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ABSTRACT. Let Uq(b) be the Borel subalgebra of a quantum affine algebra of type X,(Ll) X =
A, B,C, D). Guided by the ODE/IM correspondence in quantum integrable models, we propose
conjectural polynomial relations among the g-characters of certain representations of Ug(b).
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1. INTRODUCTION

Let Uy(g) be a quantum affine algebra of type m (X = A,B,C,D), and let Uy(b) be its
Borel subalgebra. In this paper we shall consider the problem of finding polynomial relations
satisfied by the g-characters of the fundamental modules in the sense of [1] and related modules.
This problem is intimately related with that of functional equations for Baxter’s Q-operators in
quantum integrable models. In order to motivate the present study let us review this connection.

In quantum integrable systems, one is interested in the spectra of a commutative family of
transfer matrices. The latter are constructed from the universal R matrix of a quantum affine
algebra, by taking the trace of the first component over some finite dimensional representation
called ‘auxiliary space’. When the auxiliary spaces are the Kirillov-Reshetikhin (KR) modules,
the corresponding transfer matrices satisfy an important family of polynomial identities known
as the T-system [2, 3]. (For a recent survey on this topic, see [4].) Subsequently the T-system
has been formulated and proved [5, 6] as identities of g-characters. It has been shown further [7]
that the T-system is actually the defining relations of the Grothendieck ring of finite dimensional
modules of quantum affine algebras. Notice that, from the construction by trace, the g-characters
and the transfer matrices are both ring homomorphisms defined on the Grothendieck ring. Since
the g-characters are injective [8], identities for g-characters imply the same identities for transfer
matrices.

Baxter’s Q-operators were first introduced in the study of the 8-vertex model [9]. Since then they
have been recognized as a key tool in classical and quantum integrable systems, and there is now a
vast literature on this subject. In the seminal paper [10], Bazhanov, Lukyanov and Zamolodchikov
revealed that the Q-operators can also be obtained from the universal R matrix, provided the
auxiliary space is chosen to be a (generically infinite-dimensional) representation of the Borel
subalgebra. The work [10] for Uq(;[;)) has been extended by several authors [11, 12, 13, 14, 15] to
higher rank and supersymmetric cases. B

In view of the results mentioned above, it is natural to ask whether one can find polynomial
relations, analogous to the T-system, for the g-characters of Uy(b) (and hence for the Q-operators
as well). The goal of this paper is to propose candidates of such identities.

Our idea is to use the so-called ODE/IM correspondence which relates the eigenvalues of Q-
operators and certain ordinary linear differential equations. The reader is referred e.g. to the
review [16] on this topic. In [17], the correspondence is discussed for general non-twisted affine Lie
algebras using scalar (pseudo-)differential operators. In this paper we reformulate their results in
terms of first order systems. The general setting (to be explained in Section 3) is as follows.
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Let Lg denote the Langlands dual Lie algebra of g. Consider the following Zg-valued first order
linear differential operator

(1.1) —_Z Jrzez #Mh _ E)ey.

Here eg, . . ., en are the Chevalley generators of Lg, £ is a generic element of the Cartan subalgebra
Ly c Lg, hY is the dual Coxeter number of g, and M > 0, E € C are parameters. For each
fundamental representation V() of Lg, there is a basis {X(J“) (z, E)} of V{®-valued solutions to the
equation Ly = 0 characterized by the behavior

X (2, B) = u@a (1+0(2)  (z0),

where )\(Ja), uf,a) are the eigenvalues of £ and the corresponding eigenvectors. Hence this basis is

labeled by weight vectors of V(#). There is also a canonical solution ¢v(“) (z, E) which has the
fastest decay at £ — 4-o00. Due to the special choice (1.1) of £, the canonical solutions are shown
to satisfy a system of relations similar to the Pliicker relatlons called the t-system in [17] (see
Subsection 3.2 below). Introduce the connection coefficients Q(a)( E) eCby

¢(a (z, E ZQ (11) )

Then the 1)-system implies a set of polynomial relations among the connection coefficients Qf,a) (E).
We expect the following to be true:

* (1) For each connection coefficient an) (E), there is associated a formal power series Qf}g Up
to a simple multiplicative factor, the latter is the g-character of an irreducible highest ¢-weight
module of Uy (b). In particular, for the highest or lowest weights of V(@) the corresponding modules
are the fundamental modules [1] of Ug(b).

(2) With the identification

QP(B)«— ), Bz,
the polynomial relations for QE,") (E) implied by the t-system hold true also for Qsai

We adopt (1), (2) as our working hypothesis for finding relations among the g-characters. A
few remarks are in order here. We consider separately the cases related to the spin representation
(1 e , (g,a) = (C(l), n); (Dﬁ,l.),n -1),(D DY, n)) and use the letter RE;“Z)« to denote the counterpart of

v gle J,z. ‘We expect that Q(Ja; or Ré‘fz) corresponds to the g-character of an irreducible highest £-weight
module of U,(b) whose highest ¢-weight is given by formulas (4.16), (4.19)~(4.20), (4.23)-(4.24).
(In the case C’T(Ll), there are problems with this interpretation, as explained in Remark 5.9.) Also
the relations for the Q(a)’s or ZR( )’s are not exactly the same as those for Q(a) (E)’s, but it is
necessary to fine-tune the coefﬁc1ents by some power functlons 1ndependent of z. The details will
be given in Section 5 below. That it is natural to consider all gla Iz correspondlng to general weights
of V(@ is a viewpoint suggested by the work [14] for type A algebras.

Now let us come to the content of the present work. As a first step, we give explicit candidates
for Qilz) associated with each weight of the vector representation V), This is done by taking
suitable limits of the known g-characters of KR modules given by tableaux sums. It is known [1]
that for the highest and lowest weights this procedure indeed gives the irreducible g-characters.
As the next step, we define the formal series Q(Jai for a general node a of the Dynkin diagram. We

define them by Casorati determinants whose entries are lez) with suitable shifts of parameters.

) expected from the -system. In

the cases related to spin representations, however, we do not have explicit candidates the ‘RE; z)’s in .

general, so we only write down the candidates for the relations. The resulting polynomial relations
2
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are given in Proposition 5.1, Theorem 5.2 (type A7(11 ), Conjecture 5.3 (type B( )) Conjecture
5.5-5.8 (type C’,gl)) and Conjecture 5.10-5.11 (type D¢ )), respectively.

For the type A algebras, one can check that Qi,lz) (not necessarily the highest or lowest ones) are
indeed irreducible g-characters of modules given in [13]. The polynomial relations corresponding
to the 9-system can be summarized as a single identity-

(1.2) det (Qf/ 3—zn+n+zzm”“+") :11 —1,

where z, = e, {e,}} "+1 being an orthonormal basis related to the simple roots by o, = €, — -

€y+1. This relation carrles the name ‘“Wronskian identity’ (as for its status, see the remark at the
beginning of Appendix C). We shall give a direct proof that (1.2) is satisfied for g-characters in
Appendix C.

For the other types of algebras, the situation is less satisfactory. At the moment we do not
know the irreducibility of modules corresponding to the lez) given by our procedure (except those

corresponding to the highest or lowest vectors). For the spin representations of C,(Ll) and D,(zl),

explicit formulas for the 3%( )’s are missing. More seriously, we have not been able to prove the
proposed identities for q—characters by computational methods. Instead, we support our working
hypothesis by performing the following checks.
(i) g= Bél), proof by hand
(i) g = Bél), computer check
(i) g= Dfll), computer check

(iv) g = B(l) C’(l) D(l) proof in the limit to ordinary characters
The main results of the present paper consist in formulating the conjectured relations, and in
performing the checks mentioned above.

‘The text is organized as follows. In Section 2, we prepare basic definitions concerning the
Borel subalgebra Uy (b) of a quantum affine algebra Ugy(g), and collect necessary facts about their
representations. In Section 3, we give an account of the i-system in.the ODE/IM correspondence
and indicate how to derive them using the formulation by first order systems. We note that in [17]
the 1)-system for algebras other than A type is mentioned as conjectures. In Section 4, we introduce
the series Q(, ) as limits of the g-characters of KR modules. We also define these series for the other
nodes of the Dynkin diagram. Section 5 is devoted to the proposals for polynomial relations. By
comparing with the relations for the connection coefficients, we write down the relations for each
type of algebras A(l) 7(11)’ C’(l) and D(l). In Section 6, we give a summary of our work.

The text is followed by four appendices. Appendix A gives a list of realizations of the dual Lie
algebras Tg. In Appendix B, we give slightly more details on the procedure to obtain ¢-system by
taking g = Aél) as an example. In Appendix C, we give a proof of the Wronskian identity for type
Aﬁﬁ). In Appendix D, we prove the identities for type B,gl) in the limit to ordinary characters. In
Appendix E, the same is done for type C’(l) and Dﬁll).

2. PRELIMINARIES

In this section we introduce our notation on quantum affine algebras and their Borel subalgebras,
and collect necessary facts that will be used later. Throughout this paper, we assume that ¢'is a
nonzero complex number which is not a root of unity.

2.1. Quantum Borel algebras. Let g be an affine Lie algebra associated with a generalized
Cartan matrix C = (c¢ij)o<i,j<n Of non-twisted type. Let D = diag(dp,...,dn) be the unique
diagonal matrix such that DC is symmetric and do = 1. Set I = {1,2,...,n}, and let g denote
the simple Lie algebra with the Cartan matrix (ci;)s jer. Let {os}ser, {0 }ier and {w;}icr be the
simple roots, simple.coroots and the fundamental weights of §, respectively. We set P = @®;erZw;,
Q = ®icrZo;.



Set q; = qd". We shall use the standard notation

A RTI  (OR  R
| GRS et

The quantum affine algebra Uy(g) is the C-algebra defined by generators E;, Fj, K (i =
0,...,n) and the relations '

KK '=1=K'K;,, KK;=K;K;,
KEK ' =¢"E;, KFK ' =q “F,

K;— Kt
B, Fj] = 6y ———i,
[ z .7]‘ 1‘7 qz_qz 1
l—cij 1
5[] cormmEre o0, it
r=0 %
1—ciy 1
> { _rc”] (C)FIRF T =0, i
r=0 i

We do not write the formulas defining the Hopf structure on Uy(g) since we are not going to use

them.

