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Abstract

Appearance of objects in captured images and videos not only relies on

objects themselves, but also significantly depends on imaging sensors

and illuminations. Therefore, investigating how light emitted from

light source interacts with objects and sensors has been an important

task for a variety of applications in computer vision field. It is well

known that light spans in a wide wavelength range, thus this inter-

action should be analyzed in spectral domain. However, it is hard to

carry out the analysis because dominating equipments usually provide

RGB 3 values only which are far from enough for spectral information

estimation in the visible wavelength range. To deal with this problem,

we present a framework for estimating spectral information of objects,

cameras and illumination in this thesis.

First, we show a system to recover spectral reflectance of objects

with high temporal resolution. Spectral reflectance offers intrinsic

characteristics of objects that are independent of illuminations and

sensors. This direct representation about the objects is useful for

solving many computer vision problems. However, existing methods

for spectral reflectance recovery are limited either by their low tem-

poral resolution or requirement for special hardware. To remove these

limitations, we present a novel system for spectral reflectance recov-

ery by exploiting the unique color-forming mechanism of Digital Light

Processing (DLP) projectors. DLP projectors use color wheels which

are composed of several color segments and rotate quickly to produce

desired light. We make effective use of this mechanism and show that

a DLP projector can be used as a light source with spectrally distinct

illuminations when we capture scenes’ appearance under the projec-

tor’s irradiation by a high-speed camera. Our imaging system is built
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on easily available devices and capable of conducting spectral mea-

surements at 100Hz. Based on the measurements obtained by our

system, spectral reflectance of the scene is recovered using a linear ap-

proximation of surface reflectance. We carefully evaluate the accuracy

of our system and demonstrate its effectiveness by spectral relighting

of dynamic scenes with fast-moving objects.

Then, we use fluorescence to estimate camera spectral sensitivity

under unknown illuminations. Camera spectral sensitivity is an indis-

pensable factor for various color-based computer vision tasks. Though

several methods have been proposed to estimate it, their applications

are all severely restricted by the requirement for a known illumination

spectrum. In this thesis, we present a single-image estimation method

using fluorescence with no requirement for a known illumination spec-

trum. Under different illuminations, the spectral distributions of flu-

orescence emitted from the same material remain unchanged up to

a certain scale. Thus, a camera’s response to the fluorescence would

have the same chromaticity. Making use of this chromaticity invari-

ance, the camera spectral sensitivity can be estimated under an ar-

bitrary illumination whose spectrum is unknown. Through extensive

experiments, we proved that our method is accurate under different

illuminations.

Finally, based on the estimated camera spectral sensitivity, we

show how to recover spectra of daylights with high accuracy. Making

use the estimated camera spectral sensitivities and daylight spectra,

color correction problems can be solved. Results show that images

after the correction match the target images well.
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Chapter 1

Introduction

To a lot of vision tasks, such as image based 3D modeling, tracking, object

recognition etc, objects’ appearance is the basic input. To acquire objects ’

appearance, the fundamental approach is using cameras to take images or

videos. However, in captured images or videos, objects’ appearance not only

relies on objects themselves, but also relates to illumination and sensors.

Sometimes, the appearance variation caused by different illuminations or

different sensors would result in failure of existing methods. So, exploring

how illumination, objects and sensors interact with each other in imaging

process has become a basic problem for a wide range of research fields, e.g.

computer vision, computer graphics and digital image processing.

1.1 Motivations

Light is electromagnetic radiation that has a wide wavelength range. Its

spectral distribution is known as illumination spectrum. When light emit-

ted from light sources reaches objects’ surface, a portion will get reflected.

To light with different wavelength, different portion will get reflected, this
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is called spectral reflectance of objects, a property determined by objects

themselves. If reflected light is perceived by cameras, it will be transformed

into RGB or gray-scale values. The relationship between light with different

wavelength and the different output is termed as camera spectral sensitivity,

a property of sensors. From above discussion, we know that, objects, camera

and illumination interact with each other in spectral domain. Therefore, their

properties and the interaction among them should be modeled and analyzed

in spectral domain. However, it is not easy to get their spectral information

based on off-the-shelf components. Not only because the required equipments

for spectral measurement, like spectrometer, are expensive; but also due to

the fact that measurement is hard to be conducted for the laborious calibra-

tion and the time-consuming process. To make the estimation convenient

and more practical, several methods are proposed in this work. We hope

these methods will offer researchers an easier and more practical approach

for estimating spectral information of objects, cameras and illumination.

1.2 Overview

Objects, camera and illumination are 3 independent factors. Therefore, we

intuitively divide our task into three sub-tasks in this thesis: (1) Recovering

spectral reflectance of objects; (2) Estimating spectral sensitivity of cameras;

(3) Estimating spectrum of illumination. The overview of this thesis is given

as follows:
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1.2.1 Recovering spectral reflectance of objects in dy-

namic scene.

Spectral reflectance offers intrinsic characteristics of objects that is inde-

pendent of illuminations and imaging sensors. This direct representation

about objects is useful for solving many computer vision problems, like color

constancy, material discrimination and relighting. For recovering spectral

reflectance, most existing methods focus on static scene. Recently, how to

do this recovery for dynamic scene has attracted more and more attentions.

Several methods are proposed. But, these works require specially designed

hardware, e.g. LED clusters, which makes their systems hard to be dupli-

cated by other users. To deal with this problem, we present a novel system

for spectral reflectance recovery with high temporal resolution by using Dig-

ital light processing (DLP) projectors. DLP projectors use color wheels to

produce colors. For color wheels rotate at high rates, light emitted from

DLP projectors varies rapidly. Using high-speed cameras to capture scenes’

appearance under a projector’s irradiation, the DLP projector can be seen as

a light source with spectrally distinct illuminations. Representing spectral

reflectance with a linear model, spectral reflectance of scene points can be

estimated by their appearance under these distinct illuminations. The ad-

vantage of our imaging system is that: (1) The whole system is built on easily

available devices, no self-made components is used. A similar system can be

built easily. (2) Using DLP projectors, working space is comparatively big,

calibration is simple. (3)Our system is capable of conducting spectral mea-

surements at 100Hz, which is the fastest system as far as we are concerned.

It can be used to measure scene with fast moving objects.
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1.2.2 Estimating camera spectral sensitivity without

knowing illumination spectrum.

Camera spectral sensitivity is the connection between perceived light and

output values of cameras, which plays an indispensable rule to a lot of color-

based applications, such as color constancy and multispectral imaging. To

estimate camera spectral sensitivity, former works need to know spectral

distributions of illumination, which can be measured by spectrometer only.

This requirement greatly limits the applicability of existing methods. In this

thesis, we use fluorescence instead of reflectance to remove the requirement

for illumination spectrum. Under different illuminations, spectral distribu-

tions of fluorescence emitted from the same fluorescent material have the

same shape but different scales. So the response of a camera to the fluores-

cence would have the same chromaticity but different intensities. Using this

chromaticity invariance of fluorescence, we propose a single-image method to

estimate camera spectral sensitivity without knowing illumination spectrum,

by which the practicability can be significantly improved. For fluorescence,

a calibration board is built by smearing different fluorescent paint on a black

board. Through calibration, their spectral reflectance and emission spectra

are acquired. Expressing camera spectral sensitivities with a limited number

of Fourier basis functions, sensitivity of camera can be estimated by the flu-

orescent components of the calibration board. Through estimating spectral

sensitivities of different cameras under different illuminations whose spectral

distributions are unknown, the robustness and the accuracy of our method

have been demonstrated.
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1.2.3 Estimating spectrum of daylight reusing the im-

age for camera spectral sensitivity estimation.

Daylight is the combination of all direct and indirect sunlight during the

daytime. For a big portion of images are captured under daylight conditions,

knowing spectrum of daylight would be very helpful to outdoor imaging.

In this thesis, we are capable of estimating spectrum of daylight just by

the same image captured for camera spectral sensitivity estimation. This

means that, by only one image, we are able to estimate not only camera

spectral sensitivity, but also daylight spectrum. Through experiments, it can

be learned that estimated results match the ground truth very well. Next, we

apply estimated camera spectral sensitivities and daylight spectra to color

correction problems. After color correction, difference between images about

the same scene but under different daylights or captured by different cameras

can be reduced significantly. Here, we limit the estimated illumination to

daylight due to the fact that: dimensionality of illumination is much higher

than reflectance, it is impossible to do the estimation through reflection. On

the other hand, daylight can be well approximated by 3 bases. So, in this

work, we estimate daylight only.
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Chapter 2

Estimating spectral reflectance

of objects in dynamic scene

2.1 Background

The amount of light reflected on an object’s surface varies for different wave-

lengths. The ratio of spectral intensity of reflected light to incident light is

known as the spectral reflectance. It is an intrinsic characteristic of objects

that is independent of illuminations and imaging sensors. Therefore, spectral

reflectance offers direct descriptions about objects that are useful to computer

vision tasks, such as color constancy [Fin95], material discrimination [SH99],

relighting [AACP99] etc.

Several methods have been proposed for spectral reflectance recovery.

Maloney used an RGB camera to recover the spectral reflectance under am-

bient illumination [MW86]. This method is limited by its low recovery ac-

curacy due to its RGB 3-channel measurements. To get measurements that

contain more than 3 channels, some works attach filters to a light source to

modulate the illumination [CHM10] or sequentially place a set of band-pass
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filters in front of a monochromatic camera to produce a multi-channel cam-

era [Tom96]. Since switching among filters is time-consuming, these methods

are unsuitable for dynamic scenes. To increase temporal resolution, specially

designed clusters of different types of LEDs were created [PLGN07]. The

LED clusters work synchronously with an RGB camera for conducting spec-

tral measurements at 30 fps. Since such self-made light sources, as well as

the controller for synchronization, are not easily available, a level of effort is

required to build a similar system.

What we seek is a practical system for fast spectral reflectance recov-

ery built on easily available devices. In this thesis, we exploit the unique

color-forming mechanism of Digital Light Processing (DLP) projectors and

apply it for spectral measurements. DLP projectors use color wheels to pro-

duce the desired light. The color wheels are composed of several specially

designed color segments, and light that gets through these segments has spe-

cific spectral distributions. In other words, DLP projectors are capable of

providing several spectrally distinct illuminations. When the color wheels ro-

tate, the light emitted from the DLP projectors rapidly switches among these

illuminations. Making use of this temporal switch of illumination, we built

an imaging system that takes spectral measurements with a high temporal

resolution.

In the system, a DLP projector is used as a light source, and a high-speed

camera is used to capture the scenes’ appearance under the projector’s ir-

radiation. In order to reduce the number of required measurements for an

accurate spectral reflectance recovery, we represent the spectral reflectance

as a linear combination of a limited number of spectral bases, which was

done in previous studies [J.C64, PHJ89]. Using this linear model, the spec-

tral reflectance of the scene points can be reconstructed by using every five

8



consecutively captured frames.

Our contributions are summarized below.

• Dense temporal spectral measurement: Our system is capable of

taking spectral measurements at 100 Hz. This enables measurement for

the fast-moving objects, and the recovered results are degraded little

by motion artifacts.

• Easily built imaging system: Considering that high-speed cameras are

becoming readily available in end-user markets, and our system does

not require synchronization between the projector and the camera, a

similar system can be easily replicated by others. Furthermore, using

a DLP projector as a light source, the irradiation uniformity within

the entire projection plane can be guaranteed, so the calibrations are

simple and the working volume is large.

