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Abstract

Nowadays, most of speech synthesizers are those which require symbol inputs, such as

TTS (Text-to-Speech) converters. The quality of synthesized speech sample produced by

those speech synthesizers is improving. However, it still has some drawbacks, for example,

in emotional speech synthesis or in expressive pitch control. On the other hand, synthesis

methods which do not require symbol inputs, such as articulatory synthesis, are effective for

continuous speech synthesis and pitch control based on dynamic body motion. Therefore

they attract research interest and several applications have been proposed.

A dysarthric engineer, Ken-ichiro Yabu, developed a unique speech generator by using a

pen tablet. The F1-F2 plane is embedded in the tablet. The pen position controls F1 and

F2 of vowel sounds and the pen pressure controls their energy. Another example of speech

generation from body motions is Glove Talk proposed by Sidney Fels. With two data

gloves and some additional devices equipped to the user, body motions are transformed

into parameters for a formant speech synthesizer. In this study, we consider the process of

speech production as media conversion from body motions to sound motions.

Recently, GMM-based speaker conversion techniques have been intensively studied, where

the voice spaces of two speakers are mapped to each other and the mapping function is esti-

mated based on a GMM. This technique was directly and successfully applied to estimate a

mapping function between a space of tongue gestures and other speech sounds. This result

naturally makes us expect that a mapping function between hand gestures and speech can

be estimated as well. People usually use tongue gesture transitions to generate a speech

stream. But previous works showed that tongue gestures, which are inherently mapped to

speech sounds, are not always required to speak. What is needed is a voluntarily movable

part of the body whose gestures can be technically mapped to speech sounds. However,

Yabu and Fels use classical synthesizers, i.e. formant synthesizers. Partly inspired by the

remarkable progress of voice conversion techniques and voice morphing techniques in this

decade, we are developing a GMM-based Hand-to-Speech conversion system (H2S system).

Unlike the current techniques, our new synthesis method does not limit the input media.

Therefore, our technique would be useful in assistive technology, in which devices are tuned

for person to person, and in performative field, in which people pursue the human capability

of expression.

In this study, we focus attention on the design of the system. As an initial trial, a map-

ping between hand gestures and Japanese vowel sounds was estimated so that topological
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features of the selected gestures in a feature space and those of the five Japanese vowels in

a cepstrum space are equalized. Experiments showed that the special glove can generate

good Japanese vowel transitions with voluntary control of duration and articulation. We

also discussed how to extend this framework to consonants. The challenge here was to

figure out appropriate gestures for consonant sounds when the gesture design for vowels

is given. We found that inappropriate gesture designs for consonants result in a lack of

smoothness in transitional segments of synthesized speech. We have considered the reason

to be: (1) the positional relation between vowels and consonants in the gesture space and

that in the speech space were not equivalent, (2) parallel data for transition parts from

consonants to vowels did not correspond well. In order to solve those problems, we have

developed a Speech-to-Hand conversion system (S2H system, the inverse system of H2S

system) trained from parallel data for vowels only to infer the gestures corresponding to

consonants. Listeners evaluated that an H2S system, which exploits gesture data for con-

sonants derived from an S2H system, can generate more natural sounds than those trained

with heuristic gesture design for consonants.

Those natural speech generated by H2S system trained exploiting data generated by

S2H system were, however, obtained only when input gestures were the same as the one

which generated by S2H system. S2H system sometimes output gestures whose dynamic

range is too large or which is not smooth enough. In those cases, it was difficult for users

to form those gestures in realistic time. In this thesis, we compensated those problems

with two ways: (1) reduce the dynamic range by setting the optimal weight for the gesture

model (2) smooth the gesture trajectories by considering delta features. Exploiting parallel

data for consonants derived from a S2H system, we also implemented a real-time Hand-

to-Speech conversion system and evaluated the effectiveness. Subjective user evaluations

showed that almost a half of the phonemes, which are generated by our H2S system are

perceived correctly and that this system is effective enough to generate emotional speech.
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Abstract

音声合成技術は，TTSに代表される，文字や記号を入力とする合成方式と，調音音声合
成に代表される，文字や記号を介さない合成方式に大別される．前者と比較して後者は，
運動の連続性に基づく滑らかな合成音の生成や，合成音における持続時間やピッチのリア
ルタイム制御においてその有効性が注目されており，芸術的歌声生成，教育応用，構音障
害者支援など，様々なアプリケーションが提案されている．本研究では文字や記号を介さ
ない音声生成として，構音器官以外の身体運動から直接音声を生成する新しいシステムを
提案する．

近年，与えられた二話者間パラレルデータに対して，統計的に空間写像を設計する手法
が話者変換の分野で用いられている．本研究ではこの手法を応用し，文字や記号を介さな
い音声合成方式として，身体運動から音声を生成する過程をメディア変換として捉え，身
体運動の特徴量空間から音声の特徴量空間への空間写像に基づく新しい音声生成系を提案
している. 従来の手法と異なり，提案するシステムは入力メディアを限定しないため，個々
のユーザーの能力に合わせてチューニングされることの多い障害者支援機器や，豊かな表
現方法を追究するアートの世界などにおける応用が期待される．

本論文では，まず日本語五母音を対象として，身体運動の特徴量空間から音声の特徴量
空間への写像に基づく音声生成系を構築する．初めに予備的検討として，二母音間遷移中
に別の母音が混入しないように母音とジェスチャーとを対応させ，連結母音音声の生成系
を構築し，手の運動から音声生成が可能であることを確認した．次に，母音とジェスチャー
とのより良い対応を求めるために，「ジェスチャー空間におけるジェスチャー群の配置」と
「母音空間における母音群の配置」の等価性を，より保証できる空間写像を設計した．実験
の結果，両メディア間の等価性を考慮した空間写像によって，より明瞭な音声を生成する
ことが可能となった．

一方，子音に適当なジェスチャーを割り当て，母音に対して用いた提案手法を子音の合成
に拡張した場合，合成音において遷移部分が適切に知覚されないなどの問題が指摘された．
その原因として，ジェスチャー空間における母音と子音に対応するジェスチャーの位置関係
が，音響空間における母音と子音の位置関係に対応していないこと，また静的な位置関係
が適切に対応づけられた場合でも，ジェスチャーと音声の動的な軌跡において適切な対応
付けが取れていない可能性があるといった点が挙げられる. それらを回避するため，母音の
みのパラレルデータを用いて音声–ジェスチャー変換システム（Speech-to-Hand system, 以
下 S2Hシステム）を構築し，それに子音音声を入力することにより，子音に相当するジェ
スチャーを推定する手法を検討した. この手法によって，子音に相当するジェスチャーを
推定した場合，適当に設定した子音のジェスチャーを用いた場合と比較して，より自然性
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の高い音声を出力するH2Sシステムが構築されることが確認された．
しかしその音声は，S2Hシステムが推定したジェスチャーを入力した場合に得られるも

のであった．S2Hシステムは，ダイナミックレンジが大きすぎたり，充分に滑らかではな
いジェスチャー遷移を推定することがあり，その場合，リアルタイムH2Sシステムにおい
ては，実用的な速度では形成が困難であることも指摘されていた．本稿ではこの問題に対
し，(1)ジェスチャーモデルの重みを設定することにより，出力されるジェスチャーベクト
ル時系列のダイナミックレンジを下げる，(2)動的特徴量を考慮することにより，出力ジェ
スチャーベクトル時系列を平滑化する，の 2通りの方法によって改善を試みた．そして，提
案する S2Hシステム構築の枠組みにおいて，適切なジェスチャーモデルの重みを動的特徴
量を考慮して S2Hシステムを構築した場合，より滑らかなジェスチャー遷移が与えられる
ことを実験的に検証した．さらに改善された S2Hシステムによって得られたジェスチャー
を学習データとして用い，リアルタイムジェスチャー–音声変換システム（Hand-to-Speech

system, 以下H2Sシステム）を構築し，その有効性を評価した．聴取実験の結果，本H2S

システムによって合成された音声は，およそ半分の音素が正しく知覚されること，入力す
るジェスチャーによって合成音声の感情が制御可能であることが示された．
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Chapter1 Introduction

1.1 Overview

As Astroboy in“Astroboy”(1952), HAL 9000 in“2001: A Space Odyssey”(1968), No.5

in“Short Circuit”(1986), etc. show, making robots or computers that talk with humans

like humans do is one of humanities dreams. In order to realize that dream, scientists and

engineers in a wide range of fields have been building new technologies. Among them,

speech synthesis technologies would be responsible for the output part of those desired

robots/computers - creating natural and intelligible voice.

Speech synthesis methods are roughly divided into two groups depending on its input.

When the input is symbols such as a plain text or characters, the system is called Text–

to–Speech (TTS) system. Nowadays speech synthesis technologies are not only used in

movies or in laboratories but also in our daily life. MacOSX and Windows are equipped

by default with functions that read text aloud for visually impaired people and speaking

disabled people can use VOCA (Voice Output Communication Aids) machines to talk

[1, 2].

Most of those practical speech synthesizers are TTS converters. The reason that TTS

converters are widely used would be because of the easiness of their input and the quality

of the synthesized speech. With the preparation of large amounts of speech corpora and

the development of statistical learning theories and approaches, the quality of synthesized

speech by TTS synthesizers has been improved astoundingly. They reached the level that

people cannot easily distinguish between synthesized speech by TTS and natural speech.

Some high quality TTS demonstrations are found online [3]. A very good synthesizer may

be able to even deceive speaker verification systems [4]. TTS technology, however, still has

some drawbacks, for example in speech rate/pitch control.

On the other hand, methods that do not require symbol inputs, such as articulatory

synthesis, are effective for speech rate/pitch control and smooth speech synthesis based

on dynamic body motion, while synthesized sounds are often less articulate than that of

TTS. Therefore they attract research interest and several applications have been proposed

in performative singing voice synthesis [5], speech education [6, 7], assistive technologies

[8, 9] etc.

A dysarthric engineer, Yabu, developed a unique speech generator for dysarthric people,

that uses a pen tablet for input [8]. Another example of speech generation from body

motions is Glove Talk proposed by Fels [5]. With two data gloves and some additional

devices attached to the user, body motions are transformed into parameters required for a

speech synthesizer.Unlike TTS converters, those applications give unlimited vocabulary

and directly control fundamental frequency and volume. Trained users can even give

artistic performance with them. Their methodologies are, however, difficult to apply to

other applications, because these applications are designed to make optimal use of the

characteristics specific to the input device. For example, Yabu’s speech generator exploits

the continuity of pen point and that users are capable to control the pen point and pressure
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simultaneously. If the user cannot handle the pen - some dysarthric people have handicaps

on other body parts besides their articulatory organs, another input media should be chosen

for the system and then that system has to be established again with the new media.

Media dependence is a very important factor in both assistive technology and in art.

When assistive devices are developed, the appropriate input media is chosen according to

the user’s handicap and the remaining capabilities of his body. For example, congenital

visual impaired people often do not have difficulty to use braille while most of the acquired

visually impaired people desire an assistive device with audio [10]. Several types of elec-

tric wheelchairs, which are widely used by orthopedically impaired people, are developed

according to the input capability of users, such as head gesture, speech, inner force sense

and electromyography [11].

In the field of art, various media are explored to pursue the possibility of expression. Dr.

Theremin invented Theremin, an early electronic musical instrument controlled without

discernible physical contact from the player. It is said that the Theremin instrument

brought about a change in the way of playing instruments [12].

As the examples above show, the possibility of media selection is very important es-

pecially in the fields in which media is not chosen by the developers but the users. If a

media-independent methodology for speech generation were to be established, it would be

applied to a broad area of applications.

In order to establish a media-independent methodology for speech generation, we treat

the speech generation process from body motion as the mapping problem from non-speech

media to speech media. People usually use tongue gesture transitions to generate a speech

stream. This is considered as the inherent mapping between tongue gestures and speech

sounds. Yabu and Fels’s work, however, showed that tongue gestures are not always re-

quired to speak. What is needed is a voluntarily movable part of the body whose gestures

can be technically mapped to speech sounds. In this thesis, we consider the mapping

problem from hand gesture to speech as one example.

Recently, GMM-based speaker conversion techniques have been intensively studied, where

the voice spaces of two speakers are mapped to each other and the mapping function is es-

timated based on a GMM [13, 14, 15]. This technique was directly and successfully applied

to estimate a mapping function between a space of tongue gestures and another of speech

sounds. This result naturally makes us surmise that a mapping function between hand ges-

tures and speech can be estimated well and we developed a GMM-based Hand-to-Speech

conversion system (H2S system).

For voice conversion, it is not very difficult to obtain some correspondence between two

data sequences from input and output space, for example, by Dynamic Time Warping

(DTW). On the other hand, how to design the optimal correspondence between hand

gestures and speech is one of the biggest challenges for our framework. In this thesis, we

focus on the design of that system.
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As an initial trial, a mapping between hand gestures and Japanese vowel sounds is

estimated. This estimation is optimized through equalization of the topological features of

the selected gestures in a feature space and those of the five Japanese vowels in a cepstrum

space

Next, we discuss how to extend this framework to consonants. The challenge here is to

figure out appropriate gestures for consonant sounds when the gesture design for vowels

is given. Preliminary experiment shows that inappropriate gesture designs for consonants

result in a lack of smoothness in transitional segments of synthesized speech. We have

considered the reason to be: (1) the positional relation between vowels and consonants in

the gesture space and that in the speech space were not equivalent, (2) parallel data for

transition parts from consonants to vowels did not correspond well. In order to get around

those problems, we have developed a Speech-to-Hand conversion system (S2H system,

the inverse system of H2S system) trained from parallel data for vowels only to infer the

gestures corresponding to consonants. Utilizing parallel data for consonants derived from

the S2H system, we also implement a real-time H2S conversion system and examined the

effectiveness

1.2 Outline of the thesis

This thesis is organized as follows. In this chapter, the overview of this thesis was

described. In Chapter 2, current speech technologies are reviewed. Looking through those

technologies, the objectives of our research is also made clear. In Chapter 3, the framework

of our proposed system is described. Based on this framework, we implement a speech

synthesizer from hand gestures in Chapter 4. Our preliminary experiments shows the

challenge of our system as well as the effectiveness of our proposed system. In order to solve

the challenge, we derive the quasi-optimal correspondence between gestures and speech.