As is well known [18, 19], U,(g) is isomorphic to the C-algebra with generators w?’:r (z €I,
reZ), k! (i € I), hiy (i € I, r € Z\{0}) and central elements ¢*1/2, with the following defining
relations : :

klk,b_1=1=kz_1kz, 61/20-—1/2=1=c—1/201/27
kik; = kski,  kihgye = hycki, |

+ 7.—1 tei; 4
ki ki =q %y,
+q,_ .1 2+
(i 5] = iF[’”cij]ic;lTV Tir s

+ + *eij, &+ _ ey £ & + +
Tir+1%5s — G T5sTiri1 T G TipThise1 — Ther1Tiro
r—s)/2 4+ —(r—s)/2 41—

‘C( )/ ¢z‘,'r+s —c(r=e)/ ¢i,r+s
?

[z;i,_r? xj,s] = 0y

1
”eGl—cij

for all integers r;, where &, is the symmetric group on m letters, and the ¢;|,:,. are given by

0 (o]
Z QSg,::I:ru’ir = kz;tl exp (i((h - qi_l) Zhi,isui's) .
r=0 o—1

By definition, the Borel subalgebra U, (b) is the Hopf subalgebra of Ug(g) generated by E;, Kz?tl
(0 <i < mn). It is known [20] that Uy(b) is isomorphic to the algebra with generators Ei,sz?H
(0 €% < n) and the defining relations
Kin = KjKi 5 KiEjK,;-l =’qfijEj s
l—c,-j B

> [1 —rc”} (FA B[ EET T =0, i#j.

r=0 i

-1
g —q; "
.y
kil—c|  + + + + + P
(_1) i: k ,xi:hru) a 'mi,rn(k)mj,sxiﬂ‘w(kﬂ) T w’i,T«(1—c,~j) =0,1 # I
=0 i

(2

The algebra Uy(b) contains :c;fm, T s kz?':l and qS;’:,,, where s € I, m > 0 and r > 0.
. 4 |



2.2. Category O of Uy(b). In this subsection we recall basics about U,(b)-modules in category
O. For more details see [1]. .

Denote by t the subalgebra of Uy(b) generated by {kf'Yser. For a Uy(b)-module V and A € P,
set

VA-—{vEV|kv—q>‘(a Dy (Viel)}.

When Vy, # 0, it is called the weight space of weight A\. A Ug(b)-module V' is said to be of type 1
if V =&xepV.

" A series of complex numbers ¥ = (\If,-,r),;e Irelso 18 called an £-weight if ¥; o # 0 for all ¢ € I.
We denote by € the set of £-weights. For a Uy(b)-module V and ¥ € ¢, the subspace

V@) ={veV|Ip>0,Vicl,vm>0,(8;, — Vim)Pv=0}

is called the £-weight space of f~weight W.
A U,(b)-module V is said to be a highest £-weight module of highest ¢-weight ¥ € 7 if there
exists a vector v € V such that V = Uy(b)v and

Eiv=0 (Gel), =W, v (i€l,rn>0).

'L ’f‘
For each ¥ € t; there exists a unique simple U,(b)-module of highest £-weight ¥. We denote it by
L(¥). _

A highest £-weight module is of type 1 if its highest £-weight ¥ satisfies

(2.1) U,0=¢" forsomep; €Z (i€I).

For any non-zero complex numbers ¢; € CX, the map E; — E;, K; — ¢;K; (i =0,...,n) gives
rise to an automorphism- of Uy(b). After twisting by such an automorphism, any highest {-weight
module can be brought to one sat1sfy1ng the condition (2.1). We denote by te p the set of £-weights
satisfying (2.1).
Set D(A\) =A—QT, @t =3, c; Zxoai. A Ug(b)-module V' of type 1 is said to be an object in
category O if
(i) for all A € P we have dim V) < oo, ,
(ii) there exist a finite number of elements A1,...,As € P such that the weights of V' are
contained in U D(xp).
] 1,...,8
In what follows we shall identify Te t; with their generating series,

U= (Ti(w),..., Unw), T(w)=> T
‘ r>0
Simple objects in category O are classified by the following theorem.
Theorem 2.1 ([1]). Suppose that ¥ € t; p. Then the simple module L(T) is an object in category
O if and only if ¥;(u) is a rational function of u for any i € I.
In particular, for ¢ € I and z € C*, the simple modules L;I,:z = L(¥) defined by the highest

£-weight
) 1 _ +1 s
o) = {7 =4
X 1 J 7é T,
are objects in category @. These modules are called the fundamental representations [1].
It is known [21, 22] that finite dimensional simple U,(g)-modules remain simple when restricted

to Uy (b). According to the classification of the former [23, 24], the simple module L(¥) is finite
dlmensmnal if its hlghest £-weight has the form

“aegp; Pilay )
y(u) = g; 8 Bilgn) (Viel),
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where P;(u) is a polynomial such that P;(0) = 1. In the case where
—mt1, g3, _gm-1 P—
Py(u) = (1—g ™ 2u)(1 = g™ 2u) - (1= g ) (G=1),
1 : (G #19),
with some ¢ € I, m & Zsg and z € C*, the module L(\If) is called a Kirillov-Reshetikhin(KR)
module. We denote it by W,S:)z

2.3. Characters and ¢-characters. Let Z'%P denote the set of maps "Z p — L. For ¥ € ¢ p,
define [¥] € Z%.7 by [¥](¥’) = by,g'. For a Uy(b)-module V of type 1 in category O, its g-character
xq(V) is defined as an element of Z%.»,

= ) dimV fo) [¥].

vey o

Similarly let ZF denote the set of maps P — Z, and define e* € ZF by e*(u) = 6x,,. The ordinary
character x(V) is an element of Z%,

x(V) = Z dimVy - e*.
AeP

We have a natural map w : Z%? — ZF which sends [¥] to e* such that ¥; o = =g; M) Under w
the g-character specializes to the ordinary character,

x(V) =@ (xq(V)) -
For an object V in category @ with highest /-weight ¥, its normalized g-character %q(V) is
defined by

X(V) =[] xq(V).

In [1], the authors constructed the fundamental representations Lffz as certain limits of KR

modules, and showed that the g-characters of the latter tend to those of sz. Precisely, we have
the following theorem.

Theorem 2.2 ([1]). (i) For all 1 <¢ < n we have
%(L5) = Jim %o (W00,
where hrn q~™ is understood as 0.

(i) Let fN denote the multzplzczty of oz, in the mazimal root of §. If N; = 1, then we have
3. 9-SYSTEM

In this section, we reformulate the v-systems given in [17].

3.1. Lg-connectlon From now on, let g be an affine Lie algebra of type X(l) (X =A4,B,C,D),
and let “g denote its Langlands dual algebra. Let kY be the dual Coxeter number of g (see Table

1).

p 20 [ 5D o D
LQ Agzl) Aéi)—l Dr(zzil Dﬁtl)
hY n+l|l2n—1| n+1 |2n—2
dmV® [n+1| 2n |[2n+2]| 2n.

TABLE 1.



Denote by e;, fj,h; (0 < j < n) the Chevalley generators of Lg. We set e = Y7, e;. Fix also
an element £ € Ll from the Cartan subalgebra of Lg, and let ¢ € C*. We consider the following
Lg-valued connection (cf. e.g. [25]):

d ¢
(3.1) L =%—;+6+P($»E)Ceo,
(3.2) o(z,E) =" —E (M >0,EcC).

Take an element h, € Th such that [h,,e;] = e; (1 < j < n) and [y, e0] = —(hY — 1)eo. The
choice (3.2) ensures the following symmetry property for £ = £(z, E; ():

(3.3). wEe =V o (z, B; 2™ )™k = L(whz, QFE; (),

where k£ € C and ’

B 27i v
(3.4) . w=elMIn | Q= oM

On any finite dimensional g-module V, (3.1) defines a first order system of differential equations
L(z, E;1)¢(z, E) = 0. Quite generally, for a Lg-module V, we denote by V the Lg-module obtained
by twisting V' by the automorphism e; — exp(2mikd;o)e;, f; — exp(—2mikd o) f;. The operator
L(z, E; €2™¥) represents the action of £(z, E;1) on Vi. For a V-valued solution ¢(z, E) we set

(3.5) : oz, B) = w ke g(whz, OFE) .

Then the symmetry (3.3) implies £(z, E; e2™%) ¢y (z, E) = 0.

. With each node a of the Dynkin diagram of %§.is associated a fundamental module V@) of Lg, -
We summarize our convention about them and some facts which will be used later. We omit the
proofs since they can be found without difficulty. :

Remark 3.1. In [17], scalar (pseudo—)diﬁerexﬂ;jal equations are considered. Using the realization
of L'g given in Appendix A and rewriting the equation £¢ =0 for the highest component of ¢, one
obtains the formulas [17, (3.18)—(3.21)] (for simplicity we have taken K = 1 there).

The module V) is called the vector representation of Lg. Tts explicit realization is given in
Appendix A. If k is an integer, it is obvious that V; = V for any V. The vector representation for
g= 7(;1) has the additional property

(3.6) Vi =v®  (g=0).

For general a, we distinguish the following two cases,

(NS): (g,0) # (C,n), (DD, n—1), (DV,n),
©): (8,0)=(CO,n), (DL, 1), (DY, ).

We shall refer to them as the non-spin case and the spin case, respectively. Here and after we set

't={2 (8=C),

1 (otherwise).

In the non-spin case, we have
a
(3.7) ' v = AV for (NS).
2t
In the case g = B,(Ll), we have in addition
(3.8) V%(“) ~ V=) (g=BM a=1,..,n),

where V(® for a > n stands for the right-hand side of (3.7).
; .



In the case (g, a) = (CS”,n), V(™ is the spin representation of the subalgebra L§ = 0(2n+1) C
D7(31 Likewise, in the cases (g,a) = (DY n 1) or (DF,n), V»=D and V™ are the spin
representations of the subalgebra £ = o(2n) C DY,

Let us consider the solutions at the irregular singularity z = co. It is convenlent to use a gauge
transformed form of £,

d

(3.9) eMhe [ g=Mhe — — 1 AgM —
dz

where A = e + ep. Let u(® be the eigenvalue of A on V(@ which has the largest real part. This

eigenvalue is mult1phc1ty free, and is given exphc1t1y as follows:

E+Mhy ooz Mto=1)
x

sin 2% thV

for (NS),
@) _ sm thV
S
Fn#‘v- for (S) .

Let u{® be an eigenvector of A corresponding to #@ . From the representation (3.9) it follows that
there is a unique V(®-valued solution 11:(“) (z, E) which satisfies the following in a sector containing
the positive real axis z > 0:

@) a1
) (g, E) = e~ Frre™ T g Mho (u(“) + 0(1.)) (x = 00).

We call (%) (z, E) the canonical solution. In view of the relation (3.7) and the formula for u(®
given above, we have _
(3.10) @ = AP Al for (NS).

