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Abstract

Sequential data analysis, a relatively young and interdisciplinary field

of computer science, is the process of extracting patterns, rules, or

meaning from large sequence data sets by combining methods from

statistics and artificial intelligence with database management.

With recent tremendous technical advances in processing power,

storage capacity, and Internet, sequential data analysis is seen as an

increasingly important approach by modern business. This is because

it can give an informational advantage by transforming unprecedented

quantities of sequence data into business intelligence. It is currently

used in a wide range of profiling practices, such as marketing, surveil-

lance, fraud detection, and scientific discovery. Since sequential data

analysis can bring real value for real applications, demand for novel

technologies in sequential data analysis is growing these days.

Hidden Markov model (HMM) is a popular tool for sequential data

analysis, and is receiving considerable attention in various communities.

And many applications that use HMM have emerged such as sequence

labeling, speech recognition, mental task classification, biological anal-

ysis, traffic monitoring, and anomaly detection. The Viterbi algorithm

is used in these applications. However, the Viterbi algorithm unfor-

tunately requires quadratic CPU time for the number of states which

are used in HMMs. And data in these applications are recently explo-

sively increasing. Therefore efficient classification approach is needed

in HMM.

To enhance the processing speed in HMM, many approximation



approaches have been proposed [Ney 92, F. Jelinek 99, Tsuruoka 05,

Toutanova 03, Siddiqi 05b, Cohn 06, Jeong 09]. However, these ap-

proaches have two major problems. First, they cannot guarantee er-

ror bound. Therefore these approaches can affect the qualities of real

applications. Second, approximate algorithms usually require hyperpa-

rameters, which control the tradeoff between accuracy and efficiency,

and have to be manually adjusted for each task.

The proposed approaches in this thesis can efficiently process HMM

without sacrificing the computational results; the proposed approaches

output the results as exactly same as the Viterbi algorithm. And the

proposed approaches need the same memory cost as the Viterbi algo-

rithm; they can handle large size of dataset used in real application.

This thesis mainly handles three typical problems in HMM; the first

problem is exact and efficient states sequence detection for single HMM

and static sequence of of arbitrary length, and the second problem is

exact and efficient identification of the model whose state sequence has

the highest likelihood for the given query sequence, and the third prob-

lem is exact and efficient monitoring of streaming data sequences to

find the best model. I propose Staggered decoding for the first problem

and SPIRAL for the second and third problem, a fast search method

for HMM datasets. The proposed approaches are based on two ideas;

approximation and pruning. Approximation is an idea that aggregates

several state to discard unlikely states or models. And pruning is an

idea that computes exact likelihood of viable states/models by pruning

unlikely state transition. Experiments verify the effectiveness of Stag-

gered decoding and SPIRAL. That is, they are much faster than the

naive Viterbi algorithm based method. And, to show the generality of

our approach for other graphical data structure, I applied our approach

for the problem to monitoring best centrality nodes of time-evolving

graphs.
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Chapter 1

Introduction

Sequential data analysis, a relatively young and interdisciplinary field

of computer science, is the process of extracting patterns from large

sequence data sets by combining methods from statistics and artificial

intelligence with database management.

With recent tremendous technical advances in processing power,

storage capacity, and Internet, sequential data analysis is seen as an

increasingly important approach by modern business to transform un-

precedented quantities of sequence data into business intelligence giving

an informational advantage. It is currently used in a wide range of pro-

filing practices, such as marketing, surveillance, fraud detection, and

scientific discovery. Since sequential data analysis can bring real value

for real applications, demand for novel technologies in sequential data

analysis is growing these day.

The Hidden Markov Model (HMM) is a ubiquitous tool for repre-

senting probability distributions over sequences of observations. The

basic theory of HMM was developed in the late 1960s [Baum 66]. Since

HMMs assess sequential data as sequences of state transitions, HMMs

are robust against noise. Therefore, significant applications that use

HMMs have emerged, including sequence labeling, speech recognition,

mental task classification, biological analysis, traffic monitoring, and

anomaly detection where data in these applications are recently explo-
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sively increasing. For example:

• Google processes 20 peta bite web text pages a day to enhance

their search engine quality [Dean 08] where the number of labels∗

(i.e., states) is typically over 2, 000 for supertagging [Brants 00,

Matsuzaki 07].

• Over 790 millions genes are stored in DNA Data Bank of Japan

[Sugawara 08]. These gene data are utilized in biological analysis

such as predicting function, structure, or biochemical activity of

unknown gene data.

• Over 2,000 GPS are attached to vehicles in Sweden for traffic

monitoring†. The traffic monitoring system can reduce city traffic

and, as a result, CO2 emissions.

The Viterbi algorithm is used in these applications. But the Viterbi

algorithm unfortunately requires quadratic CPU time for the number of

states which are used in HMMs. Therefore, the naive Viterbi algorithm

implementation is impractical for real applications due to their large

size data. So efficient approach is needed in HMM.

To enhance the processing time, many approximation approaches

have been proposed [Ney 92, F. Jelinek 99, Tsuruoka 05, Toutanova 03,

Siddiqi 05b, Cohn 06, Jeong 09]. However, these approaches have two

problems. The first problem is that they cannot guarantee error bound.

Therefore these approaches can affect the qualities of real applications.

And these approaches need hyperparameters which can affect accuracy

and efficiency; this is the second problem. Hyperparameters have to be

manually adjusted for each task.

In this thesis, I proposed the efficient approaches which guaran-

tee the same result as the Viterbi algorithm. That is, the proposed

approaches can enhance the processing speed of real applications with-

out sacrificing the application qualities. And space complexity of the
∗Labels are parts of a noun phrases, verb phrases, etc.
†http://www-03.ibm.com/press/us/en/pressrelease/28463.wss
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proposed approaches are same as the Viterbi algorithm; the proposed

approaches can handle large size of dataset used in real application.

Furthermore, the proposed approaches do not need any parameter set-

ting for uses. In this thesis, I handle three types of HMM problems; the

first problem is exact and efficient states sequence detection for single

HMM and static sequence of of arbitrary length, and the second prob-

lem is efficient identification of the model whose state sequence has

the highest likelihood for the given query sequence, exactly (i.e., an

HMM that actually has a high-probability path for the given sequence

is never missed by the algorithm.). The third problem is efficient mon-

itoring of streaming data sequences to find the best model without

exception. And, to show the generality of the proposed approaches

for other data structure, I applied the proposed approaches for the

problem to monitoring best centrality nodes of time-evolving graphs.

Although numerous studies have been published in various research ar-

eas [Siddiqi 05a, Esposito 07], to the best of my knowledge, this is the

first study to address the HMM search problem that guarantees answer

exactness. While HMM has been used in many applications, it has been

difficult to utilize the Viterbi algorithm due to its high computational

cost. However, by providing solutions in a highly efficient manner, the

proposed approaches will allow many more HMM-based applications to

be developed in the future.

1.1 Problem Definition

HMMs have found their widest application in problems that have in-

herent temporality such as speech recognition or gesture recognition.

HMM has a number of parameters whose values are set so as to best

explain the training patterns for the known category. A given pat-

tern is classified by the model with the highest posterior probability,

likelihood, i.e. the one that best explains the given pattern.

Increasing the speed of computing HMM likelihood remains a major

3



goal for the speech recognition community. This is because most of the

total processing time (30-70%) in speech recognition is used to compute

the likelihoods of continuous density HMMs where each state is mod-

eled by a separate mixture of Gaussian densities [Gales 99]; the likeli-

hood is computed using the Viterbi algorithm [Rabiner 86]. Replacing

continuous density HMMs with discrete HMMs is a useful approach

to reducing the computation cost [Sagayama 95]. Unfortunately, the

CPU cost still remains excessive, especially for large datasets, since all

possible likelihoods are computed.

Therefore, this thesis gives a solution by focusing on the following

problem:

Problem 1. Given single HMM, and single sequence X =

(x1, x2, . . . , xn), find the state sequence which has the highest likelihood,

estimated with respect to X.

This problem setting is traditional one in area of sequence labeling

and speech recognition.

Unlike the above traditional problem setting, recently many appli-

cations are proposed in which HMM set is used instead of single HMM

such as mental task classification, biological analysis. Therefore, this

thesis gives a solution by focusing on the following problem:

Problem 2. Given an HMM set, and a sequence X = (x1, x2, . . . , xn),

find the model whose state sequence has the highest likelihood, estimated

with respect to X, from the set of HMMs.

This problem is designed to handle human-generated queries. The

system is a repository storing a large collection of models, and the

target of the system is to identify the model that will best match the

operator-given query sequence.

The focus on data engineering has recently shifted toward data

stream applications [Abadi 03]. These applications handle continuous

streams of input from external sources such as a sensor.

I address the following problem in this thesis:

4



Problem 3. Given an HMM set, and a subsequence of data stream X =

(x1, x2, . . . , xn) where xn is the most recent value, monitor incoming

sequence X to identify the model whose state sequences has the highest

likelihood, estimated with respect to X, from the set of HMMs.

Problems 2 and 3 focus on finding the best model. However, the

proposed approaches can handle range queries (find the models whose

likelihoods exceed a given threshold) and K-nearest neighbor queries

(find the highest K likelihood models) as described in later sections.

In order to simplify the presentation, in the remainder of the thesis,

it is assumed that the models have non-zero likelihood, and that they

will never give exactly the same likelihoods. This assumption is made

so that there is always just one best model for any given sequence.

This assumption can be eliminated without much problem and is not

pursued in this thesis.

1.2 Problem Motivation

The problems tackled in this thesis must be overcome to develop the

following important applications.

1.2.1 Applications of Problem 1

Sequence labeling and speech recognition are typical application for

Problem 1.

Sequence labeling In the past decade, structured learning has been

an active research area in the machine learning community. In partic-

ular, sequence labeling algorithms such as CRFs and structured per-

ceptrons [Lafferty 01, Collins 02] have been extensively studied because

of their importance in a wide range of application domains including

natural language processing (NLP) [Manning 99] and bioinformatics

5



[Mount 04]. Now it is not too much to say that the sequence labeling

algorithms serve as a theoretical foundation for those applications.

Most sequence labeling algorithms are probabilistic in nature, rely-

ing on statistical inference to find the best sequence. The most common

statistical models in use for sequence labeling make a Markov assump-

tion, i.e. that the choice of label for a particular word is directly depen-

dent only on the immediately adjacent labels; hence the set of labels

forms a Markov chain. This leads naturally to HMM, one of the most

common statistical models used for sequence labeling. In this applica-

tion, the state sequence which give likelihood is computed for target

sentence. And answer is the token sequence which corresponds to the

the state sequence.

Speech recognition Speech recognition research in the 1980s

was characterized by a shift in methodology from the more intu-

itive template-based approach (a straightforward pattern recognition

paradigm) toward a more rigorous statistical modeling framework. Al-

though the basic idea of the HMM was known and understood, the

methodology was not complete until the mid-1980s and it was not un-

til after widespread publication of its theory that the HMM became

the preferred approach for speech recognition. The popularity and use

of the HMM as the main foundation for automatic speech recognition

and understanding systems has remained constant over the past two

decades, especially because of its steady stream of improvements and

refinements.

An isolated phoneme recognizer can be built with HMM

[Rabiner 86, Rabiner 85]. First, an HMM is built for training pronun-

ciations. The observed acoustic features (e.g. Mel frequency cepstral

coefficient) from a set of token words are used to estimate the optimum

parameters of the model. For unknown pronunciation, characterized by

observed features, the likelihood of the unknown pronunciation and it

corresponding state sequence are computed. The answer is the phoneme

sequence which corresponds to the state sequence.

6



1.2.2 Applications of Problem 2

I show mental task classification and biological analysis as examples of

the second problem.

Mental task classification The Brain Computer Interface (BCI),

which is mainly designed to help disabled people control personal com-

puters using biofeedback, is a completely new approach in the field of

neurology [G. Pfurtscheller 94]. Biofeedback is a coaching and training

process that helps people learn how to change patterns of behavior, to

take greater responsibility for their health and for their mental, physi-

cal, emotional and spiritual well-being. Since it is undesirable for dis-

abled people to have to adapt to their computers, the basic idea behind

BCI is for the computer to adapt rather than the person.

Electroencephalogram (EEG) signals are weak voltages resulting

from the spatial summation of electrical potentials in the brain cortex,

which can easily be detected by electrodes suitably placed on the scalp.

They result from the superposition of three main types of brain po-

tential: oscillatory, event-related, and slow potential shifts. Different

components of the EEG signal have been widely demonstrated to have

measurable correlations with the brain activity associated with specific

mental tasks.

Mental task classification using EEG is an approach to understand-

ing human brain functions. HMM processing is a major tool for EEG

since it has the capability to classify probabilistic and statistical signals.

In the classification, artifacts, such as body movement and respiration,

are removed from the original signals by digital filtering, correlation

analysis, or independent component analysis [Novak 04]. HMMs are

prepared, and their parameters are trained using refined data. The

HMMs are manually labeled and stored in a database. To classify a

query sequence, it is fitted to all trained models, and is classified as

belonging to the model with the highest likelihood [Zhong 02].

7



Biological analysis

One of the most important contributions of biological sequences to the

study of evolution is the discovery that sequences of different organisms

are often related. Similar genes are conserved across widely divergent

species, often performing a similar or even identical function; some

functions are altered through the forces of natural selection [Mount 01].

Thus, many genes are represented in highly conserved forms over a

wide range of organisms. Sequence searches against large databases

have become a mainstay of bioinformatics, and sequencing projects in

which the entire genomic DNA sequence of an organism is obtained

have become quite commonplace [Durbin 99]. Search techniques can

also be especially useful in determining the function of genes whose

sequences have been established in the laboratory but for which there

is no biological information. In these searches, the sequence of the gene

of interest is compared with every sequence in a sequence database,

and similar ones are identified. Alignments with the best-matching

sequences are shown and scored. If the query sequence can be readily

aligned with a sequence with known function, structure, or biochemical

activity, the query sequence is predicted to have similar properties.

The primary advantage of HMMs is that they can be automat-

ically trained using unaligned sequences. Therefore, HMMs have

gained increasing acceptance by the computational biology community

as a means of sequence modeling, multiple alignment, and profiling

[Baldi 94]. HMMs can also be used to model protein families, or fami-

lies of other molecular sequences such as DNA and RNA [Haussler 93].

When modeling proteins, the amino acids are observed in the query se-

quence of the protein. For all models in the databases, likelihoods are

computed with the Viterbi algorithm. The query sequence is assigned

to the family of the model that has the highest likelihood among those

in the database.

8



1.2.3 Applications of Problem 3

Traffic monitoring and anomaly detection are key examples of the third

problem.

Traffic monitoring Traffic congestion is an unpleasant fact of mod-

ern life. The existence of saturated freeways and congested main roads

all over the world, reflects the fact that the existing road networks are

unable to cope with the demand for mobility which will only increase

in the future. Especially in densely populated regions, it is socially

untenable to expand the existing infrastructure in order to handle the

situation. On the other hand, mobility is vital for continued economic

development.

The existing road network, therefore, has to be used more efficiently

by the application of information systems that inform road users about

the traffic conditions or provide route guidance. The basic requirement

for this service is the precise processing of spatial and temporal data

to yield accurate traffic status. Usually the traffic status is measured

locally by various detection technologies, mostly inductive loops. In

order to provide network-wide information, it is convenient to combine

the measured data with a suitable traffic flow model [Helbing 00]. This

data can be processed by information systems whose outputs allow the

road users to organize their trips with regard to individual preferences.

Various algorithms have been advanced to explain traffic conges-

tion based on fluid flow, cellular automata, and microscopic computer

simulations. Unfortunately, all of these approaches have limitations,

particularly the need to tune many parameters to each individual free-

way.

HMM is a very cost-effective tool because it can extract the model

parameters from actual traffic data and effectively identify traffic sta-

tus [Bickel 01, Kwon 00]. Several kinds of information can be extracted

from loop detector data such as the number of vehicles passing the lo-

cation during a given time interval (flow rate), the fraction of time that
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vehicles are over the loop detector (occupancy), and the vehicle veloc-

ities averaged over the time interval. Model parameters are estimated

with this information and traffic status like congestion or free flow,

which are defined beforehand. Once models are estimated, the traffic

status can be identified with the likelihood for streaming data sequence

from a road. For example, if a model estimated from past congested

data shows the best likelihood, the road can be labeled as ‘traffic jam’.

Anomaly detection

The widespread use of the Internet and computer networks has brought,

with all its benefits, another kind of threat: that of people using illicit

means to access, invade, and attack computers. Since we have become

extremely dependent on the use of information services, the danger

of crucial operations being seriously disrupted is frightening. What

is worse, it is estimated than less than 4% of these attacks will be

detected or reported [Barbará 01]. Therefore, anomaly detection in

computer science is a key problem area because of its importance and

the widespread interest in the subject [Denning 98].

Automated modeling of human behavior is useful in the computer

security domain of anomaly detection. In the user modeling facet of

the anomaly detection domain, the task is to develop a model or profile

of the normal working status of a computer system user and to detect

anomalies as deviations from expected behavior patterns. A subset

of hostile activities can then be detected through anomalous behaviors.

For example, recursively searching system directory hierarchies by hand

or browsing through another user’s files is unusual behavior for many

users and the presence of such activities may be indicative of an intruder

who has penetrated the account.

Recently, one feature of the anomaly detection domain is the threat

of replay attacks, in which an attacker monitors a system and records

information such as user commands; these commands then later are

replayed back to the system literally. Because user commands were,

10



in fact, generated by a valid user, it seems perfectly normal to the

detection sensors unless some check is made for events that are too

similar to past events.

To avoid replay attacks, HMMs can be used to identify users by their

command line behavior patterns [Lane 99, Warrender 99]. First, com-

mand traces were gathered from UNIX users. The command traces were

parsed with a recognizer for the shell command language to convert

them into a format suitable for scanning by HMMs. Each whitespace-

delimited command is considered to be a separate symbol. The feature

selection step removes filenames and replaces them with the count of

the number of file names occurring in the command line. Removal of

filenames reduces the alphabet size by deleting excessively unique sym-

bols and improves recognition accuracy. A model is trained with the

observed behavioral patterns of the valid user. The likelihood of the

incoming data sequence is evaluated with respect to the best model and

sequences judged too sufficiently likely, the likelihood is too high, are

labeled as anomalous, i.e. a possible replay attack.

In addition to the applications mentioned above, HMMs have been

used in many fields such as scene classification for video analysis

[Huang 05], gesture recognition in motion-based image processing and

recognition [Eickeler 98], and handwritten character recognition in op-

tical character recognition [Hu 96]. The proposed method is applicable

to all of these areas.

1.3 Contribution

I propose Staggered decoding for the first problem and SPIRAL for

the second and third problem, a fast search method for HMM datasets.

The proposed approach is based on two ideas; approximation and prun-

ing. Approximation is an idea that aggregates several states to discard

unlikely states or models. And pruning is an idea that computes exact

likelihood of viable states/models by pruning unlikely state transition.
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Even though the proposed approach requires precomputations for

approximation to aggregate several states by using a clustering method,

the proposed approach has the following attractive characteristics based

on the above ideas in the search process:

• High-speed: Solutions based on the Viterbi algorithm are pro-

hibitively expensive for large HMM data. The proposed approach

uses carefully designed approximations to efficiently identify the

most likely model.

