demultiplexing is done properly. It is found that with increased PDL, 

the dark region increases for the conventional CMA, whereas there is no dark region for the 

proposed method, suggesting proper polarization demultiplexing on the entire Poincaré sphere. 

 

Fig. 3.8: Accuracy of polarization demultiplexing of the conventional CMA (upper) and the proposed 

method (lower) for different PDL. The horizontal axis represents α0 and the vertical one does δ0.  In the 

dark region, the singularity problem occurs. 
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 We also measure the probability of proper polarization demultiplexing for the 

conventional CMA and the proposed method which is represented as a function of PDL in Fig. 

3.9. The proposed method always performs proper polarization demultiplexing, while the 

probability for the CMA decreases severely with increased PDL. 

 

 

Fig. 3.9: Probability of proper polarization demultiplexing for the conventional CMA and the proposed 

method measured as a function of PDL. 

3.4.3 Results Regarding Monitoring 

For multi-impairments monitoring, we first use a T/2-spaced butterfly structured CMA equalizer 

which simultaneously performs clock-recovery, polarization demultiplexing and equalization. 

The delay tap length is 61 and the step size parameter is 2
-10

. Then the tap coefficients are used to 

form the monitoring matrix, from which each impairment is monitored by using the proposed 

algorithm. Prior to form the monitoring matrix, we average the filter tap coefficients over several 

iterations after the convergence to reduce the effect of noise. Moreover, though the spectrum of 

the transfer function of a T/2-spaced filter covers the range from -B to +B (B is the symbol rate), 

the parameter estimation is concentrated to several center taps only where low-pass electrical 

filters in the transmitter and the receiver have the linear phase response.  

 First, to prove the effectiveness of the algorithm for monitoring of CD, DGD and PDL, we 
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conduct the 40-Gbit/s dual-polarization unrepeated QPSK transmission experiments with the 

setup shown in Fig. 3.6. Only one DGD section of the PMDE is used to generate a fixed DGD 

value and also the amount of PDL is set to a constant value.   

 

Fig. 3.10: Monitoring results of CD. (a): Estimated unwrapped phase of CD of 1600 ps/nm with 20-ps 

DGD and 3-dB PDL. (b): CD monitoring result with 20-ps DGD and 3-dB PDL. 

 Fig. 3.10(a) shows the estimation of the unwrapped phase of det{M(ω)}. The CD value then 

can be estimated using quadratic fitting on this phase. The CD estimation result for 50-km, 100-

km and 150-km fiber in presence of 20-ps DGD and 3-dB PDL is shown in Fig. 3.10(b) and the 

result is in good agreement with values measured by a standard CD measuring instrument that 

uses the modulation phase shift method. 
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Fig 3.11:  DGD monitoring result with 1600-

ps/nm CD and 3-dB PDL.

Fig 3.12:  PDL monitoring result with 1600-

ps/nm CD and 20-ps DGD.
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 DGD monitoring is done within only 2-ps error up to 40-ps estimation as shown in Fig. 3.11 

with 1600-ps/nm CD and 3-dB PDL.  Fig. 3.12 shows that PDL estimation results in presence of 

1600-ps/nm CD and 20-ps DGD and the estimation is done with a good accuracy up to PDL of 6 

dB. 

 

Fig. 3.13: Estimation example of DGD, SOPMD, PCD and DEP from a random sample. 

 Generation of a fixed and known value of second-order PMD is not available in our PMDE; 

hence, to verify the second-order PMD monitoring algorithm, the statistical behavior of second-

order PMD is estimated and compared with the theoretical model as shown in Table 3.1. The 

model assumes a constant DGD value and randomly fluctuating birefringence along the fiber. In 

this experiment, we transmit a 100-Gbit/s dual-polarization QPSK signal through PMDE, which 

is set to generate a Maxwellian-distributed DGD with the mean value of 35 ps and a 

corresponding second-order PMD with a refresh rate of 10 ms, while CD and PDL were set to 

zero. For second-order PMD monitoring case, the filter delay tap length is 33 while the step size 

is 2
-10
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 Fig. 3.13 shows an example of the estimation of DGD, second-order PMD and its 

components for an arbitrary sample. We restrict our estimation to several taps around the center 

tap for the same reason stated before. 

 

Fig. 3.14: Probability densities of the first- and second-order PMD. (a): DGD  , (b): PCD 



, (c): 

DEP 
  , and (d): the magnitude of second-order PMD 


 . Bars show those estimated from 

monitored values and solid curves are theoretical ones. 

 We estimate  , 
 , 


 , and 

 from 700 different experimental data repeatedly taken in 

three seconds using the proposed algorithm. Estimated probability densities of all of the four 

parameters are shown by bars in Figs. 3.14 (a)-3.14(d). On the other hand, solid curves in these 

figures represent theoretical probability densities calculated from the measured mean DGD value 

based on the theoretical model as shown in Table1.  
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 For all the cases, the measured probability density well matches with the theoretical one. 

The estimated mean DGD  of 36 ps is very close to the set value of 35 ps, whereas the 

measured mean second-order PMD value 

 is 606 ps

2
, which is about 20% less than the 

theoretical value determined from the estimated mean DGD of 36 ps.  

 The discrepancy between the estimated second-order PMD and the theoretical prediction 

may stem from the inadequate number of statistical samples. In addition, three DGD sections in 

our PMDE may be insufficient to generate the second-order PMD similar to that of the real fiber, 

which is usually emulated by more than several hundreds of the birefringence section [22].  

Table 3.1: Statistical Relations of PMD 

Statistic of 
Mean 

value 
Density Reference 

DGD (∆τ)   
 

2
2

2 / /

2

8 2
( )

xx
p x e

 p


p 





 
  

 
 [18] 

Second-order 

PMD (

 ) 

22 /G p  2 2 2 2

8 4 4 4
( ) tanh sech

x x x
p x

 p   

   
    

   
  [19] 

PCD ( 



) 0 

2

2 2

2 4
( ) sech

x
p x

  

 
  

 
  [20] 

DEP ( 
 ) -  

2
1/ 2

02 2

0

8 8
( ) sech tanh

x
p x x J d




   

p p


   

    
   

  [21] 

 =mean DGD, J0=Bessel function of zero-th order, G= Catalan's constant 

3.5 Chapter Summary 

We have proposed a straightforward algorithm that enables monitoring of linear impairments of 

a transmission system, such as CD, first- and second- order PMD and PDL, from the equalizer 

adapted by the CMA. The singularity problem inherent in the CMA is handled by introducing the 

training mode. We have verified the proposed algorithms with dual-polarization QPSK 

transmission experiments. Multi-impairment monitoring demonstrated here has the advantage 

that it can be realized in an efficient way with just a small additional complexity in the DSP 

circuit of the digital coherent receiver. 
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Chapter 4 

Multi-Impairment Monitoring from Adaptive FDE  

 

One of the key requirements for the multi-impairment monitoring described in the previous 

chapter is that the finite-impulse-response (FIR) filter delay tap length should be long enough to 

compensate for all of the linear impairments. However, the computational complexity of FIR 

filter increases with number of taps and makes it impractical to implement in application-specific 

integrated circuit (ASIC) or field-programmable gate array (FPGA) [1, 2]. The frequency-

domain approach can reduce the computational cost by block-by-block processing and fast 

implementation of discrete Fourier transform (DFT) [3, 4, 5, 6]. Though adaptive frequency-

domain equalizer (FDE) has been investigated for wireless communication systems [7, 8, 9, 10], 

its applicability to optical communication systems is hardly been demonstrated. Recently several 

efforts have been made for FDE in optical communication systems; however, they employ either 

the fixed FDE [11, 12, 13] or need a training sequence for channel estimation [14, 15] which 

reduces spectral efficiency. Therefore, in this work, we first develop a novel adaptive FDE 

suitable for digital coherent receivers. Then, we investigate its equalization characteristics and 

finally, use the FDE tap coefficients for multi-impairment monitoring. 

