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Preface

Seshadri constants, which are invariants measuring the local positivity of line bundles, were
defined by Demailly [Dem| about twenty years ago. It turns out that Seshadri constants
have some interesting properties and relate to other topics, e.g., jet separations of adjoint
bundles, Ross-Thomas’ slope stabilities of polarized varieties, Gromov width, and so on.
But unfortunately, it is very difficult to compute or estimate Seshadri constants in general,
especially in higher dimensions. The purpose of this thesis is to investigate how to estimate
Seshadri constants in any dimension. ' :

In Chapter 1, we denote some notations, conventions, and definitions about Seshadri
constants and toric varieies.

In Chapter 2, we verify an algebro-geometric characterization of Cayley polytopes by
seeing lines, planes, etc. on the corresponding toric varieties. From this characterization, we
clarify when the Seshadri constant on a polarized toric variety is one. ‘

In Chapter 3, we give lower and upper bounds of Seshadri constants on toric varieties at
first. By using this lower bounds and toric degenerations, we obtain some new computations
or estimations of Seshadri constants on non-toric varieties. In particular, we investigate Se-
shadri constants on hypersurfaces on projective spaces, and Fano 3-folds with Picard number
one in detail.

In Chapter 4, we consider a relation between Seshadri constants and Okounkov bodies.
Firstly, we define Seshadri constants for graded linear series. Secondly, we show the main
theorem of this chapter, which states that Okounkov bodies give lower bounds of Seshadri
- constants. We also investigate Seshadri constants on toric varieties from a viewpoint different
from that of Chapter 3.

Chapters 2, 3, and 4 are based on [It1], [It2], and. [It3] respectively. Throughout this
thesis, we will consider varieties or schemes over the complex number field C. :
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1_*

Preliminaries

1.1 Notations and conventions

We denote by N, Z, Q,R, and C the set of all natural numbers, integers, rational numbers,
real numbers, and complex numbers respectively. In this thesis, N contains 0. Set Ry¢ =
{z eR|z > 0},Rs5o = {z € R|z > 0}, and C* = C\ 0. For z € R, |z], [z] € Z are the
round down and the round up of z respectively. We denote by ey, ..., e, the standard basis
of Z™ or R™. ,

Unless otherwise stated, M stands for a free abelian group of rank n € N in this thesis. We
define Mg = M ®z K for any field K. For a subset S C Mg and ¢ € Rxg, tS := {tu | u € S}.
For another subset ' CR™ S+ 5" = {u+u'|u € S,v € §'} means the Minkowski sum of
S and S'. For u € Mg, S +u:={u +u|u € S} is the parallel translation of S by u. We
denote the convex hull of S by conv(S). We write £(S) for the closed convex cone S spans.

For a convex set A C Mg, we denote by volp(A) or vol(A) the Euclidean volume of A
under an identification of M C Mg with Z"® C R Of course, vol(A) does not depend on
the identification. When n = 1, we write it |A|as or |A|, and call it the length of A. The
dimension of A is the dimension of the affine space spanned by A. ‘

A subset P C My is called a polytope if it is the convex hull of a finite set in Mk. A
polytope P is integral (resp. rational) if all vertices are in M (resp. Mg).

For free abelian groups M and M’ of rank n and r, an R-linear map 7 : Mg — My is
called a lattice projection if 7 is induced from a surjective group homomorphism M — M’

For a subset S in a topological space, we denote by S and S° the closure and the interior
of S respectively. :

For a variety X, we say a property holds at a general point of X if it holds for all points
"in a non-empty Zariski open subset. A property holds at a very general point of X if it holds
for all points in the intersection of countably many non-empty Zariski open subset.

Throughout this thesis, a divisor means a Cartier divisor. Hence a Q-,R-divisor means a
Q-,R-Cartier Q-,R-Weil divisor respectively. We use the words ”divisor ”, ”line bundle”, and
”invertible sheaf” interchangeably. Thus we sometimes denote L®* by kL for a line bundle
L and k € Z. For divisors D and D', the inequality D > D' means D — D' is effective.

We call a pair (X, L) a (Q-)polarized variety if X is a projective variety and L is an ample
(Q-)line bundle on X. The normalization of a Q-polarized variety (X, L) is (X", 7*L), where
7 X" — X is the normalization of X.



1.2 Seshadri constants

Demailly [Dem] defined an interesting invariant, Seshadri constant, which measures the local
positivity of a line bundle on a projective variety:

Definition 1.2.1. Let L be a nef line bundle on a projective variety X, and take a (possibly
singular) closed point p € X. We define the Seshadri constant of L at p to be

C.L
X,L;p) =¢(L;p) :=inf { —————
where C moves all reduced and irreducible curves on X passing through p, and mult,(C) is
the multiplicity of C' at p.

Remark 1.2.2. Tt is easily shown that e(L; p) = max{¢ > 0| u*L —tE is nef }, where s : X —
X is the blowing up at p and E = p~}(p) is the exceptional divisor (cf. [La2, Chapter 5]).
Hence there is an inequality e(L; p) < {/L"/mult,;(X) for any point p € X, where n is the
dimension of X. _

For a subvariety Y of X, (X, L;p) < &(Y,L|y;p) holds for any p € ¥ C X by the
definition of Seshadri constants. We will use this later repeatedly.

In flat families, ampleness is an open condition in the base. Thus the map p — (X, L; p)
from the set of smooth closed points in X to R has some lower-semicontinuity. Hence
&(X, L; p) does not depend on the choice of p if p is very general (cf. [La2, Example 5.1.11]).
Thus we can define the following:

Definition 1.2.3. Let L be a nef line bundle on a projective variety X. The Seshadri.
constant £(X, L; 1) of L at a very general point is defined to be

e(X, ;1) = e(X, L; p)
for a very general point p € X. ’

~ The definition of Seshadri constants can be generalized to multi-points cases easily (cf.
[La2, Definition 5.4.1], [BDH+, Definition 1.9]):

Definition 1.2.4. Let L be a nef line bundle on a projective variety X. For r € N\ 0, 7 =
(ma,...,m.) € RL,, and r points py, ..., pr € X, the Seshadri constant (X, L; maps, . .., mypr)
of L at p1,...,p, with wight ™ is

. CL
E(XJ L7 mip1, ... >m7‘p'r) = Hcl,f{ Ezr:lmi multpl(C’) } )

where C' moves all reduced and irreducible curves on X passing through at least one of
P1,--.,Pr In the same way as Remark 1.2.2, it holds that

e(X, Lymapy,...,mypy) = max{t > 0| u*L — ¢t X]_;m; E; is nef },

where p )A(: — X is the blowing up at p1,...,p, and F; = u~!(p;) is the exceptional divisor
OVEr p;. :

As Definition 1.2.3, we define the Seshadri constant €(X, L; ) of L at very general points
with weight m as follows: '

e(X,Lym) =e(X, Lymy,...,m,) :=e(X, Lymip1,...,mpy)

for very general points p1,...,pr € X.



Seshadri constants sometimes have interesting geometric consequences. For example,
lower bounds of Seshadri constants induce jet separations of adjoint linear series [Dem| and
lower bounds of Gromov width (an invariant in symplectic geometry) [MP]. Upper bounds
sometimes give fibrations or foliations [Nal], [Na2], [HW]. Seshadri constants are used to
define the Ross-Thomas’ slope stabilities for polarized varieties [RT].

But unfortunately it is not easy to compute or estimate Seshadri constants in general.
Many authors study about surfaces, but estimations in higher dimensional cases are very few.
In higher dimensional cases, the following are known: k |

In [EKL], Ein, Kiichle, and Lazarsfeld show that e(X,L;1) > 1/dim X holds for any
polarized variety (X,L). By [Lal] and [Bau|, lower bounds of Seshadri constants are ob-
tained for abelian varieties. In [Di] or [BDH+|, Seshadri constants on toric varieties at torus
invariants points are computed. Somewhat surprisingly, we do not know how to compute the
Seshadri constant on a polarized toric variety at a not necessarily torus invariant point in
general.

1.3 Toric varieties

In this section, we prepare notations about toric varieties used in this thesis. We refer the
reader to [Fu] for a further treatment.
As stated in Notations and conventions, M is a free abelian group of rank n.

Definition 1.3.1. Let I' € N x M be a finitely generated subsemigroup such that I'N ({0} x
M) = {0} and T generates Z x M as a group. We define a not necessanly normal Q-polarized
toric variety (X(T), L(T")) as follows:

(X(D), L(T)) := (Proj CIT, Oprojeiry(1))-

Note that the torus T := Spec C[M] naturally acts on (X (I"), L(T)), and T) is embedded in
X (T') as the maximal orbit. If we fix an isomorphism M = Z", the action Tjy x X(I") — X (I")
is the extension of the group structure

(C¥)™ x (C¥)™ = (C*)" : (a,b) > (azby, .. ., anbn),

where a = (a1,...,a,),0 = (b1,...,b,) € (C*)" = Ty.
The moment polytope A(T) of (X (I"), L(I")) is defined to be

A :=2(C)N ({1} x Mg) C {1} x Mg,
which can be regarded as a rational polytope in Mg naturally.

The above X (I") is not necessarily normal. From rational polytopes, we can obtain normal
toric varieties: :

Definition 1.3.2. For a rational polytope P C Mg of dlmensmn n, we define the normal
Q-polarized toric variety (Xp, Lp) as

(Xp, Lp) == (X(T'p), L(Tp)),

where I'p := L({1} x P) N (N x M). We write the maximal orbit of Xp as Op, and denote
by 1 p € Ty = Op the identity of the torus. For a face o of P, there is a natural closed
embedding X, < Xp. Hence we can regard X, as a closed subvarlety of Xp, and O, is
considered as a Tys-orbit in Xp.



- Assume P is integral. Then Lp = Opyojrp)(1) is an invertible sheaf, ie., (Xp,Lp) is a
polarized variety. By definition, a lattice point u in PN Z™ corresponds to the global section
2% in H%(Xp, Lp). It is well known that such global sections form a basis of H(Xp, Lp) and
the linear system |Lp| is base point free. We denote by ¢p the morphism Xp — PV defined
by |Lp|, where N = #(P NZ") — 1. Note that ¢p is a finite morphism onto the image.

Remark 1.3.3. For any T as in Definition 1.3.1, the normalization of (X(I'), L(T")) is Lo
(Xa), Lagy) = (X(T), L(T')) induced by I' — 3(I") N (N x M) (cf. [Ei, Exercise 4.22]).

Remark 1.3.4. For any integral polytope P C Mg of dimension n and any face ¢ < P,
e(Xp, Lp;p) is constant for p € O, because of the torus action. In particular, e(Xp, Lp;1)
(in the sense of Definition 1.2.3) coincides with e(Xp, Lp; 1p). ~



Algebro-geometric characterization of Cayley
polytopes

2;1 Introduction

Let P,,..., P be integral polytopes in R®. The Cayley sum Fp * - -- % P, is defined to be the
convex hull of (Py x 0)U(Py xe1)U...U(P, xe,) in R®* x R" for the standard basis ey, ..., e,
of R". :

An integral polytope P C R™ is said to be a Cayley polytope of length r + 1, if there
exists an affine isomorphism Z™ =2 Z™ " x Z" identifying P with the Cayley sum Fy * - - % P,
for some integral polytopes Py, ..., P, in R*". In other words, P is a Cayley polytope of
length 7 -+ 1 if and only if P is mapped onto a unimodular r-simplex by a lattice projection
R™ — R". '

Cayley polytopes are related to discriminants, resultants, and dual defects. See for in-
stance [DDP], [DN], [GKZ].

On the other hand, a polarized toric variety (Xp, Lp) is defined for any integral polytope
P C R” of dimension n. _

. In this chapter, we give an algebro-geometric characterization of Cayley polytopes:

Theorem 2.1.1. Let P C R"™ be an integral polytope of dimension n. Then P is a Cayley
polytope of length r + 1 if and only if (Xp, Lp) is covered by r-planes.

See Definition 2.2.4 for the definition of "covered by r-planes”. An important point to
note here is that we do not need any assumption on the singularities of Xp nor the lattice
spanned by PNZ". As a corollary of this theorem, we obtain a sufficient condition such that
an integral polytope P is a Cayley polytope by using dual defects.

We investigate the case r = 1 a little more. For a polarized variety (X, L), we can define
the Seshadri constant e(X, L; 1) of (X, L) at a very general point as Definition 1.2.3. In the
following theorem, we characterize Cayley polytopes of length 2 by using Seshadri constants:

Theorem 2.1.2. Let P C R™ be an integral polytope of dimension n. Then the following are
equivalent:

i) P is a Cayley polytope of length 2,
44 (Xp,Lb) is covered by lines,
iii) e(Xp, Lp;p) =1 for any p € Xp,
w) e(Xp,Lp;1p) =1 for the identity of the torus 1p € (C*)" C Xp.
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In general, it is very difficult to compute Seshadri constants. Theorem 2.1.2 gives an
explicit description for which integral polytope P the Seshadri constant (Xp, Lp; 1) is one.

This chapter is organized as follows: In Section 2, we make some preliminaries. In Section
3, we give the proof of Theorem 2.1.1. In Section 4, we state a relation of Cayley polytopes
and dual defects. In Section 5, we prove Theorem 2.1.2.

2.2 Preliminaries

2.2.1 Cayley polytopes and r—planes
Firstly, we define Cayley polytopes and lattlce width.

Definition 2.2.1. Let P be an integral polytope in R™ and r a positive integer. We say P
is a Cayley polytope of length r + 1 if there exists a lattice projection onto a unimodular
r-simplex. A unimodular r-simplex is an integral polytope in R™ which is identified with
conv(0, ey,...,e) by a Z-affine translation.

Definition 2.2.2. Let P be an integral polytope in R™. The lattice width of P is the
minimum of max,ep(u,v) — mingep(u,v) over all non-zero integer linear forms v.

Remark 2.2.3. See [BN] or [DHNP] for other definitions of Cayley polytopes. Note that P
has lattice width one if and only if P is an n-dimensional Cayley polytope of length 2.