• Exactness: The proposed approach does not sacrifice accuracy;

it returns the highest likelihood model without any omission.

• Applicability: The proposed approach can be applied not only

for HMM but other data structures such as time-evolving graphs.

In order to achieve high performance and to find the exact answer, The

proposed approach first prunes many states/models with approximate

likelihoods at low computation cost. The exact likelihood computa-

tions are limited to the minimum necessary, which yields a dramatic

reduction in the total search cost. Experiments compared the proposed

method with the method based on the Viterbi algorithm. As expected,

the experiments demonstrate the superiority of the proposed approach.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows.

• In Chapter 2, I describes the detail introduction for HMM and

related work on HMM in data engineering.

• Chapter 3 explains Staggered Decoding which can efficiently com-

pute likelihood and and its corresponding state sequence.

• Chapter 4 introduces SPIRAL and shows how it identifies the

best model for query sequence.

12



• Chapter 5 explains the proposed stream processing algorithm to

support the identification of the best model.

• In Chapter 6, I extend the proposed approach for the problem to

monitoring best centrality nodes of time-evolving graphs.

• Chapter 7 is a conclusion.
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Chapter 2

Preliminary and Related
Work

In this chapter, I first explain the detail of HMM and then describe its

related work.

2.1 Hidden Markov Model

HMM have been the mainstay of the statistical modeling techniques

used in modern speech recognition systems. Variants of HMMs are still

the most widely used technique in that domain, and are generally re-

garded as the most successful. In this section I explain the basic theory

of HMMs. The main symbols in this thesis are shown in Table 2.1.

2.1.1 Definitions

Unlike the regular Markov model, in which each state corresponds to

an observable event, an HMM is used when the observation is a prob-

abilistic function of the state. An HMM is composed of the following

probabilities:

• Initial state probability: π={πi}
The probability of the state being ui (i = 1, · · · ,m) at time t = 1.

14



Symbols Definitions

xt Value of sequence X at time t (t = 1, · · · , n)
n Sequence length of X
ui i-th state of an HMM (i = 1, · · · ,m)
m Number of states
π={πi} Initial state probability of ui

a={aij} State transition probability from ui to uj

b(v)={bi(v)} Symbol probability of symbol v in state ui

P Exact likelihood

P̂ Approximate likelihood

Table 2.1: Definition of main symbols.

• State transition probability: a={aij}
The probability of the state transiting from state ui to uj.

• Symbol probability: b(v)={bi(v)}
The probability of symbol v being output from state ui.

The following urn-and-ball example explains the basic HMM con-

cept.

Example 1. Assume there are m urns that represent m states and

in each urn there are balls of different colors. Also assume that the

observation sequence of length n is created by randomly extracting a

ball from a randomly selected urn. There can be multiple combinations

of state (urn) sequences that correspond to the same observation se-

quence (sequence of different ball colors). This is where the “Hidden”

concept lies, since the exact state transition sequence corresponding to

one observation sequence is unknown. To find one certain state transi-

tion sequence, some restrictions need to be applied, such as “the state

sequence that has the highest probability”. In this example, the proba-

bility of extracting a certain ball color from each urn is b(v). The urn

selection probabilities are π and a.
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HMMs are classified by the structure of the transition probability

a as shown in Figure 2.1, where the white circles represent states, and

the arrows represent transitions. Ergodic HMMs, or fully connected

HMMs, have the property whereby every state can be reached from

every other state. As shown in Figure 2.1 (a), the m = 4 state model

has the property whereby every aij coefficient is positive. Hence, for

Figure 2.1 (a),

a =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 . (2.1)

Left-right HMM is another type of HMM; its state transitions have

the property whereby, as time increases, the state number increases or

stays the same. The fundamental property of all left-right HMMs is: (1)

the state transition probability is aij = 0 for j < i (that is, transitions

to lower number states are prohibited). (2) For the initial state prob-

abilities, π1 = 1 (i.e., πi = 0 for i 6= 1) since left-right HMMs always

begin with the first state. (3) An additional constraint is that possi-

ble transitions are limited to a small number of states. For example,

aij = 0 for j ≥ i+2 in Figure 2.1 (b), which means possible transitions

are limited to two states. Overall, the state transition probabilities for

Figure 2.1 (b) are given by

a =




a11 a12 0 0
0 a22 a23 0
0 0 a33 a34

0 0 0 a44


 . (2.2)

2.1.2 The Viterbi algorithm

The well-known Viterbi algorithm is a dynamic programming algorithm

for estimating the likelihood of sequence X. The maximum probability

yielded by a single state sequence corresponds to that likelihood. The
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(a) Ergodic HMM (b) Left-right HMM

Figure 2.1: HMM types.

state sequence, which gives the likelihood, is called the Viterbi path.

For a given model, the likelihood P of X is computed as follows,

P = max
1≤i≤m

(pin) (2.3)

pit =

{
max1≤j≤m(pj(t−1) · aji) · bi(xt) (2 ≤ t ≤ n)
πi · bi(x1) (t = 1).

where pit is the maximum probability of state ui at time t. The like-

lihood is computed based on the trellis structure shown in Figure 2.2,

where states lie on the vertical axis, and sequences are aligned along

the horizontal axis. The likelihood is computed using the dynamic

programming approach that maximizes the probabilities from previous

states (i.e., each state probability is computed using all previous state

probabilities, associated transition probabilities, and symbol probabil-

ities).

Example 2. Assume the following model and sequence.

π =




1
0
0


 , a =




0.5 0.5 0
0.5 0.25 0.25
0 0 1


 ,

b(1) =




1
0.75
0


 , b(2) =




0
0.25
0


 , b(3) =




0
0
1




X = (1, 1, 2, 3).
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Figure 2.2: Trellis structure.

From the Viterbi algorithm,

p11=1, p12=0.5, p13=0, p14=0
p21=0, p22=0.75·0.5, p23=(0.5)2·0.25, p24=0
p31=0, p32=0, p33=0, p34=(0.5)2·(0.25)2.

The state sequence (u1, u1, u2, u3) gives the maximum probability. Con-

sequently, P = (0.5)2 · (0.25)2.

The Viterbi algorithm generally needs O(nm2) time since it com-

pares m transitions to obtain the maximum probability for every state,

that is, it requires O(m2) in each time tick. But this computation

cost is impractical recent application such as sequence labeling where

the number of state is typically over 2, 000 [Brants 00, Matsuzaki 07]

and text size are very large. For example, Google processes 20 peta

bite web pages a day to enhance their search engine quality [Dean 08].

The naive solution to identifying the best model for query sequence

would be to compute the likelihood for every model using the Viterbi

algorithm, and then choose the most likely model (i.e., the model that

shows the highest likelihood). This incurs excessive CPU time since the

number of models is very large in real applications such as biological

analysis, where over 790 millions genes are stored in DNA Data Bank

of Japan to analyze gene data [Sugawara 08]. Furthermore, the naive

approach to monitoring data stream is to perform this procedure each

time a sequence value arrives. However, the naive approach is impracti-
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cal considering the high frequency with which new values will arrive in

recent traffic monitoring application. For example, over 2,000 GPS are

attached to vehicles in Sweden∗. Therefore more efficient algorithms

are needed.

2.2 Related work

The basic theory of the HMM was published by Baum and his col-

leagues in the the late 1960’s and early 1970’s, but it has been well

understood and used in the speech recognition field only since the early

1980’s [Rabiner 86]. Recently, HMMs have been applied in various

fields such as pattern recognition and time sequence clustering. The

data engineering community has published many studies on time se-

quence matching and query processing of uncertain data, which are

slightly related to this work.

2.2.1 HMM

Computing HMM likelihood in reasonable time remains a major goal for

the speech recognition community. Continuous density HMMs typically

have 8-64 Gaussian components, and the likelihood of each component

must be separately computed, which incurs high CPU cost. Hunt et

al. studied a technique based on LDA (Linear Discriminant Analysis)

for reducing the number of Gaussian components [Hunt 89]. It is well

known that Gaussian models are statistically accurate if the input fea-

ture vector is near the Gaussian mean. Based on this idea, Bocchieri

presented a method that computes the likelihoods of only the Gaussian

neighbors, rather than the likelihood of all Gaussians [Bocchieri 93].

Replacing continuous density HMMs with discrete HMMs is a use-

ful approach to reducing the computation cost, since the likelihoods

of a discrete HMM can be computed by looking them up in a scalar

∗http://www-03.ibm.com/press/us/en/pressrelease/28463.wss
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quantized probability table [Sagayama 95]. These techniques can be

applied to complement the proposed method. Unfortunately, it still in-

curs excessive CPU cost, especially for large datasets, since all possible

likelihoods are computed.

Given the inefficiency of the Viterbi algorithm, several exact al-

gorithms have already been proposed for handling large label sets.

[Felzenszwalb 03] presented a fast inference algorithm for HMMs with

large numbers of states, i.e., labels. Their algorithm works under the

assumption that the hidden states can be embedded in a grid space,

and transition probability corresponds to distance on that space. The

application of their algorithm is restricted to HMMs with such a specific

transition probability distribution. Simply speaking, their technique is

feasible if the transition probability is a function of |i− j|, where i and

j are state indices. CarpeDiem [Esposito 09] is an algorithm that ac-

celerates likelihood computation without assuming any specific type of

probability distribution. It can accelerate computation of any sequence

labeling model under the assumption that the adjacent labels are not

strongly correlated. However, this assumption can still be violated in

real applications, as I will demonstrate in the experiment. In contrast,

the proposed algorithm makes no such strong assumptions on data and

thus has wider applicability.

The A∗ algorithm [Hart 68], a generalization of Dijkstra’s algorithm,

is also applicable to sequence labeling as an alternative to the Viterbi

algorithm. However, it is known that the performance of the A∗ algo-

rithm crucially depends on the heuristic function. To my knowledge, no

effective heuristic functions for sequence labeling have been proposed

so far, and thus it is not trivial to speed-up decoding by applying the

A∗ algorithm. In fact, as [Esposito 09] reported, the A∗ algorithm can

be slower than the Viterbi algorithm in sequence labeling problems.

Although I investigate decoding acceleration for the case of a large

number of labels, other factors degrading decoding efficiency have also

been studied by other researchers. [Roth 05] used integer linear pro-

gramming to incorporate the long distance dependency between la-
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bels that violates the Markov assumption and makes the Viterbi al-

gorithm infeasible. [Qian 09] also presented an exact inference algo-

rithm for dealing with sparse non-local features. [Lifshits 07] proposed

a compression-based decoding algorithm for labeling a long repetitive

sequence, such as DNA.

The Beam search algorithm is a popular approach to reducing

the computational expense of exhaustive dynamic programming search

techniques such as the Viterbi algorithm and has been employed in

many studies [Ney 92, F. Jelinek 99]. The basic idea of Beam search is

that a path passing through states whose likelihood is much less than

the highest one is not be likely to become the best path in a dynamic

programming search (Viterbi path in the Viterbi algorithm). Beam

search defines a pruning beam width that identifies states that can be

disregarded according to their likelihood. It is clear from the naivety of

the pruning criterion that this reduction technique has an undesirable

property; the best path may be lost.

Other approximate algorithms have also been proposed for

speeding-up decoding in the context of sequence labeling. For example,

[Tsuruoka 05] proposed easiest-first deterministic decoding for bidirec-

tional dependency networks [Toutanova 03]. Although the bidirectional

dependency network is more complex than linear-chains, their algo-

rithm is equally applicable to proposed case. [Siddiqi 05b] presented

the parameter tying approach for fast inference in HMMs. In their ap-

proach, several elements of the transition probability matrix are approx-

imated as a constant value to decrease the computation cost. In follow-

ing works, a similar idea was also applied to CRFs [Cohn 06, Jeong 09].

In these cases, several weights of features are set constant.

In general, approximate algorithms are much faster than exact al-

gorithms, and hence exact algorithms are rarely used when dealing

with a large number of labels. However, approximate algorithms suffer

from two problems. First, it is hard for most of the approximate al-

gorithms to not only find the optimal solution but to even bound the

error rate. Second, approximate algorithms usually require hyperpa-
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rameters, which control the tradeoff between accuracy and efficiency

(e.g., beam width), and these have to be manually adjusted for each

task.

This thesis, on the other hand, presents an exact algorithm that is

free from these two problems. I also empirically demonstrate that the

proposed algorithm scales well to a large number of labels; its speed is

comparable to an approximate algorithm.

Attention has been focused on HMMs as a clustering tool for time-

series data where the HMMs are used to provide a similarity measure.

Smyth et al. were the first to discuss k-clustering of time-series data

with HMMs [Smyth 96]. They proposed a method that automatically

detects the number of clusters based on the data distribution as deter-

mined from cross-validated likelihoods. Subsequent work by Li et al.

focused on the model selection issue (i.e. locating the HMM topology

that best represents the data) and on the clustering structure issue (i.e.

finding the most likely number of clusters) [Li 99, Li 00]. Lae et al. sim-

ilarly studied the k-clustering problem for sequence datasets [Law 00].

They applied rival-penalized competitive learning to the problem to

improve clustering accuracy.

2.2.2 Data engineering

Most previous studies have targeted the indexing of time-series

databases. Agrawal et al. studied whole sequence matching (similar-

ity searches for equal length sequences) [Agrawal 93]. Faloutsos et al.

and Moon et al. generalized whole sequence matching to subsequence

matching (similarity searches that focus on arbitrary length sequences)

[Faloutsos 94, Moon 02]. These studies use Euclidean distance as the

similarity distance measure.

Even though many similarity functions have been proposed

[Agrawal 95, Das 97] , DTW (Dynamic Time Warping) is the domi-

nant distance measure; it provides scaling along the time axis. Yi et

al. first studied DTW for very large datasets [Yi 98]. Keogh inves-
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tigated a search method based on global constraints which limits the

duration along the time axis [Keogh 02]. The method guarantees no

false negatives.

The focus of many studies has shifted toward raising the robustness

of noisy data search. Actual values are estimated using PDFs (Proba-

bility Density Functions). Cheng et al. classified probabilistic queries

in two dimensions into multiple types: aggregate/non-aggregate and

entity-based/value-based queries. They then studied efficient process-

ing for all types of queries [Cheng 03]. Probabilistic threshold queries

were also investigated by Cheng et al.; probabilities are computed to

determine whether they exceed a given threshold [Cheng 04]. Tao et

al. introduced U-tree [Tao 05] for uncertain data values, and this can

be applied to any type of PDF, such as Zipf and Poisson.

The challenges have made researchers re-think many parts of tra-

ditional database-management system design in the streaming con-

text, especially with regard to query processing using correlated

attributes [Deshpande 05], scheduling [Babcock 03], load shedding

[Tatbul 03], and memory requirements [Arasu 02]. Various architec-

tures for data stream management systems, such as Aurora [Abadi 03],

Stream [Motwani 03], Telegraph [Chandrasekaran 03], and Gigascope

[Cranor 03], have been presented. They are slightly related to the pro-

posed work.

23



Chapter 3

Efficient likelihood
computation for HMM

In the past decade, sequence labeling algorithms such as HMMs, CRFs,

and Collins’ perceptrons have been extensively studied in the field of

NLP [Rabiner 89, Lafferty 01, Collins 02]. Especially HMM is the most

important tool for NLP tasks.

One important issue in sequence labeling problems is how to find

the most probable label (state) sequence among all possible ones. This

task, referred as decoding, is usually carried out using the Viterbi algo-

rithm [Viterbi 67]. The Viterbi algorithm has O(nm2) time complex-

ity,∗ where n is the input size and m is the number of labels, and is gen-

erally efficient. However, the Viterbi algorithm becomes prohibitively

slow in dealing with a large number of labels, since its computational

cost is quadratic in m.

Unfortunately, several sequence labeling problems in NLP involve

a large number of labels. For example, there are more than 40 and

2000 labels in POS tagging and supertagging, respectively [Brants 00,

Matsuzaki 07]. These tasks incur much higher computational costs

than simpler tasks like NP chunking. What is worse, the number of

labels grows drastically if multiple tasks are jointly performed. As I

∗In case the first-order Markov assumption is made.
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shall see later, over 300 labels needed to reduce joint POS tagging and

chunking into the single sequence labeling problem. Although joint

learning has attracted much attention in recent years, how to perform

decoding efficiently still remains an open problem.

In this chapter, I present a new decoding algorithm that overcomes

this problem †. The distinguishing property of the proposed algorithm

is threefold: (1) It is much more efficient than the Viterbi algorithm

in dealing with a large number of labels. (2) It is an exact algorithm,

that is, the optimality of the solution is always guaranteed unlike ap-

proximate algorithms. (3) It is automatic, requiring no task-dependent

hyperparameters that have to be manually adjusted.

Experiments evaluate the proposed algorithm on three tasks: POS

tagging, joint POS tagging and chunking, and supertagging. The

results demonstrate that the proposed algorithm is up to orders

of magnitude faster than the Viterbi and state-of-the-art algorithm

[Esposito 09], making exact decoding practical even in labeling prob-

lems with a large label set.

3.1 Staggered Decoding

This section presents the new decoding algorithm. The key is to reduce

the labels. The proposed algorithm locates the best label sequence by

iteratively solving labeling problems with the reduced label set. This

results in significant time saving in practice, because each iteration

becomes much more efficient than solving the original labeling problem.

More importantly, the proposed algorithm always obtains the exact

solution. This is because the algorithm allows us to check the optimality

of the solution using only the reduced label set.

†Proposed implementation is available at http://www.tkl.iis.utokyo. ac.jp/ kaji/staggered.
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Figure 3.1: Lattice structure.

3.1.1 Degenerate lattice

I begin by introducing the degenerate lattice, which plays a central role

in the proposed algorithm. Consider the lattice in Figure 3.1(a) where

the alphabets {A, B, C, D, E, F, G, H} represent the labels associ-

ated with the nodes. Following convention, each path of the lattice

is regarded as a label sequence. Note that the label set is {A, B, C,

D, E, F, G, H}. By aggregating several nodes in the same column of

the lattice, the original lattice can be transformed into a simpler form,

which called as the degenerate lattice (Figure 3.1(b)).

Let us examine the intuition behind the degenerate lattice. Aggre-

gating nodes can be viewed as grouping labels into a new one. Here, a

label is referred to as an active label if it is not aggregated (e.g., {A, B,

C, D} in the first column of Figure 3.1(b)), and otherwise as an inactive

label (i.e., dotted nodes). The new label, which is made by grouping the

inactive labels, is referred to as a degenerate label (i.e., large nodes cov-

ering the dotted ones). Two degenerate labels can be seen as equivalent

if their corresponding inactive label sets are the same (e.g., degenerate

labels in the first and the last column). In this approach, each path of

the degenerate lattice can also be interpreted as a label sequence. In

this case, however, the label to be assigned is either an active label or

a degenerate label.

Then, the parameters regarding the degenerate label uj are defined.
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Figure 3.2: Paths in lattice structures

For reasons that will become clear later, transition probabilities are set

to the maxima among the parameters of the inactive labels:

aui,uj
= max

u′j∈I(uj)
(aui,u′j), (3.1)

auj ,ui
= max

u′j∈I(uj)
(au′j ,ui

) (3.2)

where ui is an active label and I(uj) denotes one-to-one mapping to its

corresponding inactive label set. Initial and symbol probabilities are

set similarly.

The degenerate lattice has an important property on which the pro-

posed algorithm is based:

Lemma 1. If the best path of the degenerate lattice does not include any

degenerate labels at all, it is equivalent to the best path of the original

lattice.