 This chapter starts with the background theory related to rest of the chapter. In Sec. 4.2, the 

proposed novel adaptive FDE is described. In Sec. 4.3, computational complexity of adaptive 

FDE and time-domain equalizer (TDE) is compared. Section 4.4 explores the multi-impairment 

monitoring technique from such adaptive FDE. In Sec. 4.5, the experimental verifications of both 

equalization and monitoring capabilities of the adaptive FDE are presented and finally Sec. 4.6 

summarizes the chapter.    

Throughout the remainder, time- and frequency-domain variables are denoted by lower- and 

upper-case characters, respectively, while boldface characters denote vectors. Furthermore, the 

symbol   represents convolution and   element-by-element multiplication; OL is a column 

vector with L zeros; superscripts (•)
e
 and (•)

o
 correspond to even and odd sub-equalizer 

parameters,  respectively; and conj(•) and E(•) are the conjugate and mathematical expectation 

operator. 
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4.1. Background Theory  

4.1.1 Linear and Circular Convolution 

The linear convolution of two discrete sequences u(m) and h(m) is given as 

 

( ) ( ) ( ) ( ) ( ) ( ).
k k

m m k m k k m k
 

 

     u h u h h u

 

(4.1) 

On the other hand, the circular convolution is defined as [16] 

 

1

0

( ) ( ) ( ) [( )mod ],
N

k

m m k m k N




 u h u h
  

(4.2)  

where 'mod' is the modulo operator and N is the period of the periodic signal u(m). 

For example, let u(m)=[2, 1,  2,  2] and h(m) =[2, 1, 0.5]. 

Then, by using Eqs. (4.1) and (4.2), we get 

( ) ( ) [4, 4, 6, 6.5, 3, 1],m m u h  

( ) ( ) [7, 5, 6, 6.5 ].m m u h  

The results are shown graphically in Fig. 4.1. 

 

Fig. 4.1: Example of linear and circular convolution 

Note that as marked by the dotted line in Fig.4.1, the last part of circularity-convoluted terms is 

the same as corresponding linearly-convoluted terms.    
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4.1.2 Efficient Linear Convolution 

The filtering of a sequence u(m) through a FIR filter of length N having the coefficient vector 

h(m) involves linear convolution of u(m) and h(m). As shown in Eq. (4.1), this process requires 

N multiplications and N-1 additions for every symbol output.  However, when N is large, we can 

obtain linear convolution with a reduced number of multiplications and additions in the 

frequency domain.  

 

Fig. 4.2: Schematics of overlap-save algorithm  

 From the properties of DFT, we know that the circular convolution of h(m) and u(m) can be 

found by transforming both vectors in the frequency domain by DFT, performing an element-by-

element multiplication and transforming the result back in the time domain by inverse DFT 

(IDFT). This process can be efficiently implemented by the fast Fourier transform (FFT) and the 

inverse FFT (IFFT) algorithms. Examining the circular convolution example as in Fig. 4.1, it is 

noted that we can extract the linear convoluted terms from the circular convoluted result.   

 The commonly used techniques to evaluate linear convolution in the frequency domain are 

the overlap-save and the overlap-add methods [8]. However, the overlap-add method suffers 

from more computational complexity compared to the overlap-save method, and hence it will not 

be pursued further in this work. 

 For the overlap-save method, as shown in Fig. 4.2, each data block consists of last N data 

points in the previous block followed by the N new data points to form a data sequence of 2N 
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(this is referred to as 50% overlap). The impulse response of an FIR filter is appended with N 

zeros and 2N-point FFT is done. 

 If the block index k is related to the sample index m as m=kL+i (i=1, 2, 3...), then we can 

construct the frequency-domain input and the tap-weight vector as 

 ( ) { ( ) ( 1)},k FFT u kN N u kN N    U    (4.3) 

 ( ) { ( ),0,0 0} .T Tk FFT h k H  (4.4) 

The element-by-element multiplication of U(k) and H(k) yields  

 ( ) ( ) ( )k k k V U H    (4.5) 

According to the overlap-save method, N output samples ( ) [ ( ), ( 1)]k v kN v kN N   v from a 

linear convolution which is calculated as 

 ( ) last  components of { ( )}k N IFFT kv V . (4.6) 

4.1.3 Gradient Decent Based Adaptive FDE 

Employing the overlap-save method, we can construct the frequency-domain adaptive filter by 

calculating the gradient vector in the time domain. Such a scheme is shown in Fig. 4.3. If we use 

the LMS algorithm the error vector can be estimated from the output vector in Eq. (4.6) as 

 
   ( ) .k k k e d v    (4.7) 

In Eq. (4.7), d(k) is the desired symbol block, which may either training signals in the training 

mode or decoded symbols in the decision-directed  mode. 

On the other hand, if we use the CMA, the error vector is computed as 

 
        2

2 ( ) ,k R k conj k k  e v v v    (4.8) 

where, 

4

2 2

{ ( ) }

{ ( ) }

E d m
R

E d m
 . 

Then, the time-domain error vector is transformed to the frequency domain as  

 
  [ ; ( )]Tk FFT k LE O e    (4.9) 

After that, the gradient vector in the time domain is computed as  

 ( ) first  components of { ( ) ( )}.k N IFFT k k  U H    (4.10) 
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 Finally, we need to transform the gradient vector into the frequency domain and add it to 

H(k) in order to generate updated weight H(k+1). Since h(k) is followed by N zeros as in Eq. 

(4.4), the gradient in Eq. (4.10) must be similarly augmented. Thus, the update equation is given 

as 

   1 [ ( ); ] .T Tk FFT k    LH H(k) O    (4.11) 

 

Fig. 4.3: Adaptive FDE using over-save algorithm and gradient decent based updating  

 Note that, Eqs. (4.10) and (4.11) place a constraint on the gradient vector, as shown by 

dotted box in Fig. 4.4 and each gradient constraint requires an additional FFT and IFFT; however, 

it ensures that frequency-domain tap weights are equivalent to the time-domain counterparts.  

Removing the gradient constraint can reduce the complexity of the equalizer as far as the input 

sequence satisfies some specific conditions; however, by using such unconstraint FDE algorithm 

[17], tap-weight vectors do not converge to the Wiener solution as the number of block iterations 

approaches infinity [18]. Hence, unconstraint FDE is not always reliable. 

4.2 Proposal of a Novel Adaptive FDE 

The adaptive FDE shown in Fig. 4.3 can operate on the symbol-spaced input sequence only. In 

such a case, we can construct the gradient vector from each output block, whose length is equal 

to that of the filter-tap coefficient vector. On the other hand, if we use the twofold-oversampled 

input sequence and down-sample the output sequence from each output block, we have an 
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insufficient number of symbol-spaced output samples to construct the gradient vector. However, 

we need an adaptive FDE that can work on the two-fold oversampled input sequences. The 

reason behind this is that such oversampling reduces aliasing effects significantly [19] and also 

the adaptive filter can have the functionality of clock recovery [20].  

