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Abstract

Nowadays, most of speech synthesizers are those which require symbol inputs, such as
TTS (Text-to-Speech) converters. The quality of synthesized speech sample produced by
those speech synthesizers is improving. However, it still has some drawbacks, for example,
in emotional speech synthesis or in expressive pitch control. On the other hand, synthesis
methods which do not require symbol inputs, such as articulatory synthesis, are effective for
continuous speech synthesis and pitch control based on dynamic body motion. Therefore
they attract research interest and several applications have been proposed.

A dysarthric engineer, Ken-ichiro Yabu, developed a unique speech generator by using a
pen tablet. The F1-F2 plane is embedded in the tablet. The pen position controls F1 and
F2 of vowel sounds and the pen pressure controls their energy. Another example of speech
generation from body motions is Glove Talk proposed by Sidney Fels. With two data
gloves and some additional devices equipped to the user, body motions are transformed
into parameters for a formant speech synthesizer. In this study, we consider the process of
speech production as media conversion from body motions to sound motions.

Recently, GMM-based speaker conversion techniques have been intensively studied, where
the voice spaces of two speakers are mapped to each other and the mapping function is esti-
mated based on a GMM. This technique was directly and successfully applied to estimate a
mapping function between a space of tongue gestures and other speech sounds. This result
naturally makes us expect that a mapping function between hand gestures and speech can
be estimated as well. People usually use tongue gesture transitions to generate a speech
stream. But previous works showed that tongue gestures, which are inherently mapped to
speech sounds, are not always required to speak. What is needed is a voluntarily movable
part of the body whose gestures can be technically mapped to speech sounds. However,
Yabu and Fels use classical synthesizers, i.e. formant synthesizers. Partly inspired by the
remarkable progress of voice conversion techniques and voice morphing techniques in this
decade, we are developing a GMM-based Hand-to-Speech conversion system (H2S system).
Unlike the current techniques, our new synthesis method does not limit the input media.
Therefore, our technique would be useful in assistive technology, in which devices are tuned
for person to person, and in performative field, in which people pursue the human capability
of expression.

In this study, we focus attention on the design of the system. As an initial trial, a map-

ping between hand gestures and Japanese vowel sounds was estimated so that topological



features of the selected gestures in a feature space and those of the five Japanese vowels in
a cepstrum space are equalized. Experiments showed that the special glove can generate
good Japanese vowel transitions with voluntary control of duration and articulation. We
also discussed how to extend this framework to consonants. The challenge here was to
figure out appropriate gestures for consonant sounds when the gesture design for vowels
is given. We found that inappropriate gesture designs for consonants result in a lack of
smoothness in transitional segments of synthesized speech. We have considered the reason
to be: (1) the positional relation between vowels and consonants in the gesture space and
that in the speech space were not equivalent, (2) parallel data for transition parts from
consonants to vowels did not correspond well. In order to solve those problems, we have
developed a Speech-to-Hand conversion system (S2H system, the inverse system of H2S
system) trained from parallel data for vowels only to infer the gestures corresponding to
consonants. Listeners evaluated that an H2S system, which exploits gesture data for con-
sonants derived from an S2H system, can generate more natural sounds than those trained
with heuristic gesture design for consonants.

Those natural speech generated by H2S system trained exploiting data generated by
S2H system were, however, obtained only when input gestures were the same as the one
which generated by S2H system. S2H system sometimes output gestures whose dynamic
range is too large or which is not smooth enough. In those cases, it was difficult for users
to form those gestures in realistic time. In this thesis, we compensated those problems
with two ways: (1) reduce the dynamic range by setting the optimal weight for the gesture
model (2) smooth the gesture trajectories by considering delta features. Exploiting parallel
data for consonants derived from a S2H system, we also implemented a real-time Hand-
to-Speech conversion system and evaluated the effectiveness. Subjective user evaluations
showed that almost a half of the phonemes, which are generated by our H2S system are
perceived correctly and that this system is effective enough to generate emotional speech.
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Chapterl Introduction

1.1 Overview

As Astroboy i Astroboy” (1952), HAL 9000 it 2001: A Space Odyssey” (1968), No.5
in" Short Circuit” (1986), etc. show, making robots or computers that talk with humans
like humans do is one of humanities dreams. In order to realize that dream, scientists and
engineers in a wide range of fields have been building new technologies. Among them,
speech synthesis technologies would be responsible for the output part of those desired
robots/computers - creating natural and intelligible voice.

Speech synthesis methods are roughly divided into two groups depending on its input.
When the input is symbols such as a plain text or characters, the system is called Text—
to—Speech (TTS) system. Nowadays speech synthesis technologies are not only used in
movies or in laboratories but also in our daily life. MacOSX and Windows are equipped
by default with functions that read text aloud for visually impaired people and speaking
disabled people can use VOCA (Voice Output Communication Aids) machines to talk
1, 2].

Most of those practical speech synthesizers are TTS converters. The reason that TTS
converters are widely used would be because of the easiness of their input and the quality
of the synthesized speech. With the preparation of large amounts of speech corpora and
the development of statistical learning theories and approaches, the quality of synthesized
speech by TTS synthesizers has been improved astoundingly. They reached the level that
people cannot easily distinguish between synthesized speech by TTS and natural speech.
Some high quality TTS demonstrations are found online [3]. A very good synthesizer may
be able to even deceive speaker verification systems [4]. TTS technology, however, still has
some drawbacks, for example in speech rate/pitch control.

On the other hand, methods that do not require symbol inputs, such as articulatory
synthesis, are effective for speech rate/pitch control and smooth speech synthesis based
on dynamic body motion, while synthesized sounds are often less articulate than that of
TTS. Therefore they attract research interest and several applications have been proposed
in performative singing voice synthesis [5], speech education [6, 7], assistive technologies
8, 9] etc.

A dysarthric engineer, Yabu, developed a unique speech generator for dysarthric people,
that uses a pen tablet for input [8]. Another example of speech generation from body
motions is Glove Talk proposed by Fels [5]. With two data gloves and some additional
devices attached to the user, body motions are transformed into parameters required for a
speech synthesizer.Unlike TTS converters, those applications give unlimited vocabulary
and directly control fundamental frequency and volume. Trained users can even give
artistic performance with them. Their methodologies are, however, difficult to apply to
other applications, because these applications are designed to make optimal use of the
characteristics specific to the input device. For example, Yabu’s speech generator exploits

the continuity of pen point and that users are capable to control the pen point and pressure
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simultaneously. If the user cannot handle the pen - some dysarthric people have handicaps
on other body parts besides their articulatory organs, another input media should be chosen
for the system and then that system has to be established again with the new media.

Media dependence is a very important factor in both assistive technology and in art.
When assistive devices are developed, the appropriate input media is chosen according to
the user’s handicap and the remaining capabilities of his body. For example, congenital
visual impaired people often do not have difficulty to use braille while most of the acquired
visually impaired people desire an assistive device with audio [10]. Several types of elec-
tric wheelchairs, which are widely used by orthopedically impaired people, are developed
according to the input capability of users, such as head gesture, speech, inner force sense
and electromyography [11].

In the field of art, various media are explored to pursue the possibility of expression. Dr.
Theremin invented Theremin, an early electronic musical instrument controlled without
discernible physical contact from the player. It is said that the Theremin instrument
brought about a change in the way of playing instruments [12].

As the examples above show, the possibility of media selection is very important es-
pecially in the fields in which media is not chosen by the developers but the users. If a
media-independent methodology for speech generation were to be established, it would be
applied to a broad area of applications.

In order to establish a media-independent methodology for speech generation, we treat
the speech generation process from body motion as the mapping problem from non-speech
media to speech media. People usually use tongue gesture transitions to generate a speech
stream. This is considered as the inherent mapping between tongue gestures and speech
sounds. Yabu and Fels’s work, however, showed that tongue gestures are not always re-
quired to speak. What is needed is a voluntarily movable part of the body whose gestures
can be technically mapped to speech sounds. In this thesis, we consider the mapping
problem from hand gesture to speech as one example.

Recently, GMM-based speaker conversion techniques have been intensively studied, where
the voice spaces of two speakers are mapped to each other and the mapping function is es-
timated based on a GMM [13, 14, 15]. This technique was directly and successfully applied
to estimate a mapping function between a space of tongue gestures and another of speech
sounds. This result naturally makes us surmise that a mapping function between hand ges-
tures and speech can be estimated well and we developed a GMM-based Hand-to-Speech
conversion system (H2S system).

For voice conversion, it is not very difficult to obtain some correspondence between two
data sequences from input and output space, for example, by Dynamic Time Warping
(DTW). On the other hand, how to design the optimal correspondence between hand
gestures and speech is one of the biggest challenges for our framework. In this thesis, we

focus on the design of that system.
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As an initial trial, a mapping between hand gestures and Japanese vowel sounds is
estimated. This estimation is optimized through equalization of the topological features of
the selected gestures in a feature space and those of the five Japanese vowels in a cepstrum
space

Next, we discuss how to extend this framework to consonants. The challenge here is to
figure out appropriate gestures for consonant sounds when the gesture design for vowels
is given. Preliminary experiment shows that inappropriate gesture designs for consonants
result in a lack of smoothness in transitional segments of synthesized speech. We have
considered the reason to be: (1) the positional relation between vowels and consonants in
the gesture space and that in the speech space were not equivalent, (2) parallel data for
transition parts from consonants to vowels did not correspond well. In order to get around
those problems, we have developed a Speech-to-Hand conversion system (S2H system,
the inverse system of H2S system) trained from parallel data for vowels only to infer the
gestures corresponding to consonants. Utilizing parallel data for consonants derived from
the S2H system, we also implement a real-time H2S conversion system and examined the
effectiveness

1.2 Outline of the thesis

This thesis is organized as follows. In this chapter, the overview of this thesis was
described. In Chapter 2, current speech technologies are reviewed. Looking through those
technologies, the objectives of our research is also made clear. In Chapter 3, the framework
of our proposed system is described. Based on this framework, we implement a speech
synthesizer from hand gestures in Chapter 4. Our preliminary experiments shows the
challenge of our system as well as the effectiveness of our proposed system. In order to solve
the challenge, we derive the quasi-optimal correspondence between gestures and speech.
In chapter 5, we propose a framework to derive the gestures for consonants when only the
correspondence for vowels is given. The gesture design is evaluated using combined S2H-
H2S systems. In chapter 6, the real-time H2S system based on the framework described in
Chapter 5 is developed and evaluated. Finally, Chapter 7 reviews this thesis and discusses
further works.
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2.1 Introduction

In this chapter, we will review techniques of speech synthesis. First, the history of speech
synthesis is briefly described. Next we will overview current speech synthesis systems. They
are divided into two categories: systems which require symbol inputs and systems which
do not. For each category, the mechanism and the applications are introduced. Looking
through those technologies, the objective of our speech synthesis system will also be made
clear.

2.2 History

To understand a technology, learning how that technology has been developed over time
would be useful. Therefore as the first topic in this chapter, the history of speech synthesis
is described. It has already been in some good texts [16, 17, 18, 19, 20]. Thus, here, only
a few interesting landmarks in them will be introduced.

Speech research started in the 18th century. Dodart, in 1700-1707, found the pitch of
the voice being dependent on the tension of the vocal folds. The first speaking machines
are considered to be those of Kratzenstein [21] and those of von Kempelen [17, 22, 23].
Kratzenstein’s resonators were able to produce five vowels (/a/, /i/, /u/, /e/ and /o/)
statically and won the prize in 1779 offered by the Imperial Academy of Sciences at St.
Petersburgh.

On the other hand, Wolfgang von Kempelen invented a mechanical synthesizer, “speak-
ing machine.” This machine used a slamming reed and hissing whistles as sources that
corresponded to the vocal cords of human, and a box as a resonance unit corresponding to
the vocal tract. It was the first mechanism that allowed the production of not only some
speech sounds, but also entire words and short sentences. It was able to produce nine-
teen consonants and five vowels [17]. Kempelen’s speaking machine is shown in Figure 2.1.
While working on his speaking machine, Kempelen demonstrated a speaking chess-playing
machine. His real speaking machine was therefore not taken so seriously [18].

In the 19th century, theoretical investigations of the vowels were carried out. Helmholz
successfully created the electromechanical speech synthesizer, which uses tuning forks,
renowned for their pure tone, to generate a fundamental frequency and the first six over-
tones which may then be combined in varying proportions [24]. Another one of the first
analog synthesizer of the human speech organs was presented by Stewart [17] in 1922.
Two resonant circuits were excited by a buzzer in this device, permitting approximations
to static vowel sounds by adjusting resonance frequencies to the lowest two natural acoustic
resonances of the vocal tract (formants) for each vowel.