We define r-planes as follows:

Definition 2.2.4. Let r be a positive integer. A polarized variety (X, L) is called an r-plane
if it is. isomorphic to (P",@(1)) as a polarized variety. Sometimes we say X is an r-plane if
the polarization L is clear (e.g. a'subvariety in a polarized variety).

Let (X, L) be a polarized variety. We say that (X, L) is covered by r—planes if for any
general point p € X there exists an r-plane Z C X containing p. When r = 1, we say that
(X, L) is covered by lines. ‘

2.2.2 Lemma about toric varieties

We will use the following lemma repeatedly in the subsequent sections. This is well known,
but we prove it for the convenience of the reader:

Lemma 2.2.5. Let P C R" be an integral polytope of dimension n and m: R™— R" a lattice

projection. Then there is a birational finite morphism onto the image v : Xy(py — Xp such
that L*(Lp) = Lﬂ-(p).

Proof. Consider the following diagram:

({1} x P)——>R x R*

l O lidRXﬂ'

S({1} x n(P))—R x R".
By intersecting with N x Z™ or N x Z', we have
I'p=X({1} x P)N (N x Z")— N x Z"

l @) iidNXﬂzn

= 2({1} x 7(P)) N (N x Z')—>N x Z.

6



Set IV = (idy X 7|zr)(Tp). Then the above diagram induces

Xp = Proj C[['p] «<—2(C*)"

a

Proj C[I] ;—>(@X)r.

Note that I generates Z x Z" as a group and X(IV) = ({1} x 7n(P)) because P is
n-dimensional. Thus there exists the normalization morphism

v Xppy = ProjClI"] (— Xp).

By the construction of ¢, it is clear that .*(Lp) = L(py.- | O

2.3 Proof of Theorem 2.1.1

This section is devoted to the proof of Theorem 2.1.1=Theorem 2.3.1:

Theorem 2.3.1. Let P C R™ be an integral polytope of dimension n. Then P is a Cayley
polytope of length r + 1 if and only if (Xp, Lp) is covered by r-planes. '

Proof. If P is a Cayley polytope of length r1, then there exists a birational finite morphism

onto the image ¢ : P* — Xp by Lemma 2.2.5. Furthermore, there exists a finite morphism

¢ = ¢p : Xp — PN, We denote by 7 C Xp the image of P" by the morphism ¢. Set
=¢o 1Py = ¢(Z) in PV. Since (¢ 0 1)*Opn (1) = t*Lp = Opr(1), it holds that

1= Op (1) = deg(¢01) Oz (1),

where deg(¢ o ¢) is the degree of the finite morphism ¢ o¢: P" — Z’. Both of deg(¢ o ¢) and
Oz /(1) are positive integers. Hence we have deg(¢ o ¢) = Oz(1)" = 1. Thus Z’' C PV is an
r-plane and ¢ o ¢ is birational. Since Z’ is smooth and ¢ o ¢ is a birational finite morphism,
¢or: P’ — Z'is an isomorphism. Hence ¢ : (P", Opr (1)) — (Z, Lp|z) is also an isomorphism,
i.e., Z is an r-plane in Xp. Since Z N Op is not empty, (Xp; Lp) is covered by r-planes by
the torus action. ‘

Let us prove the converse. Assume that (Xp, Lp) is covered by r-planes. We may assume
that 0 € Z™ is a vertex of P. Thus throughout this proof, set P NZ" = {uy,...,un} and
Uy = 0.

Since (Xp, Lp) is covered by r-planes, there exists an r-plane Z C Xp contamlng 1p =
(1,...,1) € (C*)" = Op C Xp. Let Z’ C PV be the image of Z by ¢ = ¢p : Xp — PV.
Then it is easy to see that ¢ : (Z,Lp|z) — (Z',O(1)) is an isomorphism and Z' C PV is
an r-plane by the argument similar to that of the "only if” part of this proof. Note that Z’
contains 1y = (1,...,1) € (C*)¥ C PV because ¢(1p) = 1.

Our idea of the proof is the following: _

Step 1. By using the torus action, we degenerate Z to another r-plane Z C Xp containing
1p such that the embedding P" = ¢(Z) — PN is a toric morphism, i.e., a morphism induced
by a lattice projection RN — R” as Lemma 2.2.5.

Step 2. By using the above lattice projection, we define another lattzce projection R — R"
 which maps P onto an r-simplez.

To clarify the idea of the proof, we first show the case 7 = 1. When r = 1, we erte C,l
instead of Z, Z".



Step 1. By definition, [ is a line on PV containing 1. Thus we can write
INCY =1y + Ca

for some vector a = (ay,...,ay) € CV \ 0, where CV¥ C PV is the open set defined by
Ty # 0 for the homogeneous coordinates Ty,...,Tn. For any point p in Op, there exist
automorphisms p~'- : Xp — Xp and ¢(p)~* : PY — P¥ by torus actions. Hence any point
pin C' N Op induces an isomorphism :

Olyrc 0t C = p(p)t-L
Since 1p =p~!-pis contained in p~'- C, the line ¢(p)~! - I contains 1y. From this, we have
()™ - NNCY =1y +Co(p)~" - a.

Let us denote ¢(p) = 1y +t,a € IN(CX)N for t, € C. Moving p € CNOp so that [t,| — 400
and taking limits, we have a morphism

¢|5 . 6’ —> Z,
where C C Xp and [ C P¥ are the limits of p~' - C and ¢(p)~! - I in the Hilbert schemes
respectively. A limit of lines is also a line, hence ¢ : (C, Lplz) — (1,0(1)) = (P*,O(1)) is
also isomorphic. Since p~! - C contains 1p for any p, so does C. '
When |t,| = 400,
o(p) 7" toa = (1 +tya1) Mpaa, - . ., (1 + tyan) tpan)
convergeé to @ = (@y,...,ay) € CV, where

.1 ifa;#0
Cl]— 0 1faj=0

Since I N CY is the limit of 1y +C ¢(p)~'-a = 1y + C ¢(p)~" - t,a, we can write
InCY =1y +Ca.
From this description, C* = [N (C*)¥ < (C*)N < PV can be written as
| tes (2%, 1)
for t € C*. Therefore P! = [ < PV is the toric morphism defined by the lattice projection
RY - R:ej = a;

and conv(0,ey,...,en) C RY as Lemma 2.2.5.

Step 2. Restricting the diagram




to the maximal orbits, we have

(CX)" — (C)¥

Considering the coordinate rings, we have

C[z"] << C[zM]

Nk

C[z]

By the definition of ¢ and the assumption ug = 0, the ring homomorphism ¢* is induced by
the following group homomorphism

W:ZN—>Z”;6]- U

for1<j<N,ie, .

| (@) =)

holds for each « € Z . On a while, g is induced by the surjective group homomorphism
/,L:ZN—>Z;ejl—>c~Lj

from Step 1. By using 7 and u, we can define a group homomorphism 7’ : Z" — Z which
induces the ring homomorphism f as follows: -

For any u € Z", there exists a positive integer m such that mu is contained in 7(Z").
Thus we can take v/ € ZY such that mu = w(v'). By the commutativity of the above
diagram, we have f(z™) = g(z¥) = £**). Since f(z™) = f(z*)™ holds, u(u')/m must be
contained in Z and f(z*) = ¢ z*®*)/™ for some ¢ € C*. Furthermore 1 € C* is mapped to
1p € Xp by a, hence ¢ must be 1. Thus we can define 7’ : Z" — Z by

: pw)
7'(u) = m—

It is easy to show that 7’ is well defined and a group homomorphism which induces f.

Since o : P! — Xp is a closed embedding, f is surjective. This means that 7’ is also
surjective. Furthermore p = 7’ o 7 holds by the definition of 7/, thus we have 7'(u;) =
7o ’/T(GJ) = ple;) = a; € {0,1} for each j € {1 .,N}. Since P is the convex hull of
0,us,...,uy, the lattice projection induced by 7’ maps P onto the closed interval [0, 1] in R.
This means that P is a Cayley polytope of length 2.

When r > 1, the idea is same. Let Z C Xp be an r-plane containing 1p and Z’' = ¢(Z) C
PV. Since Z'is an r-plane in PY containing 1y, we can write

ZnCN =1y +V,

where V is an r-dimensional linear subspace of C. Then we can choose a basis ay,...,a, €
C¥ of V such that j; > j» > ... > j,---(x) holds, where a; = (ai,...,av) and j; =
min{j | a;; # 0}. In other words, the matrix *(*ay,...,%a,) is the following type:

ax 0 % ...
a9 0 0 0 X ...
ar 00 0 0 ... 0 =



Similarly to the case r = 1, any point p € Op induces an isomorphism

¢‘p—}-z p - Z > (p)t 7

Choose p € Z N Op satisfying ¢(p) = 1y + t,a, for some t, € C and take limits of p~* - Z
and @(p)~! - Z' by moving p so that |t,| — +oo. We denote the limits by Z() C Xp and
Z'D ¢ PN respectively, both of which are r-planes.

Then

(BT Z)NCY = v+ V

= 1y+ @C qb(p)_l - a,
i=1 /

holds because 1y = ¢(p)~! - ¢(p) is contained in ¢(p)~' - Z’. For t, # 0, it holds that

Colp) ™ ar = C((L+ba1)  an, ..., (1 +tan)"aw)
C((l -+ tparl)_ltpaﬂ,'. R, (1 -+ tparN)‘_ltpaiN).

When |t,| = 400,

o)™ ai = (1 +tpar1) ain, - - -, (L4 tparn) Tain)

converges to agl) = (ag))j for ¢ # r, where

1 aij lf a,-j =0

ij'“{ 0 ifay#0.

a

Note that agl) is not 0 since a;;, # 0 and a,;, = 0 for any i # r by (*).
On the other hand,

d(p) ™ - tpar = (1 + tpar:) Hpars, - - -, (1 + tparn) Hparn)

converges to al’) = (a,g.))j, where
NN 0 ifa,; =0
T 1 if arj_;«é 0.
It is easy to see that agl),‘. . ,a%) are linearly independent by the condition (%), thus we
have

ZONCN =15 + P Ca.
, i=1
Now Z®M) is an r-plane containing 1p and ¢|m : 2 — Z'@ is also isomorphic. We choose
p € ZW N Op satisfying ¢(p) = 1y + tpal”; for some t,, and take limits of p~* - Z(®) and
¢(p)~* - Z'W by moving p so that |t,| = +o0o. We denote the limits by Z® and Z'®
respectively. Note that agl),. .~ ,as\l,) also satisfy the condition (x). In fact min{j|a;; # 0} =

min{j | ag) # 0} holds by definition. By similar arguments, we have

T
z®ncY =1y + Pca?,

i=1
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where o = (a@-))j and

MONSTINCG:
22— % if aﬁ)l ;=0
0 ifa #0

ij
r—1,7
fori#r—1, and

) ] 0 if ail)l y =0
Gr_1,j = 1)
1 ifa #0.

r—1,5

‘Note that a( = 0if oV 1J £ 0, thus o = a{") holds.

By repeatmg these operations r times, we obtain Z) C Xp and Z'™) c PN containing

1p and 1y respectively, and linearly independent vectors ag ), . ) € C such that

i) ¢lzm: (Z0, Lp|zm) — (Z’(T O(1)) is an isomorphism,
ii) Z0NCY =1y + @p_, Ca”,
(r) _

i; =0 or 1. For each j, there are at most one ¢ such that a(r) = 1.

i) af
Note that Z() and Z'™) are r-planes by i) and ii). By iii), we can define i; € {0,1,...,r} for
j=1,...,N as follows:

If {4] a(-) = 1} is not empty, we set i; = ¢ satisfying a( ")
As in the case r = 1, we have the following dlagram

= 1. Otherwise we set i; = 0.

C[zr] <Z— C[zV]
ey
C[z’]

~induced from
| Xp—2 PN

Z(r o Z/(r) = Pr.

From the construction of Z'(") and ei;, it is easy to see that g is induced by the group
homomorphism

MZZN—-)ZTZGji—)Qj,
where we consider ey as 0 € Z". Similar to the case r = 1, we can define a surjective group
homomorphism 7’ : Z™ — Z" such that f is induced by 7’ and p = 7" o 7. The surjectivity of
7’ follows from the that of f. It is easily shown that the lattice projection induced from =’
maps P onto (0,ey,...,e.) € R" because 7 (uj) = ¢;; holds for each j. Thus P is a Cayley
polytope of length r —I— 1. O

2.4 Dual defects

Cayley polytopes are often studied with related to dual defects.

Definition 2.4.1. Let X C P¥ be a projective variety. The dual variety X* of X is the
closure of all points H € (PY)Y such that as a hyperplane H contains the tangent space Tx
for some smooth point p € X, where (PV)V is the dual projective space. A variety X in PV
is said to be dual defective if the dimension of X* is less than N — 1. The dual defect of X
is the natural number N — 1 — dim X*.
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As an easy corollary of Theorem 2.1.1, we obtain a sufficient condition such that P is a
Cayley polytope by using dual defects. This is a generalization of a result proved in [CC] or
[Es], which is the case r = 1 of the following:

Corollary 2.4.2. Let P be an integral polytope of dimension n in R™. Assume that the lattice
points in P span the lattice Z", and the dual defect of the image ¢p(Xp) C PV is a positive
znteger r. Then P is a Cayley polytope of lengthr+1. In partzcular P has lattice width one.

Proof It is well known that if a projective variety X C IP’N has dual defect r, then X is
covered by r-planes (cf. [Te, Theorem 1.18] for example). Thus if the dual defect of ¢p(Xp)
is r, then ¢p(Xp) is covered by r-planes. The assumption that P N Z spans the lattice Z"
means that ¢p : Xp — ¢p(Xp) is birational. Since ¢p(Xp) is covered by r-planes and
¢p : Xp — ¢p(Xp) is a birational finite morphism, (Xp, Lp) is also covered by r-planes.
Therefore P is a Cayley polytope of length r + 1 by Theorem 2.1.1. O

Remark 2.4.3. (1) In Corollary 2.4.2, the assumption that P N Z spans Z" is necessary. For
example, let P C R? be the convex hull of (0,0,0),(1,1,0),(1,0,1) and (0,1,1). Then the
image ¢p(Xp) C P? is P? hence the dual defect of ¢p(Xp) is 3. But P is not a Cayley
polytope of length 4.