This chapter is organized as follows. Section 2.2 gives a brief review of

the related works about spectral reflectance recovery and DLP-based active

vision. Section 2.3 presents our imaging system and its use for spectral

reflectance recovery. Section 2.4 verifies its spectral accuracy and temporal

accuracy by Macbeth ColorChecker. Section 2.5 shows the relighting results

of static and dynamic scenes. We conclude this chapter in Section 2.6.

2.2 Related works

2.2.1 Spectral reflectance recovery under passive illu-

mination

Spectral reflectance can be recovered under passive illumination. Maloney

and Wandell used color constancy for spectral reflectance recovery in a scene
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with incomplete knowledge of ambient light[MW86]. When using an RGB

3-channel camera as the sensor, surface reflectance had only 2 degrees of

freedom which severely limits the accuracy of this method. For accurate

results, Tominaga put a set of band-pass filters in front of a monochromatic

camera to get measurements more than 3 channels[Tom96]. Because different

filters allow light in different wavelength range to get through, Intensities

of reflected light in those ranges can be represented by captured images.

However, high spectral accuracy requires a large set of filters, and these

filters need to be exchanged one by one. The trade-off for accurate spectral

resolution is the low temporal resolution. Thus, this method is unsuitable

for dynamic scenes.

2.2.2 Spectral reflectance recovery by active illumina-

tion

Other existing methods for spectral reflectance recovery rely on active il-

lumination. DiCalro and Wandell recovered the spectral reflectance as an

intermediate result [DXW00]. In their work, flash and no-flash image pairs

were captured by an RGB camera. Using these image pairs, the authors com-

puted flash-only images, and used them to estimate the spectral reflectance.

Because the flash-only images have 3 measurements only (RGB), spectral re-

flectance was expressed as a combination of three spectral bases. Therefore,

like Ref. [MW86], the accuracy of recovered reflectance is limited. To recover

spectral reflectance with high accuracy, D’Zmura proposed a method using

distinct illuminations[D’Z92], but the author only showed the results using

synthetic data, and how well the proposed method works for real scenes was

left unknown. Cui et al. proposed an algorithm for selecting an optimized set

of wide-band filters, and built a multi-illumination system[CHM10]. They at-
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tached the selected filters to a light source, and used it as an additional light

source for spectral reflectance recovery under ambient illumination. This

method works well for static scenes. But, switching among different illumi-

nations is time-consuming, so the system is not applicable for moving objects.

To measure the dynamic scenes, Park et al. built an imaging system based

on multiplexed illumination [PLGN07]. They focused on the combinations

of different LEDs and built LED clusters to capture 30 fps multi-spectral

videos. However, their system requires specially built LED clusters and syn-

chronization between the LED clusters and a camera. Accordingly, their

system is not easily available. Moreover, using these self-made LED clusters,

irradiation uniformity can be guaranteed only in a small area, so the working

volume is quite limited.

2.2.3 Multispectral imaging

Multispectral imaging is a technique which is widely used in remote sens-

ing [Jas96] to retrieve spectral information of reflected light. If the spectral

distribution of incident light is known, spectral reflectance can be calculated

easily. Therefore, it is a research field which is different but closely related to

our work. For multispectral imaging has attracted researchers attention more

than a half century, a lot of works are published. Among these works, some

measure spectra of scene points directly by trading off temporal resolution

[Gat00b, YHF+06b, RJ99, HRMT94, ROGW98, HOH+94, MRT08]; some

trade off spatial resolution [KN07, HFHG+05, WLP04, LPL+05, WFHH05];

some use computed tomography [DD95, VMHD07, TOY93, DVD+97, JMMB97,

WRJB06, HDS06, HD08]; some employ coded aperture images [BG06, GOL49,

SBMS93, HVJ00, MEGS07, AWB08, AAWB09].

Multispectral imaging systems can be built by using filters [YHF06a],
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tunable filter [Gat00a] or spatially varying filter [SN02]. The low temporal

resolution of these filter-based systems limits their application for dynamic

scenes. For multispectral imaging at video rate, Du et al put a triangular

prism in front of a monochromatic camera to disperse light into constitute

spectra [DTCL09]. However, this system is limited by its low SNR because a

occlusion mask has been used, and a tradeoff between spatial resolution and

spectral resolution is inevitable.

2.2.4 Active vision using DLP projector

In computer vision field, many works have been done by making use of DLP

projector. Nayar et al. implemented a programmable imaging system us-

ing a modified DLP projector-camera pair [NBB06]. Users can control the

radiometric and geometric characteristics of the captured images by this sys-

tem. Narasimhan et al. exploited the temporal dithering of DLP projectors

for a wide range of applications, such as high frequency structured light,

photometric stereo and so on[NKY08]. Zhang and Huang used the fast il-

lumination variation caused by the collaboration between the DMD and the

color wheel of a DLP projector for real-time 3D shape measurements [ZH04].

All these three works removed color wheels, and utilized the fast alternation

between the “on” and “off” statuses of the digital micromirror device in DLP

projectors; the spectral information was disregarded. In contrast, we use the

spectral information from the emitted light for the spectral reflectance re-

covery. Our work is the first to recover spectral reflectance using a DLP

projector.
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Figure 2.1: 8 bases for spectral reflectance

2.3 Spectral Reflectance Recovery

2.3.1 Three steps for spectral reflectance recovery

There are three factors related to captured image: the incident light, the

scene, and the camera. Suppose the camera has a linear intensity response,

this relationship can be expressed as

Im,n =

∫
s(λ)cm(λ)ln(λ)dλ, (2.1)

where λ is the wavelength, Im,n is the intensity of a scene point in a captured

frame, s(λ) is the spectral reflectance of that point, cm(λ) is the spectral

sensitivity of the camera at the mth color channel, and ln(λ) is the spectrum

of the nth illumination.

The goal of this chapter is to recover spectral reflectance s(λ) in a visible

range (400−−700[nm]). From Eq. (2.1), we can see that a large set of spec-

trally distinct measurements are required if we want to recover s(λ) with high

spectral resolution. To reduce the number of required measurements without

13



sacrificing spectral resolution, we approximate the spectral reflectance as a

combination of a limited number spectral basis functions. This approxima-

tion procedure was also used in former works [PLGN07, DXW00].

Several linear models [J.C64, PHJ89] and a nonlinear model [DXW03]

have been built by using principal component analysis [TB06] or other tools

(see Ref. [KPJ06] for a review about surface reflectance approximation).

With regard to how many bases are required for accurate reconstruction,

different works have different conclusions [J.C64, PHJ89, Dan92, CCO00,

Mal86]. We adopt an 8-dimension linear model for spectral reflectance de-

rived from Ref. [PHJ89] on account of its high reconstruction accuracy. On

the basis of this linear model, the spectral reflectance is represented as

s(λ) =
8∑

j=1

αjbj(λ), (2.2)

where bj(λ)(j = 1, 2, .., 8) is the jth spectral basis from Ref. [PHJ89] (spec-

tral resolution:10nm) which is show in Fig. 2.1, αj is the corresponding coef-

ficient. These 8 bases are computed through K-L transformation on the basis

of spectral reflectance of 1257 Munsell color chips. Substituting Eq. (2.2) for

Eq. (2.1), we obtain

Im,n =
8∑

j=1

αj

∫
bj(λ)cm(λ)ln(λ)dλ (2.3)

Here, we first estimate αj from observed Im,n. Then, spectral reflectance

s(λ) is reconstructed by substituting αj into Eq. (2.2).

As shown in Fig. 2.2, our imaging system is composed of a one-chip DLP

projector, a high-speed RGB camera with a linear intensity response and a

standard diffuse white board which is optional. Using this system, we do

spectral reflectance recovery in the follow three steps.
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Figure 2.2: Prototype System. Composed of a DLP projector (PLUSTMU2-

1130), a high-speed camera (PointGreyTM Lightning) and a white board

(labsphereTM SRT-99).

1. Image acquisition: Scene’s appearance under the projector’s irradiation

Im,n, is acquired by using the high-speed camera. Every five consecutive

frames are used as one measurement for the spectral reflectance recovery.

(Section 2.3.2)

2. Illumination recovery: Illumination spectra, ln(λ), changes from frame

to frame. To recover the illumination of captured frames, we proposed two

methods: one uses the white board as a calibration target; the other one uses

captured image sequence. (Section 2.3.3)

3. Spectral reflectance reconstruction: Based on the 8-dimensional lin-

ear model, spectral reflectance s(λ), can be reconstructed from the acquired

images and recovered illumination. (Section 2.3.4)

In the following parts, we explain each of these steps in detail.
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Figure 2.3: Color switch caused by rotation of color wheel. In our system,

the DLP projector is equipped with a RGB 3-segment color wheel, thus color

verifies among RGB 3 kinds of light temporally.

2.3.2 Image acquisition by color switch

Different from other kinds of projectors, DLP projectors use color wheels to

produce the desired light. The color wheel consists of several color segments,

and these segments only allow light in a specific wavelength range to get

through. When the color wheel quickly rotates, the light emitted from DLP

projectors changes rapidly. In our work, this temporal variation in light is

referred to as “color switch”. A diagrammatic sketch is shown in Fig. 2.3. In

our system, a DLP projector equipped with a 3-segment color wheel has been

used (PLUSTMU2-1130). since the color wheel rotates at 120 rps (revolution

per second), color switch occurs at 360 Hz (3× 120).

The human eyes, and common video cameras work at low rates (24−−30

[Hz]), and thus they cannot detect the color switch. Here, a 500 fps cam-

era (PointGreyTM Lightning) is adopted to take images of scenes under the

projector’s irradiation. The camera outputs 24bit (8 × 3) color images at a

SXGA resolution (1280 × 1024). For camera’s intensity response, we adjust

shutter speed of the camera, corresponding response in RGB 3 channels are

plot in Fig. 2.4. We can see that our high speed camera has linear inten-

sity response and in and shift caused by dark current exist. In addition,
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Figure 2.4: Through adjusting camera’s shutter speed, its linear intensity

response in RGB 3 channels can be verified.

the spectral sensitivity of the camera cm(λ) (m = 1, 2, 3), was measured by

using a monochromator and a spectrometer. The monochromator is used to

generate a sequence of narrow-band lights. The spectral radiance of these

lights is measured by the spectrometer. We expose the camera’s sensor to the

narrow-band lights and capture images. The relationship between the RGB

values in the captured images and the spectral radiance of the corresponding

lights, i.e., spectral sensitivity, is shown in Fig. 2.5. During one rotation of

the color wheel, the high-speed camera can capture 4.17 frames. So, we use

five consecutive frames as one measurement for the spectral reflectance re-

covery. Fig. 2.6 shows one measurement about Macbeth ColorChecker. We

can see that the scene’s appearance clearly changes under the color switch of

the DLP projector. It should be noted that the color switch occurs at 360Hz,

but the camera operates at 500 fps, so the projector and the camera work

asynchronously.

2.3.3 Illumination recovery

To keep our system simple, we do not synchronize the projector and the

camera. Due to the asynchronism, the illumination changes from frame to

17
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Figure 2.5: Camera’s spectral sensitivity for RGB 3 channels which is pre-

calibrated by a monochromator and a spectrometer.

Figure 2.6: One measurement of Macbeth ColorChecker which contains 5

frames captured sequentially by the 500 fps camera in 1/100s. Appearance

variation of the ColorChecker under colorswitch can be observed
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Figure 2.7: Spectra of three distinct illuminations of the DLP projector.

These measurements are captured by a spectrometer whose shutter speed is

fixed to a relatively big number to keep the measurements accurate.

frame. For spectral reflectance recovery, we need to know corresponding

illumination for each captured frame. Therefore, we describe how to recover

the illumination spectrum ln(λ) of captured frame in this section.