2t 2t 2t
3.2. 1)-system. In this subsection we state the 1)-system for the canonical solutions qb(“) (z, E)
introduced above. Let us consider them case by case.

g= AP (Fg= AS)). For a =1,...,n, we have the embedding of “g-modules

2 .
(3.11) L AV o v g yiett
2

where V(© = y(n+1) = C. On the space V(=1 @ V{@+1) | the functions ¢ = L(’(ﬁ(_ai A 'lb(f)) and
. 2 2
é = 1@V ® (@) both satisfy the equation L¢ = 0 and have the behavior

9@ z
$(z,E)=0 (eXP (-M—M??l—h—mMH)) (z — o0)

in a sector containing z > 0. Since such a solution is unique upto a constant multiple, we conclude
that (after adjusting the constant multiple)

(3.12) (¢(“) /\w(a)) pe V@t (a=1,...,n).
In particular, denoting by {uJ}"+1 the standard basis of V1) we have
(313) ’l,b(n_H) =u A Alpgr.

We call the relations (3.12), (3.13) the t-system for AD.
The 1)-system for the other types can be deduced by the same argument, using the relevant
- embeddings of representations. We obtain relations of the following form.

g=8% (Fg=45 ).

(3.14) L('l/J(_a% A 'z,b(;)) —yp@ V@) (=1 . n-1),
8



(3.15) (B Ap) =9V e uY.
Here ¢ stands for the embedding of g (B.1) or
2
AV? = v P evit,
4 4 4
which follows from (B.1) and (3.8).
g=Ci (Fg=D3).

(3.16) ) ABP) = D @) (a=1,..,n-2),
(317) ) =T A,
(3.18) o(#) ="} @ .

Here we have set
6" =yl A A AYEh

¢ = A zﬁ“l s Ao A ¢‘,3’1 ,
and ¢ stands for an analog of (B.1) or the embeddmgs

n—1 2
. 3 }
A\ Vi = v o AV,

n
AV = v evi™,
T4 4 4
where (3.6) is taken into account.

g =D (*g= D).

(3.19) L(¢<_‘g A ¢g‘>)‘ =Dyt (g=1,...,n-3),
(3.20) L(¢(n—2)) — ,w(_n%—l) A 1/)(%"_1), L(¢(n—2)) ¢(n) A ¢(n)
(3.21) (D) = D @ ™
‘We have set :

¢(n—1) — ’l,b(l) 2 /\1/)(1) ,¢(1)2

and ¢ stands for the embedding (B.1) or
n—2 2 n—2 ) 2
AV = v o AV AV Ve o AV,
n—1
NV, s v gy,
2

3.3. Connection coefficients. Now we introduce the connection coefficients Qsa) (E).
First let us consider the vector representation V(1. We choose £ generic. Set £-= diag(4y, ..., £4n)
(N = dimV®), see Appendix A), and let u; (1 < j < N) be the corresponding elgenvector of

£. Then there is a unique V)-valued solution x( )(:E E) characterized by the expansion at the
origin,

X;l)(xy E)=2%u; 1+0(z)) (z—0).
From the symmetry (3.3) of L(z, E) we find that
(3.22) x4z, B) = " x (2, B) (ke (1/1)Z),

9



* where we have set
(3.}23) £— hp = diag()\l, Ceey )\N) .
Define Q{"(E) € C by

(3.24) D (z, E) ZQ“) (e, E).

From (3.22) and (3.24), we have for k € (1/t)

N
](c1)(x,E) = ZQ(l)( ) kij§1)(x, B),
j=1
where Q(l)( E)= Qg,l)(ﬂkE). For a sequence J = (ji,. .., ja), introduce the notation
Q(B) = det (Qﬁ’m_ﬁ_l (E) - whim (l—j))

Pz, By =x @B A XY (2, B).
1= =5 Jary— 3%

?
1<i,m<a

It follows from (3.10) that in the non-spin case

(3.25) $9(z,B) =Y V(B X (z,B),
J

where the sum is taken over all J = (J1,...,0a), 1 <1 <-+- < Jo £ N.
One can similarly define the connection coefficients in the spin case as well.

4. Seres 9§, R%)

It has been shown in [1] that the fundamental modules Lz , of the Borel subalgebra arise as
certain limits of the KR modules. In this section, assomated with each weight space of the vector

representation of “g we obtain a formal power series QZ ,» which is obtained as certain limit of the

g-character of KR module W(l) By Theorem 2.2, up to simple overall multipliers, those formal
series corresponding to the highest or lowest weights are the irreducible g-characters Xq(Lli’ ) We
expect that in general the Q( ) are also proportional to irreducible g-characters of Uy(b). (See
however Remark 5.9.) :

We shall use the following elements of AR

i-th

: _ . i-th
(4.1) Yoz =[(1,...,1—2w)7%,...,1)], et =[(1,-.., G5, ],

i-th .

1-— lzu ) _
(42) : }/i,z = [(1, . ’%m’ ey 1)] = ewlyi’qiz‘yi’;i_lz
L -1 -1 - —1y—1

(43) Ai’z - ,q, H Y?j,q.—lzlij%'z l/],q"zzy},z 1[j,q?z :

1<ji<n, 1<j<n, J 1<j<n, I

cji=—1 eji==—2 cji=—3
Highest /-weights are monomials in ‘djtzl and et¥:. Abusing the notation, for a monomial M = [¥]

we shall also write L(M) for L(T).

4.1. g-character of KR module W(l) For the KR module W,S»Ll,)z, explicit formulas for the
g-characters are known as sums over tableaux [3]. We recall these formulas below.

We first introduce some notations. In this subsection, for a sequence k = (k1,..., k), we set
k| = 3o _ kg and K, = Y ;- ks for any 1 < a < u. Then the g-character of the KR module

W7(n)z of quantum affine algebra U,(g) is given as:
10



g= AD:

n Kot1

W(l H Y'1 qm+1 25 Z H H Ab ,qmH1Hb—2iy

k=(ky,....kpy1), b=1 j=1
k= foq >0(7a)

g=BY:
W(l) Hqum_l 2,

Ky

' [ +
STTRD I 1 51 E-N | P

k=(ky,...;kn,ka,....k7) j=1
lk|=m,ka20(\7’a)

n + .
-l- 5 H H m.+1+b 25y H Ab qm+2n b=-2j 4 b

- k=(k1,.--sknikn,...k1)y b=
|k|=m—1,kq >0(Va)

where we set kp4+1 = kn.

1
5= oW,
m n—1Kpt1
-1
w) =HY myl-2j H H A iy
XeWan) = 1Y, w2 L] A s
i=1 R (kLyesn 2K ks k), b=1 jo=1
k| =m.,kp >0(Vb) .
n-1 K3
-1 _ -
' X H HA mt2n43-b-2) HA mni2-2j HA mtnt2-2(Kp+24) -7
b=1b=1 9 ™a ™

where in this case |k| = Y i, ks —l— 2%ko + 37, ks, and for a < n, Ky = S0 ki + 2ko +
E:’;:l k‘77

g =Dy
a8 = xa (W52) ) e ((82) ).
where .

n—-2 Kj

(G R CP D DI 1 1 e

k=(k1pu:kn—-pkn,kﬁ:mvki) b=1 j=1
ka>0(Va),|k|=m

< ’ K=t n—1Kpy1
X H An qm+n 2]2 H H Ab qm+1+b 2Jz7
b=1 j=1

_ m n—1 Kj
(7)) =Tt 2 T A
Jj=1

. k=(ky,kp_1.kakeee k1), b=1 j=1

ka20(Yaztn),kn 21, |k|=m

n—2 Kot1

X HAn gmin=2iz H H Ab qmHth=2iz

b=1 j=1
11



4.2, The limiting procedure. The series Qg,lz) is defined as a Limit of the g-character of KR
module W(l) Let us illustrate on the case g = Agl) an example the procedure for taking the limit.

Example 4.1 (g = Agl)). We consider first the case g = Aél). Following [3], we write
z = Yl,z y z = YliqlzzYZ gz s = Yg_qa

Then the g-character x, (W,E,i)z) of the KR module W( ), is presented as a sum over the tableaux

k1 Jg ks
> Ol [zis-13)
kythgt+kg=m,
kq.ko,k3>0

where the k-th box from the right carries the parameter ¢™t1~2%z, This can be rewritten further
as ‘ :

ko+-ks

m
IEFSTRD S | (N, | g5 -
=1

k1+kotkz=m, :
ky kg, k320

= Z elk1—k2)wi o (ka—ka)ws

ky+kotkz=m,
k1,kg,kg 20

(1 _ q—mz)(l . qm—2k:3+2z) (1 _: qm—2(k3+kz)+lz)(1 _ qm+Bz)
l:( 1— m—2(k:2+k:3)z 1 — m—2(k:2+k3)+2z ) 1 — m——2k3+1z 1— m—2k3+3z )] .
(1—gm )A-g ) (1—g J(1-q )

Let us consider the limit m — oo. There are three possibilities to obtain meaningful answers,
. k1 = o0, ko,ks: finite, g *z—0,
ko - oo, ki, ks : finite, g *z =0,
ks — 00, ki,ko: finite, g *z 0.
Writing e = x;/z;41 and defining for 1 =1,2,3 '
Q(l) H(l — zj/z;) X k{grlo z; ™ (z12023) T X (WSL_,"Z) ,

k.

g Fiz—0
we obtain the result
ka+ka
lez _ylz Z H A1q2 272HA2q3 25z
kz,k3>0 j=1 -
Q(l) _131 qzzgz,qz Z H A2 329z
k3>037=1
Q _92 @3z
Up to simple multipliers, they are the irreducible g-characters
Q(l)
R T et

af)
Xa(L3g:) = T T —aman
2/ (1 —em—)(] — e~ 2)

Using the explicit construction of modules [13], it can be checked that the second one is the
g-character of the simple module whose highest £~weight corresponds to the monomial Hl_‘lzzz’jg,qz.

12



4.3. Series lez) . In order to discuss the general case, let us prepare some notation. For g = Xy(bl)
(X = A, B,C,D), introduce a parametrization of {a;,w;} by orthonormal vectors {¢;}, and an
index set J with a partial ordering < .as follows.