The discovery of the X-ray by Roentgen in 1895 opened up new areas of research based on
imaging techniques. The X-ray observations of the tongue position during vowel production
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Figure 2.1: Wheatstone’s reconstruction of von Kempelen’s speaking machine [17].

evoked a debate on the vowel chart. At the time, vowels were described by various types of
charts that indicated a triangle or quadrilateral distribution of tongue positions [19]. This
dispute was finally ended by Chiba and Kajiyama [25] in 1941. The models they used were
reconstructed by Arai with rubber [6] in 2001 and it shows the great educational effect in
the class of acoustic phonetics or in the demonstration of speech production mechanism.

In the 20th century, development of various recording and imaging techniques, such
as Edison’s phonograph and photographic techiniques, contributed to advances in speech
research. In 1939, the first device to be considered a speech synthesizer, VODER (Voice
Operating Demonstrator), was introduced by Homer Dudley in New York World’s Fair.

After VODER finally showed the possibility of artificial speech production, speech syn-
thesis study attracted the interest of researchers and has been widely studied since then.
Currently speech synthesis techniques are divided into categories shown in Figure2.2. In
the following sections, those techniques are described in detail.

2.3 Synthesis method which takes symbols as input

Speech synthesis systems, which take symbols as its input, are called Text-to-Speech
(TTS) converters. Although they have the word“ text” in their name, their input does
not need to be a text sequence, it can be a sequence of discrete gestures or pictures. The
symbol means those which do not contain phonetic or phonological information. Because
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Figure 2.2: Categories of current speech synthesizers.

of the ease of the input method and the quality of the synthesized speech, TTS converters
have been widely studied and are used in many practical applications today.

To build a TTS converter, mapping between symbols and sounds needs to be learned
from a speech corpus, a set of texts and corresponding speech waveforms. When some
text is given, the TTS converter derives the optimal speech waveform corresponding to
the text based on the mapping. In other words, T'TS can be considered an optimization
problem where optimal speech signals X are generated when a word sequence, or linguistic
information W is given. From the viewpoint of stochastic theory, this problem is written
as:

A~

X = argmax P(X|W). (2.1)
X

Present TTS converting methods can be divided into three types [26]. For the practical
use, an appropriate method should be chosen considering the purpose of the application
and the performance of the devices.

Synthesis based on waveform coding
This method stores waveform in the form of short segmental units, typically words
or phrases. When the input text W is given, appropriate samples are chosen from
the database and are concatenated to generate signals X. Although this method
provides high quality speech, the continuity of chosen samples affects the quality. As
the size of units in the database, such as phrases, sentences, syllables or phonemes, get
larger, the quality of synthesized speech, in turn, improves. When the size of units

in the database increases, however, synthesizable words decrease. In this method,

—8—



Chapter2 Review of speech synthesis systems

therefore, the quality and the size of units in the database is a trade-off. There are
several studies based on unit-selection such as [27, 28, 29, 30, 31].

Synthesis based on the analysis-synthesis method

This method stores the time sequences of acoustic parameters extracted from recorded
speech waves or acoustic models, which model the mapping of words or phonemes
with accoustic parameters. When the input text W is given, appropriate parameter
sequences are concatenated and the speech synthesizer generates speech using the
concatenated parameter sequences to obtain output signals X. In terms of the nat-
uralness, synthesized speech samples by this method are inferior to those by wave-
form coding. This method has however, three significant advantages. First, this
method only requires the parameters for synthesis, the amount of information is
small. Secondly, it is possible to modify synthesized speech waveforms by modifying
the parameters. Thirdly, this method shares in the bounty of recent developments
of statistical approaches to generation. Since HMM (Hidden Markov Models) is a
generative model, it can be used to model the feature parameter production process
[32]. Recently HMM-based speech synthesis has become hot topic in speech synthesis
studies [33, 34].

Synthesis by rule
In this method, speech is produced based on phonetic and linguistic rules from letter
sequences or sequences of phoneme symbols and prosodic features. Synthesizers based
on this method are highly complicated, however they have great versatility.

TTS has been widely studied and now reaches the practical level. Nowadays, most of the
speech synthesizers are TTS converters. They have however, still some drawbacks, such as
continuous speech generation and emotional speech synthesis. Some researchers have been
working on those challenges in the framework of TTS. Although they are very interesting
topics to study, in this thesis we will put more focus on them with the other synthesis

method which does not require symbol input.

2.4 Synthesis methods which do not require symbol
inputs

Systems which does not require symbol inputs are effective for smooth speech synthesis
and speech rate / pitch control, based on dynamic body motion, while synthesized sounds
are often less articulate than those of TTS. They could also be used for basic speech
research because of the strong association between input movements and output speech.

Three methods have been proposed to construct synthesizers of this category. One is
articulatory synthesis, which simulates the acoustic wave propagation in the vocal tract.
The second one is the formant synthesis, which simulates the resonance and antiresonance

-9



Chapter2 Review of speech synthesis systems

~— T
\“HHT*J TERMINATION
\\: 4 S M By PLANE

Figure 2.3: Mermelstein’s articulatory model [36].

characteristics of the vocal tract, and, as a result, reproduces articulation function. The last
one is synthesis based on space mapping. In this method, the mapping function between
the non-acoustic space and the acoustic space is learned. The details of each method will
be introduced in the following section.

2.4.1 Articulatory synthesis

Articulatory speech synthesis is a synthesis method inspired by the speech production
process of human beings. In terms of the quality of the synthesized speech, articulatory
synthesis would not be the best method. For centuries however, this method has been
attracting researcher’s interests. Articulatory speech synthesis may be used as a tool
in basic speech research and is in itself a subject of basic speech research [16]. If we
understand the human speech production mechanism perfectly, the synthesized speech
would be indistinguishable from human voice. In this section, we overview the current
technology of articulatory synthesis.

Articulatory synthesis can be divided into two steps: a data acquisition step and an
acoustic synthesis step. The first step can be said to have been developed along with devices
to measure human articulatory movements. Until the 1980’s, Cineradiography has been
widely used to capture human articulatory organs. There is no doubt that it contributed to
the birth of well used models, such as the source-filter model by Fant [35], Mermelstein’s
model shown in Figure2.3 [36], and Maeda model [37]. Cineradiography however, has
gradually been replaced with other devices because of its significant X-ray dosage. Cur-
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Figure 2.4: The discrete tube model of the vocal tract.

rently, Magnetic Resonance Imaging (MRI) and Electromagnetic Articulography (EMA)
are widely used instead. Dang et al., for example, tried to model the movement of articu-
latory organs using the images from MRI and EMA [38]. Ultrasound, Electropalatography
(EPG), motion capture and Electromyography (EMG) etc are other possibilities to capture
the posture or the movement of the articulatory organs. Appropriate devices should be
chosen, depending on the vocal tract model or the purpose of a project.

Using the data acquired during the first step, a speech signal is obtained in the next step.
Since speech is described as a distribution of air pressure, the problem here is to derive the
distribution of air pressure in the vocal tract model when the vocal tract shape is given.
As assuming that the air in the vocal tract is an ideal gas and there is no mass source in
that, the vocal tract geometry can be considered to satisfy the condition of Webster’s Horn
Equation described as follows:

O%p(x,t) _ 2 1 0 [ (x. t)ap(x, t)} | (2.2)
ot? A(z,t) Ox ox

where x is the displacement following the axis of the vocal tract and ¢ denotes time. p and

A are perturbation pressure (sound pressure) and the area of the vocal tract’s cross-section,
respectively. ¢ denotes the sound speed. Equation 2.2 has no analytical solution, as long
as A is a function of both x and ¢. It can be solved however, if A is a function of only x.

One way of avoiding the problem in solving Equation 2.2, is to assume the shape of
vocal tract as concatenated tubes and let the diameter of tubes change at only specified
points. This means the vocal tract is approximated by the model shown in Figure 2.4.
The acoustic tube model has been widely used. Ogata et al. tried to model the speech
production process using a 20 node acoustic tube model [39]. They also modeled the
movement of the vocal cords with a two mass model proposed by Ishizaka [40]. Another
example of the speech synthesizers based on the acoustic tube model is the Articulatory
SYnthesis program (ASY) [41], developed in Haskins laboratory. The Mermelstein model
[36] is embodied in ASY (see Figure2.3). There are 6 key parameters in this model: the
tongue body center (C, 2 degrees of freedom (df)), the tongue tip (T, 2 df), the jaw (J,
1 df), the lips (L, 2 df), the velum (V, 1 df), and the hyoid (H, 2 df, controlling larynx
height and pharynx width). The tongue tip is a structure that rests on the tongue body,
which is implemented as a ball. Once these parameters have been specified, the vocal tract
is then converted into a series of uniform tube sections.
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Figure 2.5: One structure of a formant speech synthesizer [46].

Recently, along with the development of measurement devices and computers, the ob-
tained data have become more precise and thus some of the idealizations in the vocal tract
models used previously have been removed, for example vocal tracts do not need to be
symmetrical (2D model). As a result, Engwall [42] and Birkholz et al. [43] modeled the
vocal tract shapes in 3D. Fels et al. developed Artisynth, which is a 3D biomechanical
simulation platform directed toward modelling the vocal tract and upper airway [44].

2.4.2 Formant synthesis

Fant named the spectral peaks of the sound spectrum” formant” [45]. Formants are
broken down into the first, second, third ... formant from the lowest frequency compo-
nent and written as F, Fy, F5 .... Formant frequencies express resonant frequencies of
the vocal tract. The speech generation method using an electrical structure consisting
of the cascade or parallel connection of several resonance (formant) and anti-resonance
(anti-formant) circuits is called the formant-type synthesis method or the terminal analog
method [26]. In this method, the resonance and anti-resonance frequency and bandwidth
of each circuit are variable. Figure 2.5 shows a typical example of the structure of a syn-
thesizer which is constructed based on these considerations [46]. Here Fj =fundamental
frequency, Rx =resonance circuits controlled by resonance frequency and band-width,
PGP, RGS =glottal resonance circuits, RGZ =glottal anti-resonance circuit, RN P,
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RN Z =resonance and anti-resonance circuits for nasals, Az =amplitude.

Formant-type speech synthesis has three major advantages. First, formant-type synthesis
can generate intelligible speech even at very high speeds. Secondly, unlike corpus-based
synthesis, formant-type synthesis does not require a database of speech samples. Thirdly,
the relation between body motion and generated speech is explicit. Taking advantage of
those points, several unique applications are proposed.

As formants are resonant frequencies of the vocal tract, when the vocal tract changes
its shape, formants also change. For example, the formant frequencies of /a/ and those
of /i/ are different because the vocal tract shape /a/ differs from that of /i/. Figure
2.6 shows the first and the second formant frequencies of five Japanese vowels. Since the
vocal tract shape changes according to the speaker’s age and sex, formant frequencies are
widely distributed and those distributions are overlapped slightly. When F; and F; are
given however, it is possible to roughly derive which vowel sound those F; and F; would

correspond to.

A dysarthric engineer, Yabu, embedded the Fj-F, plane in a pen tablet[8]. The pen
position controls F} and F;, of vowel sounds and the pen pressure controls their energy.
They reported that rapid formant transition observed in the beginning of consonants could
be created only with pen movement on the pen tablet and as a consequence, it is possible for
users to make consonant-like sounds. Another example is Glove-Talk IT proposed by Fels [5].
With several devices equipped to the user (including a Cyberglove, a ContactGlove, a three-
space tracker, and a foot pedal) and three neural networks, body motions are transformed
into parameters for a formant speech synthesizer. One subject who was trained on how to
speak with Glove-Talk II is able to create far more natural sounding pitch variations than
a text-to-speech synthesizer available of the time when Glove-Talk II was proposed.

The explicit relationship between formant and vocal tracts is used not only as speech
generation systems but also as speech education systems. With the comparison of the
vowel chart shown in Figure 2.7, correspondence between Fj and the tongue location, and
correspondence between F, and the rounding the lips, are expected. Stevens et al. men-
tioned the examples of the relationship between vocal tract shapes and vowel spectral
envelopes as shown in Figure 2.8 [47]. This characteristic opens up the possibility of a real-
time speech-learning tool for hearing impaired people. It is difficult for hearing impaired
people to learn how to articulate speech because they cannot get feedback from their own
articulation. By checking the location of formants in real time however, they can know
how their speech is perceived and how to adjust their vocal tract shape to improve their
elocution. Sakata et al. proposed audio-visual real-time feedback of vowel speech based on

the normalized articulation space implemented using formants [7].
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Figure2.7: The vowel chat for Japanese.

2.4.3 Synthesis based on space mapping

In the previous section, the explicit relationship between formant and vocal tracts was
mentioned. Synthesis based on space mapping creates a more direct relationship between
feature sequences and sounds. People usually use tongue gesture transitions to generate a
speech stream. This is considered as the inherent mapping between tongue gestures and
speech sounds. If the tongue gesture space can be replaced with another media in this
process, we could speak using that media just like we speak using tongue movements. To
realize this, the mapping problem between two media spaces has to be solved.