Using a calibration target

As mentioned above, light that gets through different segments on color

wheels has distinct spectral distributions. If we use these spectral distri-

butions as the illumination bases, light emitted from the DLP projectors can

be expressed by a linear combination of these bases. In our system, since

the three segments of the color wheel correspond to the RGB color filters,

we can acquire these three distinct illuminations by inputting the projector

(255, 0, 0), (0, 255, 0), and (0, 0, 255) respectively. Their spectra, which

are measured by a spectrometer, are shown in Fig. 2.7. For each frame, its

illumination spectrum, ln(λ), can be represented as

ln(λ) =
3∑

k=1

βn,kpk(λ), subject to βn,k ≥ 0, (2.4)
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where pk(λ) is the spectrum of the kth illumination basis of the DLP projec-

tor, βn,k is the corresponding coefficient.

We place a standard diffuse white board (labsphereTM SRT-99) within

the scene as a calibration target.By using Eqs.1 and 4, the brightness of a

surface point on the white board is

Iwm,n =
3∑

k=1

βn,k

∫
pk(λ)s

w(λ)cm(λ)dλ, (2.5)

where Iwm,n is the intensity of that point, and sw(λ) means its spectral re-

flectance. Use Pk,m to represent the intensity of the point at the mth channel

under the kth illumination basis

Pk,m =

∫
pk(λ)s

w(λ)cm(λ)dλ (k = 1, 2, 3), (2.6)

Eq. (2.5) can be rewritten as

Iwm,n =
3∑

k=1

βn,kPk,m, (2.7)

Pk,m(k = 1, 2, 3) can be measured by using the high-speed camera to capture

images of the white board under three distinct illuminations of the projector.

We only need to measure them once in advance.

From Eq. (2.7), we see that the intensity of a surface point on the white

board under illumination ln(λ) is a linear combination of its intensities under

three illumination bases

Iw
n =

[
Iw1,n Iw2,n Iw3,n

]T
= P wβn, (2.8)

where Iw
n represents the RGB value of a surface point on the white board un-

der the nth illumination, P w is a 3×3 matrix consists of Pk,m(k = 1, 2, 3, m =

1, 2, 3), βn is the corresponding 3× 1 coefficient vector.
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In principle, βn can be calculated by βn = (P w)−1Iw
n easily. However,

due to the noise , βn,k (k = 1, 2, 3) may sometimes be negative. This conflicts

with the non-negative constraint of Eq. (2.4). Thus, we solve βn as a non-

negative least squares problem:

βn = argmin
βn

| Iw
n − P wβn |2, subject to βn,k ≥ 0 (k = 1, 2, 3) (2.9)

Using calculated βn, illumination spectrum ln(λ) can be reconstructed

by using Eq. (2.4).

Without using the calibration target

As described above, illumination of captured images can be recovered by

using the white board as a calibration target. This method is simple and

efficient, but the drawbacks of using the white board are also obvious: (1)

a portion of space is occupied; (2) images of the white board under distinct

illuminations need to be captured in advance. So, we want to remove the

white board from our system, and recover the illumination of captured im-

ages by appearance of scenes in captured images. For this goal, we need to

establish the relationship between illumination and scenes’ appearance.

Observe the captured images which are shown in Fig. 2.6, we can learn

that scene’s appearance is closely related to corresponding illumination. If

we can model the relationship between illumination and scene’s appearance,

illumination of captured images can be recovered through exploring scene’s

appearance.

To model this relationship, we need to know how illumination varies

among images. So, we used the method introduced above to calculate βn,k

(k=1,2,3) of 1000 sequentially captured images. Their distribution is plotted

in Fig. 2.8. From these plots, we can learn that:
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Table 2.1: One-to-one correspondence between (X+ q
500

)mode 1
120

(q=0−−24)

and X + q
3000

(q=0−−24).

1. Although all 3 coefficients vary dramatically among these 1000 images,

their peak values are almost constant 1.

2. Fig. 2.9 shows βn (k=1,2,3) of 100 sequentially captured images. The

peak values of all 3 coefficients appear at least 4 times in every 100 captured

images. In other words, among every 25 consecutively captured images, for

each k (k=1,2,3), there are at least one image whose kth coefficient is very

close to 1.

The explanation for observation 1 is simple. βn,k indicates the share of the

kth illumination basis for the nth captured image. Because the high speed

camera of our system works at 500fps which is higher than the frequency of

colorswitch (360Hz), when illumination for captured images is composed of

only 1 illumination basis, their coefficients to that illumination would be 1,

the coefficients corresponding to the other illumination bases would be 0.

Observation 2 can be proved. For the DLP projector used in our system
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Figure 2.10: Light emitted from DLP projector can be expressed as 120Hz

periodic signals (Upper). And, their corresponding integral appears as 120Hz

trapezoid signal (Lower).
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is equipped with a 3-segment color wheel which rotates at 120 rps, 3 distinct

illumination emitted from it can be expressed by 120Hz periodic step signals

shown in Fig. 2.10. Our camera works at 500 fps, integral of the periodic step

signals during the exposure time of one image, i.e., 1/500s, can be calculated

as

βn,k =

∫ X+ n
500

X+n−1
500

lk(t)dt. (2.10)

Here, X is used to indicate an arbitrary time point.

βn,k (n = 1, 2, ...)are discrete samples of continue functions βk which are

shown in Fig. 2.10. It is clear that βk are also 120Hz periodic signals and

appear as isosceles trapezoids. The upper bases of these trapezoids indicate

the peak values. βk of 25 consecutively captured images correspond 25 sam-

pling points with equidistant on the ”trapezoid signal”, sampling instant is

X + q
500

(q=0−−24). Since the ”trapezoid signal” are 120Hz periodic sig-

nals, sampling points at X + q
500

and (X + q
500

)mode 1
120

have the same value.

And, tab. 1 shows that a one-to-one correspondence can be found between

(X+ q
500

)mode 1
120

and X+ q
3000

(q=0−−24). Thus, the values of 25 sampling

points at X + q
500

(q=0−−24)can be expressed by the value of 25 points at

X+ q
3000

(q=0−−24). In each period, peak values of the βk lasts (
1

360
− 1

500
)sec,

and ( 1
360

− 1
500

) > 2 × 1
3000

, so peak values of βk would appear at least once

in every 25 consecutively captured images.

Superimpose βn,k of every 25 consecutively captured images 10 times,

results are shown in Fig. 2.11. Clearly, coefficients repeat every 25 images.

To different setup, in which camera does not work at 500 fps or color

switch occurs at different rate, the above 2 observations may be not available.

It should be analyzed case by case. But, we can confirm one thing: when the

camera works 2 times faster than color switch, we can get these 2 observation

for sure. This can be explained by Nyquist-Shannon sampling theorem.
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Figure 2.11: Superimpose the coefficients of illuminations of every 25 images,

we can see that illumination of captured images repeats in every 25 images

.
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Through the analysis above, we can see these 2 observations as 2 proper-

ties when using our system. Based on these 2 properties, we will model the

relationship between the scene’s appearance and the illumination as follow.

Because the camera works at 500 fps, objects can be seen as static in a

few consecutively captured images. So, the variation of scene’s appearance

among these images is caused by the illumination variation. Take the red

basis for instance, when a image appears more reddish than the nearby im-

ages, its β1 would be bigger than theirs. If one image is the most reddish one

among 25 consecutively captured images, according to property 2, its illumi-

nation should be composed of red illumination basis only. Due to property

1, coefficient β1 equals 1, β2 and β3 equal 0, so the spectral distribution of

the illumination for that image can be determined.

For the nth captured image, we use {Rn, Gn, Bn} to indicate the mean

RGB value of all pixels on it. And, the normalized value {Rratio
n , Gratio

n , Bratio
n }

are calculated to evaluate how reddish, greenish and bluish the image is

{Rratio
n , Gratio

n , Bratio
n } =

{Rn, Gn, Bn}
Rn +Gn +Bn

. (2.11)

For every 25 captured images, we need to select 3 images whose illumina-

tion is composed of the RGB illumination basis respectively. Here, we take

“red” image to illustrate the procedure which contains two steps.

1. Sort these 25 images based on their Rratio.

2. Among the 6 images whose Rratio is bigger than the others, selected the

one whose red value is the biggest as the “red image”.

In our system, camera captures 25 images while color wheel rotates 6

round. Pick one image out of 6 in step (2) can help us finding out the real

“red” images despite variety kinds of scene. In this way, 1 image is selected

from every 25 images. For a sequence containing q images, we would have
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as many as q mod 25 images. Considering the variation caused by dynamic

scenes, we temporally interpolate the mean RGB values of these “red”, im-

ages. In this way, the nth(n=1−−q) captured image would corresponds a

vector: {RRmax
n , GRmax

n , BRmax
n }, the interpolated results of the mean RGB

values of “red” images.

By the same procedure, “green” and “blue” images also can be selected.

After the temporal interpolation, the nth(n=1−−q) captured image would

corresponds 3 vectors: {RRmax
n , GRmax

n , BRmax
n }, {RGmax

n , GGmax
n , BGmax

n } and

{RBmax
n , GBmax

n , BBmax
n }

From the discussion above, we know these 3 vector correspond RGB 3

illumination bases. Just like the method used in section 2.3.3, we use the

3 × 3 matrix formed by these 3 vectors instead of the P w in Eq. (2.9) to

calculate βn

βn = argmin
βn

|


Rn

Gn

Bn

−


RRmax

n RGmax
n RBmax

n

GRmax
n GGmax

n GBmax
n

BRmax
n BGmax

n BBmax
n

βn |2,

subject to βn,k ≥ 0 (k = 1, 2, 3)

(2.12)

Once we get βn, illumination for the nth image can be computed. Fig.

2.12 show us the recovered illumination of the 5 images in Fig. 2.6. Through

these 2 methods. We can see that the results are similar but different. To

evaluate how different the recovered results are, we consecutively capture

100 images of a static Macbeth ColorChecker with a white board placed in

the scene. Their illuminations are recovered by the 2 method introduced

in this section respectively. For the nth captured image, we use βWB
n and

βMC
n to indicate the recovered illumination by the white board and by the

appearance of the Macbeth ColorChecker part in the image. Thus, every
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image corresponds two 3× 1 vectors. The difference between them is defined

as βDiff
n = βMC

n − βWB
n . βDiff

n is also a 3 × 1 vector. Distribution of its 3

element, βDiff
n,k (n=1−−100,k=1−−3), are shown in Fig. 2.13. We can see

that for all 3 coefficients, the difference varies in a very narrow band (-0.1,

0.1) which means that recovered results are very similar to each other.

From above discussion, we know that the proposed method for illumina-

tion recovery using calibration target is scene-independent. On the contrary,

the method without using calibration target relies on the scene, and its accu-

racy of recovered illumination varies regarding different scenes. This variation

is caused by different matrix in Eq. (2.12) which is determined by the scene.

For scenes in which objects have flat reflectivity to light in whole visible

wavelength range [400−−700nm], like the Macbeth ColorChecker, these two

methods would provide the same accuracy of recovered illumination. How-

ever, if scenes have low reflectivity in some range of wavelength, condition

number of the 3 × 3 matrix in Eq. (2.12) would be big, calculation of βn

by Eq. (2.12) would be unstable. In such a case, method using calibration

target would perform better.