Proof. Let zmax be the best path of the degenerate lattice. The goal is

to prove that if zmax does not include degenerate labels, then zmax gives

the likelihood P of the model. Let y be the best path in the original

lattice and Y be the set of all paths, I show this by partitioning Y into

two disjoint sets: Y0 and Y1, where Y0 is the subset of Y appearing in

the degenerate lattice. Notice that zmax ∈ Y0. Let P ′ be the likelihood

by zmax, since zmax is the best path of the degenerate lattice,

∀y ∈ Y0, P ≤ P ′.
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Figure 3.3: Staggered decoding.

The equation holds when y = zmax. I next examine the label sequence

y such that y ∈ Y1. For each path y ∈ Y1, there exists a unique path

z of the degenerate lattice that corresponds to y (Figure 3.2 where (a)

The path y = {A, E, G, C} of the original lattice, and (b) The path z

of the degenerate lattice that corresponds to y.). Therefore,

P ≤ P ′

from Equation (3.1) and (3.2). These results complete the proof.

3.1.2 Algorithm

This section describes the proposed method, which called as Staggered

Decoding algorithm. The algorithm successively constructs degenerate

lattice and checks whether the best path has degenerate labels. In

building the degenerate lattice, labels with high probability, which is

estimated from training data, are preferentially selected as the active

label, expecting that such labels are likely to belong to the best path.

The detailed algorithm is as follows:

Initialization step The algorithm starts by building the degenerate

lattice in which there is only one active label in each column. The

highest label is selected as the active label.
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Search step The best path of the degenerate lattice is located (Figure

3.3(a) where the best path of the initial degenerate lattice, which

is denoted by the line, is located.). This is done by using the

Viterbi algorithm (and pruning technique, as described in Section

4.1.4). If the best path does not include any degenerate labels,

The process is terminated since it is identical with the best path

of the original lattice according to Lemma 1. Otherwise, proceed

to the next step.

Expansion step The first process of this step doubles the number of

the active labels in the degenerate lattice. The new active labels

are selected from the current inactive label set in descending or-

der of probabilities. If the inactive label set becomes empty, the

original lattice is simply constructed. After expanding the ac-

tive labels, the process backs to the previous step (Figure 3.3(b)

where the active labels are expanded and the best path is searched

again.). This procedure is repeated until the termination con-

dition in the search step is satisfied, i.e., the best path has no

degenerate labels (Figure 3.3(c) where the best path without de-

generate labels is obtained.).

3.1.3 Pruning

It is crucial for the proposed algorithm to efficiently perform the search

step. For this purpose, the Viterbi algorithm is basically used. In

earlier iterations, the Viterbi algorithm is indeed efficient because the

label set to be handled is much smaller than the original one. In later

iterations, however, the proposed algorithm drastically increases the

number of labels, making Viterbi decoding quite expensive.

To handle this problem, I propose a method of pruning the lattice

nodes. This technique is motivated by the observation that the degen-

erate lattice shares many active labels with the previous iteration. In

the remainder of Section4.1.4, I explain the technique by taking the
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following steps:

• Section 3.1.3 examines a lower bound l such that l ≤ P .

• Section 3.1.3 examines the maximum score g(yi) in case the token

(symbol) xi takes the label yi:

g(yi) = Py′i=yi
.

• Section 3.1.3 presents pruning procedure. The idea is that if

g(yi) < l, then the node corresponding to yi can be removed.

Lower bound

The lower bound l can be trivially calculated in the search step. This

can be done by retaining the best path among those consisting of only

active labels. The score of that path is obviously the lower bound.

Since the search step is repeated until the termination criteria is met,

the lower bound can be updated at every search step. As the iteration

proceeds, the degenerate lattice becomes closer to the original one, and

therefore the lower bound becomes tighter.

Maximum score g(yi)

The maximum score g(yi) can be computed from the original lattice.

Let P ′
1,i be the best score of the partial label sequence ending with yi.

Presuming to traverse the lattice from left to right, P ′
1,i can be defined

as

P ′
1,i−1 · ayi−1,yi

· byi
(xi)

If I traverse the lattice from right to left, an analogous score P ′
i,m can

be defined as

P ′
i+1,m · ayi,yi+1

· byi
(xi)
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Using these two scores,

g(yi) = P ′
1,i · P ′

i,m/byi
(xi)

Notice that updating P ′
1,i or P ′

i,m is equivalent to the forward or back-

ward Viterbi algorithm, respectively.

Although it is expensive to compute P ′
1,i and P ′

i,m, their upper

bounds can be efficiently estimated. Let λ1,i and λi,m be analogous

scores to P ′
1,i and P ′

i,m that are computed using the degenerate lattice.

P ′
1,i ≤ λ1,i holds and P ′

i,m ≤ λi,m, by following similar discussions as

raised in the proof of lemma 1. Therefore, it is easy to check whether

g(yi) is smaller than l by using λ(yi) and λ̄(yi):

g(yi) = P ′
1,i · P ′

i,m/byi
(xi)

≤ λ′1,i · λ′i,m/byi
(xi) < l.

For the sake of simplicity, yi is assumed to be an active label. Although

I do not discuss the other cases, the proposed pruning technique is also

applicable to them.

λ1,i and λi,m are computed by using the forward and backward

Viterbi algorithm alternately. In the search step immediately after

initialization, The forward Viterbi algorithm is performed to find the

best path, that is, λ1,i is updated for all yi. In the next search step, the

backward Viterbi algorithm is carried out, and λi,m is updated. In the

succeeding search steps, they are updated alternately. As the algorithm

progresses, λ1,i and λi,m become closer to P ′
1,i and P ′

i,m.

Pruning procedure

Making use of the bounds, the lattice nodes can be pruned. To do

this, the values of l, λ1,i and λi,m are kept. They are set as l = −∞
and λ1,i = λi,m = ∞ in the initialization step, and are updated in the

search step. The lower bound l is updated at the end of the search step,

while λ1,i and λi,m can be updated during the running of the Viterbi

algorithm. When λ1,i or λi,m is changed, the proposed approach checks

whether g(yi) < l holds and the node is pruned if the condition is met.
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3.1.4 Analysis

This section provides a theoretical analysis of the proposed algorithm.

In the following proofs, m, s, and n represents the number of original

labels, the number of distinct tokens, and the length of input token

sequence, respectively. To simplify the discussion log2 m is assumed to

be an integer (e.g., m = 64).

I first provide three lemmas for preparation:

Lemma 2. The proposed algorithm requires at most (log2 m + 1) iter-

ations to terminate.

Proof. There are 2i−1 active labels in the i-th search step (i = 1, 2 . . . ),

which means there are m active labels and no degenerate labels in the

(log2 m+1)-th search step. Therefore, the algorithm always terminates

within (log2 m + 1) iterations.

Lemma 3. The number of degenerate labels is log2 m.

Proof. Since there is one new degenerate label in all but the last ex-

pansion step, there are log2 m degenerate labels.

Lemma 4. The Viterbi algorithm requires O(m2 + ms) memory space

and has O(nm2) time complexity.

Proof. The proof is omitted since it is obvious.

Making use of the above statements, main results can be established:

Theorem 1. The proposed algorithm asymptotically requires O(m2 +

ms) memory space.

Proof. Since there are m original labels and log2 m degenerate labels,

the proposed algorithm requires O((m+log2 m)2+(m+log2 m)s) mem-

ory space to perform Viterbi decoding in the search step. In case

log2 m ¿ m, the algorithm requires the order of O(m2 + ms) mem-

ory space.
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Figure 3.4: Staggered decoding with column-wise expansion.

Theorem 2. The proposed algorithm has O(n) best case time complex-

ity and O(nm2) worst case time complexity.

Proof. To perform the i-th search step, the proposed algorithm requires

the order of O(n4i−1) time because there are 2i−1 active labels. There-

fore, the proposed algorithm has O(
∑I

i=1 m4i−1) time complexity if it

terminates after the I-th search step. In the best case, I = 1, the time

complexity is O(m). In the worst case, M = log2 m + 1, the time com-

plexity is the order of O(nm2) because
∑log2 m+1

i=1 m4i−1 < 4
3
nm2.

Theorem 1 shows that the proposed algorithm asymptotically re-

quires the same order of memory space as the Viterbi algorithm. The-

orem 2 reveals that the proposed algorithm has the same order of time

complexity as the Viterbi algorithm even in the worst case. In practice,

the time complexity of the proposed algorithm lies somewhere between

O(m) and O(nm2).

3.1.5 Heuristic techniques

I finally present two heuristic techniques for further speeding up the

proposed algorithm.

First, the value of lower bound l can be initialized by selecting a path

from the original lattice in some ways, and then computing the score

of that path. In experiments, I use the path located by the left-to-right
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deterministic decoding. Although this method requires an additional

cost to locate the path, it is practically effective. If l is initialized in

this manner the best case time complexity becomes O(nm).

The second technique is on the expansion step. Instead of the ex-

pansion technique described in Section 3.1.2, the active labels can be

expanded in a heuristic manner to keep the number of active labels

smaller:

Column-wise expansion step This step doubles the number of the

active labels in the column, only if the best path of the degenerate

lattice passes through the degenerate label of that column (Fig-

ure 3.4 where (a) the best path of the initial degenerate lattice,

which does not pass through the degenerate label in the first col-

umn, (b) column-wise expansion is performed and the best path

is searched again, notice that the active label in the first column

is not expanded, and (c) the final result.).

A drawback of this strategy is that the algorithm requires n(log2 m+

1) iterations in the worst case. As the result, this approach can no

longer derive reasonable upper bound for the time complexity. Never-

theless, column-wise expansion is practically effective as I will demon-

strate in the experiment. Note that theorem 1 still holds true even if

this column-wise expansion is used.

3.2 Experiments and Discussion

3.2.1 Setting

The proposed algorithm was evaluated with three tasks: POS tagging,

joint POS tagging and chunking (called joint tagging for short), and

supertagging. To reduce joint tagging into a single sequence labeling

problem, I produced the labels by concatenating the POS tag and the

chunk tag (BIO format), e.g., NN/B-NP. In the two tasks other than

34



Table 3.1: Decoding speed (sent./sec).
POS tagging Joint tagging Supertagging

Viterbi 5800 110 1.4
CarpeDiem 12,000 67 0.27
SD-I 12,000 1200 170
SD-II 19,000 2200 430

supertagging, the input token is the word. In supertagging, the token

is the pair of the word and its oracle POS tag.

The data sets I used for the three experiments are the Penn Tree-

Bank (PTB) corpus, CoNLL 2000 corpus, and an HPSG treebank built

from PTB corpus [Matsuzaki 07], respectively. The number of labels

in the three tasks is 45, 319, and 2602, respectively.

The perceptron algorithm was used for training. The models were

averaged over 10 iterations. For features, I basically followed previous

studies [Tsuruoka 05, Sha 03, Ninomiya 06]. The performance of the

algorithm was investigated on the test data. I used the decoding speed

(sentences/sec) as the evaluation measure.

3.2.2 Results and discussions

Table 3.1 represents the performance of the proposed algorithm. SD-I

represents the proposed algorithm that does not use column-wise ex-

pansion, while SD-II uses column-wise expansion. For comparison,

the result of two baseline algorithms are presented as well: Viterbi

and CarpeDiem [Esposito 09]. In almost all settings, both of the

proposed algorithms outperformed the two baselines. And SD-II per-

formed consistently better than SD-I. This indicates the effectiveness

of the column-wise expansion.

CarpeDiem is the most relevant algorithm, except for Viterbi,

for sequence labeling problems in NLP, as discussed in Section 2.2.

However, results demonstrated that CarpeDiem worked poorly in two
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of the three tasks. This is because the transition information is crucial

for the two tasks, and the assumption behind CarpeDiem is violated.

In contrast, the proposed algorithms performed reasonably well across

the three tasks, demonstrating the wide applicability of the proposed

algorithm.

Table 3.2 represents the average iteration number of SD-I and SD-

II. The two algorithms required almost the same number of iterations

on average, although the iteration number is not tightly bounded if

column-wise expansion is used. This indicates that SD-II could vir-

tually avoid performing extra iterations, while heuristically restricting

active labels to be expanded.

The degenerate label may be interpreted as a coarse-level label.

In this sense, SD algorithm is related to coarse-to-fine PCFG parsing

[Charniak 06]. While the proposed algorithm bears some resemblance,

there are at least two differences. First, the coarse-to-fine parsing is

essentially a heuristic pruning approach, and it is not an exact algo-

rithm. Second, SD algorithm does not always perform decoding at the

fine-grained level. It is designed to be able to stop decoding at the

coarse-level.

Table 3.3 compares training time spent by Viterbi and SD-II.

Although speeding up perceptron training is a by-product, it is inter-

esting to see that the proposed algorithm is in fact effective at training

time as well. The result also indicates that the proposed algorithm is

more effective at test time. This is probably because the model is not

predictive enough at the beginning of training, and the pruning is not

effective.

3.2.3 Comparison with approximate algorithm

I finally compare two exact algorithms (Viterbi and SD-II) with beam

search, which is the approximate algorithm widely adopted for sequence

labeling problems in NLP. For this experiment, the beam width B was

exhaustively calibrated: I tried B = {1, 2, 4, 8, ...} until the difference
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Table 3.2: The average number of iterations.
POS tagging Joint tagging Supertagging

SD-I 6.03 8.11 10.0
SD-II 6.14 8.61 10.6

Table 3.3: Training time.
POS tagging Joint tagging Supertagging

Viterbi 77 sec. 800 sec. 79 hour
SD-II 31 sec. 71 sec. 4.7 hour

Table 3.4: Comparison with beam search.
POS tagging Joint tagging Supertagging

Viterbi 5800 110 1.4
SD-II 19,000 2200 430
Beam 27,000 4000 270

between beam search and the exact algorithm fell below 0.1.

Table 3.4 summarizes the results; there is a substantial difference

in the performance between Viterbi and Beam. On the other hand,

SD-II reached very close speed to Beam. In fact, they achieved com-

parable performance in the experiment. These results demonstrate that

the proposed approach successfully bridge the gap in the performance

between exact and approximate algorithms, while retaining the advan-

tages of exact algorithms.

3.3 Summary

The sequence labeling algorithm is indispensable to modern statistical

NLP. However, the Viterbi algorithm, which is the standard decoding

algorithm in NLP, is not efficient when a large number of labels have

to be dealt with. In this chapter I presented staggered decoding, which

provides a principled way of resolving this problem. I consider this
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algorithm serves as an alternative to the Viterbi algorithm in various

NLP tasks.

38



Chapter 4

Efficient search method for
HMM data set

HMM is a ubiquitous tool for representing probability distributions

over sequences of observations. Since HMMs, which assess time se-

quence data as sequences of state transitions, are robust against noise,

significant applications that use HMMs have emerged, such as mental

task classification and biological analysis. The goal of this chapter is ef-

ficient identification of the model whose state sequence has the highest

likelihood, for the given query time sequence, from datasets with ex-

actness. To the best of my knowledge, this is the first study to address

the HMM search problem that guarantees exactness.

4.1 Proposed method

This chapter mainly focuses on a query designed to identify the model

that has the highest likelihood accurately from HMM datasets. But

the proposed approach can also efficiently support range queries and

K-nearest neighbor queries as described in section 4.1.5.
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Figure 4.1: Basic ideas behind SPIRAL.

4.1.1 Ideas behind SPIRAL

The proposed solution, SPIRAL, is based on the three ideas, described

below.

Likelihood approximation The first idea is approximations to re-

duce the high cost of the Viterbi algorithm solution. Instead of com-

puting the exact likelihood of every model, the proposed approach ap-

proximates the likelihood, thus efficiently pruning out low likelihood

models.

The first idea is to reduce the model size. For given m states and

granularity g, m/g states are created by merging ‘similar’ states in

the model (See Figure 4.1 (a)), which requires O(nm2/g2) time to ob-

tain the approximate likelihoods instead of O(nm2) time, which the

Viterbi algorithm solution requires. A clustering approach is used to

find groups of similar states, then create compact models. They are
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referred as degenerate models.

This new idea has the following two major advantages. First, likely

models can be found without any omissions even though approxima-

tions are used. Search omissions are avoided completely by the use of

the upper bounding likelihood. This means that unpromising models

can be safely discarded along with their approximate likelihoods at low

CPU cost.

The second advantage is that this idea does not depend on model

type; the approximate likelihoods can be estimated for any model type

since this does not use any probability constraints. The choice of model

type depends on the user or application.

Multi-granularities Instead of operating on the degenerate model

of a single granularity, I propose using multiple granularities to optimize

the trade-off between accuracy and comparison speed for the datasets.

As the size of the models increases, accuracy improves (i.e., the upper

bounding likelihood decreases), but the likelihood computation time

increases. For this reason, models of multiple granularities are gener-

ated that form a geometric progression: g = 1, 2, 4, . . . , m, where g = 1

gives the exact likelihood while g = m means the coarsest approxima-

tion. This approach then gradually increases the size of the models

(i.e., a model with a smaller g is used), which improves the accuracy

of the approximate likelihood, as the search progresses (See Figure 4.1

(b)).

Low-likelihood models (i.e., unlikely models) are pruned by coarse-

grained approximation, whereas fine-grained approximation is needed

to evaluate high-likelihood models. Therefore, fine-grained approxima-

tion is applied for only to the models that remain after coarse-grained

approximation. Consequently, This approach can balance the compet-

ing goals of accuracy and computation time for all the models in the

datasets. This approach reinforces the first idea by adjusting the granu-

larity of each model according to its exact likelihood, and the proposed

approach can identify the best model for large number of models since
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the exact likelihood computations are limited to the minimum number

necessary with this idea.

Transition pruning Although the proposed approximation tech-

nique is able to discard most unlikely models, the proposed approach

still relies on exact likelihood computation to guarantee the correct-

ness of the search results. Here I focus on reducing the cost of this

computation.

The Viterbi path shows the state sequence that gives the likelihood.

Mirroring the Viterbi path, the trellis structure includes an exponential

number of paths. Thus, the exhaustive exploration of all paths is not

computationally feasible, especially for large model sets. I therefore ask

the question, which paths in the structure are not promising to explore?

This can be answered by using a threshold (say ε).

The proposed search algorithm maintains a candidate (i.e., best-

so-far) likelihood before reporting the final likelihood. ε is used as

the best-so-far highest likelihood. ε is updated and increases when a

promising model is found during search processing. The unlikely paths

are excluded in the trellis structure by using ε, since ε never decreases

during search processing. If the upper bounding likelihood of paths

that pass through a state is less than ε, that state cannot be contained

in the Viterbi path, this approach can safely discard the paths.

From the monotonically increasing property of ε, This approach can

search for the most likely model efficiently over a long time sequence.

This is an attractive characteristic considering that the time sequence

could be very long given the user or application requirements.

This technique can be applied to approximate likelihood computa-

tion as well as to exact computation. This means that this approach

can compute the approximate likelihood more efficiently.
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4.1.2 Likelihood approximation

The first idea involves clustering states of the original models and com-

puting upper bounding likelihoods to realize reliable model pruning.

State clustering

Attempts to minimize model complexity by aggregating states have

been reported in the field of reinforcement learning [Singh 94]. The

size of the trellis structure is reduced by merging similar states in order

to compute likelihoods at low computation cost. To achieve this, a

clustering approach is adopted. Given granularity g, this approach

tries to find m/g clusters from among the m original states. I first

describe how to compute the probabilities of a new degenerate model,

and then show the clustering method.