(2) The converse of Corollary 2.4.2 does not hold. For example, let P C R? be the convex hull
of (0,0),(1,0),(0,1),(1,1). Then P is a Cayley polytope of length 2, but ¢p(Xp) = Xp C P3
is a smooth quadric surface, which is not dual defective.

(3) There exists an explicit description of the dual defectivity for (Xp, Lp) if Xp is smooth
[DN]. But in singular cases, dual defectivities of toric varieties are not so well known.

2.5 Lattice width one and Seshadri constants

In this section, we characterize integral polytopes with lattice width one by using Seshadri
constants. _
As stated in Chapter 1, it is very difficult to compute Seshadri constants in general.
However, if |L| is base point free, we know Whether e(X,L;1) = 1 or not by considering lines
on (X, L):

‘Proposition 2.5.1. Let (X, L) be a polarized variety and assume that the linear system |L|
is base point free. Then e(X,L;1) =1 if and only if (X, L) is covered by lines.

Proof. 71f” part is easy. In fact if (X, L) is covered by lines, then clearly (X, L;1) < 1
holds by the definition of Seshadri constants. On the other hand, it is well known that
e(X, L; 1) > 1 holds for any base point free L [La2, Example 5.1.18]. Hence e(X,L;1) = 1
holds. .

Thus it is enough to show the ”only if” part. Assume that (X, L;1) = 1 holds. Let
¢ : X — P be the morphism defined by |L| and d'the degree of the finite morphism ¢ : X —
#(X). Fix a very general point p € X and set ¢ = ¢(p) € PV. Then ¢7*(q) = {p1,...,pa} is
a set of d points in X, where p = p;. ‘

We consider the following diagram:
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In the above diagram, 7 : X — X and o/ : PV — PV are the blowing ups along
{p1,--.,p4a} and q respectwely Then ¢, 7, and 7’ induce a finite morphism b: X — PV,
Let Fi,...,Eq and E be the exceptional divisors over {p,..., pd} and ¢ respectively. Since
O N(l) E is base point free, this induces a morphism f": PY s PN-1 Set f=foé:
X — P¥-1. Note that f*Opv-1(1) = 7*L — ¢, F; and f is nothing but the morphlsm
induced by |7*L — ¥¢_, E;|.

By the assumption that (X, L;1) = 1 and p is very general 7L — E is nef but not
ample. Thus there exists a subvariety 7 in X such that Z.(n*L — E;)¥mZ = 0 (see [La2,
Proposition 5.1.9]). Furthermore, Z.(7*L — X, E; )4mZ > 0 by the freeness of 7L — X2, F;.
Hence - :

0 < Z( *L ZdlE)dlmZ
= 2187 _ 3¢ mult,(2)
< Z.I%Z —mult,, (2)

= Z(r'L-E)®™Z =9,

where Z = m(Z) is the image of Z by 7 and mult,,(Z). is the multiplicity of Z at p;. Thus
we obtain : B B ‘
O:Z( *L_Ec_l E‘)dimZ=Z( *L_E)dimZ

and mult, (Z ) =0 for i # 1. This means p; € Z, or equlvalently ZNE;=0fori#1. The
equality Z.(m*L — X4 B, )d’mZ = 0 implies dim f(Z) < dim Z. Thus there exists a curve
C C Z such that f(C)is a point. Set C' = 7(C) be the image of C in X. Since the morphism
¢ is finite, $(C) is a curve on P¥ which is contracted by f’, that is, ¢(C)(= ($(C))) is a
line on PV containing q. Note that ¢ is étale onto the image at p, and ¢(C) is smooth at
g = ¢(p), hence C is also smooth at p. Since f(C’) is a point, C.(m*L — 4, E;) = 0 holds
and CNE; CZNE; =0 fori# 1. Thus 0= C.(x*L — E;) = C.L — mult,(C) holds. From
this, we have

1 = mult,(C) = C.L = ¢,(C).Opn(1) = deg(g|c : C = $(C)).

Thus ¢|¢ : C — ¢(C) = P! is an isomorphism and C.L =1, i.e., C is a line on X containing
p. Therefore (X, L) is covered by lines. . O

Remark 2.5.2. The assumption that |L| is base point free is necessary in Proposition 2.5.1.
For example, let (S, L) be a non-rational polarized smooth surface such that L? =1, e.g., S
is a Godeaux surface and L is the canonical divisor Kg. Then ¢(S, L;1) = 1 holds by [EL]
and the assumption L? = 1. But S is not covered by lines because S is non-rational.

By Theorem 2.1.1 and Proposition 2.5.1 , we obtain the following:
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Corollary 2.5.3 (=Theorem 2.1.2). Let P C R™ be an integral polytope of dimension n.
Then the following statements are equivalent:

i) P has lattice width one,
it) (Xp,Lp) is covered by lines,

ii) e(Xp, Lp;p) =1 for any p € Xp,

w) e(Xp,Lp;1p) =1 for the identity of the torus 1p € (C*)" C Xp.

Proof. i) < ii) follows from Theorem 2.1.1 and Remark 2.2.3. If (Xp, Lp) is covered by lines,
there exists a line on X containing p for any p € Xp since any degeneration of lines is also
a line. Thus ¢(Xp, Lp;p) < 1 holds. The inverse inequality e(Xp, Lp;p) > 1 holds since
|Lp| is base point free. Hence ii) = iii) holds. iii) = iv) is clear. iv) < ii) follows from

Proposition 2.5.1 since |Lp| is base point free.
(]

As stated in Introduction, this corollary tells us for which P the Seshadri constant
e(Xp, Lp;1) is one. We note that Nakamaye [Nal] gives an explicit description for which
polarized abelian variety (A, L) the Seshadri constant .€(A, L; 1) is one.
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3_

Seshadri constants via toric degenerations

3.1 Introduction

In this chapter, we study explicit estimations of Seshadri constants. First, we give lower and
upper bounds of the Seshadri constant on a toric variety at any point. Next, we obtain some
new estimations of Seshadri constants on non-toric varieties by using toric degenerations.

Let M be a free abelian group of rank n and set Mg = M ®z R. For an integral
polytope P C My of dimension n and a face o of P, we Wlll define positive real numbers
s1(P;0), so(P; o) and show:

Theorem 3.1.1 (=Theorem 3.2.14). Let P be an integral polytope of dimension n in Mg,
and o a face of P. Then,

s1(P;0) < e(Xp, Lp;p) < s2(P;0)
holds for any p € O,.

An important point is that s;(P; o) and s3(P;0) are computed or estimated more eas-
ily than e(Xp,Lp;p). Besides, s1(P;0) = s3(P;0) often holds, thus we can compute
e(Xp, Lp; p) explicitly in those cases.

Next we study non-toric cases. Since Seshadri constants have some lower semicontinuities,
degenerations are useful to get lower bounds of Seshadri constants. From Theorem 3.1.1, we
obtain the following theorem:

Theorem 3.1.2 (special case of Corollary 3.3.4). Let f : X — T be a flat projective morphism
over a smooth variety T with reduced and irreducible general fibers. Let L be an f-ample line
bundle on X and 0 € T. Set X; = f~X(t),L; = Ll|x, for t € T. If the normalization of
the central fiber (X, Lo). is isomorphic to the polamzed toric vamety (Xp, Lp) for an integral
polytope P C My, then

€(Xt,Lt, 1) > Sl(P, P)

holds for very generalt € T.

Roughly speaking, this theorem states that we can obtain a lower bound of the Seshadri
constant of (X, L) at a very general point if (X, L) degenerates to a polarized toric variety.

By using Corollary 3.3.4, we obtain explicit estimations of Seshadri constants on hyper-
surfaces and Fano 3-folds with Picard number 1:
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Theorem 3.1.3 (=Theorem 3.4.4). Let X7 be a very general hypersurface of degree d in
Pl Then it holds that : ' '

L/d/(m} + -+ mp)] < e(X7,0(1);m) < {/d/(mp+- - +me)

for anym = (mq,...,m,) € (N\0)".
In particular, it holds that

|Vd) <e(X3,0(1);1) < ¥
Remark 3.1.4. Note that Theorem 3.1.3 does nbt_ hold for m € RZ, in general.

Theorem 3.1.5 (=Theorem 3.4.6). For each family of smooth Fano S-folds with Picard
number 1 (note that there are 17 such families), e(X, —Kx;1) is as in Table 3.1, where X is
a very general member in the family. :

No. | Index | (—Kx)? Description S e(X,—Kx;1)
1 1 ' 5 smooth hypersurface of degree 6 in P(1,1,1,1,3) 6/5
~ (double cover of P® ramified over smooth sextic)
2 1 4 - the general element of the family is quartic 4/3
3 1 6 Vs, smooth complete intersection of quadric and 3/2
' cubic ‘
4 1 8 Vs, smooth complete intersection of three quadrics | - 2
5 ] 10 the general element is Vo, a section of G(2,5) by 5
2 hyperplanes in Pliicker embedding and quadric
6 1 12 variety Vo 2
7 1 14 variety Vi4, a section of G(2,6) by 5 hyperplanes 9
in Pliicker embedding
8 16 variety Vig ‘ 2
9 18 variety Vig , 2
10 1 22 variety Vao ‘ 2
' smooth hypersurface of degree 6 in P(1,1,1,2,3)
11 2 8.1 | (double cover of the cone over the Veronese surface 2
branched in a smooth cubic)
12 5 8.9 smooth hypersurface of degree 4 in P(1,1,1,1,2) 5
(double cover of P® ramified over smooth quartic)
13 2 8-3 | smooth cubic 2
14 2 8-4 smooth intersection of two quadrics : 2
15 9 3. 5' variety Vs, a section of G(2,5) by 3 hyperplanes in 9
Pliicker embedding
16 | 3 27-2 | smooth quadric : 3
17 4 64-1 | p3 4

Table 3.1: Seshadri constants on Fano 3-folds with p = 1
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This chapter is organized as follows: In Section 2, we examine Seshadri constants on toric
varieties and show Theorem 3.1.1.- We also compute some examples. In Section 3, we prove
Theorem 3.1.2. In Section 4, we verify Theorems 3.1.3 and Theorem 3.1.5.

3.2 Seshadri constants on toric varieties

In this section, we investigate Seshadri constants on toric varieties and prove Theorem 3.1.1.

3.2.1 At a;point in the maximal orbit

In this subsection, we estimate £(Xp, Lp;1p) for an integral polytope P. The following
lemma is a paraphrase of Lemma 2.2.5:

Lemma 3.2.1. Let 7w : Mg — Mg be a lattice projection with rank M = n,rank M’ = r,
P C Mg an integral polytope of dimension n. ‘

Then the closure (T, Lp|T—M,) of Thy tn Xp is a not necessarily normal polarized toric
variety whose moment polytope is m(P) C Mg, where Ty — Tay = Op C Xp is induced by
the surjection m|p : M — M. '

Proof. See Lemma 2.2.5. ’ | O
Let 7 : Mg — Mg, P, and P’ = 7(P) be as in Lemma 3.2.1, and set

P)=7r1)NP

for v’ € P'N Mg. An sphttmg M =Xkerm|pyy ® M' of 0 — kerm|pyy = M = ™ M7 0 induces
the 1dent1ﬁcat10n of m~1(v') with ker 7, hence we can consider P(u') as a rational polytope
in ker 7 = (ker 7|5 )r. Assume that the dimension of P(u')is n — . Then P(u’) defines the
polarized toric variety (Xpq, Lp)), and the isomorphic class of (Xp(), Lpw)) does not
depend on the choice of M = ker 7|y & M'.

Lemma 3.2.2. Let 7 : Mg — Mg, P, and P = n(P) be as in Lemma 8.2.1, and take
u' € P'N Mg such that dim P(v') = n—r. Then, there exists a generically surjective rational
map ¢ : Xp ——+ Xppry such that for any resolution p:Y — Xp of the indeterminacy of ¢,
the following hold:

(i) w*Lp — f*Lpwy is Q-effective, where f = po p,

(%Z) ,Lb(f_l(lp(ul))) N Op = Ty holds for ].p(u/) S Op(u/) C Xp(u/) .

Y—#>Xp

|
\ v
Xpw)
Proof. By considering kP for sufficiently large and divisible & € N, we may assume. v’ is
contained in M’ and P(u’) is an integral polytope. Furthermore, by considering P — v for
u € (m|a)" (), we may assume v’ = 0 € M’. Hence P(u') is an integral polytope in
7'('_1(0) = (kefwlM)R. )
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There is a commutative diagram
({1} x P)——=R x Mg
.
({1} x P(u'))— R x ker.

By intersecting with N x M or N X ker 7|, we have

Ip=X({1} x P)N(Nx M)—— > Nx M
P O
Tpay = S({1} x P(u)) N (N x ker m|3r)——> N x ker m[ss.

This diagram induces

XP = PI‘Oj (C[Fp] <————————-)Op = TM
|

1y o ®lry,
¥

Xpy = Proj C[T'p)] =—0pw) = Tern|y-

Then ¢ is generically surjective because @|r,, is surjective. We show this ¢ satlsﬁes (1) and
(i1) in the statement of this lemma.

Clearly |7, (Lpay) = T, hence (i) holds.

Let 4 : Y — Xp be a resolution of indeterminacy of . Then Xp, Xp(y) are normal and
u, f have connected fibers. Thus :

@H (Y, kf*Lpw)) = P H*(Xpw), kLpw)) = Tpw),

keN keN
P H Y, ku’ Lp) = P H(Xp, kLp) =
keN keN

‘Therefore an injection f*Lp(s) — u*Lp is induced from the injection
D BV, kf*Lewy) = Tey & Tp = D HOY, b Lp).
keN keN
Hence (i) holds. v : | O

We need one more lemma, which states that lower and upper bounds of Seshadri constants
are obtained from surjective morphisms.