In chapter 5, we propose a framework to derive the gestures for consonants when only the

correspondence for vowels is given. The gesture design is evaluated using combined S2H–

H2S systems. In chapter 6, the real-time H2S system based on the framework described in

Chapter 5 is developed and evaluated. Finally, Chapter 7 reviews this thesis and discusses

further works.
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Chapter2 Review of speech synthesis systems

2.1 Introduction

In this chapter, we will review techniques of speech synthesis. First, the history of speech

synthesis is briefly described. Next we will overview current speech synthesis systems. They

are divided into two categories: systems which require symbol inputs and systems which

do not. For each category, the mechanism and the applications are introduced. Looking

through those technologies, the objective of our speech synthesis system will also be made

clear.

2.2 History

To understand a technology, learning how that technology has been developed over time

would be useful. Therefore as the first topic in this chapter, the history of speech synthesis

is described. It has already been in some good texts [16, 17, 18, 19, 20]. Thus, here, only

a few interesting landmarks in them will be introduced.

Speech research started in the 18th century. Dodart, in 1700-1707, found the pitch of

the voice being dependent on the tension of the vocal folds. The first speaking machines

are considered to be those of Kratzenstein [21] and those of von Kempelen [17, 22, 23].

Kratzenstein’s resonators were able to produce five vowels (/a/, /i/, /u/, /e/ and /o/)

statically and won the prize in 1779 offered by the Imperial Academy of Sciences at St.

Petersburgh.

On the other hand, Wolfgang von Kempelen invented a mechanical synthesizer, “speak-

ing machine.” This machine used a slamming reed and hissing whistles as sources that

corresponded to the vocal cords of human, and a box as a resonance unit corresponding to

the vocal tract. It was the first mechanism that allowed the production of not only some

speech sounds, but also entire words and short sentences. It was able to produce nine-

teen consonants and five vowels [17]. Kempelen’s speaking machine is shown in Figure 2.1.

While working on his speaking machine, Kempelen demonstrated a speaking chess-playing

machine. His real speaking machine was therefore not taken so seriously [18].

In the 19th century, theoretical investigations of the vowels were carried out. Helmholz

successfully created the electromechanical speech synthesizer, which uses tuning forks,

renowned for their pure tone, to generate a fundamental frequency and the first six over-

tones which may then be combined in varying proportions [24]. Another one of the first

analog synthesizer of the human speech organs was presented by Stewart [17] in 1922.

Two resonant circuits were excited by a buzzer in this device, permitting approximations

to static vowel sounds by adjusting resonance frequencies to the lowest two natural acoustic

resonances of the vocal tract (formants) for each vowel.

The discovery of the X-ray by Roentgen in 1895 opened up new areas of research based on

imaging techniques. The X-ray observations of the tongue position during vowel production
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Figure 2.1: Wheatstone’s reconstruction of von Kempelen’s speaking machine [17].

evoked a debate on the vowel chart. At the time, vowels were described by various types of

charts that indicated a triangle or quadrilateral distribution of tongue positions [19]. This

dispute was finally ended by Chiba and Kajiyama [25] in 1941. The models they used were

reconstructed by Arai with rubber [6] in 2001 and it shows the great educational effect in

the class of acoustic phonetics or in the demonstration of speech production mechanism.

In the 20th century, development of various recording and imaging techniques, such

as Edison’s phonograph and photographic techiniques, contributed to advances in speech

research. In 1939, the first device to be considered a speech synthesizer, VODER (Voice

Operating Demonstrator), was introduced by Homer Dudley in New York World’s Fair.

After VODER finally showed the possibility of artificial speech production, speech syn-

thesis study attracted the interest of researchers and has been widely studied since then.

Currently speech synthesis techniques are divided into categories shown in Figure 2.2. In

the following sections, those techniques are described in detail.

2.3 Synthesis method which takes symbols as input

Speech synthesis systems, which take symbols as its input, are called Text-to-Speech

(TTS) converters. Although they have the word“ text” in their name, their input does

not need to be a text sequence, it can be a sequence of discrete gestures or pictures. The

symbol means those which do not contain phonetic or phonological information. Because
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Speech 
synthesiser

Symbol input 
(TTS)

No symbol 
input

Synthesis based on 
waveform coding

Synthesis based on 
analysis-synthesis method

Synthesis by rule

Articulatory synthesis

Formant synthesis

Synthesis based on 
a space mapping

Figure 2.2: Categories of current speech synthesizers.

of the ease of the input method and the quality of the synthesized speech, TTS converters

have been widely studied and are used in many practical applications today.

To build a TTS converter, mapping between symbols and sounds needs to be learned

from a speech corpus, a set of texts and corresponding speech waveforms. When some

text is given, the TTS converter derives the optimal speech waveform corresponding to

the text based on the mapping. In other words, TTS can be considered an optimization

problem where optimal speech signals X are generated when a word sequence, or linguistic

information W is given. From the viewpoint of stochastic theory, this problem is written

as:

X̂ = argmax
X

P (X|W ). (2.1)

Present TTS converting methods can be divided into three types [26]. For the practical

use, an appropriate method should be chosen considering the purpose of the application

and the performance of the devices.

Synthesis based on waveform coding

This method stores waveform in the form of short segmental units, typically words

or phrases. When the input text W is given, appropriate samples are chosen from

the database and are concatenated to generate signals X. Although this method

provides high quality speech, the continuity of chosen samples affects the quality. As

the size of units in the database, such as phrases, sentences, syllables or phonemes, get

larger, the quality of synthesized speech, in turn, improves. When the size of units

in the database increases, however, synthesizable words decrease. In this method,
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therefore, the quality and the size of units in the database is a trade-off. There are

several studies based on unit-selection such as [27, 28, 29, 30, 31].

Synthesis based on the analysis-synthesis method

This method stores the time sequences of acoustic parameters extracted from recorded

speech waves or acoustic models, which model the mapping of words or phonemes

with accoustic parameters. When the input text W is given, appropriate parameter

sequences are concatenated and the speech synthesizer generates speech using the

concatenated parameter sequences to obtain output signals X. In terms of the nat-

uralness, synthesized speech samples by this method are inferior to those by wave-

form coding. This method has however, three significant advantages. First, this

method only requires the parameters for synthesis, the amount of information is

small. Secondly, it is possible to modify synthesized speech waveforms by modifying

the parameters. Thirdly, this method shares in the bounty of recent developments

of statistical approaches to generation. Since HMM (Hidden Markov Models) is a

generative model, it can be used to model the feature parameter production process

[32]. Recently HMM-based speech synthesis has become hot topic in speech synthesis

studies [33, 34].

Synthesis by rule

In this method, speech is produced based on phonetic and linguistic rules from letter

sequences or sequences of phoneme symbols and prosodic features. Synthesizers based

on this method are highly complicated, however they have great versatility.

TTS has been widely studied and now reaches the practical level. Nowadays, most of the

speech synthesizers are TTS converters. They have however, still some drawbacks, such as

continuous speech generation and emotional speech synthesis. Some researchers have been

working on those challenges in the framework of TTS. Although they are very interesting

topics to study, in this thesis we will put more focus on them with the other synthesis

method which does not require symbol input.

2.4 Synthesis methods which do not require symbol

inputs

Systems which does not require symbol inputs are effective for smooth speech synthesis

and speech rate / pitch control, based on dynamic body motion, while synthesized sounds

are often less articulate than those of TTS. They could also be used for basic speech

research because of the strong association between input movements and output speech.

Three methods have been proposed to construct synthesizers of this category. One is

articulatory synthesis, which simulates the acoustic wave propagation in the vocal tract.

The second one is the formant synthesis, which simulates the resonance and antiresonance
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Figure 2.3: Mermelstein’s articulatory model [36].

characteristics of the vocal tract, and, as a result, reproduces articulation function. The last

one is synthesis based on space mapping. In this method, the mapping function between

the non-acoustic space and the acoustic space is learned. The details of each method will

be introduced in the following section.

2.4.1 Articulatory synthesis

Articulatory speech synthesis is a synthesis method inspired by the speech production

process of human beings. In terms of the quality of the synthesized speech, articulatory

synthesis would not be the best method. For centuries however, this method has been

attracting researcher’s interests. Articulatory speech synthesis may be used as a tool

in basic speech research and is in itself a subject of basic speech research [16]. If we

understand the human speech production mechanism perfectly, the synthesized speech

would be indistinguishable from human voice. In this section, we overview the current

technology of articulatory synthesis.

Articulatory synthesis can be divided into two steps: a data acquisition step and an

acoustic synthesis step. The first step can be said to have been developed along with devices

to measure human articulatory movements. Until the 1980’s, Cineradiography has been

widely used to capture human articulatory organs. There is no doubt that it contributed to

the birth of well used models, such as the source-filter model by Fant [35], Mermelstein’s

model shown in Figure 2.3 [36], and Maeda model [37]. Cineradiography however, has

gradually been replaced with other devices because of its significant X-ray dosage. Cur-
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Figure 2.4: The discrete tube model of the vocal tract.

rently, Magnetic Resonance Imaging (MRI) and Electromagnetic Articulography (EMA)

are widely used instead. Dang et al., for example, tried to model the movement of articu-

latory organs using the images from MRI and EMA [38]. Ultrasound, Electropalatography

(EPG), motion capture and Electromyography (EMG) etc are other possibilities to capture

the posture or the movement of the articulatory organs. Appropriate devices should be

chosen, depending on the vocal tract model or the purpose of a project.

Using the data acquired during the first step, a speech signal is obtained in the next step.

Since speech is described as a distribution of air pressure, the problem here is to derive the

distribution of air pressure in the vocal tract model when the vocal tract shape is given.

As assuming that the air in the vocal tract is an ideal gas and there is no mass source in

that, the vocal tract geometry can be considered to satisfy the condition of Webster’s Horn

Equation described as follows:

∂2p(x, t)

∂t2
= c2 1

A(x, t)

∂

∂x

[
A(x, t)

∂p(x, t)

∂x

]
, (2.2)

where x is the displacement following the axis of the vocal tract and t denotes time. p and

A are perturbation pressure (sound pressure) and the area of the vocal tract’s cross-section,

respectively. c denotes the sound speed. Equation 2.2 has no analytical solution, as long

as A is a function of both x and t. It can be solved however, if A is a function of only x.

One way of avoiding the problem in solving Equation 2.2, is to assume the shape of

vocal tract as concatenated tubes and let the diameter of tubes change at only specified

points. This means the vocal tract is approximated by the model shown in Figure 2.4.

The acoustic tube model has been widely used. Ogata et al. tried to model the speech

production process using a 20 node acoustic tube model [39]. They also modeled the

movement of the vocal cords with a two mass model proposed by Ishizaka [40]. Another

example of the speech synthesizers based on the acoustic tube model is the Articulatory

SYnthesis program (ASY) [41], developed in Haskins laboratory. The Mermelstein model

[36] is embodied in ASY (see Figure 2.3). There are 6 key parameters in this model: the

tongue body center (C, 2 degrees of freedom (df)), the tongue tip (T, 2 df), the jaw (J,

1 df), the lips (L, 2 df), the velum (V, 1 df), and the hyoid (H, 2 df, controlling larynx

height and pharynx width). The tongue tip is a structure that rests on the tongue body,

which is implemented as a ball. Once these parameters have been specified, the vocal tract

is then converted into a series of uniform tube sections.
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Figure 2.5: One structure of a formant speech synthesizer [46].

Recently, along with the development of measurement devices and computers, the ob-

tained data have become more precise and thus some of the idealizations in the vocal tract

models used previously have been removed, for example vocal tracts do not need to be

symmetrical (2D model). As a result, Engwall [42] and Birkholz et al. [43] modeled the

vocal tract shapes in 3D. Fels et al. developed Artisynth, which is a 3D biomechanical

simulation platform directed toward modelling the vocal tract and upper airway [44].

2.4.2 Formant synthesis

Fant named the spectral peaks of the sound spectrum“ formant” [45]. Formants are

broken down into the first, second, third … formant from the lowest frequency compo-

nent and written as F1, F2, F3 …. Formant frequencies express resonant frequencies of

the vocal tract. The speech generation method using an electrical structure consisting

of the cascade or parallel connection of several resonance (formant) and anti-resonance

(anti-formant) circuits is called the formant-type synthesis method or the terminal analog

method [26]. In this method, the resonance and anti-resonance frequency and bandwidth

of each circuit are variable. Figure 2.5 shows a typical example of the structure of a syn-

thesizer which is constructed based on these considerations [46]. Here F0 =fundamental

frequency, Rx =resonance circuits controlled by resonance frequency and band-width,

PGP , RGS =glottal resonance circuits, RGZ =glottal anti-resonance circuit, RNP ,
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RNZ =resonance and anti-resonance circuits for nasals, Ax =amplitude.

Formant-type speech synthesis has three major advantages. First, formant-type synthesis

can generate intelligible speech even at very high speeds. Secondly, unlike corpus-based

synthesis, formant-type synthesis does not require a database of speech samples. Thirdly,

the relation between body motion and generated speech is explicit. Taking advantage of

those points, several unique applications are proposed.