 To overcome the limitation of adaptive FDE shown in Fig. 4.3, we propose a novel adaptive 

FDE by splitting it into even and odd sub-equalizers where each sub-equalizer operates on 

symbol-spaced sequences. Thus, the proposed FDE can work on twofold-oversampled input 

sequences. In the following, we will discuss the adaptive FDE algorithm for the butterfly-

structured equalizer configuration.  

4.2.1 Equivalence of Half-Symbol-Spaced FIR Filter with Even and Odd Sub-equalizers 

We define input ports of the two-by-two butterfly-structured FIR filters as x and y ports, whereas 

their output ports as X and Y ports. The symbol duration is T, the delay spacing is T/2, and the 

delay-tap length of each filter is N. When  xu n  and  yu n  are n-th input sequences for x and y 

ports, respectively, which are twofold oversampled, the output from the X port can be expressed 

as 

  

1 1

0 0

( ) ( ) ( ) ( ) ( )  .
2 2i i

N N

x xx x xy y

i i

T T
v n h n u n i h n u n i

 

 

   
      

   
 

 

(4.12) 

Filter-tap weights are updated every two samples, and the filter output is down-sampled by a 

factor of two to retain the symbol-spaced output. If we consider that only the odd sequence from 

the output is taken and used for updating filter-tap weights. Let the new symbol-spaced sample 

index be m such that 2 1n m   (m=0, 1, 2, ···); and then, the down-sampled output from the X 

port can be written as 

 
1 1

0 0

( ) ( ) (2 1 ) ( ) (2 1 )
2 2i i

N N

x xx x xy y

i i

T T
v m h m u m i h m u m i

 

 

   
        

   
   

1 1

0 0

( ) ( )
2 2 2 2i i

N N

xx x xy y

i i

T T T T
h m u mT i h m u mT i

 

 

      
           

      
 
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2 2

/2 1 /2 1

0 0

( ) 2 ( ) 2
2 2 2 2i i

N N

xx x xy y

i i

T T T T
h m u mT i h m u mT i

 

 

      
           

      
   

2 1 2 1

/2 1 /2 1

0 0

( ) (2 1) ( ) (2 1)
2 2 2 2i i

N N

xx x xy y

i i

T T T T
h m u mT i h m u mT i

 

 

 

      
             

      
                   

   
2 2

/2 1 /2 1

0 0

( ) ( )
2 2i i

N N

xx x xy y

i i

T T
h m u m i T h m u m i T

 

 

   
        

   
   

     
2 1 2 1

/2 1 /2 1

0 0

( ) ( )  .
i i

N N

xx x xy y

i i

h m u m i T T h m u m i T T
 

 

 

      
 

  (4.13) 

For the sake of derivational simplicity, we consider that N is even so that / 2L N  is an 

integer. Equation (4.13) shows that the down-sampled output is the sum of two symbol-spaced 

convolutions with a relative delay of T/2. Thus, Eq. (4.13) can be rewritten as 

 
( ) ( )* ( ) ( )* ( ) ( )* ( ) ( )* ( ) ,e e e e o o o o

x xx x xy y xx x xy yv m m m m m m m m m   h u h u h u h u
 

(4.14) 

and similarly, the output from the Y port can be written as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,e e e e o o o o
y yx x yy y yx x yy yv m m m m m m m m m       h u h u h u h u   (4.15) 

where , ( )e
x y mu and , ( )o

x y mu are given as   

 , , , , ,

T
[ (2 ), (2 2), (2 4), , (2 2 )]  ,( )e

x y x y x y x y x yu m u m u m u m Lm    u 
 

(4.16) 

 , , , , ,

T
[ (2 1), (2 1), (2 3), , (2 2 1)]  .( )o

x y x y x y x y x yu m u m u m u m Lm      u 
 

(4.17) 

On the other hand, filter-tap coefficient vectors , ( )e o
pq mh  are given as 

 0 2 2 2

T( ) [ ( ), ( ), ( )]
L

e
p p p pm h m h m h m


 h  , (4.18) 

  
1 3 2 1

T( ) [ ( ), ( ), ( )]
L

o
p p p pm h m h m h m


 h  ,  (4.19)  

where p = xx, xy, yx or yy. Thus, the equalizer can be split into even and odd sub-equalizers with 

tap coefficients taken from even and odd filter-tap indices. Correspondingly, the input sequences 

for the sub-equalizers are taken from even and odd samples of twofold-oversampled sequences. 
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Eventually, instead of updating tap coefficients of conventional T/2-spaced FIR filters every two 

samples, we can use even and odd sub-equalizers, where tap updating is done every symbol 

without down-sampling output sequences.  

     With such sub-equalizer-based FDE, we can efficiently execute time-domain convolutions 

shown in Eqs. (4.14) and (4.15) in the frequency domain by using DFT and multiplications.  

Block-output vectors with L rows are given as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,e e o o e e o o

x xx x xx x xy y xy yk k k k k k k k k       V H U H U H U H U
 
   (4.20) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),e e o o e e o o

y yx x yx x yy y yy yk k k k k k k k k       H U H U H U H UV    (4.21) 

 Note that the convolutions in Eqs. (4.14) and (4.15) are linear convolutions, while inverse 

DFT (IDFT) of Eqs. (4.20) and (4.21) gives us circular convolutions. However, using the 

overlap-save method, we can extract linearly-convoluted terms from the circularly-convoluted 

terms obtained from IDFT of Eqs. (4.20) and (4.21)  [15].   

 4.2.2 Configuration of Proposed Adaptive FDE 

The schematic of the proposed adaptive FDE for polarization-multiplexed transmission systems 

is shown in Fig. 4.4, which is implemented by using Eqs. (4.20) and (4.21). Eight frequency-

domain filters consist of even sub-equalizers and odd sub-equalizers. Four even sub-equalizers 

       , , ,  and e e e e
xx xy yx yyk k k kH H H H  are connected in a two-by-two butterfly configuration. In the 

same way, four odd sub-equalizers   ,o
xx kH    ,o

xy kH     ,o
yx kH  and  o

yy kH are placed in another 

two-by-two butterfly configuration.  
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Fig.4.4: Schematic of the proposed adaptive FDE. S/P denotes a serial-to-parallel converter and P/S a 

parallel-to-serial converter. 

First, the input sequences  ,x yu n  are divided into even and odd sequences. In the FDE, a 

block of data is processed at a time instead of sample-by-sample processing in the time-domain. 

Let the length of even and odd sequences included in a block be L. Then,  ,
,

e o
x y ku represents a 

column vector with the length of L for the k-th block. 

