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Abstract

This thesis comprises three essays on the collective choice of locations of public facilities.

In the first essay, we investigate a model where, on a tree network, players collectively

choose the location of a single public facility by noncooperative alternating-offer bargain-

ing with the unanimity rule. We show the existence of a stationary subgame perfect

equilibrium and the characterization of stationary subgame perfect equilibria. We also

show that the equilibrium location converges to the Rawls location (the Rawlsian social

welfare maximizer) as the discount factor tends to 1; however, it does not relate to the

Weber location (the Benthamite social welfare maximizer).

In the second essay, we examine a model where, on a line network, individuals collec-

tively choose the location of an undesirable public facility through bargaining with the

unanimity rule. We show the existence of a stationary subgame perfect equilibrium and

the characterization of stationary subgame perfect equilibria when the discount factor

is sufficiently large. Furthermore, we show that as the discount factor tends to 1, the

equilibrium location can converge to a location that is least desirable according to both

the Benthamite and Rawlsian criteria.

In the third essay, we consider the outcome of majority voting in multiple undesirable

facility location problems where the locations of two facilities are planned, any individual

is concerned about the location of the nearest facility but not about the location of the

other facility, and any individual prefers that the location of the nearest facility be as far

as possible from his/her location. We show that a Condorcet winner is a subset of the

set of pendant vertices and the vertices adjacent to pendant vertices on a tree network
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with an odd number of individuals. Furthermore, we derive a necessary and sufficient

condition for a set of locations to be a Condorcet winner on a line network with an odd

number of individuals.
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Chapter 1

Overview

1.1 Collective choice of locations of public facilities

It is important for us where public facilities are located. For example, each individual

can surely enjoy beautiful scenery everyday if a park is located in the vicinity of him/her.

We call a facility such that each individual prefers that the facility be located as near as

possible to his/her location a desirable facility. Examples of desirable facilities are a park,

a hospital, a station, and so on. Conversely, each individual is surely bothered by a bad

odor everyday if a dump is located in the vicinity of him/her. We call a facility such that

each individual prefers that the facility be located as far as possible from his/her location

an undesirable facility, an obnoxious facility, or a NIMBY.1 Examples of undesirable

facilities are a dump that generates a bad odor, a nuclear power plant that generates a

massive dose of radiation once a serious accident occurs, a military base that generates

a noise pollution, and so on.

Hence, a social planner should choose socially desirable locations from the viewpoint of

some criterion if it chooses the locations of public facilities. Many classical studies on the

locations of public facilities have been devoted to the analysis on the optimal locations of

public facilities.2 The analysis is roughly classified into the minisum, minimax, maxisum,

1NIMBY is an acronym for the phrase “not in my back yard.”
2See Tansel et al. (1983a, 1983b) and Hansen et al. (1997) for surveys on the normative analysis of
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and maximin problems according to the types of facilities and the criteria.

Consider the situation where a social planner chooses the location of a desirable facility

from the viewpoint of the Benthamite criterion. Then, the social planner should choose a

location that minimizes the average distance from an individual’s location. We call such

a location a minisum location, a median, or a Weber location after Alfred Weber. The

fundamental properties of a minisum location were derived by Hakimi (1964). Hakimi

(1964) showed that the set of vertices contains a minisum location on a general network.3

Consider the situation where a social planner chooses the location of a desirable

facility from the viewpoint of the Rawls criterion. Then, the social planner should choose

a location that minimizes the maximum distance from an individual’s location. We call

such a location a minimax location, a center, or a Rawls location after John Rawls. Due

to Minieka (1970), it is known that a minimax location belongs to the set of vertices and

equidistant points which are not bottleneck points.4

Consider the situation where a social planner chooses the location of an undesirable

facility from the viewpoint of the Benthamite criterion. Then, the social planner should

choose a location that maximizes the average distance from an individual’s location. We

call such a location a maxisum location or an anti-median. Church and Garfinkel (1978)

showed that the set of bottleneck points and pendant vertices contains a maxisum location

on a general network. Furthermore, Zelinka (1968) showed that the set of pendant vertices

contains a maxisum location on a tree network.5

Consider the situation where a social planner chooses the location of an undesirable

facility from the viewpoint of the Rawls criterion. Then, the social planner should choose

a location that maximizes the minimum distance from an individual’s location. We call

such a location a maximin location or an anti-center. Due to Minieka (1983), a maximin

locations of public facilities.
3For specialized algorithms for finding a minisum location on a tree network, see Goldman (1971).
4For algorithms for finding a minimax location on a general network, see Hakimi (1964), Hakimi et

al. (1978), Kariv and Hakimi (1979), Minieka (1981), Cunninghame-Green (1984). Furthermore, see
Goldman (1972) and Handler (1973) for specialized algorithms for finding a minimax location on a tree
network.

5For an algorithm for finding a maxisum location on a tree network, see Ting (1984).
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location is known to belong to the set of bottleneck points or pendant vertices on a general

network.

However, since it is generally impossible to locate public facilities to meet the wishes of

all individuals perfectly, it is common in a democratic society that the locations of public

facilities are collectively chosen by themselves to adjust the difference of opinion. Then,

which locations do individuals choose if they collectively choose the locations of public

facilities? Especially, are the collectively chosen locations socially desirable from the

viewpoint of some criterion? Since some intervention is needed if the collectively chosen

locations are expected to be socially undesirable, the clarification of these questions is an

important task for our communities.

In this thesis, we investigate which locations individuals choose if they collectively

choose the locations of public facilities. Especially, we confine our attention to the impor-

tant cases where individuals collectively choose the locations of public facilities through

the majority rule or the unanimity rule.

1.2 Outcome of majority rule in facility location prob-

lems

In our communities, the majority rule is often used as a decision rule in collective decision

making.

The majority rule has been investigated since a long time ago in voting theory. In

voting theory, an alternative that is unbeatable through pairwise voting is employed as

the collectively chosen alternative. Especially, an alternative that is unbeatable through

pairwise majority voting, which is employed as the collectively chosen alternative through

the majority rule, is called a Condorcet winner. Black (1948) showed that the peak

of median voter is a Condorcet winner for a problem where the choice set is single-

dimensional and the voters have single-peaked preferences over the choice set, which is
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well known as the median voter theorem.6,7 Furthermore, the properties of a Condorcet

winner in some facility location problems are already known.

Consider the situation where individuals collectively choose the location of a desir-

able facility through the majority rule. Hansen and Thisse (1981) showed that the set of

Condorcet winners equals the set of minisum locations on a tree network. Labbe (1985)

showed that the set of Condorcet winners equals either the empty set or the set of min-

isum locations on a cactus network. Furthermore, Hansen and Labbé (1988) derived an

algorithm for finding a Condorcet winner on a general network. Unfortunately, a Con-

dorcet winner is not necessarily a minisum location on a general network.8 However,

Hansen and Thisse (1981) showed that the ratio of the average distance from an individ-

ual’s location to a Condorcet winner to the average distance from an individual’s location

to a minisum location is bounded above on a general network. Furthermore, a Condorcet

winner is not necessarily a minimax location, even on a line network. However, Hansen

and Thisse (1981) showed that the ratio of the maximum distance from an individual’s

location to a Condorcet winner to the maximum distance from an individual’s location

to a minimax location is bounded above on a general network.9

Consider the situation where individuals collectively choose the location of an unde-

sirable facility through the majority rule. Labbé (1990) showed that a Condorcet winner

is a pendant vertex or a bottleneck location on a general network with an odd number

of individuals. Furthermore, Labbé (1990) revealed that the set of Condorcet winners

equals the set of the pendant vertices that satisfy some condition on a tree network with

an odd number of individuals. Unfortunately, a Condorcet winner is not necessarily a

6Note that in the situation where individuals located along a street choose the location of a desirable
facility somewhere on the street, the choice set is single-dimensional and the individuals have single-
peaked preferences on the choice set.

7Unfortunately, a Condorcet winner does not often exist, especially for a problem where the choice
set is multidimensional. See Plott (1967), Davis et al. (1972), Rubinstein (1979), Schofield (1983), Cox
(1984), Le Breton (1987), and McKelvey and Schofield (1987).

8Bandelt (1985) characterized the networks on which the set of Condorcet winners equals the set of
minisum locations.

9Since the existence of a Condorcet winner is not assured, some studies employ other voting solutions
weaker than a Condorcet winner. For example, see Bandelt and Labbé (1986) for a Simpson solution,
Campos Rodŕıguez and Moreno Pérez (2000) for a tolerant Condorcet solution, and Campos Rodŕıguez
and Moreno Pérez (2003) for their mixture.
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maxisum location, even on a line network. However, Labbé (1990) showed that the ratio

of the average distance from an individual’s location to a maxisum location to the aver-

age distance from an individual’s location to a Condorcet winner is bounded above on a

general network.

Consider the situation where individuals collectively choose the locations of multiple

desirable facilities through the majority rule, where any individual is concerned about

the location of the nearest facility but not about the locations of the other facilities. Bar-

berà and Beviá (2006) showed that a Condorcet winner is efficient, internally consistent,

and Nash stable on a line network. Hajduková (2010) derived the additional necessary

conditions and a sufficient condition for a location set to be a Condorcet winner on a line

network. Furthermore, Campos Rodŕıguez and Moreno Pérez (2008) derived an algo-

rithm for finding a Condorcet winner on a general network. Unfortunately, a Condorcet

winner is not necessarily a minisum location set, even on a line network. Furthermore,

the ratio of the average distance from an individual’s location to the nearest location in

a Condorcet winner to the average distance from an individual’s location to the nearest

location in a minisum location set is not bounded above, even on a line network.

Following these studies, Chapter 4 considers the outcome of majority rule in multiple

undesirable facility location problems. We consider a model where the locations of mul-

tiple facilities are planned, any individual is concerned about the location of the nearest

facility but not about the locations of the other facilities, and any individual prefers that

the location of the nearest facility be as far as possible from his/her location. In these

problems, a Condorcet winner is a set of locations that is unbeatable through pairwise

majority voting. We assume that the locations of two facilities are planned. We show that

a Condorcet winner is a subset of the set of pendant vertices and the vertices adjacent to

pendant vertices on a tree network with an odd number of individuals. Furthermore, we

derive a necessary and sufficient condition for a set of locations to be a Condorcet winner

on a line network with an odd number of individuals. In these problems, we show that the

ratio of the average distance from an individual’s location to the nearest location in an
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antimedian to the average distance from an individual’s location to the nearest location

in a Condorcet winner is not bounded above, even on a line network. This chapter is

based on Yamaguchi (2011b).

1.3 Outcome of unanimity rule in facility location

problems

In our communities, the unanimity rule is also often used as a decision rule in collective

decision making.

Unfortunately, it is well known that the situations that voting theory can predict are

very limited. Especially, voting theory can not predict anything about the outcome of

unanimity rule because there does not exist an alternative that is unbeatable in pairwise

unanimity voting unless the bliss points of all individuals coincide. However, it is also

well known that bargaining theory can predict much more situations than voting theory.

Bargaining is an activity such that two or more individuals voluntarily continue to ne-

gotiate until some conclusion is reached, which is practiced in many situations such as

a commercial transaction, reconciliation, and so on. In bargaining theory, bargaining is

formulated as a game which comprises infinite rounds, where a round consists of the fol-

lowing steps: (i) a player is selected as a proposer according to a predetermined proposer

selection protocol;10 (ii) the proposer proposes an alternative; (iii) players announce ac-

ceptance or rejection to the proposal; (iv) the game ends with the proposal implemented

if the announcements satisfy the requirement of a predetermined decision rule, and the

game proceeds to the next round otherwise. Then, the equilibrium chosen alternative in

this game is employed as the collectively chosen alternative. Many studies investigated

bargaining on the split of the pie where the proposer proposes players’ shares such that

10Especially, the random-proposer protocol and the rejecter-proposer protocol are often considered. In
the random-proposer protocol, a player is selected as a proposer with some probability. In the rejecter-
proposer protocol, a predetermined player is selected as a proposer in the first round, and the rejector
in the previous round is selected as a proposer otherwise.
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the sum is less than or equal to the pie. Rubinstein (1982) characterized the unique

subgame perfect equilibrium in bargaining on this problem through the unanimity rule.

Baron and Ferejohn (1989) considered bargaining on this problem through the majority

rule. They showed that not only the uniqueness of subgame perfect equilibria but also the

uniqueness of stationary subgame perfect equilibria are not generally assured. However,

Eraslan (2002) showed that the uniqueness of the stationary subgame perfect equilibrium

payoffs is assured in bargaining on this problem through the q-majority rule.11 Some stud-

ies also investigated bargaining on a problem where the choice set is single-dimensional

and individuals have single-peaked preferences over the choice set. Cho and Duggan

(2003), Cardona and Ponsat́ı (2007), and Herings and Predtetchinski (2010) showed that

the uniqueness of stationary subgame perfect equilibria is assured in bargaining on this

problem for some situations. Predtetchinski (2011) derived the asymptotic properties of

stationary subgame perfect equilibria in bargaining on this problem through a general

decision rule. Furthermore, Banks and Duggan (2000) showed the existence of a sta-

tionary subgame perfect equilibrium with no delay in bargaining on a general problem

through a general decision rule. The problem they considered includes the split of the pie,

the choice of location of a desirable facility on a multidimensional space, and so on as a

special case. Furthermore, the decision rule they considered includes the unanimity rule,

the majority rule, and so on as a special case. Hence, bargaining theory could generate

useful predictions even to the situations to which voting theory can not generate useful

predictions. By applying bargaining theory, Chapters 2 and 3 consider the outcome of

unanimity rule in single facility location problems.