Lemma 3.2.3. Let f : Y — Z be a surjective morphism between projective varieties. Assume
that L, L’ are nef and big Q-divisors on Y, Z respectively such that L — f*L’ is Q-effective.
Set B(L— f*L') = Bs(|k(L— f*L")}) for sufficiently large and divisible k € N (which is called
the stable base locus of L— f*L', and does not depend on k. See [La2, Remark 2.1.24]). Then

min{ min e(Y;, Lly;y),6(Z, L5 f(y))} < e(Y, L;y) < min e(Y;, Lly;; )

holds for y & B(L — f*L'), where Y1,...,Y, are all the irreducible components of f~(f(y))
contasning y with the reduced structures. - ‘
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- Proof. We may assume L and L’ are ample. In fact, for nef and big L, L', choose ample
divisors A, A" on Y, Z such that y & B(A — f*A’), and consider L + 0A,L" + 6A'(§ > 0)
instead of L, L’. Then we can show this lemma from ample cases by § — 0.
The second inequality is clear by the definition of Seshadri constants, thus it is enough
to show the first one. For the sake of simplicity, we set z = f(y).
- Fix a curve C C Y containing y.

’ C.L
i i . - . < - ...
It suffices to show min{min; e(Y;, Lly;;¥),e(Z, L'; f(y))} < it (©) (%)

Case 1. C C f71(z).
Since C' C Y; for some 1,

Case 2. C ¢ f71(2).

Set C" = f(C) with the reduced structure and fix a rational number 0 < ¢ < (Z, L'; 2).
Then for any sufficiently large and divisible k € N, there exists D’ € |kL' ® m*| such that
C' ¢ Supp D' by the ampleness of L' and [La2, Lemma 5.4.24]. Clearly f*D’ € |kf*L’' ® m}|
and C ¢ Supp f*D’, hence

k(C.L)

CL _ Clly
mult,(C)  mult,(C) ~

e(Yi, Lly,; y) holds.

kC.(L — f*L' + f*L)
kC.(L - f*L"y + C.f*D'
C.f*D' ’

kt - mult, (C).

v v

’ . ‘ , L
Note C.(L — f*L’) > 0 holds by the assumption y ¢ B(L — f*L’). Therefore _GL >t
’ v mult, (C)

L
holds and we have E% > e(Z, L’;z) by t = e(Z,L; z).
Thus for any curve C' C Y containing y, (*) holds. O

By Lemmas 3.2.1, 3.2.2, and 3.2.3, we obtain the following proposition, which is useful to
estimate €(Xp, Lp; 1p)

Proposition 3.2.4. Let m: Mg — My be a lattice projection for free abelian groups M and
M’ of rank n and r. Let P C My be an n-dimensional integral polytope, and set P' = w(P).
Fiz v € P'N My and assume dim P(u') = n —r. Then it holds that

min{e(Xp:, Lp; 1p1), e(Xpw), Lpw); 1pwy)} < e(Xp, Lp;1p) < e(Xpr, Lpis 1pr).

Proof. Let ¢ : Xp --» Xp(y) be the rational map defined in Lemma 3.2.2. For a toric
resolution p-: Y — Xp of the indeterminacy of ¢, the stable base locus B(u*Lp — f*Lpu)
~ is contained in Y \ O, where O is the maximal orbit of Y. By applying Lemma 3.2.3 to’
[:Y = Xpwy, w*Lp, Lpqyy and the identity 1y of the torus O C'Y, we have

min{e(Yi, (4" Lp)|vi; 1y )y €(Xpiary, Liguy; Low))}
< e(You'Llpsly) < e(Yn, (W Lp)ln; ly),
where Y7 is th_e irreducible component of f‘l(l p(u/)) containing 1y. Since y : Y — Xp and
flys : Y1 = Ty (C Xp) are birational and isomorphic around ly from the proof of Lemma
322, it holds that E(Y, /J,*Lp; ly) = E(Xp, Lp; 1p), E(le, (,LL*LP)|Y1; 1y) = 5(TM’7LP|T_M,; ].p)
‘The normalization of (Th, L p|T—M,) is (Xpr, Lp/) by Lemma 3.2.1. Thus we have
e(Y1, (W' Lp)lvi; 1y) = e(Tarr, Lelz; 1p) = €(Xpr, Lpr; 1p1).

From these equalities, this proposition follows. ' O
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In view of Proposition 3.2.4, we define invariants s;(P) and s5(P) for a rational polytope
P C R" as follows: '

Definition 3.2.5. Let P be a rational polytope in Mg. We define s1(P) = s (P) € Ry, for
which s1(P + u) = s1(P) holds for any u € Mg by induction of n as follows: ’
When n = 1, we define s1(P) = |P|u, the length of P. Note that M C My is identified
with Z C R. Clearly s1(P + u) = s1(P) holds for any u € M.
Assume such’s; (P) is defined in the case of rank n — 1, and set

®={n: Mg = (Z)r = R|7 is a lattice projection }.

Fix 7 € ® and choose a splitting M = ker 7| @ Z of 0 — kerm|yy — M 73'—]3)4 Z — 0. Then
for v’ € Q, '

i (uW)NP
can be regarded as a rational polytope in ker 7 = (ker 7|y )g naturally. Thus we can define

skl (=1 P) € R>¢ by the induction hypothesis. Another choice of the splitting only

causes a parallel translation of 7~*(u/) N P in kerm, hence slfem|M(7r‘1(u' ) N P) does not
depend on the splitting by the induction hypothesis. We define

s1(P) = s (P) := sup min{ |7(P)|z, sup s:" ™™ (z~1(u') N P) }.
ned u'€eQ

Clearly, s1(P 4+ u) = s1(P) holds for any u € Mg.

The definition of s3(P) is more simple. For a rational polytope P C MR, $3(P) € Ryg is
defined to be
s2(P) = inf |7(P)|z.

. wed

By definition, s3(P + u) = so(P) holds for any P and u € Mg.
We define s1({0}) = 52({0}) = +o00, 51(0) = s2(0) =0 if n = 0.

ker

7 tw)YNP

Mg

Remark 3.2.6. Let V be a finite dimensional R-vector space, and take two lattices M;, My of
V, thus (My)g = (Ma)g = V. In general sM(P) # sM(P) for P C V and i = 1,2. Hence
we have to notice which lattice we consider about when we deal with s1(:), s3(-).

By Proposition 3.2.4, we can show that s;(P) and so(P) give a lower bound and a.upper
bound of e(Xp, Lp; 1p) respectively: ’
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Proposition 3.2.7. Let P C Mg be a rational polytope of dimension n.
Then for any p € Op C Xp, it holds that

s1(P) < e(Xp, Lp;p) < s5(P).

Proof. By the torus action, we may assume p =1 P. We show this propos1t10n by induction
of n.
If n =1, then e(Xp, Lp;1p) = deg(Lp) = | P|. By definitions s;(P) = s2(P) = |P|, thus
the inequalities in the proposition follow. ’ ‘
' We assume this proposition holds if the rank of M is n — 1, and show the case of rank n.
We use the notations in Definition 3.2.5. Fix 7 € @, ie., 7 : Mg = R = (Z)g is
a lattice projection. We can apply Proposition 3.2.4 to P and v/ € n(P) N Q such that
dim(7~'(«/) N P) = n — 1. Then we obtain inequalities

].’Illl’l{[-:( (P)s Lﬂ(P); 17r(P))7 E(Xﬂ’_l(u’)ﬂPa er“l(u")ﬂP; 17r_1(u’)ﬂP)}
' < e(Xp,Lp;lp) < e(Xn(p)s La(py; Ln(p))-

Note that Proposition 3.2.4 can be applied to rational polytopes. Now (Xr(p), Lx(p); L(p)) =
|7(P)|, and by the induction hypothesis we have

31( ( ) n P) < E( = {u)NP) Lﬂ“l(u’)ﬁP; 17r—1('u/)ﬂP)~ :
Thus these inequalities induce |
min{|r(P)|,s1(r(w) N P)} < (Xp, Lpi 1p) < |(P)|.

Note that this also holds if dim(7~!(v') N P) < n — 1 since s;{(7~(v/) N P) = 0 for such
u' € Q.- (This can be shown easily by the definition of s,.) Moving ', we have

min{|7r(P)|,S}é% si(mHu) N P)} < é(Xp,Lp; 1p) < |7 (P)|.

By moving 7, we obtain s1(P) < e(Xp, Lp;1p) < s2(P). O

Remark 3.2.8. (1) Note that sp(P) is nothing but the lattice width of P defined in Definition
2.2.2. Theorem 2.1.2 says that e(Xp, Lp;1p) = 1 if and only if s3(P) = 1 for any integral
polytope P C My of dimension n. But in general, e(Xp, Lp;1p) # so( P). See Example 3.2.9
(3). |

(2) If |7(P)| < sy(n~ ( 'y N P) holds for some 7 € ® and v’ € Q, we have e(Xp, Lp;1p) =
[m(P)| = s1(P) = s2(P) by Proposition 3.2.7.

( The upper bound s;(P) can be a little improved. In fact

. 3 rank M’ AN ,
e(Xp,Lp;1p) < W:]\}];lj)M]& \/(I‘ankM).VQlMR(’/T(P))

holds, where 7 : Mgr — Mg moves all lattice‘projections from Mg. This is shown from
Proposition 3.2.4 and Remark 1.2.2 immediately.

3.2.2 At a point in the maximal orbit, Examples

By using Propositions 3.2.4, 3.2.7, we estimate ¢(Xp, Lp; 1p) for some P.
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Example 3.2.9. (1) Set P, = conv(0,ey,...,e,) for the standard basis e,...,e, of Z".
We apply Proposition 3.2.4 to the n-th projection 7 : R — R and ' = 0 € R. Since
P' = w(P,) =1[0,1] C R, we have e(Xp/, Lp;1p/) = |P'| = 1. On the other hand, P(v') =
P,_1 = conv(0,e1,...,e,_1) C R*™1. By Proposition 3.2.4, it holds that

min{la E(XPn—U LPn—l; 1Pn—1)} < 8(*XPm LP’n; 1Pn) <1

Since e(Xp,, Lp;1p) = |P1| = 1, we have ¢(Xp,,Lp,;1p,) = 1 for any n inductively. Note
that (Xpn,Lpn) = (]Pm, 0(1))

(2) Set P = conv((0,0), (a,0),(0,b),(a,b)) C R? for a < bin N\0. We apply Proposition 3.2.4
to the first projection 7 : R? — Rand ' = 0 € R. Then e(Xp, Lp;1p) = &(Xp,Lp;1p) = a
by Remark 3.2.8 (2) because |P'| = a < b = si(7~1(0) N P). Note that (Xp, Lp) = (P! x
P!, O(a,b)). '

(3) Set P = conv((1,0),(0,1),(—1,—1)) C R2 Since P is a triangle, it holds |r~(v/) N P| -
7(P) = 2-vol(P) = 3 for any lattice projection 7 : R? — R, where 77*(u’) N P is the longest
fiber of P — 7(P). Thus s;(P) = min{ss(F),3/s2(P)} holds. It is easy to see s3(P) = 2,
hence we have s1(P) = 3/s2(P) = 3/2. Thus 3/2 < ¢(Xp, Lp;1p) < 2 holds by Proposition
3.2.7. Note that Xp is the singular cubic surface in P* = Proj C[Ty, T3, T3, T3] defined by
T3 = TyTyTs and Lp = O(1). For any (integral and not necessarily smooth) cubic surface
S C P? and a general point p € 3, the plane in P? tangent to S at p induces a singular curve
C ~ Og(1). Thus (S, O(1);p) < 3/2 holds. Hence we have s;(P) = 3/2 = e(Xp, Lp;1p) <
s2(P) in this case. :

(4) It is well known that there are five toric Del Pezzo surfaces. For an integral polytope
P C R? such that Xp is a Del pezzo surface and Lp = —Kx,, we can easily find a projection
7 and v’ € Q as in Remark 3.2.8 (2) and compute e(Xp, Lp; 1p). As a consequence, we have

3 if Xp=P?
2 otherwise

e(Xp,Lp;1p) = {

for such P.

In the above examples, Seshadri constants can be computed without using Propositions
3.2.4, 3.2.7. The following examples are new computations of Seshadri constants on toric
varieties. ‘ ’

(5) We consider a weighted projective space P(a, b, c) with ¢ = max{a, b, c}. We may assume
any two of a,b,c are coprime. Since a and b are coprime, we can denote ¢ = pa + gb for
integers p,q such that 0 < ¢ < a. Let P C R? be the convex hull of (0,0),(ab,qb) and

(ab, —pa). | »

_pa R
' p>0 } ' p<0

It is easy to see that (Xp,Lp) = (P(a,b,c),O(abc)). Since P is a triangle, we have
s1(P) = min{ss(P), abc/ss(P)} < e(Xp,Lp;1p) < so(P) as (3). In other words, it holds

22



that : '
min{sZ(P)/abc, 1/82(P)} < e(P(a,b,c), 0(1);1) < s55(P)/abc.

Since s3(P) can be computed by finite calculations for any given a,b,c (or more generally,
any given integral polytope in R"), we obtain an explicit estimation. - If so(P) < Vabe, it
holds ¢(P(a, b, ¢), O(1); 1) = so( P)/abc. For example,

(i) When p > 0, we consider the first or second projections R? — R as 7. Then we have
|7(P)| = min{ab, c} < vabc. Thus it holds

e(P(a,b,c),0(1);1) = min{ab, c}/abc = min{1/e¢,1/ab}

by Remark 3.2.8 (2). For instance, p > 0 holdsif a =1, 2, or ab < c.
(ii) When p < 0, we have |p(P)| = gb for the second projection py : R? — R. Thus, if
qb < Vabe, i.e., ¢*b < ac, it holds that (P(a, b, c), O(1);1) = gb/abc = q/ac. For instance,

e(P(3,5,7), O(1);1) = 2/21

holds since 7=—-1-3+2"5.
(iii) If a = 3,b = 4,c = 5, we have s5(P) = 8. In this case, s5(P) = 8 > 2v/15 = vabc.
Thus we have only the estimation '

1/8 < (P(3,4,5),0(1); 1) < 2/15.

(6) There are 18 smooth toric Fano 3-folds (cf. [Bat], [WW]). As (4), we can easily compute
e(Xp,Lp;1p) if Xp is a smooth toric Fano 3-fold and Lp = —Kx,. For such P, we can show

4 if Xp =P8
E(Xp,Lp;lp) = 3 if XP=]P)(OHD1 @Opl EBO[Pl(].))
2 otherwise.