We choose 50% overlap because the most efficient implementation can be achieved with such 

an overlapping factor [18].  By using the 50% overlapping factor, the frequency-domain input 

vector ,

,
( )

e o

x y
kU  for sub-equalizers includes L samples from the current block and L samples from 

the previous block and can be written as 

 
, , ,

, , ,

T
( ) FFT[ ( ), , ( 1)]

e o e o e o

x y x y x yk u kL L u kL L      U ,    (4.22) 
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Then, L tap weights of the sub-equalizers are padded with the equal number of zeros and 2L-

point FFT is executed. Let 
,

( )
e o

p kH be the FFT-coefficient vector of the zero-padded tap-weight 

vector  ,e o
p kh  as 

 
, , T

( ) FFT[ ( ); ] .e o e o

p p Lk kH h O .  (4.23) 

where p = xx, xy, yx or yy. By carrying out IFFT, the output vector in the time domain with a 

column length of L is given as 

 , ,( ) last  elements of IFFT{ ( )}x y x yk L kv V ,    (4.24) 

where Vx(k) and Vy(k) are given as Eqs. (4.20) and (4.21), and the first L elements of 

IFFT{  ,x y kV } are discarded to implement the linear convolution. Then, the error vector in the 

CMA with a column length of L is calculated in the time domain as  

 
2

, 2 , , ,( ) [ ( ) conj{ ( )}] ( )x y x y x y x yk R k k k   e v v v ,   (4.25) 

After augmenting , ( )x y ke with L zeros, we convert it to the frequency-domain vector with the 

column length of 2L as  

 
T

, ,( ) FFT[ ; ( )]  .x y L x yk kE O e    (4.26) 

Applying the overlap-save method, we calculate the gradient vector 
, ( )e o

p k  as 

 
, , T( ) first  terms of IFFT[ conj{ ( )}] ,e o e o

xx x xk L k  E U   (4.27) 

 

, , T( ) first  terms of IFFT[ conj{ ( )}] ,e o e o
xy x yk L k  E U   (4.28) 

 

, , T( ) first  terms of IFFT[ conj{ ( )}] ,e o e o
yx y xk L k  E U   (4.29) 

 

, , T( ) first  terms of IFFT[ conj{ ( )}] .e o e o
yy y yk L k  E U   (4.30) 
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 Finally, the tap weights are updated in the frequency domain by using the gradient decent 

algorithm as   

 
, , , T

( 1) ( ) FFT[ ( ); ] ,e o e o e o

xx xx xx Lk k k   H H O   (4.31) 

 
, , , T

( 1) ( ) FFT[ ( ); ] ,e o e o e o

xy xy xy Lk k k   H H O   (4.32) 

 
, , , T

( 1) ( ) FFT[ ( ); ] ,e o e o e o

yx yx yx Lk k k   H H O   (4.33) 

 
, , , T

( 1) ( ) FFT[ ( ); ] .e o e o e o

yy yy yy Lk k k   H H O   (4.34) 

4.3 Computational Complexity Analysis 

When we consider power consumption and chip space for implementation of the digital signal 

processing (DSP) algorithm in ASIC or FPGA, the cost for a multiplier is much higher than that 

for an adder. Hence, in this section, computational complexity is evaluated in terms of the 

required number of complex multiplications per bit. In the following, the term 'multiplication' 

always refers to 'complex multiplication'.  

     First, we consider the TDE using the butterfly-structured FIR filters adapted by CMA. The 

delay spacing is T/2 and the tap length is N.   To obtain one output symbol from the X port and 

one output symbol from the Y port of the TDE, we need 8N multiplications for output 

calculations, 4N multiplications for tap updating by CMA, and additional 4 multiplications for 

error-value calculations. By putting these together, the computational complexity CTDE of the 

adaptive TDE can be expressed as 

 TDE

2

6 2
,

log ( )

N
C

M




  
(4.35) 

where M is the number of constellation points on the signal constellation.  

     On the other hand, to obtain N/2 output symbols from the X port and N/2 output symbols from 

the Y port through processing of one block in our proposed FDE, we need 4N multiplications for 

output calculations of one block, 4N multiplications for tap updating by CMA, 2N 

multiplications for error-value calculations, and  212 logN N multiplications for 24 FFT/IFFT 

which include 4 FFT for inputs, 2 IFFT for outputs, 2 FFT for error- vector calculations, and 16 
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FFT/IFFT for employing gradient constraint of eight sub-equalizers. For FFT implementation, 

the classical radix-2 algorithm is used, which requires  2log / 2N N  multiplications to execute 

FFT of N complex numbers [21]. Thus, the computational complexity CFDE of the proposed FDE 

can be expressed as  

 
2

FDE

2

12 log ( ) 10

log ( )
.

N
C

M


   (4.36) 

 Figure 4.5 shows the comparison of computational complexity between FDE and TDE, 

where we assume the QPSK modulation format (M=4). It is found that the complexity of TDE 

increases sharply (linearly), while that of FDE increases slowly (logarithmically) with increase in 

the number of taps.  

 

Fig. 4.5: Computational complexity for QPSK modulation format of proposed adaptive FDE and 

conventional adaptive TDE adapted by CMA 

From Table 4.1, it is clear that the proposed adaptive FDE provides much lower complexity 

than the adaptive TDE when N is 16 or more. This benefit enhances significantly with the 

increased number of N. 
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Table 4.1: Computational Complexity of The Proposed FDE and The Conventional TDE Using FIR Filters Adapted 

by CMA When Use The Dual-Polarization QPSK Modulation Format 

N 4 8 16 32 64 128 

CTDE 13 25 49 97 193 385 

CFDE  17 23 29 35 41 47 

4.4 Multi-Impairment Monitoring from Proposed FDE 

After the adaptive FDE converge, we perform IFFT to get the impulse response of eight sub-

equalizer as in Fig. 4.5 as 

 
, ,( ) { ( )}.e o e o

p pk IFFT kh H
 

(4.37) 

From these sub-equalizers impulse responses, we can construct four impulse responses vectors as 

,0 ,0 ,1 ,1 , 1 , 1( ) [ ( ), ( ), ( ), ( ) ( ), ( )]e o e o e o T

p p p p p p L p Lk h k h k h k h k h k h k  h
 

(4.38) 

From Eq. (4.38), the monitoring matrix is calculated which is essentially the same as in Eq. 

(3.25) 

 

1

( ) ( )
( ) .

( ) ( )

xx xy

yx yy

k k
DFT

k k




   
   
   

h h
M

h h
 

(4.39) 

Once the monitoring matrix is formed, multi-impairment monitoring can be performed following 

the proposed algorithm in Chapter 3. 

4.5 Experimental Results and Discussions 

To verify the equalization characteristics of the proposed algorithm and the monitoring 

performance from the adaptive FDE, we conduct the 40-Gbit/s dual polarization QPSK 

experiments with the same experimental set up shown in Fig 3.5 in Chapter 3. In the DSP circuit, 

sampling-phase adjustment, polarization demultiplexing, and signal equalization are done 

simultaneously either by the proposed FDE or by the conventional TDE, where CMA adapted 

filter-tap weights. In both cases, the singularity problem inherent in CMA is handled by 

introducing the training mode prior to the blind CMA mode described in Chapter 3.  The delay-

tap length for the TDE is N=32 and the block length of each sub-equalizer for the FDE is N/2=16. 
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The step-size parameter is 2
-10

. After the convergence, filter tap coefficients are used for 

monitoring. Then, the carrier recovery is done by the 4-th power algorithm [22] and the symbols 

are decoded to estimate the BER.   

4.5.1 Results Regarding Equalization 

To evaluate the performance of the proposed algorithm, we set a mixed channel distortion of 

1600-ps/nm CD, 20-ps DGD and 3-dB PDL and measure the BER characteristics.  

 As shown in Fig. 4.6, the BER performance is the same between the proposed adaptive FDE 

and conventional TDE; however, lower computational complexity can be achieved when the 

FDE is employed as illustrated in Sec.3 

 

Fig.4.6: BER characteristics of the proposed adaptive FDE and the conventional TDE 

Next, we test the sampling-phase adjustment capability of the proposed adaptive FDE. 

Receiver outputs are sampled at twice the symbol rate and interpolated to 10 samples per symbol. 