This approach merge all the states in a cluster and create a new

state. For the new state, the highest probability among the probabil-

ities of the states is chosen to compute the upper bounding likelihood

(described in Section 4.1.2). This approach obtain the probabilities of

new state uc by merging all the states in cluster C as follows:

π′c = max
ui∈C

(πi), a′cc = max
ui∈C, uk∈C

(aik),

a′cj = max
ui∈C

(aij) for any uj /∈ C, (4.1)

a′jc = max
ui∈C

(aji) for any uj /∈ C,
b′c(v) = max

ui∈C
(bi(v)).

I use the following example to explain state clustering.

Example 3. I use the model of Example 2. Let two clusters C1 and C2,

and the original states u1 and u2 be elements of C1; u3 is in C2. The

new state probability is obtained by taking the maximum value of the

43



original probabilities:

π′1 = max(π1, π2), a′11 = max(a11, a12, a21, a22),

a′12 = max(a13, a23), a′21 = max(a31, a32),

b′1(1) = max(b1(1), b2(1)), b′1(2) = max(b1(2), b2(2)),

b′1(3) = max(b1(3), b2(3)).

Thus,

π′=
[

1
0

]
, a′=

[
0.5 0.25
0 1

]
,

b′(1)=

[
1
0

]
, b′(2)=

[
0.25
0

]
, b′(3)=

[
0
1

]
.

The following vector of features Fi is used to cluster state ui.

Fi = (πi; ai1, . . . , aim, a1i, . . . , ami; bi(v1), . . . , bi(vs)). (4.2)

where s is the number of symbols. This approach chooses this vec-

tor to reduce approximation error. The highest probabilities are the

probabilities of a new state. Therefore, the greater the difference in

probabilities possessed by the two states, the greater the difference in

the vectors becomes. Thus a good clustering arrangement can be found

by using this vector.

In experiments, the well-known k-means method was used to clus-

ter states ∗ where the Euclidean distance is used as a distance mea-

sure. However, I can exploit BIRCH [Zhang 96] instead of the k-means

method, the L1 distance as a distance measure, or SVD to reduce the

dimensionality of the vector of features. The clustering method is com-

pletely independent of SPIRAL, and is beyond the scope of this chapter.

Upper bounding likelihood

Approximate likelihood P ′ is computed from degenerate models that

have m′(= m/g) states. Given a degenerate model, its approximate
∗I repeat the clustering procedure until there are no more changes.
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likelihood is as computed follows:

P ′ = max
1≤c≤m′

(p′cn) (4.3)

p′ct =

{
max1≤j≤m′(p′j(t−1) · a′jc) · b′c(xt) (2 ≤ t ≤ n)

π′c · b′c(x1) (t = 1).

where p′ is the maximum probability of states.

Theorem 1. For any HMM model, the following inequality holds.

P ≤ P ′. (4.4)

Proof: For each original state ui (1 ≤ i ≤ m), I have

pi1 ≤ π′c · b′c(x1) = p′c1, (1 ≤ c ≤ m′).

If 2 ≤ t ≤ n,

pit ≤ max
1≤j≤m′

(p′j(t−1) · a′jc) · b′c(xt) = p′ct.

These equations mean that any path in the degenerated trellis struc-

ture gives the upper bounding likelihood for the corresponding path

in the original trellis structure. The Viterbi path gives the maximum

probability yielded by the original trellis structure, this property of the

degenerated trellis structure is also true for the Viterbi path. That is,

P = max
1≤i≤m

(pin) ≤ max
1≤c≤m′

(p′cn) = P ′.

which completes the proof. ¤
Theorem 1 provides SPIRAL with the property of finding the exact

answer. I provide a proof of this property in Section 4.1.6.

4.1.3 Multi-granularity

In the previous section, I presented an algorithm that computed the

approximate likelihood of a degenerate model with a single level of
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granularity. However, I can also exploit multiple granularity. Here, I

describe the gradual refinement of the likelihood approximation with

multiple granularity.

In this approach, h+1 distinct granularities are used that form a ge-

ometric progression gi = 2i (i = 0, 1, 2, . . . , h). Therefore, trellis struc-

tures of models that have bm/gic states are generated. gh represents the

smallest (coarsest) model† while g0 corresponds to the original model,

which gives the exact likelihood. gi becomes geometrically smaller to

give larger structures, which improves the approximation accuracy.

In search processing to identify the best model, This approach first

computes the coarsest structure for all models. It then obtains the

candidate and the exact likelihood θ. If a model has an approximate

likelihood smaller than θ, that model is pruned with no further com-

putation. Otherwise, compute a finer-grained structure for that model,

and check whether the approximate likelihood is smaller than θ. It

iterates this check until reach g0. For example, if the original HMM

has 16 states, SPIRAL computes the likelihoods of models that have

1, 2, 4, 8, 16 states in this order until the model is pruned. Consequently,

the proposed approach can prune unlikely models with appropriate

granularity according to exact likelihood.

Later I describe search algorithms based on these approaches.

4.1.4 Transition pruning

This section introduces an algorithm for computing likelihoods effi-

ciently based on the following lemma:

Lemma 1. Likelihoods of a state sequence are monotonic non-

increasing.

Proof: In Equations (2.3) and (4.3), likelihoods are computed

by dynamic programming to maximize the probabilities from previous

†Note that the coarsest granularity is gh = 2blog2 mc. The coarsest model has
one state.
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states. This procedure ensures that the likelihood of a state is less than

or equal to the likelihoods of any transited states. ¤
The above lemma is exploited in pruning paths in the trellis struc-

ture. This approach uses eit, which indicates a conservative estimate of

likelihood pit, to prune unlikely paths as follows:

eit =

{
pit · (amax)

n−t ·∏n
j=t+1 bmax(xj) (1 ≤ t ≤ n− 1)

pin (t = n)
(4.5)

where amax and bmax(v) are the maximum values of the state transition

probability and symbol probability, respectively:

amax = max
i,j

(aij) (i = 1, . . . , m; j = 1, . . . , m) (4.6)

bmax(v) = max
i

bi(v) (i = 1, . . . , m) (4.7)

The estimate is exactly the same as the maximum probability of ui

when t = n. Estimate eit, the product of the series of the maximum

values of the state transition probability and symbol probability, has

the upper bounding property assuming the Viterbi path passes through

ui at time t.

Theorem 2. For paths that pass through state ui(i = 1, . . . , m) at time

t(1 ≤ t ≤ n), the following inequality holds for state uj(j = 1, . . . , m)

at time n.

pjn ≤ eit (4.8)

Proof: If 1 ≤ t ≤ n − 1, for a state sequence that passes through

state ui at time t, the following equation holds at time t + 1 for any

state uj(1 ≤ j ≤ m) from Lemma 1:

pj(t+1) = pit · aij · bj(xt+1) ≤ pit · amax · bmax(xt+1)

Similarly, the following equation holds at time t + 2:

pj(t+2) ≤ pit · (amax)
2 ·

t+2∏

k=t+1

(bmax(xk))
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Consequently, given a state sequence that passes through state ui at

time t, the following equation holds at time n for any state uj(1 ≤ j ≤
m):

pjn ≤ pit · (amax)
n−t ·

n∏

k=t+1

bmax(xk) = eit

If t = n, pin = ein. which completes the proof. ¤

This property enables SPIRAL to search for models exactly, the

proof of which is given in Section 4.1.6.

In search processing, if eit gives a value smaller than θ (i.e, the best-

so-far highest likelihood in the search processing for the best model),

state ui at time t for the model cannot be contained in the Viterbi path.

Accordingly, unlikely paths can be pruned with safety. Algorithm 1

shows the algorithm for the likelihood computation. The algorithm

prunes unlikely paths in the trellis structure with θ. This algorithm to

the approximate likelihood computation can be similarly applied to the

exact computation. Threshold θ is updated when searching the model.

I show this algorithm in the next section.

Two arrays S and S ′ are used for dynamic programming to keep

track of transitions. θ is also used to improve the efficiency. The al-

gorithm initializes the first array, S, every time tick. If the likelihood

estimate of ui at t (i.e., eit) does not exceed θ, the state is not included

in S, which means it has not to take the state into account at t + 1. If

S is empty, this approach terminate the likelihood computation since

the given model cannot yield a search result. This approach can op-

tionally compute the state sequence by backtracking to the maximum

probability if the user requires it.

Now let us use the following example to explain how to prune tran-

sition paths.

Example 4. I use the model of Example 2 and set θ = 0.1. The path

through u2 at t = 1 is not promising since e21 = p21 ·(13)·(1·0.25·1) = 0

is lower than θ. Therefore, I do not take this path into account when I
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Input: sequence X, threshold θ.
Output: estimate e.
1: add all states to S ′;
2: for t := 1 to n do
3: S := ∅;
4: for i := 1 to m do
5: compute eit for X from the transitions of S ′;
6: if eit ≥ θ then
7: add ui to S;
8: end if
9: end for

10: S ′ := S;
11: if S = ∅ then
12: return max1≤i≤m(eit);
13: end if
14: end for
15: return max1≤i≤m(ein);

Algorithm 1: Likelihood computation algorithm.

compute the probabilities at t = 2. Similarly, I exclude the path through

u3 at t = 1, the path through u2 at t = 2, and the path through u3 at

t = 2. At t = 3, for all states, the likelihood estimates are lower than θ,

so terminate the likelihood computation and determine that this is not

a likely model.

4.1.5 Search algorithm

I show the proposed approach to finding the best model for query se-

quence in this section. The proposed approach is to (1) prune low-

likelihood models by using the approximate likelihood, which guaran-

tees the exact answer, and then (2) ensure that the model selected can

be the answer by exact likelihood computation, while minimizing the

number of exact likelihood computations.

SPIRAL exploits the exact likelihood of the candidate model to

prune other models. I present the simplest way of finding the candi-
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date in [Fujiwara 08], which computes likelihoods of the models one by

one. That is, approximate likelihoods of a model are computed while

gradually increasing the model size, and if the approximate likelihood

is smaller than θ, the model is pruned since it cannot be a qualifying

model. The exact likelihood is computed only when the approximate

likelihood of the finest model is greater than or equal to θ, and if the

exact likelihood is larger than θ, the candidate and θ are updated.

However, this approach can compute many models of finer granulari-

ties. For example, as the worst-case scenario, if models are checked in

increasing order of exact likelihood, the candidate does not give effi-

cient likelihood to prune models, and this approach could not find the

best model efficiently.

I present a sophisticated search algorithm to overcome the above

problem. The proposed algorithm computes likelihoods of all models

with a fixed granularity to identify the candidate, and then increase

the model size after selecting the candidate. More concretely, SPIRAL

first computes approximate likelihoods of the coarsest structure for all

models, and then chooses the best one (the candidate) in terms of

the coarsest approximate likelihood. SPIRAL prunes models with this

candidate and computes approximate likelihoods of the second coars-

est structure for all remaining models. The new candidate model is

selected using the second coarsest approximations. SPIRAL iterates

this procedure until it computes the exact likelihoods of the remaining

models.

This approach has the effect of finding good candidates efficiently as

the model size increases by pruning unpromising models. Since good

candidates can be computed with larger models, this procedure can

reduce the computation cost for finer granularities by pruning low like-

lihood models at low granularities; there are fewer finer models to com-

pute.

Algorithm 2 shows the search algorithm of SPIRAL. In this figure,

Pi indicates the likelihood of granularity gi, and M represents the set

of models. It first computes the approximate likelihoods of gh for all
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Input: query sequence X.
Output: the best model Mbest.
1: θ := 0;
2: add all models to M
3: for i := h to 0 do
4: θ′ := 0;
5: for each model M ∈ M do
6: compute Pi for M ;
7: if Pi ≥ θ′ then
8: Mmax := M ;
9: θ′ := Pi;

10: end if
11: end for
12: compute P0 for Mmax;
13: if P0 ≥ θ then
14: Mbest := Mmax;
15: θ = P0;
16: end if
17: for each model M ∈ M do
18: if Pi < θ then
19: subtract M from M;
20: end if
21: end for
22: end for
23: return Mbest;

Algorithm 2: Algorithm for processing query sequences.

models, and then choose the best candidate. It obtains the initial value

of θ by computing the exact likelihood of the best candidate. If the

approximate likelihood is smaller than θ, it prunes the model since it

cannot be a qualifying model. It continues to compute approximate

likelihoods while gradually enhancing the accuracy. It computes the

exact likelihood of the model that gives the maximum approximate

likelihood at each level of granularity, and it updates the candidate

and θ to find the best model efficiently, provided P0 is larger than θ.

Although it described only a search algorithm that can identify the
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model that has the highest likelihood, this approach can be applied

to range queries and K-nearest neighbor queries. For range queries, it

would utilize a search threshold as θ, instead of the best likelihood used

in the above search algorithm (i.e., it does not use the candidate). The

best K-th likelihood would be utilized instead of the best likelihood for

K-nearest neighbor queries.

4.1.6 Theoretical Analysis

In this section, I provide a theoretical analysis that confirms the accu-

racy and complexity of SPIRAL. Let m be the number of states, n the

sequence length, and s the number of symbols.

Accuracy

I first show the following lemma to show that SPIRAL identifies the

best model accurately in this section:

Lemma 2. The threshold θ is monotonic non-decreasing in the search

process of SPIRAL.

Proof: To find the best model in the search process, it first finds

a candidate model based on the coarsest approximate likelihood, and

set the initial θ from the model. It maintains the candidate as the best

result; when it finds a model higher likelihood, the exact likelihood of

the model is greater than θ, the candidate is replaced by the new model.

This makes θ larger. Therefore, θ keeps increasing. ¤
I can prove that SPIRAL finds the best model accurately (without

fail) as follows:

Lemma 3. SPIRAL guarantees the exact answer when identifying the

model whose state sequence has the highest likelihood.

Proof: Let Mbest be the best model in the dataset and θmax be the

exact likelihood of Mbest (i.e., θmax is the highest likelihood). Also let

52



Pi be the likelihood of model M for granularity gi and θ be the best-

so-far (highest) likelihood in the search process. From Theorems 1 and

2, it obtains P0 ≤ Pi, for any granularity gi, for any M . For Mbest,

θmax ≤ Pi holds. In the search process, since θ is monotonic non-

decreasing (Lemma 2) and θmax ≥ θ, the approximate likelihood of

Mbest is never lower than θ. The algorithm discards M if (and only if)

Pi < θ. Therefore, the best model Mbest cannot be pruned erroneously

during the search process. ¤

Complexity

I first discuss the complexities of the Viterbi algorithm and then that

of SPIRAL.

Lemma 4. Given a sequence and model, the Viterbi algorithm requires

O(m2 + ms) space and O(nm2) time to compute the likelihood.

Proof: The Viterbi algorithm keeps m values for the initial state

probability, m2 values for the state transition probability, and ms values

for the symbol probability. Thus, it needs O(m2 + ms) space. To

compute the likelihood, the Viterbi algorithm computes the maximum

probability from all m previous states for every state in each time tick.

Therefore, it requires O(nm2) time. ¤

Lemma 5. SPIRAL requires O(m2 + ms) space to compute the likeli-

hood.

Proof: SPIRAL keeps m/2i (i = 0, 1, 2, . . . , log m) values for

the initial state probability for granularity gi. Since
∑log m

i=0 m/2i =

2(1− 1/2log m)m ≈ 2m, SPIRAL needs O(m) space for the initial state

probability. Similarly, SPIRAL requires O(ms) space for the symbol

probability and O(m2) space for the state transition probability. Con-

sequently, the space complexity of SPIRAL is O(m2 + ms). ¤

Lemma 6. SPIRAL requires at least O(n) time and at most O(nm2)

time to compute the likelihood.
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Proof: When the search algorithm uses the coarsest approxima-

tion, the likelihood computation requires O(n) time. SPIRAL needs

O(nm2/4i) (i = 0, 1, 2, . . . , log m) time for granularity gi. Thus, for the

worst case scenario when the algorithm uses the trellis structures of

all granularities, SPIRAL requires O(nm2) time since
∑log m

i=0 nm2/4i ≈
4/3nm2. ¤

Lemmas 4, 5 and 6 show theoretically that SPIRAL needs the same

order of memory space as the Viterbi algorithm, while SPIRAL can

be up to m2 times faster. In practice, the search cost depends on

the granularity used by SPIRAL for the likelihood approximation. In

the next section, I show the effectiveness of the proposed approach by

presenting the results of extensive experiments.

4.2 Experimental evaluation

I performed experiments to demonstrate SPIRAL’s effectiveness. I com-

pared SPIRAL to the Viterbi algorithm. I refer to the Viterbi algorithm

implementation as Viterbi hereafter.

4.2.1 Experimental data and environment

I used the following four standard datasets in the experiments.

• EEG :

This dataset was taken from a large study that examined the

EEG correlates of the genetic predisposition to alcoholism down-

loaded from the UCI website ‡. It contains measurements from

64 electrodes placed on subjects’ scalps that were sampled at

256 Hz (3.9-msec epoch) for 1 second. In experiments, I quan-

tized EEG values in 1 microvolt steps, resulting in 506 ele-

ments. I computed the probabilities of models from a dataset of 6

subjects (co2a0000365, co2a0000368, co2a0000369, co2c0000338,

‡http://archive.ics.uci.edu/ml/
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co2c0000339, and co2c0000340), and I extracted queries from a

dataset of 2 subjects (co2a0000364 and co2c0000337).

• Chromosome:

I used DNA strings of human chromosomes 2, 18, 21, and 22,

which were obtained from the well-known NCBI website §. These

DNA strings are composed of the letters {A,C,G,T,N} where N

is unknown. I treat N as a different symbol, resulting in a symbol

size of 5. In experiments, a query dataset is obtained from chro-

mosome 2, and models are trained using the rest of the dataset.

• Traffic:

This dataset contains loop sensor measurements of the Freeway

Performance Measurement System found on the UCI website.

This loop sensor dataset was collected in Los Angeles from 10

April 2005 to 1 October 2005 (5 minute count aggregates), and

the symbol size is 91. To train the models, I extracted sequences

from the sensor measurements from April 10th to September 23th.

I similarly extracted query sequences from sensor measurements

from September 24th to October 1st.

• UNIX :

I exploited the command histories of 8 UNIX computer users at

a university over 2 year period downloaded from the UCI web-

site. This data is drawn from tcsh(1) history files. The data was

parsed and sanitized to remove filenames, user names, directory

structures, web addresses, host names, and other possibly identi-

fying items resulting in a symbol size of 2360. I obtained a query

dataset from user0 and models were trained with the rest of the

dataset.

The models were trained by the Baum-Welch algorithm

[Levinson 82]. In experiments, sequence length is 256 and possible

§http://www.ncbi.nlm.nih.gov
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transitions of left-right model are restricted only to 2 states, which

is typical in many applications.

I evaluated the search performance mainly through wall clock time.

All experiments were conducted on a Linux quad 3.33 GHz Intel Xeon

server with 32GB of main memory. I implemented the proposed al-

gorithms using GCC. Each result reported here is the average of 100

trials.

4.2.2 Search cost

I assessed the search time needed for SPIRAL and Viterbi. I conducted

trials with various numbers of states and models because differences

in these numbers are expected to strongly impact the time taken by

Viterbi to process HMM datasets.