(7) We give examples of a polarized variety (X, L) satisfying
e(X,L;1) = VL* € N--- (%)

for n = dim X. We construct such examples by induction of n as follows:

When n = 1, (Xp, Lp) satisfies the condition (*) for any integral polytope P in Mg = R.
Note (*) always holds if X is a curve. _

Let P C Mg be an integral polytope such that (Xp, Lp) satisfies (x). Choose u,v € Zx M
‘such that wo N ({0} x P) # 0 and |ug — vo| = {/L% =: m € N, where U is the segment
in (Z x M)g whose end points are u and v, and ug,vp are Z-components of u,v € Z x M
respectively. Set P = conv(u,v,{0} x P) in (Z x M)g. By applying Proposition 3.2.4
to the first projection 7 : R x Mg — R and 0 € R, we have ¢(X5,Lp;15) = m. Since

L”};‘l = (n+ 1)!vol(P) = m"*™, (X5, Lp) is an n + 1-dimensional example satisfying (x).
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Mg

P
v
Vo Up R
(8) Set P = conv(ey,...,en, —X  a;e;) C R™ for rational numbers aq,...,a, > 0. Then we

have

a4 +a,+1
Xp. Lp:1 > i RN & 3
6( Py &Py P) —1I§ni1£nai+1+"'+an+1 ( )

We show this by induction of n. When n = 1, e(Xp,Lp;1p) = |P| = a1 +1 =

I 1

G T N (**) holds.

Qg1+t a,+1
Assume (#%) holds for n—1. We apply Proposition 3.2.4 to the n-th projection 7 : R — R,

P, and 0 € 7(P) N Q. Then P(0) = 7~1(0) N P = conv(ey,...,en_1,—1/(an + D)Z0 ase;)

and P’ = 7(P) = [—ay, 1] C R. By induction hypothesis,

minlgisn

» ' o aif(an+ D)+ dan/(a+ 1) +1
Xp©), Lpwy; 1pey) 2 :

eXpw, Lroilpo) 2 gmin e
o aittantl

min

1Si<n—1 Giy1 + -+ G + 1

holds. By Proposition 3.2.4, it follows that

e(Xp,Lp;1p) > min{e(Xp:, Lp; 1pr),e(Xp(o), Lpo); 1pe)}
i .. n 1 -
> min{a, +1, min it -t ant }
1<i<n—1@;q1 + -+ ap+1
et tant+1
= min : '
1SiSn Qg + 0+ G + 1

We will use this lower bound in Section 3.4.

3.2.3 At a point in any orbit

Next, we consider the Seshadri constant on a toric variety at a point not necessarily contained
in the maximal orbit.

Definition 3.2.10. Let P be an integral polytope of dimension n in Mg, and v a vertex of

P. We define »
E s(P;v) = min{|7|p;, |v < 7 < P,dim7 =1} € N\ 0,

where M, = R(7 — 7) N M and we consider 7 as a subset in (M,)g = R(7 — 7) by a parallel
translation. If M = {0}, we set s(P;v) = 400 for P = v = {0}. :
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Let o be a face of P (we denote this by 0 < P). Let 7 : Mg — Mg/R(0 — o) be the
natural projection and set M’ = w(M), P’ = n(P), and v' = 7(0). Note that P’ is an integral
polytope in M = Mg/R(c — o) and v’ is a vertex of P’. Then s1(P;0), $2(P;0) € Rsg are
defined to be '

51(P;0) = min{s} (o), s(P;v')}, s2(P;0) = min{s}* (o), s(P’; ')},

where M, = R(o — o) N M and we regard o as an integral polytope in R(o — o) = (M, )g-
Note that s1(P; P) = s1{P), s2(P; P) = s2(P), and s1(P;v) = s3(P;v) = s(P;v) holds
for any vertex v. ‘

Proposition 3.2.11. Let o be a face of an n-dimensional integral polytope P in Mg. Set
m: Mg = Mg/R(c — 0), P' = n(P),v' = n(0) as in Definition 3.2.10. Then,

e(Xp, Lp;p) = min{e(Xo, Lo; 15), s(P;0)}
holds for any p € O,.

Proof. We use notations in Definition 3.2.10. We may assume 0 € o, thus ' = 0 in M’ =
Firstly, we show e(Xp, Lp;p) < min{e(X,, Lo;p), s(P';v')}. Note that e(X,, Lo;p) =
e(X,, Ls;1,) by the torus action. Since Lp|x, = L, the inequality

e(Xp, Lp;p) < &(Xy, Lg; p) - -« ()

is clear. By the definition of 7, there is a natural 1 to 1 correspondence between =Z = {7 |0 <
7 < P dim7T=dimo+1} and & = {7'|v' < 7/ < P/, dim 7’ = 1} by corresponding 7 € Z to
7(r) € E'. Fix 7" € £ and let 7 € = be the corresponding face of P. Then by Proposition-
3.2.7, e(X;,Lr;q) < so(1) < |7| holds for ¢ € O,. Since codim(X,,X,) = 1 and X, is
normal, X, is smooth at p. Therefore by the lower semicontinuity of Seshadri constants (see
[La2, Example 5.1.11]), it holds that e(Xp, Lp; p) < &(X;, L+;p) < &(X;, L;q) < |7|. Hence
by definition of s(P';v’), » -

e(Xp, Lp;p) < min |7'| = s(P';0'). - - (¥%)
T'es!

From () and (*%), we have ¢(Xp, Lp;p) < min{s(Xg,La;p),s(P’;v’)}.

Next we show the opposite inequality. Let C be a curve on Xp containing p. It is enough
to show ' .
C.Lp > mult,(C) - min{e(X,, Ly;p), s(P';0')}. - - - (% % %)

Case 1. C C X,.
In this case, C.Lp > mult,(C)-6(Xs, Lo; p) is clear by the definition of Seshadri constants,
thus (* * %) holds. ‘

Case 2. C'¢ X,.

We use the following claim:

Claim 3.2.12. In this case, there exist 7' € Z' and an effective divisor D € |Lp ®ml,T,|| on
Xp such that C ¢ Supp D.
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If there exists such a divisor D, it holds that

CLp=CD > multy(C)-|r|
> mult,(C) - s(P';v)
>

mult,(C) - min{e(X,, Ly; p), s(P;0") }.
Thus the proof is completed by showing this claim. |

Proof of Claim 8.2.12. For 7' € =/, let v/, be the vertex of 7' different from ¢'. If 7 € 2

/

corresponds to 7', there exists a vertex v, of 7 such that n(v,) = v.,. Many vertices of

7 may satisfy this condition, but we choose one of them. Let z*~ € H°(Xp,Lp) be the
section corresponding to v,, and D,_ € |Lp| the corresponding effective divisor on Xp. Since
Supp D, =, ¢}HPX we have

m Supp D,, = U X,

TEE v, ¢p for'T€E

By the choices of v,, ¢ does not contain any v,. If p > o and p ;é o, then p contains some
T € E, hence v, € 7 C p. Consequently, it holds that ‘

X, C mSuppDvTCXaU U X,

TEE oAp=<P

Since |, Ap<P Xpisa closed set not Contalmng P, (),e= Supp Dy, coincides with X, around
p. Now C contams p and is not contained in X, by assumption, thus C is not contained
in ﬂTe_ Supp D,,. Hence we can choose 7o € = such that Supp D, vr, does not contain C.
Let 7} € Z' be the corresponding face, and set ¢’ |7'0}‘1 ! € M'. (Note that we assume

v/ =0, and 7 is the convex hull of v/ and v/ - ) Then € is the generator of R(7j — 5) N M’ =
R7j N M’ & 7 contained in 7). Fix e € Mn m~1(e'). Since v/ = Il u = vy —|mgle is
contained in 771(0) N M = R(s— o) N M. This means z'0 = z* - (z°)Il is contained in
HYXp,Lp® ml7 |), hence this 73 and D, satisfies the condition in the claim. O

O

Remark 3.2.13. For a vertex v of P, we have ¢(Xp, Lp;p) = s(P;v) for the torus invariant
point p = O, by Proposition 3.2.11. When Xp is smooth, this is Corollary 4.2.2 in [BDH+].

The invariant s(P’;v’) in Proposition 3.2.11 is easily computed. Thus, it is enough to
see (X, Ly; 1) to compute e(Xp, Lp;p) for p € O,. But we can use Proposition 3.2.7 to
estimate s(X,,, L,;1,). Therefore we obtain the following theorem:

Theorem 3.2.14 (=Theorem 3.1.1). Let P C Mg be an integral polytope, o a face of P,
and p € O,. Then, it holds that

5i(P;o) <e(Xp,Lp;p) < s52(P;0).

Proof. This is easily shown from Propositions 3.2.7, 3.2.11, and the definitions of s1(P;0)
and sy(P;0). O

Remark 3.2.15. Since s1(0) = s2(0) for 0 C (M,)r when rank M, = 0 or 1, s;(P;0) =
e(Xp, Lp;p) = so(P;0) holds if dimo = 0 or 1.
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3.2.4 At a point in any orbit, Examples

Example 3.2.16. Unless otherwise stated, =, P’ and v/ are as in Proposition 3.2.11.

(1) Let P, be as in Example 3.2.9 (1). We apply Proposition 3.2.11 to P, and any face
o < P, of codimension r: Then the image of P by 7 is P’ = P,, thus s(P',v’) = 1. Since o is
identified with P,_, by some integral affine translation, (X, L,; 1,) = 1 holds by Example
3.2.9 (1). Hence we have e(Xp,,Lp,;p) = 1 for any ¢ < P and any p € O, by Proposition
3.2.11.

(2) Let P be as in Example 3.2.9 (2). Then we have ¢(Xp, Lp;p) = a for any p € Xp by
Proposition 3.2.11. '

(3) Let P be as in Example 3.2.9 (3). Then for any 1-dimensional face o of P, s(P',v') =
|P'| = 3 and &(X,,Ls;1,) = 1. Thus &(Xp,Lp;p) = min{1,3} = 1 for p € O,. For any
vertex v of P, e(Xp, Lp;p) = s(P;v) = 1 by Remark 3.2.13. Thus we have e(Xp, Lp;p) =1
for p e Xp\ Op.

(4) For an integral polytope P C R? such that Xp is a Del pezzo surface and Lp = —Kx,,, we
can easily compute e(Xp, Lp; p) for any p by Propositions 3.2.4 and 3.2.11. As a consequence,
we know &(Xp, Lp;p) € {1,2,3} for such P and any p € Xp.

(5) As (4), we can easily compute e(Xp, Lp;p) if Xp is a smooth toric Fano 3-fold and
Lp = —Kx,. As a consequence, we know ¢(Xp,Lp;p) € {1,2,3,4} for such P and any
pE Xp. . ’ A

(6) Let P be as in Example 3.2.9 (7), and 0 < P a 1-dimensional face. Then it is easy to see
s1(P;0) = s2(P; ) = min{|o|, abc/|o|}. Thus we have

e(P(a,b,c), 0(1); p) = (abc) ™ min{|o|, abc/|o|} = min{|o|/abec, 1/|o|}

for p € O,. For example, e(P(a,b,c),O(1); p) = min{b/abc,1/b} = 1/ac for p € O, if o is
the convex hull of (0,0) and (ab, qb) Note that |o| is not the Euclidean length of o in R

i.e., |o] is not by/a? + ¢2 but b.

When o < P is a vertex, we can easily compute s(P; o). For example,
e(P(a,b,¢c),0O(1);p) = s(P; o) = min{1/bc,1/ac}
holds if o = (0,0) and p = O,. \ |

3.3 Seshadri constants and toric degenerations

In the above section, we study the Seshadri constants on toric varieties. In this section, we
investigate non-toric cases by using toric degenerations.

Definition 3.3.1. Let L be a nef R-divisor on a projective variety X and m = (my,...,m,) €
R, for r > 0. We say L(7) or L(ms,...,m,) is nef (resp. ample) if so is

o=l

where py, ..., pr are very general r points on X, i : X — X is the blowing up at p1,...,p, and
FE; is the exceptional divisor over p;. In other words, L(7%) is nef if and only if (X, L;m) > 1.
We sometimes denote u*L — Y, m;E; by L(m) for very general p;.