Such ten-fold oversampled sequences are down-sampled to 2 samples per symbol with different 

sampling phases and sent to the FDE. Figure 4.7 shows BER curves for 5 different sampling 

phases, which are swept with an increment of 10 % of the symbol interval. The BER curves are 

independent of the initial sampling phase, suggesting that the proposed adaptive FDE can adjust 

the sampling phase optimally in the similar manner to the TDE scheme based on T/2-spaced FIR 
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filters [19]. In our experiment, timing jitter may stem from modulation electronics and 100-km 

fiber transmission. In addition to the static adjustment of the initial sampling phase of ADCs, 

such relatively-fast timing jitter is also absorbed by the proposed FDE. 

 

Fig.4.7: BER characteristics of the proposed FDE for different sampling phases. The sampling phases are 

swept with a resolution of 10 % of the symbol interval. 

4.5.2 Results Regarding Monitoring 

We estimate different impairments from the adaptive FDE and compare the result with that 

obtained from adaptive TDE. First, to test the algorithm for monitoring of CD, DGD and PDL, 

we conduct 40-Gbit/s dual-polarization unrepeated QPSK transmission experiments where only 

one DGD section of our PMDE is used to generate a fixed DGD value and also the amount of 

PDL is set to a constant value. 
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Fig. 4.8: Monitoring result of CD with 20-ps DGD and 3-dB PDL 

Fig. 4.8 shows the monitoring results of CD value of 50-, 100- and 150-km of standard SMF in 

presence of 20-ps DGD and 3-dB PDL. The monitoring value agrees well with that of measured 

value by a standard CD measuring instrument. 

 

Fig. 4.9: Monitoring results of DGD for 1600 ps/nm CD and 3-dB PDL 

 DGD monitoring results are shown in Fig. 4.9 upto 40-ps in presence of 1600-ps/nm CD and 

3-dB PDL. The monitored value is found very close to that of the PMDE. Fig. 4.10 shows the 

PDL estimation results in presence of 1600-ps/nm CD and 20-ps DGD. The measured value 

matches well with the set PDL value. 
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Fig. 4.10: Monitoring result of PDL with 1600-ps/nm and 20-ps DGD 

 It is important to note here that for all of the cases, there are no significant difference 

between monitoring results from the adaptive FDE and that from the conventional adaptive TDE. 

 To verify the second-order PMD monitoring algorithm, we estimate the statistical behavior 

of second-order PMD and compare it with the theoretical density listed in Table 3.1. In this 

experiment, we transmit a 100-Gbit/s dual-polarization QPSK signal through PMDE, which is 

set to generate a Maxwellian-distributed DGD with the mean value of 35 ps and a corresponding 

second-order PMD with a refresh rate of 10 ms, while CD and PDL were set to zero. 

 

Fig. 4.11: Measured DGD and Second-order PMD spectrum from an arbitrary sample 

 Fig. 4.11 shows the estimated spectrum of DGD and second-order PMD. For both the cases, 

the estimated value from adaptive TDE and FDE are almost same. From such spectrum, we 

count the DGD and second-order PMD at centre frequency from 700 samples and calculate their 

1 2 3 4 5 6 7
1

2

3

4

5

6

7

 

 

TDE

FDE

M
o

n
it

o
re

d
  P

D
L

 (
d

B
)

Emulated PDL (dB)

-6 -4 -2 0 2 4 6
0

20

40

60

80

0 10 20 30 40 50
0

10

20

30

40

50

 

 

TDE

FDE

DGD of PMDE (ps)

M
o
n
it

o
re

d
  D

G
D

 (
p
s)

Frequency (GHz)

D
G

D
 (

p
s)

-5 0 5
0

500

1000

1500

2000

Frequency (GHz)

S
e
c
o

n
d

-o
rd

e
r 

P
M

D
 (

p
s2

)

0 10 20 30 40 50
0

10

20

30

40

50

 

 

TDE

FDE

DGD of PMDE (ps)

M
o

n
it

o
re

d
  D

G
D

 (
p
s)



73 
 

probability densities as shown in Fig.4.12.  The measured probability densities for all the cases 

match well with the theory. 

 The mean DGD estimated from the TDE is 35.64 ps while that from FDE is 35.36 ps; both 

values are very close to the set value of 35 ps. As of second-order PMD, the mean value 

estimated from TDE is 627 ps
2
 while that from FDE is 616 ps

2
 which are about 20% less than the 

predicted mean value. The dissimilarity between the estimated second-order PMD and the 

theoretical prediction may stem from the inadequate number of statistical samples and using only 

three DGD sections in our PMDE which is insufficient to generate the second-order PMD similar 

to that of the real fiber. 

 

Fig.4.12: Probability densities of the first- and second-order PMD. Bars show those estimated from 

monitored values and solid curves are theoretical ones. 
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4.6 Chapter Summery 

We have proposed a novel frequency-domain equalizer in digital coherent receivers, which 

operates on twofold-oversampled input sequences. Such an equalizer performs sampling-phase 

adjustment of ADCs, polarization demultiplexing, and signal equalization with computational 

complexity lower than the time-domain equalizer. The proposed equalizer is very efficient when 

long-tap filter implementation is necessary and therefore is a good choice for multi-impairment 

monitoring from the equalizer. The performance of the equalizer as well as multi-impairment 

monitoring from its tap coefficients are verified by 40-Gbits/s dual-polarization QPSK 

transmission experiments. 
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Chapter 5 

Monitoring of Optical Signal-to-Noise Ratio 

 

Optical signal-to-noise ratio (OSNR) monitoring is an important issue for optically amplified 

systems. Accurate OSNR monitoring in any digital signal processing (DSP) stage of coherent 

optical receiver is not yet available. In this work, we proposed and experimentally verified a 

novel method to monitor OSNR by measuring the higher-order statistical moments of the 

adaptive-equalizer output. The proposed scheme is simple and can monitor the in-band OSNR 

with good accuracy. 

  This chapter starts with background theory which includes definition of OSNR and its 

typical measurement technique and the definitions of higher-order statistical moments that will 

be required to understand the proposed OSNR monitoring algorithm. Section 2 describes our 

OSNR monitoring method and Sec. 3 provides its experimental verification. The final section 

summarizes the chapter.   

5.1 Background Theory 

5.1.1 Definition of OSNR 

OSNR can be defined as the logarithmic ratio of the average optical signal power to the average 

optical noise power over a specific spectral bandwidth [1]. It can be expressed as 

 
.

10log ,
sig

noise

P
OSNR

P

 
  

 
  (5.1) 

where 

OSNR: optical signal-to-noise ratio bounded by bandwidth B0, dB 

Psig.: signal power bound by B0, mw 

Pnoise: noise power bound by B0, mw 

B0: reference spectral bandwidth, nm. 

 Though there are different sources of noise in optical communication systems, in optically 

amplified systems, the noise source mainly stems from amplified spontaneous emission (ASE) 

[2]. Therefore, the OSNR in such system is defined as  
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(5.2) 

where PASE is the ASE noise bound by the reference bandwidth B0, which is typically chosen as 

0.1 nm (12.5 GHz). 

5.1.2 Typical OSNR Measurement Technique 

The optical spectrum analyzer (OSA) is the instrument typically used to measure OSNR. Most 

OSA units use the method defined by IEC 61280-2-9 standard [3]. Both signal and noise 

measurements are done over a specific spectral bandwidth Br, known as the OSA‟s resolution 

bandwidth (RBW). The RBW filter acts as a band-pass filter allowing only a set amount of 

optical spectrum to strike the OSA‟s photo-detector. The photo-detector measures the average of 

all optical power in this spectral width.  