Chapter 2 considers the outcome of unanimity rule in single desirable facility location

problems. We consider a model where, on a tree network, individuals collectively choose

the location of a desirable public facility through bargaining with the unanimity rule and

employ the equilibrium location as a solution. We show that the equilibrium location

relates to a minimax location: If the discount factor tends to 1, the equilibrium location

11Some authors have investigated decision rules other than the simple quota rules. See Winter (1996)
for the decision rule with veto and Snyder et al. (2005) for the decision rule with weighted voting.
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converges to a minimax location. However, we also show that the equilibrium location

does not relate to a minisum location: It does not correspond to a minisum location,

and the ratio of the average distance from an individual’s location to the equilibrium

location to that to a minisum location is not bounded above. This result implies that

the collective choice of the location of a desirable public facility through bargaining with

the unanimity rule results in the best outcome according to the Rawlsian criterion. This

chapter is based on Kawamori and Yamaguchi (2010).

Chapter 3 considers the outcome of unanimity rule in single undesirable facility lo-

cation problems. We consider a model where, on a line network, individuals collectively

choose the location of an undesirable public facility through bargaining with the una-

nimity rule and employ the equilibrium location as a solution. We consider only the case

where each individual obtains a non-negative net benefit regardless of wherever the fa-

cility is located. We show the existence of a stationary subgame perfect equilibrium and

the characterization of stationary subgame perfect equilibria when the discount factor is

sufficiently large. Furthermore, we show that as the discount factor tends to 1, the equi-

librium location can converge to a location that minimizes both the average and minimum

distance from an individual’s location. This result implies that the collective choice of

the location of an undesirable public facility through bargaining with the unanimity rule

can result in the worst outcome according to both the Benthamite and Rawlsian criteria.

This chapter is based on Yamaguchi (2011a).
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Bandelt, H. -J., Labbé, M. (1986). How bad can a voting location be. Social Choice

and Welfare, 3, 125–145.

Banks, J. S., Duggan, J. (2000). A bargaining model of collective choice. American

8



Political Science Review, 94, 73–88.
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Hansen, P., Labbé, M. (1988). Algorithms for voting and competitive location on a

network. Transportation Science, 22, 278–288.
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Chapter 2

Outcomes of bargaining and

planning in single facility location

problems

Abstract: In this chapter, we investigate a model where, on a tree network, players

collectively choose the location of a single public facility by noncooperative alternating-

offer bargaining with the unanimity rule. We show the existence of a stationary subgame

perfect equilibrium and the characterization of stationary subgame perfect equilibria. We

also show that the equilibrium location converges to the Rawls location (the Rawlsian

social welfare maximizer) as the discount factor tends to 1; however, it does not relate to

the Weber location (the Benthamite social welfare maximizer).

Keywords: Tree network; Location of public facility; Unanimity rule; Bargaining; Rawls

location

JEL Classification: D72; C78; R53; H41

Based article: Kawamori, T., Yamaguchi, K. (2010). Outcomes of bargaining and

planning in single facility location problems. Mathematical Social Sciences, 59, 38–45.

13



2.1 Introduction

Where is a public facility located on a network? Since it incurs a cost to travel to the

facility, a social planner and individuals on the network are interested in the choice of

the location. If the social planner chooses the location, the chosen location is a socially

desirable one such as a Weber location, at which the average distance from an individual’s

location to the facility is minimized, or a Rawls location, at which the maximum distance

from an individual’s location to the facility is minimized. Instead, if the individuals

collectively choose the location, what location do they choose? Is the chosen location

socially desirable?

Many papers have been devoted to answering these questions in the case where indi-

viduals choose the location by the majority rule, which is one of the most usual decision

rules in collective decision making, by employing a Condorcet location, which is unbeat-

able by pairwise majority voting, as a solution under the majority rule. Hansen and

Thisse (1981) showed that on a tree network, a Condorcet location exists, and Con-

dorcet locations coincide with Weber locations.1 On a cactus network, the existence of a

Condorcet location is no longer assured. However, Labbe (1985) showed that if a Con-

dorcet location exists, Condorcet locations coincide with Weber locations. On a general

network, not only the existence of a Condorcet location but also the coincidence of Con-

dorcet locations and Weber locations are no longer assured. However, Hansen and Thisse

(1981) showed that if a Condorcet location exists, the ratio of the average distance from

an individual’s location to a Condorcet location to that to a Weber location is bounded

above.2,3

With this result under the majority rule in mind, this chapter is devoted to answering

1Bandelt (1985) characterized the networks on which a Condorcet location exists and those on which
Condorcet locations coincide with Weber locations.

2Hansen and Thisse (1981) also showed that if a Condorcet location exists, the ratio of the maximum
distance from an individual’s location to a Condorcet location to that to a Rawls location is bounded
above.

3Since the existence of a Condorcet location is not assured, other voting solutions weaker than a
Condorcet location have been proposed. For example, see Bandelt and Labbé (1986) for a Simpson
location, Campos Rodŕıguez and Moreno Pérez (2000) for a tolerant Condorcet location, and Campos
Rodŕıguez and Moreno Pérez (2003) for their mixture.
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the questions in the case where individuals choose the location by the unanimity rule,

which is another of the most usual decision rules in collective decision making. Since,

generically, there does not exist a location that is unbeatable by pairwise unanimity vot-

ing, we consider an alternative approach. We consider a model where, on a tree network,

individuals collectively choose the location by alternating-offer bargaining, which was for-

mulated by Rubinstein (1982), and employ the equilibrium location as a solution under

the unanimity rule.4,5 We show that the equilibrium location relates to a Rawls location:

If the discount factor tends to 1, the equilibrium location converges to a Rawls location.

However, we also show that the equilibrium location does not relate to a Weber location:

It does not correspond to a Weber location, and the ratio of the average distance from

an individual’s location to the equilibrium location to that to a Weber location is not

bounded above.

The remainder of this chapter is organized as follows. Section 2.2 describes the model,

Section 2.3 characterizes the equilibria, and Section 2.4 concludes the chapter. We provide

proof of each proposition in the Appendix.

2.2 Model

In this section, we describe a noncooperative bargaining model.

Let (V,E) be a geometric graph: For some metric space X, V is a finite subset of X,

and E is a finite set of some continuous injections from [0, 1] to X such that for each

e ∈ E, e ({0, 1}) ⊂ V and e ([0, 1] \ {0, 1}) ⊂ X \V , and for each (e, e′) ∈ E2 with e 6= e′,

e ((0, 1)) ∩ e′ ((0, 1)) = ∅. Let N :=
(⋃

e∈E e ([0, 1])
) ∪ (⋃v∈V {v}

)
. We call N a network,

and n ∈ N , a location. Further, we call v ∈ V a vertex. For each (n, n′) ∈ N2, we call

4Cardona and Ponsat́ı (2007) considered a related model where, in a one-dimensional interval, indi-
viduals collectively choose an alternative by bargaining with the q-majority rule. The preferences that
we consider are a particular case of those of them, but the space that we consider is more general than
that of them. In the present chapter, we show that a unique equilibrium location exists. Cardona and
Ponsat́ı (2007) also showed that under natural conditions, a unique equilibrium exists.

5The space and preferences that we consider are only a specific case of those of Banks and Duggan
(2000). However, due to this specification, we can provide the explicit characterization of equilibria that
they did not.
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R ∈ 2N a route between n and n′ if (i) R 3 n, R 3 n′, and R is connected and (ii) there

does not exist S ( R such that S 3 n, S 3 n′, and S is connected. We assume that there

is a unique route between two locations of the network, i.e., the network is a tree. For

each (n, n′) ∈ N2, let R (n, n′) be the route between n and n′. Let d be a map from N2

to R+ such that for each (n, n′) ∈ N2, d (n, n′) denotes the length of R (n, n′). Then, d

denotes a metric on N .

Let G be an extensive form game as follows. Let I be a nonempty finite set of

players of G. Players collectively choose the location of a public facility on the network

by bargaining. The bargaining consists of infinitely many rounds. In a round, a player

proposes a location, and each player sequentially announces acceptance or rejection of the

proposal according to a predetermined order until either all players accept the proposal

or one player rejects it. If all players accept it, the bargaining ends with the proposed

location implemented. Otherwise, the bargaining continues to the next round. In the first

round, the proposer is a predetermined player. Otherwise, the proposer is the rejector

in the previous round. Each player i ∈ I locates at a vertex vi ∈ V of the network. For

each i ∈ I, let di be a map from N to R+ such that for each n ∈ N , di (n) = d (n, vi).

Then, di (n) denotes player i’s distance from location n. Each player incurs the cost to

travel to the public facility by her distance. Each player obtains the benefit from the

public facility by a common value ū. For each i ∈ I, let ui be a map from N to R such

that for each n ∈ N , ui (n) = ū− di (n). Then, ui (n) denotes player i’s net benefit from

the public facility located at n. We assume that for each i ∈ I and n ∈ N , ui (n) > 0,

i.e., each player obtains a positive net benefit, regardless of wherever the public facility

is located. Each player discounts her net benefit by a common discount factor δ ∈ [0, 1)

as the bargaining continues. Summing up, if the bargaining ends with location n in the

t-th round, each player i ∈ I obtains payoff δt−1ui (n). Otherwise, each player obtains

payoff 0.

We consider pure strategies. Our equilibrium concept is a stationary subgame perfect

equilibrium (SSPE), i.e., a subgame perfect equilibrium (SPE) in which each player takes
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the same actions in all rounds.

2.3 Results

In this section, we investigate the equilibria. Let n∗ ∈ N be a location such that for

some (i, i′) ∈ arg max(ι,ι′)∈I2 d (vι, vι′), n
∗ ∈ R (vi, vi′) and di (n

∗) = di′ (n
∗). Note that

under our assumption that the network is a tree, such a location uniquely exists. Then,

for each (i, i′) ∈ arg max(ι,ι′)∈I2 d (vι, vι′), n
∗ ∈ R (vi, vi′) and di (n

∗) = di′ (n
∗). Let

l := max(i,i′)∈I2 d (vi, vi′): l is the maximum distance between two players’ locations. Let

r := 1−δ
1+δ

(
ū− l

2

)
, and A∗ := {n ∈ N | d (n, n∗) ≤ r}. For each i ∈ I, let n∗i be a minimizer

of di (n) with respect to n ∈ A∗. Note that under our assumption that the network is a

tree, such a location uniquely exists.

Proposition 2.1 shows the existence of an SSPE, and Proposition 2.2 shows the char-

acterization of SSPEs.

Proposition 2.1. There exists an SSPE in G.

Proposition 2.2. In each SSPE in G, for each i ∈ I, player i proposes n∗i at each

proposing node, and her proposal n∗i is accepted by all players.

Remark. There exists a unique equilibrium location, which is the proposal of the proposer

in the first round. On the other hand, there may exist multiple Condorcet locations.6

For example, if the number of players is even, half of the players locate at a vertex, and

the other half of the players locate at a distinct vertex, then all locations between the

two vertices are Condorcet locations.

Figure 2.1 graphically characterizes the equilibrium location in each subgame. The

equilibrium location in each subgame is in the r-closed ball of n∗. Moreover, since A∗

is decreasing in δ and
⋂
δ∈[0,1) A

∗ = {n∗}, the equilibrium location in each subgame

converges to n∗ as δ tends to 1.

6A location n ∈ N is a Condorcet location if for each n′ ∈ N , |{i ∈ I | di (n′) < di (n)}| ≤ |I|2 .
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Figure 2.1: Equilibrium location in each subgame: The distance between player 1’s and
player 6’s locations is the largest between any two players’ locations. The middle location
between their locations is n∗. The bold area represents A∗. The proposal of each player
is the location that is the nearest to her location in A∗.

We now consider the evaluation of the equilibria from the welfare viewpoint. In equi-

librium, in each subgame, the agreement is immediately achieved, i.e., no delay occurs.

Hence, the important point is whether the equilibrium location is desirable or not.

We evaluate the equilibrium location based on the Rawlsian and Benthamite criteria.

A location n ∈ N is a Rawls location if for each n′ ∈ N , maxi∈I di (n) ≤ maxi∈I di (n′).