In the field of speaker conversion, GMM-based conversion techniques have been widely
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Figure 2.8: The relationship between vocal tract shapes and spectral envelopes [47].

studied. This is where the voice spaces of two speakers are mapped to each other and
the mapping function is estimated based on a GMM [13, 14, 15]. Recently, this technique
has been directly applied to estimate a mapping function between non-acoustic media
and speech media. Toda and Tokuda mapped the articulatory movement with speech [48],
Hueber et al. used this method to map the acoustic space to the articulatory space and vice
versa [49]. Nakamura et al. synthesized speech using this method from electromyography
signals [50].

This method requires a parallel data set between two spaces to learn the correspondence
between two spaces. That is to say, which features should be used for mapping and how

to design the correspondence between those spaces are key issues. When the input is
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media which have an explicit relationship with the movements of articulatory organs, it is
relatively easy to get a good correspondence between the feature spaces of that media and
speech. For example, we know which lip shapes should correspond to which sounds. When
the input is media that have no explicit relationship with the movements of articulatory
organs, such as hand gestures or pen movements, any correspondence between input and
target spaces is possible. Of course, the correspondence which synthesizes intelligible sound
as well as provides ease-of-use is ideal. To choose such a correspondence is however difficult.
Some correspondences will not work as desired. Media which have no explicit relationship
with the movements of articulatory organs have not often been chosen in this framework.

2.5 The goal of our research

In this thesis, we focus on speech generation systems which do not require symbol in-
put. As we have seen above, several unique and practical applications have already been
proposed. Their sophisticated methodologies are however, difficult to apply to other ap-
plications. For example, most articulatory synthesis methods are based on data from one
person and it is not easy to adapt to another person. Applications described in Section
2.4.2 are designed to make optimal use of the features specific to the input device. Once the
input device is changed for some reason, those systems would need to be established again
with the new media. The possibility of media selection is, however, very important espe-
cially in the fields in which media should not be chosen by developers but by users, such as
assistive technology and art. Our goal is to establish the media-independent methodology
for speech generation system.

Considering the freedom of media selection, we extend the speech synthesis framework
based on space mapping to desired input media. As we have seen above, the effectiveness of
this framework has already been proven in some works such as [48], [49] and [50] when the
correspondence between the input media and speech is relatively explicit. If this framework
works even when the correspondence is not explicit, it would be a media-independent
synthesis framework and would be able to applied to a wide range of applications.

In our research, speech synthesis based on this framework, when the input media does
not have explicit relationship to speech, has been implemented and the methodology how to
derive the optimal correspondence between the input media and speech has been studied.
As one example of such a conversion, a hand gesture to speech conversion system has been
adopted.

2.6 Summary

This chapter described the history of the speech synthesis technologies. In addition, we

have seen two categories of conventional speech synthesis systems; systems which require
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symbol inputs and systems which do not require symbol inputs. Three synthesis methods
belongs to the former: synthesis based on waveform concatenation, synthesis based on
the analysis-synthesis method and synthesis by rule. The latter also consists of three
methods: articulatory synthesis, formant synthesis and media conversion based on space
mapping. Looking through those technologies, we have made clear the objective of our
speech synthesis system - a media-independent speech synthesis. Among the current speech
synthesis techniques, we have found that media conversion based on space mapping is the
most suitable framework for the objectives. In the next chapter, the basic idea of our
proposed speech synthesis system under the media conversion framework is described.

17—



Chapter3

Framework of the GMM-based
media conversion



Chapter3 Framework of the GMM-based media conversion

3.1 Introduction

As we mentioned in the previous chapter, the objective in our study is to establish a
media-independent methodology for a speech generation system. In order to reach the
objective, we have to consider the speech synthesis framework based on space mapping
to desired input media. When the correspondence between the input media and speech
is relatively explicit, the effectiveness of this framework is already evident. In this thesis
therefore, we are considering the speech synthesis based on this framework when the input
media does not have explicit relationship to speech. As an example of such media, hand
gesture has been chosen and a Hand gesture to Speech (H2S) converter is developed.

In this chapter, the framework of our H2S system is described. Firstly, the acoustic
features, which are used in our framework, are introduced. Next as the basic framework
of our system, an overview of voice conversion based on space mapping is given. Then
the framework of voice conversion is extended into media conversion, in which an acoustic
feature spaces of source speakers is replaced with hand gesture. Finally the challenge of
our H2S system is described.

3.2 Acoustic features

When we speak, lungs send air and it causes the periodical vibration of a vocal cord.
This movement creates periodical pressure wave. When this wave goes through the tube
towards the mouth - this part is called vocal tract - resonant frequency components of the
vocal tract are amplified and human speech sounds are produced. This speech production
process can be considered as two parts, a source part by the vocal code and a filter part by
the vocal tract. This model is called a source-filter model [35]. According to the source-
filter model, the frequency distribution of the produced speech S(w) is written as follows:

S(w) =G(w)H(w). (3.1)

Here, G(w) and H(w) denote the frequency distributions of the vocal code and the vocal
tract, respectively. Roughly speaking, information by vocal cords, G(w), corresponds to
para-linguistic information, and information by vocal tract, H(w), includes both linguistic
and non-linguistic. Since human speech production mechanism includes some non-linear
factors in reality, it cannot be perfectly explained by Equation (3.1). It shows however,
abundant performance in speech recognition as well as speech synthesis and is widely used
in the speech processing.

In speech signal processing, acoustic features based on the source-filter model, are widely
used. Fundamental frequency of vocal code (F0) is used for the information by vocal code.
To describe the information by vocal tract, an acoustic feature, called cepstrum, is used.

Figure 3.1 shows the process of speech analysis where cepstral features are extracted
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Figure 3.1: Speech analysis.

from the input speech signal. After the input speech signal is segmented into different
frames, the acoustic features are extracted from every frame. For each windowed signal,
a short time discrete Fourier transform (STDFT) is applied to convert the time domain
signal into the frequency or spectral domain. Then cepstrum can be obtained using the
inverse DF'T of the logarithm of the power spectrum. Through this process, speech signals
are expressed with cepstrum vector time sequences.

3.3 Framework of voice conversion

Speech synthesis based on media conversion can be considered as an extension of voice
conversion. Thus, in this section, the basic framework of voice conversion is introduced.
Voice conversion is the technique that modifies the source speaker’s speech as if the target
speaker had spoken it. Based on the source-filter model, voice conversion is roughly divided
into two parts: spectral conversion for voice quality and FO conversion for intonation. The
details of each part will be introduced in the following section.
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3.3.1 Spectral conversion

In this section, statistical spectral conversion technique is introduced.

Let = [x1, @2, ..., T,] be the feature vector sequence, such as cepstrum vector sequence,
of a source speaker and y = [y, Yo, ---, yp} be that of the target speaker. The aim of spectral
conversion is to get a mapping function F(-) so that the converted F(x;) matches the best
to the target vector y, for all training data.

Many techniques have been proposed to solve this problem. Abe et al. made mapping
codebooks which represent the correspondence between different speaker’s codebooks based
on hard clustering [51]. The mapping codebooks for spectrum parameters, power values,
and pitch frequencies are separately generated using training utterances. Converted feature
vector ¢ is described using a corresponding centroid vector ¢,, of the mapping codebook

as follows:
g, = c¥. (3.2)

Abe et al. reported that in the male-to—female conversion, all converted utterances are
judged as female, and in the male-to-male conversion, 65% of them are identified as the
target speaker. Their method however, can obtain only one centroid vector in the codebook
for each frame.

To alleviate this problem caused by hard clustering, Nakamura and Shikano introduced
Fuzzy vector quantization [52]. Fuzzy vector quantization represents an input vector as a
weighted combination of fuzzy membership function and code-vectors. Replacing the input
speaker’s code-vectors with the mapped code-vectors, mapping based on the soft clustering
is realized as follows:

M
g=> wieW, (3.3)
m=1

where M is the number of centroid vectors. Matsumoto et al. modeled the difference
vector between the source and target vectors [53] as follows:

M
gy =Y wi (el — ). (3.4)
m=1

Their method is based on the correspondence of centroid vectors described in code-
books. In order to directly model the correspondence between points in two spaces, Linear
Regression Method (LRM) written in the following form is proposed in [54].

Y, = AnTp + by, (3.5)
where A,, and b are regression parameters.
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Figure 3.2: Mapping function on the joint feature space [15].

Stylianou [14] assumed the distribution of the source vectors under the form of a con-
tinuous probability distribution based on a Gaussian Mixture Model (GMM). Then he
extended the idea of LRM and realized the continuous mapping, described as follows.

M
U= Wnt(Anm + by), (3.6)

m=1

where wy, ¢, Ay, and b, are provided by GMMs. Equation (3.3) is the special form of
Equation (3.6), where b, is zero vector.

Some mapping functions on a joint space of one-dimensional source and target features
is shown in Figure 3.2 [15]. The contour lines show normalized frequency distribution of
training data samples. As the figure shows, the GMM-based mapping function is the closest
to the expectation. Thus the GMM-based mapping becomes the most popular method for
the voice conversion and has been widely studied.

3.3.2 GMM-based mapping

Although Stylianou used GMMs to model the distribution of source vectors when the
GMM-based mapping was proposed in [14], GMMs are now generally used to model the
distribution of the augmented vectors z; = [z, ,y/]", as Kain et al. proposed in [13]. The
notation T denotes transposition. Using GMMs, the joint probability density is modeled
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as follows:

2 A?) = Zw N (z; p2), 2By, (3.7)

where X is a parameter set of the GMM, M is the number of mixtures, w,, is the weight

(2)

of the m-th mixture component, N/ (,um ,Efnz)) is the normal distribution with mean g,

and covariance E,(n), which are written as:

(z) (z2)  §(zy)
() _ | Mi ) _ | X X
Hi ma 2y = RIS I (3.8)
Conditional probability density of y, given x; is described as follows:
M
Ply,fee ) = 37 Plmlae, A9 Ply,l, m, AO) (39

The first and second terms describe the component weight and the probability density of
each component, respectively. Using these parameters in Equation (3.8), they are described

as follows:
S ooty wnN (g ), B
P(y,|lz,m,A¥) = N(y; E),, DY), (3.11)
where
EY, = )+ 20800 @, - pl), (3.12)
DY = xWw) _ wo)yen)-lx) (3.13)

Stylianou and Kain et al. converted source feature x; vector into a target vector y, as
below, so as to minimize the mean-square error (MMSE) > [ly — F(x)[%] [14, 13]:
M
g="> P(mle, \?)EY, (3.14)

m,t
m=1

Here, as replacing P(m|@,, A®)) with "), ¢ 5@ -1 with A, and pl) o) g @) -1, (@)

m,t) m m

as b,,, Equation (3.6) is obtained.
Toda et al. performed the conversion so that the following likelihood will be maximized:

y = argmax P(y, |z, A®). (3.15)
Conversion based on Maximum Likelihood (ML) criterion is written as follows [15]:
M 1 /sm
:{Z%pwﬁ(z%pwﬂ@, (5,10
m=1 m=1
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Figure 3.3: Natural and generated mel-cepstrum sequences [55].

here yp,¢ denotes P(m|ax,, A*)).

GMM-based mapping has two drawbacks [55]. First, the statistical modeling mitigates
precipitous peaks in spectra. Consequently, generated spectra are smoothed compared
with the natural ones. Figure 3.3 shows the comparison between natural and generated
mel-cepstrum! sequences [55]. In order to compensate for this problem, Toda and Tokuda
introduced the Global Variance (GV). The GVs are calculated utterance by utterance and
tend to be smaller after the conversion. A square root of the GV of each sequence is
shown as a bidirectional arrow in Figure 3.3. Toda and Tokuda reported that a perceptual
evaluation shows that considerably large improvement in the naturalness of synthesized
speech generated by the conversion considering the GV [55].

The other problem is that in this frame-by-frame mapping framework, the correlation
of the feature vectors is ignored. In order to compensate for this problem, Toda et al.
proposed a conversion method based on the maximum likelihood estimation of a spectral
trajectory [15]. In their framework, not only static but also dynamic features are used.

There are methods to improve the quality of GMM-based mapping other than those two.
Thanks to the constant challenge to improve the quality, GMM-based mapping techniques
realize a quite high performance spectral conversion. These techniques are however, not
directly applied to FO conversion, because FO0 is characterized by a discontinuity in the
transition between voiced and unvoiced sounds that presents an obstacle to GMM modeling

for use in voice conversion. In the next section, some methods for FO conversion are

'Mel-cepstrum is a kind of cepstrum, considering perceptual aspects of listeners [56, 57]
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introduced.

