# HFO-1123 冷媒の不均化反応の抑制に関する研究

47186716 張 之華 指導教員 飛原 英治 教授

HFO-1123 has a very low global warming potential (GWP) and ozone depletion potential (ODP); thus, it is proposed as a next-generation refrigerant in the fields of refrigeration and air conditioning. However, a short circuit of the motor winding in the refrigerant compressor under high temperature and pressure conditions may cause a disproportionation reaction of HFO-1123. Therefore, to commercialize the split air conditioner using HFO-1123, it is necessary to develop a technology to suppress the disproportionation reaction. In this study, disproportionation experiments were carried out under various temperature and pressure conditions. Using the two ignition methods, we experimentally determined the threshold pressure of the disproportionation reaction. The disproportionation reaction was photographed with a high-speed camera, and the flame temperature was measured using the two-color temperature radiometry method (H & B method). The experiment was performed using R32 and CF<sub>3</sub>I as the reaction inhibitor, and the suppression effect of the disproportionation reaction was evaluated.

Key words: Keywords: Refrigerant, HFO-1123, R32, CF<sub>3</sub>I, Reaction inhibitor, Disproportionation reaction.

### 1 背景

冷凍および空調の分野では、冷媒としてクロロフルオロ カーボン (CFC) およびハイドロクロロフルオロカーボ ン(HCFC)を使用することによる成層圏オゾン層の枯渇 を防止するため代替冷媒の開発が促進されてきた <sup>1)</sup>。しか し、HFC 冷媒はオゾン層破壊係数(ODP)が低いが、高 い地球温暖化係数(GWP)が原因で地球温暖化の原因物 質として規制対象になっている。モントリオール議定書が 改正され、HFC 冷媒のフェーズダウンが決定した後,国 連加盟国はハイドロフルオロオレフィン (HFO) などの 低 GWP 冷媒、および自然冷媒への転換が要求されている 2)。大気中で分解されやすく寿命が短い物質はGWP値が 小さくなるが、このことは大気中での反応性が高いことを 意味している。そのため新規冷媒として期待されている冷 媒は多くの場合、従来の物に比べ化学反応性が相対的に高 く、燃焼性が高く自己分解反応が発生するなどの欠点を持 っている 3)。

HFO-1123 の化学式は C<sub>2</sub>HF<sub>3</sub>となり、ハイドロフルオ ロオレフィン(HFO)と呼ばれる物質で、分子内に塩素 を含まないためオゾンを層破壊する影響がとほんとない。 また HFO-1123 は分子内に炭素間で二重結合をもつため 化学的な安定性が低く空気中での寿命が短い。Table 1 に 示されているように、HFO-1123 は非常に低い GWP と ODP を持っている。HFO-1123 の GWP 値は現在家庭用 ルームエアコンで広く使用されている HFC 冷媒 HFC-32

(R32)に比べ極めて小さいため冷凍および空調の分野で は有望な次世代冷媒として期待されている。また HFO-1123の沸点がR32とほとんど変わらないため、R32 の代替冷媒としても期待されている。

|     | HFC-410A | HFC-32 | HFO-1123 |
|-----|----------|--------|----------|
| ODP | 0        | 0      | 0.0      |
| GWP | 2090     | 675    | 0.3      |

Table 1 各冷媒の GWP 値と ODP 値

しかしながら、HFO-1123 は酸素など他の物質が無く ても高温高圧条件下で外部からエネルギーを投入された 時に Eq. 1 のような不均化反応を起こすことが知らされ ている 4)。これは急激な圧力と温度の上昇を伴う自己分解 反応である。HFO-1123 の不均化反応は次世代冷媒とし

て安全に使うには無視できない課題である 5。

 $2CF_2 = CHF \rightarrow CF_4 + 3C + 2HF + 500kJ$ 

(1)HFO-1123 を実用化した時のことを考えると、エアコ ンのコンプレッサー内のモーターで巻き線の間のショー トや電線のカバーの披露が原因で起きた放電とより不均 化反応が伝播し事故へ繋がる可能性がある。次世代冷媒と して安全に使用するには HFO - 1123 の安全性評価が必 要となる。まず不均化反応が起こる条件を明らかにすると ともに、反応を抑制する技術を開発する必要がある。