That is, a Rawls location is a Rawlsian social welfare maximizer. Note that under our

assumption that the network is a tree, n∗ is the unique Rawls location. Hence, the equi-

librium location in each subgame is in the r-closed ball of the Rawls location. Moreover,

the equilibrium location in each subgame converges to the Rawls location as δ tends

to 1. Therefore, the equilibrium location in each subgame is almost desirable from the

Rawlsian criterion. Instead, a location n ∈ N is a Weber location if for each n′ ∈ N ,
∑

i∈I di (n) ≤∑i∈I di (n
′). That is, a Weber location is a Benthamite social welfare max-

imizer. Generically, the equilibrium location does not relate to Weber locations. For

example, if the number of players is greater than or equal to three, one player locates at a

vertex v, and the other players locate at a distinct vertex v′, then n∗ is the middle location

between v and v′, but the unique Weber location is v′. Hence, the equilibrium location

in each subgame does not correspond to the Weber location both for sufficiently large δ

and in the limit as δ tends to 1. Moreover,
∑
i∈I di(n

∗)
minn∈N

∑
i∈I di(n)

= |I|
2

diverges to infinity as the

number of players tends to infinity. To sum up, in unanimity bargaining, the equilibrium
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location in each subgame corresponds to a Rawls location but not necessarily a Weber

location, and
∑
i∈I di(n

∗)
minn∈N

∑
i∈I di(n)

is not bounded above. On the other hand, as shown by

Hansen and Thisse (1981), in majority voting, a Condorcet location corresponds with

a Weber location but not necessarily a Rawls location, and
maxi∈I di(nC)

minn∈N maxi∈I di(n)
is bounded

above,7 where nC is a Condorcet location.

2.4 Conclusion

In this chapter, we investigated a model where players collectively decide the location of

a public facility on a tree network by bargaining with the unanimity rule. We proved

the existence of an SSPE and characterized SSPEs. We also showed that the equilibrium

location of the public facility converges to the Rawls location as the discount factor tends

to 1, but it does not relate to the Weber location.

This chapter assumed that the network is a tree network, and the decision rule is the

unanimity rule. The result may depend on the network or the decision rule. It remains

for future research to investigate bargaining on other networks or with other decision

rules.
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Appendix

Let - be the total order on I such that for each (i, i′) ∈ I2 with i 6= i′, i - i′ if and only

if i responds earlier than i′. Let ≺ be the binary relation on I such that i ≺ i′ if and only

7This boundedness also holds on a general network.
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if i′ - i does not hold.

Proof of Proposition 2.1 For each i ∈ I, let A′i := {n ∈ N | ui (n) ≥ δui (n
∗
i )} and

Ai :=
(⋂

ι%iA
′
ι

)
. Let σ be the strategy profile such that each player i proposes n∗i at

each proposing node, and each player i accepts n if and only if n ∈ Ai at each responding

node following proposal n ∈ N . It suffices to show that σ is an SSPE in G.

For each i ∈ I, since for each i′ ∈ I,

ui′ (n
∗
i ) = ū− di′ (n∗i ) By definition

≥ ū− (di′ (n
∗) + r) By di′ (n

∗
i ) ≤ di′ (n

∗) + r

= δ (ū+ r) + (1− δ) l
2
− di′ (n∗) By the definition of r

≥ δ {ū− (di′ (n
∗)− r)} By di′ (n

∗) ≤ l

2

≥ δ (ū−max {di′ (n∗)− r, 0})

= δ (ū− di′ (n∗i′)) By di′ (n
∗
i′) = max {di′ (n∗)− r, 0}

= δui′ (n
∗
i′) By definition,

in σ, at each round with player i’s proposal, n∗i is accepted by each player. Therefore, in

the subgame beginning with player i’s proposal, player i’s payoff by σ is ui (n
∗
i ).

Consider each proposing node of each player i. Let n ∈ {n′ ∈ N | ui (n′) > ui (n
∗
i )}.

Then, di (n
∗
i ) > di (n). Thus, by the definition of n∗i , d (n, n∗) > r. Thus, there exists

i′ ∈ I such that di′ (n) > r + l
2
. Hence, ui′ (n) = ū− di′ (n) < ū− ( l

2
+ r
)
. Note that by

the definition of r, ū− ( l
2

+ r
)

= δ
{
ū− ( l

2
− r)}. Then, ui′ (n) < δ

{
ū− ( l

2
− r)}. Note

that by di (n
∗
i ) > di (n), n∗i 6= vi; thus, vi /∈ A∗; hence, r < d (vi, n

∗) = di (n
∗) ≤ l

2
and that

di′ (n
∗) ≤ l

2
. Then, ui′ (n) < δ {ū− (max {di′ (n∗) , r} − r)} = δ (ū−max {di′ (n∗)− r, 0}).

Note that di′ (n
∗
i′) = max {di′ (n∗)− r, 0}. Then, ui′ (n) < δ (ū− di′ (n∗i′)) = δui′ (n

∗
i′).

Therefore, n /∈ Ai′ . Hence, by a one-stage deviation of proposing n such that ui (n) >

ui (n
∗
i ), player i obtains δui (n

∗
i′) ≤ maxn∈A∗ ui (n) = ui (n

∗
i ) for some i′ ∈ I. By a one-

stage deviation of proposing n such that ui (n) ≤ ui (n
∗
i ), player i obtains ui (n) ≤ ui (n

∗
i )
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if n is accepted by each player, and δui (n
∗
i′) ≤ maxn∈A∗ ui (n) = ui (n

∗
i ) for some i′ ∈ I if

n is rejected by some player. Therefore, player i’s proposal n∗i is optimal.

Consider each responding node of each player i following each proposal n. By rejecting

n, she obtains δui (n
∗
i ). By accepting n, she obtains (i) ui (n) ≥ δui (n

∗
i ) if n ∈ Ai, (ii)

ui (n) ≤ δui (n
∗
i ) if n ∈ (⋂ι�iA

′
ι

) \A′i, and (iii) δui (n
∗
i′) ≤ δmaxn∈A∗ ui (n) = δui (n

∗
i ) for

some i′ ∈ I if n /∈ ⋂ι�iA
′
ι. Therefore, player i’s response is optimal.

Hence, σ is an SPE in G. Obviously, σ is stationary. Q.E.D.

Proof of Proposition 2.2 Let σ be an SSPE in G. For each i ∈ I, let ni be player i’s

proposal in σ. For each i ∈ I, let πi be player i’s payoff by σ at her proposing node. For

each i ∈ I, let Ai be the set of locations of N that player i accepts in σ. For each i ∈ I,

let AOi := {n ∈ N | ui (n) > δπi} and ACi := {n ∈ N | ui (n) ≥ δπi}. Let A :=
⋂
i∈I Ai,

AO :=
⋂
i∈I A

O
i , and AC :=

⋂
i∈I A

C
i .

Lemma 2.1. AO ⊂ A ⊂ AC.

Proof. It suffices to show that for each i ∈ I,
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . We show

this by induction. (i) Let i be the maximum of (I,-). Let n ∈ N . Consider a response

of player i to proposal n. If she accepts it, she obtains ui (n). If she rejects it, she obtains

δπi. Since σ is an SPE in G, n ∈ Ai if ui (n) > δπi, and n /∈ Ai if ui (n) < δπi. Then,

AOi ⊂ Ai ⊂ ACi , i.e.,
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . (ii) Let i, i′ ∈ I, and suppose that

i is the successor of i′. Suppose that
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . Let n ∈ ⋂ι%i′ A

O
ι .

Consider a response of player i′ to proposal n. If she rejects it, she obtains δπi′ . Since

n ∈ ⋂ι%i′ A
O
ι ⊂

⋂
ι%iA

O
ι ⊂

⋂
ι%iAι, if she accepts it, she obtains ui′ (n). Note that since

n ∈ ⋂ι%i′ A
O
ι , ui′ (n) > δπi′ . Then, since σ is an SPE in G, n ∈ Ai′ . Note that n ∈ ⋂ι%iAι.

Then, n ∈ ⋂ι%i′ Aι. Let n ∈ ⋂ι%i′ Aι. Consider a response of player i′ to proposal n. If

she rejects it, she obtains δπi′ . Since n ∈ ⋂ι%i′ Aι ⊂
⋂
ι%iAι, if she accepts it, she obtains

ui′ (n). Note that since n ∈ ⋂ι%i′ Aι ⊂ Ai′ , she accepts n in σ. Then, since σ is an SPE

in G, ui′ (n) ≥ δπi′ , i.e., n ∈ ACi′ . Note that n ∈ ⋂ι%i′ Aι ⊂
⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . Then,

n ∈ ⋂ι%i′ A
C
ι . Q.E.D.
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Lemma 2.2. For each i ∈ I, ni ∈ A.

Proof. Suppose that for each i ∈ I, ni /∈ A. Then, for each i ∈ I, πi = 0. Thus, for

each i ∈ I, ui′ (ni) > 0 = δπi′ for each i′ ∈ I, and thus, ni ∈ AO. Therefore, by Lemma

2.1, for each i ∈ I, ni ∈ A, which is a contradiction. Hence, for some i′ ∈ I, ni′ ∈ A.

Suppose that for some i ∈ I, ni /∈ A. If πi = 0, player i can improve her payoff from 0 to

ui (ni′) > 0 by proposing ni′ , which is a contradiction. If πi > 0, πi = δtui (n) for some

n ∈ A and t ∈ N, and thus, player i can improve her payoff from δtui (n) to ui (n) by

proposing n, which is a contradiction. Therefore, for each i ∈ I, ni ∈ A. Q.E.D.

Lemma 2.3. For each i ∈ I, πi = ui (ni) and ni ∈ arg maxn∈A ui (n).

Proof. This lemma follows Lemma 2.2. Q.E.D.

Lemma 2.4. For each (n, n′) ∈ A2, R (n, n′) ⊂ A.

Proof. Let n′′ ∈ R (n, n′)\{n, n′} and i ∈ I. Then, since n′′ ∈ R (n, n′)\{n, n′}, ui (n′′) >
min {ui (n) , ui (n

′)}. Note that since n, n′ ∈ A ⊂ AC by Lemma 2.1, min {ui (n) , ui (n
′)} ≥

δπi. Then, ui (n
′′) > δπi. Thus, n′′ ∈ ⋂i∈I A

O
i = AO. Therefore, by Lemma 2.1,

n′′ ∈ A. Q.E.D.

Lemma 2.5. For each i ∈ I, there exists (i′, i′′) ∈ I2 such that ni ∈ R (vi′ , vi′′).

Proof. Suppose that for some i ∈ I, for each (i′, i′′) ∈ I2, ni 6∈ R (vi′ , vi′′). Then, since

ni ∈ A ⊂ AC by Lemmas 2.1 and 2.2, there exists n ∈ AO such that ui (n) > ui (ni).

Thus, by Lemma 2.1, there exists n ∈ A such that ui (n) > ui (ni). This contradicts

Lemma 2.3. Q.E.D.

Lemma 2.6. For each i ∈ I, for each n ∈ A, R (vi, ni) ∩R (ni, n) = {ni}.

Proof. By Lemma 2.3, R (vi, ni) ∩ A = {ni}. Therefore, since R (ni, n) ⊂ A by Lemma

2.4, R (vi, ni) ∩R (ni, n) = {ni}. Q.E.D.

Lemma 2.7. For each i ∈ I, if ni ∈ AO, then ni = vi.
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Proof. Suppose that ni 6= vi. Then, since ni ∈ AO, by Lemma 2.1, there exists n ∈ A
such that ui (n) > ui (ni). This contradicts Lemma 2.3. Q.E.D.

Lemma 2.8. Suppose that for some (i, i′) ∈ I2, ni = ni′ and ui (ni) > ui′ (ni′). Then,

A ⊂ AOi .

Proof. Suppose that for some n ∈ A, n 6∈ AOi . Then,

ui′ (n) = ū− di′ (n) By definition

= ū− di′ (ni′)− d (ni′ , n) By Lemma 2.6

= ū− di (ni)− d (ni, n) + di (ni)− di′ (ni′) By ni = ni′

= ui (n) + di (ni)− di′ (ni′) By Lemma 2.6

≤ δui (ni) + di (ni)− di′ (ni′) By n 6∈ AOi and Lemma 2.3

= δ (ū− di (ni)) + di (ni)− di′ (ni′) By definition

< δ (ū− di′ (ni′))
By ui (ni) > ui′ (ni′)

⇐⇒ di (ni) < di′ (ni′)

= δui′ (ni′) By definition

= δπi′ By Lemma 2.3.

Thus, n 6∈ AC , and thus, n 6∈ A by Lemma 2.1. This is a contradiction. Q.E.D.

Lemma 2.9. Suppose that maxi∈I di (ni) = 0. Then, for each i ∈ I, ni = n∗i .