Wall clock time versus number of states Figure 4.2 compares

SPIRAL and Viterbi in terms of the wall clock time for various numbers

of states m for 10,000 models. These figures show that SPIRAL offers

greatly increased speed; Viterbi requires O(nm2) time for computing

likelihoods while SPIRAL requires O(nm2/g2) for computing approx-

imate likelihoods. SPIRAL requires O(nm2) time to compute exact

likelihoods for models that cannot be pruned through approximation.

This cost, however, has no effect on the experimental results. This is

because a significant number of models are pruned by approximation.

The proposed method is much faster than the Viterbi algorithm imple-

mentation under all the conditions examined. Specifically, SPIRAL is

more than 280 times faster for ergodic HMM and more than 80 times

faster for left-right HMM.

Wall clock time versus number of models Figure 4.3 shows the

wall clock time as a function of the number of models, where the number

of states is m = 100. SPIRAL is superior to the Viterbi algorithm as

in the case of changing the number of states. Even if SPIRAL first
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(d-1) UNIX, ergodic (d-2) UNIX, left-right

Figure 4.2: Wall clock time versus number of states.

57



���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

����

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

(a-1) EEG, ergodic (a-2) EEG, left-right

�

��

���

� � �� � ��� � � �� �����

� � � 	 
 � �  � � �  � 
 � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

(b-1) Chromosome, ergodic (b-2) Chromosome, left-right

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

(c-1) Traffic, ergodic (c-2) Traffic, left-right

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	 
 � �  � �  	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	 
 � � �

(d-1) UNIX, ergodic (d-2) UNIX, left-right

Figure 4.3: Wall clock time versus number of models.
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Figure 4.4: Number of likelihood computations.

computes the likelihoods of all models with the coarsest granularity to

find the initial candidate, this cost does not alter the search cost since

the coarsest approximation requires only O(n) time for a degenerate

model which has only one state. SPIRAL exploits the exact likelihood

of the candidate model to prune other models, and new candidates are

selected based on approximations of finer granularity. This ensures that

SPIRAL compute fewer models as model size increases.

4.2.3 Effect of likelihood approximation with
Multi-granularities

SPIRAL first prunes low-likelihood (unpromising) models using approx-

imations of multiple granularities. The number of exact likelihood com-

putations and fine-grained approximations are factors influencing the

search cost. Accordingly, I evaluated the number of exact computations

and approximations needed in SPIRAL. Figure 4.4 shows the number

of computations. The number of states and models in this figure is 100

and 10000, respectively.

This figure indicates that SPIRAL has strong pruning power; it

excludes most of the unlikely models with approximations of g = 64,

g = 32, and g = 16. Owing to this approximation quality, SPIRAL
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Figure 4.5: Wall clock time of transition pruning method.

achieves excellent search performance as shown in Figures 4.2 and 4.3.

This idea is especially effective with models of many states. This is

because the more states the models have, the more granularities there

are for finding the best model.

4.2.4 Effect of transition pruning

As mentioned in Section 4.1.4, SPIRAL excludes unlikely paths from

the trellis structure to efficiently compute exact and approximate like-

lihoods. To show the effectiveness of this idea, I removed the path-

pruning technique from SPIRAL, and reexamined the wall clock time.

Figure 4.5 shows the result for 10,000 models of 100 states. SPIRAL

without path-pruning is abbreviated as No pruning in this figure.

The results show that the transition pruning method can provide

efficient search especially for left-right HMMs which has transition re-

striction. As mentioned in Section 2.1, left-right HMMs have a con-

straint, the initial state probability of state one is 1, unlike ergodic

HMMs. Therefore if the conservative estimate of state one at the first

point in left-right HMMs is smaller than ε, all paths of the model give

the likelihoods smaller than ε and the model is pruned. SPIRAL is up

to 3 times faster if the transition pruning method is used.

60



Base number
Wall clock time [s]

EEG Chromosome Traffic UNIX

2 2.22 2.35 0.33 0.76
4 3.96 3.85 1.65 1.35
8 5.97 12.77 2.25 3.54

(a) Ergodic

Base number
Wall clock time [s]

EEG Chromosome Traffic UNIX

2 0.23 2.26 0.94 1.53
4 0.19 1.79 1.18 1.28
8 0.18 2.03 1.16 0.96

(b) Left-right

Table 4.1: Wall clock time versus base number.

4.2.5 Granularity level

SPIRAL identifies the best model by gradually doubling approximate

model sizes. This implies that the granularity of base 2 is used. How-

ever, SPIRAL allows the user to select other base numbers, which would

change the memory requirements. Therefore, experiments that exam-

ine other base numbers will be extremely useful in designing system

architectures for real applications. Table 4.1 shows the wall clock time

of SPIRAL for three base numbers against 10,000 models where each

model has 100 states.

I can see that small base numbers raise the search speed for the

ergodic HMM. The likelihood computation cost of ergodic HMM in-

creases as the square of model size. Therefore, a small base number

enables SPIRAL to prune models with low computation cost. How-

ever, I can not see this trend for the left-right model. As a result, the

memory space used can be reduced by the left-right model by adopting
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Clustering
Wall clock time [s]

EEG Chromosome Traffic UNIX

k-means 2.22 2.35 0.33 0.76
PAM 7.66 35.82 5.39 3.58

(a) Ergodic

Clustering
Wall clock time [s]

EEG Chromosome Traffic UNIX

k-means 0.23 2.26 0.94 1.53
PAM 0.27 2.13 2.22 1.97

(b) Left-right

Table 4.2: Comparison of clustering method.

base numbers above 2 while keeping the search efficiency high.

4.2.6 Clustering approach

As mentioned in Section 4.1, SPIRAL can exploit arbitrary clustering

methods and distance measures. However, the combination adopted

can impact the search efficiency since a good clustering approach yields

low approximate error. I compared the k-means method used in this

chapter with the Euclidean distance to PAM with Jensen-Shannon di-

vergence. PAM is the famous clustering method developed by Kauf-

man and Rousseeuw [Kaufman 05], and Jensen-Shannon divergence is

a popular method of measuring the similarity between two probability

distributions in probability theory and statistics. Table 4.2 shows the

results where the number of states is 100 and the number of models is

10,000.

The results show that SPIRAL is greatly impacted by the cluster-

ing approach, that is the k-means method basically enables SPIRAL
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to find the best model more efficiently than PAM. Furthermore, addi-

tional experiments confirmed that PAM incurs high computation cost

to construct degenerate structures from large data sets as described in

a previous study [Kaufman 05]. Therefore, a user should be careful in

selecting the clustering approach for a real application.

4.2.7 SPIRAL vs Beam search

One major advantage of SPIRAL is that it guarantees the exact answer,

but this raises the following simple question: “Can SPIRAL identify

models faster than another approach that does not guarantee the exact

answer?” To answer the this question, I conducted comparative ex-

periments using the well-known Beam search algorithm. I refer to the

Beam search algorithm implementation as Beam search.

I varied the beam width, i.e. the number of states taken into ac-

count, for the Beam search algorithm. Figures 4.6 and 4.7 show the

wall clock time and the likelihood error ratio, respectively. These fig-

ures show the results for 10,000 models of 100 states for EEG. Note,

SPIRAL identifies the best model accurately, so the likelihood error

ratio is 0.

The results show that the Beam search algorithm forces a trade-off

between speed and accuracy. That is, as the number of states decreases,

the wall clock time decreases but the computation error increases. The

Beam search algorithm is an approximation technique and so can miss

the best path for the original trellis structure. SPIRAL also computes

approximate likelihoods, but unlike the Beam search algorithm, SPI-

RAL does not discard the best path in each trellis structure, so the

errors are 0. Although SPIRAL guarantees the exact answer, it greatly

reduces the computation time. Specifically, SPIRAL is up to 20 times

faster than the Beam search algorithm in this experiment.

This result implies that SPIRAL will allow HMMs to be applied

to many more applications than are currently being considered. While

HMM is potentially useful in many applications, it has been difficult
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(a) Ergodic (b) Left-right

Figure 4.6: Wall clock time versus bandwidth.
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Figure 4.7: Error ratio versus bandwidth.

to utilize due to the high computational costs of existing HMM-based

techniques. By providing exact solutions in a highly efficient manner,

SPIRAL allows HMM to enhanced band so allow larger data structures

to be handled, which will improve the accuracy and effectiveness of

many applications.

4.3 Summary

This chapter addressed the problem of conducting a likelihood search

on a large set of Hidden Markov Models (HMMs). I proposed SPIRAL,
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which is based on three ideas to (1) prune low-likelihood models in the

HMM dataset by their approximate likelihoods, which yields promising

candidates in an efficient manner. (2) vary the approximation granu-

larity for each model to maintain a balance between computation time

and approximation quality. (3) discard unlikely paths in the trellis

structure, which improves the efficiency.

SPIRAL achieves all of the following goals:

• High-speed search: experiments on real data show that it clearly

outperforms the naive implementation, achieving an increase in

speed of several orders of magnitude.

• I prove that it guarantees exactness.

• It can handle any HMM model type.

Experiments show that SPIRAL works as expected, and finds high-

likelihood HMMs with high speed; Specifically, it is significantly faster

than the naive implementation.
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Chapter 5

Fast data stream monitoring
with HMM data set

The previous chapter explained how the proposed approach can be used

to search for the best model relative to a given query sequence; the im-

plicit assumption was that the algorithm handles static data. In this

section, I show that SPIRAL can be used to monitor data streams.

Over the past few years, a great deal of attention in the networking

and mobile-computing communities has been directed toward building

networks of collections of sensors scattered throughout environment.

Researchers at several universities have embarked on projects to pro-

duce small, wireless, battery powered sensors and low level networking

protocols [Kahn 99]. These attempts have brought us close to the vi-

sion of ubiquitous computing in which computers and sensors assist in

every aspect of our lives. To fully realize this vision, however, it will be

necessary to process the data structure in the form it occurs in; i.e. as

a stream of data values.

In data stream processing, the time interval of interest is generally

called as the window and there are three temporal spans for which the

values of data stream need to be calculated [Ganti 00, Gehrke 01]:

• Landmark window model: In this temporal span, data

streams are computed based on the values between a specific time
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Figure 5.1: Sliding window model.

point, called the landmark, and the present.

• Sliding window model: Given sliding window length, n, and

the current time point, the sliding window model would compute

the subsequence from the prior n− 1 time to the current time.

• Damped window model: In this model, recent data values are

more important than earlier ones. That is, in a damped window

model, the weights of data decrease exponentially into the past.

This chapter focuses on the sliding window model, which is illus-

trated in Figure 5.1, because it is used most often and is the most

general model [Zhu 02, Gao 05].

The data stream can be considered as time-ordered series of tuples

(time point, value). Each stream has a new value available at each

time interval, e.g. every second. If a stream has no value at a time

point, a value would be assigned to that time point based on interpo-

lation. If there are several values during a time point, then a summary

value would be assigned to that time point, but this is beyond the

scope of this work. It is assumed that the most recent sample is al-

ways taken at time n. Hence, a streaming sequence takes the form of

(. . . , x1, x2, . . . , xn). Likelihoods are computed only with n values from

the streaming sequence, so subsequences of the streaming sequence from

x1 to xn are only interested in. Streaming sequence length must not be
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shorter than n, but this is not a severe restriction since the streaming

sequence is longer than n after being received for some period. Lifting

this restriction is not difficult, and is not pursued in this chapter.

In the previous section, it is assumed that there are a fixed number

of HMMs and the operator-specified sequence. In this section, it is

assumed that there are a fixed number of HMMs and a subsequence

of the data stream, the problem here is to find the model which has

the highest likelihood for each subsequence extracted from the data

stream. The naive method for monitoring data streams is to compute

the likelihood of the model with the Viterbi algorithm every time a

sequence value arrive. However, this approach is not feasible due to

the fact that data streams are likely to have high bit rates.

5.1 Proposed solution

The proposed approach for data stream processing mainly follows the

approach for static sequences mentioned in Section 4.1.5. The proposed

search procedure, however, is carefully designed to process high bit

rate data streams, which is based on the following observation of data

streams:

• There is little difference between subsequences before and after the

arrival of a data value.

In the case of a data stream, incoming data values are continually

being added to the already received data. The sliding window

model is only interest in the subsequence of the latest n values.

Therefore, there is little difference in the subsequences before and

after the arrival of the latest value, even though new data values

will arrive at high frequency.

The first basic conclusion from this observation is that model gran-

ularity can be efficiently decided by referring to the immediately prior

granularity. From this observation, it is to be expected that the like-

lihood of the model examined for the subsequence changes little, and
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that the models can be efficiently pruned by continuing to use the prior

granularities. That is, in the present time tick, the initial granularity is

set relative to the finest granularity of the previous time tick at which

model likelihood was computed. If model pruning was conducted at

the coarsest granularity, this granularity can be used in the next time

tick, otherwise the granularity level that is one step down (coarser) is

used as the initial granularity.

Example 5. If the original HMM has 16 states and the model was

pruned with the 1 state model (granularity g4, coarsest), I adopt the 1

state model (granularity g4) as the initial model in the next time tick;

if the model is pruned using the approximate likelihood of 16 states

(granularity g0) , the 8 states model is selected (granularity g1) as the

initial model.

If the model is not pruned at the initial granularity, the approxi-

mate likelihood of a finer-grained structure is computed to check for

model pruning against the given θ. This procedure is the same as the

algorithm for handling static sequences.

This procedure enables SPIRAL to automatically change the gran-

ularities in accordance with the stream trend. That is, if the model

likelihoods show a declining trend, the granularity is made coarser; if

the likelihoods are rising, SPIRAL computes the likelihoods of finer-

grained models.

The second basic conclusion is to select the best model of the pre-

vious time as the initial candidate. The search algorithm for static

sequences (which described in Section 4.1.5) selects the initial candi-

date based on the approximate likelihood of the coarsest model to find

the best model. However, from the observation, the best model of the

last time tick is likely to be the best model again. Therefore, the exact

likelihood of the best model of one time tick is first computed before

to obtain the initial θ needed to identify the best model effectively.
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Input: subsequence X, set of models M′, the previous best model M ′
best.

Output: the best model Mbest.
1: compute P0 for M ′

best, θ := P0, Mbest := M ′
best,add M′

h to Mh;
2: for i := h to 1 do
3: add M′

i−1 to Mi;
4: end for
5: for i := h to 0 do
6: θ′ := 0;
7: for each model M ∈ Mi do
8: compute Pi for M ;
9: if Pi ≥ θ′ then

10: Mmax := M , θ′ := Pi;
11: end if
12: end for
13: compute P0 for Mmax;
14: if P0 ≥ θ then
15: Mbest := Mmax, θ = P0;
16: end if
17: for each model M ∈ Mi do
18: if Pi ≥ θ then
19: add M to Mi−1, subtract M from Mi;
20: end if
21: end for
22: M′

i := Mi;
23: end for
24: M ′

best := Mbest;
25: return Mbest;

Algorithm 3: Algorithm for monitoring data streams.

5.1.1 Search algorithm

Algorithm 3 depicts the proposed approach to data stream pro-

cessing. In this figure, Mi represents the set of models for which it

computes the likelihood of granularity gi, and M′
i represents the set

of models computed with the finest granularity in the previous time

tick, gi. SPIRAL first computes the initial value of θ based on the best

model of the last time. And SPIRAL sets the initial granularity. If a

model is pruned at the coarsest granularity at the last time tick, it uses

this granularity as the initial granularity. Therefore, M′
h is added to
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Mh. The one step lower granularity is used as the initial granularity

if the model was not pruned at the coarsest granularity; ‘add M′
i−1 to

Mi’ represents this procedure.

This approach is also applicable to range queries and K-nearest

neighbor queries against streaming sequences. The proposed approach

can handle range queries by applying a search threshold as θ to the

above algorithm. For K-nearest neighbor queries, the proposed ap-

proach can efficiently select the initial candidate to prune models by

computing the exact likelihoods of the K models at the previous time

tick.

5.2 Experimental evaluation and discus-

sion

I performed experiments to demonstrate SPIRAL’s effectiveness. I com-

pared SPIRAL to the Viterbi algorithm. I refer to the Viterbi algorithm

implementation as Viterbi hereafter.

5.2.1 Experimental data and environment

I used the following four standard datasets in the experiments; EEG,

Chromosome, Traffic, and UNIX same as Section 4.2.

The models were trained by the Baum-Welch algorithm

[Levinson 82]. In experiments, sequence length is 256 and possible

transitions of left-right model are restricted only to 2 states, which

is typical in many applications.

I evaluated the search performance mainly through wall clock time.

All experiments were conducted on a Linux quad 3.33 GHz Intel Xeon

server with 32GB of main memory. I implemented the proposed al-

gorithms using GCC. Each result reported here is the average of 100

trials.
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(a) Ergodic (b) Left-right

Figure 5.2: Wall clock time of monitoring data stream.

5.2.2 Results of monitoring data stream

I conducted several experiments to show the effectiveness of the pro-

posed approach for monitoring data stream.

Search cost

Figure 5.2 compares the two versions of SPIRAL (i.e., stream and non-

stream algorithms) and Viterbi in terms of the wall clock time for vari-

ous datasets where the number of states and number of models are 100

and 10,000, respectively.

As expected, the stream algorithm overwhelms the other algorithms,

especially the stream algorithm can find the best model up to 490 times

faster than the Viterbi algorithm. The proposed approach for data

stream processing follows the approach used to handle static query

sequences. However, it differs in setting the initial granularity and

candidate, both of which provide the stream algorithm with higher

search efficiency. I adopt the sliding window model which computes

the latest n values of data stream, so the extracted subsequences show

little difference before and after the arrival of the next data value.

The proposed approach for data stream processing is based on the this

observation, and its effectiveness is confirmed in Figure 5.2.

72



�

�� �

�

�� �

�

� � � 	 
 � � � �  �

�
�
���
�
��
�
�
��
	

�
��

�

��������	
���

������

� � � � �� � � � �
�

�� ��

�� �

�� ��

�� �

� � � 	 
 � � � �  �

�
�
���
�
��
�
�
��
	

�
��

�

��������	
���

������

� � � � �� � � � �

(a) Ergodic (b) Left-right

Figure 5.3: Breakdown of search cost.

Effectiveness of the data stream algorithm

The proposed stream algorithm automatically changes the granularity

and effectively sets the initial candidate to find the best model. To

show the effectiveness of these ideas, I plot the wall clock time at each

granularity for the two versions of SPIRAL. Figures 5.3 show the break-

down in the cost of model search against 10,000 models for EEG, where

each model has 100 states.

The stream algorithm requires less computation time at each gran-

ularity. Instead of using gh (the coarsest) as the initial granularity for

all models, this algorithm sets the initial granularity with the finest

granularity at the prior time tick, thus this ensures that the algorithm

reduces the number of models at each granularity. Furthermore, the

stream algorithm sets the best model of the prior time tick as the ini-

tial candidate, which is expected to remain the answer. As a result, it

can find the best model for data stream much more efficiently.

5.2.3 Stream monitoring with dynamically chang-
ing models

It has been assumed so far the use of static models for the monitoring

of data streams even though each data stream is a temporally-variable
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sequence data. However, in real applications, SPIRAL will need to

be modified to adapt to dynamically changing models. Subsequent

discussions are given below according to whether the model has already

been trained before starting to monitor the data stream or not.