As formants are resonant frequencies of the vocal tract, when the vocal tract changes

its shape, formants also change. For example, the formant frequencies of /a/ and those

of /i/ are different because the vocal tract shape /a/ differs from that of /i/. Figure

2.6 shows the first and the second formant frequencies of five Japanese vowels. Since the

vocal tract shape changes according to the speaker’s age and sex, formant frequencies are

widely distributed and those distributions are overlapped slightly. When F1 and F2 are

given however, it is possible to roughly derive which vowel sound those F1 and F2 would

correspond to.

A dysarthric engineer, Yabu, embedded the F1-F2 plane in a pen tablet[8]. The pen

position controls F1 and F2 of vowel sounds and the pen pressure controls their energy.

They reported that rapid formant transition observed in the beginning of consonants could

be created only with pen movement on the pen tablet and as a consequence, it is possible for

users to make consonant-like sounds. Another example is Glove-Talk II proposed by Fels [5].

With several devices equipped to the user (including a Cyberglove, a ContactGlove, a three-

space tracker, and a foot pedal) and three neural networks, body motions are transformed

into parameters for a formant speech synthesizer. One subject who was trained on how to

speak with Glove-Talk II is able to create far more natural sounding pitch variations than

a text-to-speech synthesizer available of the time when Glove-Talk II was proposed.

The explicit relationship between formant and vocal tracts is used not only as speech

generation systems but also as speech education systems. With the comparison of the

vowel chart shown in Figure 2.7, correspondence between F1 and the tongue location, and

correspondence between F2 and the rounding the lips, are expected. Stevens et al. men-

tioned the examples of the relationship between vocal tract shapes and vowel spectral

envelopes as shown in Figure 2.8 [47]. This characteristic opens up the possibility of a real-

time speech-learning tool for hearing impaired people. It is difficult for hearing impaired

people to learn how to articulate speech because they cannot get feedback from their own

articulation. By checking the location of formants in real time however, they can know

how their speech is perceived and how to adjust their vocal tract shape to improve their

elocution. Sakata et al. proposed audio-visual real-time feedback of vowel speech based on

the normalized articulation space implemented using formants [7].
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Figure 2.6: The five Japanese vowels in the F1–F2 plane.
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Figure 2.7: The vowel chat for Japanese.

2.4.3 Synthesis based on space mapping

In the previous section, the explicit relationship between formant and vocal tracts was

mentioned. Synthesis based on space mapping creates a more direct relationship between

feature sequences and sounds. People usually use tongue gesture transitions to generate a

speech stream. This is considered as the inherent mapping between tongue gestures and

speech sounds. If the tongue gesture space can be replaced with another media in this

process, we could speak using that media just like we speak using tongue movements. To

realize this, the mapping problem between two media spaces has to be solved.

In the field of speaker conversion, GMM-based conversion techniques have been widely
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Figure 2.8: The relationship between vocal tract shapes and spectral envelopes [47].

studied. This is where the voice spaces of two speakers are mapped to each other and

the mapping function is estimated based on a GMM [13, 14, 15]. Recently, this technique

has been directly applied to estimate a mapping function between non-acoustic media

and speech media. Toda and Tokuda mapped the articulatory movement with speech [48],

Hueber et al. used this method to map the acoustic space to the articulatory space and vice

versa [49]. Nakamura et al. synthesized speech using this method from electromyography

signals [50].

This method requires a parallel data set between two spaces to learn the correspondence

between two spaces. That is to say, which features should be used for mapping and how

to design the correspondence between those spaces are key issues. When the input is
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media which have an explicit relationship with the movements of articulatory organs, it is

relatively easy to get a good correspondence between the feature spaces of that media and

speech. For example, we know which lip shapes should correspond to which sounds. When

the input is media that have no explicit relationship with the movements of articulatory

organs, such as hand gestures or pen movements, any correspondence between input and

target spaces is possible. Of course, the correspondence which synthesizes intelligible sound

as well as provides ease-of-use is ideal. To choose such a correspondence is however difficult.

Some correspondences will not work as desired. Media which have no explicit relationship

with the movements of articulatory organs have not often been chosen in this framework.

2.5 The goal of our research

In this thesis, we focus on speech generation systems which do not require symbol in-

put. As we have seen above, several unique and practical applications have already been

proposed. Their sophisticated methodologies are however, difficult to apply to other ap-

plications. For example, most articulatory synthesis methods are based on data from one

person and it is not easy to adapt to another person. Applications described in Section

2.4.2 are designed to make optimal use of the features specific to the input device. Once the

input device is changed for some reason, those systems would need to be established again

with the new media. The possibility of media selection is, however, very important espe-

cially in the fields in which media should not be chosen by developers but by users, such as

assistive technology and art. Our goal is to establish the media-independent methodology

for speech generation system.

Considering the freedom of media selection, we extend the speech synthesis framework

based on space mapping to desired input media. As we have seen above, the effectiveness of

this framework has already been proven in some works such as [48], [49] and [50] when the

correspondence between the input media and speech is relatively explicit. If this framework

works even when the correspondence is not explicit, it would be a media-independent

synthesis framework and would be able to applied to a wide range of applications.

In our research, speech synthesis based on this framework, when the input media does

not have explicit relationship to speech, has been implemented and the methodology how to

derive the optimal correspondence between the input media and speech has been studied.

As one example of such a conversion, a hand gesture to speech conversion system has been

adopted.

2.6 Summary

This chapter described the history of the speech synthesis technologies. In addition, we

have seen two categories of conventional speech synthesis systems; systems which require
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symbol inputs and systems which do not require symbol inputs. Three synthesis methods

belongs to the former: synthesis based on waveform concatenation, synthesis based on

the analysis-synthesis method and synthesis by rule. The latter also consists of three

methods: articulatory synthesis, formant synthesis and media conversion based on space

mapping. Looking through those technologies, we have made clear the objective of our

speech synthesis system - a media-independent speech synthesis. Among the current speech

synthesis techniques, we have found that media conversion based on space mapping is the

most suitable framework for the objectives. In the next chapter, the basic idea of our

proposed speech synthesis system under the media conversion framework is described.
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3.1 Introduction

As we mentioned in the previous chapter, the objective in our study is to establish a

media-independent methodology for a speech generation system. In order to reach the

objective, we have to consider the speech synthesis framework based on space mapping

to desired input media. When the correspondence between the input media and speech

is relatively explicit, the effectiveness of this framework is already evident. In this thesis

therefore, we are considering the speech synthesis based on this framework when the input

media does not have explicit relationship to speech. As an example of such media, hand

gesture has been chosen and a Hand gesture to Speech (H2S) converter is developed.

In this chapter, the framework of our H2S system is described. Firstly, the acoustic

features, which are used in our framework, are introduced. Next as the basic framework

of our system, an overview of voice conversion based on space mapping is given. Then

the framework of voice conversion is extended into media conversion, in which an acoustic

feature spaces of source speakers is replaced with hand gesture. Finally the challenge of

our H2S system is described.

3.2 Acoustic features

When we speak, lungs send air and it causes the periodical vibration of a vocal cord.

This movement creates periodical pressure wave. When this wave goes through the tube

towards the mouth - this part is called vocal tract - resonant frequency components of the

vocal tract are amplified and human speech sounds are produced. This speech production

process can be considered as two parts, a source part by the vocal code and a filter part by

the vocal tract. This model is called a source-filter model [35]. According to the source-

filter model, the frequency distribution of the produced speech S(ω) is written as follows:

S(ω) = G(ω)H(ω). (3.1)

Here, G(ω) and H(ω) denote the frequency distributions of the vocal code and the vocal

tract, respectively. Roughly speaking, information by vocal cords, G(ω), corresponds to

para-linguistic information, and information by vocal tract, H(ω), includes both linguistic

and non-linguistic. Since human speech production mechanism includes some non-linear

factors in reality, it cannot be perfectly explained by Equation (3.1). It shows however,

abundant performance in speech recognition as well as speech synthesis and is widely used

in the speech processing.

In speech signal processing, acoustic features based on the source-filter model, are widely

used. Fundamental frequency of vocal code (F0) is used for the information by vocal code.

To describe the information by vocal tract, an acoustic feature, called cepstrum, is used.

Figure 3.1 shows the process of speech analysis where cepstral features are extracted
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Figure 3.1: Speech analysis.

from the input speech signal. After the input speech signal is segmented into different

frames, the acoustic features are extracted from every frame. For each windowed signal,

a short time discrete Fourier transform (STDFT) is applied to convert the time domain

signal into the frequency or spectral domain. Then cepstrum can be obtained using the

inverse DFT of the logarithm of the power spectrum. Through this process, speech signals

are expressed with cepstrum vector time sequences.

3.3 Framework of voice conversion

Speech synthesis based on media conversion can be considered as an extension of voice

conversion. Thus, in this section, the basic framework of voice conversion is introduced.

Voice conversion is the technique that modifies the source speaker’s speech as if the target

speaker had spoken it. Based on the source-filter model, voice conversion is roughly divided

into two parts: spectral conversion for voice quality and F0 conversion for intonation. The

details of each part will be introduced in the following section.
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3.3.1 Spectral conversion

In this section, statistical spectral conversion technique is introduced.

Let x = [x1,x2, ..., xp] be the feature vector sequence, such as cepstrum vector sequence,

of a source speaker and y = [y1,y2, ..., yp] be that of the target speaker. The aim of spectral

conversion is to get a mapping function F(·) so that the converted F(xt) matches the best

to the target vector yt for all training data.

Many techniques have been proposed to solve this problem. Abe et al. made mapping

codebooks which represent the correspondence between different speaker’s codebooks based

on hard clustering [51]. The mapping codebooks for spectrum parameters, power values,

and pitch frequencies are separately generated using training utterances. Converted feature

vector ŷ is described using a corresponding centroid vector cm of the mapping codebook

as follows:

ŷt = c(y)
m . (3.2)

Abe et al. reported that in the male–to–female conversion, all converted utterances are

judged as female, and in the male–to–male conversion, 65% of them are identified as the

target speaker. Their method however, can obtain only one centroid vector in the codebook

for each frame.

To alleviate this problem caused by hard clustering, Nakamura and Shikano introduced

Fuzzy vector quantization [52]. Fuzzy vector quantization represents an input vector as a

weighted combination of fuzzy membership function and code-vectors. Replacing the input

speaker’s code-vectors with the mapped code-vectors, mapping based on the soft clustering

is realized as follows:

ŷt =
M∑

m=1

ω
(x)
m,tc

(y)
m , (3.3)

where M is the number of centroid vectors. Matsumoto et al. modeled the difference

vector between the source and target vectors [53] as follows:

ŷt =
M∑

m=1

ω
(x)
m,t(c

(y)
m − c(x)

m ). (3.4)

Their method is based on the correspondence of centroid vectors described in code-

books. In order to directly model the correspondence between points in two spaces, Linear

Regression Method (LRM) written in the following form is proposed in [54].

ŷt = Amxm + bm, (3.5)

where Am and b are regression parameters.
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Figure 3.2: Mapping function on the joint feature space [15].

Stylianou [14] assumed the distribution of the source vectors under the form of a con-

tinuous probability distribution based on a Gaussian Mixture Model (GMM). Then he

extended the idea of LRM and realized the continuous mapping, described as follows.

ŷt =
M∑

m=1

ωm,t(Amxm + bm), (3.6)

where ωm,t,Am and bm are provided by GMMs. Equation (3.3) is the special form of

Equation (3.6), where bm is zero vector.

Some mapping functions on a joint space of one-dimensional source and target features

is shown in Figure 3.2 [15]. The contour lines show normalized frequency distribution of

training data samples. As the figure shows, the GMM-based mapping function is the closest

to the expectation. Thus the GMM-based mapping becomes the most popular method for

the voice conversion and has been widely studied.

3.3.2 GMM-based mapping

Although Stylianou used GMMs to model the distribution of source vectors when the

GMM-based mapping was proposed in [14], GMMs are now generally used to model the

distribution of the augmented vectors zt = [x⊤
i , y⊤

t ]⊤, as Kain et al. proposed in [13]. The

notation ⊤ denotes transposition. Using GMMs, the joint probability density is modeled
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as follows:

P (zt|λ(z)) =
M∑

m=1

ωmN (zt; µ
(z)
m ,Σ(z)

m ), (3.7)

where λ is a parameter set of the GMM, M is the number of mixtures, ωm is the weight

of the m-th mixture component, N (;̇µ
(z)
m ,Σ(z)

m ) is the normal distribution with mean µ
(z)
m

and covariance Σ(z)
m , which are written as:

µ
(z)
i =

[
µ

(x)
i

µ
(y)
i

]
,Σ

(z)
i =

[
Σ

(xx)
i Σ

(xy)
i

Σ
(yx)
i Σ

(yy)
i

]
. (3.8)

Conditional probability density of yt given xt is described as follows:

P (yt|xt, λ
(z)) =

M∑
m=1

P (m|xt,λ
(z))P (yt|xt,m, λ(z)). (3.9)

The first and second terms describe the component weight and the probability density of

each component, respectively. Using these parameters in Equation (3.8), they are described

as follows:

P (m|xt, λ
(z)) =

ωmN (xt; µ
(x)
m ,Σ(xx)

m )∑M
n=1 ωnN (xt; µ

(x)
n ,Σ(xx)

n )
, (3.10)

P (yt|xt,m, λ(z)) = N (yt; E
(y)
m,t,D

(y)
m ), (3.11)

where

E
(y)
m,t = µ(y)

m + Σ(yx)
m Σ(xx)−1

m (xt − µ(x)
m ), (3.12)

D(y)
m = Σ(yy)

m − Σ(yx)
m Σ(xx)−1

m Σ(xy)
m (3.13)

Stylianou and Kain et al. converted source feature xt vector into a target vector yt as

below, so as to minimize the mean-square error (MMSE)
∑

[|y −F(x)|2] [14, 13]:

ŷ =
M∑

m=1

P (m|xt, λ
(z))E

(y)
m,t. (3.14)

Here, as replacing P (m|xt,λ
(z)) with ω

(x)
m,t, Σ

(yx)
m Σ(xx)−1

m with Am and µ
(y)
m −Σ(yx)

m Σ(xx)−1
m µ

(x)
m

as bm, Equation (3.6) is obtained.