Proof. Let (i, i′) ∈ arg max(ι,ι′) d (vι, vι′). By Lemma 2.2, ni ∈ A and ni′ ∈ A. Hence,

by Lemmas 2.1 and 2.3, ui′ (ni) ≥ δπi′ = δui′ (ni′). Note that by the supposition of this

lemma, ni = vi and ni′ = vi′ . Then, ui′ (vi) ≥ δui′ (vi′). Thus, (1− δ) ū ≥ di′ (vi) =

d (vi, vi′) = l. Let i ∈ I. Suppose that vi /∈ A∗. Then, l
2
≥ d (vi, n

∗) > r = 1−δ
1+δ

(
ū− l

2

)
.

Thus, (1− δ) ū < l, which is a contradiction. Hence, vi ∈ A∗. Therefore, n∗i = vi. Note

that by the supposition of this lemma, ni = vi. Then, ni = n∗i . Q.E.D.

Lemma 2.10. Suppose that maxi∈I di (ni) > 0. Then, for each i ∈ I, ni = n∗i .
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Proof. Let i0 ∈ arg maxi∈I di (ni). Then, by Lemma 2.7, ni0 6∈ AO. Thus, for some

i1 ∈ I, ui1 (ni0) ≤ δπi1 . Note that by Lemmas 2.1 and 2.2, ni0 ∈ A ⊂ AC , and thus,

ui1 (ni0) ≥ δπi1 . Then, ui1 (ni0) = δπi1 . Thus, by Lemma 2.3,

ui1 (ni0) = δui1 (ni1) . (2.1)

Thus,

ui0 (ni1) = ui1 (ni0)− di0 (ni0) + di1 (ni1) By Lemmas 2.2 and 2.6

= δui1 (ni1)− di0 (ni0) + di1 (ni1) By (2.1)

= δui0 (ni0) + (1− δ) (di1 (ni1)− di0 (ni0)) By definition

≤ δui0 (ni0) By i0 ∈ arg max
i∈I

di (ni).

Note that by Lemmas 2.1, 2.2, and 2.3, ui0 (ni1) ≥ δui0 (ni0). Then,

ui0 (ni1) = δui0 (ni0) . (2.2)

Then, by (2.1), (2.2), and Lemma 2.6,

di0 (ni0) = di1 (ni1) = ū− d (ni0 , ni1)

1− δ . (2.3)

Therefore, since i0 ∈ arg maxi∈I di (ni), i1 ∈ arg maxi∈I di (ni). Note that ni0 6= ni1 .

Let n ∈ R (ni0 , ni1) be the unique point such that d (n, ni0) = d (n, ni1). Let n′ ∈ A.

Suppose that d (n′, n) >
d(ni0 ,ni1)

2
. Then, there exists (i′, i′′) ∈ {i0, i1}2

such that

d (n′, ni′) > d (ni′′ , ni′). Note that by n′ ∈ A and Lemmas 2.2 and 2.6, di′ (n
′) =

d (n′, ni′)+di′ (ni′) and di′ (ni′′) = d (ni′′ , ni′)+di′ (ni′). Then, di′ (n
′) > di′ (ni′′), and thus,

ui′ (n
′) < ui′ (ni′′). Thus, by (2.1) and (2.2), ui′ (n

′) < δui′ (ni′). Therefore, by Lemma 2.3,

ui′ (n
′) < δπi′ . Thus, n′ /∈ AC . Hence, by Lemma 2.1, n′ /∈ A, which is a contradiction.

Therefore, for each n′ ∈ A, d (n′, n) ≤ d(ni0 ,ni1)
2

. Hence, for each (n′, n′′) ∈ A2, d (n′, n′′) ≤
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d (n′, n) + d (n′′, n) ≤ d (ni0 , ni1). Therefore, (ni0 , ni1) ∈ arg max(n,n′)∈A2 d (n, n′).

Summing up, for each (i, i′) ∈ I2,

d (vi, vi′) = di (ni) + d (ni, ni′) + di′ (ni′) By Lemma 2.6

≤ di0 (ni0) + d (ni0 , ni1) + di1 (ni1)
By i0, i1 ∈ arg maxi∈I di (ni)

and (ni0 , ni1) ∈ arg max(n,n′)∈A2 d (n, n′)

= d (vi0 , vi1) By Lemma 2.6.

Therefore, d (vi0 , vi1) = max(i,i′)∈I2 d (vi, vi′) = l, n∗ ∈ R (vi0 , vi1), and di0 (n∗) = di1 (n∗) =

l
2
. By (2.3) and Lemma 2.6, n∗ ∈ R (ni0 , ni1) and d (ni0 , n

∗) = d (ni1 , n
∗) = 1−δ

1+δ

(
ū− l

2

)
=

r.

Let n ∈ {n′ ∈ N | d (n′, n∗) < r}. Let i ∈ I. Then, ui (n) > min {ui (ni0) , ui (ni1)}.
Note that since ni0 , ni1 ∈ A ⊂ AC by Lemmas 2.1 and 2.2, min {ui (ni0) , ui (ni1)} ≥ δπi.

Then, ui (n) > δπi. Thus, by Lemma 2.1, n ∈ A. Therefore, {n′ ∈ N | d (n′, n∗) < r} ⊂
A. Let n ∈ {n′ ∈ N | d (n′, n∗) > r}. Then, for some (i, i′) ∈ {i0, i1}2

such that i 6= i′,

ui (n) < ui (ni′). Note that by (2.1) and (2.2), ui (ni′) = δui (ni). Then, ui (n) < δui (ni).

Thus, by Lemmas 2.1 and 2.3, n 6∈ A. Therefore, A ⊂ {n′ ∈ N | d (n′, n∗) ≤ r}.
Suppose that for some i ∈ I, ni 6= n∗i . Let n ∈ R (ni, n

∗
i ) \ {ni, n∗i }. Then, d (n, n∗) <

max {d (ni, n
∗) , d (n∗i , n

∗)}. Note that since ni, n
∗
i ∈ {n′ ∈ N | d (n′, n∗) ≤ r} by Lemma

2.2 and the definition of n∗i , max {d (ni, n
∗) , d (n∗i , n

∗)} ≤ r. Then, d (n, n∗) < r. Thus,

n ∈ {n′ ∈ N | d (n′, n∗) < r}. Therefore, R (ni, n
∗
i ) \ {ni, n∗i } ⊂ {n′ ∈ N | d (n′, n∗) < r}

and R (ni, n
∗
i ) ⊂ {n′ ∈ N | d (n′, n∗) ≤ r}. By the definition of n∗i , it follows that R (vi, n

∗
i )

∩{n′ ∈ N | d (n′, n∗) ≤ r} = {n∗i }. Therefore, sinceR (n∗i , ni) ⊂ {n′ ∈ N | d (n′, n∗) ≤ r},
R (vi, n

∗
i ) ∩ R (n∗i , ni) = {n∗i }. Hence, for each n ∈ R (ni, n

∗
i ) \ {ni, n∗i }, ui (n) > ui (ni).

This contradicts Lemma 2.3. Q.E.D.

The conclusion of Proposition 2.2 follows Lemmas 2.2, 2.9, and 2.10. Q.E.D.
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Campos Rodŕıguez, C. M., Moreno Pérez, J. A. (2003). Relaxation of the Condorcet and

Simpson conditions in voting location. European Journal of Operational Research,

145, 673–683.

Cardona, D., Ponsat́ı, C. (2007). Bargaining one-dimensional social choices. Journal

of Economic Theory, 137, 627–651.

Hansen, P., Thisse, J. F. (1981). Outcomes of voting and planning: Condorcet, Weber

and Rawls locations. Journal of Public Economics, 16, 1–15.

Labbe, M. (1985). Outcomes of voting and planning in single facility location problems.

European Journal of Operational Research, 20, 299–313.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, 50,

97–110.

26



Chapter 3

Location of an undesirable facility

on a network: a bargaining approach

Abstract: We examine a model where, on a line network, individuals collectively choose

the location of an undesirable public facility through bargaining with the unanimity rule.

We show the existence of a stationary subgame perfect equilibrium and the characteriza-

tion of stationary subgame perfect equilibria when the discount factor is sufficiently large.

Furthermore, we show that as the discount factor tends to 1, the equilibrium location

can converge to a location that is least desirable according to both the Benthamite and

Rawlsian criteria.

Keywords: Location of undesirable public facility; Network; Bargaining with the una-

nimity rule; Benthamite criterion; Rawlsian criterion

JEL Classification: D72; C78; R53; H41

Based article: Yamaguchi, K. (2011). Location of an undesirable facility on a network:
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3.1 Introduction

The choice of the location of a public facility is an important problem from the perspec-

tive of welfare. For a desirable public facility—a public facility such that each individual

prefers that the facility be built as near as possible to his/her location—such as a park, it

is socially desirable to choose a minisum location, which minimizes the average distance

from an individual’s location, according to the Benthamite criterion, or a minimax loca-

tion, which minimizes the maximum distance from an individual’s location, according to

the Rawlsian criterion. For an undesirable public facility—a public facility such that each

individual prefers that the facility be built as far as possible from his/her location—such

as a nuclear power plant, it is socially desirable to choose a maxisum location, which max-

imizes the average distance from an individual’s location, according to the Benthamite

criterion, or a maximin location, which maximizes the minimum distance from an indi-

vidual’s location, according to the Rawlsian criterion. Then, if individuals collectively

choose the location of a public facility, is the chosen location socially desirable?

Hansen and Thisse (1981) considered a model where individuals collectively choose

the location of a desirable public facility through majority voting by employing a Con-

dorcet location—a location such that no other location is closer to a strict majority of the

individuals—as a solution. Hansen and Thisse (1981) showed that on a tree network, a

Condorcet location exists, and a Condorcet location is a minisum location. Furthermore,

Hansen and Thisse (1981) showed that on a general network, if a Condorcet location

exists, the ratio of the average distance from an individual’s location to a Condorcet

location to that to a minisum location is bounded above. Hansen and Thisse (1981)

also showed that on a general network, if a Condorcet location exists, the ratio of the

maximum distance from an individual’s location to a Condorcet location to that to a

minimax location is bounded above. Labbé (1990) considered a model where individuals

collectively choose the location of an undesirable public facility through majority vot-

ing by employing an anti-Condorcet location—a location such that no other location is
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farther from a strict majority of the individuals—as a solution. Labbé (1990) showed

that on a general network, if an anti-Condorcet location exists, the ratio of the average

distance from an individual’s location to a maxisum location to that to an anti-Condorcet

location is bounded above. Kawamori and Yamaguchi (2010) considered a model where

individuals collectively choose the location of a desirable public facility through bargain-

ing with the unanimity rule by employing the equilibrium location in the alternating-offer

bargaining formulated by Rubinstein (1982) as a solution.1 Kawamori and Yamaguchi

(2010) showed that on a tree network, as the discount factor tends to 1, the equilibrium

location converges to a minimax location. These results imply that the collective choice of

the location of a desirable public facility through majority voting, that of an undesirable

public facility through majority voting, and that of a desirable public facility through

bargaining with the unanimity rule result in a favorable outcome according to at least

either the Benthamite or Rawlsian criterion.

With these results in mind, we consider a model where, on a line network, individuals

collectively choose the location of an undesirable public facility through bargaining with

the unanimity rule by employing the equilibrium location in the alternating-offer bargain-

ing as a solution. We consider only the case where each individual obtains a non-negative

net benefit regardless of wherever the facility is located.2 We show the existence of a

stationary subgame perfect equilibrium and the characterization of stationary subgame

perfect equilibria when the discount factor is sufficiently large. Furthermore, we show

that as the discount factor tends to 1, the equilibrium location can converge to a location

that minimizes both the average and minimum distance from an individual’s location.

This result implies that the collective choice of the location of an undesirable public facil-

ity through bargaining with the unanimity rule can result in the worst outcome according

1Herings and Predtetchinski (2010) also considered a similar model.
2In reality, when an undesirable public facility is built in a certain area, while each individual in the

area suffers a loss such as a bad odor, noise, and the threat of a serious accident, he/she can often obtain
a benefit such as the public favorable treatment of taxes and subsidies, a job offer from the facility, and
the enjoyment of beneficial services that the facility provides. The case that we consider is just the
case where the benefit that each individual obtains is greater than or equal to the loss he/she suffers
regardless of wherever the facility is located.
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to both the Benthamite and Rawlsian criteria.

Hence, if individuals collectively choose the location of a public facility, the chosen

location may or may not be socially desirable according to the type of public facility and

the rule of collective choice. Thus, a need for some intervention from the perspective of

welfare may arise.

The remainder of this chapter is organized as follows. Section 3.2 describes the model,

Section 3.3 characterizes the equilibria, and Section 3.4 concludes the chapter. We provide

the proof of propositions in the Appendix.

3.2 The model

In this section, we describe a model analogous to that of Kawamori and Yamaguchi (2010)

where, on a line network, individuals collectively choose the location of an undesirable

public facility through bargaining with the unanimity rule.

Suppose that N := [0, 1]. We call N a network, and n ∈ N a location. Let d be a

map from N2 to R+ such that for each (n, n′) ∈ N2, d (n, n′) = |n− n′|. Then, d denotes

a metric on N .