3.4 FO conversion

FO is a highly variable acoustic feature. Speaker difference in FO could be determined
by a variety of factors, e.g. age, gender, dialectal background, health condition, education
and personal style. In voice conversion however, FO sequences are usually converted by

following a simple linear function:

(X) X

p = a(_be( ) x o) 4 ), (3.17)
where pEX) and p§Y) are input and converted FO values, respectively. u) and o) are the
same mean and the standard deviation of FO, respectively. It assumes that the FO has
a single Gaussian distribution and converted FO has the same distribution as the target
speaker in the conventional voice conversion approach. This assumption is not appropriate
for FO conversion in converting the characteristics of source speaker to target speaker.

As a result special models have been proposed for FO modeling in HMM-based speech
synthesis. A widely used model, the Multi-Space Distribution (MSD) has been proposed by
Masuko et al. [58]. MSD-HMM models FO with a discrete subspace for the unvoiced regions
and a continuous subspace for the voiced FO contours. Another popular model, the Globally
Tied Distribution (GTD) has been proposed by Yu et al. [59]. GTD-HMM assumes that FO
still exists in unvoiced regions and it is distributed according to an underlying globally tied
continuous probability distribution field. Recently, Zhang et al. proposed to use voicing
strength as an additional feature in FO modeling and for voiced/unvoiced (v/u) decision
in [60].

In voice conversion, Yutani et al. proposed a simultaneous modeling of spectrum and
FO for voice conversion, where the MSD models unvoiced region and continuous voiced
FO contour in a linearly weighted mixture [61]. However, two incompatible probabilistic
spaces, the continuous probability density for voiced observations or the discrete probability
for unvoiced observations, may incur an imprecise v/u conversion in a maximum likelihood
(ML) sense.

3.4.1 Our proposed FO model

As a part of the research for media-independent speech synthesis, we have worked on
the improvement of FO modeling and generation in voice conversion [62]. In our proposed
method, we extended the method proposed by Zhang et al. to FO conversion, i.e., using
voicing strength as an additional feature for improving FO modeling and the v/u decision.

Voicing Strength (VS) is characterized by the normalized correlation coefficient (NCC)

magnitude, which is calculated during FO feature extraction on a short-time basis by ap-
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plying the Robust Algorithm for Pitch Tracking (RAPT)[63]. The NCC magnitude is
described in the following formula:

m+n—1
> j=m  SiSi+k

ik = 3.18
Pik N (3.18)
where
m+4n—1
Cm = Z st (3.19)
l=m

s; is a sampled speech signal: ¢ = 0,1, ..., M —1 represents a frame index; £ = 0,1, ..., K —1
is the lag; n is the sample number in an analysis window; m = iz and z represents the
sample number in a frame.

The procedure of our approach to voice conversion is as follows: In the training phase,
FO0s in unvoiced regions are first interpolated by the spline function. The entire FO sequence
after interpolation and VS sequence extracted by Equation (3.18) are then smoothed with
a low-pass filter. Finally, a GMM is trained with both continuous FO features (FO and
its first order time derivatives) and VS features (NCC and its first derivatives) as well as
spectral features. In other words, the source and target feature vectors,  and y in Section
3.3.2, both contain F0, VS and spectral features and these three features are simultaneously
modeled by GMM. The optimal number of mixtures for the spectral part and the FO and
VS parts are calculated independently. In FO conversion phase, both FO and VS trajectories
are generated in the maximum likelihood sense.

In our approach, Global Variance (GV) [55], which was described in Section 3.3.2, is also
applied for the generated F0 as follows:

o) = o) Wy — p) 4+ u™, (3.20)
() og” y
Y; = o) (y;i " — /l(v)> + H( )7 (3.21)
where véw) is the predicted global variance of the converted sentence, Uc(lv) is the global

(X

variance of the generated sentence, uX) and ) are the means of source and target

sentence’s global variances over all training data respectively, o*) and o) are the variance
(w)

1) is the mean FO value of generated sentence. Here, uY) is assumed to be the same as

of source and target sentence’s global variances respectively. v, ’ is the predicted FO value,
1) the mean of the predicted FO value.

The generated voicing strength for each frame indicates the probability of whether a
frame is voiced or not. Frames with larger values are more likely to be voiced. According
to a preset threshold, voiced or unvoiced decisions can be made consequently. The threshold
value can be fixed regardless of the source data to be the optimal value obtained by Brute
force method.
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Table 3.1: Comparison with the conventional method and our method for Mandarin VC.

’ H RMSE ‘ CorrCoef [%] ‘ v — u error [%] ‘ u — v error [%] ‘

Conventional 41.6 75.5 2.13 2.93
Proposed 37.2 77.9 1.81 2.11
| Improvement rate | 104 | 3.15 | 14.9 | 27.9 |

Table 3.2: Comparison with the conventional method and our method for English VC.
’ H RMSE ‘ CorrCoef [%] ‘ v — u error [%)] ‘ u — v error [%] ‘

Conventional 14.2 75.8 1.10 3.35
Proposed 22.6 77.9 1.25 1.89
| Improvement rate | 18.9 | 2.79 | -13.1 | 43.4 |

3.4.2 Results and discussion

The results of objective comparison with the conventional FO conversion based on Equa-
tion (3.17) and our proposed method are shown in Table 3.1 and 3.2. Root Mean Square
Error (RMSE), average correlation, v.— u error and u — v error between predicted FO
sequences and target FO sequences were used for the evaluation. The objective results
show that our framework performs better than the conventional method in terms of all
four evaluations for Mandarin Chinese. For English, not all four evaluations are improved.
Our method significantly improves performance evaluation matrices: RMSE, correlation
and u — v error rate, while v.— u error is slightly degraded. Mandarin is known as a
syllabically paced tonal language. Compared with English, Mandarin has a more restricted
pitch contour pattern due to its lexical meaning. The variation of FO contour among dif-
ferent speakers is less than that in English. We think this is the possible reason that the
objective measure improvement of our method is larger in English than in Mandarin.

Although this work is not explicitly applied to an H2S system in this thesis, this mdel
would be useful in future when our system reaches at practical level, because generating
natural FO is an important issue to synthesize natural speech.

3.5 Speech synthesis based on space mapping

Speech synthesis based on space mapping can be considered as a kind of voice conversion,
in which an acoustic feature spaces of source speakers is replaced with another media. In
our a hand gesture to speech (H2S) conversion system, the input media is replaced with
hand gestures. In this section, features for hand gestures are described firstly. Then the

challenge of our system is made clear.
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Figure 3.4: The location of 18 sensors on CyberGlove.

3.5.1 Features for hand gestures

In our study, hand postures are measured by 18 sensors embedded in a glove (CyberGlove;
Visual Technologies, Palo Alto, CA). The location of those 18 sensors are illustrated in
Figure 3.4 (a). We measured the angles at the metacarpalphalangcal (MCP) and proximal
interphalangeal (PIP) joints of the four fingers and the angle of abduction (ABD) between
adjacent fingers. For the thumb, the MCP, ABD and interphalangeal (IP) angles are
measured. MCP, PIP and ABD are depicted with green, yellow and red points in the
figure. Location of those joints are also shown in Figure 3.4 (b). In addition, CyberGlove
is equipped with a palm arch sensor, a wrist flexion sensor and a abduction sensor (blue
points in the figure (a)). The sampling period of the CyberGlove is 10-20 ms.?

3.5.2 The challenge of Hand-to-Speech conversion system

In our framework, mapping between gesture space and acoustic space is learned based
on Equation (3.14), using parallel data sets which consist of gesture vector sequences and
cepstrum vector sequences. When the input is the media which have explicit relationship
with the movements of articulatory organs, the parallel data between two data sequences
can be obtained, for example, by DTW. Conversely, hand gestures can be corresponded to

2Since the sampling period is variable, recorded data was interpolated linearly in such a way that the
sampling period would be constant.
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any sounds. How to design the optimal correspondence between vowels and hand gestures
is, therefore, one of the most important issues in our research. In the next chapter, we will
make an H2S system for the five Japanese vowels as a preliminary experiment. Then we
will discuss how to evaluate the correspondence between the gestures space and the speech
space.

3.6 Summary

In this chapter, the basic framework of current voice conversion technique has been
reviewed. In statistical voice conversion, the correspondence of two feature spaces of the
source speaker and the target speaker has been modeled with GMMs. This technique is
applied to the conversion between different media. Our H2S system can be considered a
kind of voice conversion system in which the speech space of a source speaker is replaced
by the hand gesture space. It was also mentioned that the correspondence between two
spaces are not explicit in our research and that will be one of the most important issues. In
the next chapter, we will make an H2S system for the five Japanese vowels as a preliminary
experiment. Then we will discuss how to evaluate the correspondence between the gestures

space and the speech space.
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Ja/ /i/ /u/ /e/ fo/

Figure4.1: Gestures of the five Japanese vowels.

4.1 Introduction

In the previous chapter, the statistical voice conversion technique was described. Our
H2S system can be considered a kind of voice conversion system in which the speech space
of a source speaker is replaced by a hand gesture space. The most important issue is
how to design the correspondence between the gesture space and the acoustic space. In
this chapter, we will make an H2S system for the five Japanese vowels as a preliminary
experiment. Then how to evaluate the correspondence between the gestures space and the
speech space will be discussed.

4.2 A preliminary experiment

As a preliminary experiment, an H2S system was implemented for vowel transitions such
as /ai/ and /oe/. The correspondence between hand gestures and the five Japanese vowels
is shown in Figure 4.1. These gestures are designed so that a transition between any pair
of vowels will not generate a third vowel. Hereafter, the correspondence between gestures
and speech will be called “gesture design”.

In order to train GMMs, a female adult recorded gesture data for the isolated vowels and
5P,=20 transitions for each permutation of two vowels. Every gesture was recorded three
times. The total number of gestures was (5+20)x3=75. In addition, a male adult speaker
recorded speech for the five vowels and 5P,=20 transitions between every two vowels.
Speaking rate was adjusted to the transition rate of hand gestures. Each recording was
done five times. The total number of speech samples was (5+20)x5=125. 18 dimensional
cepstral coefficients were extracted using STRAIGHT [64], where the frame length was
40 ms and the frame shift was 1 ms. After every possible combination between a gesture
sequence and its corresponding cepstral sequence were linearly aligned, the distribution of
the augmented vector z was estimated based on a GMM for them, where the number of
Gaussians was set to be one. Finally, the regression function F(x) was estimated based
on Equation (3.14).
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(a) resynthesized speech.

(b) hand to speech conversion with closed data as input

(c) hand to speech conversion with open data as input

Figure4.2: Synthesized speech for vowel transition of /ai/.

Figure 4.2 shows the results for /ai/. (a) indicates a resynthesized speech sample for
vowel transition /ai/, (b) is a sample synthesized by using closed hand gesture data as
input, and (c) shows a synthesized sample by using open hand gesture data. We used
STRAIGHT for waveform generation, where FO was fixed to be 140 Hz. Through a simple
listening test of all the kinds of vowel transitions, we found that the sounds of /i/, /u/, and
/o/ were often confused. In the following section, we design the correspondence between
the five vowels and hand gestures so vowel sounds will have a distinct difference between
them.
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Figure4.3: The 28 basic hand gestures [65].

4.3 The optimal gesture design

4.3.1 Variation of human hand gestures

What kind of hand gestures are possible and what kind of combination of five gestures
is optimal for Japanese vowel production? In the preliminary experiment, sounds /i/, /u/,
and /o/ were often confused. This leads us to believe that the gestures for these sounds
are close to each other in the hand gesture space.

In [65], 28 basic hand gestures were defined, which are shown in Figure 4.3. These
28 gestures were generated as follows. As a hand has five fingers, each of which has two
positions, high and low, we have 2°=32 combinations for the five fingers. Among which,
some are physically impossible to form, for example not everyone is able to bend the
pinky without bending the ring finger. By removing those impossible-to-form gestures, we
obtained 28 gestures.

A female adult recorded gesture data for these 28 gestures twice, 2x28=56 data in
total. Using these data, Principal Component Analysis (hereafter PCA) was conducted
to project 18 dimensional gesture data onto a two dimensional plane. The five gestures
of the preliminary experiment, each of which had plural samples, were plotted on a plane
(Figure 4.4). The five ovals represent regions for the five gestures and a sample trajectory
of /aiueo/ is also plotted. As mentioned above, it is clear that the hand gestures of /i/,
/u/, and /o/ are very close to each other. To generate distinct sounds for the individual

vowels, we have to design an appropriate correspondence between vowels and gestures.
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Figure4.4: The five vowels in the preliminary experiment.