Toda et al. performed the conversion so that the following likelihood will be maximized:

ŷ = argmax P (yt|xt,λ
(z)). (3.15)

Conversion based on Maximum Likelihood (ML) criterion is written as follows [15]:

ŷ =

(
M∑

m=1

γm,tD
(y)−1
m

)−1 (
M∑

m=1

γm,tD
(y)−1
m E

(y)
m,t

)
, (3.16)
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Figure 3.3: Natural and generated mel-cepstrum sequences [55].

here γm,t denotes P (m|xt,λ
(z)).

GMM-based mapping has two drawbacks [55]. First, the statistical modeling mitigates

precipitous peaks in spectra. Consequently, generated spectra are smoothed compared

with the natural ones. Figure 3.3 shows the comparison between natural and generated

mel-cepstrum1 sequences [55]. In order to compensate for this problem, Toda and Tokuda

introduced the Global Variance (GV). The GVs are calculated utterance by utterance and

tend to be smaller after the conversion. A square root of the GV of each sequence is

shown as a bidirectional arrow in Figure 3.3. Toda and Tokuda reported that a perceptual

evaluation shows that considerably large improvement in the naturalness of synthesized

speech generated by the conversion considering the GV [55].

The other problem is that in this frame-by-frame mapping framework, the correlation

of the feature vectors is ignored. In order to compensate for this problem, Toda et al.

proposed a conversion method based on the maximum likelihood estimation of a spectral

trajectory [15]. In their framework, not only static but also dynamic features are used.

There are methods to improve the quality of GMM-based mapping other than those two.

Thanks to the constant challenge to improve the quality, GMM-based mapping techniques

realize a quite high performance spectral conversion. These techniques are however, not

directly applied to F0 conversion, because F0 is characterized by a discontinuity in the

transition between voiced and unvoiced sounds that presents an obstacle to GMM modeling

for use in voice conversion. In the next section, some methods for F0 conversion are

1Mel-cepstrum is a kind of cepstrum, considering perceptual aspects of listeners [56, 57]
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introduced.

3.4 F0 conversion

F0 is a highly variable acoustic feature. Speaker difference in F0 could be determined

by a variety of factors, e.g. age, gender, dialectal background, health condition, education

and personal style. In voice conversion however, F0 sequences are usually converted by

following a simple linear function:

p
(Y )
t =

p
(X)
t − µ(X)

σ(X)
× σ(Y ) + µ(Y ), (3.17)

where p
(X)
t and p

(Y )
t are input and converted F0 values, respectively. µ(.) and σ(.) are the

same mean and the standard deviation of F0, respectively. It assumes that the F0 has

a single Gaussian distribution and converted F0 has the same distribution as the target

speaker in the conventional voice conversion approach. This assumption is not appropriate

for F0 conversion in converting the characteristics of source speaker to target speaker.

As a result special models have been proposed for F0 modeling in HMM-based speech

synthesis. A widely used model, the Multi-Space Distribution (MSD) has been proposed by

Masuko et al. [58]. MSD-HMM models F0 with a discrete subspace for the unvoiced regions

and a continuous subspace for the voiced F0 contours. Another popular model, the Globally

Tied Distribution (GTD) has been proposed by Yu et al. [59]. GTD-HMM assumes that F0

still exists in unvoiced regions and it is distributed according to an underlying globally tied

continuous probability distribution field. Recently, Zhang et al. proposed to use voicing

strength as an additional feature in F0 modeling and for voiced/unvoiced (v/u) decision

in [60].

In voice conversion, Yutani et al. proposed a simultaneous modeling of spectrum and

F0 for voice conversion, where the MSD models unvoiced region and continuous voiced

F0 contour in a linearly weighted mixture [61]. However, two incompatible probabilistic

spaces, the continuous probability density for voiced observations or the discrete probability

for unvoiced observations, may incur an imprecise v/u conversion in a maximum likelihood

(ML) sense.

3.4.1 Our proposed F0 model

As a part of the research for media-independent speech synthesis, we have worked on

the improvement of F0 modeling and generation in voice conversion [62]. In our proposed

method, we extended the method proposed by Zhang et al. to F0 conversion, i.e., using

voicing strength as an additional feature for improving F0 modeling and the v/u decision.

Voicing Strength (VS) is characterized by the normalized correlation coefficient (NCC)

magnitude, which is calculated during F0 feature extraction on a short-time basis by ap-
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plying the Robust Algorithm for Pitch Tracking (RAPT)[63]. The NCC magnitude is

described in the following formula:

φi,k =

∑m+n−1
j=m sjsj+k
√

cmcm+k

, (3.18)

where

cm =
m+n−1∑

l=m

s2
l . (3.19)

sj is a sampled speech signal: i = 0, 1, ...,M−1 represents a frame index; k = 0, 1, ..., K−1

is the lag; n is the sample number in an analysis window; m = iz and z represents the

sample number in a frame.

The procedure of our approach to voice conversion is as follows: In the training phase,

F0s in unvoiced regions are first interpolated by the spline function. The entire F0 sequence

after interpolation and VS sequence extracted by Equation (3.18) are then smoothed with

a low-pass filter. Finally, a GMM is trained with both continuous F0 features (F0 and

its first order time derivatives) and VS features (NCC and its first derivatives) as well as

spectral features. In other words, the source and target feature vectors, x and y in Section

3.3.2, both contain F0, VS and spectral features and these three features are simultaneously

modeled by GMM. The optimal number of mixtures for the spectral part and the F0 and

VS parts are calculated independently. In F0 conversion phase, both F0 and VS trajectories

are generated in the maximum likelihood sense.

In our approach, Global Variance (GV) [55], which was described in Section 3.3.2, is also

applied for the generated F0 as follows:

v
(w)
d =

√
σ(Y )

σ(X)
(v

(v)
d − µ(X)) + µ(Y ), (3.20)

y
(w)
i =

√
v

(w)
d

σ(v)
(y

(v)
i − µ(v)) + µ(Y ), (3.21)

where v
(w)
d is the predicted global variance of the converted sentence, v

(v)
d is the global

variance of the generated sentence, µ(X) and µ(Y ) are the means of source and target

sentence’s global variances over all training data respectively, σ(X) and σ(Y ) are the variance

of source and target sentence’s global variances respectively. y
(w)
i is the predicted F0 value,

µ(v) is the mean F0 value of generated sentence. Here, µ(Y ) is assumed to be the same as

µ(w), the mean of the predicted F0 value.

The generated voicing strength for each frame indicates the probability of whether a

frame is voiced or not. Frames with larger values are more likely to be voiced. According

to a preset threshold, voiced or unvoiced decisions can be made consequently. The threshold

value can be fixed regardless of the source data to be the optimal value obtained by Brute

force method.
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Table 3.1: Comparison with the conventional method and our method for Mandarin VC.

RMSE CorrCoef [%] v → u error [%] u → v error [%]

Conventional 41.6 75.5 2.13 2.93

Proposed 37.2 77.9 1.81 2.11

Improvement rate 10.4 3.15 14.9 27.9

Table 3.2: Comparison with the conventional method and our method for English VC.

RMSE CorrCoef [%] v → u error [%] u → v error [%]

Conventional 14.2 75.8 1.10 3.35

Proposed 22.6 77.9 1.25 1.89

Improvement rate 18.9 2.79 -13.1 43.4

3.4.2 Results and discussion

The results of objective comparison with the conventional F0 conversion based on Equa-

tion (3.17) and our proposed method are shown in Table 3.1 and 3.2. Root Mean Square

Error (RMSE), average correlation, v → u error and u → v error between predicted F0

sequences and target F0 sequences were used for the evaluation. The objective results

show that our framework performs better than the conventional method in terms of all

four evaluations for Mandarin Chinese. For English, not all four evaluations are improved.

Our method significantly improves performance evaluation matrices: RMSE, correlation

and u → v error rate, while v → u error is slightly degraded. Mandarin is known as a

syllabically paced tonal language. Compared with English, Mandarin has a more restricted

pitch contour pattern due to its lexical meaning. The variation of F0 contour among dif-

ferent speakers is less than that in English. We think this is the possible reason that the

objective measure improvement of our method is larger in English than in Mandarin.

Although this work is not explicitly applied to an H2S system in this thesis, this mdel

would be useful in future when our system reaches at practical level, because generating

natural F0 is an important issue to synthesize natural speech.

3.5 Speech synthesis based on space mapping

Speech synthesis based on space mapping can be considered as a kind of voice conversion,

in which an acoustic feature spaces of source speakers is replaced with another media. In

our a hand gesture to speech (H2S) conversion system, the input media is replaced with

hand gestures. In this section, features for hand gestures are described firstly. Then the

challenge of our system is made clear.
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MCPIP
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(b)
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Figure 3.4: The location of 18 sensors on CyberGlove.

3.5.1 Features for hand gestures

In our study, hand postures are measured by 18 sensors embedded in a glove (CyberGlove;

Visual Technologies, Palo Alto, CA). The location of those 18 sensors are illustrated in

Figure 3.4 (a). We measured the angles at the metacarpalphalangcal (MCP) and proximal

interphalangeal (PIP) joints of the four fingers and the angle of abduction (ABD) between

adjacent fingers. For the thumb, the MCP, ABD and interphalangeal (IP) angles are

measured. MCP, PIP and ABD are depicted with green, yellow and red points in the

figure. Location of those joints are also shown in Figure 3.4 (b). In addition, CyberGlove

is equipped with a palm arch sensor, a wrist flexion sensor and a abduction sensor (blue

points in the figure (a)). The sampling period of the CyberGlove is 10-20 ms.2

3.5.2 The challenge of Hand-to-Speech conversion system

In our framework, mapping between gesture space and acoustic space is learned based

on Equation (3.14), using parallel data sets which consist of gesture vector sequences and

cepstrum vector sequences. When the input is the media which have explicit relationship

with the movements of articulatory organs, the parallel data between two data sequences

can be obtained, for example, by DTW. Conversely, hand gestures can be corresponded to

2Since the sampling period is variable, recorded data was interpolated linearly in such a way that the
sampling period would be constant.
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any sounds. How to design the optimal correspondence between vowels and hand gestures

is, therefore, one of the most important issues in our research. In the next chapter, we will

make an H2S system for the five Japanese vowels as a preliminary experiment. Then we

will discuss how to evaluate the correspondence between the gestures space and the speech

space.

3.6 Summary

In this chapter, the basic framework of current voice conversion technique has been

reviewed. In statistical voice conversion, the correspondence of two feature spaces of the

source speaker and the target speaker has been modeled with GMMs. This technique is

applied to the conversion between different media. Our H2S system can be considered a

kind of voice conversion system in which the speech space of a source speaker is replaced

by the hand gesture space. It was also mentioned that the correspondence between two

spaces are not explicit in our research and that will be one of the most important issues. In

the next chapter, we will make an H2S system for the five Japanese vowels as a preliminary

experiment. Then we will discuss how to evaluate the correspondence between the gestures

space and the speech space.
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/a/ /i/ /u/ /e/ /o/

Figure 4.1: Gestures of the five Japanese vowels.

4.1 Introduction

In the previous chapter, the statistical voice conversion technique was described. Our

H2S system can be considered a kind of voice conversion system in which the speech space

of a source speaker is replaced by a hand gesture space. The most important issue is

how to design the correspondence between the gesture space and the acoustic space. In

this chapter, we will make an H2S system for the five Japanese vowels as a preliminary

experiment. Then how to evaluate the correspondence between the gestures space and the

speech space will be discussed.

4.2 A preliminary experiment

As a preliminary experiment, an H2S system was implemented for vowel transitions such

as /ai/ and /oe/. The correspondence between hand gestures and the five Japanese vowels

is shown in Figure 4.1. These gestures are designed so that a transition between any pair

of vowels will not generate a third vowel. Hereafter, the correspondence between gestures

and speech will be called “gesture design”.

In order to train GMMs, a female adult recorded gesture data for the isolated vowels and

5P2=20 transitions for each permutation of two vowels. Every gesture was recorded three

times. The total number of gestures was (5+20)×3=75. In addition, a male adult speaker

recorded speech for the five vowels and 5P2=20 transitions between every two vowels.

Speaking rate was adjusted to the transition rate of hand gestures. Each recording was

done five times. The total number of speech samples was (5+20)×5=125. 18 dimensional

cepstral coefficients were extracted using STRAIGHT [64], where the frame length was

40 ms and the frame shift was 1 ms. After every possible combination between a gesture

sequence and its corresponding cepstral sequence were linearly aligned, the distribution of

the augmented vector z was estimated based on a GMM for them, where the number of

Gaussians was set to be one. Finally, the regression function F(x) was estimated based

on Equation (3.14).
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(a) resynthesized speech.
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(b) hand to speech conversion with closed data as input
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(c) hand to speech conversion with open data as input

Figure 4.2: Synthesized speech for vowel transition of /ai/.*

Figure 4.2 shows the results for /ai/. (a) indicates a resynthesized speech sample for

vowel transition /ai/, (b) is a sample synthesized by using closed hand gesture data as

input, and (c) shows a synthesized sample by using open hand gesture data. We used

STRAIGHT for waveform generation, where F0 was fixed to be 140 Hz. Through a simple

listening test of all the kinds of vowel transitions, we found that the sounds of /i/, /u/, and

/o/ were often confused. In the following section, we design the correspondence between

the five vowels and hand gestures so vowel sounds will have a distinct difference between

them.
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Figure 4.3: The 28 basic hand gestures [65].