Let G be an extensive form game as follows. Let I := {1, · · · , p} be the set of players

of G, where p ≥ 2. The players collectively choose the location of an undesirable public

facility on the network through bargaining. The bargaining comprises infinite rounds.

In a round, a player proposes a location, and each player sequentially announces his/her

acceptance or rejection of the proposal according to a predetermined order until either

all players accept the proposal or one player rejects it. Let - be the total order on I

such that for each (i, i′) ∈ I2 with i 6= i′, i - i′ if and only if i responds earlier than i′.

Let ≺ be the binary relation on I such that i ≺ i′ if and only if i′ - i does not hold. If

all players accept it, the bargaining ends with the acceptance of the proposed location.

Otherwise, the bargaining proceeds to the next round. In the first round, the proposer

is a predetermined player. Otherwise, the proposer is the rejector in the previous round.
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ni
rejection

acceptance

acceptance

1

2

3

acceptance

rejection

rejection

end
with the acceptance of n

proceeding
to a round with 3’s proposal

proceeding
to a round with 2’s proposal

proceeding
to a round with 1’s proposal

Figure 3.1: A round with i’s proposal in the case where I = {1, 2, 3} and 1 ≺ 2 ≺ 3.

Figure 3.1 shows a round with player i’s proposal in the case where I = {1, 2, 3} and

1 ≺ 2 ≺ 3. Each player i ∈ I is located at a location vi ∈ N of the network. We assume

that 0 = v1 ≤ · · · ≤ vp = 1. Suppose that V := {vi|i ∈ I}. For each i ∈ I, let di be a map

from N to R+ such that for each n ∈ N , di (n) = d (n, vi). Then, di (n) denotes player

i’s distance from location n. We assume that each player i ∈ I obtains payoff δt−1di (n)

if the bargaining ends with location n in the tth round and payoff 0 otherwise, where

δ ∈ [0, 1) denotes a common discount factor.3

We consider pure strategies in this chapter. A strategy of a player prescribes what

location he/she proposes at his/her proposing node and how he/she responds at his/her

responding node. Our equilibrium concept is a stationary subgame perfect equilibrium

(SSPE), that is, a subgame perfect equilibrium (SPE) in which each player takes the

same actions in all rounds.

3.3 Results

In this section, we investigate the equilibria.

3Note that each individual prefers that the facility be built as far as possible from his/her location.
Furthermore, note that each individual obtains a non-negative net benefit regardless of where the facility
is located. In this case, the bargaining ends, that is, the facility is built somewhere. However, we can
also consider the case where an individual can obtain a negative net benefit. In this case, it is possible
that the bargaining does not end, that is, the facility is not built anywhere.
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Suppose that

I :=

{{
i0, i1

} ⊂ I|vi0 6= vi1 , vi =
vi0 + vi1

2
for each i ∈ I

such that min {vi0 , vi1} < vi < max {vi0 , vi1}
}
.

Then, I denotes the family of sets of two players such that their locations are different, and

players located between their locations are located on just the middle location between

their locations.

For each {i0, i1} ∈ I such that 0 < min {vi0 , vi1}, let

δL
({
i0, i1

})
:=

√
(max {vi0 , vi1} −min {vi0 , vi1})2 + (min {vi0 , vi1})2

min {vi0 , vi1}
− max {vi0 , vi1} −min {vi0 , vi1}

min {vi0 , vi1}
.

For each {i0, i1} ∈ I such that max {vi0 , vi1} < 1, let

δR
({
i0, i1

})
:=

√
(max {vi0 , vi1} −min {vi0 , vi1})2 + (1−max {vi0 , vi1})2

1−max {vi0 , vi1}
− max {vi0 , vi1} −min {vi0 , vi1}

1−max {vi0 , vi1}
.

For each {i0, i1} ∈ I, suppose that

δ
({
i0, i1

})
:=





0 if 0 = min {vi0 , vi1} < max {vi0 , vi1} = 1

δR ({i0, i1}) if 0 = min {vi0 , vi1} < max {vi0 , vi1} < 1

δL ({i0, i1}) if 0 < min {vi0 , vi1} < max {vi0 , vi1} = 1

max{δL ({i0, i1}) ,

δR ({i0, i1})}
if 0 < min {vi0 , vi1} < max {vi0 , vi1} < 1.

Suppose that δ̂ = max{i0,i1}∈I δ ({i0, i1}). Note that δ̂ ∈ [0, 1).
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Suppose that M :=
{
n ∈ N |n =

vi+vi′
2

for some i, i′ ∈ I such that vi 6= vi′
}

. Suppose

that ` := minm∈M mini∈{i∈I|vi 6=m} di (m). Suppose that δ̃ := 1−2`
2`+1

. Note that δ̃ ∈ [0, 1).

For each {i0, i1} ⊂ I, suppose that

C
({
i0, i1

})
:=

{
n ∈ N |d

(
n,
vi0 + vi1

2

)
=

1− δ
1 + δ

d (vi0 , vi1)

2

}
=

{
vi0 + δvi1

1 + δ
,
vi1 + δvi0

1 + δ

}
.

Then, C ({i0, i1}) denotes the set of locations such that the distance from the mid-

dle location between player i0’s and player i1’s locations is 1−δ
1+δ

d(vi0 ,vi1)
2

. Note that

limδ→1
vi0+δvi1

1+δ
=

vi0+vi1
2

and limδ→1
vi1+δvi0

1+δ
=

vi0+vi1
2

. Furthermore, for each {i0, i1} ∈ I,

let Σ ({i0, i1}) be the set of strategy profiles such that for each i ∈ I, player i proposes

ni ∈ arg maxn∈C({i0,i1}) di (n) at each proposing node, and his/her proposal ni is accepted

by all players. We call σ ∈ Σ ({i0, i1}) a strategy profile of type {i0, i1}. Note that as

δ tends to 1, the chosen location in each subgame converges to
vi0+vi1

2
in each strategy

profile of type {i0, i1}.
Propositions 3.1 and 3.2 show the characterization of SSPEs.

Proposition 3.1. Suppose that δ ∈
(
δ̂, 1
)

. Then, for each {i0, i1} ∈ I, there exists an

SSPE σ in G such that σ ∈ Σ ({i0, i1}).

Proposition 3.2. Suppose that δ ∈
[
δ̃, 1
)

. Then, for each SSPE σ in G, for some

{i0, i1} ∈ I, σ ∈ Σ ({i0, i1}).

Note that the equilibrium location can converge to n ∈ N as δ tends to 1 if and only

if n =
vi0+vi1

2
for some i0, i1 ∈ I such that {i0, i1} ∈ I. For example, consider the case

where I = {1, 2, 3}, v1 = 0, v2 = 1
2
, and v3 = 1. Figure 3.2 graphically characterizes

the equilibrium location in each subgame. If δ is sufficiently large, each equilibrium is a

strategy profile of type {1, 2}, {2, 3}, or {1, 3}. As δ tends to 1, the equilibrium location

in each subgame converges to 1
4

in each equilibrium of type {1, 2}, 3
4

in each equilibrium

of type {2, 3}, and 1
2

in each equilibrium of type {1, 3}.
We now evaluate the equilibria from the perspective of welfare. In each equilibrium, in

each subgame, the agreement is immediately achieved, that is, no delay occurs. Hence, the
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2(1+δ)

δ
2(1+δ)

1
4

v1 v2 v3

(i) σ ∈ Σ ({1, 2})

∗

0 11
2

2+δ
2(1+δ)

1+2δ
2(1+δ)

3
4

v1 v2 v3

(ii) σ ∈ Σ ({2, 3})

∗

0 11
2

1
1+δ

δ
1+δ

v1 v2 v3

(iii) σ ∈ Σ ({1, 3})

∗

Figure 3.2: Equilibrium location in each subgame in the case where I = {1, 2, 3}, v1 = 0,
v2 = 1

2
, and v3 = 1: the proposal of each player is a location that is the farthest from

his/her location in the locations represented by dots.

important point is whether the equilibrium location is desirable or not. We evaluate the

equilibrium location according to the Benthamite and Rawlsian criteria. For example,

consider the case where I = {1, 2, 3}, v1 = 0, v2 = 1
2
, and v3 = 1 again. Note that

arg maxn∈N
∑

i∈I di (n) = {0, 1} and arg minn∈N
∑

i∈I di (n) =
{

1
2

}
. That is, according

to the Benthamite criterion, the most desirable location is 0 or 1 and the least desirable

location is 1
2
. Note that arg maxn∈N mini∈I di (n) =

{
1
4
, 3

4

}
and arg minn∈N mini∈I di (n) =

{
0, 1

2
, 1
}

. That is, according to the Rawlsian criterion, the most desirable location is 1
4

or 3
4

and the least desirable location is 0, 1
2
, or 1. Hence, as δ tends to 1, the equilibrium

location in each subgame converges to a location that is most desirable according to the

Rawlsian criterion in each equilibrium of type {1, 2} or {2, 3}. On the other hand, as δ

tends to 1, the equilibrium location in each subgame converges to a location that is least

desirable according to both the Benthamite and Rawlsian criteria in each equilibrium of

type {1, 3}.4
4In general, note that a location is least desirable according to the Rawlsian criterion if and only if

the location is an individual’s location. Hence, the equilibrium location can converge to a location that
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As shown by Hansen and Thisse (1981), Labbé (1990), and Kawamori and Yamaguchi

(2010), the collective choice of the location of a desirable public facility through majority

voting, that of an undesirable public facility through majority voting, and that of a

desirable public facility through bargaining with the unanimity rule result in a favorable

outcome according to at least either the Benthamite or Rawlsian criterion. On the other

hand, as shown above, the collective choice of the location of an undesirable public facility

through bargaining with the unanimity rule can result in the worst outcome according

to both the Benthamite and Rawlsian criteria. Hence, if individuals collectively choose

the location of a public facility, the chosen location may or may not be socially desirable

according to the type of public facility and the rule of collective choice. Thus, a need for

some intervention from the perspective of welfare may arise.

3.4 Conclusion

We examined a model where, on a line network, individuals collectively choose the lo-

cation of an undesirable public facility through bargaining with the unanimity rule. We

showed the existence of a stationary subgame perfect equilibrium and the characteriza-

tion of stationary subgame perfect equilibria when the discount factor is sufficiently large.

Furthermore, we showed that as the discount factor tends to 1, the equilibrium location

can converge to a location that is least desirable according to both the Benthamite and

Rawlsian criteria.

We examined a model where the network is a line network, the protocol of the selection

of proposers is the rejector-proposer protocol, and the decision rule is the unanimity rule.

The examination of a model with other networks such as a tree network, other protocols

for the selection of proposers such as the random-proposer protocol, and other decision

rules such as the majority rule is left for future research.

is least desirable according to the Rawlsian criterion as δ tends to 1 if and only if there exists i0, i1, i2 ∈ I
such that

{
i0, i1

} ∈ I and vi2 = vi0+vi1
2 .
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Appendix

Proof of Proposition 3.1 Suppose that {i0, i1} ∈ I. Without loss of generality,

suppose that vi0 < vi1 . For each i ∈ I, suppose that ni ∈ arg maxn∈C({i0,i1}) di (n). Then,

note that for each i ∈ I,

ni ∈





{ni1} if vi <
vi0+vi1

2

{ni1 , ni0} if vi =
vi0+vi1

2

{ni0} if vi >
vi0+vi1

2
.

For each i ∈ I, suppose that Āi := {n ∈ N | di (n) ≥ δdi (ni)}. For each i ∈ I, suppose

that Ai :=
(⋂

ι%i Āι
)

. Then, note that under our assumption that δ ∈
(
δ̂, 1
)

,

∩i∈IAi = ∩i∈IĀi

=





[ni1 , ni0 ]
if there does not exist i ∈ I

such that vi =
vi0+vi1

2

[
ni1 ,

(1+δ)ni1+(1−δ)ni0
2

]
∪
[

(1−δ)ni1+(1+δ)ni0
2

, ni0
]

otherwise.

Let σ be the strategy profile such that each player i proposes ni at each proposing node,

and each player i accepts n if and only if n ∈ Ai at each responding node following

proposal n ∈ N .

Note that for each i ∈ I, ni ∈ ∩i∈IAi. Therefore, in the subgame beginning with

player i’s proposal, player i’s payoff by σ is di (ni).

Consider each proposing node of each player i. For each n ∈ {n′ ∈ N |di (n′) > di (ni)},
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there exists i′ ∈ I such that n 6∈ Ai′ . Hence, by a one-stage deviation of proposing n such

that di (n) > di (ni), player i obtains δdi (ni′) ≤ di (ni) for some i′ ∈ I. By a one-stage

deviation of proposing n such that di (n) ≤ di (ni), player i obtains di (n) ≤ di (ni) if n

is accepted by each player, and δdi (ni′) ≤ di (ni) for some i′ ∈ I if n is rejected by some

player. Therefore, player i’s proposal ni is optimal.