4.3.2 The location of the 28 gestures in a gesture space

We performed the same PCA analysis for the 28 gestures shown in Figure 4.3 with the
results shown in Figure 4.5. The numbers in Figure 4.5 correspond to those in Figure4.3.
Postural synagies implied by the first principal component (PC1) and the second principal
component (PC2) are depicted in Figure 4.6. This figure shows three-dimensional hand
postures along the PC1 and the PC2 axes reconstructed from the data. For simplicity,
those images were drawn only using MCP and PIP joints of four fingers and the MCP
and IP angles of thumb, i.e., ABDs and angles captured with 3 sensors on the wrist were
ignored. The hand posture in the center of the PC axes was rendered using the average of
28 gestures. The other four postures were computed by adding the minimum or maximum
values of PC1 and PC2 to the average posture (for which the values of the PC coefficients
are all set to be zero).

According to the Figure 4.6, PC1 expresses the closure of all five fingers and PC2
expresses extension of the index and middle fingers and closure of the ring and pinky
fingers. Similar tendency of PC1 and PC2 is reported by Santello et al. [66] with another
gesture data, captured with CyberGlove when subjects grasped 57 imaginary objects.
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Figure4.5: The location of the 28 gestures in the PCA space.
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Figure4.6: Postural synergies defined by the 1st and 2nd PCs.
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Table 4.1: Proposed 16 combinations of hand gestures

No. | /a/ fi/ Ju/ Je/ Jo/ || No. | /aJ [i/ Ju/ [e/ Jo/
1|8 14 2 11 1|92 14 2 11 1
2 | 8 14 2 13 1 10|22 14 2 13 1
308 14 16 11 1 | 11|22 14 16 11 1
418 14 16 13 1 |12 |22 14 16 13 1
518 28 2 11 1 | 13]22 28 2 11 1
6 | 8 28 2 13 1 | 14|22 28 2 13 1
708 28 16 11 1 | 15[ 22 28 16 11 1
8 | 8 2816 13 1 | 16 |22 28 16 13 1

4.3.3 Candidate sets of five hand gestures

In 4.5, the gestures in the central blue region require special efforts to form. Since those
gestures are considered to be inappropriate for practical systems, they are removed from
the candidate gestures for vowels and the remaining gestures are divided into five groups,
A to E. By referring to the Fi-Fy vowel chart of Japanese (See Figure 2.6), we designated
those of the five vowels to five regions such that the topological features of the five gestures
in gesture space and the five vowels would be equalized. For simplicity, we chose No.1 from
group A and, from each of the other groups, we selected two easy-to-form gestures in that
group. Thus, the number of gestures we chose was nine in total. Table 4.1 shows all of the
16(=2*) combinations we selected and, out of these, we had to select the optimal one. To
compare two topological patterns in different media, we used the structural representation
of sequence data [67, 68, 69].

4.3.4 Structural representation and comparison

Since speaker differences can be characterized as a space mapping, mapping invariant
features can be used as robust speech features for speech systems such as speech recog-
nizers. [67, 70] showed that f-divergence between two distributions is invariant with any
kind of invertible and differentiable transform. In [67, 70], using the Bhattacharyya dis-
tance (BD) as one of the f-divergence based distance measures, an utterance is structually
represented as shown in Figure 4.7. BD between two Gaussian distributions p; (x|p,, 31)
and po(x|py, Xo) is calculated as follows:

BD(p1,p2) = —l”/oo\/pl(w)m(w)dx

! A S > A 1 |(Z+%,)/2]
= g(ﬂl — Hy) (T) (1 — mo) + §MW (4.1)
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A

Figure4.7: Structural representation of an utterance.

Ps ‘
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a gesture structure

a vowel structure

Figure4.8: Structural matching between two matrices.

A cepstrum sequence is automatically segmented and converted into a distribution se-
quence. Subsequently, an utterance is characterized as a total set of BDs, namely, a
distance matrix. Although this distance matrix is mapping invariant, by imposing some
constraints, we introduced constrained invariance [71]. For example, if a distribution is

assumed to be a Gaussian, the matrix is invariant only with linear transforms.

In this study, a hand gesture sequence is represented as a structure (distance matrix) and
a vowel sequence is represented as another structure. Here, we assumed that the mapping
function should be approximately linear. Then, we tentatively investigated whether the
structural difference [67] of an utterance matrix and a gesture matrix calculated with each
of the 16 candidates in Table 4.1 could work as an evaluation function. The smaller the
difference is, the better the candidate will be. Here, the utterance /aiueo/ was used. Its
distance matrix was compared to all 16 gesture matrices for the 16 candidates. Following
[71], the number of distributions was set to 25.

The structural difference between two matrices is calculated as the Euclidean distance
between two vectors, each of which is formed by using all the elements of the upper triangle
of a distance matrix. This simple measure can accurately approximate the minimum
total distance between the corresponding two points after shifting and rotating a structure
(matrix) so that the two structures are overlapped optimally [67] (See Figure 4.8).
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Structural-based distances

The average No.5 No.14 The preliminary design

Figure4.9: The structural distances for several sets of gestures.

4.3.5 Results and discussions

Figure 4.9 shows the structural distances between an /aiueo/ utterance and a few can-
didates. The average distance over the 16 candidates and the distance of the hand gestures
used in the preliminary experiment are also shown. Among the 16 candidates, No.5 shows
the smallest distance and No.14 the largest.

10 Japanese adults participated in a listening test with five nonsense words, all of which
were composed of the Japanese vowels. The subjects were asked to transcribe the individual
vowels. For each word, four versions, a re-synthesized sample, two synthesized samples with
No.5 and No.14, and another synthesized one with the preliminary design were presented.
The total number of nonsense word utterances was 20 and the total number of vowel sounds
was 100. The order of presentation was randomized and the 20 words were presented
through headphones. The vowel-based intelligibility was 100%, 99.6%, 99.2%, and 95.2%
for the re-synthesized sample, No.5, No.14, and the preliminary design, respectively.

Figure 4.10 shows the spectrograms of (a) re-synthesized, (b) No.5, (¢) No.14, and (d)
the preliminary design. A small difference is visible between (b) and (c) but a large one
between the two and (d).

The above results indicate that an adequate selection of hand gestures improves the
intelligibility and the distinctness of synthesized vowel sounds. A visible difference was
found between No.5 and No.14 in Figure 4.9 but the difference was not well perceived
auditorily and visually. We are unable to claim that the structural difference is sufficient
to select a gesture set out of candidates. A certain measure to estimate the goodness of
gestures is however needed, because without that, a large number of listening tests are

required to decide the optimal set of gestures.
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Finally, Figure 4.11 illustrates the spectrograms which were generated by using (a) dis-
tinct (articulate) hand gestures and (b) ambiguous (inarticulate) hand gestures. These
speech samples were synthesized based on No.5. By comparing (a) with (b) visually and
auditorily, we can claim that our hand-to-speech generator can control the degree of artic-
ulation well.

4.4 summary

We implemented a speech synthesizer from hand gestures based on space mapping. By
considering the topological equivalence between the structure of hand gestures in a gesture
space and that of vowel sounds in the vowel space, we demonstrate how a quasi-optimal
correspondence can be obtained. In the next chapter, we will discuss how to generate
consonant sounds.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

(a) Resynthesized speech.

Eime |--‘--|----|---’-|--;}|
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

(c) Synthesized speech by No. 14.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

(d) Synthesized speech by preliminary design.

Figure 4.10: Comparison between proposed designs for /aiueo/.
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(a) Resynthesized speech

i

(b) Synthesized speech using articulate hand gestures

k‘:’

(c) Synthesized speech using inarticulate hand gestures

Figure4.11: Synthesized speech for /aiueo/

—41 -



Chapterb

Consonant Generation
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5.1 Introduction

We have seen that the proposed method is effective for generating the five Japanese
vowels. In this chapter, we will discuss how to generate consonants in our system.

5.2 Classification of the Japanese consonants

Table 5.1 shows the classification of the Japanese consonants based on the place and the
manner of articulation. In our study, these are divided into three groups: (1) semivowels,
(2) fricatives, affricates and plosives, and (3) nasals and ‘tap and flips’. For each group,
we consider the synthesis methods below.

Semivowels are realized with vowel transitions. For example, /wa/ is expressed with the
transition from /u/ to /a/. Yabu et al. reported that people percieve several Japanese
words which include semivowels, such as /ohajo/ and /konbanwa/ (“good morning” and
“good evening” in Japanese, respectively), only with the formant transitions of vowels [8].
Considering their results, we also synthesize semivowels with continuously changing vowel
speech generated by continuously changing gestures for vowels.

Fricatives, affricatives and plosives are not affected by the speaking rate or succeeding
vowels [73]. That is to say, unlike vowels and semivowels, users do not need to change
the waveform or its length using body gestures or the following vowels. Thus, waveforms
extracted from the recorded speech in this group can be preset in the system. On the other
hand, VOT (Voice Onset Time) largely affects the perception of those consonants. It is well
known that /t/ and /p/ are possible to be perceived as /d/ and /b/ respectively, depending
on VOT [74]. Yabu et al. reported that the signal /sa/ can be perceived as /tsa/ and /ta/.
Based to these facts, in our system, preset waveforms for fricatives, affricatives and plosives
should be generated from preset waveform depending on VOT, which is controlled with
body gestures. Then, the following vowel sounds, which are generated with hand gestures,
will be concatenated to the consonant.

Based on the correspondences between the Japanese phones and Japanese phonemes,
nasals and ‘tap and flips’ in Table 5.1 are described with phonemes as follows: [m] is
/m/, [n], [y], [n] are /n/ or /N/, and tap and flip [r] is /r/. Hereafter, we simply call
those 4 phonemes, /m/, /n/, /N/ and /r/, ‘nasals’ for convenience. Nasals are, like vowels,
described with resonance and anti-resonance characteristics. We therefore extend the vowel
generation framework to nasals. In other words, gestures are allocated for nasals as well
as vowels, and nasal speech is generated with gesture motion based on space mapping.

Among the above three groups, semivowels are generated using the same framework as
for vowels. The time structure of fricatives, affricatives and plosives is different from that
for vowels and a new discussion will be needed. In this thesis therefore, we do not address
this topic. In the following sections in this chapter and the following chapters, we will
discuss nasal synthesis and how to extend the vowel generation framework to handle this.
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5.3 A preliminary experiment

In order to generate nasal sounds, gestures are allocated to nasals as well as to vowels, and
nasal speech is generated with gesture motion based on space mapping. As a preliminary
experiment, we focused on /n/ as a nasal sound and developed a H2S system for the five
Japanese vowels and /n/. The challenge was how to derive a gesture for /n/. For initial
trial, we designed the gestures for the five Japanese vowels and /n/ as follows.

Generally, /n/ keeps 0.07-0.10 seconds [73]. Gestures for /n/ should therefore, be shifted
to another gesture in 0.10 seconds order. Since the main function of the hand is to grasp
objects, the movement to grasp is expected to be one of the easiest to form and quickest
to shift to another gestures. Thus, as a preliminary gesture for the transition from /n/ to
vowels, the movement to grasp objects was chosen and gesture No.1 in Figure 4.3 was set
to be the gesture for /n/.

Next, gestures for vowels were chosen among 15 candidates gestures in Figure 4.5, con-
sidering topological equivalence between gesture space and speech space, as we considered
for vowels in the previous chapter. In the previous chapter, a PCA plane and the Fi—F5
plane were used to match the structures of vowels and of gestures. Consonants are however,
not described only with F; and F5. Therefore in the experiment, the Fi;—F5 plane cannot
directly be used but Euclidean distances between /n/ and vowels in a gesture space and
acoustic space were considered.

A male adult speaker recorded speech for /na/, /ni/, /nu/, /ne/, /no/, and the five
vowels and 5 P,=20 transitions between every two vowels. The number of speech data was
545 = 10, in total. Speech data for /na/, /ni/, /nu/, /ne/, /no/ are manually divided
into three parts: a consonant part, a transition part and a vowel part. These five samples
for consonant parts were considered /n/. The Euclidean distances between /n/ and vowels
in the cepstral space were: dg(n,a) = 0.075,ds(n,i) = 0.092,ds(n,u) = 0.057,ds(n,e) =
0.078, ds(n, 0) = 0.099. Here dy(x,y) denotes the average Euclidean distance between cep-
stral vectors of phoneme /x/ and /y/. As dy(n,u) is the minimum among those five, the
gesture No.15 that Euclidean distance in gesture spaces dj(n,u) is the minimum among
dp(n,a),dp(n,i),dp(n,u),dy(n, e),dn(n,o), was considered the gesture for /u/. Then ges-
tures for the other 4 vowels, /a/, /i/, /e/, /o/, were chosen so that the topological features
of the five gestures in gesture space and the five vowels would be equalized, as we described
in the previous chapter. Gesture designs for the five Japanese vowels and /n/ chosen in
the above manner are shown in Figure 5.1.