As shown in Fig. 5.1, noise power at the signal wavelength cannot be measured directly 

because it is obscured by the signal itself. Hence, the noise measurement is performed at the 

wavelengths λ1 and λ2 which are located on both sides of the signal wavelength λ0, by using the 

OSA‟s noise equivalent bandwidth (NEB) filter. Then the results are interpolated to calculate the 

noise power at the signal wavelength. Finally, the OSNR is calculated by the following equation: 
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noise r

P B
OSNR

P B
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 (5.3) 

where Bm  is NEB and Br is RBW and the interpolated noise is calculated as

1 1{ ( ) ( )}/ 2.noise noise noiseP P P    

 Equation (5.3) is similar to Eq. (5.1) with the exception of the last term. This term is a 

scaling factor used to adjust the measured noise power bound by the noise equivalent bandwidth, 

to the signal RBW bandwidth.  
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Fig. 5.1: OSA view of typical signals and OSNR parameters  

For dense wavelength-division multiplexed (DWDM) system IEC 61280-2-9 defines the 

OSNR measuring method. Signal, noise power, and OSNR measurements and calculations are 

performed at each individual DWDM channel. For i-th channel the OSNR is calculated as 

 
.,

,

10log 10log .
sig i m

i

noise i r

P B
OSNR

P B

   
     

  

 (5.4) 

 Noise measurements for interpolation are generally made at 1/2 ITU channel spacing (or 

less) on both sides of the signal wavelength such as
 

, / 2 / 2{ ( ) ( )}/ 2.noise i noise i ITU noise i ITUP P P     

For tightly spaced DWDM channels, a tighter width is used.  

Note that, special precaution is required if we measure the OSNR on the filtered end or 

demux side (drop side) of a DWDM, optical add-drop multiplexer (OADM), or reconfigurable 

optical add-drop multiplexer (ROADM) [4]. Due to DWDM, OADM, or ROADM filtering 

effects, a false noise floor may appear in an OSA. This can result in an incorrect automatic 

OSNR measurement. The correct measurement can be made by manually setting the OSA noise 

markers to the proper noise floor.  
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It should be noted here that the laser spectral width varies with the modulation rate; higher 

the rate wider the signal spectral width. Thus, RBW should be chosen according to the 

modulation rate. Table 5.1 shows the minimum recommendation for RBW that will cause a 

certain measurement error for various transmission rates and NRZ modulation [3]. 

Table 5.1: Minimum RBW for Different Signal Modulation Rate 

Modulation Rate 

(Gbps) 

Minimum RBW for less 

than 0.1 dB error (nm) 

Minimum RBW for less 

than 1 dB error (nm) 

   40 1 -- 

10 ≥ 0.2 ≥ 0.1 

2.5 ≥ 0.09 ≥ 0.03 

5.1.3 Statistical Moments 

The n-th moment of a distribution is the expected value of the n-th power of the deviations from 

a fixed value. The first moment of the distribution of the random variable x is the expectation 

operator, i.e., the population mean (if the first moment exists). Generally, in higher orders, either 

the central moments (moments about the mean) or the moments about zero are considered. 

The k-th central moment of a real-valued random variable x is given by 

  { },
k

k E x    (5.5) 

where, E is the mathematical expectation operator and μ is the expected value (mean) given as 

{ }E x  . The first central moment is thus 0. The second central moment is the variance, while 

third and fourth normalized central moments are called skewness and kurtosis, respectively.   

Variance: 

The variance of x is given by: 

 2

2 {( ) }.E x    (5.6) 

 The variance is used as a measure of how far a set of numbers are spread out from each 

other. The positive square root of variance is the standard deviation σ. The normalized nth 

central moment or standardized moment is the nth central moment divided by σ
n
; the 

normalized nth central moment of x = E((x − μ1)
n
)/σ

n
. These normalized central moments 

are dimensionless quantities, which represent the distribution independently of any linear change 

of scale. 
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For a complex random variable z, the variance can be expressed as 

 *

2, {( )( ) }c E z z       

 
2

{ }.E z    (5.7) 

With a zero mean value Eq. (5.7) reduces as 

 
2

2, { }.c E z   (5.8) 

Skewness: 

The skewness of a random variable x is the third standardized moment, denoted γ1 and defined as 
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   

 
 (5.9) 

where μ3 is the third moment about the mean. 

 Skewness is a measure of the asymmetry of the probability distribution of a real-

valued random variable. The skewness value can be positive or negative, or even undefined. As 

shown in Fig. 5.2 a negative skew indicates that the tail on the left side of the probability density 

function is longer than the right side and the bulk of the values lie to the right of the mean. A 

positive skew indicates that the tail on the right side is longer than the left side and the bulk of 

the values lie to the left of the mean. A zero value indicates that the values are relatively evenly 

distributed on both sides of the mean, typically but not necessarily implying a symmetric 

distribution [5]. 

 

Fig. 5.2: Illustration of positive and negative skew 
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Kurtosis: 

The fourth standardized moment can be defined as kurtosis as 
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where μ4 is the fourth moment about the mean. 

 Many authors define Kurtosis as a measure of the "peakedness" of the probability 

distribution (however, this is not strictly true [6]). Higher kurtosis means more of the variance is 

the result of infrequent extreme deviations, as opposed to frequent modestly sized deviations. 

However, kurtosis is more commonly defined as the fourth-cumulant divided by the square 

of the second-cumulant, which is equal to the fourth moment around the mean divided by the 

square of the variance of the probability distribution minus 3, 

 4
2 4

3,





   (5.11) 

which is also known as excess kurtosis. The "minus 3" at the end of this formula is often 

explained as a correction to make the kurtosis of the normal distribution equal to zero.  

 There are three forms of kurtosis: Leptokurtic, Mesokurtic, Platykurtic. When kurtosis is 

zero, it is called mesokurtic and it is corresponds to normal distribution. The negative kurtosis is 

platykurtic and positive kurtosis is leptykurtic. When compared to a normal distribution, a 

platykurtic data set has a flatter peak around its mean, which causes thin tails within the 

distribution. The flatness results from the data being less concentrated around its mean. 

Leptokurtic distributions have higher peaks around the mean compared to normal distributions, 

which leads to thick tails on both sides. These peaks result from the data being highly 

concentrated around the mean, due to lower variations within observations.   

http://en.wikipedia.org/wiki/Cumulant
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Fig. 5.3: Illustration of different types of kurtosis 

 Normalized 4-th order moment of complex random variable z around zero mean is given as 

 

 

 

4

4
2, 24

2

.c

E z

E z





 

 
    

(5.12) 

 There are different ways for generalization of kurtosis for complex random variables. The 

most commonly used definition [7, 8, 9] is 
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(5.13) 

With such a definition, similar to the kurtosis of a real-valued Gaussian random variable, the 

value of γ2,c is zero for both circular and noncircular complex Gaussian random variables. 

Furthermore, in this measure, kurtosis value of a sub-Gaussian complex random variable is 

negative and that of a super-Gaussian complex random variable is positive, irrespective of the 

circularity/noncircularity of the random variable. 

 5.2 Proposed OSNR Monitoring Method 

We monitor the OSNR from the statistical characteristics of adaptive-equalizer output. When the 

channel power is modest so as to operate the transmission system in the optically linear region or 

weakly nonlinear region and also the length of the adaptive FIR filter is sufficient enough to 

Leptokurtic (+)

Mesokurtic (0)
(normal)

Platykurtic (-)
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compensate for all linear impairments, the output signal from the adaptive filter can be 

approximated as 

 
*  ,n n n nv Ca Nw h 

 
(5.14) 

where an is the M-ary PSK symbol amplitude, C is the carrier power scale factor, N is the noise 

power scale factor, w'n is the amplified spontaneous emission (ASE) noise, * is the convolution 

operator, and 
nh is the filter impulse response. The symbol amplitude an and the noise amplitude 

w'n are stochastically-independent random variables, whose means are 0 and variances are 1. 