Consider each responding node of each player i following each proposal n. By rejecting

n, player i obtains δdi (ni). By accepting n, player i obtains (i) di (n) ≥ δdi (ni) if n ∈ Ai,
(ii) di (n) ≤ δdi (ni) if n ∈ (⋂ι�i Āι

) \ Āi, and (iii) δdi (ni′) ≤ δdi (ni) for some i′ ∈ I if

n /∈ ⋂ι�i Āι. Therefore, player i’s response is optimal.

Hence, σ is an SPE in G. Obviously, σ is stationary and σ ∈ Σ ({i0, i1}). Q.E.D.

Proof of Proposition 3.2 Let σ be an SSPE in G. For each i ∈ I, let ni be player

i’s proposal in σ. For each i ∈ I, let πi be player i’s payoff by σ at his/her proposing

node. For each i ∈ I, let Ai be the set of locations of N that player i accepts in σ. For

each i ∈ I, suppose that AOi := {n ∈ N | di (n) > δπi} and ACi := {n ∈ N | di (n) ≥ δπi}.
Suppose that A :=

⋂
i∈I Ai, A

O :=
⋂
i∈I A

O
i , and AC :=

⋂
i∈I A

C
i .

Lemma 3.1. AO ⊂ A ⊂ AC.

Proof. It suffices to show that for each i ∈ I,
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . We show

this by induction. (i) Let i be the maximum of (I,-). Suppose that n ∈ N . Consider a

response of player i to proposal n. If the player accepts it, he/she obtains di (n). If the

player rejects it, he/she obtains δπi. Since σ is an SPE in G, n ∈ Ai if di (n) > δπi, and

n /∈ Ai if di (n) < δπi. Then, AOi ⊂ Ai ⊂ ACi , that is,
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι .

(ii) Suppose that i, i′ ∈ I, and suppose that i is the successor of i′. Suppose that
⋂
ι%iA

O
ι ⊂

⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . Suppose that n ∈ ⋂ι%i′ A

O
ι . Consider a response of

player i′ to proposal n. If the player rejects it, he/she obtains δπi′ . Since n ∈ ⋂ι%i′ A
O
ι ⊂

⋂
ι%iA

O
ι ⊂

⋂
ι%iAι, if the player accepts it, he/she obtains di′ (n). Note that since

n ∈ ⋂ι%i′ A
O
ι , di′ (n) > δπi′ . Then, since σ is an SPE in G, n ∈ Ai′ . Note that n ∈ ⋂ι%iAι.

Then, n ∈ ⋂ι%i′ Aι. Suppose that n ∈ ⋂ι%i′ Aι. Consider a response of player i′ to
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proposal n. If the player rejects it, he/she obtains δπi′ . Since n ∈ ⋂ι%i′ Aι ⊂
⋂
ι%iAι,

if the player accepts it, he/she obtains di′ (n). Note that since n ∈ ⋂ι%i′ Aι ⊂ Ai′ , the

player accepts n in σ. Then, since σ is an SPE in G, di′ (n) ≥ δπi′ , that is, n ∈ ACi′ . Note

that n ∈ ⋂ι%i′ Aι ⊂
⋂
ι%iAι ⊂

⋂
ι%iA

C
ι . Then, n ∈ ⋂ι%i′ A

C
ι . Q.E.D.

Lemma 3.2. A is neither the empty set nor a singleton.

Proof. Suppose that A = ∅. Then, for each i ∈ I, πi = 0. Thus, for each n ∈ N \ V ,

di (n) > 0 = δπi for each i ∈ I; thus, n ∈ AO. Therefore, by Lemma 3.1, for each

n ∈ N \ V , n ∈ A, which is a contradiction.

Suppose that for some n ∈ N , A = {n}. Suppose that vi = n. Then, πi = 0. Suppose

that vi 6= n. Consider a proposal of player i. If the player proposes n, he/she obtains

di (n). If the player proposes n′ 6= n, he/she obtains (i) δtdi (n) < di (n) for some t ∈ N if

ni′ = n for some i′ ∈ I, and (ii) 0 < di (n) if ni′ 6= n for each i′ ∈ I. Thus, since σ is an

SPE in G, ni = n; thus, πi = di (n). Suppose that ε := mini∈{i′∈I|vi′ 6=n} di (n). Suppose

that n′ ∈ {n′′ ∈ N |d (n′′, n) < (1− δ) ε} \ {n}. Then, for each i ∈ I such that vi = n,

di (n
′) > 0 = δπi; thus, n′ ∈ AOi . For each i ∈ I such that vi 6= n,

di (n
′) ≥ di (n)− d (n′, n) By triangle inequality

> di (n)− (1− δ) ε By n′ ∈ {n′′ ∈ N |d (n′′, n) < (1− δ) ε} \ {n}

≥ di (n)− (1− δ) di (n) By the definition of ε

= δdi (n)

= δπi;

thus, n′ ∈ AOi . Hence, n′ ∈ AO. Therefore, {n′′ ∈ N |d (n′′, n) < (1− δ) ε} \ {n} ⊂ AO;

thus, by Lemma 3.1, {n′′ ∈ N |d (n′′, n) < (1− δ) ε} \ {n} ⊂ A, which is a contradiction.

Q.E.D.

Lemma 3.3. For each i ∈ I, ni ∈ A.

Proof. Suppose that for some i ∈ I, ni /∈ A. Note that by Lemma 3.2, A \ {vi} 6= ∅. If
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πi = 0, player i can improve his/her payoff from 0 to di (n) > 0 by proposing n ∈ A\{vi},
which is a contradiction. If πi > 0, πi = δtdi (n) for some n ∈ A \ {vi} and t ∈ N; thus,

player i can improve his/her payoff from δtdi (n) to di (n) by proposing n, which is a

contradiction. Q.E.D.

Lemma 3.4. For each i ∈ I, πi = di (ni) and ni ∈ arg maxn∈A di (n).

Proof. This lemma follows Lemma 3.3. Q.E.D.

Lemma 3.5. For each i ∈ I, ni 6∈ AO.

Proof. Suppose that for some i ∈ I, ni ∈ AO. Then, by Lemma 3.1, there exists n ∈ A
such that di (n) > di (ni). This contradicts Lemma 3.4. Q.E.D.

Lemma 3.6. For each i, i′ ∈ I, ni 6= vi′.

Proof. Suppose that for some i, i′ ∈ I, ni = vi′ . Then, by Lemmas 3.1 and 3.4, di′ (ni′) =

0. This contradicts Lemmas 3.2 and 3.4. Q.E.D.

Lemma 3.7. | {ni|i ∈ I} | = 2.

Proof. Suppose that | {ni|i ∈ I} | = 1. Then, by Lemma 3.6, for each i ∈ I, di′ (ni) >

δdi′ (ni′) for each i′ ∈ I; thus, ni ∈ AO. This contradicts Lemma 3.5.

Suppose that | {ni|i ∈ I} | > 2. Consider a proposal of player i ∈ I such that

mini∈I ni < ni < maxi∈I ni. Note that by Lemma 3.3, for each i ∈ I, ni ∈ A. If

vi ≤ ni, player i can improve his/her payoff from di (ni) to di (maxi∈I ni) > di (ni) by

proposing maxi∈I ni, which is a contradiction. If vi > ni, player i can improve his/her

payoff from di (ni) to di (mini∈I ni) > di (ni) by proposing mini∈I ni, which is a contradic-

tion. Q.E.D.

Lemma 3.8. There exists {i0, i1} ⊂ I such that (i) vi0 6= vi1 and (ii) for each i ∈ I,

ni ∈ arg maxn∈C({i0,i1}) di (n).
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Proof. Note that by Lemma 3.6, there exists i ∈ I such that vi < mini∈I ni. Suppose

that there does not exist i ∈ I such that vi < mini∈I ni and di (mini∈I ni) = δdi (ni).

Then, by Lemmas 3.1 and 3.4, there exists n ∈ A such that n < mini∈I ni. Note that

by Lemma 3.6, there exists i ∈ I such that maxi∈I ni < vi. Note that for each i ∈ I

such that maxi∈I ni < vi, ni = mini∈I ni. Hence, there exists i ∈ I and n ∈ A such

that di (n) > di (ni). This contradicts Lemma 3.4. Hence, there exists i ∈ I such

that vi < mini∈I ni and di (mini∈I ni) = δdi (ni). Note that for each i ∈ I such that

vi < mini∈I ni, ni = maxi∈I ni. Therefore, there exists i0 ∈ I such that vi0 < mini∈I ni,

ni0 = maxi∈I ni, and di0 (mini∈I ni) = δdi0 (ni0). Similarly, we can prove that there

exists i1 ∈ I such that maxi∈I ni < vi1 , ni1 = mini∈I ni, and di (maxi∈I ni) = δdi1 (ni1).

Therefore, there exists i0, i1 ∈ I such that vi0 < ni1 < ni0 < vi1 , di0 (ni1) = δdi0 (ni0), and

di1 (ni0) = δdi1 (ni1). Note that ni0 =
vi1+δvi0

1+δ
and ni1 =

vi0+δvi1
1+δ

. Furthermore, note that

by Lemmas 3.3 and 3.7, ni ∈ arg maxn∈{n0,n1} di (n) for each i ∈ I. Q.E.D.

Lemma 3.9. Suppose that δ ∈
[
δ̃, 1
)

. Then, there exists {i0, i1} ⊂ I such that (i)

vi0 6= vi1, (ii) ni ∈ arg maxn∈C({i0,i1}) di (n) for each i ∈ I, and (iii) vi =
vi0+vi1

2
for each

i ∈ I such that min {vi0 , vi1} < vi < max {vi0 , vi1}.

Proof. By Lemma 3.8, there exists {i0, i1} ⊂ I such that (i) vi0 6= vi1 and (ii) ni ∈
arg maxn∈C({i0,i1}) di (n) for each i ∈ I. Without loss of generality, suppose that vi0 <

vi1 . Suppose that there exists i ∈ I such that vi0 < vi <
vi0+vi1

2
. Then, note that

under our assumption that δ ∈
[
δ̃, 1
)

, di

(
vi0+vi1

2

)
≥ ` = 1

2
1−δ̃
1+δ̃
≥ 1

2
1−δ
1+δ
≥ d(vi0 ,vi1)

2
1−δ
1+δ

;

thus, vi0 < vi ≤ ni1 . Note that di (ni1) < di0 (ni1) = δ
1−δd (ni1 , ni0). Hence, di (ni1) <

δ (di (ni1) + d (ni1 , ni0)) = δdi (ni0) = δdi (ni); thus, by Lemmas 3.1 and 3.4, ni1 6∈ A.

This contradicts Lemma 3.3. Therefore, there does not exist i ∈ I such that vi0 < vi <

vi0+vi1
2

. Similarly, we can prove that there does not exist i ∈ I such that
vi0+vi1

2
< vi <

vi1 . Q.E.D.

The conclusion of Proposition 3.2 follows Lemmas 3.3 and 3.9. Q.E.D.
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Chapter 4

Outcome of majority voting in

multiple undesirable facility location

problems

Abstract: We consider the outcome of majority voting in multiple undesirable facility

location problems where the locations of two facilities are planned, any individual is con-

cerned about the location of the nearest facility but not about the location of the other

facility, and any individual prefers that the location of the nearest facility be as far as

possible from his/her location. We show that a Condorcet winner is a subset of the set of

pendant vertices and the vertices adjacent to pendant vertices on a tree network with an

odd number of individuals. Furthermore, we derive a necessary and sufficient condition

for a set of locations to be a Condorcet winner on a line network with an odd number of

individuals.

Keywords: Locations of multiple undesirable facilities; Majority voting; Condorcet win-

ner

JEL Classification: D72; R53; H41

Based article: Yamaguchi, K. (2011). Outcome of majority voting in multiple undesir-

able facility location problems. Mimeo.
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4.1 Introduction

The locations of facilities have an important influence on the daily life of individuals. For

example, if a park is located in the vicinity of an individual, he/she surely enjoys beautiful

scenery every day. Conversely, if a dump is located in the vicinity of an individual, he/she

is surely bothered by bad odor every day. Hence, individuals are very interested in the

locations of facilities. Then, if individuals collectively choose the locations of facilities,

which locations do they choose? Furthermore, are the chosen locations socially desirable?

Many studies have been devoted to answering these questions in cases where individuals

collectively choose the locations of facilities through majority voting by employing a

Condorcet winner, which is unbeatable through pairwise majority voting, as a solution

under majority voting.1,2

Initially, the studies focused on single desirable facility location problems where the

location of a single facility is planned, and any individual prefers that the location of

the facility be as close as possible to his/her location. In these problems, a Condorcet

winner is a location that is unbeatable through pairwise majority voting. Hansen and

Thisse (1981) showed that the set of Condorcet winners equals the set of medians on a

tree network.3 Labbe (1985) showed that the set of Condorcet winners equals either the

empty set or the set of medians on a cactus network. Furthermore, Hansen and Labbé

(1988) derived an algorithm for finding a Condorcet winner on a general network. In

these problems, a Condorcet winner is not necessarily a median on a general network.4

However, Hansen and Thisse (1981) showed that the ratio of the average distance from an

1Some studies have been devoted to answering those questions in cases where individuals collectively
choose the location of a facility through unanimity bargaining by employing the equilibrium location in
alternating-offer bargaining as a solution under unanimity bargaining. For example, see Kawamori and
Yamaguchi (2010) for single desirable facility location problems.