5.3.1 The H2S system based on the proposed design

Based on the gesture design proposed in the previous section, an H2S system for the five
Japanese vowels and /n/ was developed. A female adult recorded gesture data for /na/,

/ni/, /nu/, /ne/, /no/, the isolated vowels and 5P,=20 transitions between every two
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The location of the five Japanese vowels and /n/ in the gesture space.

Figure5.1: Gesture design for the five Japanese vowels and /n/.

vowels using CyberGlove. Every gesture was recorded three times. The total number of
gestures was (5+5+20)x3=90. In addition, a male adult speaker recorded speech for /na/,
/ni/, /nu/, /ne/, /no/ for 10 times, and the five vowels and 5P»=20 transitions between
every two vowels five times. The number of speech data was 5 x 10 + (5 + 25) x 5 = 175,
in total. In order to make appropriate correspondence, gesture data and speech data for
/na/, /ni/, /nu/, /ne/, /no/ were manually divided into three parts: a consonant part,
a transition part and a vowel part. Then re-sampling and the 18 dimensional cepstrum
coefficient extraction were performed in the same way as performed in Section 4.2. For
/na/, /ni/, /nu/, /ne/, /no/, all combinations between 3 sets of gesture data and 10 sets
of cepstral data, 3 x 10 = 30 combinations in total, for vowels, all combinations between
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(b) Synthesized speech with the H2S system.

Figure 5.2: Synthesized speech for /na/.

3 sets of gesture data and 5 sets of cepstral data, 3 x 5 = 15 combinations in total, were
used to make augmented vectors. For simplicity, one vector was chosen from each set of
8 augmented vectors. Using these data, the GMM was trained. The number of mixtures
were set to be 2. The spectrogram of the generated sound is illustrated in Figure 5.2.

5.3.2 A subsective evaluation

In order to evaluate the H2S system, an intelligibility test was carried out by 14 native
Japanese speakers. Samples were composed of re-synthesized speech and synthesized speech
with the H2S system for /na/, /ni/, /nu/, /ne/, /no/, 10 samples in total. As dummy
samples, re-synthesized speech for /a/, /i/, /u/, /e/, Jo/ and /ma/, /mi/, /mu/, /me/,
/mo/, i.e., 2x5 = 10 samples were also included. They were randomized and subjects were
asked to write them down with Roman letters. Subjects were noted that every sample is
1 mora speech of Japanese. Results are shown in Table 5.2.

Synthesized /ni/, /nu/ and /ne/ by the proposed H2S system were not perceived at all
while more than a half of synthesized /na/ were perceived correctly. The most present
error was to replace /n/ with /m/ or /w/ and they occupied almost half of all errors. This
error was not found for re-synthesized speech. If this error is allowed, the intelligibility was
largely improved as shown in Table 5.3.

It is said that formant transition from a consonant to a vowel has some acoustic charac-
teristics which influences perception of the consonant [74]. Perception error between /n/
and /m/, /n/ and /w/ are considered to be a result of a lack of proper transition parts
in synthesized speech. We have considered the reason to be: (1) the positional relation
between vowels and consonants in the gesture space and that in the speech space were not
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Table 5.2: Intelligibility
Synthesis method H /na/ ‘ /ni/ ‘ /nu/ ‘ /ne/ ‘ /no/ H Average
Re-synthesis 100 | 93.8 | 93.8 | 81.3 | 100.0 93.8
Proposed 56.3 | 0.0 | 0.0 0.0 | 18.8 15.0

Table 5.3: Intelligibility when replacement with /m/ and /w/ are allowed
Synthesis method H /na/ ‘ /ni/ ‘ /nu/ ‘ /ne/ ‘ /no/ H Average
Re-synthesis 100 | 100 | 93.8 | 100 | 100 98.8
Proposed 87.5 | 56.3 | 12.5 | 18.8 | 75.0 70.6

equivalent, (2) parallel data for transition parts from consonants to vowels did not corre-
spond well. In order to get around those problems, we have developed a Speech-to-Hand
conversion system (S2H system, the inverse system of H2S system) trained from parallel
data for vowels only to infer the gestures corresponding to consonants. In the next section,

we propose the method to which compensates these problems.

5.4 Probabilistic Integration Model

In the previous section, we have seen that inappropriate gesture designs for consonants
result in a lack of smoothness in transitional segments of synthesized speech. In this section,
we discuss how to determine appropriate gestures for nasal sounds when the gesture design
for vowels is given.

In statistical machine translation studies, the maximization problem of P(y|x) for y
is often solved using Bayes'rule [76]. Here x stands for Japanese and y for English, for
example. In order to directly model and maximize P(y|x), a large amount of parallel data
are needed. By considering P(y|x) as P(x|y)P(y) however, high performance machine
translation is realized with a small amount of parallel data for P(x|y) and an accurate
model P(y) trained with a large English corpus. This framework has also been applied
to voice conversion studies. Saito et al. proposed a new technique for voice conversion
using a joint density model trained by a small amount of parallel data and a target speaker
model trained by a large amount of speech from the target speaker, Model-Integrated Voice
Conversion (hereafter MIVC) [77].

Our aim is to figure out the appropriate gestures for consonants. In order to achieve
this aim, we propose using an S2H system P(h|s), the inverse system of the H2S system,
and apply Bayes’rule to obtain the gestures. In the other words, we consider the gesture

estimation problem given speech s as maximization problem of P(h|s) described as follows:

Pslh)Ph) _ argmax P(s|h)P(h), (5.1)

h, = aremax P(h|s) = aremax
¢ = argn (hls) g0 P(s) n
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here, P(s|h) is the joint density model for parallel data of vowels, P(h) is the statistical
gesture model trained using large amount of gesture data. A system only using P(h|s)
may derive hard-to-form gestures. Ours with the well trained P(h) is however anticipated
to take account of the naturalness of gestures.

In order to solve this problem in MIVC, Saito et al. defined a likelihood function based
on Equation (5.1). In our study, that function is written as follows [77]:

L(hy; s;, AP A9D) & P(s)|hy, AP PRy A9), (5.2)

where A is the model parameter of the gesture model, « is the weight of the gesture
model. In MIVC, a means the weight of the speaker’s model and corresponds to the
weight of the language model in speech recognition.

The equation (5.2) can be written as:

logL(hy) = log Z P(s;,m|hy, A®) 4+ a x logZP hy,n|A9)

m=1 n=1

M ~
~ P(St m[ht A(Z))
= lo g P(m|h;, A® L
gm:1 mfR ) P(m\ht,)\(z))

P(h;,n|A9)
P(n|hy, A9)
(5.3)

Y

N
+ Z logP(n|hy, A\¥)
n=1

where M and N denote the number of mixtures of a GMM. According to Jensen’s inequal-
ity,

P h (2) N R P(h (9)
(Stamjht?)‘ ) +ZlogP(n|ht,>\(g)) (htlnp‘ )
P(ml|hy, A?) P(n|hy, A¥)

M
log Z P(m|hy, A?))

m=1

M
> Y P(mlhy, X?)logP(s;, m|hy, AP) +ZP (nlhe, A9 P(hy, n|A9)
m=1

n=1

M
= Z P m|h’t7A(Z logP(m|h’t7 >+ logP(St’m7 ﬁt7A(Z)))

m=1
+ZP n’hh (htunlAg )
= Qzl(h’ta ht) + Q.2(hy, ht) + aQq4(hy, fbt)> (5.4)
where,
~ M A~
Qzl(hta ht) = Z )\m,t ZOQP(m|hta )\(z))’ (5-5)
m=1
~ M ~
Qaa(hi, bu) = ) AmilogP(sidm, hy, A?), (5.6)
m=1
A~ N A
Qq(hi,he) = > AnylogP(hy,n|A9), (5.7)
n=1
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’)/th = P(m|ht,A(z)),’yn7t = P(n|ht,A(g)) (58)

We assume that Equation (5.5) does not rapidly change, i.e., we ignore the differential
coefficient of (),; against h. Then the optimum solution h can be obtained by maximizing
the following function:

Q' (he, by) = Qua(hy, hy) + aQqy(hy, hy). (5.9)

When h; is the optimum value, the differential coefficient of the Equation (5.9) against b
is 0. Thus we obtain the following update function:

M N
b= (X D0 +a > 305)
m=1 n=1
M N
X (D DTN 0 S ) (5.10)
m=1 n=1

where p,, and X,, are the n'® mean vector and the covariance matrix of the gesture model
GMM. E’,ﬁ[ﬁ? and D;(lh)_l are described as follows:

E® = p®  n00sent(s, _ 6), (5.11)
D = [ - ms ] g (.12

Here, (-)* denotes the pseudo-inverse matrix. As for the initial value of Equation (5.8),
first we apply Equation (3.14) to our H2S system and convert input speech s; into hand
gestures h; = F(s;), then it is used as the initial value of Equation (5.8).

In order to obtain the optimal gestures for consonants, we develop an S2H system based
on the framework described above. Then the gestures should be obtainable by inputting
the consonants into the S2H system. In the next section, the gestures derived with S2H

system are evaluated to determine their effectiveness for an H2S system.

5.5 Experiments

In order to verify that the S2H system is able to derive the gestures for speech, that are
not included in the parallel data, the experiments below were carried out. The procedure
for the experiments in Figure 5.3. First, an S2H system was made with the gesture model
and the conversion model trained with parallel data for vowels. Then consonants speech
were input to the S2H system and gestures corresponds to those speech are obtained.
In order to check if those gestures were effective for generating consonant speech, they
were input to the H2S system which was made in the same manner as the S2H system.
Finally the input speech of the S2H system and the derived speech of the H2S system were
compared. They were expected to be the same, ideally.
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(4) Compare those gesture designs

Input
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Figure 5.3: The procedure of the experiments.

5.5.1 Speech-to-Hand conversion sytem

First off, an S2H system was developed using parallel data based on the gesture design for
vowels and the statistical gesture model. By inputting the features for consonant speech,
the gestures for consonants were obtained.

For the gesture model, No.1, No.2, No.4, No.7, No.8, No.9, No.11, No.13, No.14, No.15,
No.16, No.21, No.22, No.25, No.27, No.28 were chosen from 28 gestures depicted in Figure
4.3. These are gestures that are formed easily by the female adult who records gesture
data for the experiments. Recorded gesture data from herfor the isolated gestures and the
transitions of all pairs, 16 + ;P> = 256 in total. The gesture model was developed using
this gesture data. The number of mixtures was set to 64.

Next, the gesture designs for the five Japanese vowels were chosen from among those 16
gestures. For simplicity, we chose No.28 for /a/. Considering the discussion in Chapter
4, we did not use gesture designs satisfying the condition that the Euclidean distances in
the gesture space dp(a,i) < dp(a,e) and dy(a,u) < dy(a,0). We obtained 8190 candidates
for the gesture designs for the five Japanese vowels. Then the joint density models for the
S2H system were obtained for every gesture design as follows.

The gestures for the isolated five Japanese vowels and 5 P, = 20 transitions between every
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/a/ /i/ Ju/ /e/ Jo/
/n/ /m/ /r/
Figure 5.4: Derived gesture design for consonants (sample 1).

Figure 5.5: Derived gesture design for consonants (sample 2).

two vowels, 5 + 20 = 25 gesture data in total, were extracted from the gesture data set
above. In addition, a male adult speaker recorded speech for the five Japanese vowels and
5P, = 20 transitions between every two vowels. FEach recording was done once. The total
number of speech samples was 5 + 20 = 25. Then, cepstrum extraction and interpolation
were carried out in the same way as in section 4.2. Using these gesture sequences and
cepstral vector sequences, augmented vectors were made and the joint density model was
trained with them. The number of mixtures of the joint density model was set to 8.

By inputting the /n/, /m/, /r/ sounds, the gestures for those consonants were obtained.
Thus, we got 8190 gesture designs for /a/, /i/, /u/, /e/, o/, /u/, /m/, /r/. Some of the
obtained gesture designs are shown in Figure 5.4, 5.5. In the next section, we chose the
best one from these candidates.
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5.5.2 Hand-to-Speech conversion sytem

In order to compare those 8190 gesture designs obtained in the previous section, the

following experiments were carried out.

First, for every gesture design, the H2S system was developed using the method described
in Section 5.4. The joint density models P(h|s) were trained with the same training data
and the same number of mixtures as the S2H systems in the previous section. The speech
model P(s) was trained using A set of 50 sentences from the ATR phoneme-balanced
sentences recorded by the speaker who recorded the speech data for the joint density
model. The number of mixtures was 64, the same as that of the gesture model.

Then, gestures estimated by the S2H systems were input into those H2S systems. If the
S2H and H2S systems are both ideal, input speech for the S2H systems and output speech
of the H2S systems will be identical. The joint density models P(h|s) and P(s|h) however,
do not completely describe the correspondence between the gesture space and the speech
space. There will therefore be a distortion between the input speech for the S2H systems
and the output speech of the H2S systems. We considered using this distortion as a criteria
to design the gestures. That is to say, we thought that the smaller the cepstrum distortion
between the input speech for the S2H systems and the output speech of H2S systems is,
the better the gesture designs will be.