Agl) :

B;l) :

c .

n

DW . ‘

n

=€ —¢€41 (1<i<n),
n+1

S A<i<n),

j=1
32{1a27‘-'7n'|‘1}, 1<2<---<n+4+1,

7
n+1

wi=¢€1+--+¢

=g —¢€p1 (1<i<n=-1), op=¢n,
wi=e+-+& (1<i<n-1),
1
wn=§(€1+"'—|—€n),
J={1,...,n,%,...,1}, 1< <n<A=<---<1,

= —=(6—€41) (1<i<n—1), an=V2m,

(a4 +e&) (1Li<n),

S-Sl

Wi =

3:{17"'777’7077")'--71}7 1'<""<n'<0'<’)7l-<""<1,
ai=€—¢€41 (1<i<n~—1), op=¢ép1+¢n,
wi=€e+-+¢ (1Li<n—-2),

1
Wp—1 = -é-(el-‘,-..._*_en_l _ETL))

1
wn='2‘(51+"'+5n—1+5n)7

T . n —_—
J={1,...;n,7,...,1}, 1<¢-<n—1<ﬁ<n_1.<....<1,

Define also z; and f; for j,k € J by

. ' .
A,gl) M xi:eez (1§’LS’I’L+1), f],k: 1_mk/I] ,
— 1+5k’_-/$‘7
B mp=et=o; (1<i<n), fp= 1—ka/zy
oy Tp=eVi% =g (1<i<n), zo=1,
Fin= 1
T (U= a1/25) (L + Somi/2s)
1— 06 52K/24
DY mi=et=z' (1<i<n), fix= 1=k 5o/T5

1—zp/z;
13



Taking the same procedﬁre as g = Agl)

, we give the definitions of the series lez) . Precisely,. for
each ¢ € J, we define :

( n+l _ _1 -m
klig{.lo (w I1 ; "“) Xq (W,S,L_mz) ,AD,
klz—)O =
- (1) (1)
(), A
q_kiz—m :
¢ (1) .
k’l:_r’r"lc’ %" (qu 'Tz) 170,
q—T‘Lz——m (1) C’,(Ll)’
1 - .
Q’(L,Z) = Hfi,jl (}I—I}olo, (Wm q %z) t= 0’
'7-<7' L q_.%qz—>0 .
(.. - 1 . _
kih_{&, z; " Xq (Wr(n’)q_mz) 1#£n,n,
—kigy
q li 0 —m AT N 0
knl—r)l}o, Tn "Xq m,q—mz> t=mn, n -
_k’nz—m
’ ® AT
k,}l—ggo 5" Xq ((Wm,q"“Z) ) t=n,
\ ¢ ""’ﬁz—)o

In the following, in the sum of the form Zki’_,, g unless mentioned explicitly, k;,.:.,k; run
over all non-negative integers, and we use the abbreviation K; = Ziﬂ ky for ¢ <1 < 7. In the
case g :CT(LI) and | < 0, we set K =z e +2ko+z] _1 k3.

We give below the explicit formula for lez) for each 7 € J.
caseA%l): For1<i<n+1, ‘

) . n K]+1

1 _

Qs =iz Z H H Jq7+1 2z
i=1

kit1ykny1 J=1

where
(44) 9— 1,4z 1dz,qz 1z-

case B(l) For 1 <i<n,

1
Q( ) ®; . |
n Kji1 K;
X E H H ]q]-l—l 2IZH qu2n —j=2l 5
Kittreresom ok eeoskoy j=1 1=1 j=1i=1
n 1+Kjp n K3
-1

+ > 11 H rasrmaiy || [] A5 aenciats ¢ s

kz+1: ,knykna kl]—" =1 .7 =1l=1
i—1 K]

o =a;, > TIIA470mi-e

by by =1 1=1

T—11"

(45) @i’z : 1 q,, yz’qz 12:7 @ 134, 1 q2n i— 12;‘5z q2’” i-
14



case C’,(zl):

n—1Kjt1
1y _ § : -
Q'i,z = (pi,z H H A Lij-2l —zl
Bit 1y sk ko ks ky j=i 1=1 7
n—1 K3

X H HA_ 2n+3 2n+3—j—21 HA_ nt2-al —321 HA_ n42— 2K"+2l (1 S’LS'I’Z),

j=1l1l=1 74 md
of2 - 52+,
n— 1 K3

A2 =30 > TLITA s TTA wa

kaooobp, j=11=1 79 =1 ™42

Kgieven

m|§

o~

ne1 K Kn—l

Q(l) _m—l@oz Z HHA— 2n+3—j H A_ _2'_ 2t

kp-oky, j=1 (=1 74

Kg: odd
i—1 K
1 — .
W=t 5 T e, Gisn,
L kpj=1l=1 71 z
Where
(46) 1 z = ’d:_l q?zyz qu’ @;’z = yi_l’qzn-a-zz i ‘H ,qzni‘3 i (1 S 1 S n - 1) ?

(4.7) nz _%;—1q2z9n quyn,q%z7 Qﬁ,,z =‘z}n lq__-lz-_ Y ; n2 zy;,q%ﬂz,
— 1 =
(48)  @oz=Y, 3,9 e Boa=Y Y e RSN
case D,(Ll):
n—2 K; Koy n—1 Kj1
Qi}z) =‘I)i,z Z H]:[A_qzn 1—j-aly H A;,ln 2, H H q]+1 2,
kig1y-rkn,..nky j=11=1 =1 j=t 1=1
n—1 K3 Ks n—2Kjt1
+ Z HH q2n 1-j— zzzH nqn 2LzH H A]q;,+1 2L,
ki+1:kikn1v k1, §=110=1 ,ll j=t l=1

(1SZSH—1),
n—2 K3 A Ke=z

¥ n—-1

Q%l’) q’nz Z HHAJ—qzn 1—j~2l, 1__[ Anqn 20y

k.. ,k1 7=1 1=1

i—1 K]
ol — A7L 1<i<n
1,2 Z H I b (1<i<n),
le k1 j=11=1
where
_ -1 .
(4.9) ‘5 1,4tz HZ gi~lz (I)i,z = 9¢—1,q2n—2—iz9¢,qzn—1—iz (1 <i1<n-— 2) s
—y-1 _ -1 -1
(410) (I)'n,—l,z = dp_o qn~1zyn—1,q"—zz1én,q"‘2z s q)ﬁ,z - yn_z’qn—lzyn_l‘qnz n,qnz
-1 =1
(4.11) Qn,z = dn-1 qnz’én qn—2z Qﬁ,z = 1d'n,—l,q"—2z9n,q"z .

We give two more examples of explicit formulas.
15



Example 4.2 (g = Bgl)).

(1) _ylz Z HA1 Pl Z’zHA2q2 ZZZHAzq:B Z’ZHAI ,q2=2lz

ko, kg,k7>0 =1

K2+1 K2+1 .
-1
-y T4 Q,ZHAZ P | R | .
ka,kg k1 >0 I=1 I=1

K§ )

1) _ y-1 -1 -1

Q z —%1,q221é2,qz Z HA 1,93— 2leA2 ,q2- zleAz,qE,—zlz
o | kakr201=1 =1
) K5+1
+ Z HA_q3 2’z:l—[A2 @2z H A2q3 Rz f 2
kz,k1>0l 1
(1
. Qg) yl,quQ %z ZHAl q3-2lz "
k>01=1
(1) _y-1
QI,z - 1él,qaz .
In this case Ny = 1, hence by Theorem 2.2, we have - ,
, y
(1)

Qi,z

_ 1
Xq(Ll,z) = Q&,i’ Xq(Ll q3z) =

(1 —_ e—al)(]_ — e"‘al_QZ)(l o e—al—Zag) .

Example 4.3 (g = C’él)).

Ky

Qs,)z =Y, Z HAI g3— "zHA2 g2~ leA2 2-Kz—2, HAl_,;l—lz’

ko.ko,kg,k7>01=1 =1

Q(l,)z = yi;zyz,zyz,qz Z HA]_ g3~ L%HAQ q2~ leA 2—Kz~2L,

ko, k3 k120 1=1
o) = 3% 4 5O

0,z 7

o -
Qé,i = y2,q292,}122 Z HA1 ¢3-lz HA2 gd—2lz?

k3,k720, [=1
Kg:even

K2—1

o _ -1y-1 -1
Qﬁ,z = 11:2 Hl,qz91,q2zy2,z%2,q32 Z HAl q3 Iy H A2 > 20y

k3,k720, 1=1
Kgiodd

Qél) yl,qzzyz a2z yz @3z Z HAl g3tz

k1>01=1

of) =y7!

a3z

Note that the weight 0 has multiplicity 2. Correspondingly Qo . is a sum of two terms QO » and
Q( ) These terms cannot be separated in the process of taklng the limit. Since they have highest '
Z—Welghts whose ratio is not a monomial of the A;,’s, Q cannot be an irreducible q—character
By Theorem 2.2 (i), we have x,(L7,) = Ql’z. Since Ny = 2, Theorem 2.2 (ii) is not applicable.

16



4.4, Serles Q( ) In this subsection we give the definition of Q(Jz where J € 3% and (g,a) #

(C’ ,n), (D (1) ,n—1), (D(l) n). We recall that q; = ¢*/2 for G',(L) and g; = ¢ in the other cases.

We fix our conventlon about the indices as follows. For J = (j1,...,7a) € %, we denote by J
the underlying set {J1,..., Ja} € 3. Set further
(4.12) T = (Fay--s91)s
(4.13) J* = (i1,...,%), with J*=7\Jand iy <. <1

We say J is increasing if j; < -+ < Ja.
For an element J = (J1, .. ,ja) € J°, we define Q(a)

1) Zh1 e
414 0ff) = det (2 ) |
( ) J,z det P 1+2uz v =1
1 0 @) 0 1 0
o) by Q. x : o T3
RS o R
1
ol ) o®W L. ... af T
_ | T Josay 02" Jargy 2" 7o
1) a—1 1) a—1 (1) a—1
QW | g8 QY oy T R O)) z;
j1.q8 " 2 G297tz d2 Jaral 2" e

We set Q(O)
Note that if the entries of J € J* are not distinct (i.e. §J < a), then Q(Jal =0.
Define :

of) = m(af).
Hence by the definition of gla J, z, it is easy to get

(4.15) QF]a = H fz,] H 5 — &4 fl,])

ieJ,jeg*, i,j5€d,
i<g i<

For an increasing element J = (J1,...,Jq) € 3%, set

(4.16) ) H @]k g,

where ®; , are defined in (4:4)—(4.11) with Y; . being given in (4.1). Let L(®,,) be the unique

irreducible U,(b)-module with the highest {-weight ® ;.. Except in the case g = cV

that the g-character of L(®s,) is given by

xaL@s) = T fis I1 (o) - 25

ieJ,jeJ* i,5€J,
i3 <7
.

