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Part 1

Hybridized Discontinuous Galerkin
Method for |
Convection-Diffusion-Reaction
Problems

1 Introduction

The discontinuous Galerkin method (DGM) is now widely applied to various problems in
science and engineering because of its flexibility for the choice of approximate functions
and of element shapes. An issue of DGM is, however, the size and band-widths of the
resulting matrices could be much larger than those of the standard finite element method,
since the DGM is formulated in terms of the usual node values defined in each elements
together with those corresponding to inter-element discontinuities. In order to surmount
this difficulty, it is worth-while trying to extend the idea of DGM by combining with the
hybrid displacement method (see, for example, [8], [9], [10] and [11]). Thus, we introduce
new unknown functions on inter-element edges. We can then obtain a formulation that the
resulting discrete system contains inter-element unknowns only and, consequently, the
size of the system becomes smaller. Recently, in [12], [13] and [14], the author and his
colleagues proposed and analyzed a new class of DGM, the hybridized DGM, that is based
on the hybrid displacement approach by stabilizing their old method ([10] and [11]). In
[12], we examined our idea by using a linear elasticity problem as a model problem and
offered several numerical examples to confirm the validity of our formulation. After that,
we carried out theoretical analysis by using the Poisson equation as a model problem. In
[14], stability and convergence of symmetric and nonsymmetric interior penalty methods
of hybrid type were studied. The usefulness of the lifting operator in order to ensure
a better stability was studied in [14]. Furthermore, B. Cockburn and his colleagues are
actively contributing to the hybridized DGM for elliptic([18], [15] and [19]), Stokes and
Navier-Stokes problems ([20], [21] and [22]).

The purpose of this paper is to propose a new hybridized DGM for stationary convection-
diffusion-reaction problems with mixed boundary conditions. In [17], Cockburn et al.
proposed hybridization for the diffusion-convection-reaction problems. The stability of
their method is achieved by choosing stabilization parameters according to the convec-



tion. They reported a lot of numerical results and confirmed the validity of their schemes.
However, error analysis seems to be not undertaken. The scheme we are going to propose
is close to the original DGM for convection-diffusion problem ([3] and [4]) and is based on
a certain upwinding technique. As is well-known, there are a lot of methods of upwinding.
Our method, however, differs form any previous methods. For example, our upwinding
technique does not need information on neighboring elements, whereas most of upwind-
ing use information upwind elements. Instead, our upwinding method is introduced in
terms of neighboring edges. To be more specific, we find a hybridized approximation to
convection and reaction terms in the following form

> [(b- Vup + cun, vn)k + (un — fin, v — Bn)ox], (1.1)
KeTy ’

where coefficients o and 8 are decided to satisfy coercivity, as it will be shown later.
Moreover, our proposed scheme is stable even when ¢ is sufficiently small and it can be
applied to the case ¢ = 0. We furthermore give stability and optimal order error estimates.

Now let us formulate our continuous problem. Let 2 be a bounded polyhedral domain
in R™. In this paper, we propose a new hybridized discontinuous Galerkin method for the
convection-diffusion-reaction problems with mixed boundary conditions:

—eAu+b-Vu+cu= finQ, (1.2a)
u=gponlp, (1.2b)
eVu-n = gyonly, (1.2¢)

where £ > 0 is the diffusion coefficient and f € L*(Q), b € W'*(Q)", ¢ € L*(Q),
gp € H*?(Q), and gy € H'Y?*(Q) are given functions. We assume I'p U Ty = 99,
I'p N Ty = 0, and that the inflow boundary is included by I'p, i.e.,

I'":={z€d0N:b(z) n(z) <0} CTp,

where n is the outward unit normal vector to ). Moreover, we assume that there exists a
non-negative constant py such that

1
p(z) == c(z) — §divb(x) >pp>0, Vzeq. (1.3)
Under these assumptions, there exists a unique weak solution v € H1(Q) by the Lax-
Milgram theory. We shall pose further regularity on w in the error analysis. This paper

is organized as follows. In Section 2, we introduce finite element spaces to describe our
method, and norms and projections to use in our error analysis. Section 3 is devoted to
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the formulation of our hybridized method, and mathematical analysis is given in Section
4. We explain why our proposed DGM is stable even when ¢ is close to 0 in Section 5.
In Section 6, we report some results of numerical computations. Finally, we conclude this
paper in Section 7.

2 Pr_eliminaries

2.1 Notation

Function spaces and norms Let 7, = { K}, be a triangulation of Q2 in the sense of [13].
Thus, each K € 7}, is an m-polyhedral domain, where m denotes an integer m > n + 1.
The boundary 0K of K € 7, is composed of m-faces. We assume that m is bounded
from above independently a family of triangulations {73}, and K does not intersect
with itself. Furthermore, we set h = maxxe7, hx, where hx denotes the diameter of K.
The skeleton of T;, is defined by

We use the broken Sobolev space over 7, defined by
H*(T) = {v € L*(Q) : v|x € H*(K)},
and L2-spaces on I}, as follows

LH(Th) = {8 € L*(Th) : dlrp, = gp, Olry = 0},
Lg(l—‘h) = {IAJ € L2(Fh) : ’IA)[FD = 0,’0|1’*N = 0}