Figure 5.6 shows the average and standard deviation of 8190 cepstral root mean square
errors (RMSE). For simplicity, we only focused on the /n/ consonant. Input speech for the
S2H systems were the five Japanese vowels in the training data and /na/, /ni/, /nu/, /ne/
and /no/ recorded by one speaker, 5+5 = 10 samples in total. Thus, 10 mora-unit cepstral

! Then gesture designs were sorted for

RMSEs were calculated for every gesture design
mora-unit cepstral RMSE. Every gesture design has therefore 5 ranks for each mora. The
quasi-optimal design, the one where the summation of the ranks was minimal, was No. 28
for /a/, No. 22 for /i/, No. 11 for /u/, No. 7 for /e/ and No. 21 for /o/. Figure 5.6 also

shows the cepstral RMSE of the quasi-optimal design.

Experimental evaluation showed that the cepstral RMSE depends on the mora. Of
the five Japanese vowels, the smallest one was /u/ and the largest one was /i/. Overall,
compared with the vowels included in the training data, consonants which are not included
in the training data tended to show larger cepstral RMSE. On the other hand, the cepstral
RMSEs of vowels were almost the same as those of consonants in the quasi-optimal design.
Figure 5.7 shows re-synthesized speech and the output of the quasi-optimal S2H-H2S
combined system 2.

Mora is a unit of speech production and speech rhythm of Japanese, which is usually composed of CV
or V.
2Smoothing was performed before visualization
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Figure5.6: The cepstral RMSE between input and output speech.

5.5.3 Subjective evaluations

The effectiveness of our approach was evaluated subjectively through an AB preference
test, in which 15 Japanese native speakers selected the preferred one from a pair of synthe-
sized speech in terms of naturalness. A and B were output speech from the H2S systems
which were trained by the design, which was designed based on the way described in Sec-
tion 5.3.1 (hereafter conventional design) and the proposed design, respectively. For both
designs, the gesture design for vowels was the quasi-optimal one described in the previous
section and the same training data for vowels as for those for the S2H system was used.
In the conventional design, the gesture for /n/ was chosen as No.8. Then gesture data
for /na/, /ni/, /nu/, /ne/, /no/ were recorded once and added to the training data. In
the proposed design, 10 sets of the gesture data for /na/, /ni/, /nu/, /ne/, /no/, which
were obtained by a combined S2H-H2S system, were added to the training data. The
total number of frames for /n/ of both designs were approximately the same. The mixture
number of GMM was set to 64 for both designs.

15 Japanese native speakers participated in this test. A preference test was conducted

separately for each case of /a/, /i/, /u/, /e/, /o/, /na/, /ni/, /nu/, /ne/ and /no/.
Preference of the proposed design was 48%, no preference was 27% and the preference of
the conventional design was 24%.

In Section 5.3, we found that inappropriate gesture designs for a consonant result in
the lack of transitions in synthesized speech. For example, the one-mora synthetic speech
of /na/ was perceived as two sounds /n/+/a/. On the other hand, synthesized speech
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Figure5.7: Synthesized speech for /na/

based on our proposed method was perceived as one unit in the simple listening test. This
result shows that the proposed method is effective for deriving appropriate gestures for

consonants.

5.6 Summary

In this chapter, we proposed a framework to derive the gestures for consonants when
only the correspondence for vowels is given. According to the listeners evaluations, an
H2S system, which exploits gesture data for consonants derived from an S2H system, can
generate more natural sounds than those trained with heuristic gesture designs for conso-
nants. In the next chapter, a real-time H2S system is developed based on the framework

described in this chapter and is evaluated by subjective users.
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Figure 6.1: The procedure to establish real-time H2S system.

6.1 Introduction

In the previous section, we verified that an H2S system which exploit gesture data for
consonants derived from an S2H system can generate more natural sounds than those
trained with gesture designs which are chosen from given candidates. Natural speech
generated by an H2S system trained by exploiting data generated by an S2H system is,
however, obtained only when input gestures are the same as the ones which were generated
by the S2H system. The S2H system sometimes outputs gestures with dynamic ranges
that are too large or that are not smooth enough. In those cases, it is difficult for users to
form such gestures in real time. In this section, we compensate for those problems in two
ways: (1) reducing the dynamic range by setting the optimal weight for the gesture model
(2) smoothing the gesture trajectories by considering delta features. We also develop a
real-time H2S system exploiting the gestures generated by the improved S2H system.

6.2 How to develop a real-time H2S system

The challenge in this chapter is to develop a real-time H2S system based on the gesture
design. The proposed procedure is shown in Figure6.1. First, a conversion model P(s|h)
is trained with parallel data for vowels. Then an S2H system is developed based on the
method described in the previous chapter, with the joint model and the gesture model P(h).
Inputting speech for consonants to the S2H system, the gesture vector output corresponds
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to the speech that is obtained. Since this conversion is performed frame-by-frame, every
input speech frame corresponds to the derived gesture frame. We therefore easily obtain
parallel data for consonants by simply joining input speech vectors and the converted
output gesture vectors frame by frame. This parallel data for consonants is added to
those for vowels and the conversion model P(h|s) is trained. With this conversion model,
real-time H2S system is developed based on the method described in Chapter 3.

As a preliminary experiment, we developed real-time H2S system following the flow
above.

6.2.1 Dataset for the gesture model

For the dataset to train the gesture model, we used the same ones which are used in
Section 5.5.1. In this dataset, sensor No.17 and 18 were not used explicitly. Removing
these sensor data, data from 16 sensors were used to train gesture models.

The movement of the different joints of the hand are not independent. For example,
when the 2nd joint of the pinky finger is bent, the 2nd joint of the ring finger is also bent.
The dimensions of the 16 dimensional gesture data are therefore interrelated. In order
to ensure gesture space corresponds to the cepstral space, for which each dimension is
independent, PCA was performed on all the gesture data using all the data in the gesture

dataset. 16 dimensional data points after PCA were used to train the 64 mixture gesture

model P(h).

6.2.2 Dataset for the conversion model

The gesture designs for the five Japanese vowels were chosen from among the 16 gestures
described in Section 5.5.1 and an S2H system was developed with them. Experiments in
Chapter 4 showed that a quasi-optimal correspondence can be obtained by considering the
topological equivalence between the topological features (structure) of hand gestures in
the gesture space and those of vowel sounds in the vowel space. Considering the Fj—F3
plain therefore, we chose the gesture designs which satisfy the condition that the Euclidean
distances in the gesture space dp(a, i) < dp(a, e) and dy(a,u) < dp(a,o0). In this preliminary
experiment, No. 28, No.2, No. 1, No.9 and No.25 were used for gestures for /a/, /i/, /u/,
/e/ and Jo/.

Then, an S2H system was developed in the same manner as the previous chapter. Input
speech for the S2H systems were the five Japanese vowels in the training data and /na/,
/ni/, /nu/, /ne/ and /no/ recorded by one speaker. 5+ 5 = 10 samples in total. Inputting
these consonants to the S2H system, gestures for consonants were derived.

10 sets of the gesture data for /na/, /ni/, /nu/, /ne/, /no/, which were obtained by the
S2H system, were added to the training data. The number of mixtures for the GMM was
set to 64.
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Figure 6.2: Consonant part of /nu/ sound generated by the realtime H2S system.

6.3 The problem of gestures derived from an S2H sys-

tem

Inputting gesture movement to the real-time H2S system developed above, speech sounds
were generated in real-time. The consonant part of the /nu/ sound generated by the
realtime H2S system are shown in Figure6.2. Jagged parts can be seen in the spectrum.
This problem was not found in the spectrums of speech sounds generated by the H2S system
in the previous chapter. Those two H2S systems were developed with the same framework.
The only difference was their inputs. For the H2S system in Section 5.5.2 generated speech
from the gestures derived from the S2H system, while the H2S system here needs real
gesture inputs. In other words, we input into the H2S system in section 5.5.2 the optimal
gestures to get the closest speech to the original speech, while we input into the H2S system
here the gestures which we can form realistically. Figure 6.3 shows No.6 sensor output of
the DataGlove for the gesture for /na/ generated by S2H and of real gesture data. Thanks
to the gesture model P(h), S2H systems seldom recognize impossible-to-form gestures at
all the frames. Gesture transitions derived from the S2H systems are, however sometimes
difficult to form in a realistic time frame, because of their exceedingly large dynamic range
and exceedingly rapid changes. In the real-time H2S system, the conversion model was
trained with the parallel data of impossible-to-form gestures and natural speech, therefore
the system outputs natural speech only when unrealistic gesture sequences were input while
jagged spectrums were derived when real gesture sequence are input.

In order to mitigate the above problem, the following ideas were considered: (1) reducing
the dynamic range by setting the optimal weight for the gesture model (2) smoothing the
gesture trajectories by considering delta features. These methods were verified in the

following sections.
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Figure 6.3: Comparison between S2H output and real gesture data.

6.3.1 The weight factor of the gesture model

The framework described in Chapter 3 estimates gestures only using P(s|h). An S2H
system based on this framework therefore, would derive impossible-to-form gestures when
consonants sounds, which are not included in the training data, are input.

On the other hand, in the framework based on MIVC, which is described in chapter 5,
gestures are derived with the weighted gesture model P(h) as well as the conversion model
P(s|h). On account of the gesture model, derived gestures are expected to be more natural
(see Equation (5.2)).

When « is small, the naturalness of the gestures is not considered. It may result in
the derivation of difficult-to-form gestures. Meanwhile when « gets larger, derived gesture
trajectories become flat since the gesture model P(h) is modeled independent of each input
speech sequence.

In the previous section, we assumed a = 1 as well as in the voice conversion task per-
formed in [77]. The appropriate « is, however, expected to be different in a Gesture—Speech
conversion task than in a Speech—Speech conversion task. We expected that the appro-
priate a would reduce the dynamic range of derived gesture trajectories and consequently
those gesture trajectories would be easy-to-form.
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Y

Figure 6.4: Relationship between a sequence of the static and dynamic feature vectors [15].

6.3.2 Conversion considering dynamic features

In the frame-by-frame mapping where the correlation of the feature vectors is ignored,
the discontinuity of the parameter trajectory becomes a problem [15]. In MIVC, this is
more serious than conventional voice conversion, which is described in Chapter 3, because
even slight skips affect the perceptual quality of the whole sentence badly since each frame
in the sequence is converted more precisely. Saito et al. reported that this problem is
mitigated by considering dynamic features in the framework of MIVC [78]. Their method
was applied to our S2H system.

Here, denote input speech sequences and the target gesture vector sequences as S =
(S],S,5,...87]" and H = [H| ,H, ..., H}]", respectively. S and H consist of static
and dynamic features and described as S; = [s], As/]T, H, = [h] ,AR]]T. A% and A©
are trained by these features as well as the conventional MIVC, described in chapter 5. A
time sequence of the converted gesture vectors is derived as follows:

h = argmax P(S|H , A%\ P(H|A), (6.1)
h

where H = Wh. W denotes the matrix that extends the static feature sequence to the

static and dynamic feature sequence (see Figure 6.4). In a similar manner to that in [15]

—61—



Chapter6 Real-time H2S system

and [77], we derive the following updating equations:

h= (WTD 1W>WTW (6.2)

DL dzag{DgH)fl, 1J (6.3)

DDLU _ ng>—1EgH>T,...,D< - E(H)T] (6.4)
(Z Vg DD~ +Z%t2 1) (6.5)

pI-1 g :<Z’y D1 +Z% ) (6.6)
n;ml,tzp(mmt, ),)\m: P(n|Hy, \9) (6.7)

The S2H system developed based on this framework (hereafter S2H-delta) is expected to
derive smoother trajectories than the previous S2H system.

6.4 Experiments

6.4.1 Experimental setup

In order to verify the effects of a and the dynamic features, an S2H system and the
S2H-delta system were developed according to the flow of Figure6.1.

For the gesture model and the conversion model, the same data sets for section 6.2.1 and
section 6.2.2 were used. Gesture models P(h) and P(H) were trained with a 64-mixture
GMM and a 512-mixture GMM, respectively. Conversion models P(s|h) and P(S|H)
were trained with an 8-mixture GMM and a 16-mixture GMM, respectively. The number
of mixtures were chosen to be the optimum based on ML criterion. Due to the existence
of silence, dynamic features of the first and the last frames would be outliers. Thus they
were removed when P(H') was trained.

6.4.2 Results
i) The effect of «

Using the conversion model P(s|h) and the gesture model P(h), an S2H system was
developed based on the framework described in Chapter 5. « takes a value between 0.0
and 1.0. Figure6.5 shows the No.6 sensor output of the DataGlove for the /na/ gesture
when « changes. Gestures for /n/, /m/, /r/ derived from S2H systems (a = 1.0) were also
shown in Figure6.7.