2Since the existence of a Condorcet solution is not assured, other voting solutions weaker than a
Condorcet solution have been also employed. For example, see Bandelt and Labbé (1986) for a Simpson
solution, Campos Rodŕıguez and Moreno Pérez (2000) for a tolerant Condorcet solution, and Campos
Rodŕıguez and Moreno Pérez (2003) for their mixture.

3A p-median is a set of p locations such that the average distance from an individual’s location to the
nearest location in a set of p locations is minimized, that is, a Benthamite social welfare maximizer in
p-desirable facility location problems.

4Bandelt (1985) characterized the networks on which the set of Condorcet winners equals the set of
medians.
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individual’s location to a Condorcet winner to the average distance from an individual’s

location to a median is bounded above on a general network.

Subsequently, the studies began to focus on single undesirable facility location prob-

lems where the location of a single facility is planned, and any individual prefers that

the location of the facility be as far as possible from his/her location. In these problems,

a Condorcet winner is a location that is unbeatable through pairwise majority voting.

Labbé (1990) showed that a Condorcet winner is a pendant vertex or a bottleneck loca-

tion on a general network with an odd number of individuals. Furthermore, the study

revealed that the set of Condorcet winners equals the set of the pendant vertices that

satisfy some condition on a tree network with an odd number of individuals. In these

problems, a Condorcet winner is not necessarily an antimedian, even on a line network.5

However, Labbé (1990) showed that the ratio of the average distance from an individ-

ual’s location to an antimedian to the average distance from an individual’s location to

a Condorcet winner is bounded above on a general network.

Recently, the studies addressed multiple desirable facility location problems where

the locations of multiple facilities are planned, any individual is concerned about the

location of the nearest facility but not about the locations of the other facilities, and

any individual prefers that the location of the nearest facility be as close as possible to

his/her location. In these problems, a Condorcet winner is a set of locations that is

unbeatable through pairwise majority voting. Barberà and Beviá (2006) showed that a

Condorcet winner is efficient, internally consistent, and Nash stable on a line network.

Hajduková (2010) derived the additional necessary conditions and a sufficient condition

for a set of locations to be a Condorcet winner on a line network. Furthermore, Campos

Rodŕıguez and Moreno Pérez (2008) derived an algorithm for finding a Condorcet winner

on a general network. In these problems, a Condorcet winner is not necessarily a median,

even on a line network. Furthermore, the ratio of the average distance from an individual’s

5A p-antimedian is a set of p locations such that the average distance from an individual’s location to
the nearest location in a set of p locations is maximized, that is, a Benthamite social welfare maximizer
in p-undesirable facility location problems.
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location to the nearest location in a Condorcet winner to the average distance from an

individual’s location to the nearest location in a median is not bounded above, even on

a line network.

Following these studies, this chapter is devoted to multiple undesirable facility location

problems where the locations of multiple facilities are planned, any individual is concerned

about the location of the nearest facility but not about the locations of the other facilities,

and any individual prefers that the location of the nearest facility be as far as possible

from his/her location. In these problems, a Condorcet winner is a set of locations that

is unbeatable through pairwise majority voting. We assume that the locations of two

facilities are planned. We show that a Condorcet winner is a subset of the set of pendant

vertices and the vertices adjacent to pendant vertices on a tree network with an odd

number of individuals. Furthermore, we derive a necessary and sufficient condition for

a set of locations to be a Condorcet winner on a line network with an odd number of

individuals. In these problems, we show that the ratio of the average distance from

an individual’s location to the nearest location in an antimedian to the average distance

from an individual’s location to the nearest location in a Condorcet winner is not bounded

above, even on a line network.

The remainder of this chapter is organized as follows. Section 4.2 describes our model,

and Section 4.3 presents our result.

4.2 Model

In this section, we describe our model.

Let (V,E) be a geometric graph. For some metric space X, V is a finite subset of

X, and E is a finite set of some continuous injections from [0, 1] to X such that for any

e ∈ E, e ({0, 1}) ⊂ V and e ([0, 1] \ {0, 1}) ⊂ X \ V , and for any (e, e′) ∈ E2 with e 6= e′,

e ((0, 1)) ∩ e′ ((0, 1)) = ∅. We call v ∈ V a vertex, and for any e ∈ E, e ([0, 1]), an edge.

We assume that |V | ≥ 3. Let N =
(⋃

e∈E e ([0, 1])
) ∪ (⋃v∈V {v}

)
. We call N a network,
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and n ∈ N , a location. For any (n, n′) ∈ N2, we call R ∈ 2N a route between n and n′

if (i) R 3 n, R 3 n′, and R is connected and (ii) there does not exist S ( R such that

S 3 n, S 3 n′, and S is connected. We assume that there is a unique route between two

locations of the network; in other words, the network is a tree. For any (n, n′) ∈ N2, let

R (n, n′) be the route between n and n′. Let d be a map from N2 to R+ such that for any

(n, n′) ∈ N2, d (n, n′) denotes the length of R (n, n′). Then, d denotes a metric on N .

Let I be a nonempty finite set of individuals. We assume that |I| is odd. Individual

i ∈ I is located at a vertex vi ∈ V of the network. For any i ∈ I, let di be a map from

N to R+ such that for any n ∈ N , di (n) = d (n, vi). Then, di (n) denotes individual i’s

distance from location n.

These individuals collectively choose the locations of two undesirable facilities on

the network through majority voting. It is permissible for the facilities to be located

only on the vertices of the network, but not on the same vertex of the network. Let

L = {L ⊂ V ||L| = 2}. Then, {`, `′} ∈ L denotes a set of locations that is a candidate for

the set of the locations of the facilities. Any individual is concerned about the location

of the nearest facility but not about the location of the other facility. Any individual

prefers that the location of the nearest facility be as far as possible from his/her location.

For any i ∈ I, let Di be a map from L to R+ such that for any {`, `′} ∈ L, Di ({`, `′}) =

min {di (`) , di (`′)}. Then, Di ({`, `′}) denotes individual i’s distance from the location of

the nearest facility when {`, `′} is the set of the locations of the facilities. We employ a

Condorcet winner, which is unbeatable through pairwise majority voting, as a solution

under majority voting. In our model, a Condorcet winner is a set of locations that is

unbeatable through pairwise majority voting.

Definition 4.1. C ∈ L is a Condorcet winner if for any L ∈ L,

| {i ∈ I|Di (C) < Di (L)} | ≤ |I|
2
.

Let C denote the set of Condorcet winners.
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0 0 0111
2 3 1 3 2

Figure 4.1: An example where a Condorcet winner does not exist: the number in a vertex
denotes the number of the individuals located on the vertex; the number under an edge
denotes the length of the edge

4.3 Result

In this section, we present the result.

First, we derive a necessary condition for a set of locations to be a Condorcet winner

on a tree network. We refer to a vertex of degree one as a pendant vertex. Let P be the

set of pendant vertices. Let Q be the set of the vertices adjacent to the pendant vertices.

Proposition 4.1. Suppose that C ∈ C. Then, C ⊂ P ∪Q.

Proof. Suppose that {c, c′} ∈ C. Suppose that c 6∈ P ∪ Q. Let V1 = {c}, V2 =

{v ∈ V |d (v, c′) = d (v, c) + d (c, c′)} − V1, and V3 = V − V1 − V2. Then, {V1, V2, V3} is a

partition of V . Note that since c 6∈ P ∪ Q, |V2| ≥ 2 and |V3| ≥ 2. For any j ∈ {1, 2, 3},
let Ij = {i ∈ I|vi ∈ Vj}. Then, {I1, I2, I3} is a partition of I. Note that since |I| is odd,

either |I1∪I2| > |I|
2

or |I1∪I3| > |I|
2

. Suppose that |I1∪I2| > |I|
2

. Note that for any L ∈ L
such that L ⊂ V3, for any i ∈ I1 ∪ I2, Di ({c, c′}) < Di (L). Since {c, c′} ∈ C, this is a

contradiction. Suppose that |I1∪ I3| > |I|
2

. Note that for any L ∈ L such that L ⊂ V2, for

any i ∈ I1 ∪ I3, Di ({c, c′}) < Di (L). Since {c, c′} ∈ C, this is a contradiction. Q.E.D.

By Proposition 4.1, it is sufficient for finding a Condorcet winner to consider only a

subset of the set of pendant vertices and the vertices adjacent to pendant vertices.

Unfortunately, a Condorcet winner does not necessarily exist, even on a line network.

An example is shown in Figure 4.1. As shown by Hansen and Thisse (1981) and Labbé

(1990), in single facility location problems, a Condorcet winner exists on a tree network.

However, as shown by Barberà and Beviá (2006) and above, in multiple facility location

problems, a Condorcet winner does not necessarily exist, even on a line network. Hence,

in multiple facility location problems, other voting solutions weaker than a Condorcet
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solution may be needed for considering the full outcome of majority voting. However, if

a Condorcet winner exists on a line network, we can find it easily.

Hereafter, we assume that the network is a line. Let m be a map from N2 to N

such that for any (n, n′) ∈ N2, m (n, n′) ∈ R (n, n′) and d (n,m (n, n′)) = d (n′,m (n, n′)).

Then, m (n, n′) denotes the middle location between locations n and n′. Let p and

p′ denote the pendant vertices. Let q and q′ denote the vertices adjacent to pendant

vertices p and p′ respectively. Then, by Proposition 4.1, only {p, q}, {q′, p′}, {p, q′},
{q, p′}, {p, p′}, and {q, q′} are candidates that can be a Condorcet winner. For any set of

locations, we derive a necessary and sufficient condition for the set of locations to be a

Condorcet winner.

Proposition 4.2. {p, q} ∈ C if and only if the following conditions are met: (i)

| {i ∈ I|vi ∈ R (m (q, q′) , p′)} | > |I|
2

; and (ii) | {i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)} | > |I|
2

.

Proof. (Necessity) We first prove the necessity. Suppose that {p, q} ∈ C. (i) Suppose

that | {i ∈ I|vi ∈ R (m (q, q′) , p′)} | ≤ |I|
2

. Then, since |I| is odd, it follows that |I −
{i ∈ I|vi ∈ R (m (q, q′) , p′)} | > |I|

2
. Note that for any i ∈ I−{i ∈ I|vi ∈ R (m (q, q′) , p′)},

Di ({p, q}) < Di ({q′, p′}). Since {p, q} ∈ C, this is a contradiction. (ii) Suppose that

| {i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)} | ≤ |I|
2

. Then, since |I| is odd, it follows that |I −
{i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)} | > |I|

2
. Note that Di ({p, q}) < Di ({p, p′}) for any

i ∈ I − {i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)}. Since {p, q} ∈ C, this is a contradiction.

(Sufficiency) Suppose that (i) | {i ∈ I|vi ∈ R (m (q, q′) , p′)} | > |I|
2

. Furthermore, sup-

pose that (ii) | {i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)} | > |I|
2

. Then, | {i ∈ I|vi ∈ R (q, p′)} | >
|I|
2

. Note that for any L ∈ L such that L ∩ {p} 6= ∅ and L ∩ {q} = ∅, for any

i ∈ {i ∈ I|vi ∈ {p} ∪R (m (q, p′) , p′)}, Di ({p, q}) ≥ Di (L). Note that for any L ∈ L
such that L ∩ {p} = ∅ and L ∩ {q} 6= ∅, for any i ∈ {i ∈ I|vi ∈ R (q, p′)}, Di ({p, q}) ≥
Di (L). Note that for any L ∈ L such that L ∩ {p} = ∅ and L ∩ {q} = ∅, for any

i ∈ {i ∈ I|vi ∈ R (m (q, q′) , p′)}, Di ({p, q}) ≥ Di (L). Therefore, {p, q} ∈ C. Q.E.D.

Proposition 4.3. {q′, p′} ∈ C if and only if the following conditions are met: (i)
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| {i ∈ I|vi ∈ R (p,m (q, q′))} | > |I|
2

; and (ii) | {i ∈ I|vi ∈ R (p,m (p, q′)) ∪ {p′}} | > |I|
2

.

Proof. Since the proof of this proposition is analogous to that of Proposition 4.2, we omit

the proof. Q.E.D.

Proposition 4.4. {p, q′} ∈ C if and only if the following conditions are met: (i) for

any adjacent vertices v, v′ ∈ V such that d (p, v) < d (p, v′) and {v, v′} ∩ {q′, p′} = ∅,
| {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))} | > |I|

2
; and (ii) for any v ∈ V such that {v}∩{p′} = ∅,

| {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}} | > |I|
2

.