Remark 3.3.2. To show the nefness of L(7), it is enough to show wL—>""_ mE; is nef for
one choice of py, ..., p,. This follows from the openness of the ampleness condition as in [Bi,
Lemma.6.1.A]. :
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By using degenerations, we can show the nefness (resp. ampleness) of a divisor from
the nefness (resp. ampleness) of other divisors. The following theorem is a straightforward
generalization of Theorem 2.A in [Bil:

Theorem 3.3.3. Let f : X — T be a flat projective morphism over a smooth variety T'
with reduced and irreducible general fibers, and L an f-nef (resp. f-ample) divisor on X.
Let X; = f7(t) be the scheme theoretic fiber of f, Ly = L|x, for t € T. Assume that
Y; (1 <4 < r) are irreducible components of the central fiber Xo (0 € T') with the reduced
structures (other components may exist). We assume the following:

(i) Xo is reduced at the generic point of Y; for any 1,

(i) There ezist k; € N and m® = md, .. ,m,(c?) € RY, for 1 <i <1 such that L|y,(m®™)
is nef (resp. ample) for any i. '

Then Ly(m®, ..., m") is nef (resp. ample) for very generalt € T

Proof. Fix very general points p()

..,p,(c? inYfori=1,...,r

Firstly, we assume that there exist sections of f, {0 Z')} forl <i<r 1 < j <k
satisfying a( )0) = P; @ By shrinking T if necessary, we may assume a(l) (T)Nn ( )=10
for (i,7) # (z , 7). Let p: X' — X be the blowmg up along |J; ; 0; ( ) 8() the exceptlonal

divisor over a( )( T), and set L' = p*L — Ei,jmj SJ@. Then for very general £,

pet (fom) ™) = f71(1) = X,
is the blowmg up along X7_,k; smooth points {O‘ ( )}, and it holds that

L row-2) = 15 L = Bigmy By,

where E(t) is the exceptional divisor over O'( )(t). By the assumption ii) and the choice of

p§. ), the restriction of £’ on the fiber of f oy : X’ — T over 0 is nef (resp. ample). Hence

L' (fopy-10ty = Mg Ly — E”m(z)E(z) is also nef (resp. ample) for very gemeral ¢ € T. Thus
LW, ..., m") is nef (resp. ample). - ‘

In general there may not exist such sections, but we can make sections by a base change
as follows. '

From the assumption i) and by cutting by sufficiently ample divisors on X, there exists
a subvariety U C & such that U contains all pg.i) and the restriction f|y : U — T is étale
at py) for any 4,j5. Set U® = U xp...xpU for k € N. Then the natural morphism

: k
o UER) = Uk xp xp UE) 5 T is étale at § = (pW); € UR) xp ... xp UE) | where

p®) = (p;i))j € U®). Thus there is an open neighborhood V. . U®) x 1. .. x7 U®") of § such
that a|y : V — T is étale. Then by base change we have a diagram

Xxg VL x
T
vV 7
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Since afy is étale, g7 (v) = f((v)) = X for v € V, and g and B*L satisfies the
conditions i) and 11) for the central fiber g~1(p) = Xy and Y;. (Note a(p) =0 € T.) The
morphism

Ve Uk xp o xp U k) Hy ey x

induces ‘a section ch ) of g, Where m; and w; are the i-th and j-th projections respectively.
Since aj(. () = pg.) € Xo = g }(p) by the definition of J(.),‘We can use the first part of this
proof. Thus, (5*L)| 91 @Y, ..., m") is nef (resp. ample) for very general v € V. If we
identify Xo@) with 971 (v), Law) (@Y, ..., m®) is identified with (8*L)|g-1,) (@Y, ..., m0).
Since aly 1s etale particularly genencally surjective, Lt(m(l) ., M) s nef (resp ample)
for very general t € T'. O

Corollary 3.3.4. Let f : X — T,L, Xy and Y; be as in Theorem 3.3.3 satisfying condition
(1). Moreover assume that there exists an integral polytope P; such that the normalization of
(Y, L|y,) is isomorphic to (Xp,, Lp,) as a polarized variety for 1 <i < r. Then Ly(eq,. .., &)
is nef for very general t € T, where e; = e(Xp,, Lp,;1p,).

In particular, Ly(s1(P1),...,s1(F)) is nef for very generalt € T.

Proof. Since the normalization is isomorphic over a non-empty open set in Y;, it holds that
e(Xp, Lp;1) = e(Y;, L|y;;1). Applying Theorem 3.3.3 to k; = 1,m{’ = &;, the nefness of
Lyi(eq, . . ., &) follows for very general ¢ € T'. The last statement is clear from ¢; > s1(F;). O

3.4 Examples in non-toric cases

Theorem 3.3.3 and Corollary 3.3.4 tell us a strategy for obtaining lower bounds of (multi-
point) Seshadri constants at very general points: ‘

Finding degenerations to (unions of) polarized varieties whose Seshadri constants are
more computable, such as toric varieties.
Toric degenerations are studied very well, thus we know many such degenerations. Fur-
thermore the assumption that the normalizations are toric in Corollary 3.3.4 is weaker than
usual toric degenerations, which assume the irreducible components are normal toric them-
selves. Therefore we can find more such degenerations. Of course, we do not know when
such degenerations exist in general. The obtained lower bounds may not be good even if such
degenerations exist. But if we can find good degenerations, we sometimes get good lower
bourids as we will see in the rest of this chapter.

In this section, we estimate Seshadri constants on some non-toric varieties by using The-
orem 3.3.3 and Corollary 3.3.4.

3.4.1 Hypersurfaces and complete intersections in projective spaces

In this subsection, we study Seshadri constants on hypersurfaces or complete intersections in
projective spaces. For positive integers dy, . .., dy and n, we denote by X4, & very general
complete intersection of hypersurfaces of degrees di, ..., dy in P, '

Firstly, we estimate (X, O(1);1) for a very general complete intersection X.

Proposition 3.4.1. Let dy,...,d and n be positive integers. Suppose that there ezist a
positive integer ¢ and natural numbers ly,...,l; such that Ek di=n and d; > ck hold for
cany 1< j <k Thene(X7 ,,0()1)>c holds

In particular, e(X7, O(1);1) > | ¥/d] holds for any d € N\ 0.

29



Proof. We prove this proposition by 3 steps.
Step 1. Firstly, we find a not necessarily normal torlc varlety which is a complete intersection
of hypersurfaces of degrees dl, .., dy in P™F. Let d be natural numbers for 1 <7< n,1 <

j < k such that 1 + X7 1d = d; holds for any j. We consider the following homogeneous
polynomials ' :
' D, 4> n
Th = A iV,

dél) d(z) d(n)
Tn+1 = T1? 1y* 1,2 Toto

pe) d(z> e

Tty = T* T o To* Tosw,
where Ty, ..., Thir are the homogeneous coordinates of P+, It is not hard to see that the

intersection X of the hypersurfaces defined by these polynomials is reduced, irreducible, and
n-dimensional, i.e., a complete intersection variety in P+,
Set P be the image of conv(0, e, . ., enrs) C R™ by the lattice projection

Rn+k (Zn—l—k) (Zn+k/M)R,

where M is the subgroup of Z"** spanned by L7 d( )el + ept1 and X7 d(i) — djentj1 +
( ) (2) (n})
eny; for 2 < 7 < k. Note that X d(l)ez + en41 comes from le = Td " LT Tht1

- for example. By Lemma 3.2.1, (X O(1)) is a not necessarily normal toric variety whose
normalization is (Xp, Lp). Smce X7 4, degenerates to X, we have e(Xg ;. ,0(1);1) >

(X p, Lp; 1) by Corollary 3.3.4. Thus it sufﬁces to show e(Xp, Lp; 1) > cfor a suitable choice
of d

Step 2. Secondly, we estimate e(Xp, Lp; 1) by d(i) We denote m(e) by [eg] for 1 <1< n+k.

Since the coeflicient of e, 7 in 37 1d§ )ez—l—enH and that of epq; in XL dg.i)ei —djentj_1+€ntj

are 1 for 2 < 7 < k, we can take [e1],...,[es] as a basis of Z""‘k/M. It is easy to see that
P is the convex hull of [e],...,[en], and [en1x]. Since [ept1] = —5n ., dP[e;] and [ents] =
-3, d( )[ez] + djlentj—1], we can show [en4s] = —E7;ae; for

| CL(Z) = E?zld@d]q_l tre dk

J

= 4Oy dy+ -+ dP dy+ d.
By Example 3.2.9 (8), we have

. in BE /p(i+1)
E(XP, LP7 1) 2> 1rélzlélnb /b )
where b@ = al 4 a0+ + ... 4 g + 1 for 1 <4 < n and pn+1) = 1,

Step 3. Note that X7 . = ), X;‘J?Lk—l degenerates to [; (X”“Lk Ty X”+k ). Since
X% "+k_1 and X7 "+k_1 are very general, X7,
.7

ﬂ (X k-l X ”+k 1) By applying T heorem 3. 3 3 to thls degeneration, we have

=; X ”J,“k_l is an irreducible component of

€(Xg1,...,dk> 0(1)7 1) 2 g(X?ll’,_ O(l)a 1)

L)
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Thus it is enough to show this proposition for d; = cb.
Let us define d; @ for dj =c i gsuch that b /b(“'l) =cforany 1 <1 < n. Set dy) as

follows: _
49 (c—1)chit ifhj_y <i<hy
J 0 otherwise,

where h; =l +- - +1; for 1 < j < k and ho = 0. Note hy = T;l; =n and Tyd?) = ¢ —1 =
d; — 1. For each 4, we define j; to be the unique j satisfying h;_1 <4 < h;. Then we have

Since b® = @ + b+ we have b® = 1= Thus 6@ /pli+1) = cn+i=i/cn=i = ¢ which
proves this proposition. : v O
Example 3.4.2. If we choose dgi) carefully, we may obtain a better estimation than that of
Proposition 3.4.1. We use notations as in the proof of Proposition 3.4.1.

(1) Let 2 < d; < ... < dg be positive integers such that ¥;d; < n+k. Then X7

.....

n-fold such that —Kxp = On+k+1-X%;d;). If X, d < n+k, it is known that X3 4
-is covered by lines (cf. [Deb, Proposition 2.13]). Hence we have e(X7, ,;,0(1);1) = 1.
Now assume %;d; = n 4+ k. Then X7, is a Fano n-fold such that —Kxp = O(1).

We can show (X3 4, O(1);1) = di/(d — 1) as follows:
We define d” by
k d¥ =

J

[ 1 iR <i<H

0 otherwise,
Where hy = (di— 1)+ e (dj — 1). Note hj, = X¥_,(d; — 1) = Z;d; — k = n. Then we have
a® =d; ;- dyand b9 =dj - dp(R; +2—1) for hi_; < i < h}. By Steps 1 and 2 in the
proof of Theorem 3.4.1, it holds that

(X7 O(1);1) > min ﬁ min i i
Ayt ? T T Gi<n pUHD) 1<k d;—1 dk -1
Next, we show e(X7 ,,0(1);1) < dy/(dx — 1) by finding a curve C C X7, such
that C.O(1)/ mult,(C) = alk/(al;c —1).
- Let Fi,..., Fy be homogeneous polynomlals in C[To, ..., Tk of degrees dl, ..., dy respec-
tively such that X7, = (Fi=---=F,=0). We may assume p=[1:0:...: 0] € P**F.

Then there exist homogeneous polynomlals F; t € C[T1, ..., Thik] such that degFj = ¢ and

Fj =% 17 ""'Fi. Let D; and Di C ]P’"“L’C be the hypersurfaces defined by F; and F}
respectively. Then

dj—l
D]an; = (F}:F;:”.:E;ij—lz())
i=1 7
= (Fl=-=F"'=F"=0)

dj
_ i
- N2
i=1
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and

D0 () Dy = (Fe=Fl=-=F*"=0)
i=1 .
= (Fi= = F*? = TR 4+ Rl =0)
dp—2 .

= ﬂDk N (ToFf + F* = 0).

Note that all F} are general since Xg .4, @nd p are general. Hence

-14d; d—2
C = ﬂﬂD’ (ﬂ Di N (ToFH= + Fl :0)>

j=14=1
is'a curve on X7 = N*_,D; containing p. B deﬁnition
1,y =117 p.- by )

k—1
degC =[] dj!- (d —2)! - di

j=1
and

mult,( Hd' (dp — 1.

Thus we have e(X7 ,,0(1);1) = e(XF  4,0(1);p) < degC/mult, (C’) = di/(dx — 1).
Therefore 5(Xd1,...,dka O(1);1) = di/(di — 1) holds.
For example, we have

e(X3,0(1);1) = 4/3,
6(X35,0(1);1) = 3/2,

e(X352 0(11) = 2

when n.=3. . : ‘
(2) When k = 1, we denote d = d;,d® = d&” for simplicity. Then, a® = d® for any i. Thus
we have )

d® .o dm g

e(X7,0(1);1) > 12111%1” d(i.—l—l) e dm®) 4+ 17

In other words,

1 C'n,', ’63702

e(X7, O(1); 1)>m1n{cn Cno1 G2 _0_1}

holds for any increase sequence of positive integers 1 < ¢, <¢,1 << =d. .
When n = 2, set ¢; = d,c; = [v/d ]. Then £(X3,0(1);1) > min{[vd ],d/[Vd |} =
d/[v/d ] holds. From this and Proposition 3.4.1, we have

£(X3,0(1);1) > max{|Vd ],d/[Vd }.

When d > 4, (X2, 0(1);1) > [Vd | follows also from Proposition 1 in [St] since Pic X =
ZOx(1). But d/ [v/d ] is a new estimation. For example, e(X2, O(1);1) > 7/3 holds.

Next, we study multi- pomt cases. The following proposition looks like Theorem 2.A in
[Bi] somehow
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Proposition 3.4.3. Let dy,...,d,a,b, and n be positive integers for k € N. We denote by
La, Ly, and Loy the invertible sheaf O(1) on X7 4 o, X3 4 p,ond X3 4 .4y Tespectively.

If Lo (1) and Ly(Ths) are nef (resp. ample) formy € R>O,m2 € R, then Loys (T, M)
is also nef (resp. ample).

Proof. A very general hypersurface X :jlf C Ptk of degree a4+ b degenerates to the union

Xtk XM of hypersurfaces of degrees a and b. Thus Xa death X”"’1 X;‘:’f
degenerates to X | N(XMFUXP = X7, UXE . Applying Theorem 3.3.3 to

this degeneration, the proposition follows. O

As a corollary of Proposition 3.4.1 and Theorem 3.3.3 or Proposition 3.4.3, we obtain
estimations of multi-point Seshadri constants on hypersurfaces in prOJectlve spaces:

Theorem 3.4.4 (=Theorem 3.1.3). Let X} be a very general hypersurface of degree d in
P+l Then it holds that :

| /a]mE + -+ mp)] < e(X3,0(1m) < /A (mi+ -+ mp)
for any m = (myq,...,m,) € (N\0)".

Proof. The second inequality is clear since Oxz(1)" = d. Thus it remains to prove the first

inequality. For simplicity, set ¢ = | {/d/(m} +--- + m")]. Let dy,...,d, be natural numbers
such that d =dy + ... + d, and d; > (cm;)™. We can choose such d; because d > X;(cm;)™.
By Proposition 3.4.1, e(X7,0(1);1) > cm; holds. Note that cm; is an integer. Since X7
degenerates to | J;_; X7 , we can apply Theorem 3.3.3 and we know Lg(cmy, ..., cm,) is nef,
where Lg is the invertible sheaf O(1) on X7. Hence (X7, O(1);m) > ¢ holds. O

3.4.2 Fano 3-folds with Picard number 1

In this subsection, we estimate Seshadri constants on a smooth Fano 3-fold X with Picard
number 1, i.e., X is a smooth projective variety of dimension 3 such that —Kx is ample and
Pic X & Z. The index of X is the positive integer r such that —Kx = rH, where H € Pic X
is the ample generator.