Then, we set V- = H*(T,) x L%(T) and Vo = H?(T,) x L2(T}). The inner products
are defined as follows

(u, )k :/ wdz, (G, 0), = /ﬁf)ds,
K e

for an element K and an edge e, respectively. Let | - ||, and | - |,,, be the usual Sobolev
norms and seminorms. We introduce auxiliary seminorms:

2= W Ot forv e H™T),

KeTy,
2
Wi, =3 S @/%(v )|  forvev,
KeTy eCOK € O,e
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where hy is the diameter of K and b, is the length of e. For error analysis, we define the
HDG norm defined by

2
lell? = ol + ol
2
ol = (ol + o + )
1 .
ol =5 3 116 nxl 20 = ) o + pollvl g,
KeT,

where nx is the unit outward normal vector to 0K and py is the positive constant defined
in (1.3).

Finite element spaces Let U, and Uh be finite dimensional spaces of H2(7,) and of
L% (T4,), respectively. Then we set V', == Up X U, which is included by V. Similarly,
we define Vi, 1= Uj X Ugh C V. In this paper, we assume (H1) Vv, € [U,]" for all
vy, € Uy, and that (H2) U, includes the piecewise constant functions P°(73). For example,
we can use polynomials of degree k as Uy, or U,.

Projections Let P, denote the L2-projection from H?(7},) onto Uy, and let B, denote the
L2-projection from L% (T';) onto Uy,. We define P, : V. — V, by Ppv := {Pyv, By}
We introduce the L2-projection P9 : WH°(Q) — P°(T;)". We also use the projection ~
defined by ¥ := {v, d|r,\a0 + Pyv|aq}, which affects only on ). In this paper we assume
the approximate properties (H3): for all v € H**!(K), we have

lv — Polix < CRF Y oy fori=0,1, 2.1)
v = Ba(v]e)llo,e < CHFF2 (0], (2.2)

Remark Throughout this paper, a boldface lowercase letters except b and n denotes a
function of V, i.e., v indicates {v,9} € V. Moreover, the symbol C denotes a generic
constant.

2.2 Inequalities

Theorem 2.1. Let K € T}, and e be an edge of K.

1. (Trace inequality) There exists a constant C independent of K and e such that

1/2

Iollo.e < ChY2 (llvllf & + Aiklvlf ) Vv € H'(K). (2.3)



2. (Inverse inequality) There exists a constant C independent of K such that
onl,x < Chillvallox  Von € Un. (2.4)
Proof. See [5, p.745]. | O
Lemma 2.2. Assume (H3). Let v € H**! and v = {v,v|r, }. Then we have

llv = Pyolly < C/2h*[v]pa,
llv = Proll,e < CHFY2[viys.

Proof. This follows immediately from the definitions. O

3 A new hybridized DGM

We are able to state a new hybridized DGM, which we propose in this paper. We first state
our formulation: Find w;, € V', such that

By(un, vr) = (fyvn)a+ (gn, Vn)p,  Yon € Vi, (3.1)
where
Bi(wn, vs) = By(ur, vs) + B (un, vs), (3.2)
ou .
Bi(up,vp) =¢ Z [(Vuh’ Vup)x — <8—h,’0h - Uh> (3.3)
KeTh, n oK
8'Uh N > Ne N N
—\ J ) Un — Un +Z—<uh—uh,vh—vh>e ;
< on oK eCOK he
B;;c(’u,h, ’Uh) = Z |:(b : Vuh + cup, 'Uh)K (34)
KeTy,

+ (up, — Up, [b-n]_vp, — [b- n]+f)h)aK],
(f,on)a = /Q fondz, (3.5)

(9N, Un)ry, =/ gNURAS. (3.6)
'y



Here 7, is a penalty parameter with 1, > 7, > 0, h, is the length of an edge e, and the
functions [- ], and [ -] are defined by

[z]+ = max(0,z), [z]- = max(0,—z). 3.7

Note that [z]; + [z]- = |z| and [z] — [z]- = .

Before proceeding to the analysis of (3.1), we state the derivation of it. Multiplying
the both sides of (1.2) by a test function v, € V', and integrating the both sides over (2,
we have, by integration by parts,

0
Z |:(V'U,h, Vvh)K - <%, Uh> + (b : Vuh + Cup, Uh)K:| (38)
KeTh 8K

= (fyvn)a + (95, Vn)p,, v, € Vi

We denote the diffusion part and convection part in (3.8) by D and C, respectively, i.e.,

- _ [ %un
D(un,va) = Y [(Vuh,Vvh)K < an’vh>ax]’ (3.9
KeTy,
Clun,vn) = > (b- Vup + cup,vs)x- (3.10)
KeTy,

We first derive our formulation of the diffusion part. From the continuity of the flux, we
have

3 <%,@h> —0. (3.11)
xer, V" 9K
Adding (3.11) to (3.9) yields
Ouy, N
D(’U,h, ’Uh) = Z (V’U,h, V’Uh)K - 8—,vh — Up . (312)
n oK
KeTh
Symmetrizing (3.12) and adding a penalty term
Ne . A
>y <h-(uh—uh),vh—uh> , (3.13)
KeTheCoK ‘¢ 0K

we obtain (3.3).