4.3 The optimal gesture design

4.3.1 Variation of human hand gestures

What kind of hand gestures are possible and what kind of combination of five gestures

is optimal for Japanese vowel production? In the preliminary experiment, sounds /i/, /u/,

and /o/ were often confused. This leads us to believe that the gestures for these sounds

are close to each other in the hand gesture space.

In [65], 28 basic hand gestures were defined, which are shown in Figure 4.3. These

28 gestures were generated as follows. As a hand has five fingers, each of which has two

positions, high and low, we have 25=32 combinations for the five fingers. Among which,

some are physically impossible to form, for example not everyone is able to bend the

pinky without bending the ring finger. By removing those impossible-to-form gestures, we

obtained 28 gestures.

A female adult recorded gesture data for these 28 gestures twice, 2×28=56 data in

total. Using these data, Principal Component Analysis (hereafter PCA) was conducted

to project 18 dimensional gesture data onto a two dimensional plane. The five gestures

of the preliminary experiment, each of which had plural samples, were plotted on a plane

(Figure 4.4). The five ovals represent regions for the five gestures and a sample trajectory

of /aiueo/ is also plotted. As mentioned above, it is clear that the hand gestures of /i/,

/u/, and /o/ are very close to each other. To generate distinct sounds for the individual

vowels, we have to design an appropriate correspondence between vowels and gestures.
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Figure 4.4: The five vowels in the preliminary experiment.

4.3.2 The location of the 28 gestures in a gesture space

We performed the same PCA analysis for the 28 gestures shown in Figure 4.3 with the

results shown in Figure 4.5. The numbers in Figure 4.5 correspond to those in Figure 4.3.

Postural synagies implied by the first principal component (PC1) and the second principal

component (PC2) are depicted in Figure 4.6. This figure shows three-dimensional hand

postures along the PC1 and the PC2 axes reconstructed from the data. For simplicity,

those images were drawn only using MCP and PIP joints of four fingers and the MCP

and IP angles of thumb, i.e., ABDs and angles captured with 3 sensors on the wrist were

ignored. The hand posture in the center of the PC axes was rendered using the average of

28 gestures. The other four postures were computed by adding the minimum or maximum

values of PC1 and PC2 to the average posture (for which the values of the PC coefficients

are all set to be zero).

According to the Figure 4.6, PC1 expresses the closure of all five fingers and PC2

expresses extension of the index and middle fingers and closure of the ring and pinky

fingers. Similar tendency of PC1 and PC2 is reported by Santello et al. [66] with another

gesture data, captured with CyberGlove when subjects grasped 57 imaginary objects.
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Figure 4.6: Postural synergies defined by the 1st and 2nd PCs.
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Table 4.1: Proposed 16 combinations of hand gestures

No. /a/ /i/ /u/ /e/ /o/ No. /a/ /i/ /u/ /e/ /o/

1 8 14 2 11 1 9 22 14 2 11 1

2 8 14 2 13 1 10 22 14 2 13 1

3 8 14 16 11 1 11 22 14 16 11 1

4 8 14 16 13 1 12 22 14 16 13 1

5 8 28 2 11 1 13 22 28 2 11 1

6 8 28 2 13 1 14 22 28 2 13 1

7 8 28 16 11 1 15 22 28 16 11 1

8 8 28 16 13 1 16 22 28 16 13 1

4.3.3 Candidate sets of five hand gestures

In 4.5, the gestures in the central blue region require special efforts to form. Since those

gestures are considered to be inappropriate for practical systems, they are removed from

the candidate gestures for vowels and the remaining gestures are divided into five groups,

A to E. By referring to the F1-F2 vowel chart of Japanese (See Figure 2.6), we designated

those of the five vowels to five regions such that the topological features of the five gestures

in gesture space and the five vowels would be equalized. For simplicity, we chose No.1 from

group A and, from each of the other groups, we selected two easy-to-form gestures in that

group. Thus, the number of gestures we chose was nine in total. Table 4.1 shows all of the

16(=24) combinations we selected and, out of these, we had to select the optimal one. To

compare two topological patterns in different media, we used the structural representation

of sequence data [67, 68, 69].

4.3.4 Structural representation and comparison

Since speaker differences can be characterized as a space mapping, mapping invariant

features can be used as robust speech features for speech systems such as speech recog-

nizers. [67, 70] showed that f-divergence between two distributions is invariant with any

kind of invertible and differentiable transform. In [67, 70], using the Bhattacharyya dis-

tance (BD) as one of the f-divergence based distance measures, an utterance is structually

represented as shown in Figure 4.7. BD between two Gaussian distributions p1(x|µ1,Σ1)

and p2(x|µ2,Σ2) is calculated as follows:

BD(p1, p2) = −ln

∫ ∞

∞

√
p1(x)p2(x)dx

=
1

8
(µ1 − µ2)

⊤
(

Σ1 + Σ2

2

)−1

(µ1 − µ2) +
1

2
ln
|(Σ1 + Σ2)/2|
|Σ1|1/2|Σ2|1/2

(4.1)

– 36 –



Chapter4 Hand-to-Speech system for the five Japanese vowels

c 1 

c 3 c 2 

c 1 

c 3 c 2 

c 4 

c D 

c 4 

c D 
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Figure 4.8: Structural matching between two matrices.

A cepstrum sequence is automatically segmented and converted into a distribution se-

quence. Subsequently, an utterance is characterized as a total set of BDs, namely, a

distance matrix. Although this distance matrix is mapping invariant, by imposing some

constraints, we introduced constrained invariance [71]. For example, if a distribution is

assumed to be a Gaussian, the matrix is invariant only with linear transforms.

In this study, a hand gesture sequence is represented as a structure (distance matrix) and

a vowel sequence is represented as another structure. Here, we assumed that the mapping

function should be approximately linear. Then, we tentatively investigated whether the

structural difference [67] of an utterance matrix and a gesture matrix calculated with each

of the 16 candidates in Table 4.1 could work as an evaluation function. The smaller the

difference is, the better the candidate will be. Here, the utterance /aiueo/ was used. Its

distance matrix was compared to all 16 gesture matrices for the 16 candidates. Following

[71], the number of distributions was set to 25.

The structural difference between two matrices is calculated as the Euclidean distance

between two vectors, each of which is formed by using all the elements of the upper triangle

of a distance matrix. This simple measure can accurately approximate the minimum

total distance between the corresponding two points after shifting and rotating a structure

(matrix) so that the two structures are overlapped optimally [67] (See Figure 4.8).
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Figure 4.9: The structural distances for several sets of gestures.

4.3.5 Results and discussions

Figure 4.9 shows the structural distances between an /aiueo/ utterance and a few can-

didates. The average distance over the 16 candidates and the distance of the hand gestures

used in the preliminary experiment are also shown. Among the 16 candidates, No.5 shows

the smallest distance and No.14 the largest.

10 Japanese adults participated in a listening test with five nonsense words, all of which

were composed of the Japanese vowels. The subjects were asked to transcribe the individual

vowels. For each word, four versions, a re-synthesized sample, two synthesized samples with

No.5 and No.14, and another synthesized one with the preliminary design were presented.

The total number of nonsense word utterances was 20 and the total number of vowel sounds

was 100. The order of presentation was randomized and the 20 words were presented

through headphones. The vowel-based intelligibility was 100%, 99.6%, 99.2%, and 95.2%

for the re-synthesized sample, No.5, No.14, and the preliminary design, respectively.

Figure 4.10 shows the spectrograms of (a) re-synthesized, (b) No.5, (c) No.14, and (d)

the preliminary design. A small difference is visible between (b) and (c) but a large one

between the two and (d).

The above results indicate that an adequate selection of hand gestures improves the

intelligibility and the distinctness of synthesized vowel sounds. A visible difference was

found between No.5 and No.14 in Figure 4.9 but the difference was not well perceived

auditorily and visually. We are unable to claim that the structural difference is sufficient

to select a gesture set out of candidates. A certain measure to estimate the goodness of

gestures is however needed, because without that, a large number of listening tests are

required to decide the optimal set of gestures.
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Finally, Figure 4.11 illustrates the spectrograms which were generated by using (a) dis-

tinct (articulate) hand gestures and (b) ambiguous (inarticulate) hand gestures. These

speech samples were synthesized based on No.5. By comparing (a) with (b) visually and

auditorily, we can claim that our hand-to-speech generator can control the degree of artic-

ulation well.

4.4 summary

We implemented a speech synthesizer from hand gestures based on space mapping. By

considering the topological equivalence between the structure of hand gestures in a gesture

space and that of vowel sounds in the vowel space, we demonstrate how a quasi-optimal

correspondence can be obtained. In the next chapter, we will discuss how to generate

consonant sounds.
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(a) Resynthesized speech.
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(b) Synthesized speech by No. 5.
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(c) Synthesized speech by No. 14.
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(d) Synthesized speech by preliminary design.

Figure 4.10: Comparison between proposed designs for /aiueo/.
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(a) Resynthesized speech
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(b) Synthesized speech using articulate hand gestures
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(c) Synthesized speech using inarticulate hand gestures

Figure 4.11: Synthesized speech for /aiueo/
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5.1 Introduction

We have seen that the proposed method is effective for generating the five Japanese

vowels. In this chapter, we will discuss how to generate consonants in our system.

5.2 Classification of the Japanese consonants

Table 5.1 shows the classification of the Japanese consonants based on the place and the

manner of articulation. In our study, these are divided into three groups: (1) semivowels,

(2) fricatives, affricates and plosives, and (3) nasals and ‘tap and flips’. For each group,

we consider the synthesis methods below.

Semivowels are realized with vowel transitions. For example, /wa/ is expressed with the

transition from /u/ to /a/. Yabu et al. reported that people percieve several Japanese

words which include semivowels, such as /ohajo/ and /konbanwa/ (“good morning” and

“good evening” in Japanese, respectively), only with the formant transitions of vowels [8].

Considering their results, we also synthesize semivowels with continuously changing vowel

speech generated by continuously changing gestures for vowels.

Fricatives, affricatives and plosives are not affected by the speaking rate or succeeding

vowels [73]. That is to say, unlike vowels and semivowels, users do not need to change

the waveform or its length using body gestures or the following vowels. Thus, waveforms

extracted from the recorded speech in this group can be preset in the system. On the other

hand, VOT (Voice Onset Time) largely affects the perception of those consonants. It is well

known that /t/ and /p/ are possible to be perceived as /d/ and /b/ respectively, depending

on VOT [74]. Yabu et al. reported that the signal /sa/ can be perceived as /tsa/ and /ta/.

Based to these facts, in our system, preset waveforms for fricatives, affricatives and plosives

should be generated from preset waveform depending on VOT, which is controlled with

body gestures. Then, the following vowel sounds, which are generated with hand gestures,

will be concatenated to the consonant.

Based on the correspondences between the Japanese phones and Japanese phonemes,

nasals and ‘tap and flips’ in Table 5.1 are described with phonemes as follows: [m] is

/m/, [ñ], [N], [n] are /n/ or /N/, and tap and flip [r] is /r/. Hereafter, we simply call

those 4 phonemes, /m/, /n/, /N/ and /r/, ‘nasals’ for convenience. Nasals are, like vowels,

described with resonance and anti-resonance characteristics. We therefore extend the vowel

generation framework to nasals. In other words, gestures are allocated for nasals as well

as vowels, and nasal speech is generated with gesture motion based on space mapping.

Among the above three groups, semivowels are generated using the same framework as

for vowels. The time structure of fricatives, affricatives and plosives is different from that

for vowels and a new discussion will be needed. In this thesis therefore, we do not address

this topic. In the following sections in this chapter and the following chapters, we will

discuss nasal synthesis and how to extend the vowel generation framework to handle this.
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5.3 A preliminary experiment

In order to generate nasal sounds, gestures are allocated to nasals as well as to vowels, and

nasal speech is generated with gesture motion based on space mapping. As a preliminary

experiment, we focused on /n/ as a nasal sound and developed a H2S system for the five

Japanese vowels and /n/. The challenge was how to derive a gesture for /n/. For initial

trial, we designed the gestures for the five Japanese vowels and /n/ as follows.

Generally, /n/ keeps 0.07–0.10 seconds [73]. Gestures for /n/ should therefore, be shifted

to another gesture in 0.10 seconds order. Since the main function of the hand is to grasp

objects, the movement to grasp is expected to be one of the easiest to form and quickest

to shift to another gestures. Thus, as a preliminary gesture for the transition from /n/ to

vowels, the movement to grasp objects was chosen and gesture No.1 in Figure 4.3 was set

to be the gesture for /n/.

Next, gestures for vowels were chosen among 15 candidates gestures in Figure 4.5, con-

sidering topological equivalence between gesture space and speech space, as we considered

for vowels in the previous chapter. In the previous chapter, a PCA plane and the F1–F2

plane were used to match the structures of vowels and of gestures. Consonants are however,

not described only with F1 and F2. Therefore in the experiment, the F1–F2 plane cannot

directly be used but Euclidean distances between /n/ and vowels in a gesture space and

acoustic space were considered.