Proof. (Necessity) We first prove the necessity. Suppose that {p, q′} ∈ C. (i) Suppose

that for some adjacent vertices v, v′ ∈ V such that d (p, v) < d (p, v′) and {v, v′} ∩
{q′, p′} = ∅, | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))} | ≤ |I|

2
. Then, since |I| is odd, |I −

{i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))} | > |I|
2

. Note that Di ({p, q′}) < Di ({v, v′}) for any

i ∈ I − {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))}. Since {p, q′} ∈ C, this is a contradiction. (ii)

Suppose that | {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}} | ≤ |I|
2

for some v ∈ V such that

{v} ∩ {p′} = ∅. Then, since |I| is odd, |I − {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}} | >
|I|
2

. Note that for any i ∈ I − {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}}, Di ({p, q′}) <
Di ({v, p′}). Since {p, q′} ∈ C, this is a contradiction.

(Sufficiency) Suppose that (i) for any adjacent vertices v, v′ ∈ V such that d (p, v) <

d (p, v′) and {v, v′} ∩ {q′, p′} = ∅, | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))} | > |I|
2

, and (ii) for

any v ∈ V such that {v} ∩ {p′} = ∅, | {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}} | > |I|
2

.

Then, for any vertices v, v′ ∈ V such that d (p, v) < d (p, v′) and {v, v′} ∩ {q′, p′} = ∅,
| {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))} | > |I|

2
. Note that for any {v, v′} ∈ L such that v′ = p′,

for any i ∈ {i ∈ I|vi ∈ R (m (p, v) ,m (v, q′)) ∪ {p′}}, Di ({p, q′}) ≥ Di ({v, v′}). Note

that for any {v, v′} ∈ L such that v 6= p′ and v′ = q′, Di ({p, q′}) ≥ Di ({v, v′}) for

any i ∈ {i ∈ I|vi ∈ R (m (p, v) , q′) ∪ {p′}}. Note that for any {v, v′} ∈ L such that

d (p, v) < d (p, v′) and {v, v′}∩{q′, p′} = ∅, for any i ∈ {i ∈ I|vi ∈ R (m (p, v) ,m (v′, q′))},
Di ({p, q′}) ≥ Di ({v, v′}). Therefore, {p, q′} ∈ C. Q.E.D.
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Proposition 4.5. {q, p′} ∈ C if and only if the following conditions are met: (i) for

any adjacent vertices v, v′ ∈ V such that d (p, v) < d (p, v′) and {v, v′} ∩ {p, q} = ∅,
| {i ∈ I|vi ∈ R (m (q, v) ,m (v′, p′))} | > |I|

2
; and (ii) for any v ∈ V such that {v}∩{p} = ∅,

| {i ∈ I|vi ∈ {p} ∪R (m (q, v) ,m (v, p′))} | > |I|
2

.

Proof. Since the proof of this proposition is analogous to that of Proposition 4.4, we omit

the proof. Q.E.D.

Proposition 4.6. {p, p′} ∈ C if and only if the following conditions are met: for any adja-

cent vertices v, v′ ∈ V such that d (p, v) < d (p, v′), | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))} | >
|I|
2

.

Proof. (Necessity) Suppose that {p, p′} ∈ C. Suppose that for some adjacent vertices

v, v′ ∈ V such that d (p, v) < d (p, v′), | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))} | ≤ |I|
2

. Then,

since |I| is odd, |I − {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))} | > |I|
2

. Note that for any i ∈
I − {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))}, Di ({p, p′}) < Di ({v, v′}). Since {p, p′} ∈ C, this

is a contradiction.

(Sufficiency) Suppose that for any adjacent vertices v, v′ ∈ V such that d (p, v) <

d (p, v′), | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))} | > |I|
2

. Then, for any vertices v, v′ ∈ V such

that d (p, v) < d (p, v′), | {i ∈ I|vi ∈ R (m (p, v) ,m (v′, p′))} | > |I|
2

. Note that for any

{v, v′} ∈ L such that d (p, v) < d (p, v′), for any i ∈ {i ∈ I| ∈ R (m (p, v) ,m (v′, p′))},
Di ({p, p′}) ≥ Di ({v, v′}). Therefore, {p, p′} ∈ C. Q.E.D.

Proposition 4.7. {q, q′} ∈ C if and only if the following conditions are met: (i) |V | = 5;

(ii) m (q, q′) ∈ V ; (iii) | {i ∈ I|vi ∈ {p,m (q, q′)}} | > |I|
2

; (iv) | {i ∈ I|vi ∈ {m (q, q′) , p′}} |
> |I|

2
; and (v) | {i ∈ I|vi ∈ {p, p′}} | > |I|

2
.

Proof. (Necessity) Suppose that {q, q′} ∈ C. (i) Suppose that |V | = 4. Since |I| is

odd, either | {i ∈ I|vi ∈ {p, q}} | > |I|
2

or | {i ∈ I|vi ∈ {q′, p′}} | > |I|
2

. Suppose that

| {i ∈ I|vi ∈ {p, q}} | > |I|
2

. Note that for any i ∈ {i ∈ I|vi ∈ {p, q}}, Di ({q, q′}) <

Di ({q′, p′}). Since {q, q′} ∈ C, this is a contradiction. Suppose that | {i ∈ I|vi ∈ {q′, p′}} |
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> |I|
2

. Note that for any i ∈ {i ∈ I|vi ∈ {q′, p′}}, Di ({q, q′}) < Di ({p, q}). Since

{q, q′} ∈ C, this is a contradiction. Suppose that |V | ≥ 6. Since |I| is odd, it fol-

lows that either | {i ∈ I|vi ∈ R (q, q′)} | > |I|
2

or | {i ∈ I|vi ∈ {p, p′}} | > |I|
2

. Suppose that

| {i ∈ I|vi ∈ R (q, q′)} | > |I|
2

. Note that for any i ∈ {i ∈ I|vi ∈ R (q, q′)}, Di ({q, q′}) <
Di ({p, p′}). Since {q, q′} ∈ C, this is a contradiction. Suppose that | {i ∈ I|vi ∈ {p, p′}} | >
|I|
2

. Note that for any L ∈ L such that L∩{p, q, q′, p′} = ∅, for any i ∈ {i ∈ I|vi ∈ {p, p′}},
Di ({q, q′}) < Di (L). Since {q, q′} ∈ C, this is a contradiction. (ii) Suppose that

m (q, q′) 6∈ V . Since |I| is odd, either | {i ∈ I|vi ∈ R (p,m (q, q′)) \ {m (q, q′)}} | > |I|
2

or | {i ∈ I|vi ∈ R (m (q, q′) , p′) \ {m (q, q′)}} | > |I|
2

. We show that this is a contradic-

tion. Suppose that | {i ∈ I|vi ∈ R (p,m (q, q′)) \ {m (q, q′)}} | > |I|
2

. Note that for any

i ∈ {i ∈ I|vi ∈ R (p,m (q, q′)) \ {m (q, q′)}}, Di ({q, q′}) < Di ({q′, p′}). Since {q, q′} ∈ C,
this is a contradiction. Suppose that | {i ∈ I|vi ∈ R (m (q, q′) , p′) \ {m (q, q′)}} | > |I|

2
.

Note that for any i ∈ {i ∈ I|vi ∈ R (m (q, q′) , p′) \ {m (q, q′)}}, Di ({q, q′}) < Di ({p, q}).
Since {q, q′} ∈ C, this is a contradiction. (iii) Suppose that | {i ∈ I|vi ∈ {p,m (q, q′)}} | ≤
|I|
2

. Then, since |I| is odd, it follows that {i ∈ I|vi ∈ {q, q′, p′}} > |I|
2

. Note that for

any i ∈ {i ∈ I|vi ∈ {q, q′, p′}}, Di ({q, q′}) < Di ({p,m (q, q′)}). Since {q, q′} ∈ C, this

is a contradiction. (iv) Suppose that | {i ∈ I|vi ∈ {m (q, q′) , p′}} | ≤ |I|
2

. Then, since

|I| is odd, {i ∈ I|vi ∈ {p, q, q′}} > |I|
2

. Note that for any i ∈ {i ∈ I|vi ∈ {p, q, q′}},
Di ({q, q′}) < Di ({m (q, q′) , p′}). Since {q, q′} ∈ C, this is a contradiction. (v) Suppose

that | {i ∈ I|vi ∈ {p, p′}} | ≤ |I|
2

. Then, since |I| is odd, {i ∈ I|vi ∈ {q,m (q, q′) , q′}} > |I|
2

.

Note that for any i ∈ {i ∈ I|vi ∈ {q,m (q, q′) , q′}}, Di ({q, q′}) < Di ({p, p′}). Since

{q, q′} ∈ C, this is a contradiction.

(Sufficiency) We prove the sufficiency. Suppose that (i) |V | = 5, (ii) m (q, q′) ∈ V ,

(iii) | {i ∈ I|vi ∈ {p,m (q, q′)}} | > |I|
2

, (iv) | {i ∈ I|vi ∈ {m (q, q′) , p′}} | > |I|
2

, and (v)

| {i ∈ I|vi ∈ {p, p′}} | > |I|
2

. Note that for any i ∈ {i ∈ I|vi ∈ {p, q,m (q, q′)}}, Di ({q, q′})
≥ Di ({p, q}). Furthermore, note that for any i ∈ {i ∈ I|vi ∈ {p,m (q, q′)}}, Di ({q, q′}) ≥
Di ({p,m (q, q′)}). Note that for any i ∈ {i ∈ I|vi ∈ {p,m (q, q′) , q′, p′}}, Di ({q, q′}) ≥
Di ({p, q′}). Note that for any i ∈ {i ∈ I|vi ∈ {p, p′}}, Di ({q, q′}) ≥ Di ({p, p′}). Note

51



1
0 2 1ε
v v′ v′′

Figure 4.2: An example where the set of Condorcet winners does not intersect with the
set of antimedians: ε denotes a number greater than 2; the number in a vertex denotes
the number of the individuals located on the vertex; the number under an edge denotes
the length of the edge

that for any i ∈ {i ∈ I|vi ∈ {p, q,m (q, q′)}}, Di ({q, q′}) ≥ Di ({q,m (q, q′)}). Note that

for any i ∈ {i ∈ I|vi ∈ {p, q,m (q, q′) , p′}}, Di ({q, q′}) ≥ Di ({q, p′}). Note that for any

i ∈ {i ∈ I|vi ∈ {m {q, q′} , q′, p′}}, Di ({q, q′}) ≥ Di ({m (q, q′) , q′}). Note that for any

i ∈ {i ∈ I|vi ∈ {m (q, q′) , p′}}, Di ({q, q′}) ≥ Di ({m (q, q′) , p′}). Note that for any i ∈
{i ∈ I|vi ∈ {m (q, q′) , q′, p′}}, Di ({q, q′}) ≥ Di ({q′, p′}). Therefore, {q, q′} ∈ C. Q.E.D.

By Propositions 4.1–4.7, if a Condorcet winner exists on a line network, we can find

it easily.

Finally, we evaluate a Condorcet winner according to the Benthamite criterion. M ∈
L is an antimedian if for any L ∈ L,

∑
i∈I Di (M) ≥ ∑i∈I Di (L). That is, an antime-

dian is a Benthamite social welfare maximizer. Unfortunately, a Condorcet winner is not

necessarily an antimedian. Furthermore, the ratio of the average distance from an indi-

vidual’s location to the nearest location in an antimedian to the average distance from an

individual’s location to the nearest location in a Condorcet winner is not bounded above.

An example is shown in Figure 4.2. In this example, the unique Condorcet winner {v, v′′}
is not the unique antimedian {v, v′}. Furthermore, the ratio

∑
i∈I Di({v,v′})/|I|∑
i∈I Di({v,v′′})/|I| = ε

2
of the

average distance from an individual’s location to the nearest location in the unique an-

timedian to the average distance from an individual’s location to the nearest location in

the unique Condorcet winner goes to infinity as ε goes to infinity. As shown by Hansen

and Thisse (1981), in single desirable facility location problems, the ratio of the average

distance from an individual’s location to a Condorcet winner to the average distance from

an individual’s location to a median is bounded above on a general network, and the ratio

is 1 on a tree network. Furthermore, as shown by Labbé (1990), in single undesirable

facility location problems, the ratio of the average distance from an individual’s location
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to an antimedian to the average distance from an individual’s location to a Condorcet

winner is bounded above on a general network. However, in multiple desirable facility

location problems, the ratio of the average distance from an individual’s location to the

nearest location in a Condorcet winner to the average distance from an individual’s lo-

cation to the nearest location in a median is not bounded above, even on a line network.

Furthermore, as shown above, in multiple undesirable facility location problems, the ra-

tio of the average distance from an individual’s location to the nearest location in an

antimedian to the average distance from an individual’s location to the nearest location

in a Condorcet winner is not bounded above, even on a line network. Hence, in multi-

ple facility location problems, mechanisms other than majority voting may be needed for

implementing socially desirable outcomes from the viewpoint of the Benthamite criterion.
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