Next, we derive the formulation of the convection part. Let o and 3 be coefficients to
be determined later, and consider the following form:

Ch(uh, Uh) = Z [(b - Vuy + cug, ’Uh)K + (uh — Uy, QU — Bﬁh)aK] . (3.149)
KeTh

The coefficients o and 3 are chosen so that

Cr(vp,vp) = Z {(pvh,vh)K +{((b-1n)/2 + ) v, vp) g (3.1%)
KETh

= (@ + B)vn, Tndox + (B, Dn)oxc | = 0]l
for any v;, € V1, We can find the following sufficient conditions
a+p=2(b-n)/2+a)=|b-n|,
from which it follows that
a=[b-nl_, B=[b nl.

Thus we obtain our formulation (3.1).

4 Error analysis

In this section, we shall establish an error estimates for (3.1).
Lemma 4.1. The following hold.

1. (Boundedness) There exists a constant C’Z‘f > (0 such that

|B(w,v)] < Gy llwllyllvll, vw,veV. @1

2. (Coercivity) There exists a constant C? > 0 such that

Bi(vn,vn) > C¢ ||vnll}  Yon € Vi 4.2)



Proof. We first prove the boundedness. Applying the Schwarz inequality for each term of
(3.3), we have

|Bi(w,v)] < £ [HVMHO,KHVUHO,K (4.3)
KeTy,
. v .
|v — fo,e + an [w — Dllo,e
eCBK 0,e
/& g ey
+H e Rl ) 0)}
By the trace theorem, we have
0
A< O ((wf? g + Bhwl? )2 (4.4)
on 0c

From (4.3), (4.4), and the Cauchy-Schwarz inequality, it follows that
| B (w,v)| < max(1 + Cn,il?,2) [wlll, o]l -
Next, we prove the coercivity. By definition,

Bi(vn,vn) = |valfn—2) Z

KeTyp eCOK

81)h

[Uh — ’Dh“o’e + |’Uh|§,h (45)

By the trace theorem, the inverse inequality and the Young inequality, we have for § €
(0,1),

Ov . 2C
2| G, - < 5 @6
C Me P
< 5—775|’Uh|iK +9 H h_e(vh - Uh) . Yoy, € Up,.
From (4.5) and (4.6), we obtain
c
Bion ) > (1= 5 ) Il + (1= 0 only @

If Nmin, > 4C, then we can take 6 = /C /N < 1/2, which implies that

1-—

>1/2, 1-6>1/2.

TNimin
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Hence we have

—

Bff(”h; 'Uh,) 2

1 2
§(|'Uh|ih + l"’h@,h)- = 5 lllvnl| dh-

Since the norms |||-[||, and [||-|[|,; , are equivalent each other over V';,, we obtain the coer-
civity (4.2) . ]
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Lemma 4.2. The following hold.
1. There exists a constant C;° > O such that forallv € V, w;, € V7,

| B (% — Pro,wn)| < G° [0 = Pyl llwall,.

2. (Coercivity) There exists a positive constant C7¢ > 0 such that

Bi“(vn, vn) > C7° ||onlll},  Vou € Von.

Proof. For the proof of (1), we first show the following equality:

B*(vp,wy) = Y ( — (v, b+ Vun)k + ((c — divb)vs, wa)x 4.8)
KeTy
=+ <[b . n]+'Un - [b : n]—’[}ha wy, — wh)@K > '

By Green’s formula,

Bi*(vn,wn) = Y (v, —b- Vwp)g + ((c — divb)vn, wa)x
KeTy,
+{(b- n)vn, wh) g + (Un — Dn, [b- 1]-wn — [b - R4 Dn) o

= > (g +Hx + k).
KeT;

Rewrite Il as follows:

moxe = (([b-nls — [b-n]-)vn, wh)x + (Vh, b M]_wh) o
— (n, b ]-wn)gx — (Vh — n, [b - 1)1 n) o
= (([b-n]1vr — [b-n]-0n, wr)gx — (Vn — D, [b - 1)1 0n) o -

Since

Z (On, ([b- n]4 — [b- 1] _)ip)gp =0,

KeT;,

we have

> Ml = > ([b-nlpvy — [b-n]_Oh, wh — Br) oy -
KeTp KeTy,

12



Thus we obtain (4.8). Next, we will estimate /x. Let us denote 7 = {n, 7} := @ — Pju,
then :

IK = (77, -b- th)K
= (n,(Pyb—1b) - Vws)x — (1, (Pib) - Vws)k.

By the property of the projection PY and Pyu = P}, we have
(m, (Phb) - Vwn)x = 0.