A male adult speaker recorded speech for /na/, /ni/, /nu/, /ne/, /no/, and the five

vowels and 5P2=20 transitions between every two vowels. The number of speech data was

5 + 5 = 10, in total. Speech data for /na/, /ni/, /nu/, /ne/, /no/ are manually divided

into three parts: a consonant part, a transition part and a vowel part. These five samples

for consonant parts were considered /n/. The Euclidean distances between /n/ and vowels

in the cepstral space were: ds(n, a) = 0.075, ds(n, i) = 0.092, ds(n, u) = 0.057, ds(n, e) =

0.078, ds(n, o) = 0.099. Here ds(x, y) denotes the average Euclidean distance between cep-

stral vectors of phoneme /x/ and /y/. As ds(n, u) is the minimum among those five, the

gesture No.15 that Euclidean distance in gesture spaces dh(n, u) is the minimum among

dh(n, a), dh(n, i), dh(n, u), dh(n, e), dh(n, o), was considered the gesture for /u/. Then ges-

tures for the other 4 vowels, /a/, /i/, /e/, /o/, were chosen so that the topological features

of the five gestures in gesture space and the five vowels would be equalized, as we described

in the previous chapter. Gesture designs for the five Japanese vowels and /n/ chosen in

the above manner are shown in Figure 5.1.

5.3.1 The H2S system based on the proposed design

Based on the gesture design proposed in the previous section, an H2S system for the five

Japanese vowels and /n/ was developed. A female adult recorded gesture data for /na/,

/ni/, /nu/, /ne/, /no/, the isolated vowels and 5P2=20 transitions between every two
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Figure 5.1: Gesture design for the five Japanese vowels and /n/.

vowels using CyberGlove. Every gesture was recorded three times. The total number of

gestures was (5+5+20)×3=90. In addition, a male adult speaker recorded speech for /na/,

/ni/, /nu/, /ne/, /no/ for 10 times, and the five vowels and 5P2=20 transitions between

every two vowels five times. The number of speech data was 5 × 10 + (5 + 25) × 5 = 175,

in total. In order to make appropriate correspondence, gesture data and speech data for

/na/, /ni/, /nu/, /ne/, /no/ were manually divided into three parts: a consonant part,

a transition part and a vowel part. Then re-sampling and the 18 dimensional cepstrum

coefficient extraction were performed in the same way as performed in Section 4.2. For

/na/, /ni/, /nu/, /ne/, /no/, all combinations between 3 sets of gesture data and 10 sets

of cepstral data, 3 × 10 = 30 combinations in total, for vowels, all combinations between
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(b) Synthesized speech with the H2S system.

Figure 5.2: Synthesized speech for /na/.

3 sets of gesture data and 5 sets of cepstral data, 3 × 5 = 15 combinations in total, were

used to make augmented vectors. For simplicity, one vector was chosen from each set of

8 augmented vectors. Using these data, the GMM was trained. The number of mixtures

were set to be 2. The spectrogram of the generated sound is illustrated in Figure 5.2.

5.3.2 A subsective evaluation

In order to evaluate the H2S system, an intelligibility test was carried out by 14 native

Japanese speakers. Samples were composed of re-synthesized speech and synthesized speech

with the H2S system for /na/, /ni/, /nu/, /ne/, /no/, 10 samples in total. As dummy

samples, re-synthesized speech for /a/, /i/, /u/, /e/, /o/ and /ma/, /mi/, /mu/, /me/,

/mo/, i.e., 2×5 = 10 samples were also included. They were randomized and subjects were

asked to write them down with Roman letters. Subjects were noted that every sample is

1 mora speech of Japanese. Results are shown in Table 5.2.

Synthesized /ni/, /nu/ and /ne/ by the proposed H2S system were not perceived at all

while more than a half of synthesized /na/ were perceived correctly. The most present

error was to replace /n/ with /m/ or /w/ and they occupied almost half of all errors. This

error was not found for re-synthesized speech. If this error is allowed, the intelligibility was

largely improved as shown in Table 5.3.

It is said that formant transition from a consonant to a vowel has some acoustic charac-

teristics which influences perception of the consonant [74]. Perception error between /n/

and /m/, /n/ and /w/ are considered to be a result of a lack of proper transition parts

in synthesized speech. We have considered the reason to be: (1) the positional relation

between vowels and consonants in the gesture space and that in the speech space were not
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Table 5.2: Intelligibility

Synthesis method /na/ /ni/ /nu/ /ne/ /no/ Average

Re-synthesis 100 93.8 93.8 81.3 100.0 93.8

Proposed 56.3 0.0 0.0 0.0 18.8 15.0

Table 5.3: Intelligibility when replacement with /m/ and /w/ are allowed

Synthesis method /na/ /ni/ /nu/ /ne/ /no/ Average

Re-synthesis 100 100 93.8 100 100 98.8

Proposed 87.5 56.3 12.5 18.8 75.0 70.6

equivalent, (2) parallel data for transition parts from consonants to vowels did not corre-

spond well. In order to get around those problems, we have developed a Speech-to-Hand

conversion system (S2H system, the inverse system of H2S system) trained from parallel

data for vowels only to infer the gestures corresponding to consonants. In the next section,

we propose the method to which compensates these problems.

5.4 Probabilistic Integration Model

In the previous section, we have seen that inappropriate gesture designs for consonants

result in a lack of smoothness in transitional segments of synthesized speech. In this section,

we discuss how to determine appropriate gestures for nasal sounds when the gesture design

for vowels is given.

In statistical machine translation studies, the maximization problem of P (y|x) for y

is often solved using Bayes’rule [76]. Here x stands for Japanese and y for English, for

example. In order to directly model and maximize P (y|x), a large amount of parallel data

are needed. By considering P (y|x) as P (x|y)P (y) however, high performance machine

translation is realized with a small amount of parallel data for P (x|y) and an accurate

model P (y) trained with a large English corpus. This framework has also been applied

to voice conversion studies. Saito et al. proposed a new technique for voice conversion

using a joint density model trained by a small amount of parallel data and a target speaker

model trained by a large amount of speech from the target speaker, Model-Integrated Voice

Conversion (hereafter MIVC) [77].

Our aim is to figure out the appropriate gestures for consonants. In order to achieve

this aim, we propose using an S2H system P (h|s), the inverse system of the H2S system,

and apply Bayes’rule to obtain the gestures. In the other words, we consider the gesture

estimation problem given speech s as maximization problem of P (h|s) described as follows:

ĥt = argmax
h

P (h|s) = argmax
h

P (s|h)P (h)

P (s)
= argmax

h
P (s|h)P (h), (5.1)
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here, P (s|h) is the joint density model for parallel data of vowels, P (h) is the statistical

gesture model trained using large amount of gesture data. A system only using P (h|s)

may derive hard-to-form gestures. Ours with the well trained P (h) is however anticipated

to take account of the naturalness of gestures.

In order to solve this problem in MIVC, Saito et al. defined a likelihood function based

on Equation (5.1). In our study, that function is written as follows [77]:

L(ht; st,λ
(z), λ(g)) , P (st|ht, λ

(z))P (ht|λ(g))α, (5.2)

where λ(g) is the model parameter of the gesture model, α is the weight of the gesture

model. In MIVC, α means the weight of the speaker’s model and corresponds to the

weight of the language model in speech recognition.

The equation (5.2) can be written as:

logL(ht) = log

M∑
m=1

P (st,m|ĥt,λ
(z)) + α × log

N∑
n=1

P (ĥt, n|λ(g))

= log
M∑

m=1

P (m|ĥt,λ
(z))

P (st,m|ĥt,λ
(z))

P (m|ĥt, λ
(z))

+
N∑

n=1

logP (n|ĥt, λ
(g))

P (ĥt, n|λ(g))

P (n|ĥt, λ
(g))

,

(5.3)

where M and N denote the number of mixtures of a GMM. According to Jensen’s inequal-

ity,

log
M∑

m=1

P (m|ĥt, λ
(z))

P (st,m|ĥt,λ
(z))

P (m|ĥt, λ
(z))

+
N∑

n=1

logP (n|ĥt, λ
(g))

P (ĥt, n|λ(g))

P (n|ĥt, λ
(g))

≥
M∑

m=1

P (m|ĥt,λ
(z))logP (st,m|ĥt, λ

(z)) +
N∑

n=1

P (n|ĥt,λ
(g))P (ĥt, n|λ(g))

=
M∑

m=1

P (m|ĥt,λ
(z))(logP (m|ĥt, λ

(z)) + logP (st|m, ĥt,λ
(z)))

+
N∑

n=1

P (n|ĥt, λ
(g))P (ĥt, n|λ(g))

= Qz1(ht, ĥt) + Qz2(ht, ĥt) + α Qg(ht, ĥt), (5.4)

where,

Qz1(ht, ĥt) =
M∑

m=1

λm,t logP (m|ĥt, λ
(z)), (5.5)

Qz2(ht, ĥt) =
M∑

m=1

λm,t logP (st|m, ĥt, λ
(z)), (5.6)

Qg(ht, ĥt) =
N∑

n=1

λn,t logP (ĥt, n|λ(g)), (5.7)
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γm,t = P (m|ht,λ
(z)), γn,t = P (n|ht,λ

(g)). (5.8)

We assume that Equation (5.5) does not rapidly change, i.e., we ignore the differential

coefficient of Qz1 against ĥ. Then the optimum solution ĥ can be obtained by maximizing

the following function:

Q′(ht, ĥt) = Qz2(ht, ĥt) + α Qg(ht, ĥt). (5.9)

When ĥt is the optimum value, the differential coefficient of the Equation (5.9) against ĥt

is 0. Thus we obtain the following update function:

ĥ =
( M∑

m=1

γm,tD
′(h)−1
m + α

N∑
n=1

γn,tΣ
−1
n

)
×

( M∑
m=1

γm,tD
′(h)−1
m E

′(h)
m,t + α

N∑
n=1

γn,tΣ
−1
n µn

)
, (5.10)

where µn and Σn are the nth mean vector and the covariance matrix of the gesture model

GMM. E
′(h)
m,t and D′(h)−1

m are described as follows:

E
′(h)
m,t = µ(h)

m + Σ(hh)
m Σ(sh)+

m (st − µ(s)
m ), (5.11)

D′(h)−1
m =

[
Σ(hh)

m − Σ(hs)
m Σ(ss)−1

m Σ(sh)
m

]−1 − Σ(hh)−1
m . (5.12)

Here, (·)+ denotes the pseudo-inverse matrix. As for the initial value of Equation (5.8),

first we apply Equation (3.14) to our H2S system and convert input speech st into hand

gestures ht = F(st), then it is used as the initial value of Equation (5.8).

In order to obtain the optimal gestures for consonants, we develop an S2H system based

on the framework described above. Then the gestures should be obtainable by inputting

the consonants into the S2H system. In the next section, the gestures derived with S2H

system are evaluated to determine their effectiveness for an H2S system.

5.5 Experiments

In order to verify that the S2H system is able to derive the gestures for speech, that are

not included in the parallel data, the experiments below were carried out. The procedure

for the experiments in Figure 5.3. First, an S2H system was made with the gesture model

and the conversion model trained with parallel data for vowels. Then consonants speech

were input to the S2H system and gestures corresponds to those speech are obtained.

In order to check if those gestures were effective for generating consonant speech, they

were input to the H2S system which was made in the same manner as the S2H system.

Finally the input speech of the S2H system and the derived speech of the H2S system were

compared. They were expected to be the same, ideally.
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Figure 5.3: The procedure of the experiments.

5.5.1 Speech-to-Hand conversion sytem

First off, an S2H system was developed using parallel data based on the gesture design for

vowels and the statistical gesture model. By inputting the features for consonant speech,

the gestures for consonants were obtained.

For the gesture model, No.1, No.2, No.4, No.7, No.8, No.9, No.11, No.13, No.14, No.15,

No.16, No.21, No.22, No.25, No.27, No.28 were chosen from 28 gestures depicted in Figure

4.3. These are gestures that are formed easily by the female adult who records gesture

data for the experiments. Recorded gesture data from herfor the isolated gestures and the

transitions of all pairs, 16 + 16P2 = 256 in total. The gesture model was developed using

this gesture data. The number of mixtures was set to 64.

Next, the gesture designs for the five Japanese vowels were chosen from among those 16

gestures. For simplicity, we chose No.28 for /a/. Considering the discussion in Chapter

4, we did not use gesture designs satisfying the condition that the Euclidean distances in

the gesture space dh(a, i) < dh(a, e) and dh(a, u) < dh(a, o). We obtained 8190 candidates

for the gesture designs for the five Japanese vowels. Then the joint density models for the

S2H system were obtained for every gesture design as follows.

The gestures for the isolated five Japanese vowels and 5P2 = 20 transitions between every

– 51 –



Chapter5 Consonant Generation

/a/ /i/ /u/ /e/ /o/

/n/ /m/ /r/

Figure 5.4: Derived gesture design for consonants (sample 1).

/a/ /i/ /u/ /e/ /o/

/n/ /m/ /r/

Figure 5.5: Derived gesture design for consonants (sample 2).

two vowels, 5 + 20 = 25 gesture data in total, were extracted from the gesture data set

above. In addition, a male adult speaker recorded speech for the five Japanese vowels and

5P2 = 20 transitions between every two vowels. Each recording was done once. The total

number of speech samples was 5 + 20 = 25. Then, cepstrum extraction and interpolation

were carried out in the same way as in section 4.2. Using these gesture sequences and

cepstral vector sequences, augmented vectors were made and the joint density model was

trained with them. The number of mixtures of the joint density model was set to 8.

By inputting the /n/, /m/, /r/ sounds, the gestures for those consonants were obtained.

Thus, we got 8190 gesture designs for /a/, /i/, /u/, /e/, /o/, /n/, /m/, /r/. Some of the

obtained gesture designs are shown in Figure 5.4, 5.5. In the next section, we chose the

best one from these candidates.
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5.5.2 Hand-to-Speech conversion sytem

In order to compare those 8190 gesture designs obtained in the previous section, the

following experiments were carried out.