If model has already been trained, it is not difficult to construct

degenerate data structures to compute approximate likelihood before

monitoring of data streams commences. Moreover, the proposed ap-

proach can index these data structures by simply storing pointers to

the structures, since the proposed search algorithms do not utilize any

search tree structures such as B-trees, all that is needed is to maintain

model sets for likelihood computation.

However, in some applications, a user may want to change the model

parameters while monitoring a data stream. In this case, on-line learn-

ing [Bishop 07] is effective since the model parameters are updated for

one data set at a time. The degenerate data structures are needed to

be updated according to the trained model, but these structures can

be updated at low cost. That is, instead of initializing the positions

of cluster centers randomly, which is common in the standard k-means

method, the positions of cluster centers before the parameter update

are utilized as initial center values. This approach is expected to be ef-

fective since the positions of cluster centers are almost the same before

and after the update.

5.3 Summary

This chapter addressed the problem of conducting a likelihood search

on a large set of Hidden Markov Models (HMMs) with the goal of find-

ing the best model for data streams. I presented the approach which

effectively set the initial candidate model and approximation granular-

ity. Experiments show that the proposed approach works as expected,

and finds high-likelihood HMMs at high speed for data streams.
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Chapter 6

Efficient Centrality
Monitoring for
Time-evolving Graphs

Graphs arise naturally in a wide range of disciplines and application

domains, since they are an intuitive abstraction that can naturally cap-

ture data entities as well as the relationship among those entities. Data

entities are represented as nodes in the graph and edges capture the

relationships between data entities. Therefore, graph theory has been

one of the major studies in mathematics and computer science since the

publication in 1736 of the seminal paper written by Leonhard Euler.

HMM is a probabilistic graphical model which is very useful to

analyze sequential data. A probabilistic graphical model comprises

nodes connected to by edges. In a probabilistic graphical model, each

node represents a random variable, and the edges express probabilistic

relationships between these variables. And a probabilistic graphical

model then captures the way in which the joint distribution over all of

the random variables can be decomposed into a product of factors each

depending only a subset of the variables.

In the previous chapters, I presented the several approaches to com-

pute the likelihood for HMMs. This naturally induce the following
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question ”It is possible to apply the approaches for graphical data?”.

The aim of this chapter is to present the answer for the question; I show

the solution for the problem of finding the lowest centrality node from

time-evolving graphs efficiently in this chapter.

6.1 Introduction

In graph theory, the facility location problem is quite important since

it involves finding good locations for one or more facilities in a given

environment. In this problem, it is preferable to find the nodes whose

distances to other nodes is the shortest in the graph, since the cost it

takes to reach all other nodes from the nodes are expected to be low.

In graph analysis, the centralities based on this concept are closeness

and eccentricity. In this chapter, the closeness centrality of node u,

Cu, is defined as the sum of distances from the node to other nodes.

And the eccentricity centrality node u, Eu, is defined as the maximum

distance from the node to other nodes.

A naive approach to the computation of centrality is based on

breadth-first search (BFS). However it is not practical for large-scale

graphs since it requires excessive CPU time. The previous approxi-

mate approaches, such as the annotation approach [Rattigan 06] and

the embedding approach [Potamias 09, Ng 02], can estimate central-

ities efficiently. These approaches have the advantage of speed over

BFS-based schemes at the expense of exactness. However, approximate

algorithms are not adopted by many practitioners. This is because the

optimality of the solution is not guaranteed; it is hard for approximate

algorithms to identify the lowest centrality node. Furthermore, the fo-

cus of traditional graph theory has been limited to just ‘static’ graphs;

the implicit assumption is that nodes and edges never change. Recent

years have witnessed a dramatic increase in the availability of graph

datasets that comprise many thousands and sometimes even millions

of time-evolving nodes; a consequence of the widespread availability of
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electronic databases and the Internet. Recent studies on large-scale

graphs are discovering several important principles of time-evolving

graphs [Newman 03, Leskovec 07]. Thus demands to the analysis of

time-evolving graphs are increasing. I address the following problem in

this chapter:

Problem 4. Given graph G[t] = (V, E) at time t where V is a set of

nodes and E is a set of edges, find the nodes whose closeness centrality

are the lowest, and the nodes whose eccentricity centrality are the lowest,

both in graph G[t].

To the best of my knowledge, the proposed approach is the first

solution to achieve both exactness and efficiency at the same time in

identifying the lowest centrality node from time-evolving graphs.

6.1.1 Contributions

I propose a novel method called Sniper that can efficiently identify

the lowest centrality node in time-evolving graphs. In order to reduce

search cost, (1) the original graph size is reduced to compute approxi-

mate centrality, and (2) high-centrality nodes are pruned by terminat-

ing unnecessary distance computations early. Sniper has the following

attractive characteristics based on the above ideas:

• Exact: Sniper does not sacrifice accuracy even though it exploits

an approximate approach to prune unlikely nodes; it returns the

lowest centrality node without error although the previous ap-

proximate approaches do not guarantee the exactness.

• Efficient: Sniper requires just O(n2 + nm) time where n and m

are the number of nodes and edges, respectively. However solu-

tions based on the existing approximate algorithms are expensive

for large-scale graphs; they need O(n3) time to find the lowest

centrality node.
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• Nimble: The required memory space of Sniper is smaller than

that of the previous approximate approaches; Sniper needs just

O(n + m) space although the previous approaches needs O(n2)

space.

6.1.2 Problem motivation

The problem tackled in this chapter must be overcome to develop the

following important applications.

Social networks

Networks of interaction have been studied for a long time by social sci-

ence researchers, where nodes correspond to people or organizations,

and edges represent some type of social interaction. The question of

‘which is the most important node in a network?’ is being avidly pur-

sued by scientific researchers. An important example is the network

obtained by considering scientific publications. Nodes in this case are

researcher, papers, book, or entire journals, and edges correspond to

co-authorship or citations. This kind of network generally grows very

rapidly over time. For example, the collaboration network of scientists

in the database area contains several tens of thousands of authors and

its rate of growth is increasing year by year; there are several thousand

new authors each year [Elmacioglu 05]. The systematic construction of

such networks was introduced by Garfield, who later proposed a mea-

sure of standing for journals that is still in use. This measure, called

impact factor, is defined as the number of citations per published item

[Garfield 72]. Basically, the impact factor is a very simple measure,

since it corresponds to the degree of the citation network.

However the degree is a local measure, because the value is only

determined by the number of its adjacent nodes. That is, if a high-

degree node lies in an isolated community of the network, the influence

of the node is very limited.

78



Closeness centrality is a global centrality measure since it is com-

puted by summing the distances to all other nodes in a graph. There-

fore, it is an effective measure of influence on other nodes. The most

influential node can be effectively detected as the lowest closeness cen-

trality node by monitoring time-evolving graphs. Nascimento et al.

analyzed SIGMOD’s co-authorship graph [Nascimento 03] ∗. They suc-

cessfully discovered that L. A. Rowe, M. Stonebraker, and M. J. Carey

were the most influential researchers from 1986 to 1988, 1989 to 1992,

and 1993 to 2002, respectively. All these three are very famous and

important researchers in the database community.

P2P sensor networks

With the introduction of low-cost processors, memory, and radio tech-

nologies, it has become possible to build inexpensive wireless micro-

sensor nodes and thus high quality, fault-tolerant P2P sensor networks.

These networks can be used to collect useful information from an area

of interest, especially where the physical environment is so harsh that

a sensor might fail at any time.

Even though many P2P sensor network models have been proposed,

their basic characteristics are common as follows: They are all com-

posed of a large number of sensor nodes, and a small number of mas-

ter nodes. All sensor nodes perform relatively limited computational

operations. The master nodes collect the data from all sensors, and

analyze/process the data. They are also the managers of the network.

One of the main system design considerations is energy conservation,

because it limits node lifetime and thus the quality of the network.

It can be observed that the nodes that have the lowest eccentricity

centrality score are expected to have the short distances to all other

nodes assuming that a sensor and a communication link between sen-

sors are represented as a node and an edge, respectively. Therefore, it

∗They examined the co-authorship graph for not only SIGMOD but also PODS,
VLDB and ICDE. The latest results can be seen at http://db.cs.ualberta.ca/coauthorship/
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is appropriate to designate the lowest eccentricity nodes as the mas-

ter nodes. Based on this idea, Wang proposed an energy-efficient data

collection approach for P2P sensor networks [Wang 06]. They demon-

strated that their approach can considerably reduce the power needed

to collect data from sensors.

While time-evolving graphs are potentially useful in many applica-

tions, they have been difficult to utilize due to their high computational

costs. However, by providing exact solutions in a highly efficient man-

ner, Sniper will allow many more data mining applications based on

time-evolving graphs to be developed in the future.

6.2 Related work

The structural properties of real world networks have been investigated

and shown to have several interesting properties. Researchers of data

engineering have published many papers on node-to-node distance com-

putation or time-evolving graphs.

6.2.1 Network Science

Recent studies on large graph datasets have shed light on several im-

portant network phenomena; most importantly, how the structure of

the network itself evolves over time.

One phenomenon, rooted in early work in social sciences, is pref-

erential attachment; in this phenomenon, nodes that already have

many edges will tend to acquire them at a greater rate than others

[Newman 03]. One active line of research has shown how preferential

attachment can lead to the highly skewed distributions of edges that

one sees in real network, with certain nodes acting as highly connected

hubs [Reka 02].

Another phenomenon, also a key issue in sociology, is the notion of

triadic closure; edges are much more likely to form between two nodes

when they share a third node [Rapoport 53]. Recent work on email
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logs has provided some of the first concrete measurements of the effect

of this principle in a social-communication network [Kossinets 06].

Additional phenomena have begun to emerge from recent studies

of social and information networks, including the densification effect.

In this phenomenon, the number of edges per node increases as the

network grows. Diameters, the number of maximum distances between

any two nodes, decrease in a graph even as the total number of nodes

increases [Leskovec 07].

6.2.2 Data Engineering

Many papers have been published on approximation for node-to-node

distances. The previous distance approximation schemes are distin-

guished into two types: annotation approach and embedding approach.

Rattigna et al. studied two annotation schemes [Rattigan 06]. They

randomly select nodes in a graph and divide the graph into regions that

are connected, mutually exclusive, and collectively exhaustive. They

give a set of annotations to every node from the regions. Distances

are computed by the annotations. They demonstrated their method

can compute node distances more accurately than the embedding ap-

proaches. However, this method can require O(n2) space and O(n3)

time to estimate the lowest centrality nodes as described in their pa-

per.

The Landmark approach is an embedding approach [Goldberg 05,

Potamias 09], and estimates node-to-node distance from selected nodes

at O(n) time. The minimum distance via a landmark node is utilized as

node distance in this method. Another embedding approach is Global

Network Positioning which was studied by Ng et al [Ng 02]. Node dis-

tances are estimated with Lp norm between node pairs. These embed-

ding approaches require O(n2) space since all n nodes hold distances to

O(n) selected node. Moreover, they require O(n3) time to identify the

lowest centrality node since O(n2) time is needed to compute estimate

centrality for all n nodes.
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Sun et al. applied tensor analysis to time-evolving graphs to de-

tect graph patterns [Sun 06]. A static graph can be expressed using

adjacency-matrix representation; this implies that a static graph is two

dimensional. Even though SVD/PCA can represent such 2D matri-

ces compactly, it is not effective for 3D time-evolving graphs. Their

approach represents the original tensor as several small tensors and

a matrix. The matrix can be dynamically updated for time-evolving

graphs.

In subsequent work by Sun et al., they encoded the original time-

evolving graphs by lossless compression and effectively detected com-

munities in graphs [Sun 07].

6.3 Preliminary

In this section, I introduce the background to this chapter. Social

networks and others can be described as graph G = (V, E), where V

is the set of nodes, and E is the set of edges. n and m are used to

denote the number of nodes and edges, respectively. That is n = |V |
and m = |E|. A path from node u to v as the sequence of nodes linked

by edges, beginning with node u and ending at node v. A path from

node u to v is the shortest path if and only if the number of nodes in

the path is the smallest possible among all paths from node u to v.

Distance between node u and v, d(u, v), is the number of edges in the

shortest path connecting them in a graph. Therefore d(u, u) = 0 for

every u ∈ V , and d(u, v) = d(v, u) for u, v ∈ V .

The closeness centrality of node u, Cu, is the sum of the distances

from the node to any other node, and computed as follows:

Cu =
∑
v∈V

d(u, v) (6.1)

The eccentricity centrality of node u, Eu, is the maximum distance

from the node to any other node, and computed as follows:

Eu = max{d(u, v) : v ∈ V } (6.2)
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Table 6.1: Definition of main symbols.
Symbols Definitions

V Set of nodes in graph G

E Set of edges in graph G

n Number of nodes
m Number of edges
t Time stamp, t ≥ 1
d(u, v) Distance from node u to v

Cu Closeness centrality of node u

Nu Neighbors of node u

The aims of closeness and eccentricity centrality are to identify the

node that minimizes the total distance (i.e., the average distance) and

the maximum distance to any other node in a graph, respectively.

The closeness and eccentricity centrality of node u can be naively

computed by the approach of BFS, which is often used for searching a

graph. Given graph G = (V, E) and source node u, BFS systematically

explores every node that is reachable from node u. It computes the

distance from node u to each reachable node. To compute the closeness

centrality of node u, the naive approach exploits BFS from node u at the

first step to compute distances to all other nodes, and then computes

the sum of the distances in the next step. Similarly, the eccentricity

centrality of node u can be computed by BFS by simply exploring all

other nodes to compute the maximum distance. However, ‘computing

shortest paths among all node pairs is computationally prohibitive’ as

described in [Leskovec 07].

6.4 Centrality monitoring

In this section, I explain the two main ideas and introduce Sniper. The

main advantage of Sniper is to exactly and efficiently identify the low-

est closeness and eccentricity centrality nodes in time-evolving graphs.
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I focus on identifying the lowest closeness centrality nodes in this sec-

tion, and discuss how to detect the lowest eccentricity nodes in Sec-

tion 6.4.6. And I focus on undirected and unweighted graphs in this

section. However, the proposed approach can be applied to weighted or

directed graphs as described in Section 6.4.6. Moreover, the proposed

approach can handle range queries (find the nodes whose centralities

are less than a given threshold) and K-best queries (find the K lowest

centrality nodes) as described in Section 6.4.6. It is assumed that no

two nodes will have exactly the same centrality value and one node is

added to a time-evolving graph at each time tick. These assumptions

can be eliminated easily. Table 6.1 lists the main symbols and their

definitions.

6.4.1 Ideas behind Sniper

The proposed solution is based on the two ideas described below.

Node aggregation I introduce approximations to reduce the high

cost of the existing approaches. Instead of computing the exact cen-

trality of every node, the centrality is approximated, and high-centrality

nodes are efficiently pruned.

For a given graph with n nodes and m edges, an approximate graph

of n′ nodes and m′ edges (n′ < n,m′ < m) is created by aggregat-

ing ‘similar’ nodes in the graph (see Figure 6.1). For the approximate

graph, O(n′ + m′) time is required for Sniper to compute the approx-

imate centralities, while the existing approximate algorithm requires

O(n2) time as described in Section 6.2. The Jaccard coefficient is ex-

ploited to find similar nodes, and then aggregate the original nodes to

create node groups. I refer to such groupings as aggregate nodes.

This new idea has the following two major advantages. First, the

answer node can be found exactly; the node that has the lowest cen-

trality is never missed by this approach. This is because the proposed

approximate graphs guarantee the lower bounding distances, i.e. ap-
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(1) Node aggregation (2) Tree estimation

Figure 6.1: Basic ideas behind Sniper.

proximate centrality. This means that unpromising nodes can be safely

discarded at low CPU cost. The second advantage is that this idea can

reduce the number of nodes that must be processed to compute central-

ities, as well as reducing the computation cost for a single node. That

is, the lowest centrality node can be identified among a large number

of nodes efficiently.

Tree estimation Although the proposed approximation technique is

able to discard most of the unlikely nodes, exact centrality computation

must be used to guarantee the correctness of the search results. Here I

focus on reducing the cost of this computation.

To compute the exact centrality of a node, distances to all other

nodes from the node have to be computed by BFS. But clearly the ex-

haustive exploration of nodes in a graph is not computationally feasible,

especially for large graphs. The proposal exploits the following idea:

If a node cannot be the lowest centrality node, subsequent distance

computations are terminated as being unnecessary.

The proposed search algorithm first holds a candidate node, which

is expected to have low centrality. The distances of unexplored nodes

are also estimated in the distance computation from a single BFS-tree

to obtain the lower centrality bound. In the search process, if the lower

centrality bound of a node gives a value larger than the exact centrality

of the candidate node, the node cannot be the lowest centrality node

in the original graph. Accordingly, unnecessary distance computations
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can be terminated early.

With this estimation, I do not need to exhaustively explore all node

pairs in a graph, so the computation cost is less than that is demanded

by the BFS-based algorithm.

This technique can be applied to approximate centrality computa-

tion as well as exact computation. This means that the approximate

centrality can be computed more efficiently.

6.4.2 Node aggregation

The first idea involves aggregating nodes of the original graph, which

enables to compute the lower centrality bound to realize reliable node

pruning.

Graph approximation

The original graph size is reduced in order to compute approximate

centralities at low computation cost. To realize efficient search, given

original graph G with n nodes and m edges, this approach computes

n′ nodes and m′ edges in the approximate graph G′. That is, the

original graph G = (V, E) is collapsed to yield the approximate graph

G′ = (V ′, E ′).
I first describe how to compute the edges of the approximate graph,

and then show the proposed approach to aggregate original nodes.

For the aggregate nodes u′ and v′, there is an edge, {u′, v′} ∈ E ′,
if and only if there is at least one edge between aggregated original

nodes in u′ and v′. Moreover, the approximate graph has no self-loop

edge. These definitions are important for computing the lower central-

ity bound. Formally, the edges between aggregate node u′ and v′ are

obtained as follows:

Definition 1 (Node aggregation). In the approximate graph G′,
node u′ and v′ have an edge if and only if:

(1)u′ 6= v′, (2)∃{u, v}, u ∈ u′ ∩ v ∈ v′ (6.3)
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where u ∈ u′ indicates that aggregate node u′ contains original node u.

To reduce the approximation error, similar nodes are aggregated.

As described above, the aggregate nodes share an edge if and only if

there is at least one edge between the original nodes that have been ag-

gregated. Therefore, the approximation error decreases as the number

of neighbors shared by the aggregated nodes increases. For this rea-

son, the Jaccard coefficient is utilized since it is a simple and natural

measure of similarity between sets [Broder 97]. The proposed approach

can utilize other similarity measures such as the Dice and Simpson co-

efficients †, but this choice has very little impact as I demonstrate in

Section 6.5

Let Nu and Nv be neighbors (adjacent nodes) of nodes u and v,

respectively; the Jaccard coefficient is defined as |Nu ∩Nv|/|Nu ∪Nv|,
i.e. the size of the intersection of the sets divided by the size of their

union. Node u and v are aggregated if the most similar node of u is node

v, this yields good approximation as later demonstrated in Section 6.5.

Note, nodes u and v are not aggregated if the size of their intersection is

less than one half the size of their union to avoid aggregating dissimilar

nodes.