# 2 研究目的

本研究では、純粋な HFO-1123 と抑制剤を混合したガ スが様々な圧力と温度条件の時に不均化反応が伝播する 条件の境界線について調査を行う。また実験容器の窓部か ら高速カメラを用いて撮影した火炎動画から火炎温度を 求め、不均化反応が伝播した後には反応後ガスのサンプル を採取し、GC-MS で定性分析を行いガスの組成について も調査を行う。実験結果を基に HFO-1123 の不均化反応 の抑制剤の抑制効果を評価する。熱理論及び熱モデルの妥 当性の検討を行う。

### 3 熱理論による不均化反応解析

可燃性ガスの最小着火エネルギーEminの理論式は Eq.3.1 のような式が知られている。この理論では燃焼反 応は消火距離d<sub>min</sub>、未反応ガスの温度T<sub>u</sub>、既反応ガスの 温度T<sub>b</sub>、未反応ガスの各物性値から定められる最低着火エ ネルギー値がある。この最小着火エネルギーEminを上回 るエネルギーが投入された時は燃焼反応が伝播し、下回る 時は燃焼反応が伝播しないと説明される。

$$E_{min} = \frac{1}{6}\pi d_{min}^3 \rho_u C_p (T_b - T_u) \tag{3.1}$$

支配方程式に基づいて式を代入すると Eq.3.2 が得られ る。

$$E_{min} = B \frac{\lambda^{\frac{3}{2}} \rho_u}{c_p^{\frac{1}{2}} p_2^{\frac{3}{2}N} \exp(-1.5E/RT_b)} (T_b - T_u)$$
(3.2)

また Eq.3.2 に必要な物性値を REFPROP から近似して 用いると最小着火エネルギーEminは Eq.3.3 のように求め られる。

 $E_{min} = H \frac{(19+0.04T_u)^{\frac{3}{2}} (0.0518T_u + 40.566)}{(0.65+0.001T_u)^{\frac{1}{2}}p^{\frac{3}{2}N}} (1350 - T_u)$  (3.3) 最小着火エネルギー $E_{min}$ の式 Eq.3.3 の温度依存性と圧 力依存性にについて検討し、その後式 Eq.3.3 に基づいて HFO-1123 の不均化反応を評価した。評価結果を Fig. 1 に示す。溶断法の実験結果から N=5 の時、実験結果に一 番近い境界線が得られた。



 Fig. 1 最小着火エネルギーEの理論式に基づいた

 HFO-1123の不均化反応の評価

### 4 抑制剤の抑制メカニズム

本研究では HFO-1123 に他物質を混合することで HFO-1123 の不均化反応の伝播を抑制する抑制剤を探し た。抑制剤としては以下の二種類の抑制メカニズムが考え られる。

① HFO-1123 に不活性な物質を混合することで HFO-1123 の分圧を下げる効果や、投入エネルギーと不 均化反応の反応熱を吸収して希釈する効果(エネルギー密 度の低下)がある熱希釈効果により HFO-1123 の不均化 反応の伝播を抑制する抑制剤。

②ラジカルトラップあるいはラジカル捕捉効果により HFO-1123 の不均化反応の連鎖反応の途中で反応経路を 変えて活性ラジアルを取り除くことで反応を抑制する抑 制剤。

ー番目の抑制メカニズムの抑制剤としては R32、プロ パンガスと二酸化炭素などが考えられる。これらのガスは 不均化反応には参加しないため不均化反応の不活性物質 である。これらの物質は熱希釈効果による HFO-1123 の 不均化反応の伝播を抑制することが期待できる。本研究で は R32 をこの抑制メカニズムの抑制剤として純冷媒 HFO-1123 と混合しその抑制効果について調べた。