2.3.4 Spectral reflectance reconstruction using constrained

model

ln(λ) is recovered in Section 2.3.3. Recall Eq. (2.1), the integral in it can

be represented as known coefficients: fj,m,n =
∫
bj(λ)cm(λ)ln(λ)dλ. One

measurement that contains five consecutive frames can be written in matrix

form as

I = Fα, (2.13)
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Figure 2.12: Recovered illumination spectra of the 5 images in the measure-

ment of Macbeth ColorChecker shown in Fig. 2.6. Left column: recovered

results using calibration target. Right column: recovered results without

using calibration target. Compare with these 2 sets, their similarity and

difference can be reveled.
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Figure 2.13: Difference between recovered illumination coefficients by using

white board and without using white board for 100 consecutively captured

images.
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where I is a 15× 1 vector (15 measurements: RGB 3 channels × 5 frames),

F is a 15×8 matrix (15 measurements × 8 spectral bases), and α is an 8×1

coefficient vector.

If α is estimated from I, spectral reflectance s(λ) can be reconstructed

by Eq. (2.2). In this way, the problem of spectral reflectance recovery can be

solved by the 8 coefficients estimation. The DLP projector in our system has

three spectrally distinct illuminations, and the high-speed camera provides a

3-channel measurement under each illumination. In total, we can obtain 3×3,

i.e., 9 effective channels. Thus, the problem of estimating 8 coefficients is

over-determined. However, using the least squares solution in Eq. (2.13), the

reconstructed spectral reflectance does not always satisfy the non-negative

constraint and the solutions tend to be unstable. Therefore, we adopted

the constrained minimization method proposed in Ref. [PLGN07]. The first

derivative of the spectral reflectance respective to λ is used as the constraint:

α = argmin
α

[
| I − Fα |2 +γ| ∂s(λ)

∂λ
|2
]
,

subject to bmα ≥ 0 for all λ,

(2.14)

where γ is a weight for the constraint term. bm is a 31 × 8 matrix whose

columns are the 8 spectral bases.

2.4 Accuracy Evaluation

In our system, every five consecutive captured frames by the 500 fps camera

are used as one measurement. Thus, the spectral measurements are taken at

100 Hz. However, the color wheel rotates at 120 rps. Due to the asynchronism

between the DLP projector and the camera, illumination spectra of the 5

frames which belong to the same measurement change from measurement to
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Figure 2.14: Recovered spectral reflectance of all 24 clips on Macbeth Col-

orChecker by the measurement shown in Fig. 2.6.
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measurement. The accuracy of the recovered results would be affected by

this temporal illumination variation. Thus, we need to evaluate both the

spectral accuracy and temporal accuracy of our system in this section.

Besides, two methods for illumination recovery are proposed in section

2.3.3, so every image corresponds two recovered illumination spectra. And,

the results shown in Fig. 2.13 indicate that the difference between them is

small but still can not be ignored. Therefore, it is very necessary to explore

the accuracy variation caused by this difference. Therefore, for an image

set, 4 results need to be revealed: the spectral accuracy and the temporal

accuracy, with and without using the white board as calibration target.

Here, we evaluate the accuracy of our system by Macbeth ColorChecker

which contains 24 clips. The spectral reflectance of these clips is known. We

used 500 consecutively captured images of the static Macbeth ColorChecker

as the image set. As stated before, 5 images were used as 1 measurement,

so we got 100 measurements. For these 100 measurements, we used the

methods stated in section 2.3.3 to recover the illumination spectrum of every

image; set γ in Eq. (2.14) to 50 and recovered the spectra reflectance of

all 24 clips based on the measurement (Fig. 2.14 shows us the recovered

results using the measurement given in Fig. 2.6). In this way, every clip

corresponds 100 reconstructed results. The root mean square (RMS) error

of these reconstructed results was calculated. The maximum, mean, and

minimum among the 100 RMS error values for every clip are also computed,

results are shown on the upper side of Fig. 2.15. The lower side of Fig. 2.15

shows us the results of the same image set, but different illumination recovery

method which is introduced in section 2.3.3.

In both 2 histograms shown in Fig. 2.15, we can see that the maximum

RMS error of recovered spectral reflectance of all 24 clips does not deviate a

35



5 10 15 201 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24
0

0.04

0.08

0.12

0.16

Patch number

R
M

S
 E

rr
o
r

 

 

Mean RMS Error

RMS Error Range

5 10 15 201 2 3 4 6 117 8 99 12 13 14 16 17 18 19 21 22 23 24
0

0.04

0.08

0.12

0.16

Patch number

R
M

S
 E

rr
or

Figure 2.15: Spectral accuracy evaluation. For each clip, blue column indi-

cate corresponding mean RMS error; Red error bar indicates range of errors

of 100 measurements. Upper: Spectral accuracy using white board; Lower:

Spectral accuracy without using white board.
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Figure 2.16: Temporal accuracy evaluation. For 100 measurements, distri-

bution of average RMS error of all 24 clips is shown here. Because color

wheel rotates 6 rounds for every 5 measurements in our imaging system, a

neat pattern of the average RMS error can be obviously observed. Upper:

Temporal accuracy using white board; Lower: Temporal accuracy without

using white board
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lot from the minimum one, by which the stability of proposed method can

be guaranteed. Comparing these 2 histograms, it is clear that the difference

between them is small. To learn how small the difference is, we can refer 3

kinds of curves shown in Fig. 2.14: black ones indicate the ground truth, red

ones indicate the recovered results using white board for illumination recovery

and the blue ones indicate the recovered results without using white board for

illumination recovery. In all 24 sub-images which correspond the 24 clips, the

two recovered results are almost the same, and similar to the ground truth.

The 19th clip, the most bright one among all 24 clips, has the biggest mean

RMS error which is less than 0.11 and 0.13 respectively. From all the results

and corresponding analysis given above, we can draw a conclusion that our

system can recover the spectral reflectance at a reasonable accuracy.

Next, we are going to evaluate the temporal accuracy of our system. We

reused the 100 measurements used in previous test. For every measurement,

we reconstructed the spectral reflectance of all 24 clips; then, the RMS er-

ror of the 24 reconstructed results was calculated; after that, we computed

the average value of the 24 RMS error values, and used it as the criterion

to evaluate each measurement. Just like the spectral accuracy evaluation,

one measurement correspond two values because of the different methods for

illumination recovery. The distribution of these 2 RMS error values of the

100 measurements are shown in Fig. 2.16. In both results, the average RMS

error fluctuates in the same narrow band (0.048, 0.06) by which the tempo-

ral accuracy of our system can be verified. Compare with the distribution

of average RMS error when we recover illumination without using the white

board, the distribution of average RMS error using the white board appears

neater. The reason is that when we use the white board, recovered illumina-

tion only relies on the appearance of the white board in corresponding image.
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Using the other method for illumination recovery, images rely on their mean

RGB values. Because the mean RGB values of the Colorchecker is much

smaller than the RGB values of the white board, the low SNR (Signal-to-

Noise Ratio) causes the distribution a little irregular when without using the

white board.

Through above evaluation, it is clear that both the spectral accuracy and

the temporal accuracy of our system are not sensitive to the illumination

variation cause by different methods for illumination recovery. Though the

stability and accuracy of our system can be guaranteed, we still need to know

the causes of errors. They may be (1) Although 8 spectral bases can well

approximate spectral reflectance of most natural objects, there are still errors

between fitting results and ground truth; (2) Because the spectral sensitivity

of the high-speed camera is not available from the manufacturer, the function

used here is measured by ourselves. The camera works at 500Hz, the shutter

speed is only 2ms. Moreover, narrow-band light emitted from monochroma-

tor is weak, so the spectral sensitivity shown in Fig. 2.5 may differ from the

truth to some extent; (3) Also because of the short exposure time, we need

to adjust the digital gain and the analog gain of the camera to make sure the

captured images of the scene appear neither too bright nor too dark, the noise

caused by these gains would also degrade the recovered results; (4) Because

illumination of captured images change from frame to frame, estimated illu-

mination may deviate from the truth, error of estimated illumination would

result in error of recovered spectral reflectance; (5) DLP projector used in

our system emits RGB 3 distinct light, and the high speed camera output

RGB 3 values. Even though the deviation between the spectral distributions

of emitted light and spectral sensitivity of the high speed camera enables the

9 measurements for each scene points, these measurements do not equally
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contribute to the recovered results. Measurements with big values dominate

the final results. Noise of these measurements would cause errors.

2.5 Image and Video Relighting

Spectral relighting is a method to estimate scene’s appearance by using re-

covered surface spectral reflectance, measured spectral sensitivity of sensor

and known illumination spectra. Relit results for every scene point is com-

puted by Eq. (2.1). Many works, like Ref. [PLGN07, WHD03], have shown

that spectral information of scene is more robust again illumination vari-

ation. Through comparing spectral relit results and real captured images,

accuracy of recovered spectral reflectance and robustness of our system can

be demonstrated. In this section we use the spectral reflectance recovered

by our method to do spectral relighting of a static scene as well as moving

objects.

2.5.1 Image spectral relighting

In this section, we would show the spectral relit results of a static scene,

and compare them with the real captured images. The static scene contains

fruits, vegetables, and small statues. Five consecutive frames of the scene

were captured by our imaging system. Using them as one measurement,

the spectral reflectance of scene points was recovered pixel by pixel. Then,

the scene was spectrally relit with a LCD projector (EPSONTM ELP-735)

as the light source. The LCD projector was used here to ensure strong and

spatial uniformly distributed light. The spectral distributions of its white,

red, green, and blue were measured by a spectrometer. Comparison between

the relit results and the real captured images is shown in Fig. 2.17. We can
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Figure 2.17: Comparison between relit results and captured images of static

scene under illuminations from a LCD projector.
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see that the computed results are very similar to the ground truth which also

reveals the accuracy of our system.

2.5.2 Real video spectral relighting

Our system works at 100 Hz, so it is capable of measuring dynamic scenes.

This capability was tested by taking spectral measurements of a rotating

globe and a manipulated puppet.

The globe rotates at 10 revolutions per minute. We use our system to take

spectral measurement of it. Images contained in one measurement are shown

in Fig. 2.18 (a). Next, spectral reflectance of every scene point is recovered

by proposed method. Because two methods for illumination recovery are

proposed, for the same scene point, two recovered spectral reflectance curves

are shown in Fig. 2.18 (b) which are very similar to each other. Then, we

do spectral relighting by Eq. (2.1), to compute globe’s appearance under a

variety of illuminations. Compare Fig. 2.18 (c) and (d), we can see that it

is hard to tell the difference between the corresponding images in two sets.

For the puppet, its spectral relighting results are shown in the top two

rows of Fig. 2.19. From these results, smooth movement of the puppet can

be observed, and its appearance in these images looks natural. Bottom row

of Fig. 2.19 simulates what can be captured by a camera works at 30 fps

to the same scene. Because the high-speed camera of our system works at

500fps, during the time a 30 fps camera takes a frame, the high-speed camera

can capture 16.66 frames. So we synthesize one image that captured by a

30 fps camera through averaging 17 consecutively captured images by the

500 fps camera. Compare the second row and the third row of Fig. 2.19,

we can see that motion blur is obvious in the synthesized images, such as

the hand in the bottom left image, tie in the bottom middle image, and
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(a) One measurement of the rotating globe.

(b) Recovered spectral reflectance of the points on the globe based on the
measurement.

(c) Relit results by the recovered spectral reflectance when using the white

board to recover illumination.

(d) Relit results by the recovered spectral reflectance when recover

illumination without using the white board.