, we expect

In particular, from (4.15) we expect that

1 (g = As?«l)) s
I+ (=B,
X (L(®s,2)) = 1I fig X Q¥
(i,j)e(Jx;]:}u(J*xJ), HJ (1 ~z; 2) (g — 1(11)) )
1,3€

<3

In the case of g = CT(Ll), we expect the same to be true for Qf,al if 41, ,Ja # 0. As noted

already in Example 4.3, the series Qél’i does not correspond to an irreducible g-character. We
expect rather that Qélg, Q(l) correspond to irreducible g-characters. See also Remark 5.9.
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4.5. Series ngfz) for the spin node: case C’T(Ll). In this subsection, we introduce another set

of series 32&72 for the spin node. Unlike the series Q(ch, in general we do not know the explicit

formulas for them. We define ng‘z) by the g-characters of the irreducible Uy(b) module L(M;,;),

and give a rule to determine the highest £&-weight M , which is a monomial in C[Hfj]lg's,z’zecx_.

Exhibiting the n-dependence explicitly, let P, be the weight lattice of the simple Lie algebra of
type Cp. Set : ;
E,={e=(e1,...,6n) |es =£,1<i<n}.

We define two weight functions

ITem
(4.17) wy : By — Py, | e|—>§;5iei,
‘a
(4.18) wo {J| T €3°(1<a<d),] CIt— Pa, (jr,--osda) — Y _senlin)es ,
k=1

where €9 = 0, and for j € J we set

+ j=n,
sgn(j) =40 j=0,
- jrh

Borrowing an idea from [3], we introduce monomials M. , in (C[yi:;]lSiSn,zeCX inductively as
follows. Define two operators 77, 72 by

TE : yi,z — 1éi—i—l,z ’ Tcz . 1ai,z - 1é’i,q"z .

Forn=1weset My , =Y ,and M_, = ‘dl“;zz. In the general case we set

(419) Mg =T Me2),  Mu—g,e =Y, 2,7 (Mg.2)
(4.20) Miosge =Y, app T (Mirg2), Mi-—ge =i (Mi-9)2),

where 5 € By _s. .
Now let ¢ € E, with wi(e) = 2 (EZ=1 €op — bt e,pk), and consider the simple module

L(M. ). We define IR.(;nz) and R{™ through the g-character and the character as follows.
R =xq (L(M:2) JI Q-zpemg)  [[  (C-zpiew),

1<k<i<t 1<k<s, 1<,
-0 ’ PR >
R =x (LM..)) [ Q-=zgpzs) [ Q-zpiew).
1<k<i<t 1<k<s,1<1<1,
. . . - PE>Y
For the latter we have the following guess.
Conjeture 4.4. Fore = (€1,...,&n) € En, we have
1 1
X (L(Me,z)) = H T, H —
15ien L % 1idjan 178 Sig

In the special case n =2, one can obtain the series for Cél) from that of Bél). Let lez) (1+2)

stand for the series for Bgl) with @ = 1 given in Example 4.3, wherein we interchange Y; , with
Ya,, and A; , with Ay ,. Then we have

2 I 2) 1
(4.21) R =01 e, =E ) =0llie2),
(4.22) RP, =001 -2), 925?_)_),2 =014 2).

18



4.6. Series R(n 2 ngnz) for the spin nodes: case D,(Ll). ‘For the two spin nodes of Dﬁ, ), we
follow the procedure for 07(,1).

We use the same weight functions (4.17), (4.18) as for ct). We also introduce two subsets of
En,

Ene={e€ By |t{ei=-}=¢ (mod2)}, (s=0,1).

We define monomials M, , inductively by

(423) Muage=T'(Mue:),  Mu-g: =Y (Mg,
(4.24) M_rg),e = Yrimsmi T (M(1g),2) Mi-—g)e = 5% (M(—g)2)»
with € € B,_, and the initial values
My =Y, M) =Y50,,
M(+—),z = 131,z: M(———i—),.z = Hl—,‘lfz .
For & € En (¢ =0,1) with wy(e) = % (Zzzl € — S e,pk), we define

ng’jz—C) =xq (L(Me,2) H (1 — zy,Ty,) H (1- x;:m¢l) ,

1<k<l<t © 1<k<s,1<1L¢L,
Pr>bL
R =x (L(Me.)) J] Q—mpezw) I (—zgize)
) 1<k<I<t 1<k<s,1€1<8,
- T P >PL

Conjeture 4.5. Fore = (e1,...,6n) € Enc (¢ =0,1), we have

1
x (L(Me,2)) = H T =&
1<ijen 1= 37 25
Although we do not have formulas for the series fR(n 2 (¢ = 0,1) for general n, in the special
case D s1m11arly to Q( z) , we define RQ (resp. ng z) as certain limits of the g-characters of the
KR modules Wi, ) (resp. W( ) ). More precisely, one can obtain R( ) (resp. 32&4;) from Q(l)
exchanging Y; , w1th Ys,z (resp Ya,z) and Ay, with As ; (resp. Ag z) For example, we have

1 - - 1 - .
le =132,<115z1?51,q4z Z H Al,c116‘2jz ) Q%,; = 1fél,;*‘iz ’

k>0 j—l

3 _y—1 3) _y-1
:RE—)—+—),Z =Y2,g5:93.0% Z H A3 q®=29z 7 3{(___+) 2= Usgez
k>07=1

4 4 -
ng_)_++) z =Y, q5zg4"14 Z H A4 82927 :RE—)———),Z = 134,3162 ’
k>0j=1

and so on.

5. POLYNOMIAL RELATIONS

In this section, we shall give the main results of this paper. We propose polynomial relations
among the series defined in Section 4, which are expected from the 9-system obtained in Section
3.

We prepare some notation which we will use below.
: 19



For an element j € J, an element J = (41, ...,7,) € §% and a positive integer k with 1 <k < a,
we set

a a
’\JZZAJ'U mJ:ijn
=1 =1

J_jk = (j17--'73k;~'-7ja)7 (]7']) = (j7j17"‘7ja)-

Let {v;},c5 be the standard basis of the vector representation VW of Ig (cf. Appendix A). Here
J=1{1,...,n,0,0,7,...,1} for O and J = g for the other cases. For J = (j1,...;ja) € e, we
set vy =i AvUj Ao Avj,.

5.1. Pliicker-type relations. We begin by writing down the /-system and the corresponding
relations for Q(J‘z for all nodes excepting the last (or the second last for D,(Ll)). In fact they are just
the consequence of the fact that the Qf]"l; are defined by determinants of the QSZ) ’s. ‘So they are
rather definitions, and we write them down just for uniformity reasons. As we shall see later, the
only non-trivial relations come from the last (or the second last) node.

For comparison, we start with the ¢-system. Let Ji = (i1,...,%a), J2 = (J1,...,Ja) be two
elements of J%. The embedding ¢ (B.1) of g-modules is explicitly given by :

.
v ANV o v g vt
2t

’ 1 [ a _ a -~
v Avg, g (Z(—l)k "0 —i ® Ui ) = D (~D 00, ®”(jk,J1)> :
k=1 k=1 - .

Therefore (3.12), (3.14), (3.16) and (3.19) imply
1) QYL BRY,(B)- Q) (BN, (B

1 1
Ji,— 5z Ji,5 J2,— 5%

a
=Y (DR QU (BRETD (B)w .
k=1

The corresponding relations for QE,“; read as follows.

Proposition 5.1. For two increasing elements Ji = (i1,12,...,iq) and Jo = (j1,72,---,Ja) 0f 3%
we have .
a
(a) (@) (@) (a) T _ kgle=1) alet+l) -1
(52) QJl,ql_l,zQJZquz - QJI:QIZQqu;lz‘:i - Z(_l) QJZ—jk,zQ(jk’Jl),zxjk .

k=1

This is an immediate consequence of the Sylvester identity (see e.g. [26, pp.108]). Note that-
(5.1) and (5.2) has the same form under the identification '

Q‘(,“)(E)HQ‘(,"’;, Eoz, Q% oq, whios.

5.2. Wronskian identity for Aszl ), For type A%l), the non-trivial relation is the following ‘Wron-
skian identity’.

Theorem 5.2. Let g = AD . We have
' : +1
det (Q(l) :1:_“+”>n =1

nt2—2p v
v,q z =1

Note that the left-hand side is just QU (L)t )n/2 5 T 2710 with J = 1,2,...,n+1).
: J,z b=1Lp _
We prove Theorem 5.2 in Appendix B.
20



5.3. Polynomial relations related to the last node: case B( ). In this subsection we let
g = B,(Ll). We give conjectural relations which correspond to the last identity (3.15) of the -

system. We first give identities for the connection coefficients Qf,a) (E).
In this subsection, for an element j € § and J = (j1,---,Ja) € J* we define

: -1y j=Zn T
e(j) = {E_lig_l j’t _ )= 1;[10(31«)

k
We also denote by o(J, J*) the signature of the permutation (1,.. ,n, ..., 1) = (4, J%).
The bilinear form (, ) : V' x V3 — C given by (v;, v;) = c(i)d; 5 is Lg- mvarlant From thls it is

easy to see that we have the following Lg-module isomorphism-
V@ ~ yn-a) v(a =1,...,n)
211J = c(J)o(J, T*)vze«,
which implies '
(5.3) QYL(E) = (D)o (4, Q" (B).

Let J; = (41,...,%n), J2 = (j1,...,Jn) be two elements of §™. Then the relation (5.1) together
with (5.3) imply ' ,

64 QRERY, BT e (5T w ™ - QREQY, (Ble (7F) o (75, To)
—Z( D* QGBS (B)e (T 1) )a((jk,Jl) Gy T)) w2 e,

Ji—Jks3

For a given element ¢ € J and J € g9, let

(55) xr= ] (=™, m—H(—w 50 T1 @

wwwed, jed, jeJ*,
u=v =g F=<i

The counterpart of (5 4) for the series Q . is given by the following conjecture

Conjeture 5.3. Let Jy = (i1,.. .,zn), Jo = (41, -, Jn) €I be increasing. Then we have

1
Q(") QE,’;{quJ*ijmJ Q(_") Q‘J’l‘{qu_,,,th .

(n—1) (n—l) Tie, s, —%,—%

=— ZQJz——Jk,Z 7 quJZ_ijJ—f_ﬁ-—xjk Jz Ty x>

At the moment we do not have a proof of these identities in general. When n = 2, there are
15 pairs of choices of J; and J;, and we have verified them by direct computations. To save space
we do not write the proofs here. We have also checked them for n = 3 by Mathematica 5.0 up to
certain degree, counting the degree of A, 4, to be k. In Appendix D, we show that the identity
holds when specialized to the characters.