二番目の抑制メカニズムの抑制剤としては CF<sub>3</sub>I、 CHF<sub>2</sub>I、CH<sub>2</sub>FI、CH<sub>3</sub>CF<sub>2</sub>I などのヨウ素ラジカルを含ん だハロゲン化アルキルが考えられる。これらの物質は高温 状態で熱分解し、ヨウ素ラジカルが HFO-1123 の不均化 反応の連鎖反応で活性な水素のラジアルを取り除いて不 均化反応の伝播を途中で抑制する<sup>677</sup>。本研究ではエッチ ングガスと消火剤で広く使用されている CF<sub>3</sub>Iをこの抑制 メカニズムの抑制剤として純冷媒 HFO-1123 に混合しそ の抑制効果について調べた。CF<sub>3</sub>I は強い日照で分解する ため、GWP 値は非常に低く 0.4 である。

### 5 実験概要

HFO-1123の不均化反応を観察し、実験で不均化反応 条件の境界線について調査するための実験装置を Fig.2 に示す。実験方法としては室温で耐圧容器に HFO-1123 純冷媒か混合冷媒を導入し、その後実験の目標温度まで加 熱する。温度が目標温度まで至ってから鋼製圧力容器内の 圧力を目標圧力まで調整した後に着火源に電圧を印加し 実験容器内へエネルギーを投入する。着火源付近で不均化 反応が開始し、それが伝播するかどうかを圧力と温度変化 から判定するとともに、実験容器に設置されている上下の 両方の窓部から高速カメラを用いて不均化反応が伝播す る過程を観察することができる。本研究では、HFO-1123 純冷媒、また抑制メカニズムが異なる二種類の抑制剤 R32 と CF<sub>3</sub>I との混合ガスで不均化反応が伝播する境界圧力 と温度条件について調査を行った、実験結果を基に各抑制 剤の抑制効果を評価した。



Fig.2 実験装置の概要



#### 6.1 溶断法の実験結果

本研究では投入エネルギーが制御し易い溶断法で 100℃、130℃、150℃と 170℃の四つの初期温度条件で HFO-1123 の不均化反応が伝播する境界圧力条件につい て調べた。温度と圧力上昇が確認できたら不均化反応が伝 播したと判定する。溶断法で行った不均化反応実験の実験 結果を Fig. 3 に示す。



Fig. 3 溶断法の純冷媒不均化反応実験の実験結果

#### 6.2 アーク放電法による不均化反応実験

溶断法で実験を行っていたが、実用化した時エアコンの コンプレッサー内のモーターで放電が起きたことが原因 で不均化反応が伝播し事故に繋がる可能性があるため着 火法を実際の放電の条件に近いアーク放電に切り替え HFO-1123 純冷媒の不均化反応が伝播する初期圧力と温

3/4

度条件の境界条件について調査した。モーター内の電磁力 が働く最高温度が 150℃前後であるため不均化反応が一 番伝播し易い温度条件 150℃で HFO-1123 純冷媒及び抑 制剤との混合ガスの不均化反応が伝播する境界圧力条件 について詳しく調べた。

純冷媒の実験結果を Fig. 4 に示す。結果から着火法を 溶断法からアーク放電法に切り替えたが HFO-1123 の不 均化反応が伝播する境界圧力条件はほとんど変わらず 0.77MPa 付近であった。



Fig. 4 アーク放電法の純冷媒不均化反応実験の結果

アーク放電法で HFO-1123 の不均化反応実験を行った ガスの組成は Fig. 5 のようになる。



Fig.5 放電法で不均化反応実験を行ったガスの組成

アーク放電法で行った HFO-1123 純冷媒及び混合ガス の実験結果を三角図にまとめると Fig. 6 のようになる。



Fig. 6 HFO-1123 純冷媒及び混合ガスの実験結果



## 7.1 R32 の抑制効果の評価

R32 の混合量と混合ガスの不均化反応が伝播する境界 圧力条件を Fig. 7 に示す。実験結果から R32 は混合量が ある一定値を超えないと大きな抑制効果が得られないこ とが分かった。また二種類の抑制メカニズムが異なる抑制 剤を同時に混合すると抑制剤の相乗効果が得られること が分かった。



Fig. 7 R32 の抑制効果の評価

7.2 CF3I の抑制効果

CF<sub>3</sub>I の混合量と混合ガスの不均化反応が伝播する境界 圧力条件を Fig.8 に示す。実験結果から CF<sub>3</sub>I は少量で高 い抑制効果が得られるが、ある一定値を超えると混合量を 増やしても抑制効果は大きく変化しない。原因はラジカル 捕捉による抑制効果は連鎖反応の初期ステージでしか効 かないからだと考えられる。同じく抑制剤の相乗効果が確 認できた。