Using the inverse inequality, we see that

[Tk = |(m, (PRb—b) - Vwn)k| < Clbl1collnllo,x |whllox- 4.9
By using the Schwarz inequality, we have
x| < C(lcloeo + [Bl1,x)l|vallo,xllwhllo,x, (4.10)
and
> M| <) (b nf(vh — Dn), wh — Ba)pge (4.11)
KeTy, KeTy
< Db nY*(vn — t)llosx - 116 - 1l (vn — B4) oo
KeTh

From (4.9), (4.10), and (4.11), we conclude that (4.8) holds.
We now turn to the proof of (2). By Green’s formula, we have

Brwon) = Y ( /K (c—divb/2)v,%dx+% / (b-n)vlds

KGITI'-L 9K
o+ (on = n, [0+ 1) v — [b 1) ) )

= Y (Ix + Ik + o).
KeTs,

By the assumption (1.3), we have

Iy > pOHUh”g,K‘

13



Sinceb-n = [b-n|. — [b-n]_, we have

Iox + lllox = -;- (Vs [B - 7] —Vn)axc — (ms [b - 2] —vh)axc @.12)
+§ (vn, [b- n]1vn)oxc — (vn, [b- 1] 10n) o
= ([l + [l ) on — ), v D)
1

+5 (b nly = [b- 1), ) o

. . 1 .
(b nl(vn = B, vh = Dn)ox + 5 (b 1)0n, D) ge -

N =

Since

37 (b m)m, 0n) oy = O,

KeTy

summing (4.12) over all elements K € T, gives us

1 N
> Woxe + Mpre) = 5 > N1b-n]>(vn — )]} oc-
KeTh, KeTn

Thus we obtain the coercivity (4.8). O
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From Lemma 4.1 and Lemma 4.2, we get the following lemma
Lemma 4.3. We have the following three properties.

1. (Galerkin orthogonality) Let u be the exact solution of (1.2), and let u = {u, u|r, }.
Let uy, be the approximate solution by (3. 1). Then we have

Bh(u — 'u,h,'vh) =0 VYo, € V.

2. There exists a constant Cj, independent of / and ¢ such that

|Br(v = Pro,wp)| < Gy |lv = Ppol|| Jwnll  veV,wy eV

3. (Coercivity) There exists a constant C, independent of / and £ such that

Bh(’Uh,'Uh) > C, |||'Uh|||2 v, € V. (4.13)

Theorem 4.4. Let u be the exact solution of (1.2), and let v = {u,u|r,}. Let u; be
the approximate solution by (3.1). Recall that we are assuming (H1), (H2), and (H3). If
u € H*1(Q) then we have the following error estimate:

llw — || < C(e? + A7) RF|uiys, (4.14)
where C denotes a positive constant independent of 4 and &.
Proof. By using the three properties in Lemma 4.3, we deduce that
Ce lllun — Prul|®? < Bu(up — Pru,uy, — Pru)
w(u — Pru,up, — Pru)
(

= B, u—ﬁ,uh—Phu)—l—Bh('&—Phu,uh—Phu)
< Gy(lllw — afl + e — Prul|]) [lun — Prull|.

5]

Hence we have
llun — Prull| < C(lllw — @l + [[[u — Prull]).

By the triangle inequality and Lemma 2.2, we have

lu —wunlll < lllun = Prufl + lllu - Prul]
€+ Dlllu = Prull| + Clllu — al|

<
< C(eM? + ARk .

Thus, the proof is completed. O
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5 Therelation between u;, and the solution of the reduced
problem

Let ug be the solution of the reduced problem of (1.2) :

b-Vug+cuy = fin{, (5.1a)
Uy = ¢gp Oon FD. (Slb)

Here we assume that I'p = I'_ and gy = 0, and suppose that the unique existence of a
solution ug € H2(Q) to (5.1). Let ug = {ug,uo|r, }- The aim of this section is to show
the approximate solution uy, is also close to 1o when ¢ is very small. This suggests that
our hybridized DG method (3.1) is stable even when ¢ is sufficiently small.

Theorem 5.1. Let u;, be the approximate solution defined by (3.1), and let 2, be defined
as above. Then we have the following inequality:

lun = wolll < C(ll[@ollly + lltto — Prisoll]) , (5.2)
where C is a constant independent of £ and h.

Proof. By the consistency of B;°(-,-), we have
By (uo, vr) = (f,vn), (5.3)
from which it follows that
B (o, v) = (f,vn) + By(uo, vn) + Ba(ito — wo, vs). (5.4)
Subtracting (5.4) from (3.1) gives us
By (g — up,vp) = BHul, vs) + Bty — ug,vs) Yvi € V. (5.5)

Here we claim that

By (tio — o, vs) = By (tio — uo, vn). (5.6)
In fact, we have
Bh(’fl,g — 'u,o,'vh) = Bg(’&o — ’u,(),’Uh) + Bgc(’&,o — Uy, 'vh)
= Bi(ito — w0, vp)

+ <Ph(’“0|aﬂ) — Uolan, [b- n]-vp —[b- n]+@h>an\r_
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Since [b - n]_ and v, vanish on 9Q \ I'_, we have (5.6). Thus (5.5) becomes

By(tig — up,vr) = Bi(ug,vp) + Bi(itg — ug, vy) (5.7)
B;‘f('&%,vh) Yo, € V.