If one node is added to a time-evolving graph, the most similar node

is computed to update the approximate graph. The naive approach to

compute the most similar node for the added node is to compute the

similarities for all nodes. On the other hand, the following lemma is

utilized to efficiently update the most similar node:

Lemma 7 (Update the most similar nodes). For the added node,

the most similar node is at most two hops apart.

Proof. For two nodes having no common neighbor, the similarity

coefficient is 0 by definition. Because of the presence of a two-hop path

through a common neighbor, pairs with a positive similarity coefficient

must be at most two hops apart. ¤
†The Dice and Simpson coefficients are defined as 2|Nu ∩Nv|/(|Nu|+ |Nv|) and

|Nu ∩Nv|/ min(Nu, Nv), respectively.
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Input: G[t] = (V, E), a time-evolving graph at time t
uadd, the added node at time t

Output: G′[t] = (V ′, E′): the approximate graph.
1: compute distances from uadd;
2: for each node v s.t. d(uadd, v) ≤ 2 do
3: compute the similarity coefficient;
4: update the most similar node;
5: end for
6: for each node v ∈ V do
7: aggregate node v to the most similar node;
8: end for
9: for each node v′ ∈ V ′ do

10: if v′ 6= w′ ∩ (∃{v, w}, v ∈ v′ ∩ w ∈ w′) then
11: Link edge for w′;
12: end if
13: end for
14: return G′[t];

Algorithm 4: Update

Note that this lemma holds for not only the Jaccard coefficient but

also the Dice and Simpson coefficients.

The approximate graph is efficiently updated with the above lemma.

Algorithm 4 shows the update algorithm for approximate graphs. This

algorithm is based on Lemma 7. It computes the distances of one and

two hops apart nodes from the added node by BFS (line 1). For each

obtained node, it computes similarity for the added node and update

the most similar node (lines 2-5). It merges similar original nodes to

obtain the aggregate nodes (lines 6-8). It links the aggregate nodes

with Definition 1 (lines 9-13).

Even though it is assumed that a single node is added for time-

evolving graphs in each time tick, Lemma 7 can also be applied for

the case of single node deletion. The above procedure is iterated for

each node if several nodes are added. If one edge is added/deleted, one

connected node is deleted and added the node.
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Lower bounding centrality

Given an approximate graph, approximate centrality of node u′ is com-

puted as follows:

Definition 2 (Approximate closeness centrality). For the approx-

imate graph, the approximate closeness centrality of node u′, Cu′, is

computed as follows:

Cu′ =
∑

v′∈V ′
{d(u′, v′) · |v′|} (6.4)

where |v′| is the number of original nodes aggregated within node v′.

I can provide the following theorem about the centrality approxi-

mation:

Lemma 8 (Approximate closeness centrality). For any node in

the approximate graph, the following inequality holds.

Cu′ ≤ Cu (6.5)

Proof. I first prove that d(u′, v′) ≤ d(u, v) holds for any node

in the approximate graph. Let u Ã v be the shortest path between

nodes u and v of the original graph, and wi Ã wj be the sub-path

of the shortest path. If all nodes on the shortest path are aggregated

into distinct nodes, the corresponding path length in the approximate

graph is equal to that of the shortest path. This is because the shortest

path of approximate graph u′ Ã w′
i Ã w′

j Ã v′ completely matches

the shortest path of the original graph, u Ã wi Ã wj Ã v. Otherwise,

there are at least two original nodes that are aggregated into one node.

That is, the nodes of the original graph, wi and wj, are aggregated into

node w′. Therefore, the shortest path of the original graph, u Ã wi Ã
wj Ã v, is shortened to u′ Ã w′ Ã v′. Therefore, d(u′, v′) ≤ d(u, v).

For all aggregate node u′, the following inequality holds from the

above property:

d(u′, v′) · |v′| ≤
∑

v∈v′
d(u, v) (6.6)
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Therefore, the following inequality holds:

Cu′ =
∑

v′∈V ′
{d(u′, v′) · |v′|} ≤

∑
v∈V

d(u, v) = Cu (6.7)

which completes the proof. ¤
Lemma 8 provides Sniper with the property of finding the exact

answer as is described in Section 6.4.5.

6.4.3 Tree estimation

I introduce an algorithm for computing original centralities efficiently.

This approach terminates subsequent distance computations from a

node if the estimate centrality of the node is larger than the exact

centrality of the candidate node. In this approach, lower bounding

distances of unexplored nodes via BFS are computed to estimate the

lower centrality bound of a node. Estimations are obtained from a

single BFS-tree.

Notation

I first give some notations for the estimation. In the search process,

this approach constructs the BFS-tree rooted at a selected node. As a

result, the selected node forms layer 0. The direct neighbors of the node

form layer 1. All nodes that are i hops apart from the selected node

form layer i. The approach to selecting the node is later described.

Next, this approach checks by BFS that the exact centralities of

other nodes in the tree are lower than the exact centrality of the

candidate node. The set of nodes explored by BFS is defined as

Vex, and the set of unexplored nodes as Vun(= V \ Vex). dmax(u)

is the maximum distance of the explored node from node u, that is

dmax(u) = max{d(u, v) : v ∈ Vex}. Moreover, the explored layer of the

tree is defined as Lex if and only if there exists at least one explored

node in the layer. Similarly the unexplored layer is defined as Lun if
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and only if there exists no explored node in the layer. The layer number

of node u is denoted as l(u).

Centrality estimation

How to estimate the centrality of a node is defined in this section. The

closeness centrality of node u via BFS is estimated as follows:

Definition 3 (Estimate closeness centrality). For the original

graph, the following estimate centrality of node u, Ĉu, is defined to

terminate distance computation in BFS:

Ĉu =
∑

v∈Vex

d(u, v) +
∑

v∈Vun

e(u, v) (6.8)

e(u, v)=

{
dmax(u) (v ∈ Vun ∩ Lex)
dmax(u)+min{|l(v)−l(w)|}−1 (v ∈ Lun, w ∈ Lex)

The estimation is the same as the exact centrality if all nodes are

explored (i.e. Vex = V ) in Equation (6.8). To show the property of

estimate centrality, I introduce the following lemma:

Lemma 9 (Estimate closeness centrality). The following inequal-

ity holds for the original graph in BFS.

Ĉu ≤ Cu (6.9)

Proof. I first prove that distance of unexplored node v in an

explored layer cannot shorter than dmax. In BFS, all distances are

computed from already explored nodes, where exploration starts from

a source node. This procedure ensures that distances of unexplored

nodes are monotonic non-decreasing in BFS.

I next prove that the distance of unexplored node v in an unexplored

layer cannot be shorter than dmax + min(|l(v)− l(w)|)− 1 where node

w is in an explored layer. If the one upper/lower layer is explored

for the unexplored layer, distance of node v cannot shorter than dmax

because distances of unexplored nodes cannot be shorter than dmax.
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Moreover, if two upper/lower layer is explored and the one upper/lower

layer is unexplored, distance of node v cannot shorter than dmax +

1. This is because the distance of the one upper/lower layer nodes

cannot be shorter than dmax and the unexplored layer cannot be directly

connected to nodes in more than two upper/lower layers. Similarly, if

the i upper/lower layer is explored and the 1 to i − 1 upper/lower

layer are all unexplored, the distance of node v cannot be shorter than

dmax + i− 1. This completes the proof. ¤
This property enables Sniper to identify the lowest centrality node

exactly.

The selection of the root node of the tree is important for efficient

pruning. The lowest centrality node of the previous time tick is selected

as the root node. There are two reasons for this approach. The first

reason is that this node and nearby nodes are expected to have lowest

centrality value, and thus are likely to be the answer node after node

addition. In the case of time-evolving graphs, small numbers of nodes

are continually being added to the large number of already existing

nodes. Therefore, there is little difference between the graphs before

and after node addition. In addition, the centrality value of a node can

be more accurately estimated if the node is close to the root node; this

is the second reason. This is because the proposed estimation scheme

is based on the distances from the root node.

Algorithm 5 shows the algorithm for the centrality estimation for a

source node. It exploits the exact centrality of the candidate node as θ

in Algorithm 5. It excludes the unlikely nodes in the graph by using θ.

That is, if the estimated centrality of a node is larger than θ, that node

cannot be the lowest centrality node, and so can be safely discarded

(lines 6-8). Note that the estimation yields the exact centrality if all

nodes are explored in this algorithm, therefore it returns Ĉu at the end

of Algorithm 5 (line 10).

This algorithm to approximate graph computation can be similarly

applied for exact computation.
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Input: G = (V, E), a graph
u, a source node
θ, exact centrality of the candidate node

Output: Ĉu, estimate centrality
1: Vex ← empty set;
2: while Vex 6= V do
3: compute distance of node v, d(v, u), by BFS;
4: append node v → Vex;
5: compute the estimation Ĉu;
6: if Ĉu > θ then
7: return Ĉu;
8: end if
9: end while

10: return Ĉu;

Algorithm 5: Centrality estimation

6.4.4 Search algorithm

The main approach to finding the lowest centrality node is to prune

unlikely nodes by using the proposed approximation, and then confirm

by exact centrality computations whether the viable nodes are the an-

swer. However, an important question is which node should be selected

as the candidate in time-evolving graphs. The previous lowest central-

ity node is selected as the candidate. This node likely to have lowest

centrality. After the BFS-tree construction, the exact centrality can be

directly obtained with this approach.

The proposed search algorithm is outlined as follows:

1. It updates the approximate graph for node addition.

2. It constructs a BFS-Tree rooted the candidate node.

3. If the approximate centrality of a node is higher than the central-

ity of the candidate node, it prunes the node.

4. For viable nodes, it computes the exact centrality to confirm the

answer node.
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Input: G[t] = (V, E), a time-evolving graph at time t
uadd, the added node at time t
ulow[t− 1], the previous lowest centrality node

Output: ulow[t]: the lowest centrality node.
1: //Update the approximate graph
2: update the approximate graph by the update algorithm;
3: //Search the lowest centrality node
4: Vexact ← empty set;
5: compute the BFS-tree of node ulow[t− 1];
6: compute θ, the exact centrality of node ulow[t− 1];
7: for each node v′ ∈ V ′ do
8: compute Cv′ by the estimation algorithm;
9: if Cv′ ≤ θ then

10: for each node v ∈ v′ do
11: append node v → Vexact;
12: end for
13: end if
14: end for
15: for each node v ∈ Vexact do
16: compute Cv by the estimation algorithm;
17: if Cv < θ then
18: θ ← Cv;
19: ulow[t] ← v;
20: end if
21: end for
22: return ulow[t];

Algorithm 6: Sniper

Algorithm 6 shows the search algorithm that targets the lowest

closeness centrality node. In this algorithm, ulow[t], ulow[t − 1] and

uadd indicate the lowest centrality node, the previous lowest centrality

node, and the added node, respectively. Vexact represents the set of

nodes for which it computes exact centralities.

The algorithm can be divided into two phases: update and search.

In the update phase, Sniper computes the approximate graph by the

update algorithm (line 2). In the search phase, Sniper first computes

the BFS-tree of the answer node of the last time tick (line 5) and θ (line

6). If the approximate centrality of a node is larger than θ, It prunes
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the node since it cannot be the lowest centrality node. Otherwise,

Sniper appends aggregated original nodes to Vexact (lines 9-13), and

then computes exact centralities to identify the lowest centrality node

(lines 15-21).

Note, the search algorithm for the lowest eccentricity centrality node

is only a minor variant of the algorithm used in computing approximate

and estimate centralities. The proposed approximation and estimation

approaches for eccentricity centrality are described in Section 6.4.6.

6.4.5 Theoretical Analysis

This section provides theoretical analyses that confirm the accuracy

and complexity of Sniper. Note that the theoretical analyses cover both

forms of centrality; closeness centrality and eccentricity centrality. Let

n be the number of nodes and m the number of edges.

I prove that Sniper finds the lowest centrality node accurately (with-

out fail) as follows:

Theorem 3 (Find the lowest centrality node). Sniper guaran-

tees the exact answer when identifying the node whose centrality is the

lowest.

Proof. Let ulow be the lowest centrality node in the original

graph, and θlow be the exact centrality of ulow (i.e., θlow is the lowest

centrality). Also let θ be the candidate centrality in the search process.

In the approximate graph, since θlow ≤ θ, the approximate central-

ity of node ulow is never upper than θ (Lemma 8). Similarly, in the

original graph, the estimate centrality of node ulow is never upper than

θ (Lemma 9). The algorithm discards a node if (and only if) its ap-

proximate or estimated centrality is upper than θ. Therefore, the lowest

centrality node ulow cannot be pruned during the search process. ¤
I then discuss the complexity of Sniper. Note that the previous

approaches need O(n2) space and O(n3) time to compute the lowest

centrality node.
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Theorem 4 (Complexity of Sniper). Sniper requires O(n+m) space

and O(n2 + nm) time to compute the lowest centrality node.

Proof. I first prove that Sniper requires O(n + m) space. Sniper

keeps the approximate graph and the original graph. In the approxi-

mate graph, since the number of nodes and edges are at most n and m,

respectively, Sniper needs O(n + m) space for the approximate graph;

O(n + m) space is required for keeping the original graph. Therefore,

the space complexity of Sniper is O(n + m).

Next, I prove that Sniper requires O(n2 +nm) time. To identify the

lowest centrality node, Sniper first updates the approximate graph and

then computes approximate and exact centralities. Sniper needs O(nm)

time to update the approximate graph, since it requires O(m) time to

compute similarity for the added node against each node in the original

graph. It requires O(n2 + nm) time to compute the approximate and

exact centralities since the number of nodes and edges are at most n

and m, respectively. Therefore, Sniper requires O(n2 + nm) time.

Theorem 4 shows, theoretically, Sniper requires less order of space

and time complexities than the previous approximate approaches. In

practice the search cost depends on the effectiveness of the approxi-

mation and estimation techniques used by Sniper. In the next section,

I show the effectiveness of the proposed approach by presenting the

results of extensive experiments.

6.4.6 Extension

In this section, I give a discussion of some extensions to Sniper.

Supporting eccentricity centrality

In Sections 6.4, I explained how to find the lowest closeness centrality

node. In this section, I describe how Sniper can also identify the lowest

eccentricity centrality node.
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For the approximate graph, the approximate eccentricity centrality

is defined as follows:

Definition 4 (Approximate eccentricity centrality). For the ap-

proximate graph, the approximate eccentricity centrality of node u′, Eu′,

is computed as follows:

Eu′ = max{d(u′, v′) : v′ ∈ V ′} (6.10)

This approximation has the following property:

Lemma 10 (Approximate eccentricity centrality). For any node

in the approximate graph, the following inequality holds.

Eu′ ≤ Eu (6.11)

Proof. This is obvious because the approximate graph has the

lower bounding distance property as described in the proof of Lemma 8.

¤
The eccentricity centrality of node u is estimated in BFS as follows:

Definition 5 (Estimate eccentricity centrality). For the original

graph, the following estimate centrality of node u, Êu, is defined to

terminate distance computation in BFS:

Êu = max{d(u, v), e(u,w) : u ∈ Vex, u ∈ Vun} (6.12)

I show the following theorem to introduce the lower bounding prop-

erty of node estimation; this property enables Sniper to identify the

lowest eccentricity centrality node exactly:

Lemma 11 (estimate eccentricity centrality). The following in-

equality holds for the original graph in BFS.

Êu ≤ Eu (6.13)

Proof. This is obvious from the proof of Lemma 9. ¤
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Directed or Weighted graphs

I have focused on undirected and unweighted graphs in this chapter,

but Sniper can also handle directed or weighted graphs effectively. Ap-

proximate graphs have an edge if and only if there is at least one

edge between aggregated nodes in an undirected and unweighted graph.

However, how approximate graphs are constructed must be modified to

handle other kinds of graphs.

For directed graphs, Definition 1 is applied for each direction to

handle directed edges of approximate graphs. For weighted graphs, the

lowest value of the weights of the original edges is chosen as the weight

of the aggregated edge to compute the lower bound of exact centralities.

To estimate centrality values for weighted graphs, Definition 2 can

be directly applied. But for weighted graphs, a little modification

is needed. Distance from node u to v is estimated as dmax(u) +

min{ω(v, w) : w ∈ V \ v} where ω(v, w) is the weight of edge {v, w}.

Other types of queries

Although the search algorithm described here identifies the node that

has the lowest centrality, the proposed approach can be applied to

range queries and K-best queries. Range queries find the nodes whose

centralities are less than a given threshold, while K-best queries find

the K lowest centrality nodes.

Sniper first computes the exact centrality of the candidate node, θ,

by the answer node in the last time tick. It prunes unlikely nodes by

approximate and exact centrality computations. The search algorithms

for range and K-best queries basically follow the algorithm for the

lowest centrality node. However, there is one important difference in

how to obtain θ.

For range queries, I would utilize a given search threshold as θ,

instead of the exact centrality of the previous time tick (i.e., I do not use

the candidate). Approximate centralities of all nodes are computed and

prune unlikely nodes using the given θ; the answer nodes are confirmed
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by calculating exact centralities.

For K-best queries, I first compute the exact centralities of all K

answer nodes in the last time tick. Next, the K-th lowest exact cen-

trality is selected as θ. Subsequent procedures are the same as for the

case of identifying the lowest centrality node.

Processing static graphs

Sniper is mainly designed to find the lowest centrality node for time-

evolving graphs. However, in real applications, it can be useful in

processing static graphs as well.

There are two questions that need to be resolved to efficiently handle

static graphs: (1) ‘How to efficiently compute the most similar nodes?’

and (2) ‘Which node should be selected as the candidate?’.

I do not compute the exact Jaccard coefficient here but estimate

the most similar node, and this is the answer for the first question. A

simple technique for estimating the Jaccard coefficient using random

permutations was proposed by Broder et al. [Broder 97]. I can exploit

this technique directly to efficiently compute the most similar nodes.

Moreover, Lemma 7 can be utilized to reduce the number of nodes for

which similarities need to be calculated.

Although the estimation technique can impact the pruning effective-

ness, lower bounding centrality can be still computed. Consequently, I

can find the lowest centrality node exactly by the above approach.

The answer for the second question is to select the highest degree

node as the candidate. This approach is expected to be more efficient

than the method of selecting the candidate at random as is shown in

the experimental results (Figure 6.13).

Supporting other centralities

In this chapter, I focused on closeness and eccentricity centrality since

they are important in the facility location problem. The concept behind

these measures is that a node is preferred if it has short distance to other
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nodes.

However many other forms of centralities have been proposed to find

critical nodes from graphs, and these are based on different character-

istics of graphs. For example, the betweenness centrality is based the

shortest paths. This centrality follows the observation: The number of

shortest paths that contain a node is a measure of the communications

that the node sustains in the graph.

The proposed approaches, such as node aggregation and tree esti-

mation, are mainly designed to find the node whose distances to other

nodes in a graph are short, and I cannot straightforwardly apply these

approaches to betweenness centrality. Supporting other centralities is

a future work.

6.5 Experimental evaluation

I performed experiments to demonstrate Sniper’s effectiveness. I com-

pared Sniper to the annotation approaches [Rattigan 06]. In the ex-

periments, I compared the Zone annotation scheme and the Distant

to zone annotation scheme (abbreviated to DTZ) to Sniper since they

outperform the other embedding schemes in all of the dateset; the same

result is reported in [Rattigan 06]. Zone and DTZ annotation have two

parameters: zones and dimensions. Zones are divided regions of the

entire graph, and dimensions are sets of zones ‡. Note that these ap-

proaches can compute the centrality quickly at the expense of exactness.