When we neglect the polarization dependent loss, the coherent optical channel has the 'all-pass' 

nature; and thus 
nh has an impulse response of an all-pass filter [10, 11]. Under such a condition, 

we can write *n n nw h w  , where w'n is statistically equivalent to wn [12].  Thus, Eq. (5.14) can be 

rewritten as 

 
.n n nv Ca Nw 
. 

(5.15) 

 Assuming that the modulation format is QPSK and wn has the Gaussian distribution, we can 

find the statistical prosperities of an and wn as shown in Table 5.2. 

Table 5.2: Statistical Properties of an and wn 

Parameter an wn 

Mean 0 0 

Variance 1 1 

Kurtosis 1 2 

 In the following, using the statistical properties in Table 5.2, we develop an OSNR monitoring 

algorithm by measuring the second- and fourth- order moments of vn. 

The second-order moment µ2 of vn can be expressed as 

 
*

2 { }n nE v v 
 

 
* * * *{ } { } { } { }n n n n n n n nCE a a CNE a w CNE a w NE w w     
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2 2* *{ } ( { } { }) { },n n n n n nCE a CN E a w E a w NE w   
 

(5.16) 

where superscript (•)
*
 denotes complex conjugate. 

Since signal and noise are mutually independent complex-valued random processes with 

zero mean, we can write 

 
*{ } 0,n nE a w 

 
(5.17) 

 
*{ } 0.n nE a w 

 
(5.18) 

Also we have E{|an|
2
}=1and E{|wn|

2
}=1. Putting these values in Eq. (5.16) yields

 

  
2 .C N  

 
(5.19) 

On the other hand, the fourth-order moment of vn can be written as 
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   

  (5.20)

 

Since the carrier signal and noise are independent and both are zero mean processes, all terms in 

Eq. (5.20) with single appearance of an or wn disappears. Thus, 

 
* *{ *} { } { *} 0.n n n n n n n nE a a a w E a a a E w  

 
(5.21) 

Similarly, 

 
*{ * } 0,n n n nE a a a w 

 
(5.22) 

 
*{ *} 0,n n n nE w w a w    (5.23) 

 
*{ * } 0.n n n nE w w a w 

 
(5.24) 

Moreover, the real and imaginary components of carrier and noise can be considered as 

orthogonal; hence in such condition 

 
* 2 2 * 2{( ) } {( ) } {( ) } 0,n n n nE a w E a E w  

 
(5.25) 

 
* 2 * 2 2{( ) } {( ) } {( ) } 0.n n n nE a w E a E w  

  
(5.26) 
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Also, it is evident that, 
4* 2{( ) } { },n n nE a a E a

4* 2{( ) } { }n n nE w w E w  and 

2 2* *{ } { }.n n n n n nE a a w w E a w  

Therefore, Eq. (5.20) can be rewritten as 

 

4 2 2 42 2

4 { } 4 { } { }n n n nS E a CNE a w N E w     

 
2 2

2, 2,4 ,a wC CN N   
 

(5.27) 

where, γ2,a=E{|an|
4
}/E{|an|

2
}

2
 and γ2,w= E{|wn|

4
}/E{|wn|

2
}

2
 are kurtoses of the signal and the noise, 

respectively. Noting that γ2,a =1 for the M-ary PSK signal; on the other hand, ASE noise can be 

approximated as the Gaussian-noise [13] and thus γ2,w =2 [14]. Therefore, Eq. (5.27) can be 

written as 

  
2 2

4 4 2 .C CN N   
 

(5.28) 

In a practical system, second- and fourth-order moments are calculated from a block of L 

symbols as in Eqs. (5.29) and (5.30): 
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(5.30) 

Solving Eq. (5.19) and (5.28), we get 

 
2

2 42 ,C   
 

(5.31) 

 
2

2 2 42 .N     
 

(5.32) 

 When we determine 
2 and 

4 , by using Eqs. (5.29) and (5.30), we can estimate the carrier-

to-noise ratio (CNR) as 
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2
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2
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 
 

(5.33) 
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In this point we make two assumptions- 

(1) The input launch power to the fiber is not high enough, so that the fiber nonlinearity is 

negligible. In such a case the measure noise as in Eq. (5.32) is the contribution of ASE noise. 

(2) After the adaptive-equalizer, all linear fiber transmission impairments are perfectly 

compensated. This assumption is practical as the accumulated fiber dispersion after transmission 

of thousands of km can be compensated without any notable penalty using digital filters with 

sufficient number of taps in coherent optical receivers [15].   

 With the above conditions, OSNR in dB can be estimated from the CNR value given by Eq. 

(5.33) as 

  10 1010log ( ) 10log / ,dB s rOSNR CNR R B 
 

(5.34) 

where Rs is the symbol rate and (Rs/Br) is a scaling factor to adjust the measured noise power to 

some reference bandwidth Br. 

5.3 Experimental Verification 

5.3.1 Experimental Setup 

To demonstrate the effectiveness of the proposed algorithm, we carried out 10-Gsymbol/s 

QPSK transmission experiments shown in Fig. 5.4. The transmitter laser and the local oscillator 

(LO) were distributed-feedback lasers (DFB-LDs) having a center wavelength of 1552 nm and a 

3-dB linewidth of 150 kHz. A 20-Gbit/s NRZ-QPSK optical signal was generated by using a 

LiNbO3 optical IQ modulator (IQM), which was driven by two streams of a 2
9
-1 pseudo-random 

binary sequence (PRBS) from an arbitrary waveform generator (AWG). The signal was then pass 

through a standard single mode fiber (SMF). ASE noise was separately generated by an erbium-

doped fiber amplifier (EDFA) and coupled to the signal by an optical coupler. The combined 

signal and noise passed through a variable optical attenuator (VOA). Then, a coupler spit it into 

two paths: one was connected to an optical spectrum analyzer (OSA) to measure OSNR 

independently, and the other was incident on a phase diversity homodyne receiver. Outputs of the 

receiver were sampled and digitized at 20 Gsample/s with analog-to-digital converters (ADCs) and 

sent to offline DSP.   
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Fig. 5.4: Schematics of experimental setup to verify the proposed OSNR monitoring algorithm 

In the DSP circuit, a 33-tap half-symbol-spaced adaptive FIR filter was used for sampling 

phase adjustment [16] and compensation for linear impairments. The constant-modulus algorithm 

(CMA) was used for FIR-filter adaptation. Then, the filter output was used directly to estimate 

OSNR without carrier recovery since the second- and fourth-order moments are independent of the 

carrier phase.  

5.3.2 Results and Discussions 

We monitor OSNR over a range from 6 dB to 13 dB with 0.1-nm ASE-noise bandwidth, which 

correspond to a bit-error rate (BER) of 4×10
-2

 and an error-free condition, respectively.  As 

shown in Fig. 5.5, OSNR estimated by our proposed algorithm agrees well with OSNR measured 

by OSA for both channel dispersion of 0 and 1600 ps/nm. 
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Fig. 5.5: OSNR Monitoring results as a function of OSNR measured by the OSA  

 

Fig. 5.6: Monitoring error as a function of OSNR measured by the OSA 

The monitoring error is shown in Fig. 5.6 for the CD value of 0 ps/nm and 1600 ps/nm. 