Figure 2.18: Recovered spectral reflectance of a rotating globe and relit re-

sults.
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the eyes in the bottom right image. The corresponding relit results, on the

contrary, are degraded little by motion blur. From these comparisons, we

can see that our system is more robust to artifacts caused by motion due

to its high rate. Therefore, our system can be used for spectral reflectance

recovery of dynamic scenes with fast moving objects .

2.6 Conclusion

In this chapter, we exploited the unique color-forming mechanism of DLP

projectors. An imaging system for fast spectral reflectance recovery was

built by making use of this mechanism. This system is capable of taking

measurements as fast as 100 Hz. Every measurement consists of a set of

sequentially captured images. For each set, the spectral reflectance of scene

points can be recovered.

Through intensive evaluation, the accuracy of our system has been veri-

fied. We showed that the spectral accuracy as well as the temporal accuracy

are good, and accuracy variation caused by different methods for illumina-

tion recovery is small. By image and video spectral relighting, robustness

of our system has been confirmed. Moreover, this system is built on easily

available devices, and the excellent optical design of DLP projectors guar-

antees simple calibrations and a large working volume. It can be concluded

that our system is practical and robust for the spectral reflectance recovery

of fast-moving objects.

Considering more and more DLP projectors are equipped with color wheel

of 4, even 6 segments, the proposed method can be used with these DLP

projectors without any modification. Theoretically speaking, the use of such

projectors should contribute to better over-all accuracy, but requires addi-

44



(a) Relit result(100 Hz)

(b) Synthesized image(30 Hz)

Figure 2.19: (a): relit results of fast-moving puppet. The continuous move-

ments through very different illuminations can be computed using by the re-

covered spectral reflectance. (b): synthesized result to simulate captured im-

age by a 30 fps camera in which motion blur degrades image quality severely.
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tional effort to calibrate the system, i.e., measuring the spectral property of

each color segment.
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Chapter 3

Camera spectral sensitivity

estimation without illumination

spectrum

3.1 Background

Light spans a wide range of wavelengths. With a digital color camera, the

scene radiance is recorded as RGB values via color filters that specify light

in different wavelength ranges to be observed. Therefore, the recorded RGB

values are dependent on the spectral sensitivity of color filters (or sensors);

i.e., different sensors yield different RGB outputs for the same scene. Camera

spectral sensitivity is an indispensable factor for a lot of computer vision tasks

that use color information, such as spectral reflectance recovery [CHM10,

PLGN07], color correction [MPW06] and color constancy [FHH01, For90].

That means estimation of camera spectral sensitivity is necessary to guaran-

tee various color-based methods work well.

A standard technique for estimating camera spectral sensitivity is to take
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pictures of monochromatic light whose bandwidth is narrow [Ass10]. The

spectral sensitivity of the camera can be reliably estimated from recorded

observations and known spectral distributions of monochromatic light. Al-

though it gives accurate estimates, the method requires expensive hardware

to generate and measure monochromatic light, thus its use has been limited

to well-equipped laboratories only. In addition, the calibration procedure is

laborious because of the need for multiple observations of different light.

To simplify the procedure, methods using calibration targets whose re-

flectance are known have been proposed [FHH98, UDHS10, MAR11]. These

methods estimate the camera spectral sensitivity by recording a calibration

target, e.g., IT8 Target, under illumination with a known spectral distribu-

tion. These approaches reduce the effort needed for calibration. However,

their requirement for a known illumination spectrum limits their practicabil-

ity due to the need for a spectrometer or a strong assumption to be placed

on the illumination spectrum.

In this paper, we propose a new method for estimating the camera spec-

tral sensitivity from a single image captured under an unknown illumination.

The key idea is to use fluorescence: a physical phenomenon whereby the

substance emits specific wavelengths of light by absorbing radiation of dif-

ferent wavelengths. Its physical property of a fixed emission spectrum is

particularly useful for the camera spectral sensitivity estimations because

the spectral profile of the fluorescence remains unchanged up to a certain

scale under arbitrary illumination. To make a single image estimate, we use

a chart of fluorescent materials whose emission spectra are pre-determined.

Then, from the emission spectra of these fluorescent materials, we derive an

analytic solution for determining the camera spectral sensitivity.

There are three key properties about the proposed method. First, it
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does not require the illumination spectrum to be known. The estimate can

be made under unknown lighting conditions, e.g., outdoors under sunlight,

under a skylight, or indoors under a fluorescent lamp, without having to

measure any spectra. Second, the estimation requires only a single shot of a

scene with the calibration target. This reduces the cost of data acquisition.

Third, the fluorescent chart used here is made from fluorescent paint, which

is inexpensive and readily available at stationery stores. These properties

will make the camera spectral sensitivity estimation more widely available.

The rest of this chapter is organized as follows. Section 3.2 gives a brief

review of related works. Section 3.3 presents chromaticity invariance of fluo-

rescence. Section 3.4 shows a method to separate fluorescent component from

reflective component in captured images. In section 3.5, camera spectral sen-

sitivity is represented by Fourier bases; a method to estimate corresponding

coefficients is introduced. Estimated results under different illuminations and

applications of estimated camera spectral sensitivity are shown in Section 3.6.

Finally, we conclude this chapter in Section 3.7.

3.2 Related works

Camera spectral sensitivity can be estimated by establishing a relationship

between incident narrow-band light with different wavelengths across the vis-

ible wavelength range and the camera’s outputs. To achieve this goal, the

standard technique uses a monochromator or narrow-band filters to gener-

ate a series of monochromatic light. Each monochromatic light is cast on

a standard white board, and the reflected light is observed by the target

camera. At the same time, the spectral distributions of the monochromatic

light are measured by a spectrometer. The camera spectral sensitivity can
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then be calculated using the captured images and measured spectra [Ass10].

Because measurements are independent of each other, this method is accu-

rate. However, it requires expensive optical equipments and a dark room.

Moreover, capturing dozens of images and spectral distributions makes the

whole procedure time-consuming.

To make measurement more practical, methods using calibration targets

are proposed. These calibration targets, e.g., the IT8 target or Macbeth

ColorChecker, contain several patches whose spectral reflectance is known.

Under illumination with known spectrum, spectra of reflected light from

these patches can be computed. The camera spectral sensitivity can also

be computed from the RGB values of these patches in captured images

[FHH98, BF02, Ebn07, UDHS10]. However, these methods require controlled

lighting conditions, which means the light should be spatially uniform and its

spectral distribution is known. These requirements can be satisfied only in

laboratories. To extend the scope of these methods out of the lab, Rump et

al .devised an imaging model accounting for specularity and spatially varying

illumination [MAR11]. By using this model, measurements can be conducted

in an environment where specularity or shadows exist. However, it still needs

a known illumination spectrum.

To avoid the requirement for a known illumination spectrum, we make

use of fluorescence. Fluorescence has been receiving more and more attention

recently. In [JF99, HHA+10], methods describing how to model and render

fluorescent materials are presented. Modified color constancy methods to

deal with fluorescent surfaces are shown in [Bar99]. In [HFI+08], fluorescence

is used to sample the geometry of transparent objects that cannot be sampled

with traditional methods. In this chapter, we explore the spectral properties

of fluorescence; and use them to estimate the camera spectral sensitivity.
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3.3 Fluorescence

Fluorescence is a common phenomenon which has been used for a variety of

purposes, such as in lamps, stationery, safety vests, etc. Fluorescence is the

emission of light by a substance that has absorbed light of different (gener-

ally shorter) wavelengths. In this absorption and re-emission process, two

terms about fluorescence are involved: absorption (or excitation) spectrum

and emission spectrum. The absorption spectrum represents how strongly

the fluorescent material absorbs fluorescence-exciting light as a function of its

wavelength. The emission spectrum describes the spectral profile of fluores-

cence emitted from the fluorescent material. Both of the absorption spectrum

and emission spectrum are determined by the properties of the fluorescent

material itself.

The emitted fluorescence from the p-th fluorescent material, fp(λ) (p =

1, 2, 3, ..., P ), is described as

fp(λ) =

(∫
ap(λ

′)l(λ′)dλ′
)
ep(λ), (3.1)

where λ′ and λ are the wavelengths of the incoming light and the outgoing

fluorescence, ap(λ
′) and ep(λ) are the absorption and emission spectra of the

p-th fluorescent material, l(λ′) is the spectral distribution of the incoming

light.

We can see that the integral part in Eq. (3.1) is determined by the ab-

sorption spectrum and the spectrum of the incoming light. Therefore, it is

independent from the spectrum of the outgoing fluorescence. Replacing that

part by a scale factor kp, we can rewrite Eq. (3.1) as

fp(λ) = kpep(λ). (3.2)

Eq. (3.2) means that the emitted fluorescence from a certain fluorescent ma-

terial under different illuminations remains unchanged up to a certain scale.
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Figure 3.1: Spectral distributions of emitted fluorescence from the same ma-

terial under different monochromatic light remain unchanged up to a certain

scale.

To verify this unique property of fluorescence, we measured the fluo-

rescence emitted from a patch smeared with fluorescent paint under differ-

ent monochromatic light. The measured spectral distributions are shown in

Fig. 3.1. As expected from Eq. (3.2), all these distributions are different only

in scales.

When the emitted fluorescence from the p-th fluorescent material is ob-

served with an RGB camera, the relationship between the pixel intensity

(Rf
p , G

f
p , B

f
p )

T and the emitted fluorescence is represented by

Rf
p =

∫
fp(λ)cR(λ)dλ. (3.3)

Here, cR(λ) (cG(λ) and cB(λ)) is the spectral sensitivity of the red channel

(green channel and blue channel). Gf
p and Bf

p can be represented in a sim-

ilar manner. we assume the camera has linear intensity response function.

Without loss of generality, geometric factors can be omitted. For the sake of

simplicity, we hereafter derive equations for red channel and omit those for

green and blue channels if they are trivial.
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Substituting Eq. (3.2) into Eq. (3.3), we obtain

Rf
p = kp

∫
ep(λ)cR(λ)dλ. (3.4)

Note that the scale factor kp is the same for all three channels. Then, the

chromaticity (rfp , g
f
p , b

f
p)

T of the emitted fluorescence is described as

rfp =
Rf

p

Rf
p +Gf

p +Bf
p

=

∫
ep(λ)cR(λ)dλ∫

ep(λ)(cR(λ) + cG(λ) + cB(λ))dλ
. (3.5)

The other components gfp and bfp can be described in a similar manner. We

can see that the scale factor kp is eliminated. As a result, the chromaticity

of the emitted fluorescence is invariant with respect to the spectrum of the

incoming light.

Using the chromaticity invariance of emitted fluorescence is the key idea

of our method. It enables us to estimate the spectral sensitivity of a camera

without having to know the illumination spectrum.

3.4 Separating fluorescent and reflective com-

ponents

As discussed in Section 3.3, the chromaticity of emitted fluorescence is invari-

ant with respect to changes in illumination. Unfortunately, however, fluores-

cent materials often not only emit fluorescence but also reflect light. Thus,

the observed pixel intensity of the p-th fluorescent material, (Rp, Gp, Bp)
T ,

contains a fluorescent component (Rf
p , G

f
p , B

f
p )

T as well as a reflective com-

ponent (Rr
p, G

r
p, B

r
p)

T :

Rp = Rf
p +Rr

p. (3.6)
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Therefore, we need to separate these components in order to make use of

the chromaticity invariance of the fluorescent component. Recently, Zhang

and Sato [ZS11] proposed a method for separating fluorescent and reflective

components by using independent component analysis, but their method

requires at least two images captured under different illuminations.

In this section, we show how to separate the fluorescent and reflective

components from a single image. The key idea is to use non-fluorescent

materials with known spectral reflectance as a reference (Fig. 3.2).