Remark 5.4. It is worth noting that, although the connection coefficients satisfy the linear relation

(5.3), there are no analogs for the series Q(J‘g For example, in the simplest case Bgl), a direct

computation gives 98)21) .= 37213;;4 ’é;;zz‘dz,qs 91_,312252,q3z9;’(114z, while Q%l = 91—’,1132, and
there is no function f(z1,z2) of z1, 2 such that Q(2) =f (.’1317502)9%1;. So only the quadratic

21),z
relations survive.
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5.4. Polynomial relations related to spin node case C,(LI). In this subsection, g = C(l) We
shall give conjectural relations for the series Q and JZ
For an increasing element J € J% we can wrlte

J={o1,..,am, B, Br, 015, 00,015, G0} U (SN {0}),
I ={a1, -, Gm, By B e T, -5 T U (ST N0},

where ai,ﬁ;,ai,ni are mutually distinct elements of {1,...,n} Let ¢ = {o1,...,0u}, 7 =
{m,...,m}. Notethat '

u+2 OEJaundJEH"~

v=du+l 0¢JandJe3n— , orOEJandJGH”
u 0¢ Jand J €J"
Let J € J% be increasing. We introduce the followmg condition for g,& € Ep:

Condition Cj:

o wi(e) +wi(e’) = wa(J),
s t
o ifwi(e) —wi(e) = > €y — D €5, theno C .
k=1 k=1
Here w1, wy are the weight functions defined by (4.17), (4.18) andy = {v1,.--,7s},0 = {1,..., 6}
It is easy to see o Un =y US4.

In the following Conjectures 5.5-5.8, g = C’( ), o, n are disjoint subsets of {1,2,...,n}, the sum
is taken over all €, ¢’ € E,, satisfying Condition Cy where 4, § are determined there.

Conjeture 5.5. ‘Suppose J € J*~ 1! is increasing and 0 ¢ J. Then we have

nluol) (n—l) —2u 2 —u —1 Loy
S II o (=)

©“WjEd, 1€k<u,1<i<u+1,
i< Tl >ny

:Z(_ )t(t+1)51(72292(n)-1z '2y 2u ; —t H (_&)

Zé‘l

SRLs, 1S,

Conjeture 5.6. Suppose J € J*~ 1 is increasing and 0 € J. Then we have

u(u—1) —-1) — _ _ T,
(= [T e T (-22)
4,56 1<k<u,1<I<ut?, Ty,

i<7 o=
W pm) g0)  2-2u, 2t Ty
=Z(_ ) R ’quE, "1z Y Zs H _.'17 :
1<k<s,1<I<¢E, &
’ . i 5y

o [ o) ] (-22)
1<k<u,1<i<u

b
ided,  1<k<w,150<y, m
i<7 op N

s(e=1) _(p n 1-2u, —t -
=Y =R, 2™ gt [ - '
€q2z ¢€',q 2z 1<k<s,1<I<t

SrSs LS5,
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Conjeture 5.8. Suppose J € J" is increasing and 0 € J. Then we have

we=D (n) _ou 14 - To
(1)~ = Qs,gz,2 a:,li H (—z; 1 H (————"—)

T
i,jed, 1<k<u,1<ISut1, m
=3 TR

_ _ s(s 1) (n) :R(n) 1 2u 1—t _ﬂc_
p(Ce Vi R b g % I1 ( %)'

Sks, L350,

For n = 2 one can verify these relations using the relation between C’él) and Bél) (see (4.21),

(4.22)). For general n, we show in Appendix D the validity of the identities when specialized to
the ordinary characters Q(Ja) and R,
Remark 5.9. In the conjectured identities given above, Q(l) and Q( ) enter only through the sum
Q(()f‘)z (1) S, + Q(l). However, since the weight 0 of V) has multlph(:lty 2, it is more natural to
consider Qo,z and @éli separately. The 1-system also suggests that there are identities involving
them separately. This is indeed the case for n = 2 where we have, for example,

Q(l)—1 ﬁ(l)1 Q(l) Q(l) _.n TLp@ R@
1,472z 0,42z G0 %z 1,4%z To (+H)a ¥z (- -2’
Q(l) Q(l) —x Q(l) . Q(l) —z; :R(2) . fR(2)
1,073z 0,4%z 0, 2z quz (+-)q" 2z (++):qzz

On the other hand, if we define Q(a) as determinants treating 0 and 0 1ndependently, then when J

contains both 0 and 0 we have Q( ) = 0 because g = 5 = 1. Hence Q can not be explained as
a g-character, so we must modlfy the working hypothesis.” At the moment we do not know how to

do that.
5.5. Polynomial relations related to spin nodes: case Dg). Finally we consider the case

g= DS). As in the case of C’,(Ll), for an increasing element J € g% we can write
{: {al,...,am,Bl,...,Br,ol,...,cru,ﬁl,...,6’u},
= {81, 8my 1y Bry My s Moy 1y - T}
with mutually distinct o, 8;, 04,7 € {1,...,n}. Let o = {o1,...,0u}, 7 ={m1,...,m}. Note that

fut2 Jeg2
T lu+1 Jegrtd

Let J € J% be increasing. We introduce the following conditions for ¢, &’ € Ey:
Condition Dj:

o wie) +wile )_wz(J)a
t
C e ifwy(e) —wi(e) = E €ve — . €5, theno C, and t =7 +¢ (mod 2).
E=1
Here ¢ € {0,1}.
Condition Dy:
o wi(e) +wi(e) =w2(J),

¢
o if wi(e) —wi(e') = Ze% Eegk,theno'cfy, and t = r (mod 2).

Here wy; wy are the welght functions defined by (4 17), (4.18). We set v = {v1,...,%}
6 ={61,...,6:}. It is easy to see c Un =y USd.
In the follovvmg Conjectures 5.10-5.11, g = D(l), and o and 7 are disjoint subsets of {1,...,n}.
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Conjeture 5.10. Let J be an increasing element of 2””‘2, and let ¢ =0,1. Then we have

1,43 d, 1<k<u,1<I<u+2, Ty
i< opm
_Z n g)R(n 9] _2um3_t H _"E'Yk
,qz —1z Y é T ’
1<k<s,1<1<t, b
Vi =6

where the sum is taken over alle, g’ € By ¢ satisfying Condition Dy, wherey and & are determined
there.

Conjeture 5.11. Let J be an increasing element of gn=1. Then we have '

u(u 1) n— . —u — To
(~)=Fl Va2 I (—a) 11 (_—k)

4,5, 1<k<u,1<ISut1,
i< TR

_ t(t 1) ("_1)91(7) ;2u é -t H <_Q3’Yk>,
: : e,z .
1<k<s,1<1<t, T,
V™61

where the sum is taken over all € € By 1, € € Epnyp satisfying Condition D, where ¥ and é are
determined there.

For n = 4, we have checked by Mathematica 5.0 the conjectures hold up to certain degree. For

general n, we prove in Appendix D the conjectures specialized to the ordinary characters Qsa) and
g—zé(:_'n—l)’ ign) ’

6. CONCLUSION
In this section, we give a summary of this paper. We have done the following things:

(i) To each weight of the fundamental representation V(@) we associated a formal series Qf,‘g

or Rgf; We expect that with some simple factors the formal series are g-characters of
certain irreducible modules of Uy (b).
(ii) Under suitable identifications, using relations for the connection coefﬁc1ents 1mp11ed by

the y-system, we proposed the following conjecture relations for the series Q and 31( ).

*g= A(l) B(l) C'(l) (1) , Proposition 5.1. ThlS is the Pliicker type relatlons which
is in fact the defining relatlons of the series Q® J, z,
¢ g= Al ), Theorem 5.2. This is the Wronskian identity for the g-characters of Uy(b).
to be proved in Appendix C.
*g= B(l), Conjecture 5.3.
‘e g= C’T(z ), Conjectures 5. 5-5.8.
°g= Dn , Conjectures 5.10-5.11.
For the last three cases, we support our conjectures by checking the following. For the
special cases g = Bél), g= C’él), we proved the conjectures by direct computations. For
the cases g = Bél) and g = Dil), we checked the conjectures up to some degrees by
Mathematica. When specialized to characters, the conjectured relations hold in all cases.
This will be proved in Appendix D or E. '
We hope we have presented reasonable grounds to suggest that the correspondence between the
connection coefficients of certain differential equations and the g-characters of the Borel subalgebra
Uq(b) supplies an effective way to find polynomial relations. Certainly this is only the first step, '
and more serious checks are desirable along with attempts toward proving these identities.
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APPENDIX A. VECTOR REPRESENTATION OF Lg

Following [27, Appendix 2], we give an explicit realization of the vector representation of Lg.
The symbol F; ; stands for the matrix unit (5i’a6j’b)a,b=1,...,N where N = dim V.,
g = AD: | \

' eo = Eny11, €=DFEii1 (1<i<n),
fo=FEin+1, fi=FEi: (1<i<n),
ho=—E11+ Entint1, hi=FEiji—Eij1i1 (1<i<n),
h, = diag(—g, o ,g) ,
. n+1
¢ =diag(p1, - , nt1) (Z,U'z = 0> :
=1
Ly = Aéi)d‘
ep = %(El,zn—l +Ezon), € =EFEiy15+ Emti—ion-i (1<i<n— 1),
€n = Lntin, ‘
fo=2(Bam-1,1+ Bon2), fi=FEii1+ B ion1—i (1<i<n-—1),
fn = Lnnitl, '
ho=E11+ E22 — Eon_1,2n-1 — E2n,2n, ‘
hi = —E;i; + Eit1i41 — Bon—ign-i + Bong1—ignt1—s (1<i<n-—1),
hn=—Enn+ Eniinil,
hpzdiag(—n—l—%,j“ ,—%,%,--« ,n— %),
£ diag(in, -ty i+~
Lg= D57.2-|)—1:
€0 = Ento1 + Eontomnt2, € =Eiip1+ Bantaignts—i (1<i<n-— 1),
en=2(Bnn+1+ Ent1n43) ’
fo=2(Eint2 + Ent22n12)s - fi = Eiy15+ Eamis—ignte— (1<i<n-—1),
fn=Entin + Engantls '
ho = 2(—E11 + Eont2,2n+42),
hi = Ei; — Eit1,i+1 + Bango—ignio—i — Banys—ignts—i (1<i<n—1),
hn = Z(En,n - E’n+3,n+3) ) '
h, = diag(~n,--,~1,0,0,1,--- ,n), .
= diag(#h oy oy 0,0, =i, - 7‘#1) .
Ly= 7(11):'

1 .
e = §(E2n—1,1 +Eomz), e =ZFEii1+Famioni— (1<i<n-1),

€n = 2(-E'n—l,n+1 + En,n+2) s
fo=2(E1on-1+ Eaom), fi=Eit1i+ Eamt1-ion— (1<i<n-—1),

1
fn= §(En+1,n—1 + En+2,n) p
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ho ==E11— Eop+ Eon-1,2n-1 *+ Eonon,

hi = Ei; — Eiy1i01 + Ean—ion—i — Eoniiionti—i (1<i<n-1),
Bo = En-1n-1+ Enn — Ent1,n+1 — Bntomta,

h, = diag(-n+1,--+,0,0,--- ,n—1),

l= diag(fu'ly My —Hns 7_1“1) .