Choosing vy, = uy, — Prutg € Vg, in (4.13), we have

Cc |||uh - Ph'&0”|2 < Bh(uh - Phﬁo, up — Phﬂo)

= Bp(up — o, up — Pritg) + Bp(to — Prito, up, — Phito)
< |Bi(fs, un, — Pito)| + |Bn(fto — Prito, us — Philo)|
< Cf o]l llwn — Prtollly, + Cb lll @0 — Phiiolll s — Prio|
Then we have

Ce lllun — Pritoll| < Cf |llttolll, + Cs lllit0 — Prsoll| -
By the triangle inequality,

leen — @olll < lllun — Prtao]|| + ||| Prko — tiol|

ce G . -
< Z lanlly+ (1+ ) o~ Pl
where CZ, C., and C}, are independent of €. Thus we obtain the inequality (5.2). |
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6 Numerical results

6.1 Convection-dominated case

We consider the case that the diffusion coefficient is very small, ¢ = 107?, so that the exact
solution has a boundary layer. Let {2 be the unit square domain, b = (1,1)%, and c = 0.
The example problem is as follows:

—eAu+b-Vu = finQ, (6.1a)
v = 0OonTp =09, (6.1b)

where f is given so that the exact solution is
u(z,y) = sin(rz/2) sin(ry/2) (1 — e(z_l)/e) (1- e(y_l)/e) .

This solution has a boundary layer near z = 1 or y = 1. The meshes we use are the
rectangular meshes with the length of h = 1/N. We computed the approximate solutions
for h = 1/10,1/20,1/40, and 1/80 with linear elements. In Figure 3, we display the
graph of the approximate solution for A = 1/10. We can see that no oscillation appears
unlike the classical finite element method. Figure 1 shows that the convergence diagram
in the L? norm and H*(7) seminorm on ¢ := (0, 0.9)2. Here we restrict the domain to
2.9 in order to remove the boundary layers. We observe that the convergence rates of the
LZ%-error and the H(7)-error are optimali.e., h? and h, respectively. We also computed
for e = 107! to compare with the convection-dominated case, see Figure 2. In this case, it
can be observed that the convergence rates of the error on the entire {2 are h? and & in the
L2-norm and H*(7})-seminorm, respectively.

6.2 Rotating flow problem

Next, we consider the example where b is not constant. Let {2 be the unit square domain
with a slit, i.e., © = (0,1)2\ {(1/2,y) : 0 < y < 1/2}. We consider the same equation
(6.1) for different coefficients: ¢ = 107%, b = (1/2 — y,z — 1/2)T, and f = 0. The
non-homogeneous Dirichlet boundary condition, gp(z,y) = sin?(27y), is imposed on
the inflow-side slit, and gp = 0 otherwise, see Figure 4. We used the same meshes and
finite element spaces as the previous example. In Figure 5, we display the graphs of the
approximate solution uy, and 4, with h = 1/20. Figure 6 shows the cross section of uy, at
x = 1/2, which confirms us that our method works well and is stable.
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Figure. 2: L?-error(left) and H(7Ty)-error(right) on ) for ¢ = 1071,
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Figure. 3: Approximate solutions uy(left) and 4y (right) for h = 1/10 and € = 1079,

t—00(s,) = sin’ (2p)

Figure. 4: Rotating flow problem.
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Figure. 5: Approximate solutions up(left) and 4y (right) of the rotating flow problem for
h =1/20.

02 ' L L L 02

Figure. 6: Approximate solution u, at = 1/2 of the rotating flow problem for h = 1/20
(left) and h = 1/40 (right).
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7 Conclusions

We have presented a new hybridized scheme for the convection-diffusion-reaction prob-
lems. In our formulation, a unwinding term is added to stabilize the convection-reaction
part. As aresult, our scheme is stable even when € | 0. Indeed, numerical results show that
no oscillation appears in our approximate solutions. We have proved the error estimates
of optimal order in the HDG norm, and discussed the relation between our approximate
solution and the solution of the reduced problem.
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Part 11
Hybridized Discontinuous Galerkin
Method with Lifting Operator

1 Introduction

The discontinuous Galerkin(DG) methods is one of the active research fields of numeri-
cal analysis in the last decade. They allow us to use discontinuous approximate functions
across the element boundaries and have the robustness to variation of element geometry.
That is, we can utilize many kind of polynomials as approximate functions on elements and
many kind of polyhedral domains as elements simultaneously. Consequently, DG method
fits adaptive computations, so that mathematical analysis as well as actual applications has
been developed for various problems. For more details, we refer to [2, 5, 6]. However,
the size and band-widths of the resulting matrices can be much larger than those of the
conventional FEM, which is a disadvantage from the viewpoint of computational cost. To
surmount this obstacle, recently new class of DG method, which is called hybridized DG
methods, is proposed and analyzed by B. Cockburn and his colleagues; for example, see
[15]. Thus, we introduce new unknown function U, + on inter-element edges and character-
ize it as the weak solution of a target PDE. We then obtain the discrete system for Uy, and
the size of the system becomes smaller. On the other hand, it should be kept in mind that
DG method has another origin. Some class of nonconforming and hybrid FEM’s, which
are called hybrid displacement method, use discontinuous functions as approximate field
functions; see for example [8, 9]. In [10] and [11], F. Kikuchi and Y. Ando developed a
variant of the hybrid displacement one, and applied it to plate problems. Their approach
enables one to use conventional element matrices and vectors. It, however, suffered from
numerical instability and was not fully successful. Recently, the author and his colleagues
proposed a new DG method that is based on the hybrid displacement approach by stabiliz-
ing their old method and applied it to linear elasticity problems in [12]. A key point of our
method is to introduce penalty terms in order to ensure the stability. We, then, carried out
theoretical analysis by using the 2D Poisson equation as a model problem, and gave some
concrete finite element models with numerical results and observations in [13]. However,
an issue still remains. The stability is guaranteed only when the penalty parameters are
taken from a certain interval, and we know only the existence of such an interval and do
not know concrete information about it.