Fig. 8 CF<sub>3</sub>I の抑制効果の評価

# 8 二色法による温度測定

燃焼現象を熱モデルを用いて解析する際には火炎温度 が重要なパラメータとなる。不均化反応も燃焼反応に近い 面があるので、火炎温度を測定できれば、有益な情報が提 供されると考えられる。本研究では高速カメラで不均化反 応が伝播する火炎動画を撮影し、ソフトウェア「サーミア ス」で火炎動画から火炎温度を求めた。実際に撮影した火 炎動画は Fig. 9 のようになる。



Fig.9 実際に撮影した火炎動画

温度測定ソフトウェア「サーミアス」を用いて火炎動画 から火炎温度を測定した結果を Fig. 10 に示す。右上の火 炎温度のヒストグラムから火炎温度の変化範囲が分かっ た。



Fig. 10 「サーミアス」の夜温度測定の結果 各混合ガスの火炎温度測定結果をまとめると Fig. 11 の ようになる。



Fig. 11 火炎温度の測定結果

### 9 GC-MS による不均化反応生成ガスの定性分析

二種類の抑制メカニズムが異なる抑制剤を同時に混合 した混合ガスの不均化反応後生成ガスの組成分析結果を Fig. 12 に示す。分析結果を比較することで R32 は反応経 路を変えて不均化反応の伝播を抑制する効果より熱希釈 効果による抑制効果が大きいことが分かった。また CF<sub>3</sub>I は中間生成物が検知されたためヨウ素ラジカルのラジカ ルトラップ効果により反応経路を変えて抑制したと考え られる。



Fig. 12 GC-MS よる反応後生成ガス組成分析の結果

結論

本研究では熱理論から得た最小着火エネルギーEminの

理論式及び修正式に基づいて HFO-1123 の不均化反応を 評価した。

純冷媒及び抑制剤を混合した混合ガスで不均化反応実 験を行い、実験結果から各抑制剤の混合量と混合ガスの HFO-1123 の不均化反応が伝播する境界条件を比較する ことで抑制剤の抑制効果を評価し、二種類の抑制メカニズ ムが異なる抑制剤を同時に混合すると抑制剤の相乗効果 が得られることが分かった。評価した結果に基づき次世代 冷媒の各条件を満たした混合ガスの組成の有望な領域が Fig. 13 に示されている範囲にあることが分かった。



Fig. 13 次世代冷媒として有望な混合ガスの組成 温度測定ソフトウェア「サーミアス」を用いて火炎温度 を測定し、R32 を混合すると火炎温度が熱希釈効果によ り下がることが分かった。

GC-MS で反応後生成ガスの組成を調べ CF<sub>3</sub>I はラジカ ル捕捉効果により反応経路を変えて不均化反応を抑制す ることが分かった。

# 文献

- 1) 経済産業省「燃焼性試験方法の調査報告書」
- 日本冷凍空調学会「微燃性冷媒リスク評価研究 会 最終報告書」
- SI による上級冷凍受験テキスト」pp.31-33 日本冷凍空調学会,(1997)
- 4) DuPont Central R&D, Wilmington, Del. Chemical & Engineering News (22 Dec 1997) Vol. 75, No. 51, pp. 6.
- 5) Ya.A.Lisochkin, et al., Combustion, Explosion, and Shock Waves, 42(2), 2006, 140-143
- 6) Haruhiko Fukaya, Yoshio Hayakawa, Hidekazu Okamoto, Katsuya Ueno, Tetsuo Otsuka, Theoretical study of disproportionation reaction of fluorinated ethylenes, Journal of Fluorine Chemistry, Volume 200, August 2017, Pages 133-14
- 7) O. MathieuJ. GoulierF. GourmelM.S. MannanN. ChaumeixE.L. Petersen, Experimental study of the effect of CF3I additionon the ignition delay time and laminar flame speed of methane, ethylene, and propane, Proceedingsof the Combustion Institute, Volume 35, Issue 3, 2015, Pages 2731-2739