We first estimate the reflective components of fluorescent materials from

those of the non-fluorescent materials under an unknown illumination. The

reflective component is described as

Rr
p =

∫
sp(λ)cR(λ)l(λ)dλ, (3.7)

where sp(λ) is the spectral reflectance of the p-th fluorescent material. Gr
p

and Br
p can be described in a similar manner. According to a previous

study [PHJ89], the spectral reflectance of various materials can be approxi-

mately represented by a linear combination of a small number of basis func-

tions. Thus, we have

sp(λ) =
N∑

n=1

αp,nb
r
n(λ), (3.8)

where brn(λ) (n = 1, 2, 3, ..., N) are the basis functions for spectral reflectance

that available in [PHJ89], and αp,n are the corresponding coefficients. Sub-

stituting Eq. (3.8) into Eq. (3.7), we obtain

Rr
p =

N∑
n=1

αp,n

∫
brn(λ)cR(λ)l(λ)dλ. (3.9)

If we know αp,n and
∫
brn(λ)cR(λ)l(λ)dλ, the reflective components Rr

p

can be computed. Because our objective is to design a calibration target,

the reflectance sp(λ) can be measured in advance. So, the coefficient can
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Figure 3.2: Under spatial uniformly distributed illumination, a reference con-

taining a number of non-fluorescent patches with known spectral reflectance

is used to help separating the fluorescent component from the reflective com-

ponent of the captured images of the fluorescent chart.

be computed as αp,n =
∫
sp(λ)b

r
n(λ)dλ since the basis functions are known

and orthogonal to each other. Hence, the remaining problem is how to get∫
brn(λ)cR(λ)l(λ)dλ. To solve this problem, a reference containing a number

of non-fluorescent materials with known spectral reflectance is used.

A color image of the reference is captured together with fluorescent chart

under the same illumination as shown in Fig. 3.2. Then, the observed pixel

intensity of the q-th reference material, (Rq, Gq, Bq)
T (q = 1, 2, 3, ..., Q), is

represented by

Rq =
N∑

n=1

αq,n

∫
brn(λ)cR(λ)l(λ)dλ. (3.10)

Here, αq,n are known and
∫
brn(λ)cR(λ)l(λ)dλ are unknown. For all materi-

als on the reference, we obtain a set of linear equations that are similar to

Eq. (3.10). The number of equations is Q (reference materials) × 3 (chan-

nels), and the number of unknowns is N (basis functions) × 3 (channels).
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When Q ≥ N , the unknown integral
∫
brn(λ)cR(λ)l(λ)dλ can be estimated.

Because we set N = 8 according to the previous study [PHJ89], the refer-

ence chart should contain at least eight materials whose spectral reflectance

is linearly independent.

Once we obtain the integral in Eq. (3.10), the reflective components of

the fluorescent materials can be calculated by Eq. (3.9). Finally, the fluores-

cent components (Rf
p , G

f
p , B

f
p )

T are computed by subtracting the calculated

reflective components from the observed pixel intensities as

Rf
p = Rp −Rr

p. (3.11)

3.5 Estimating camera spectral sensitivity

In the previous sections, we described that the chromaticity of fluorescence

is invariant under different illuminations and that the fluorescent compo-

nents can be extracted by using non-fluorescent materials as a reference even

under an unknown illumination. In this section, we show how to use the

illumination-invariant chromaticity of the fluorescent components for esti-

mating the camera spectral sensitivity.

Though different cameras have different spectral sensitivities, their spec-

tral sensitivities should not deviate a lot from each other. Thus, it becomes

possible to use a limited number of parameters or basis functions to express

camera spectral sensitivity. To estimate spectral sensitivity, we just need to

estimate the parameters or corresponding coefficients [FHH98, TW01]. To

guarantee the general applicability of our method, we adopt Fourier basis

functions. Assuming the range of spectral sensitivity is [λl, λu], the first few

Fourier basis functions are bc1(λ) = 1, bc2(λ) = sin[2π(λ − λl)/(λu − λl)],

bc3(λ) = cos[2π(λ − λl)/(λu − λl)] etc. We could also use eigenvectors com-
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puted from a set of camera spectral sensitivities if such data are available.

Accordingly, the spectral sensitivity (cR, cG, cB)
T can be decomposed into a

sum of sines and cosines as

cR(λ) =
M∑

m=1

βR,mb
c
m(λ), (3.12)

where bcm(λ) are the Fourier bases for representing the camera spectral sen-

sitivity. βR,m are the corresponding coefficients for the red channel. The

spectral sensitivities of the green and blue channels, cG and cB, can be de-

composed in a similar manner.

Different numbers of bases have different fitting accuracies. To evaluate

how well different number of Fourier bases are capable of fitting spectral sen-

sitivities of different cameras, we use a camera spectral sensitivity database

which contains spectral sensitivities of 12 different cameras [Sen]. For each

camera, we use 5, 7, 9, 11 Fourier bases to fit its spectral sensitivity of RGB

3 channels respectively; then, computer the average value of RMS error of

RGB 3 channels. Results are shown in Tab. 2.

We can see that the more bases we use, the higher accuracy we can get,

reconstructed results of Canon 5D by using different number of Fourier bases

are shown in Fig. 3.3.

Substituting Eq. (3.12) into Eq. (3.5), we obtain

rfp =

∑
m βR,m

∫
ep(λ)b

c
m(λ)dλ∑

m(βR,m + βG,m + βB,m)
∫
ep(λ)bcm(λ)dλ

. (3.13)

Denoting the integral
∫
ep(λ)b

c
m(λ)dλ by tp,m, we can rewrite Eq. (3.13) as

[
(rfp − 1)tp rfp tp rfp tp

]
βR

βG

βB

 = 0, (3.14)

where tp = (tp,1, · · ·, tp,M) is a 1×M row vector; βR = (βR,1, · · ·, βR,M)T is a

M × 1 column vector, βG and βB are defined in a similar manner. Similar
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Camera Model 5-basis 7-basis 9-basis 11-basis

KODAK DCS 420 0.0715 0.0431 0.0325 0.0281

SONY DXC 930 0.0523 0.0252 0.0169 0.0118

NIKON D1X 0.0796 0.0376 0.0227 0.0173

SONY DXC 9000 0.0705 0.0313 0.0180 0.0085

CANON 10D 0.0627 0.0261 0.0164 0.0099

NIKON D70 0.0627 0.0320 0.0167 0.0088

KODAK DCS 460 0.0706 0.0538 0.0479 0.0444

CANON 400D 0.0875 0.0632 0.0583 0.0517

CANON 5D 0.0656 0.0322 0.0224 0.0165

CANON 5D Mark 2 0.0664 0.0335 0.0271 0.0211

Ladybug2 0.1099 0.0631 0.0542 0.0406

KODAK DCS 200 0.0751 0.0533 0.0349 0.0195

Table 3.1: Average RMS error of reconstructing camera spectral sensitivity

by using different numbers of Fourier bases.
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Figure 3.3: Reconstructed spectral sensitivity of Canon 5D by using different

number of Fourier bases. Dotted curves: ground truth; Solid curves: fitting

results. Left upper: using 5-basis; Right upper: using 7-basis; Left lower:

using 9-basis; Right lower: using 11-basis.
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equations can be obtained for the green and blue channels. Since there are

P fluorescent materials, we have P (fluorescent materials) × 3 (channels)

equations in total:

(rf1 − 1)t1 rf1 t1 rf1 t1

gf1 t1 (gf1 − 1)t1 gf1 t1

bf1t1 bf1t1 (bf1 − 1)t1
...

...
...

(rfP − 1)tP rfP tP rfP tP

gfP tP (gfP − 1)tP gfP tP

bfP tP bfP tP (bfP − 1)tP




βR

βG

βB

 = 0. (3.15)

Eq. (3.15) can be expressed in the form of AX = 0, where A is a 3P × 3M

matrix and X is a 3M × 1 vector. A nonzero solution of this linear equation

is found as the eigenvector of the square matrix ATA corresponding to the

smallest eigenvalue.

In experiments, we found that the estimated coefficients (βR,βG,βB, )
T

are sometimes sensitive to noise. Therefore, to make the computation more

stable, we incorporate a smoothness constraint on spectral sensitivity. The

second derivative of spectral sensitivity with respect to wavelength is used

as the smoothness constraint, and as a result we obtain
A

wRϕ 0 0

0 wGϕ 0

0 0 wBϕ

X = 0, (3.16)

where (wR, wG, wB)
T is the weight of the smoothness term and ϕ = (d2bc1(λ)/dλ

2, ··

·, d2bcM(λ)/dλ2). Substituting the solution of Eq. (3.16) into Eq. (3.12), cam-

era spectral sensitivity can be obtained up to a scale.
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Figure 3.4: Left: used fluorescent chart; Right: spectral distributions of

fluorescence emitted from its 16 patches.

The steps for camera spectral sensitivity is summarized as: (1) take a

picture of the fluorescent chart and the reference; (2) separate the fluorescent

and the reflective components of the fluorescent chart in the captured image;

(3) compute the chromaticity of the fluorescent component; (4) estimate the

camera spectral sensitivity as described in this section; (5) normalize the

estimated camera spectral sensitivity, by which the largest absolute value of

the estimated results in RGB channels is set to one.

3.6 Experimental results

In this section, we show experimental results to evaluate our method for esti-

mating camera spectral sensitivity as well as two applications of our method:

daylight spectrum estimation and color correction.

A chart containing 16 patches, shown in Fig. 3.4, was used in our exper-

iments. Those patches were made on a black board by smearing 16 different

types of fluorescent paint (P = 16) easily available from stationary stores. To

measure the emission spectrum of each fluorescent patch, it was lit by 320nm
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UV light generated by a monochromator (SHIMADZUTM SPG-120), and the

spectral distribution of light from the patch was measured by a spectrome-

ter (PhotoResearchTM PR-670). Because no light in the visible wavelength

range was emitted from the monochromator, the measured results (Fig. 3.4)

are the spectral distributions of fluorescence fp(λ).

As stated in Section 3.4, a non-fluorescent reference is used for separat-

ing fluorescent and reflective components. In our experiments, we used a

Macbeth ColorChecker with 24 patches whose spectral reflectance is publicly

available [Mac]. For the spectral reflectance of fluorescent patches, we use

the method proposed in [Don54]. To each fluorescent patch, we build its

bispectral radiance factor matrix (Donaldson matrix). Spectral reflectance

of the fluorescent patch can be represented by the diagonal elements of the

matrix.

We estimated the spectral sensitivities of three different cameras by tak-

ing pictures under four common illuminations: sun, blue sky, cloudy sky,

and fluorescent-lamp. The spectral distributions of these illuminations were

unknown. Based on the previous study [FHH98], 9 Fourier basis functions

plot in Fig. 3.5 are used for representing camera spectral sensitivity. To test

how well these 9 Fourier bases are capable of approximating cameras’ spec-

tral sensitivity, some fitting results are shown in Fig. 3.6. From them, we can

learn that 9 Fourier bases can approximate spectral sensitivity of different

cameras with good accuracy.

Besides using 9 9 Fourier bases, we set the weight of the smoothness

term to (8, 8, 3)T . The Estimated results using our method are shown as

continuous curves in Fig. 3.6. The Results by using monochromatic lights are

shown as dotted curves. To evaluate the difference between them, for each

estimated result, we computed the average value of the root mean square
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Figure 3.5: 9 Fourier bases used to approximate camera spectral sensitivity
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Figure 3.6: Fitting results using 9 Fourier bases
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Figure 3.7: Estimated spectral sensitivities of cameras under different illu-

minations whose spectra are unknown. Results of our method are similar to

those using monochromatic light, but ours have less high frequency because

of the use of Fourier bases and the smooth constraint.

errors (RMSE) of all 3 channels. The numbers are also shown Fig. 3.6.