Toric degenerations of Fano 3-folds are studied by many authors. Small toric degenera-
tions of Fano 3-folds are treated by [Gal], and [CI] investigated complete intersection cases
in (weighted) projective spaces and homogeneous spaces. In [ILP], Ilten, Lewis, and Przy-
jalkowski studied remaining cases of Fano 3-folds with Picard number 1. They showed that
every smooth Fano 3-fold of Picard number 1 has a toric degeneration and gave an explicit
description of the moment polytope of the central fiber. Most of the degenerations in [ILP]
give good lower bounds of Seshadri constants.

Example 3.4.5. Let X C P(1,1,1,1,3) be a very general hypersurface of degree 6. By
[ILP, First Main Theorem)], (X, O(1)) degenerates to (Xp, Lp) (as a Q-polarized variety) for
P := conv(ey, €9, e3,—1/3(e; +e2 +e3)) C R T is easy to see s1(P ) > 6/5. Thus we have
e(X,0(1);1) > 6/5 by Corollary 3.3.4.

We can show (X, 0(1);1) < 6/5 by similar arguments as Example 3.4.2 ( ), but we give
a little more geometrical proof here. '

Fix a very general point p € X. Define p’ € X by {p,p'} := ¢~ ((p)), where ¢ : X — P?
is the double cover defined by |Ox(1)|. Since dim H%(X,O(3)) = 21 and dim Ox/m; = 20,
there exists S € |Ox(3) ® m}|. Then mult,(S) = 4 because X and p are very general. It is

not hard to see that S does not contain p’. Let = : X — X be the blowing up at {p,p'},

33



and set E, E' be the exceptional divisors over p and p’ respectively. Let S C X be the strict
transform of S, and set ¢ = ¢|z : S — S and F = E|z. Then F? = —mult,(S) = —4.
Since ¢*Ox(1) — E — E’ is base point free, so is (¢*Ox (1) — E — E')|5 = ¢*Og(1) — F. Let
f: 8 = P2 be the morphism defined by ¢*Og(1) — F. By (S, O(1);p) > e(X,0(1);p) > 1,
we know ©*Qg(1) — F is ample. Thus f is finite morphism. Since f,F.Op2(1) = F.f*Opz(1) =
F.(¢*Os(1) — F) = 4, we have f.F ~ Op2(4). Thus D := f*f.F — F is an effective divisor
and D ~ 9*Og(4)—5F'. Hence 1*Og(1) —6/5F is not ample because D.(¢*Og(1) —6/5F) =
(4" Os(4)5F).(*Os(1)6/5F) = 0. Thus (X, 0(1); 1) = (X, 0(1);p) < &(5, O(1); p) <
6/5 holds and we have (X, O(1),1) = 6/5.

It is known that there are 17 families of smooth Fano 3-folds with Picard number 1. For
each case, we can compute the Seshadri constant as follows:

Theorem 3.4.6 (=Theorem 3.1.5). For each family of smooth Fano 3-folds with Picard
number 1, e(X,—Kx; 1) is as in Table 3.1, where X is a very general member in the family.

Proof. For No.1-4 in Table 3.1, ¢(X, —Kx;1) is computed in Examples 3.4.2 (1) and 3.4.5.
(In fact, degenerations in [ILP] for No.2-4 give same lower bounds as Examples 3.4.2 (1)
though some of their degenerations are different from those of Examples 3.4.2 (1).)

For No.5-17, we can show the following:

2 for No.5-15
e(X,—-Kx;1) > ¢ 3 for No.16 e (k)
4 for No.17.

Except No.11, these lower bounds are obtained by applylng Corollary 3.3.4 to the degen-
erations in [ILP, Flrst Main Theorem].

In No.11 case, the moment polytope of the central fiber of the degeneratlon in [ILP]
is P = COHV(€3,261 — e3,e9 — e3,—2/3e; — 2/3es — e3). By the 2nd projection, we have
51(P") < s5(P") < 5/3. Thus s1(P') is not so large. Instead of this degeneration, we consider
the following degeneration, whose construction is essentially same as Proposition 3.4.1.

Let Ty, Th, T3, T3, Ty be weighted homogeneous coordinates on P(1,1, 1,2, 3) with deg Tp =
degTy = degTy = 1,degTs = 2,deg Ty = 3. Then X, := (T = T?T2T3) C' P(1,1,1,2,3) is
a non-normal toric variety whose moment polytope is P = conv(0,e;, e, —e; — €2 + 63). A
very general hypersurface X in P(1,1,1,2,3) of degree 6 degenerates to Xp. Since —Kx =
Ox(2), (X,—Kx) degenerates to (Xo, Ox,(2)). Thus e(X,—Kx;1) > €(Xo,0x,(2);1) =
_6(X2P,L2p;1) Z 81(2P) =2. )

Next, we think about the upper bounds. For No.5-10, it is known that X is covered
by conics, i.e., for any general p € X, there exists a smooth rational curve C containing p
such that C.(—=Kx) = 2 (cf. [IP, Chapter 4]). Thus e(X, —Kx;1) < 2 in these cases. For
No.11-15, ~Kx = 2H holds for the ample generator H. Assume that e(X,—Kx;1) > 2,

e., —Ky = p*(—Kx) — 2E = 2(u*H — E) is ample for the blowing up u : X > Xata
very general point p € X and E = p*(p). Then X is a Fano 3-fold of index 2, i.e., a Del
Pezzo 3-fold, and the Picard number is 2. By the classification of Del Pezzo manifolds (cf.
1P, §12.1]), (—K)® = 8(n*H — E)® must be 8- 6 or 8 - 7, which contradicts H*> < 5. Thus
e(X,—Kx;1) <2 holds for No.11-15. For No.16 and 17, X is covered by lines since X is a
smooth quadric or P®. Hence e(X, —Kx;1) = re(X, H;1) < r holds for the index r and the
ample generator H for No.16 and 17.

Thus the inequalities in (*) are in fact equalities, and the proof is completed Ul
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3.4.3 Other examples

To apply Corollary 3.3.4, we have to find toric degenerations. We give some examples which -
degenerate to (unions of) toric varieties.

Example 3.4.7. Let G be a connected reductive group. Alexeev and Brion [AB] proved
that any polarized spherical G-variety (X, L) admits a flat degeneration to a polarized toric
variety over A! and gave an explicit description of the moment polytope of the central fiber.
Note that this degeneration is trivial over A \ {0}. Hence we can get a lower bound of
e(X, L; 1) by applying Corollary 3.3.4 to this degeneration.

Example 3.4.8. For an n-dimensional polarized variety (X, L) and a flag Y, of subvarieties
of X, thatis, a chain X =Y, DY, D -:- D Y,, where Y] is a subvariety of codimension 7 in
X which is nonsingular at the point Y,,, we can define the Okounkov body Ay, (L) C R? (see
[LM] or [KK]). Roughly, we defines a graded semigroup I' € N x N” from (X, L) and Y, and
A(L) = Ay, (L) is defined to be the intersection of {1} x R™ with the closure of the convex
hull of I' in R x R™. Note that A(L) is nothing but the moment polytope A(T) if T is finitely
generated (cf. Definition 1.3.1). Anderson [An] showed that if I is finitely generated, (X, L)
admits a flat degeneration to the not necessarily normal polarized toric variety (X (T), L(T))
over A' which is trivial over A!\ {0}.- Thus (X, L;1) > e(Xa(w), Law); la@)) holds by
Corollary 3.3.4 in this case. In Chapter 4, we will define €(Xa, La;1a) for any closed convex
set A C R™ suitably, and prove that (X, L;1) > e(Xaw), Law); 1aw)) holds without the
assumption that I is finitely generated. See Theorem 4.1.1.

Exarhple 3.4.9. (cf. [BBC+, 3.10]) Let P be an integral polytope of dimension n in Mg. A
polytope decomposition P of P is a finite subset of {o | ¢ is a polytope in Mg} such that

(i) P= UgeP g,
(ii) if o € P and 7 is a face of o, then 7 € P,
(iii) if 0,0’ € P, then o N ¢’ is either a common face of o, or empty.

We say P is integral (resp. rational) if all o € P are integral (resp. rational) polytopes. For
example, a rational affine function f : Mr — R defines a rational polytope decomposition
Pf of P by Pf = {(T n f_l([oa -l'—OO)), on f_l(O)J on f_l((_oo? 0])}0<P~

Let P be an integral polytope decomposition of P. If there exists a function ¢ : P — R
such that ’ .

(a) ¢ is piecewise affine and strictly convex with respect to P,
(b) ¢ takes integral values at all u € PN M,

then one can construct an n + 1 dimensional toric variety X, an ample line bundle £ on X
and a projective toric morphism f : X — Al such that Xo = (J;_; Xp, L|x, = Lp, and
X; = Xp,L; = Lp for any t € A\ {0}, where PI" = {0 € P | dimo = n} = {P,,...,P,}.
See [GS] for example. Thus in this case Lp(s1(P),. .., s1(P,)) is nef by Corollary 3.3.4. Such
¢ exists at least for the decomposition kP; = {ko},ep, of kP defined by a rational affine

function f if £ € N is sufficiently large and divisible. See also Proposition 4.5.11.
10 .

——

For example, Theorem0.6 in [Ec], which states e(IP?, O(1);1,...,1) > 4/13, follows from
this argument by using his decomposition of conv(0, e, e;) C R? in his paper. In fact, the
author defined s;(P) inspired by Theorem?2.2 in [Ec].
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4

Seshadri constants and Okounkov bodies

4.1 | Introduction

In this chapter, we extend the notion of Seshadri constants slightly. Let W, = {Wj}x be a
birational graded linear series associated to a line bundle L on a variety X (see Definition
4.2.3 for the definition of ”birational”), r € N\ 0, and 7z € RY,. We define the Seshadri
constant (X, W,;m) of W, at very general points with weight . We will show in Lemma
4.2.11 that this is a generalization of e(X, L;m) defined for a polarized variety (X,L) in
Definition 1.2.4. , '

Let W, be a graded linear series associated to a line bundle L on an n-dimensional variety
X. Fix a local coordinate system z = (z1,...,2,) on X at a smooth point and a monomial
order > on N". If W, is birational, we can construct an n-dimensional closed convex set
A(W,) = A, ~(W,) in R", which is called the Okounkov body of W, with respect to z and
>. Okounkov bodies were introduced and studied by Lazarsfeld and Mustatd [LM] and
independently by Kaveh and Khovanskii [KK], based on the work of Okounkov [Ok1], [Ok2].
The Okounkov body A(W,) seems to have rich information of W,. For example the volume
of W, is n! times the Euclidean volume of A(W,).

For any n-dimensional convex set A C R”, we can define a birational monomial graded
linear series Wa o associated to O(cxj» on (C*)". Thus we can define an invariant s(A;m) :=
e((C*)", Wa,.; ) for m € RY,. The main theorem of this chapter states that Okounkov
bodies give lower bounds of Seshadri constants: :

Theorem 4.1.1 (=Theorem 4.4.8). Let W, be a birational graded linear series associated to
a line bundle L on an n-dimensional variety X. Fiz a local coordinate system z = (z1,...,2,)
on X at a smooth point and a monomial order > on N".

Then e(We;m) > s(A, > (We); M) (= e((CX)™, Wa, . (w.),e; ) holds for any r € N\ 0 and
m € RL;.

This theorem says that the Seshadri constant of a graded linear series W, is greater than
or equal to that of the monomial graded linear series Waww,),» defined by the Okounkov body.

In view of Theorem 4.1.1, it is natural to investigate s(A;m). It is very difficult to
compute s(A;7) in general, but when r = 1 and m = 1 (in this case we write s(A) for
short), we have the following theorem:

Theorem 4.1.2 (cf. Corollary 4.5.3, Corollary 4.5.5). For an n-dimensional bounded convex
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set A C RS, it holds that

max{m € N| réunk Apam =)}

s(A) = sup =
keN\0 - k '
. max{m € N|rank Ayam = (™)}
= lim e,
kEN\O k

where Agam @S a matriz which depends on m,n € N and kKA.
As a special case, for an integral polytope P C RS, of dimension n, it holds that

max{m € N|rank Ayp,, = (™)}

e(Xp,Lp;1) = sup )
Y keN\O k :
. max{m € N|rank Agp,, = (™)}
= lim * )
keN\0 k

Since s(A) (or s(P)) does not change under parallel translations, the assumption that A C
%o (or P C R%,) is not essential. An important point is that max{m € N|rank Ayam =
(™)} can be computed if we know the lattice points in kA. Therefore this theorem states
that s(A) or the Seshadri constant e(Xp, Lp; 1) is the supremum (or the limit) of computable
values. : ‘
When m > 1, we state three methods to obtain lower bounds of s(A;77), though it is not
enough for good estimations.

This chapter is organized as follows: In Section 2, we define Seshadri constants for graded
linear series. In Section 3, we introduce invariants for convex sets. In Section 4, we give the
proof of Theorem 4.1.1. In Section 5, we investigate the computations of invariants defined
in Section 3. ' ' :

4.2 Seshadri constants of graded linear series

In this section, we define Seshadri constants for graded linear series.

Definition 4.2.1. Let L be a line bundle on a (not necessarily projective) variety X, and W
a subspace of H°(X, L). For r € N\ 0 and m = (my,...,m,) € Z", we say that W separates
m-jets at smooth r points py,...,p, in X if the natural map '

W — L/(L & Q)mmtt) = P L/m'L
i=1

i=1

is surjective, where we regard m;;‘“rl = Ox for m; < —1. We say W generically separates

m-jets if W separates T-jets at general 7 points in X. Note that any W generically separates
m-jets if m; < —1 for any 3. , :
We define j(W;m) € RU {400} for W C H(X, L) and @ = (my, ..., m,) € R, to be

J(W;m) = sup{t € R|W generically separates [t |-jets},

where [tm]| = ([tm1],...,[tm,]). We denote it by j(W) when r = 1 and m = 1 € Rs,.
Note that

J(W;m) = max{t € R|W generically separates [¢77]-jets} € R
when dim W < +o0.
When W = H°(X, L), we denote j(W, ™) by j(L;m).
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Remark 4.2.2. Note that W generically separates m-jets if W separates m-jets at some smooth
r points pi,...,p, in X. We use this in Sections 4.4 and 4.5.