The purpose of this paper is to propose a new hybridized DG method that is stable for
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arbitrary penalty parameters. Our strategy is to introduce the lifting operator and define
the penalty term in terms of the lifting operator. In order to state our idea as clearly as
possible, we consider the Poisson equation with homogeneous Dirichlet condition: '

—Au= fin, u=0o0ndQ, (1.1)

where ) is a convex polygonal domain and f € L?(Q).

This paper is composed of six sections. In Section 2, we introduce the triangulation
and finite element spaces, and then describe the lifting operator. Section 3 is devoted
to the formulation of our proposed hybridized DG method, and mathematical analysis
including error estimates is given in Section 4. In Section 5, we report some results of
numerical computations and confirm our theoretical results. Finally, we conclude this
paper in Section 6.

2 Preliminaries

2.1 Notation

Let O C R7, for an integer n > 2, be a convex polygonal domain. We introduce a
triangulation 7, = {K} of Q in the sense [13], where A = maxger, hx and hx stands
for the diameter of K. That is each K € 7T, is an m-polygonal domain, where m is an
integer and can differ with K. We assume that m is bounded from above independently
of a family of triangulations {7}, }», and 0K does not intersect with itself. Let £, = {e C
0K : K € Ty} be the set of all edges of elements, and let I'y, = | J 7. OK. We define the
so-called broken Sobolev space for £ > 0,

H*(Th) = {ve L*Q) :v|x € H¥(K) VK € T;}.
Let L2(T,) = {6 € L%(T') : 9|sq = 0 }. We introduce the inner products
(u,v)x = / wvdz for K € Tp,
K

(T, D) = /ﬁ@ds fore € &,

The usual m-th order Sobolev seminorm and norm on K are denoted by |ul|,, x and
||w||m, & » respectively. We use finite element spaces:

Un C HX(T;), U, c LYTy),
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and we set V', = Uy, x Uy and V = H2(T;) x L2(T';). We assume that
VUh(K) = {V’Uh U € Uh(K)} C Uh(K)n
for all K € 7.

2.2 Lifting operators

We state the definition of the lifting operator which plays a crucial role in our formulation
and analysis. To this end, we fix K € 7, and e C 9K for the time being, and set

Un(K) = {wal|x : wn € Un},
Un(e) = {tn)e : o € Uy}
Then, for any © € L?(e), there exists a unique uy, € Uy (K)™ such that
(’U,h, wh)K = (ﬁ,wh . nK>3K th S Uh(K)n, (21)

where n g is the unit outward normal vector to K. The lifting operator Ry, : L2(0K) —
Un(K)™ is defined as Ry, (0) = uy,. Thus,

(Rh(’f)), wh)K = <’lA}, wy, - ’nK>3K Ywy, € Uh(K)n 2.2)
Here we prove the following proposition to use in our analysis.
Proposition 2.1. Let K € Ty, then we have

IRA(D)llox < C D b 2|lloe Vi € L*(OK). (2.3)

eCOK
Proof. In (2.2), taking w;, = Ry (0) yields
IRA(D)I5 5 = (Ra(0), Ru(0)x
= (0, Rp(0) - nx)ox

<) 6lloel Ra(9)lo.e. (2.4)

eCOK
By the trace theorem, there exists C' such that

|RA(D)llo,e < Ch7Y2|| Ry (D)0, (2.5)

The constant C' depends on Uy (K) and Uy (8K). Combining (2.4) with (2.5), we obtain
2.3). O
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3 New hybridized DG scheme

This section is devoted to the presentation of our proposed hybridized DG method. Before
doing so, we convert the Poisson problem (1.1) into a suitable weak form (3.4). A key
idea is to introduce unknown functions on inter-element edges. First, multiplying both the
sides of (1.1) by a test function v € U, and integrating over each K & T, we have by the
integration by parts

> (Vi Vo)x — (nk - Vau, v) o] = (f,0) 3.1
KeTy,

From the continuity of the flux, we have

> (ng - Vu,0) =0 Vo e LYTh). (3.2)
KeTy,

This, together with (3.1), implies

Z [(VU, VU)K - <nK : Vu, v = QA})E)K] = (fa 1)) (33)

KeTy

Here we set, for u = (u, %) and v = (v,9) € V,

an(u,v) = Z (Vu, Vo)k,

KeTy,
bp(u,v) = — Z (ng - Vu,v—0) g .
KeTy,
Then, (3.3) is rewritten as
ah(“’) U) + bh(ua 'U) = (f) U)' (34)