APPENDIX B. EXAMPLE OF PROCEDURE TO DEDUCE -SYSTEM

In this section let g = Agl). We give more details about the procedure to obtain the 1)-system.
Using the matrix realization of the Chevalley generators in Appendix A, we find that the Zg-
valued connection £ equals :

da £ ‘
L = e— = ‘_+E1,2_|~'E213+PE3’1’
dz =z

Pz,B)=z-E, (M>0,EcC).
Let VAU = C3 be the vector representatioh of I'g with the standard basis {vi,v2,v3}. Since
Ve = Vl(l) A Vl(l), one can chose u; = v1 A vy, Uz = v1 A vz and us = vy A vz as a basis of Vi),
2 2

Then the actions of £ on the space V1) and V() are given as

g 1 fm 0 0 0 1 0
L<1>=d——— 0 w O}+|0 0 1],
T TX\0 0 pus P 00
d 1 [ + p2 0 0\ 0 1 0
£(2)=d——— 0 g1+ s 0 +lo0o o 1},
z z 0 0 po + U3 P 00
respectively. The element A acts on V) and V(®) both as
01 0
0 01
\1L 0 O

Hence it is easy to get p = u® = 1, and the corresponding eigenvectors u® = vy + vy + vs,
- 11(2) = U + U + U3.
Let %(@ (z, E) be the V{¥)-valued canonical solution characterized by the behavior at co:

(@) m+1-

Y (z, E) = e~ trar® g Mhe (u(“) + o(lj) (z — 00).

For a = 1,2, we have the embedding of £g-modules
2

(B.1) : L /\ V%(“) ,__) yle-1) g ylatl)
where V(@ = V(3 = C. On the space V¢~ ® V{(+1) the functions ¢ = L('l/)(_ai A q,b(f)) and
2 2

¢ = 't,b(a_l) ®¢(a+l) both satisfy the equation £¢ = 0 which is obvious by Lz,b(i) =0 (i=ga,axl).
Considering the behaviors at oo, we have '

(¥ nel?)

—e s T T bt (= B y(@) A (B Ru®)) (@ c0)

and
o) plet) — (Rt o) o) (5 c0),
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A direct computation gives /.L(“)( ) = 2u{® cos 5= = pe=1 4 et and
H(w™ h"u(“)) AW
with ¢ a constant multiple. Hence we find that the functions ¢ = L(’l,[)(a') A 'dl(a)) and ¢ = 1/1(“ Ve

zb(“H also have the same behavior

, 9@ Iz
o25)=0 (o (272 ) s

in a sector containing = > 0. Since such a solution is unique upto a constant multiple, we conclude
that (after adjusting the constant multiple)

() Ay =V @ gl (a=1,2).

Lh, (a))) =cule-D g ufetd)

APPENDIX C. PROOF OF THEOREM 5.2

In this section we give a proof of the ‘quantum Wronskian identity’ in Theorem 5.2. The
first algebraic proof of this identity for Q-operators goes_ back to the work [10] which uses the
g-oscillator representatmns of the Borel subalgebra of U, (5[2) Subsequently this construction has
" been extended to U, (5[3) in [11]. A direct approach using the L operators has been developed

recently in the case of Yangian Y (gl ). However we have not been able to find a proof for U, (5[ )
written in the literature. We give here a direct, computational proof as an identity for the g-
characters. As mentioned in the introduction, the injectivity of the g-character morphism then
ensures that the identity holds true for Q-operators.

Let g= A,(ml), and set
-Az,z = 9;;—1zy;;zyi—l,zyi+l,z, i=1,...,n.

. 1
One can rewrite ngz) as .

" L7Es

1 _y-1 -’Eg+1 _

Qi,z - 1én,q"“z Z H ‘A i zz“+1 ’
kit1, - ka1 =1 .q westi®

For 4 € g, we define

A(O =Y, qn+1zQ( )

4,2t

A =471 <A§j‘;” A(“‘””"—“—“), a=1,...,n.

z — V'pntl—a,gqntli-ez g2 o

By the above definition and the formula of oY) we have the following lemma.

2, 2z
Lemma C.1. Fori€ J and 0 < a < n, we have
' n—a kjy1 ‘ v
Lj41 —1 . v,
)Y I:-[ ((:]L'—z) 'A. jr2yntl—eg, ) a<n+1-i
(a) _ ) kig1,osbnt1—a §=1 e, T TH z
©® 1 a=n+1-1,
0 a>n+1—1.

Proposition C.2. For an element J = (41,72, -- -, Ja) € 3%, we have

(0) 0 (0) 0 (0) 0
Ajiqu_azwjl X Aj%qu_azsz . Ajia),ql_az Ja
¢ 3—a,Lj; ‘ s-ayljp 0 : 3-ay T
Q@ _y-1 j1,957 %z J2,457 %z Ja g2 Ja
J,z T 9n41—a,gntiz . . .
(a—l) 201 (a—1) 21 (a=1) a—1
An q%- 1% 7 Aaz ¢==12T5 ' Aja,q“-lzmja
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Proof: From the deﬁnition we have

© 0 © 0 © 0
AJI gt=ez -71 ’ AJ? ql-—a.zsz Aja’ql_alxja
a IO o . o] .
Q(a) — y~—1 J1,9372" j2,q3— ez I2 Ja,g3~%2% Ja
Jz T n’qn—a+2kz . . .
k=1 : : . :
(0) a—1 0) a-—l ©) a—1
A.?l ==z An =127, Aja,q“—lzwja

For k=2,...,a, we subtract the (k — 1)-th row multiplied by Tt from the k-th row and then
extract the factor An 12k Thus we get

(a)
Hyn qn a2k 5 HAn qn a— 1+2kz

(0) 0 (0) o} (0 0
Ajl ql—ez"n Ajz gt-2zT2 Fangt =2z da
AW as Al
% J1,q37 2271 J2,q3~ 22" J2 Ja,g3~ 2" ja
¢Y)] a—1 (¢9)] a—1 (1) a—1
Ajl,q“—lzwh Ajz,q“‘lzwjz Aja,q“‘lzxja

Repeating the above steps in the order b= 2,...,a — 1, by replacing z,; and Ar_z%z" o142k, With
Tpt2—b and ‘An+1 pgn-a—bizky (k=b+ 1,... ,G), We get

(a) Hynq" a+2sz H ‘An+1 —bgrea—bt2ky

b=1 k=b+1
0 0 0) 0 0) 20
A{isql,—“zmh A{%qu—“zmjz A%aqu ayTj,
% Ajl,qa—“zmjl Ajz,q3‘“zmj2 Ah,q3 a5 %ja
(a—1) a—1 (a—1) o (a—1) a—1
Ajl,qa—lzxj1 Ajz,q“—lzmjz Jarg® 12" e

The proof is over by noting that

_y-1
H yn qn a+2k 5 H H An+1 bqn a—bt2k, — n+1——a,q“+1z'

b=1 k=b+1
v O
Now we give a proof of Theorem 5.2.
Proof of Theorem 5.2: By Proposition C.2, for J = (1,2,...,n+ 1), we have
A(g‘f);_nzxg , A(g?);_nzxg o A(ffjlyq_nzxg "
1 1 1
Q(h+1) A] q2—nz$1 Az qz—nzw2 An_|_1 T2 nyTn+l
J,z . .
. Agnq)"‘zx? Agr,bq)"zzg’ A7'321,:;{".2 n+1
By Lemma C.1, we get
n
Qg;’z;—l) =(_1)(n+1)n/2 H $g+1—b,
) b=1
which implies the result. ‘ O

28



APPENDIX D. PROOFS OF IDENTITIES FOR CHARACTERS IN THE CASE B(l)

In this section, we set g = (1)
First we introduce some notatlon For 7,7 € J and an element J € 3%, we define

hJ'_._ H (x,f -I-m;i), i 5 = H(—w?ai";_l) H (xlt_fak,i),

" k,keJ, keJ, keJ*,

k<k k=i i<k
1—18.=
— 270 .. . = .
i = [i,j; =—gji, o= ]] %k
ked,
koti

where f; ; is defined in Subsection 4.3.
By (4.15) and the above notation, one has

(a)— H fig H (z5 — zs) f’L,J)_XJ hy H figs

ieJ,jeg*, i,5€J, i€J,jeT*,
<7 i<7 i3

where X is given in (5.5). A direct computation gives

I fi= I fis I fi= 11 fis

4T T, teTeT", i€ =4 jeTg=i
i<3

II fig o Il G
ied,

i€J—jp,d€{J—dp)*,
<7

i< &
) = Ak, d
IT  fi; IT 9
i€, GET*, jET*,
i<j J <7

Furthermore, for two elements J; and J2 of g™ and ji € Jo N J{, we have

Ty, 01 Ly, -

Je185kds g2 g 1
T T Tk 1 Jy

TrsJ2 Lk, J1

Using the above formulas, the specialization of Conjecture 5.3 to the characters Q(Ja)‘ reduces to
the following proposition.

Proposition D.1. For two increasing elements J; = (31, y0n), J2 = (J1,.. -1 Jn) € 3™, we have
~1 2 395J¢
(D.1) x> hgzhy, — th*hjl = mJ2 Z T3z} 7 Jl hyy—ihz_3.
: jeJanJt J>dz

Proof: Generally let
T1={j€J10J; 3¢J1,3€J501‘3€J1,3¢J§},

n=&ean£3¢hj¢£} n=@ehmﬁ

ieJmJé*,Hi},

&:&e@nﬁ3¢kjeﬁmﬁekj¢ﬁ}

52=_{j€JzﬂJf3¢J2,3¢Jf}7 53={j€«720=7f

then we have 1 NJi = | T;UTs, J2 NnJy= U S;USs, and li(Jl n JQ) = ﬂ(Jz N Jl) .Here
~ N 1gEg3 ~  1<5<3

for a subset S C J, we set §={i|i € S}.
Let :

EEJzﬂJf,jK‘;},

Fr,1,(z5) ez x"l—-———h‘fz 57 9501
Ji, J2\Tj) = X5 L L, :
’ 7 > hyphg,  giug

29



We also introduce a function

T Ge-w) T G- o) (em =)
f(z) _ keTy H 2T — 1L keTy ,
(1+2) I (z—=zx) z—xzk ] (2—zk)(zzr — 1)

keS8,

keS: keS3

which has poles only at z=—1,c0 and z; (j € b NJf = J S;US3).