These results show the accuracy of our method even without knowing the

illumination spectra.

65



Observing the estimated results of our method, we can see that the re-

sults under sunlight have a little bigger errors than those under the other

illuminations. The reason behind this is the fact that fluorescent materials

absorb light with higher energy than their emitted fluorescence. As shown

in Fig. 4.3, to light from the blue sky or the cloudy sky, its intensity in the

shorter wavelength range (higher energy) is stronger than that in the longer

wavelength range (lower energy). On the contrary, sunlight is stronger in the

longer wavelength range. Hence, the fluorescent component of the fluorescent

chart under the sunlight is darker than those under the other illuminations.

This results in that the estimated results under sunlight by our method are

more easily affected by noise and errors. Therefore, when using our method,

illuminations which are strong in high energy wavelength range, e.g., sky-

light, are recommended.

Another observation about the estimated camera spectral sensitivities is

that: results of the blue channel show larger deviations when compared with

those of the green and red channels. Our explanation is that fluorescent

materials which emit blue fluorescence require stronger UV light and absorb

less visible light, thus their fluorescent components always appears darker

than the other patches under common illuminations. Our estimates for the

blue channel are thus more easily affected by noise or errors than the other

two channels.

3.7 Conclusion

In this chapter, we proposed a single-image method for camera spectral sen-

sitivity estimation. Comparing with existing methods, our method has no
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requirement for known illumination spectra. In other words, the estimation

can be carried out under unknown illumination.

This benefit results from the using of fluorescence. Under different il-

luminations, spectral distributions of fluorescence emitted from the same

fluorescent material remain unchanged up to a certain scale. Making use

of chromaticity invariance of fluorescence, illumination spectra are no longer

necessary for estimation of camera spectral sensitivity. We build a calibra-

tion chart by several kinds of fluorescent paint whose emission spectrum is

calibrated already. Taking a single picture of it as well as a Macbeth Col-

orChecker under unknown illumination, spectral sensitivity of the camera

can be estimated. The effectiveness of the proposed method was success-

fully demonstrated with experiments using real images taken under various

illumination conditions.

In the future, we are planning to work on how to select a set of fluo-

rescent paint to achieve better estimation accuracy under a wide range of

illumination conditions.
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Chapter 4

Daylight spectrum estimation

4.1 Background

In chapter 3, we discussed how to estimate spectral sensitivity of cameras.

Using the estimated camera spectral sensitivity, we talk about estimation of

daylight spectra in this chapter. Therefore, this chapter can be seen as an

extension of chapter 3

In chapter 3, a Macbeth ColorChecker is used as a reference chart. Ap-

pearance of its patches in captured images relies on spectral reflectance of the

patches, camera spectral sensitivity as well as illumination. For the spectral

reflectance is known, camera spectral reflectance is estimated, illumination

estimation becomes possible. Here, we limit the range to daylight spectra

rather than general illumination due to the contradiction between the low di-

mensionality of reflectance and the high dimensionality of illumination. On

the one hand, dimensionality of objects has been proved to be 8 [PHJ89].

On the other hand, more and more man-made light sources are used in our

ordinary life, such as Organic Light-Emitting Diodes (OLED) and Electro

Luminescence (EL). Because of their different light-emitting mechanisms, as
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Spectrum of skylight

Spectrum of D65

Spectrum of fluorescent lamp

Spectrum of light emitted from LCD projector when input

[255,255,255]

Figure 4.1: Spectral distributions of 4 kinds of illumination in visible wave-

length range: [380, 780]nm.
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shown in Fig. 4.1, spectral distributions of emitted light from them are dif-

ferent from each other. Reflection can not provide enough measurements for

illumination estimation in general term. Although some linear models are

proposed to approximate illumination including both of natural illumination

and man-made illumination [RHA11], because the number of used samples is

so limited that their expression ability still need to be tested by other work.

4.2 Estimation of daylight spectra

Daylight includes all direct and indirect sunlight during the daytime. The

spectrum of daylight is important for dealing with various imaging problems,

such as color correction and color constancy in outdoor environments. Ac-

cording to the previous studies [JMW+64, WS82, SH98], daylight spectrum

can be well approximated with a small number of basis functions. To recon-

struct daylight, we need to estimate its corresponding coefficients. Here, we

adopt a widely used three-basis model [WS82]:

l(λ) =
3∑

j=1

γjb
l
j(λ), (4.1)

where blj(λ) is the j-th basis for daylight that is available in [WS82], and γj

is the corresponding coefficient. Here, we show these three bases in Fig. 4.2.

Recall that we used the Macbeth ColorChecker as the reference for separating

the fluorescent component in Section 3.4, the appearance of its q-th patch

under daylight, (Rq, Gq, Bq)
T (q = 1, ..., 24), can be represented as

Rq =

∫
sq(λ)cR(λ)l(λ)dλ. (4.2)

Substituting Eq. (4.1) into Eq. (4.2), we obtain

Rq =
3∑

j=1

γj

∫
sq(λ)cR(λ)b

l
j(λ)dλ. (4.3)
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Figure 4.2: Spectral distributions of the 3 bases for daylight. Red curve: 1st

basis; Green curve: 2nd basis; Blue curve: 3rd basis.

Three factors in the integral of Eq. (4.3) are known; only γj are unknown. For

all 24 patches on the ColorChecker, we have 24(patch number)× 3 (channels),

i.e., 72, linear equations that are similar to Eq. (4.3). The three unknown

coefficients γj can be calculated in terms of the least-squares error. With the

calculated results, the spectrum of daylight can be estimated by Eq. (4.1).

The estimates for different daylight conditions are shown in Fig. 4.3. The

estimated spectra are indicated by red curves, and ground truths measured

by the spectrometer are indicated by black curves. We can see that they

are very similar to each other. The root mean square errors (RMSE) of the

estimated results are very small. Through these comparisons, we can see that

the spectra of daylight can be accurately estimated by the camera spectral

sensitivity,.

Based on the above discussion, it is apparent that we are capable of

estimating not only camera spectral sensitivity but also the daylight spectrum

from a single captured image.
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Figure 4.3: The spectral distributions of daylight can be accurately estimated

from the estimated camera spectral sensitivity of a Canon 5D and the ap-

pearance of the Macbeth ColorChecker in the captured images. Upper: blue

sky; Middle: cloudy sky; Lower: sun. Note that each spectrum is normalized

to ensure the area of the region below the corresponding curve is a constant.

Thus, the intensities are relative values for the two distributions in the same

figure.
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Figure 4.4: A synthetic image of a postcard composed from three real cap-

tured images. Cameras and illuminations are shown in parentheses.

4.3 Color correction

It is well known that the appearance of the same scene varies a lot under

different illuminations or using different cameras. One example is shown in

Fig. 4.4. This difference can be seen as multiplying albedo of scene points

with different scales in the RGB channels. The scales can be calculated by

multiplying the obtained camera spectral sensitivities and daylight spectra in

the spectral domain, i.e.,
∫
cR(λ)l(λ)dλ. By making use of these scales, the

color of captured images under different illuminations or by different cameras

can be corrected.

Let us suppose that the spectral sensitivity of a camera is (cR(λ), cG(λ), cB(λ))
T ,

daylight is l(λ), and the observed intensity of a scene point is (R,G,B)T . For

a different camera (cR(λ), cG(λ), cB(λ))
T or under different daylight l(λ), the

observed intensity of the same scene point is (R,G,B)T . The relationship

between these two observations can be described as

R =

∫
cR(λ)l(λ)dλ∫
cR(λ)l(λ)dλ

R, (4.4)

for the red channel.The relationship for the blue and green channels can be

described in a similar manner.
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Figure 4.5: The calibration targets are placed in the scene.

As discussed in previous sections, appearance of the fluorescent chart

and the Macbeth ColorChecker is required for estimating camera spectral

sensitivity and daylight spectrum. If they can be placed in the scene, a

single image can capture their appearance as well as the scene (shown in

Fig. 4.5). Otherwise, two images need to be taken: one of the calibration

targets; another one of the scene.

Once the corresponding camera spectral sensitivity and the daylight spec-

tra are obtained, the color of a scene’s appearance can be corrected using

Eq. (4.4). Here, we took images about postcards under different daylights

with different cameras. These images are framed in blue in Fig. 4.6. With the

estimated camera spectral sensitivities and daylight spectra, we calculated

the scenes’ appearances under different daylight conditions with different

cameras by Eq. (4.4). The calculated results are framed in red. Each column

shows a real captured image and a color corrected image captured by a dif-

ferent camera under different daylight conditions. We can see that, although

the corrected results are not identical to the real captured images, the differ-

ence is significantly decreased, by which the effectiveness of our method can
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be demonstrated.

Our method does not only work well to controlled scenes (postcards),

but also can be applied to uncontrolled scenes. In Fig. 4.7, we correct the

color of images about a building captured under different illuminations by

different cameras. Comparing the images before and after color correction,

effectiveness our method to uncontrolled scenes also can be verified.

To evaluate how well our method works on different colors, we captured

two Macbeth ColorChecker images using a Canon 5D under the sun and

blue sky conditions. The differences between these images before and after

correction are shown in Fig. 4.8. The darker the patches are, the smaller the

differences are. From the middle image, we can see that because sunlight

is more reddish than light from the blue sky, for patches which have high

reflectivity to red light, their differences in the red channel are obvious before

color correction. After color correction, as shown in the right image, those

obvious differences are greatly reduced.
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(EX-F1,Sun) (EPL1s,Blue Sky)

Figure 4.6: The color in the captured images can be corrected to match other

images captured under different illuminations or by different cameras with

estimated camera spectral sensitivities and daylight spectra. Here, we show

two postcard. Cameras and illuminations are shown in parentheses above.
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(EPL1s,Cloudy Sky) (5D, Sun)

Figure 4.7: Color correction for a natural scene: buildings. Cameras and

illuminations are shown in parentheses above.
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Captured under sunlight Captured under skylight

difference ×5 before color

correction

difference ×5 after color

correction

Figure 4.8: Difference between two Macbeth ColorChecker images captured

under sunlight and blue sky conditions by the Canon 5D. Left: Macbeth

ColorChecker; Middle: difference (×5) before correction; Right: difference

(×5) after correction.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we present our methods for estimating object’s spectral re-

flectance, camera spectral sensitivity and daylight spectrum. Chapter one

briefly introduces the background of this work, discusses the shortcomings

of existing methods. Against these shortcomings, we propose our methods

in the following chapters. In the second chapter, we build a system to re-

cover spectral reflectance with high temporal resolution. In the system, a

DLP projector has been used as the light source. With a high speed camera,

scene’s appearance under color-switch can be observed. Expressing spec-

tral reflectance of objects with a 8-basis linear model, spectral reflectance

of scene points can be recovered by every 5 consecutively captured images.

Because the spectral measurements can be conducted at 100 Hz, our system

is suitable for dynamic scene with fast-moving objects. In the third chapter,

we use fluorescence to estimate camera spectral sensitivity. Under different

illuminations, spectral distributions of fluorescence emitted from the same

fluorescent material remains unchanged up to a scale. Using this chromatic-
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ity invariance, camera spectral sensitivity can be estimated without knowing

illumination spectrum. Based on the estimated camera spectral sensitivity,

we reuse the images for camera spectral sensitivity estimation to estimate

daylight spectra in the forth section. As a whole, the methods presented

in this thesis either are easier to be carried out, or release the rigid require-

ment. They offer practical ways for estimating spectral information of object,

cameras and illumination.