Now we can state our hybridized DG method: find u;, € V5, such that
Bi(un,vp) = (f,vn) Vo = (vs,0n) € Vp, (3.5)
where
Bf(up, vn) = an(wn, vp) + ba(tn, v) + bp(Vn, us)

+ lh(vh, Uh) + jh(uh, ’Uh). (3.6)
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Here, the third term by, (vp, up,) of BE is added in order to symmetrize the scheme and the
penalty terms I, (up, vp) and jp(up, vy) are defined by

In(un,vn) = > (Ra(un = tin), Ravn — 0))g
KeT,

Jn(un,vp) = Z Z Nehg * (un — @) (vn — On)ds,
KeT;, eCOK V€

where 7, is the penalty parameter on an edge e with 7, > 7, > 0 and h, is the length of
e.

4 Error estimates

In this section, we give a mathematical analysis of our hybridized DG method. To this
end, we introduce

llolll* =D 11V = Ru(w = 0)IIf  + [0,
KeTh

lolllz = D Tl & + vl

KeTy

olZn= > D Elv— ol

KeTj ecdK ¢

where

Proposition 4.1. There exist constants C; and C5 such that
Cillolll, < lllvlll < Cellolll,  YveV. (4.1)
Proof. By Proposition 2.1, we have forallv € V,

loll* <2 >~ (W & + I Ra(v = )5 4) + 034 < Cl[]lI5-
KeTy

Next, we prove the other inequality of (4.1). For any £ > 0, we have

lloll* > >~ (A =e)lix + (1 = DI Ra(v = D) x) + [v]
KeTy

C _
> (1-e) Y follg + (1+ - 1)) of2,.

KeTy

zmin{l—e,l—i—

C - >} ol

min
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We denote & = C/ny,. Taking € = (1 + 2¢0)/2(1 + ) gives us

T
v .
1+ h

2
llvlll” =

Theorem 4.2. The bilinear form By satisfies the following three properties.
- (Consistency) Letu € H2(Q)N H(Q) be the exact solution. For w = (u, u|r, ), we have

BE(u,v) = (f,v) YweV.

(Boundedness)
| By, (v, w)| < [|[vll lw]]  Vo,weV.

(Coercivity)
B;IL'(’U}L,’U},,) > Hl’UhH|2 Yo, € V.

Furthermore, the scheme (3.6) admits a unique solution uy, € V', for any f € L?(Q2) and

{Ne}e-

Proof. The consistency is trivial since v — u|r, = 0 on I',. The coercivity is a direct
consequence of the expression

bn(vn, w) = =Y _(Vog, Ra(w — %))

Combining this with the Schwarz inequality, we immediately deduce the boundedness.
Finally, the coercivity implies the uniqueness of (3.6) and, hence, the system of linear
equations (3.6) admits a unique solution. O

As results of those three properties, we obtain the following a priori error estimates in
terms of |||-|||.

Theorem 4.3. Let u = (u,u|r,) € V with the exact solution u € H2(Q2) N H3(Q) of the
Poisson problem (1.1). Suppose that {7}, } satisfies

7 < he/hx VK €T, Ve C OK 4.2)

with some positive constant 7. Let u;, € V', be the solution of our HDG scheme (3.6) for
any {7}, with 7. > 0. Then, we have the error estimates

llw=unll, < C_inf = vl @3
VneVp
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Proof. By Theorem 4.2, we have for any v;, € V',

llwn — valll> < BE(ws — v, us — up) (Coercivity)
= BE(u — up, up — vp) (Consistency)
< lw = uill| |llun —vnlll, (Boundedness)
which implies that
lun — vn|l| < |lluw— vl Yo, € V. (4.4)

By the triangle inequality and (4.4), we have
e — walll < [llw — vrlll + [llun — sl < 2][|w — vl
Since the norms ||-||| and |||-|||,, are equivalent by Proposition 4.1, we obtain (4.3). O

As is stated in [13], we assume that the following approximate properties: for v €
H*+1(K) there exist positive constants C; = C1(k, s) and Cy = Ca(k, s) such that

inf |v — vplsx < CrRE " |vlkra k, (4.5)
vp €U

R ~ k+%—s

inf [v—glse < Cohye * "|lit1,x- (4.6)
el

Then we have the error estimates in Theorem 4.3 are actually of optimal order.

Theorem 4.4. Under the assumptions in Theorem 4.3 and the approximate properties (4.5)
and (4.6), we have, if u € H**1(Q) N H} (),

I — wnlll, < Ch*|ulrsr0, 4.7
v — unlloe < CA* M ulprr0 (4.8)

Proof. From (4.5) and (4.6), we can easily see that

inf [l — vall, < CR¥lulisro. 49)
’UhGVh,

Combining this with Theorem 4.3 yields (4.7). Next, we prove (4.8). Here we define
¥ € H*(Q) N H () as the solution of the adjoint problem

{_A¢=u—uh in 2, (4.10)

=0 on 05.
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Let 1 = (3, 9|r, ). Then, since Bf is symmetric, we have
Bf(v,9) = (u—up,v) Yv=(v,0)€V. (4.11)
In particular, taking v = u — uy, we have for any ¥, € V},,

lu = unllfq < By (u — up, )
= By/(u — un, % — )
< e — wal|[ll1¥ — ¥all
< Cllw — unllilfle — ¥l -

From (4.5) and (4.6), it follows that

I = ulll, < Chlla0. (4.12)

By the regularity of the adjoint problem, we have

[Y]20 < Cllu— unlloo- 4.13)

Thus we obtain (4.8). O

Remark. In contrast to our previous results of [13], error estimates in Theorem 4.3 are
valid for any positive parameters 7.. This is one of the advantages of our hybridized DG
method.