Experiments will demonstrate that:

• Efficiency and scalability: Sniper outperforms the annotation ap-

proaches by up to 110 times for the real datasets tested. Sniper

is scalable to dataset size.

• Exactness: Unlike the existing approaches, which sacrifices ac-

curacy, Sniper can find the lowest centrality node exactly and
‡To compute the centralities of all nodes by the annotation approaches, I sampled

half pairs from all nodes, which is the same setting used in the paper.
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Figure 6.2: Efficiency of Sniper.
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Figure 6.3: Scalability of Sniper.

efficiently.

• Effectiveness: The components of Sniper, node aggregation and

tree estimation are effective in identifying the lowest centrality

node.

I used the following three public datasets in the experiments: P2P,

Social, and WWW. They are a campus P2P network for file sharing,

free on-line social network, and web pages within ‘nd.edu’ domain, re-

spectively. I extracted the largest connected component from the real

data, and I added single nodes one by one in the experiments.

I evaluated the search performance through wall clock time. All ex-

periments were conducted on a Linux quad 3.33 GHz Intel Xeon server

with 32GB of main memory. I implemented the proposed algorithms

using GCC.

6.5.1 Efficiency and scalability of Sniper

I assessed the search time needed for Sniper and the annotation ap-

proach. Figure 6.2 shows the efficiency of Sniper where the number of

nodes are 500, 000 for P2P and Social, and 100, 000 for WWW. I also

show the scalability of the proposed approach in Figure 6.3; this figure
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Figure 6.4: Efficiency of Sniper (eccentricity).

shows the wall clock time as a function of the number of nodes. I show

the result of P2P in Figure 6.3. These figures indicate Sniper’s total

processing time (both update and search time are included). I set the

number of zones and the dimension parameter to 2 and 1, respectively.

Note that, these parameter values allow the annotation approaches to

estimate the lowest centrality node most efficiently.

These figures show that the proposed method is much faster than

the annotation approaches under all the conditions examined. Specifi-

cally, Sniper is more than 110 times faster.

The annotation approaches require O(n2) time for computing cen-

tralities while Sniper requires O(n′ + m′) time for computing approxi-

mate centralities. Even if Sniper computes the approximate centralities

of all aggregate nodes to prune the nodes, this cost does not alter the

search cost since approximate computations are effectively terminated.

Sniper requires O(n + m) time to compute exact centralities for nodes

that cannot be pruned through approximation. This cost, however,

has no effect on the experimental results. This is because a significant

number of nodes are pruned by approximation as shown in later.

102



Eccentricity centrality

Sniper can find not only the lowest closeness centrality node but the

lowest eccentricity centrality node efficiently. I performed the experi-

ments to demonstrate its efficiency in handling eccentricity centrality.

I compared Sniper to Zone and DTZ annotation methods. The number

of zones and the dimensions parameter are set to 2 and 1, respectively.

Figure 6.4 shows efficiency of Sniper and the annotation approaches.

In Figure 6.4, the number of nodes are 500, 000 for P2P and Social, and

100, 000 for WWW.

This figure shows Sniper can find the lowest eccentricity central-

ity node more efficiently than the annotation approaches; it is 40 time

faster. The proposed approach needs O(n′ + m′) to compute approx-

imate centralities while annotation approaches require O(n2). Due to

its successive approximation approach, Sniper avoids computing the

exact centralities of all nodes. Furthermore, the estimation approach

of Sniper effectively terminates exact and approximate centrality com-

putations. As a result, Sniper can find the lowest eccentricity centrality

node more efficiently than previous approaches.

6.5.2 Exactness of the search results

One major advantage of Sniper is that it guarantees the exact answer,

but this raises the following simple question: ‘How successful is the pre-

vious approaches in providing the exact answer even though it sacrifices

exactness?’.

To answer this question, I conducted comparative experiments for

the annotation approaches. As the metric of accuracy, I measured the

error ratio, which is the error centrality value of the estimated lowest

centrality node divided by the centrality value of the exact answer node.

Figure 6.5 and Figure 6.6 show the error ratio and the wall clock time

of the annotation approaches with various parameter settings. The

number of nodes is 10, 000 and the dateset used is P2P in these figures.
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As I can see from Figure 6.5, the error ratio of Sniper is 0 because

it identifies the lowest centrality node without fail. The annotation ap-

proaches, on the other hand, have much higher error ratios. Therefore,

it is not practical to use the annotation approaches in identifying the

lowest centrality node. Figure 6.6 shows that Sniper greatly reduces the

computation time even though it guarantees the exact answer. The ef-

ficiency of the annotation approaches depends on the parameters used.

Furthermore, the results show that the annotation approaches force

a trade-off between speed and accuracy. That is, as the number of zones

and dimensions parameters decreases, the wall clock time decreases but

the error ratio increases. The annotation approaches are approximation

techniques and so can miss the lowest centrality node. Sniper also com-

putes approximate centralities, but unlike the annotation approaches,

Sniper does not discard the lowest centrality node in the search process.

As a result, Sniper is superior to the annotation approaches in not only

accuracy, but also speed.
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6.5.3 Effectiveness of each approach

In the following experiments, I examine the effectiveness of the core

techniques of Sniper: node aggregation and tree estimation.

Centrality approximation

Sniper prunes high-centrality (unlikely) nodes using approximations.

The number of approximate and exact centrality computations is a fac-

tor that influences the search cost. Accordingly, I evaluated the number

of approximate and exact computations needed in Sniper. Figure 6.7

shows the number of computations needed where the number of nodes

is 100, 000.

As seen in the figure, the number of approximate computations

(i.e., the size of approximate graph) are smaller than the number of

original nodes. This figure also indicates that Sniper has very strong

pruning power; it excludes most of the nodes. Owing to the small size

of approximate graphs and the assured approximation quality, Sniper

achieves excellent search performance as shown in Figures 6.2 and 6.3.
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Approximation accuracy

In search process, unlikely nodes are pruned by the proposed approxi-

mate graph. I show the approximation quality by distances distribution

of the approximate and the original graphs. Figure 6.8 shows the result

where the number of nodes is 100, 000 and dateset used is P2P.

This figure shows that the proposed approximation approach has

very high accuracy; distributions are almost the same between origi-

nal and approximate graphs. Even though aggregate nodes are linked

if they share at least one edge between aggregated nodes to guaran-

tee the lower bounding distances, this procedure has little impact on

distances accuracy. This is because dissimilar nodes are not aggre-

gated. Therefore the proposed approximation approach enables us to

efficiently prune unlikely nodes as shown in Figure 6.7.

Similarity measures

Sniper utilizes the Jaccard coefficient as its similarity measure. How-

ever, other coefficients can be used as its similarity measure. Note that

the selection can impact search efficiency. I compared the Jaccard co-

efficient to the Dice and Simpson coefficients with respect to the search
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time. Figure 6.9 shows the results where the number of nodes was

100, 000.

The result show that Sniper can also find the lowest centrality node

efficiently with the Dice and Simpson coefficients. These coefficient are

commonly used for comparing the similarity of sample sets. Therefore,

if two nodes have similar neighbors, these coefficients take high values.

As a result, Sniper can efficiently identify the lowest centrality node

with these coefficients. This result reinforces the claim that the choice

of similarity measure had only virtually no impact of the performance

of the proposed method.

Coefficient value

Sniper does not aggregate two nodes if the size of the intersection of

adjacent node set is less than half the size of their union to avoid aggre-

gating dissimilar nodes. This implies that two nodes are not aggregated

if their Jaccard coefficient is less than 0.5. However, Sniper allows the

user to select other values for node aggregation. Note that this value

can affect approximate graph size and pruning power. Figure 6.10

shows the wall clock time of Sniper for several coefficient values against

graphs of 100, 000 nodes where dataset was P2P.

As seen in the result, excessively small values (near 0) and exces-

sively large values (near 1) negatively impact search efficiency. As the

value increases, the size of approximate graph increases and accuracy

improves (i.e., the lower bounding centrality increases). However, the

approximate centrality computation time increases. Therefore, if the

Jaccard coefficient is too large, it takes much time to compute the ap-

proximate centralities. However, if the value is too small, approximate

nodes are not pruned effectively.

Update cost

Aggregate nodes are obtained to approximate the original graph. The

most similar node is efficiently updated by computing similarities of
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Figure 6.12: Effect of tree estima-
tion.

only nodes close to the added node. I compared the number of simi-

larity computations needed when the graph is updated using the pro-

posed approach and with the naive update approach. The naive ap-

proach computes similarities between all nodes and the added node.

Figure 6.11 shows the results for a set of 100, 000 nodes.

Even thought Sniper can compute the Jaccard coefficient of all

nodes in the worst case, the number of similarity computations is, in

practice, much lower than that of the naive approach. In the proposed

update algorithm, similarities of nodes of at most two hops from the

added node are computed, and the number of these nodes is very small

in real graphs. Therefore, the approximate graph can be efficiently

updated.

Tree estimation

Sniper terminates unnecessary distance computations early in the

search process. To show the effectiveness of this idea, I removed the

pruning technique from Sniper, and reexamined the wall clock time.

Figure 6.12 shows the result. The number of nodes in this figure is

100, 000. Sniper without the pruning technique is abbreviated to With-

out pruning in this figure.
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Figure 6.13: Comparison of root node selections.

The results show that the pruning technique can provide efficient

search for the lowest centrality node; Sniper is up to 98 times faster if

the pruning method is used. Sniper computes approximate centralities

of all aggregate nodes, and the exact centralities of viable nodes to

find the lowest centrality node. These computations can be effectively

terminated with the technique.

Root node selection

The proposed monitoring algorithm sets the previous lowest centrality

node as the root node to find the lowest centrality node efficiently.

To show the effectiveness of this idea, I show the wall clock time of

three root node selection methods in Figure 6.13. In this figure, Degree

represents the results where the highest degree node is selected as the

root node, and Random represents the results where the root node is

selected at random. The number of nodes is 100, 000 in Figure 6.13.

The proposed root node selection method requires less computation

time than the other two methods; it is up to 4 and 40 times faster than

Degree and Random, respectively. The monitoring algorithm sets the

lowest centrality node of the prior time tick as the root node, which

is expected to remain the answer. As a result, it can find the lowest

centrality node for time-evolving graphs efficiently.
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6.6 Summary

This chapter addressed the problem of finding the lowest closeness

centrality node and the lowest eccentricity centrality node from time-

evolving graphs efficiently. As far as I know, this is the first study

to address the lowest centrality node search problem for time-evolving

graphs with the guarantee of exactness. The proposal, Sniper, is based

on two ideas: (1) It approximates the original graph by aggregating

original nodes to compute approximate centralities efficiently, and (2)

It terminates unnecessary distance computations early in finding the

answer nodes, which greatly improves the efficiency. The theoretical

analyses show Sniper needs lower order of space and time complexities

than the previous approximate approaches while guaranteeing exact-

ness. Experiments show that Sniper works as expected; it can find

the lowest centrality node at high speed; specifically, it is significantly

(more than 110 times) faster than the existing approximate method.

Centrality monitoring is fundamental for many mining applications in

various domains such as social network and P2P sensor network. The

proposed solution allows the lowest centrality node to be detected ex-

actly and efficiently, and so will help to improve the effectiveness of

future data mining applications.
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Chapter 7

Conclusions

The theme of this thesis is to present the approaches to efficiently an-

alyze sequence data with HMMs. The Viterbi algorithm is used in real

applications. However, the Viterbi algorithm requires quadratic CPU

time for the number of states. To enhance the likelihood computation

speed, I proposed two approaches; approximation and pruning. Exper-

imental results validate the effectiveness of the proposed approaches.

In this chapter, I summarize the works, discuss several issues which are

related to the works, and point out some potential research directions.

7.1 Summary of the thesis

HMM has been received much attentions in many research domains as

an method to analyze sequence data. Sequence labeling, speech recog-

nition, mental task classification, biological analysis, traffic monitoring,

and anomaly detection are an interesting applications which are based

on HMM. However the Viterbi algorithm, it has been applied to com-

pute likelihood the modes, requires quadratic CPU time for the number

of states which are used in HMMs. Therefore, I have studied the fol-

lowing approaches to enhance the speed likelihood computations. The

proposed approach is based on two ideas; approximation and pruning.

Approximation is an idea that aggregates several state to discard un-
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likely states or models. And pruning is an idea that computes exact

likelihood of viable states/models by pruning unlikely state transition.

In this thesis, I showed that the proposed approach can significantly re-

duce the CPU cost for three typical HMM problems as well as analyzing

time-evolving graphs as follows:

• In Chapter 3, I studied efficient likelihood computation approach

for single HMM. I proposed Staggered Decoding approach as the

solution. The main idea in Staggered Decoding is to gradually in-

crease the number of original labels (states) in the iterations, and

prune unnecessary label transitions by estimating upper bounding

likelihood. Experimental evaluations based on standard dataset

reveal that the proposed approach is much faster than the Viterbi

algorithm. This results imply that the proposed approach can be

an alternative to the Viterbi algorithm in many applications such

as NLP tasks.

• Chapter 4 shows SPIRAL approach whose target is the problem

of conducting a likelihood search on a large set of HMMs. SPI-

RAL is based on three ideas; (1) prune low-likelihood models in

the HMM dataset by their approximate likelihoods, which yields

promising candidates in an efficient manner, (2) vary the approxi-

mation granularity for each model to maintain a balance between

computation time and approximation quality, and (3) discard un-

likely paths in the trellis structure, which improves the efficiency.

SPIRAL is also much faster than the Viterbi algorithm and ex-

pected to enhance the effectiveness of various applications such

as mental task classification and biological analysis.

• In Chapter 5, I proposed the stream version of SPIRAL. That

is, the problem setting in this chapter is to enhance the moni-

toring speed for data stream with HMMs. This problem setting

is exploited in the applications such as traffic monitoring and

anomaly detection. The proposed approach is carefully designed
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based on the characteristics of data streams; this approach set the

initial candidate model and approximation granularity by utiliz-

ing the search results in the previous time tick. Experiments

show that the proposed approach works as expected, and finds

high-likelihood HMMs at high speed for data streams.

• HMM is a probabilistic graphical model in which each node rep-

resents a random variable, and the edges express probabilistic

relationships between these variables. In Chapter 6, to show

the generality of the proposed approach for other graphical data

structure, I applied the proposed approach for the problem to

monitoring best centrality nodes of time-evolving graphs. I pro-

posed Sniper as the solution which is based on two ideas; (1)

approximate the original graph by aggregating original nodes to

compute approximate centralities efficiently, and (2) terminate

unnecessary distance computations early in finding the answer

nodes, which greatly improves the efficiency. Experiments show

that Sniper works as expected; it can find the lowest centrality

node at high speed than the existing method.

The proposed approaches allow to compute likelihood efficiently,

and I wish the proposed approaches will help to improve the effec-

tiveness of current and future applications. I believe this is the most

important contribution of this thesis.

7.2 Future work

There are several interesting research topics on the proposed approaches

as follows:

• Efficient precomputations: The proposed approaches require

precomputations for approximation to aggregate several states

by using a clustering method. I utilized k-means method to ag-

gregate states. Since state aggregation processes do not use the
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query sequence, the computation cost of precomputations is in-

dependent from the query sequence. Once the aggregate states

are obtained, the proposed approaches can find the best model

for any data sequence. And precomputaions cost is negligible if

the length of query sequence is long. Furthermore, taking into ac-

count high computation cost for learning HMM models, the com-

putation cost of the precomputations is small. This is because

model training method, such as the Baum-Welch algorithm, re-

quires iterative computations where nm size trellis structure is

explored recursively.

• Handling long sequences: The proposed approaches are de-

signed to well handle models of many states since the time com-

plexity of likelihood computation by the Viterbi algorithm is

quadratic for the number of states, O(nm2). However, due to

explosive data size in recent applications, more efficient approach

is required. A naive approach is to aggregate several sequence

symbols into single symbol. However, since this approach does

not use the property of sequence data, it is not effective for like-

lihood computations. Exploiting the motifs (typical patterns) in

a data sequence to reduce the sequence length is one promising

approach. This is because the motifs exist in real sequence data.

In approximate likelihood computations, using motifs instead of

the sequence symbols can reduce the sequence length and can

enhance the computation speed.

• Handling the large number of models: In the proposed ap-

proaches, the granularities of models are gradually increased to

handle many models. But, if the number of models is huge, a

more sophisticated approach is needed. An approach for large

size of models is to construct a hierarchical data structure where

several models are aggregated in a single model. By using data

structure like this, answer unlikely model groups can be pruned
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in high level of the hierarchical data structure. As a result, this

approach can enhance the search speed.

• More effective candidate selection: The proposed approach

sets the previous answer model as the candidate for data stream.

However, by computing weighted average likelihood of each

model, the candidate model can be set more effectively. This

is because there is little difference between subsequences be-

fore and after the arrival of a data value. In this approach,

the highest weighted average model is selected as the candidate.

And weighted averages can be incrementally computed for data

streams. Therefore this approach is expected to be effective to

find the best model for data streams.

In Chapter 6, I confirmed the effectiveness of the proposed ap-

proaches for the centrality monitoring problem in time-evolving graphs.

The proposed approach is effective since centrality in a graph and likeli-

hood of a HMM are computed by dynamic programming for graphical

data structure. Nodes in a graph are effectively aggregated same as

the states in a HMM by the proposed approach. This implies that the

proposed approach can be effective other graphical data structure as

well as HMM when dynamic programming approach is used. I believe

one convincing research direction is to apply approximation and prun-

ing approach for other graphical data structures which are similar to

HMM. I list several of them:

• Handle more complex structures than the Markov models, includ-

ing semi-Markov models and factorial HMMs.

• Apply the proposed method for other graph centralities such as

diameter, Random walk with restart, SimRank, or Simfusion.

• Enhance the computation speed for other graphical models such

as Bayesian networks or Workflow models.
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情報処理学会創立 50周年記念全国大会, 2010年 3月

Patents

1. 藤原 靖宏, 櫻井 保志, 山室 雅司: ”隠れマルコフモデル検索方法
及び装置及びプログラム及びコンピュータ読み取り可能な記録媒
体”, 出願番号: 特願 2006-044428, 出願日: 2006年 2月 21日, 公開
番号:特開 2007-226349, 公開日: 2007年 9月 6日, 登録番号: 特許
4567617, 登録日: 2010年 8月 13日

2. 藤原 靖宏: ”隠れマルコフモデル探索装置及び方法及びプログラ
ム”, 出願番号: 特願 2009-170351, 出願日: 2009年 7月 21日

3. 藤原 靖宏, 櫻井 保志, 山室 雅司: ”隠れマルコフモデル検索方法
及び装置及びプログラム及びコンピュータ読み取り可能な記録媒
体”, 出願番号: 特願 2006-279144, 出願日: 2006年 10月 12日

Awards

1. 第 17回データ工学ワークショップ (DEWS2006)優秀論文賞, 2006

年 7月, (隠れマルコフデータベースの高速尤度検索)

2. 平成 19年度 電子情報通信学会 論文賞, 2008年 5月, (隠れマルコ
フモデルデータベースの高速ゆう度検索)

3. ACM SIGKDD 2008 Best Research Paper Awards Runner-up,

August 2008, (SPIRAL: Efficient and Exact Model Identification

for Hidden Markov Models)
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