For both the cases, the monitoring error always found below 1 dB. Thus, the fiber dispersion has 

no significant effect in the monitoring as it is compensated by the FIR filters.  
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5.4 Chapter Summary 

We have proposed a new OSNR monitoring method in digital coherent receivers by measuring 

second- and fourth- order statistical moments of the adaptive-equalizer output. The effectiveness 

of such algorithm is verified by 20-Gbits/s QPSK transmission experiments. 
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Chapter 6 

Conclusions 

 

6.1 Conclusions 

The objective of enabling optical performance monitoring (OPM) in digital coherent receivers 

has been successfully completed. The considered parameters for monitoring are linear fiber 

transmission impairments, such as chromatic dispersion (CD), first- and second-order 

polarization mode dispersion (PMD), polarization dependent loss (PDL), and optical signal-to-

noise ratio (OSNR). In this thesis, we have presented the new and novel concepts and results, 

both theoretically and experimentally, for OPM in digital coherent receivers.  

 The importance of the OPM for the next generation optical networks is outlined in chapter 1. 

Different methods for the OPM have been reviewed and motivations of thesis are clearly 

explained. 

 The background of digital coherent receivers is given in Chapter 2, which covered the 

principle of coherent detection and digital signal processing (DSP) based coherent receivers. 

Various functional blocks in a typical DSP core of such receiver have been discussed. 

 In Chapter 3 of this thesis, multi-impairment monitoring in digital coherent receiver is 

explored. The monitoring method is based on the analysis of transfer functions of four adaptive 

finite-impulse-response (FIR) filters that are used in the two-by-two butterfly configuration in 

digital coherent receivers for compensation for all linear transmission impairments. A novel 

algorithm to monitor the individual impairments from the single transfer matrix is reported. The 

measurable impairments include CD, differential group delay (DGD), PDL, second-order PMD 

including its components polarization dependent chromatic dispersion (PCD) and depolarization 

(DEP) of principle states of polarization (PSPs). For filter adaptation the constant-modulus 

algorithm (CMA) has been used. However, such algorithm may suffer from the singularity 

problem which means both output ports of the butterfly configuration converge to the same 

polarization tributary. Consequently, such problem is avoided by introducing the training mode 

before the blind CMA. Singularity free operation of CMA with the training mode as well as the 
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proposed multi-impairment monitoring from the FIR filters are verified by dual-polarization 

QPSK transmission experiments.  

 The important issue for multi-impairment monitoring from adaptive equalizer is that the 

filter length should be long enough to compensate for all fiber transmission impairments. 

However, it is difficult to implement long-tap FIR filters in an application-specific integrated 

circuit (ASIC) or field-programmable gate array (FPGA) as the computational complexity of 

such filters increases sharply with the number of taps. In Chapter 4 of this thesis, we propose a 

novel adaptive frequency-domain equalizer (FDE) for a digital coherent receiver which reduces 

the computational cost significantly compare to FIR based equalizer. The proposed algorithm is 

based on CMA and by introducing even and odd sub-equalizer concept, we enable the FDE to 

operate on the two-fold over-sampled input sequence even in the block processing mode. Thus, 

when it is used in butterfly structure, it performs equalization, polarization demultiplexing and 

clock recovery functionalities simultaneously. The equalization characteristics of such adaptive 

FDE and the performances of the multi-impairment monitoring from the tap coefficients of the 

proposed FDE are verified and compared with its counterpart of the conventional FIR-based 

equalizer by 40-Gbits/s dual-polarization QPSK transmission experiments.  

 In Chapter 5 of this thesis, we present a new method to monitor the OSNR in digital 

coherent receivers. The method is based on the measurement of higher-order statistical moment 

of adaptive-equalizer output. The symbol-spaced signal samples and noise samples at the 

adaptive-equalizer output have well-defined but dissimilar statistical properties. A formula is 

derived to express the carrier-to-signal ration (CNR) in terms of second- and fourth- order 

statistical moments of adaptive-equalizer output. Then, OSNR is estimated from the CNR value 

by scaling the noise bandwidth to the reference bandwidth. The proposed OSNR monitoring 

algorithm is verified by QPSK transmission experiments. 

6.2 Future Works   

  A number of areas remain open to further investigations, these include the following points: 

Fiber nonlinearity monitoring 

Fiber nonlinearity monitoring is an important issue for reconfigurable WDM networks. The 

signal degradation from the fiber nonlinearity accumulates during propagation along the optical 

transmission line and can only be fully characterized at the final destination. Therefore, 
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nonlinearity monitoring in digital coherent receivers will be an important task. Moreover, such 

monitoring information can open the possibility to develop the fiber-nonlinearity tolerant OSNR 

monitoring scheme.    

 Equalization and monitoring for high-order QAM 

Throughout this thesis the CMA is used for adaptive equalization. Though the high-order QAM 

modulation formats do not have constant modulus, the CMA can be applied to such formats. 

However, the convergence and equalization performance of CMA is not so good for higher-order 

QAM. Hence, further modification of CMA is required. 

 Moreover, though the OSNR monitoring algorithm presented in this thesis can be 

theoretically extended for high-order QAM modulation formats, a very long block of data is 

required to achieve a good statistical prediction of such signal. Hence, an alternative OSNR 

monitoring method should be introduced for such transmission system. 

Further investigation on adaptive FDE 

The proposed adaptive FDE can be implemented with much reduced complexity than the 

conventional time-domain adaptive equalizer. However, research should be carry out for further 

reduction of the computational cost of the equalizer. Especially, the requirements of gradient 

constraint should be examined for coherent optical communication systems, because it can be 

omitted if the filter input signal satisfies particular conditions. Moreover, in the proposed FDE, 

we calculate the cost function in the time domain. Further research is required for gradient 

estimation entirely in the frequency domain.           
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Appendix 

A1.Update equation for the LMS 

According to gradient decent algorithm the tap coefficients update is done as 

 ( 1) ( ) [ ( )]n n n   h h J . (1) 

where ( )nJ is gradient vector which is the derivative of mean square error J(n),   is the step 

size parameter. In case of LMS algorithm, the error value can be consider as  

 ( ) ( ) ( )e n d n v n   

 ( ) ( ) ( )d n n n u h  (2) 

where d(n) is the desired symbol and v(n) is the filter output. In case of complex input, J(n) can 

be written as 

 
2 *( ) ( ) ( ) ( )J n e n e n e n 

 
(3) 

Thus, the gradient vector can be written as 
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(4) 

For complex value of h(n), we can write ( ) ( ) ( )r in n j n h h h . Therefore, we get 
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Eqs. (5) and (6) in Eq. (4) yield 

 
*( ) 2 ( ) ( )n e n n  J u  (7) 

Putting this gradient vector in Eq. (1), we get the LMS update equation as 

 
*( 1) ( ) 2 ( ) ( )n n e n n  h h u  (8) 

Introducing a constant 2 into a new step size parameter µ yield the update equation of LMS as  

 
*( 1) ( ) ( ) ( )n n e n n  h h u  (9) 

A2. Update equation for the CMA 

The error value for the CMA can be written as  
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(10) 

According to this definition, e(n) is real, thus e(n)=e*(n)  

Therefore, the gradient vector is 
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Hence, the update equation of CMA can be written as 

 
*( 1) ( ) 4 ( ) ( ) ( )n n e n v n n  h h u  (12) 

Introducing a constant 4 into a new step size parameter µ yield the update equation of CMA as  

 
*( 1) ( ) ( ) ( ) ( )n n e n v n n  h h u  (14) 

 

 

 