5.2 Contributions

The main contributions of this work are summarized as follow:

• Build a system with off-the-shelf components. The system is capable

of conducting measurement for spectral reflectance recovery with high

temporal resolution (100 Hz), enables measurement for fast-moving

objects, and the recovered results are degraded little by motion blur.

• Propose a method for camera spectral sensitivity estimation without

knowing illumination spectrum, which greatly releases the rigid re-

quirement for illumination when estimating camera spectral sensitiv-

ity. Moreover, if the measurements are conducted outdoor, spectra of

daylight also can be estimated without taking extra images. Color cor-

rection or color constancy of outdoor images benefit a lot from them.
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5.3 Discussion

5.3.1 Linear models for spectral reflectance of objects,

spectral sensitivity of cameras and spectral dis-

tributions of daylight

In this work, we use linear models to express spectral reflectance of objects,

spectral sensitivity of cameras and spectral distributions of daylight. The

benefits of using linear models are: (1) Dimensionality of target values can

be greatly reduced. Correspondingly, number of required measurement is

greatly reduced without losing accuracy. For most linear models are built by

extracting principal components of datasets which contain a large number of

samples, the internal correlation among samples can be well preserved by the

first few basis functions. On the other hand, bases are orthogonal to each

other, thus redundancy can be reduced to the minimum. Therefore, a limited

number of bases can represent target value very well. For instance, spectral

reflectance is a 31 × 1 vector. To estimate these 31 unknowns, at least 31

measurements are required. When using the linear model, 8 orthogonal bases

are enough to reconstruct the spectral reflectance with good accuracy. What

we need to do is estimating coefficients of these 8 bases. In this way, number

of required independent measurements is reduced to 8 from 31. (2)Using

linear models, number of required measurements has nothing to do with the

resolution of target values. Resolution of estimated results is determined

by resolution of basis functions. The number of required measurements is

determined by the number of basis functions. Without using linear mod-

els, the higher the required resolution is, the more the unknowns are, the

more measurements need to be conducted. Acquiring enough measurements

for results with high resolution is laborious, even impossible sometimes. (3)
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Simple computation. Besides linear model, there are also a lot of nonlinear

models, such as Gaussian distribution, are widely used. Different from linear

models, computing unknowns of the nonlinear models are always treated as

optimization problems. In such a case, final results are closely related to the

initial values and selected optimization methods. Global minimum or maxi-

mum can not be guaranteed. On the contrary, unknown of linear models are

the coefficients of basis functions. They can be explicitly computed through

Least-square error methods. Initial values are not required.

Although we can benefit a lot from using linear model, there may be no

linear models for certain kinds of variables. To build linear models, there

must be a few number of basis functions which are orthogonal to each other

and capable of well approximating variables. For these basis functions, a

dataset containing a large number of independent samples is required. These

samples should be independent from each other. And, the more diverse the

samples are, the higher representative the dataset is. The linear model for

spectral reflectance used in this work is built on the spectral reflectance of

1257 Munsell color chips. The linear model for daylight is also built on a

dataset containing 622 samples. 249 of thenm were obtained in Rochester,

USA; 274 were obtained in Enfield, England; The rest 99 were obtained in

Ottawa, Canada. With regard to spectral sensitivity, for there is no public

datasets which contains enough samples are available, we use Fourier bases

instead. Because cameras’ spectral sensitivity tend to be smooth and band

limited, a few number of Fourier bases are enough to provide good accuracy.
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5.3.2 Using DLP projectors whose color wheels have

more than 3 segments as light sources

According to [DLP], nowadays, more and more DLP projectors adopt a tech-

nique called BrilliantColorTM to produce more vivid images. It is a tech-

nique that uses additional color filters except for Red, Green and Blue 3

filters. There are 2 reasons for using more than 3 filters. First, expand-

ing color gamut of the DLP projector. The color gamut of a RGB display

is defined as the area of colors bounded by the triangle whose points are

defined by the colorimetric settings of the red, blue, and green filters. It

does not allow for the creation of vivid colors such as yellow or cyan. The

reason is that these colors are outside of the area bounded by the triangle.

Adding additional color filters to the rendering engine allows the projectors

to expand the triangle into a wider polygon resulting in a greater selection of

colors. Second, improve illumination efficiency. 3-segment color wheel does

not utilize the entire energy spectrum available from the lamp inside the DLP

projectors. This light loss is a result of the fact that parts of the lamp energy

are not contained within the red, green, and blue filters. Using more filters

which allow light in different wavelength range to get through can solve this

problem.

By using DLP projectors with BrilliantColorTM , we can get richer colors

and brighter pictures. If we use such a DLP projector instead of the one we

used in our system for spectral reflectance recovery, we will get more than 9

measurements which would be helpful to improve accuracy of the recovered

reflectance. However, the consequent problem is that it would be hard to get

the spectral distributions of the illumination bases. In case of using 3-segment

color wheel projector, we are capable of getting the 3 illumination bases by

inputting the projector Red (255,0,0), Green (0,255,0) and Blue (0,0,255)
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respectively. Here, we take Red for instance to illustrate how DLP projectors

work. To the red filter, controller inside the projector would turn DMD on

to allow light getting through the filter, then emit from the projector. To

green and blue filters, DMD would be turned into off state to block light from

getting through them. Thus, we can get the red illumination only. However,

if we use projectors equipped with more than 3 segments color wheel, we are

not be able to control the switch of DMD by inputting the projectors specific

values, because we have no idea how controller switch the states of the DMD

to different input values. As a consequence, we will not be able to do the

light decomposition to get illumination spectrum for each captured image.

So, we have to decompose the DLP projectors, take out their color wheel and

lamps to measure their spectral properties respectively. This would complex

the calibration step significantly.

5.3.3 Suitable light source to excite fluorescence

From chapter 3, we knew that fluorescence is emission from fluorescent ma-

terials excited by light generally with higher energy. When the illumination

is strong in high energy wavelength range (UV and Blue light), we can get

stronger fluorescence, our method would have better accuracy. Otherwise,

accuracy would be degraded by the weakness of fluorescence. So, light sources

which are strong in low energy wavelength range, like halogen, are not good

options for exciting fluorescence. Especially for the patches which emit blue

fluorescence, because they require light with higher energy than the other

patches. For daylight, we recommend using blue sky, which has comparably

stronger light in high energy wavelength range, as the light source.
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5.4 Future works

5.4.1 Separating photometric and geometric proper-

ties

As stated in chapter 2, we proposed a method for recovering spectral re-

flectance of objects’ surface. The recovered results are related to not only

photometric properties of objects, but also their geometric properties. In this

thesis, we did not separate the effects of these two kinds of properties. In the

future, we are going to use the temporal dithering caused by fast switching

between ”on” and ”off” states (106/s) of the DMD inside DLP projectors to

recover the geometric properties of objects. Then the photometric properties

can be calculated easily. The biggest challenge of using temporal dithering is

how to find the correspondence between the projected structured light and

the captured images. For this goal, we need to design an optimized input

pattern for DLP projector. About the input pattern, one requirement is

that observation in consecutively captured images by the high speed cam-

era should be significantly different from frame to frame. This enables fast

and accurate matching between projected light and observation. Another

requirement is that the pattern should be bright, which would be helpful to

avoid the degradation of recovered results caused by noise.

5.4.2 Spectral reflectance recovery for non-opaque ob-

jects

In chapter 2, we restrict objects to opaque objects. In real world, there are

a lot of transparent as well as translucent objects. Their appearance is re-

lated to not only reflection but also sophisticated refection, interreflection,
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subsurface scattering etc. To separate effects of these phenomenons, the

best approach is modeling how light transports in scenes. Recently, a lot of

works have been published on light transport [YDMH99, JMLH01, SCG+05,

MYR10, GTNZ09]. However, these detailed analysis about light transport re-

quires taking a large set of images, the whole process is time-consuming. For

spectral reflectance, we need the direct reflectance component only. To sepa-

rate direct and global components in captured images of a scene, Nayar et al

proposed a method by using spatially high frequency illumination [NKGR06].

Using the separated direct component as the observation, spectral reflection

of non-opaque objects can be correctly computed by our method. How to

incorporate the high frequency illumination properly will be the key problem

to be solved.

5.4.3 Optimized fluorescent chart for camera spectral

sensitivity estimation

To estimate camera spectral sensitivity, we built a fluorescent chart by using

a set of fluorescent paint in chapter 3. In section 3.6.1, we mentioned that

estimated spectral sensitivity of the blue channel deviate more than green

and red channels, and that accuracy of estimated results under sunlight is

not as good as those under skylight or fluorescent lamp. Our explanation

is that although fluorescence emitted from the same fluorescent patch under

different illuminations remains the same up to a certain scale, intensities

of emitted fluorescence are illumination-dependent. This intensity variation

results in the accuracy variation. If we can optimize the selection of paint

for camera spectral sensitivity estimation, it may be possible to avoid the

accuracy variation. However, optimal fluorescent paint selection is a difficult

task. The main reason is that there is no publicly available dataset about
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paint which contains the emission spectra of a large set of fluorescent paint.

We tried several sets of fluorescent paint produced by different manufactures,

but it is often observed that different kinds of paint have the same emission

spectra or some emission spectra are linearly dependent. This may result

from those paint shares the same fluorescent ingredients. Therefore, we plan

to pay our attention to a wider range of fluorescent materials besides paint.

Fluorescence has been well studied in medical and biological fields. A lot

of fluorescent dyes are used as cell and tissue labels, their emission spectra

are already available in [Flu]. Based on this set, we hope it is possible to

design an optimized fluorescent chart by which the same level of accuracy

for camera spectral sensitivity estimation can be guaranteed under different

illuminations.

5.4.4 Illumination estimation using absorption spectra

of different fluorescent materials

Color values have 2 independent properties: chromaticity and intensity. In

chapter 3, we use the chromaticity invariance of fluorescent to estimate cam-

era spectral sensitivity under unknown illumination. Although chromaticity

of fluorescence is independent from illuminations, intensities of the fluores-

cence are tightly related to illumination spectra. Recall Eq. (3.1), intensity of

fluorescence depends on the absorption spectrum of fluorescent material and

the spectrum of illumination. Once its absorption spectrum is calibrated,

intensity of illumination in the wavelength range of its absorption spectrum

can be estimated by the intensity of corresponding fluorescence. Using a

number of different fluorescent materials with different absorption spectra,

illumination in the visible wavelength can be computed from the intensities

of the fluorescence from them.

89



Alexa 488

Alexa 546

Alexa 647

Alexa 700

Figure 5.1: Absorption and emission spectra of 4 fluorescent dyes in Alex

Fluor family. The absorption spectra are indicated by light blue; the emission

spectra are indicated by dark blue.
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The advantages of using intensity variation of fluorescence to estimate

illumination are (1) Dimensionality of illumination is not limited to the di-

mensionality of reflectance. (2) Estimation of camera spectral sensitivity

and illumination spectrum can be done simultaneously by just taking a sin-

gle image. The difficulty of using this method is how to acquire the expected

collection of fluorescent materials. Applying genetic algorithm to a dataset

containing a large number of fluorescent materials may solve this problem.

Such a dataset is available in [Car], Fig. 5.1 shows us the absorption and

emission spectra of 4 different kinds of fluorescent materials in them.
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