First, for every gesture design, the H2S system was developed using the method described

in Section 5.4. The joint density models P (h|s) were trained with the same training data

and the same number of mixtures as the S2H systems in the previous section. The speech

model P (s) was trained using A set of 50 sentences from the ATR phoneme-balanced

sentences recorded by the speaker who recorded the speech data for the joint density

model. The number of mixtures was 64, the same as that of the gesture model.

Then, gestures estimated by the S2H systems were input into those H2S systems. If the

S2H and H2S systems are both ideal, input speech for the S2H systems and output speech

of the H2S systems will be identical. The joint density models P (h|s) and P (s|h) however,

do not completely describe the correspondence between the gesture space and the speech

space. There will therefore be a distortion between the input speech for the S2H systems

and the output speech of the H2S systems. We considered using this distortion as a criteria

to design the gestures. That is to say, we thought that the smaller the cepstrum distortion

between the input speech for the S2H systems and the output speech of H2S systems is,

the better the gesture designs will be.

Figure 5.6 shows the average and standard deviation of 8190 cepstral root mean square

errors (RMSE). For simplicity, we only focused on the /n/ consonant. Input speech for the

S2H systems were the five Japanese vowels in the training data and /na/, /ni/, /nu/, /ne/

and /no/ recorded by one speaker, 5+5 = 10 samples in total. Thus, 10 mora-unit cepstral

RMSEs were calculated for every gesture design 1. Then gesture designs were sorted for

mora-unit cepstral RMSE. Every gesture design has therefore 5 ranks for each mora. The

quasi-optimal design, the one where the summation of the ranks was minimal, was No. 28

for /a/, No. 22 for /i/, No. 11 for /u/, No. 7 for /e/ and No. 21 for /o/. Figure 5.6 also

shows the cepstral RMSE of the quasi-optimal design.

Experimental evaluation showed that the cepstral RMSE depends on the mora. Of

the five Japanese vowels, the smallest one was /u/ and the largest one was /i/. Overall,

compared with the vowels included in the training data, consonants which are not included

in the training data tended to show larger cepstral RMSE. On the other hand, the cepstral

RMSEs of vowels were almost the same as those of consonants in the quasi-optimal design.

Figure 5.7 shows re-synthesized speech and the output of the quasi-optimal S2H–H2S

combined system 2.

1Mora is a unit of speech production and speech rhythm of Japanese, which is usually composed of CV
or V.

2Smoothing was performed before visualization
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Figure 5.6: The cepstral RMSE between input and output speech.

5.5.3 Subjective evaluations

The effectiveness of our approach was evaluated subjectively through an AB preference

test, in which 15 Japanese native speakers selected the preferred one from a pair of synthe-

sized speech in terms of naturalness. A and B were output speech from the H2S systems

which were trained by the design, which was designed based on the way described in Sec-

tion 5.3.1 (hereafter conventional design) and the proposed design, respectively. For both

designs, the gesture design for vowels was the quasi-optimal one described in the previous

section and the same training data for vowels as for those for the S2H system was used.

In the conventional design, the gesture for /n/ was chosen as No.8. Then gesture data

for /na/, /ni/, /nu/, /ne/, /no/ were recorded once and added to the training data. In

the proposed design, 10 sets of the gesture data for /na/, /ni/, /nu/, /ne/, /no/, which

were obtained by a combined S2H–H2S system, were added to the training data. The

total number of frames for /n/ of both designs were approximately the same. The mixture

number of GMM was set to 64 for both designs.

15 Japanese native speakers participated in this test. A preference test was conducted

separately for each case of /a/, /i/, /u/, /e/, /o/, /na/, /ni/, /nu/, /ne/ and /no/.

Preference of the proposed design was 48%, no preference was 27% and the preference of

the conventional design was 24%.

In Section 5.3, we found that inappropriate gesture designs for a consonant result in

the lack of transitions in synthesized speech. For example, the one-mora synthetic speech

of /na/ was perceived as two sounds /n/+/a/. On the other hand, synthesized speech
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(a) re-synthesized speech which input to S2H system.
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(b) the output of the S2H–H2S combined system developed by the quasi-optimal design

Figure 5.7: Synthesized speech for /na/

based on our proposed method was perceived as one unit in the simple listening test. This

result shows that the proposed method is effective for deriving appropriate gestures for

consonants.

5.6 Summary

In this chapter, we proposed a framework to derive the gestures for consonants when

only the correspondence for vowels is given. According to the listeners evaluations, an

H2S system, which exploits gesture data for consonants derived from an S2H system, can

generate more natural sounds than those trained with heuristic gesture designs for conso-

nants. In the next chapter, a real-time H2S system is developed based on the framework

described in this chapter and is evaluated by subjective users.
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Gesture Model
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for vowels
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GestureSpeech
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H2S system

Figure 6.1: The procedure to establish real-time H2S system.

6.1 Introduction

In the previous section, we verified that an H2S system which exploit gesture data for

consonants derived from an S2H system can generate more natural sounds than those

trained with gesture designs which are chosen from given candidates. Natural speech

generated by an H2S system trained by exploiting data generated by an S2H system is,

however, obtained only when input gestures are the same as the ones which were generated

by the S2H system. The S2H system sometimes outputs gestures with dynamic ranges

that are too large or that are not smooth enough. In those cases, it is difficult for users to

form such gestures in real time. In this section, we compensate for those problems in two

ways: (1) reducing the dynamic range by setting the optimal weight for the gesture model

(2) smoothing the gesture trajectories by considering delta features. We also develop a

real-time H2S system exploiting the gestures generated by the improved S2H system.

6.2 How to develop a real-time H2S system

The challenge in this chapter is to develop a real-time H2S system based on the gesture

design. The proposed procedure is shown in Figure 6.1. First, a conversion model P (s|h)

is trained with parallel data for vowels. Then an S2H system is developed based on the

method described in the previous chapter, with the joint model and the gesture model P (h).

Inputting speech for consonants to the S2H system, the gesture vector output corresponds
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to the speech that is obtained. Since this conversion is performed frame-by-frame, every

input speech frame corresponds to the derived gesture frame. We therefore easily obtain

parallel data for consonants by simply joining input speech vectors and the converted

output gesture vectors frame by frame. This parallel data for consonants is added to

those for vowels and the conversion model P (h|s) is trained. With this conversion model,

real-time H2S system is developed based on the method described in Chapter 3.

As a preliminary experiment, we developed real-time H2S system following the flow

above.

6.2.1 Dataset for the gesture model

For the dataset to train the gesture model, we used the same ones which are used in

Section 5.5.1. In this dataset, sensor No.17 and 18 were not used explicitly. Removing

these sensor data, data from 16 sensors were used to train gesture models.

The movement of the different joints of the hand are not independent. For example,

when the 2nd joint of the pinky finger is bent, the 2nd joint of the ring finger is also bent.

The dimensions of the 16 dimensional gesture data are therefore interrelated. In order

to ensure gesture space corresponds to the cepstral space, for which each dimension is

independent, PCA was performed on all the gesture data using all the data in the gesture

dataset. 16 dimensional data points after PCA were used to train the 64 mixture gesture

model P (h).

6.2.2 Dataset for the conversion model

The gesture designs for the five Japanese vowels were chosen from among the 16 gestures

described in Section 5.5.1 and an S2H system was developed with them. Experiments in

Chapter 4 showed that a quasi-optimal correspondence can be obtained by considering the

topological equivalence between the topological features (structure) of hand gestures in

the gesture space and those of vowel sounds in the vowel space. Considering the F1–F2

plain therefore, we chose the gesture designs which satisfy the condition that the Euclidean

distances in the gesture space dh(a, i) < dh(a, e) and dh(a, u) < dh(a, o). In this preliminary

experiment, No. 28, No.2, No. 1, No.9 and No.25 were used for gestures for /a/, /i/, /u/,

/e/ and /o/.

Then, an S2H system was developed in the same manner as the previous chapter. Input

speech for the S2H systems were the five Japanese vowels in the training data and /na/,

/ni/, /nu/, /ne/ and /no/ recorded by one speaker. 5+5 = 10 samples in total. Inputting

these consonants to the S2H system, gestures for consonants were derived.

10 sets of the gesture data for /na/, /ni/, /nu/, /ne/, /no/, which were obtained by the

S2H system, were added to the training data. The number of mixtures for the GMM was

set to 64.
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Figure 6.2: Consonant part of /nu/ sound generated by the realtime H2S system.

6.3 The problem of gestures derived from an S2H sys-

tem

Inputting gesture movement to the real-time H2S system developed above, speech sounds

were generated in real-time. The consonant part of the /nu/ sound generated by the

realtime H2S system are shown in Figure 6.2. Jagged parts can be seen in the spectrum.

This problem was not found in the spectrums of speech sounds generated by the H2S system

in the previous chapter. Those two H2S systems were developed with the same framework.

The only difference was their inputs. For the H2S system in Section 5.5.2 generated speech

from the gestures derived from the S2H system, while the H2S system here needs real

gesture inputs. In other words, we input into the H2S system in section 5.5.2 the optimal

gestures to get the closest speech to the original speech, while we input into the H2S system

here the gestures which we can form realistically. Figure 6.3 shows No.6 sensor output of

the DataGlove for the gesture for /na/ generated by S2H and of real gesture data. Thanks

to the gesture model P (h), S2H systems seldom recognize impossible-to-form gestures at

all the frames. Gesture transitions derived from the S2H systems are, however sometimes

difficult to form in a realistic time frame, because of their exceedingly large dynamic range

and exceedingly rapid changes. In the real-time H2S system, the conversion model was

trained with the parallel data of impossible-to-form gestures and natural speech, therefore

the system outputs natural speech only when unrealistic gesture sequences were input while

jagged spectrums were derived when real gesture sequence are input.

In order to mitigate the above problem, the following ideas were considered: (1) reducing

the dynamic range by setting the optimal weight for the gesture model (2) smoothing the

gesture trajectories by considering delta features. These methods were verified in the

following sections.
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Figure 6.3: Comparison between S2H output and real gesture data.

6.3.1 The weight factor of the gesture model

The framework described in Chapter 3 estimates gestures only using P (s|h). An S2H

system based on this framework therefore, would derive impossible-to-form gestures when

consonants sounds, which are not included in the training data, are input.

On the other hand, in the framework based on MIVC, which is described in chapter 5,

gestures are derived with the weighted gesture model P (h) as well as the conversion model

P (s|h). On account of the gesture model, derived gestures are expected to be more natural

(see Equation (5.2)).

When α is small, the naturalness of the gestures is not considered. It may result in

the derivation of difficult-to-form gestures. Meanwhile when α gets larger, derived gesture

trajectories become flat since the gesture model P (h) is modeled independent of each input

speech sequence.

In the previous section, we assumed α = 1 as well as in the voice conversion task per-

formed in [77]. The appropriate α is, however, expected to be different in a Gesture→Speech

conversion task than in a Speech→Speech conversion task. We expected that the appro-

priate α would reduce the dynamic range of derived gesture trajectories and consequently

those gesture trajectories would be easy-to-form.
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Figure 6.4: Relationship between a sequence of the static and dynamic feature vectors [15].

6.3.2 Conversion considering dynamic features

In the frame-by-frame mapping where the correlation of the feature vectors is ignored,

the discontinuity of the parameter trajectory becomes a problem [15]. In MIVC, this is

more serious than conventional voice conversion, which is described in Chapter 3, because

even slight skips affect the perceptual quality of the whole sentence badly since each frame

in the sequence is converted more precisely. Saito et al. reported that this problem is

mitigated by considering dynamic features in the framework of MIVC [78]. Their method

was applied to our S2H system.

Here, denote input speech sequences and the target gesture vector sequences as S =

[S⊤
1 ,S⊤

2 , ..., S⊤
T ]⊤ and H = [H⊤

1 ,H⊤
2 , ..., H⊤

T ]⊤, respectively. S and H consist of static

and dynamic features and described as St = [s⊤
t , ∆s⊤

t ]⊤,H t = [h⊤
t , ∆h⊤

t ]⊤. λ(Z) and λ(G)

are trained by these features as well as the conventional MIVC, described in chapter 5. A

time sequence of the converted gesture vectors is derived as follows:

ĥ = argmax
h

P (S|H , λ(Z))P (H|λ(G)), (6.1)

where H = Wh. W denotes the matrix that extends the static feature sequence to the

static and dynamic feature sequence (see Figure 6.4). In a similar manner to that in [15]

– 61 –



Chapter6 Real-time H2S system

and [77], we derive the following updating equations:

ĥ =
(
W⊤D(H)−1W

)
W⊤D(H)−1E(H) (6.2)

D(H)−1 = diag
[
D

(H)−1
1 , ..., D

(H)−1
T

]
(6.3)

D(H)−1E(H) =
[
D

(H)−1
1 E

(H)
1

⊤
, ..., D

(H)−1
T E

(H)
T

⊤]⊤
(6.4)

D
(H)−1
t =

( M∑
m=1

γm,tD
′(H)−1
m +

N∑
n=1

γn,tΣ
(G)−1
n

)
(6.5)

D
(H)−1
t E

(H)
t =

( M∑
m=1

γm,tD
′(H)−1
m E

′(H)
m,t +

N∑
n=1

γn,tΣ
(G)−1
n µ(G)

n

)
(6.6)

λm,t = P (m|H t, λ
(Z)), λn,t = P (n|H t, λ

(G)) (6.7)

The S2H system developed based on this framework (hereafter S2H-delta) is expected to

derive smoother trajectories than the previous S2H system.

6.4 Experiments

6.4.1 Experimental setup

In order to verify the effects of α and the dynamic features, an S2H system and the

S2H-delta system were developed according to the flow of Figure 6.1.