Frames after 800ms correspond to the vowel parts of /na/. Because vowels were included
in the training data for the conversion model P(s|h), they were estimated properly despite
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Figure 6.6: The effect of dynamic features.

the value of a. On the other hand, frames before 800ms, which correspond to consonants
and transition parts, largely change depending on a.

When o = 0, the S2H system does not consider the gesture model P(h) at all, i.e.,
it uses inverse conversion based on the framework described in Chapter 3 (see Equation
(5.2)). This system derives gestures that exceed the dynamic range of sensors (0-255).
As « increases, the naturalness of gestures is considered thanks to P(h) and the decrease
of rapid changes. When a gets too large however, the influence of the conversion model
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Figure 6.7: Gesture design for the real-time S2H system.

P(s|h) is ignored and the derived gesture trajectories become flat. Other sensors and
other gestures showed similar tendencies. In our research, the smallest a 0.6, with which
all frames of derived gestures were included in the dynamic range of sensors, was considered

appropriate.

ii) The effect of dynamic features

Using the conversion model P(s|h) and the gesture model P(s), an S2H system was
generated based on the framework described in Chapter 5. In addition, an S2H-delta
system was developed based on Section 6.3.2 with the conversion model P(S|H) and the
gesture model P(S). In both systems, a was set to 0.6. We input /n/ to these systems
and compared the outputs. Figure 6.6 shows No.6 sensor output of DataGlove for the /na/

gesture.

Compared with the S2H system, the rapid changes of the beginning part and of the
transition parts at about 800ms are mitigated in the S2H-delta system. According to the
above results, S2H-delta with a = 0.6 was used for S2H part in Figure6.1.

Theoretically, a conversion method considering dynamic features would be effective in
H2S systems as well as S2H systems. In a real-time H2S system however, using dynamic
features is not a good idea. This is because a 20-40ms will be consumed to calculate
Ah, creating a time lag, due to the sampling rate of the DataGlove being about 10-20ms,
and this is critical for the real-time system. Taking this into account, an H2S system was
developed based on the framework described in Chaper 3, while an S2H-delta system was
used to derive gestures for consonants.
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6.5 Real-time H2S system

6.5.1 System condition

Following the flow of Figure 6.1, the prototype of the real-time H2S system is established.

At first, an S2H-delta system was developed based on Section 6.3.2 with the conversion
model P(S|H) and the gesture model P(S), trained in Section 6.2.2 and in Section 6.2.1.
Input speech for the S2H systems were Japanese nasal speech, /na/, /ni/, /nu/, /ne/ and
/no/, recorded by one speaker ten times. 5 x 10 = 50 samples in total. Then, cepstrum
extraction and interpolation are carried out in the same way as in section 4.2. Inputting
this consonant speech to the S2H-delta system, gestures for consonants were derived.

Using input speech and derived gesture data with an S2H-delta system, parallel data
for a consonants were obtained. They were added to the parallel data for vowels and the

conversion model P(s|h) is trained. The mixture number for GMMs was set to 8.

6.5.2 Pitch and volume control

Our system controls parameters corresponding to vocal tract shape with hand gestures.
We introduced hand direction as parameters to control pitch and volume. A sensor module
kit TDSO01V was used to capture hand direction. 3 angles captured with TDS01V were
shown in Figure6.8. Since angles can be stably controlled compared with acceleration,
Azimuth and pitch of the arm was used to control FO and volume, respectively.

In order to mitigate the error, every time the user puts on the TDS01V, calibration was
performed. When the user straightens his or her arm with the palm facing the bottom,
Azimuth and Pitch were set to 0. As the arm moves in the horizontal direction, Azimuth
changes from —60° up to +120°. In our system, FO was set to 1.2(0=39/30 » 115 where
0 denotes azimuth, so that FO generated FO changes roughly between 90-200 [Hz]. As
the arm is moved in the vertical direction, pitch changes from 0° up to +70°. In our

(0/45

system, Volume was set to 1.22 x const.. The working real-time H2S system is shown

in Figure6.9.
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Figure6.9: The working real-time H2S system.
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6.6 Subjective user evaluations

Our goal is to establish a methodology of speech synthesis which does not require symbols
inputs. In order to claim that the new framework is effective, it should have at least the
same quality as the conventional ones. Current synthesis methods which do not require
symbol inputs are, as we saw in Chapter 2, effective on emotional speech synthesis based on
dynamic pitch and duration control. Although they are less articulate than T'TS, they still
show more than 50 % intelligibility. Considering these points, subjective user evaluations
for our real-time H2S system in terms of intelligibility and expressiveness were carried out.

The same female adult who recorded gesture set for the system was trained for about
an hour on the H2S system consisting of a CyberGlove and a TDS01V. After the training,
she generated the following Japanese words:

1. /nani/, means "What” in Japanese, when you do not understand and want to ask the
speaker (nanil)

2. /nani/, means ”What” in Japanese, when you are upset with the speaker (nani2)

3. /iina/, means "OK” in Japanese, as the back-channel feedback (iinal)

4. /iina/, means ” Jealous of you” in Japanese, when you are jealous of the speaker (iina2)

5. /iie/, means "No” in Japanese, without any emotion (iie)

Speech was recorded 10 times for each word. She chose one sample from a total of 10

samples for each word by herself, which best meets the above conditions.

The speech rate of generated samples were about 1.2 morae/sec. This is much slower than
the appropriate speaking rate (about 6.5 morae/sec, 1.3 times faster than average NHK
news 8.5 morae/sec) [79] and the appropriate speed of the finger alphabet (2 morae/sec)
[80]. In order to mitigate the influence of the speaking rate on impression for the listeners,
double speed 5 samples were made from those 5 samples for the listening tests.

These 5+ 5 = 10 samples were randomized and shown 6 native Japanese speakers. They
were asked to answer (1) what did the speaker say (2) what do you think about the emotion
of the speaker. They were informed that the samples are Japanese words used in daily
conversation. Results are shown in Figure 6.6 and Table 6.1. When phoneme-based
Intelligibility was calculated based on the answers to question (1), prolonged sound and
duplication of /n/ were ignored. For example, 000 (na)lJ 00 (na-)D 00 (nna)d
were considered as /na/. For question (2), multiple answers were allowed. Numbers in
the parentheses show the number of people who answered. For simplicity, the answers “no
emotion” and similar were omitted.
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Figure 6.10: Phoneme-based intelligibility.

6.7 Discussion

According to Figure6.6, nearly half of the phonemes generated by our H2S system were
perceived properly. It is almost the same quality as Yabu’s speech synthesizer (65% for
nasals), described in Chapter 2. The most intelligible sample was nani2 and almost all
people perceived /nani/ correctly. The worst one was iie, whose intelligibility was 100
20%. The most common error was to add /n/ at the beginning of the word, e.g. /iina/
was written as /nina/. The second most was to drop /i/, such as writing /iina/ as /na/.
We have considered the reason for this to be that the gestures for /i/ and /n/ are very
similar (see Figure6.7) in our H2S system.

Energy for vowels are larger than that for consonants. By considering this point, the con-
version models for the S2H-delta and H2S systems were trained with 0 degree of cepstrum,
which express the energy of speech. In this way, vowels and consonants are expected to be
discriminated in the conversion model for S2H-delta systems. On the other hand, in the
conversion model for the H2S system, /i/ and /n/ are handled similary due to the similar-
ity of their gestures. In the result, the energy of /i/ was smaller than that of other vowels.
Figure 6.11 shows the spectrograms for /aiueo/, one resynthesized and one generated with
the H2S system.
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Table 6.1: Emotions estimated from the generated speech.

Samples H Impression

nanil asking(2), confirming, disappointed, bad temper
nanilx2 asking(2), blunt, bored, small anger

nani2 surprised(3), sleepy(3), happy
nani2x2 surprised(2), anger(2), happy

iinal sleepy(2), at ease, anger, jealous
iinalx2 sleepy, sad

iina2 sleepy(2), sad, exhausted
iina2x2 hurry, anger

iie sleepy, at ease, cheerful, jealous
iiex2 sad

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

(a) Resynthesized speech.

KHz

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

(b) Generated speech with the H2S system.

Figure 6.11: Comparison of synthesized speech for /aiueo/.

For the same reason as in the case of /i/, the energy of /u/ is also small compared with
/a/, /e/ and /o/. In order to generate more articulate speech, gestures should be designed
so that all gestures can be discriminated.

Speaking rate does not influence the intelligibility a lot, while it does influence the
emotion estimated from the speech. At the original rate, generated speech tend to be
perceived as “sleepy”, “at ease” and “exhausted”. At double rate however, this tendency
was mitigated and the generated speech was perceived as it was intended. As the speaking

rate got closer to that which people hear in daily conversation, the emotion of the speaker
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was more easily perceived. In this experiment, the user is not capable of forming gestures
quickly. People using sign language use a finger alphabet in conversation to express new
words. Considering this point, conversation with our H2S system may be possible if the
user is well trained in the gesture design.

6.8 Summary

In this chapter, we developed a real-time H2S system and evaluated its effectiveness. An
H2S system based on the framework described in the previous chapter sometimes derives
difficult-to-form gesture transitions in a realistic period, because of their large dynamic
range or rapid changes. We compensated for those problems by setting the optimal weight
for the gesture model and by considering delta features. Subjective user evaluations showed
that a real-time H2S system trained by exploiting those data is effective enough to generate
emotional speech.
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7.1 Review of work

The objectives in our study is to establish the media-independent methodology for speech
generation system. In order to reach the objective, we considered the speech synthesis
framework based on a space mapping to desired input media. When the correspondence
between the input media and speech is relatively explicit, the effectiveness of this framework
is already proven. In this thesis therefore, we considered the speech synthesis based on
this framework when the input media does not have explicit relationship to speech. As an
example of such media, hand gesture is chosen and Hand gesture to Speech converter is
developed. In this section, the contents of this thesis are quickly summarized.

Chapter 2 described the history of the speech synthesis technologies. Then we have seen
two categories of conventional speech synthesis systems; systems which require symbol
inputs and systems which do not require symbol inputs. The former one has three syn-
thesis methods: synthesis based on waveform coding, synthesis based on analysis-synthesis
method and synthesis by rule. The latter one also has three methods: articulatory synthe-
sis, formant synthesis and media conversion based on a a space mapping. Looking through
those technologies, we made clear the the objective of our speech synthesis system - media
independent speech synthesis.

In Chapter 3, the basic frameworks for current voice conversion technique were reviewed.
In statistical voice conversion, the correspondence of the two feature spaces of the source
speaker and the target speaker are modeled with GMMs. This technique is applied to the
conversion between different media. Our H2S system can be considered a kind of voice
conversion system in which the speech space of a source speaker is replaced by the hand
gesture space. It was also mentioned that the correspondence between two spaces are not
explicit and that will be one of the most important issues in our research.

In Chapter 4, we implement a speech synthesizer from hand gestures based on space
mapping. By considering the topological equivalence between the structure of hand ges-
tures in a gesture space and that of vowel sounds in the vowel space, we demonstrate how
a quasi-optimal correspondence can be obtained.

In chapter 5, we proposed a framework to derive the gestures for consonants when
only the correspondence for vowels is given. According to the listeners evaluations, an
H2S system, which exploits gesture data for consonants derived from an S2H system, can
generate more natural sounds than those trained with heuristic gesture designs.

In chapter 6, we developed a real-time H2S system and evaluated its effectiveness. An
H2S system based on the framework described in the previous chapter sometimes derives
difficult-to-form gesture transitions in a realistic period, because of their large dynamic
range or rapid changes. We compensated for those problems by setting the optimal weight
for the gesture model and by considering delta features. Subjective user evaluations showed
that a real-time H2S system trained by exploiting those data is effective enough to generate

emotional speech.
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7.2 Future work

We developed a Hand-to-Speech converter based on media conversion framework and
proposed a methodology to derive the optimal correspondence between two feature spaces.
This thesis claims that our proposed real-time H2S conversion system is effective enough
to generate emotional speech in the five Japanese vowels and nasals. Some problems were
however also found.

One of the problems of our system is gesture similarity. When similar gestures are
derived with the S2H system, speeches for those gestures are often confused. In order to
generate more articulate speech, gestures should be designed so that every gesture can be
easily discriminated.

The second problem is FO. In current framework, FO is generated frame-by-frame. FO is
however, a piecewise feature. More natural speech would be obtained if an FO generation
system in which longterm changes of F0 is taken account is introduced.

Most importantly, this system was not evaluated by non-expert users. The needs of
users are often difficult to determine for researchers at the lab. As soon as more practical
systems are realized, subjective user evaluations should be carried out with normal/non-

expert users.
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