~  1<i<3
A direct computation gives, for j € S3
Res(f,z;") ,
II (1 - zex;) I1 (=5 — =) (zjm6 — 1)
_ 1 keTy Tk —T; keTy
(T2 (1 -zg) [I (U -mewg) o, 1 — 2wy T (@5 — zi) (252 — 1)
kES) ‘ 2 Wee

=cFy,, 1, (mj—l)a

g X x . . .
where ¢ = =222 Similarly we obtain
3

Res(f,z;) = cFy pnl(zs) (J€8ui= 1,2,3).

1 -1
On the other hand, by setting h; = 22 + z; 2, it is easy to see that

‘ z x 3 I1 e I1 A T, T
T T keTy keTs T3 LS.

R 1) === = , R , — o
es (f:~1) T, (9051) e 1L R2 (,0) 5,
kes, keSs '

Since the right-hand side of (D.1) equals jfhjzm;l% > Fy, 5, (z4), it simplifies to

| JelnJy
. 2
; o3 L e 11 B
-5 - I T ke keT:
hji«hJZfEle(—C 1) —c+ 3 ( 1) 1 3 -
LTS3 \T8 H hg ]._.[ hlc
keSS, kES3
Now it is sufficient to prove
i H by H h% 3 hh
(In) kETy kel oo, T
— —— == S —
zs, H hi; H hi zw% hj{hjz
keS1 . kESs J2

which is immediate. We finish the proof.

ApPPENDIX E. PROOFS FOR IDENTITIES OF CHARACTERS OF CASE Cf,(,bl) axp DY

In this section we consider g = C’,(Ll), D'Szl).
By (4.15) and (4:4), Conjectures 5.5-5.8 reduce to the following identities.

w(u+1) ].
®1) (D=2 ] [T a-<)
’ 15k, (1 - xakz"h)(xa'k - mm) 1<k<ut1 K
1<I<u+1 -

oo 1 1 1
I Hsr_ﬁ‘ I1 11

b
Ty g i<t L-zsws e, Tv — Ta

<k<i< I<I<t )
w(u—1) 2 1
(E2) (_1) P %y H (1_9:0_ z )(ma S ) H (1'—w0'k) H (1+x'ﬂk)
AE T ks Isksurn
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o 1 1 !
=0 [ 7= Il 3 I Ty = @5y

1<k<I<s 1= Ty @y, 1§k<l§t T TorTa g2,
- 1<I<t
u(ut1) 1

(E-3) (=177 2o H (1 - T Zn) (Top — H (1_x7lk
1<k<u, orm ok 1<lc<u
1<i<u

s(s41) 1 1 1
Y e, [ —— I —— I —
1<k<l<s TN <hci<e 8T8 1 2ig,s, T T T
' : i<i<t
w(u—1) 1 :

(E.4) S S | | IS, —— I a-2) JI (+ea)
1<k<u, TEEMINT Tk M/ 1<k<u 1<k<utl1
1<i<ut1 }

=Y e I 1o 1 7 I o
1<k<l§s L= 2y 2y, 1<k<I<t - 1~z5,25 o<, Tn = %8

i<i<t

In these formulas, o, 0 are disjoint subsets of {1,...,n}, such that (o,4n) = (u,u +1), (v, u +
2), (u,u), (u,u+1) respectively. The sum is taken over partitions of ¢ Un into subsets 4, 6 satisfying
o C vy, where we set s = f«, t = §4.

Similarly, in the case of g = DS;I), by (4.15) and (4.5) the relevant identities read as follows.

(E.5) -2 ] - II a-22)

1<k<u, (1 - xakmnl)(mqk - xnl) 1<k<n

1<1<ut2
> e [ e I e I o=
- - - -
1<k<i<s 1 = Ty, 2oy 1<k<i<t L=2a.26 (552, T — oy

1<i<t

u{u—1) )
(E.6) (=)~ = ” a-
1<k<y, (1_m0kx"7l)(x0'k Tn,) 1<k]:[<'u,
1<i<ut2

S [ —— I —— I —
1<k<l<s 1= 2y2y 1<k<i<t 1= Z6.%6 g, Tve — Toy
- - = = 1<I<t

Here ($0,41) = (u,u + 2), (u,u + 1) respectively, s = -y, t = {4, and the sum is taken over the

partitions satisfying & C 4 keeping fixed the parity of s.

~ These formulas are related by specialization of variables: (E.1) is obtalned from (E.3) by setting
2y, = 0, (E.2) is obtained from (E.4) by setting z,, = 0, and (E.4) is obtained from (E.3) by

setting z,, = 1. Likewise (E.5) is obtained from (E.6) by settmg Zs, = oo. Hence it is sufficient

to deal only with (E.3) and (E.6).

Define polynomials in z = (21, ...,%m) and ¥y = (y1,..-,Yn)s
F(m’")(% = JI G-w=) J] O-wy)-wn),
1<i<i<m 1<i<j<n
GS]T.Z)( Y) = H (1 —z;y5) H (zi — y5)
1<igm, 1<i<m,
jen - JeT,
< [T wi-v) I Q-ww) [T -
Hf;jl o i€J1,5€J2 iJ;€<-;2

Set also 6(J1, Jg) =#{(4,j) € J1 x Jo | i < j}. Then (E.3) and (E.6) can be rewritten respectively
as follows:

n
(E.7) IIa- 2) Frm) (z,y) = S (=1)°00) T - G, w),

j=1 J1,J2 jE€J2
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n—1

(E-8) (146 [[(1-ad) FObW(z,y) = 3 eV2(—1)°0 =GR (z,).
i=1 J1,J2

Here the sum in the right-hand sides are taken over all partitions J;UJs of {1,...,n}, and € = %1.
For the second, we have added/subtracted the original sums which have a parity restriction.
In order to show (E.7), we prove it in a slightly more general form.

Proposition E.1. Supposen>2,0<m<n andm =n (mod 2). Then

- _
(E-9) S [J - 2) - F™ (z,9) = 3 (~1)°007) T w5 G577 (3,9) -
=1 J1,J2 Jj€J2

Proof: Denote by R(™"™ the right-hand side of (E.9), and set

n m

L) = [ =43) - F™(a,y), b, 2) = [ - mi2).
j=1 i=1

Let us rewrite R(™™ ag follows:

ﬁ yj—(m+n)/2 . R(’m,n)

=1

=3 (=M I 7 ™2 (@, 0) TT 6820 @, 557)
J1,J2 i€J1 - j€J2

< IT wi-w ] @'-w I G- I] G7F-vh
i,d€d1, i€Jy,i€d0, i€Jy,j€Jg, i,j€Jdg,
i<i 1<j i>7 i<

n

= Y (™™™ ey) T 65 -

€1,..,8n=%14j=1 1<i<i<n

— det (yi—(m+n)/2+j—1 A (2, ;) — y§m+n)/2—j+1 A (z, yi—1))1<i o

It is easy to see that the last expression is 0 if m = 0 or m = 1. Assume m > 2. We prove
(E.9) by induction on m. From the skew-symmetry of the determinant, R(mn) js divisible by
H’;:l(l—yf-) ITicicj<n(1—¥iy;)(yj—y:). Let us show that it is divisible also by [T1<icjcm(1—2iz5)-

If we set Zm, = x,1 1, then h(™(z,2) = 2(z + 27! — Tm—1 — zt M= (2", 2), where " =
- (z1,...,Tm—2). Hence R(m:m) becomes proportional to

—(m—=24n)/24j~1p (m=2) (1 .\ _ (m—24n)/2—j+1y (m—2) (01, —1 ) )
det (y, h (@, v) — ¥; R (2" y) L<igen’
which is 0 by the induction hypothesis. This shows that R(mn) ig divisible by L"),

The total degree of L™ is {(™m) = m(m — 1) + n(3n + 1)/2, while that of R(™™ is at most
rm) = n2/2 + mn+ (m+n)2/4 —m/2. Notice that [ > r(™") for n > m and 1™ = r(mn),
From this we conclude that if n > m then R("™" = 0, and if n = m then R(wn) ig 5 constant
multiple of L(™™  The constant is shown to be 1 by setting = 0 and using the Wey!l denominator
formula of type Cy, ’

n n
T w5 - det (yi—”ﬂ-l - y?—”l) o=JIa-vp I Q-wvewy;—w)-
e 1<i,j<n j=1

1<i<j<n
O
Proposition E.2. Suppose n >3 and 0 <m < n— 1. Then for e = £1 we have
m
(E.10) 1+ 0mmar [ [ = 27) - F™™(z,y) = > eﬁJz(—1)5<JhJ2>Gf,’:;,’;>(m, v).

i=1 Ji )-]2
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Proof: We denote the right hand-side of (E.10) by R™™ | and set

m
K =T[(1 - af) - F™™)(a,y).
i=1
By a calculatlon similar to the one in the proof of Proposition E.1 we find

. yj‘(’m-l‘n—l)/Z ..Rgm,n)
=1
= det ( (m+n+1)/2+gh(m)( ) + e/ (m+n+1)/2—jh(m) (m y-"1)>
¢ 1<i,5<n

where ¢ = (— 1)”""‘" le. From this, it is easy to see that R " _ = 0. As in Proposition E.1, we
prove the assertion by induction on m.

‘As before, one can verify that the left-hand side is divisible by HK2 <jem(1=2:25) [ 1 cicjcn(1—
yiy;)(y; — vi)- Let us show that it is divisible also by [T;~; (1 — 7). If we set x,, = &1, then we
have

1 (272 F 22 2202 2), & = (21, Tm—1)-
L=

RU™ (z, 2)

Hence the determinant becomes proportional to
det (37 ™IRO, gy) 3 YTV IIR D @)
which is 0 by the induction hypothesis. :
The total degree of K™ is k(™" = m(m + 1) + 3n(n — 1)/2, while that of R(m ™ is at most
rf™™ = mn+n(n—1)/2+ (m+n)?/4—6/4, where § = 0,1 is determined by § = m—n (mod 2).
Then k(™™ > rém'") ifm<n-2, and k(n=1m) — rén_l’n). Hence we find that RE’"’") =0 if
m <n—2,and R™ 1™ is a constant multiple of K(™=1:%). The constant can be found by setting
2= 0 and using the Weyl denominator formula of type Dy,

n

H y? - det (yi‘"“ + ey?") o =(14¢) H (= way5)(y; — vi)-
” 1<i,j<n S
j=1 1<i<jsn

O
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