For the gesture model and the conversion model, the same data sets for section 6.2.1 and

section 6.2.2 were used. Gesture models P (h) and P (H) were trained with a 64-mixture

GMM and a 512-mixture GMM, respectively. Conversion models P (s|h) and P (S|H)

were trained with an 8-mixture GMM and a 16-mixture GMM, respectively. The number

of mixtures were chosen to be the optimum based on ML criterion. Due to the existence

of silence, dynamic features of the first and the last frames would be outliers. Thus they

were removed when P (H) was trained.

6.4.2 Results

i) The effect of α

Using the conversion model P (s|h) and the gesture model P (h), an S2H system was

developed based on the framework described in Chapter 5. α takes a value between 0.0

and 1.0. Figure 6.5 shows the No.6 sensor output of the DataGlove for the /na/ gesture

when α changes. Gestures for /n/, /m/, /r/ derived from S2H systems (α = 1.0) were also

shown in Figure 6.7.

Frames after 800ms correspond to the vowel parts of /na/. Because vowels were included

in the training data for the conversion model P (s|h), they were estimated properly despite
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Figure 6.5: The effect of α.
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Figure 6.6: The effect of dynamic features.

the value of α. On the other hand, frames before 800ms, which correspond to consonants

and transition parts, largely change depending on α.

When α = 0, the S2H system does not consider the gesture model P (h) at all, i.e.,

it uses inverse conversion based on the framework described in Chapter 3 (see Equation

(5.2)). This system derives gestures that exceed the dynamic range of sensors (0–255).

As α increases, the naturalness of gestures is considered thanks to P (h) and the decrease

of rapid changes. When α gets too large however, the influence of the conversion model
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Figure 6.7: Gesture design for the real-time S2H system.

P (s|h) is ignored and the derived gesture trajectories become flat. Other sensors and

other gestures showed similar tendencies. In our research, the smallest α 0.6, with which

all frames of derived gestures were included in the dynamic range of sensors, was considered

appropriate.

ii) The effect of dynamic features

Using the conversion model P (s|h) and the gesture model P (s), an S2H system was

generated based on the framework described in Chapter 5. In addition, an S2H-delta

system was developed based on Section 6.3.2 with the conversion model P (S|H) and the

gesture model P (S). In both systems, α was set to 0.6. We input /n/ to these systems

and compared the outputs. Figure 6.6 shows No.6 sensor output of DataGlove for the /na/

gesture.

Compared with the S2H system, the rapid changes of the beginning part and of the

transition parts at about 800ms are mitigated in the S2H-delta system. According to the

above results, S2H-delta with α = 0.6 was used for S2H part in Figure 6.1.

Theoretically, a conversion method considering dynamic features would be effective in

H2S systems as well as S2H systems. In a real-time H2S system however, using dynamic

features is not a good idea. This is because a 20–40ms will be consumed to calculate

∆h, creating a time lag, due to the sampling rate of the DataGlove being about 10–20ms,

and this is critical for the real-time system. Taking this into account, an H2S system was

developed based on the framework described in Chaper 3, while an S2H-delta system was

used to derive gestures for consonants.
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6.5 Real-time H2S system

6.5.1 System condition

Following the flow of Figure 6.1, the prototype of the real-time H2S system is established.

At first, an S2H-delta system was developed based on Section 6.3.2 with the conversion

model P (S|H) and the gesture model P (S), trained in Section 6.2.2 and in Section 6.2.1.

Input speech for the S2H systems were Japanese nasal speech, /na/, /ni/, /nu/, /ne/ and

/no/, recorded by one speaker ten times. 5 × 10 = 50 samples in total. Then, cepstrum

extraction and interpolation are carried out in the same way as in section 4.2. Inputting

this consonant speech to the S2H-delta system, gestures for consonants were derived.

Using input speech and derived gesture data with an S2H-delta system, parallel data

for a consonants were obtained. They were added to the parallel data for vowels and the

conversion model P (s|h) is trained. The mixture number for GMMs was set to 8.

6.5.2 Pitch and volume control

Our system controls parameters corresponding to vocal tract shape with hand gestures.

We introduced hand direction as parameters to control pitch and volume. A sensor module

kit TDS01V was used to capture hand direction. 3 angles captured with TDS01V were

shown in Figure 6.8. Since angles can be stably controlled compared with acceleration,

Azimuth and pitch of the arm was used to control F0 and volume, respectively.

In order to mitigate the error, every time the user puts on the TDS01V, calibration was

performed. When the user straightens his or her arm with the palm facing the bottom,

Azimuth and Pitch were set to 0. As the arm moves in the horizontal direction, Azimuth

changes from −60◦ up to +120◦. In our system, F0 was set to 1.2(θ−30)/30 × 115, where

θ denotes azimuth, so that F0 generated F0 changes roughly between 90–200 [Hz]. As

the arm is moved in the vertical direction, pitch changes from 0◦ up to +70◦. In our

system, Volume was set to 1.22(σ/45 × const.. The working real-time H2S system is shown

in Figure 6.9.
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Figure 6.8: Azimuth, pitch and roll of TDS01V.

Figure 6.9: The working real-time H2S system.
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6.6 Subjective user evaluations

Our goal is to establish a methodology of speech synthesis which does not require symbols

inputs. In order to claim that the new framework is effective, it should have at least the

same quality as the conventional ones. Current synthesis methods which do not require

symbol inputs are, as we saw in Chapter 2, effective on emotional speech synthesis based on

dynamic pitch and duration control. Although they are less articulate than TTS, they still

show more than 50 % intelligibility. Considering these points, subjective user evaluations

for our real-time H2S system in terms of intelligibility and expressiveness were carried out.

The same female adult who recorded gesture set for the system was trained for about

an hour on the H2S system consisting of a CyberGlove and a TDS01V. After the training,

she generated the following Japanese words:

1. /nani/, means ”What” in Japanese, when you do not understand and want to ask the

speaker (nani1)

2. /nani/, means ”What” in Japanese, when you are upset with the speaker (nani2)

3. /iina/, means ”OK” in Japanese, as the back-channel feedback (iina1)

4. /iina/, means ”Jealous of you” in Japanese, when you are jealous of the speaker (iina2)

5. /iie/, means ”No” in Japanese, without any emotion (iie)

Speech was recorded 10 times for each word. She chose one sample from a total of 10

samples for each word by herself, which best meets the above conditions.

The speech rate of generated samples were about 1.2 morae/sec. This is much slower than

the appropriate speaking rate (about 6.5 morae/sec, 1.3 times faster than average NHK

news 8.5 morae/sec) [79] and the appropriate speed of the finger alphabet (2 morae/sec)

[80]. In order to mitigate the influence of the speaking rate on impression for the listeners,

double speed 5 samples were made from those 5 samples for the listening tests.

These 5+5 = 10 samples were randomized and shown 6 native Japanese speakers. They

were asked to answer (1) what did the speaker say (2) what do you think about the emotion

of the speaker. They were informed that the samples are Japanese words used in daily

conversation. Results are shown in Figure 6.6 and Table 6.1. When phoneme-based

Intelligibility was calculated based on the answers to question (1), prolonged sound and

duplication of /n/ were ignored. For example, 「んあ (na)」「なー (na-)」「んな (nna)」
were considered as /na/. For question (2), multiple answers were allowed. Numbers in

the parentheses show the number of people who answered. For simplicity, the answers “no

emotion” and similar were omitted.
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Figure 6.10: Phoneme-based intelligibility.

6.7 Discussion

According to Figure6.6, nearly half of the phonemes generated by our H2S system were

perceived properly. It is almost the same quality as Yabu’s speech synthesizer (65% for

nasals), described in Chapter 2. The most intelligible sample was nani2 and almost all

people perceived /nani/ correctly. The worst one was iie, whose intelligibility was 10～
20%. The most common error was to add /n/ at the beginning of the word, e.g. /iina/

was written as /nina/. The second most was to drop /i/, such as writing /iina/ as /na/.

We have considered the reason for this to be that the gestures for /i/ and /n/ are very

similar (see Figure 6.7) in our H2S system.

Energy for vowels are larger than that for consonants. By considering this point, the con-

version models for the S2H-delta and H2S systems were trained with 0 degree of cepstrum,

which express the energy of speech. In this way, vowels and consonants are expected to be

discriminated in the conversion model for S2H-delta systems. On the other hand, in the

conversion model for the H2S system, /i/ and /n/ are handled similary due to the similar-

ity of their gestures. In the result, the energy of /i/ was smaller than that of other vowels.

Figure 6.11 shows the spectrograms for /aiueo/, one resynthesized and one generated with

the H2S system.
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Table 6.1: Emotions estimated from the generated speech.

Samples Impression

nani1 asking(2), confirming, disappointed, bad temper

nani1x2 asking(2), blunt, bored, small anger

nani2 surprised(3), sleepy(3), happy

nani2x2 surprised(2), anger(2), happy

iina1 sleepy(2), at ease, anger, jealous

iina1x2 sleepy, sad

iina2 sleepy(2), sad, exhausted

iina2x2 hurry, anger

iie sleepy, at ease, cheerful, jealous

iiex2 sad
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(a) Resynthesized speech.
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(b) Generated speech with the H2S system.

Figure 6.11: Comparison of synthesized speech for /aiueo/.

For the same reason as in the case of /i/, the energy of /u/ is also small compared with

/a/, /e/ and /o/. In order to generate more articulate speech, gestures should be designed

so that all gestures can be discriminated.

Speaking rate does not influence the intelligibility a lot, while it does influence the

emotion estimated from the speech. At the original rate, generated speech tend to be

perceived as “sleepy”, “at ease” and “exhausted”. At double rate however, this tendency

was mitigated and the generated speech was perceived as it was intended. As the speaking

rate got closer to that which people hear in daily conversation, the emotion of the speaker
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was more easily perceived. In this experiment, the user is not capable of forming gestures

quickly. People using sign language use a finger alphabet in conversation to express new

words. Considering this point, conversation with our H2S system may be possible if the

user is well trained in the gesture design.

6.8 Summary

In this chapter, we developed a real-time H2S system and evaluated its effectiveness. An

H2S system based on the framework described in the previous chapter sometimes derives

difficult-to-form gesture transitions in a realistic period, because of their large dynamic

range or rapid changes. We compensated for those problems by setting the optimal weight

for the gesture model and by considering delta features. Subjective user evaluations showed

that a real-time H2S system trained by exploiting those data is effective enough to generate

emotional speech.
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7.1 Review of work

The objectives in our study is to establish the media-independent methodology for speech

generation system. In order to reach the objective, we considered the speech synthesis

framework based on a space mapping to desired input media. When the correspondence

between the input media and speech is relatively explicit, the effectiveness of this framework

is already proven. In this thesis therefore, we considered the speech synthesis based on

this framework when the input media does not have explicit relationship to speech. As an

example of such media, hand gesture is chosen and Hand gesture to Speech converter is

developed. In this section, the contents of this thesis are quickly summarized.

Chapter 2 described the history of the speech synthesis technologies. Then we have seen

two categories of conventional speech synthesis systems; systems which require symbol

inputs and systems which do not require symbol inputs. The former one has three syn-

thesis methods: synthesis based on waveform coding, synthesis based on analysis-synthesis

method and synthesis by rule. The latter one also has three methods: articulatory synthe-

sis, formant synthesis and media conversion based on a a space mapping. Looking through

those technologies, we made clear the the objective of our speech synthesis system - media

independent speech synthesis.

In Chapter 3, the basic frameworks for current voice conversion technique were reviewed.

In statistical voice conversion, the correspondence of the two feature spaces of the source

speaker and the target speaker are modeled with GMMs. This technique is applied to the

conversion between different media. Our H2S system can be considered a kind of voice

conversion system in which the speech space of a source speaker is replaced by the hand

gesture space. It was also mentioned that the correspondence between two spaces are not

explicit and that will be one of the most important issues in our research.

In Chapter 4, we implement a speech synthesizer from hand gestures based on space

mapping. By considering the topological equivalence between the structure of hand ges-

tures in a gesture space and that of vowel sounds in the vowel space, we demonstrate how

a quasi-optimal correspondence can be obtained.

In chapter 5, we proposed a framework to derive the gestures for consonants when

only the correspondence for vowels is given. According to the listeners evaluations, an

H2S system, which exploits gesture data for consonants derived from an S2H system, can

generate more natural sounds than those trained with heuristic gesture designs.

In chapter 6, we developed a real-time H2S system and evaluated its effectiveness. An

H2S system based on the framework described in the previous chapter sometimes derives

difficult-to-form gesture transitions in a realistic period, because of their large dynamic

range or rapid changes. We compensated for those problems by setting the optimal weight

for the gesture model and by considering delta features. Subjective user evaluations showed

that a real-time H2S system trained by exploiting those data is effective enough to generate

emotional speech.
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7.2 Future work

We developed a Hand-to-Speech converter based on media conversion framework and

proposed a methodology to derive the optimal correspondence between two feature spaces.

This thesis claims that our proposed real-time H2S conversion system is effective enough

to generate emotional speech in the five Japanese vowels and nasals. Some problems were

however also found.

One of the problems of our system is gesture similarity. When similar gestures are

derived with the S2H system, speeches for those gestures are often confused. In order to

generate more articulate speech, gestures should be designed so that every gesture can be

easily discriminated.

The second problem is F0. In current framework, F0 is generated frame-by-frame. F0 is

however, a piecewise feature. More natural speech would be obtained if an F0 generation

system in which longterm changes of F0 is taken account is introduced.

Most importantly, this system was not evaluated by non-expert users. The needs of

users are often difficult to determine for researchers at the lab. As soon as more practical

systems are realized, subjective user evaluations should be carried out with normal/non-

expert users.
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