5 Numerical results

We now present the numerical results of our method for the following problem:
— Ay = 2r? sin(7rz) sin(ry) in Q, 5.1)
u = 0 on 69, '

where (2 is a unit square. We use uniform rectangular meshes and P;-elements (k =
1,2,3). We computed the approximate solutions with various mesh size h = 1/5, 1/10,
1/20, and 1/40, see Figure 7 and Figure 8. Here we take 7. = 1 as the penalty parameters
for each e € &,. From them, we see that the H! and L? convergence rates of the approxi-
mate solutions are h* and h**1, respectively. Figure 9 and Figure 10 show the approximate
solutions uy, and 4, with P;- and Py-elements, respectively.
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Next, we provide the results for small penalty parameters in order to verify the stability
of our scheme. For comparison purposes, we also show that of the symmetric scheme [13].
The mesh size h and tolerance of termination criterion are fixed to certain values. We use
the BICGSTAB method with diagonal preconditioning to solve the linear systems. Figure
11 and Figure 12 show the numbers of iterations and H'(7)-errors. We see that our
scheme is successful for all positive parameters, while the symmetric scheme fails when
7e is not large enough. Moreover, we see that the number of iterations of our scheme is
about the same as the symmetric one for sufficiently large parameters.

6 Conclusions

We have presented a new hybridized DG method by using the lifting operator and exam-
ined the stability for arbitrary penalty parameters. Convergence results of optimal order
have been proved and confirmed by numerical experiments. As a model problem, we have
considered only the Dirichlet boundary value problem for the Poisson equation. We are in-
terested in application to other problems, for example, Neumann boundary value problem,
Stokes system, and time-dependent problems. They are left here as future study.
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Figure. 9: Approximate solutions up(top) and 4y (bottom) with Pj-elements and A =
1/10.

34



Figure. 10: Approximate solutions up (top) and 4y, (bottom) with P,-elements and h =
1/10.
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Figure. 11: The number of iterations and H(7,)-errors with P;-elements and h =1 /10

by our scheme (top) and the symmetric one(bottom). The x-axis denotes the penalty pa-
_rameter 7,.
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Appendix

A Some remarks on the lifting operators

In this section, we consider a more general case of the lifting operators. Let K be an
element of T},. We denote by Ry, (V},; 0) a lifting operator for a finite dimensional space V3,
on K, which satisfies

(Ra(Vi; 0), wr)k = (N - W, 0) 5 Yy € (Vi)™

In particular, we denote R} (0) = Ry (P™(K), 0), where P™(K) is polynomials of degree
mon K. If [ < m, then

IR (@) 220y 2 |1 BE (D)l z2(i¢ym,
which follows from the following proposition.
Proposition A.1. If V, C W}, then we have
(Ri(Wh; 0), Ru(Wh; 0)) g > (Ra(Va; 0), Ru(Va; 0)) i V0 € L*(0K).
Proof. Since R (Vy;0) € (W)™, we have
(Ba(Wh; 0), Ba(Va; 0) i = (nxc - Bn(Va; 0),0) i
= (Ra(Vh; 9), Ra(Va; 0)) g -
Hence we have
0 < (Ra(Wh; ) — Ra(Vi; ), Ra(Wh; 0) — Ri(Vi; 0))
= (Ra(Wh; 0), Rn(Wh; 0)) g — (Ra(Va; 9), Bn(Va; 0)) - 0
Next, we give a counterexample to show that the converse inequality of (2.3)

C Yy e

eCOK

0e < [Ra(®)llox V0 € L*(0K)

does not hold in general.

Theorem A.2. Let K C R? be a unit square. Then, there exists © € M.cox P(e) \ {0}
such that

(N - wh, Mg =0 Yy, € (PY(K))?, (A.1)
which implies that RY(¢) = 0.
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T + a2

ai
Figure. 13: Illustration of the element and midpoints {a; }1<;<4.

Proof. Let {a;}1<;<4 be the midpoints of OK, see Figure 13. Let wy, = (w},w?)T and
nx = (nk,n%)T. Since (ng - wy?)|. € P°(e) for each e C K, we have

(nk - wh, D) g = —wid(ar) + wpd(az) + wid(as) — wyd(aq)
= wj(D(as) — D(as)) + wi(9(as) — H(ar)).

Hence we obtain 9(as) = ¥(ay) and 9(a;) = ¥(a3). There exist uncountably many such
functions 9 in Il.cax P°(e) \ {0} O
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