Suppose that X is a variety of dimension n and L is a line bundle on X. Let W, = {W; }ren
be a graded linear series associated to L, i.e., W is a subspace of H%(X,kL) for any k > 0
with Wy = C, such that @,., Wi is a graded subalgebra of the section ring @, H*(X, kL).
When all W, are finite dimensional, W, is called of finite dimensional type.

Definition 4.2.3. A graded linear series W, on a variety X is birational if the function field
K(X) of X is generated by { f/g € K(X)|f,9 € Wi, g # 0} over C for any k > 0. When
W, is of finite dimensional type, this is clearly equivalent to the condition that the rational
map defined by |Wy| is birational onto its image for any & > 0, which is Condition (B) in
[LM, Definition 2.5]. '

Now we define Seshadri constants for graded linear series:

Definition 4.2.4. Let W, be a birational graded linear series associated to a line bundle L
on a variety X. _ ;

For m = (mq,...,m,) € RL,, we define the Seshadri constant of W, at very general
points with weight ™ to be '

e(X,Wo;m) = e(W,; ) := sup ]—(Wk; m)

i I S R>0 U {"|‘OO}

Note that j(Wj;m) > 0 holds for k > 0 by the birationality of W,. |
When Wy, = H°(X, kL) for any k, we denote it by e(X, L;m) or e(L;m) for short.

Remark 4.2.5. The definition of Seshadri constants by jet separations is due to Theorem 6.4
in [Dem). See also [La2] or [BDH+]. We will show in Lemmas 4.2.11 that (L;7) defined in
Definition 4.2.4 coincides with £(L;7) defined in Definition 1.2.4. Throughout this chapter,
or at least until Lemma 4.2.11, we use €(L;7%) in the sense of Definition 4.2.4. -

Remark 4.2.6. If subspaces W and W' in H%(X, L) satisfy the inclusion W C W/, then
j(W;m) < j(W';m) holds by definition. Thus e(W,;7) < e(W.;m) holds for W,, W,
associated to L if Wy, C W, for any k (we write W, C W,/ for such W,, W,).

If L — I/ is an injection between line bundles on X and W is a subspace of H°(X, L), then
j(W;m) does not change if we regard W as a subspace of H°(X,L') because we consider
jets separations at general points. Hence ¢(W,;7) also dose not change for W, which is
associated to L if we consider that W, is associated to L'.

Let m : X’ — X be a birational morphism and W, a graded linear series associated to L
on X. Then we can consider that W, is a graded linear series on X’ associated to 7*L by the
natural inclusion H°(X, kL) C H°(X’, kn*L) for any k € N. By the similar reason as above,
e(X,W,;m) = (X', W,; ) holds.

By the following lemma, we may assume that W, is of finite dimensional type in many
cases when we prove properties of (X, W,;m):

Lemma 4.2.7. Let W, be a birational graded linear series. Suppose that Wi, C Wae C
- C Wi C -+ C W, is an increasing sequence of birational graded linear series in W, such
that Wy, = U2, Wi holds for all k. Then e(W,;m) = sup; (W ;) = lim; e(W; ;) holds.

Proof.- The existence of lim; (W, +; ) is clear because ¢(W, ;) is monotonically increasing.
The inequality e(W,; ) > sup,e(Wi.; ™M) > lim; e(W,,; ™) is also clear. Thus it is enough
to show e(Wy;m) < lim; e(W, .; ).
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Fix k and a real number ¢t < j(Wj;). By definition, Wj generically separates [¢77]-
jets. Hence Wy also generically separates [tT]-jets for [ > 0 by the assumption Wy =
U, Wik Thus it holds that j(Wi;m)/k = lim j(Wix; ™) /k < lim;e(Wy,.;m). By definition
of e(W,;m), we have e(W,;m) < lim;e(W, ;). O -

In Definition 4.2.4, ¢(W,; ) is defined by the supremum, but in fact it is the limit:

Lemma 4.2.8. In Definition 4.2.4, ¢(W,;m) = lim j(i;;’_@ holds.

Proof. By Lemma 4.2.7, we may assume that W, is of finite dimensional type.
At first we show the following claim:

Claim 4.2.9. Let W, be a birational graded linear series of finite dimensional type associated
to a line bundle L on a variety X. Then j(Wy; ) > 1-5(Wy; M) holds for any positive integer
k,l>0:

Proof of Claim 4.2.9. For simplicity, we set jir = j(Wy; ) in the proof of Claim 4.2.9. We
prove this claim when r = 1. When r > 1, the proof is essentially same. Thus we leave the
details to the reader.

We write m € Ryq instead of . Choose very general point p € X and set

Wi = Wiy 0 HO(X, L @ mi) C HO(X, L)
for k', > 0. For any 7 € N, it is easy to show that,
| Wkl — L®kl X OX/m;-I_l

is surjective if and only if

Wk’ L®k ®m /mz+1
is surjective for each 7 € {0,1,...,5}. Fixi € {0,1,2,...,{[jxm]}. Then there exist integers
0<iy,...,4 < [jem] such that ¢ =i; 4+ ... +4;. Consider the following diagram:

Wi ® - @ Wiy, — LEF @ mi /mi 1 @ - .. @ L®F @ m /mi+!

| : )

Wi Lo @ mi /mitt,
"In the above dlagram o is surJectwe because 41, ...,4 < [jxm], and B is clearly surjective.

Hence the map
Wklz N L®kl ® m /mz+1

is also surjective for any 7 € {0,1,2,...,1[jxm]}. Thus Wy, generically separates [[jpm]-jets,
~ which means jg > l[jzm]/m > - ji. , _ ‘ O

Now we return to the proof of the lemma. We only prove the case e(W,; M) < +00. When
e(W,;mm) = +00, the proof is similar.
By definition, it is sufficient to show

lim inf J

(Wi T) F(Wy; m)
ST qup AR T
k SUPTT

Fix 0 > 0 and choose kg such that j(z#) > e(We;m) — 0. Let N be a sufﬁaently large

integer and choose a general sy4; € I/V]\,q_Z foreach i =0,1,... kg — 1.
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Fix k > N. Then k is written as k = kol + N + ¢ for some natural numbers [ € N and
0 <1< kg — 1. Then there is the injection

| ‘Wkol L—>I/Vk 18— S SN4i,
induced by the multiplication in € W,. Therefore it holds that
j(Wk‘; —Tﬁ) 2 j(Wkol;m) > 7j(Wko;m)

by Remark 4.2.6 and Claim 4.2.9. Since | — +o0 if k — +00,

. L l . . W . — } . 1 . —
timing 275 S i i LI Weei ) o Wi ) oy 5
k 1 kol +N+1 ko
By § — 0, we finish the proof of Lemma 4.2.8. ' [

Many properties of Seshadri constants of ample line bundles also hold for graded linear
series. We use the following later: :

Lemma 4.2.10. Let 7 be in R, and W, (resp.W,) a birational graded linear series associ-
ated to a line bundles L (resp. L') on a variety X. Then the following holds:

(1) e(W8;m) = 1 - e(Wa; ) holds for any positive integer | € N\ 0, where W& s the
graded linear series associated to L® defined by W,gl) = Wy

(2) e(W.;tm) = t~e(W,; ) holds for any positive real number t > 0.

(8) e(W. ;) > e(Ws; ) +e(W.; ) holds, where W, is the graded linear series associated
to L® L' defined by W, := the image of Wy ® W, — H°(X,L ® L).

(4) eWam) < 2/vol(W,)/Zi_ym? holds, where vol(W,) = limj —

dimension of X.

and n s the

Proof. By Lemma 4.2.8, we have

eWh:m) = li}rcn

Hence (1) is shown. . f
We can show (2) easily from the definition and the following:

j(Wi;tm) = sup{s € R| Wy generically separates [st7i]|-jets }
= t 'sup{s € R| W, generically separates [sm|-jets }
¢ (Wi m).
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To prove (3), it is sufficient to show that j(W,, ;) > §(Wi; ) + 5(W,,; ) holds for any
k. We can show this by the argument similar to the proof of Claim 4.2.9. We leave the
details to the reader.

To show (4), we fix a positive ‘number 0 < t < e(We;m). By Lemma 4.2.8, the equality
j(Wy;m) > kt holds for any k > 0. Thus W, separates [kt |-jets for any k > 0, i.e., the
map

Wi = @ L ® Ofm[Fmil+
is surjective for very general ps, ..., pr. This surjection induces the following inequality:

dimW, > dim@DL®O/mlkml+

= Ei<|—ktmi‘| —|—’I’L> =Et i kn+0(kn 1)

. n
Thus we have vol(W,) > t"XI_,m? by k — 4oco0. We finish the prove by t—e(Wem). O

Note that Definition 4.2.4 is a natural generalization of Definition 1.2.4 for a nef and big-
line bundle, i.e.,

Lemma 4.2.11. Let X be a projective variety, L o nef and big line bundle on X, and
m=(my,...,m,) € R,,. Then it holds that

e(X, L;ym) = max{t > 0| p"L — tXZ_ym; E; is nef },

where (4 X = X isthe blowing up along very general v points in X and E; are the exceptional
divisors.

Proof. The proof is essentially same as that of [La2, Theorem 5.1.17]. Firstly, we show

e(X,L;m) < max{t > 0|p*L — tX_;m;E; is nef}, ie., p*L — e(X, L;m)Z]_ym; E; is nef.
Fix a curve C C X and let C C X be the strict transform of C. It is enough to show
C.(u*L — e(X, L;m)Sr_ym;E;) > 0. For each k, the line bundle L& separates [j,77|-jets at
very general points pi,...,p,, where ji := j(kL 7). Hence there exists a nonzero effective
divisor D € |L®* ), m{,{kmi” such that D does not contain C. Thus we have

Cu'L = CL

k'C.D

k™', mult,, C - mult,, D
k™% [jxms] mult,, C
k75, m; mult,, C
kLS miC. .

AVARAVARAY]

By k — 00, it follows that C.u*L > (X, L;m)Er_,m;,C.E;.

We show the opposite inequality. At first, we assume L is ample. Let p1,...,p. be
very general 7 points in X. Fix a rational number 0<t=ua/b< max{t > 0|p*L —
tX0_ym;E; is nef } with positive integers a,b. Then bu*L — aX]_;m;E; is an ample R-line
bundle on X. Multiplying a and b by a sufficiently large positive integer, we may assume
that bu*L — XI_, [am;] E; is an ample line bundle on X. By Fujita’s vanishing theorem (see
[La2, Theorem 1.4.35] for instance), there is a natural number N such that

HY(X,1(bp*L — S, [am]E;) + P) =0
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holds for every [ > N and every nef line bundle P. For any integer k > Nb, write k = b+
with 0 < b’ < b. We can apply the above vanishing for P = ¥'u* L, thus we have

HYX k'L — 120_ [am;] E;) = 0.

' Since HM(X, ky*L — 151, [amy] E;) = HY(X, kL ® ®, mi™™1), the line bundle kL separates
(I{[ami] = 1,...,l[am,] — 1)-jets at py,...,p,. Hence '

j(kL;mm) . Afam;] =1 . Aam;] =1
ST ) S AT
k - Iniln km; miln (lb + b’)ml
By k — +00, we have v
llami] -1 a

R > Y’ S et e )
e(L;m) > 11lxcnmiln b+b)m b t

By t — max{t > 0|p*L — tXI_;m;E; is nef }, it holds that e(L;m) > max{t > 0| pu*L —
t37_,m;FE; is nef }. '

Next we show .the nef and big case. Since L is nef and big, there exists an effective
divisor E on X such that L — sE is ample for any 0 < s <« 1. Fix a rational number
0 < s < 1 and take a sufficiently divisible integer [ € N\ 0 such that Is € Z. Then
e(l(L — sE);m) < e(lL;m) = [ - e(L;m) holds by Lemmas 4.2.6 and 4.2.10 (1). Since
I(L — sE) is ample, we have :

e((L — sE);m) = max{t>0|u"((L - sE)) —tZ_;m;E; is nef }
= | -max{t>0|u*(L— sE)—tX_ym;E; is nef }.

Hence e(L;m) > max{t > 0| pu*(L — sE) —tX_;m;E; is nef } holds. By s — 0, we have
e(L;m) > max{t > 0| u*L — tXf_,m;F; is nef }. Thus we finish the proof. O

Note that W, = {H°(X,kL)}y is birational if and only if L is big-for a projective variety
X. For a nef but not big line bundle L on X, we define e(X, L;m) := max{t > 0| p*L —
tX_,m;E; is nef } = 0 according to nef and big cases.

For projective varieties, we can write Seshadri constants of graded linear series by using
those of nef line bundles as follows:

Lemma 4.2.12. Let W, be a birational graded linear series associated to a line bundle L on
a projective variety X. For each k > 0, set

| My = piL — Fy,
where py @ X — X s a resolution of the base ideal
by := the image of Wi ® L™F — Ox
and Ox, (—F) = pi ‘b Set My, =0 if W, = 0. Then it holds that

X, My;m Xo. Mo 70
€(X,W."7_n') = 'sup 6( k> kym):hm€( Ly k;m)‘
k k k k
| | X,, My
Proof. Note that My is nef for any k. First, we show that limy E(_]i’___k_’_@

exists and the
second equality in the above statement holds. To prove this, it suffices to show that

€(Xk7 Mk) m)
k

E(ka Mko;m)
ko

< liminf
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holds for any kg > 0. We may assume that My, is big.

Fix a sufficiently large integer N. For each k > N, we can write k = kol + N + ¢ for
some ! € Nand 0 <4 < kg — 1. Since &(Xy, My;7) does not depend on the resolution g
by Remark 4.2.6 or Lemma 4.2.11, we may take a common resolution of by, by, and by,
Then it is easy to see M}, > [ My, + My, in particular My > [My, holds because My, is
effective. By Remark 4.2.6 and Lemma 4.2.10 (1) or Lemma 4.2.11, it holds that

E(Mk;m) > E(leO;—Tﬁ) =1 5(Mk0;m).

e(Xky, Miy; ™) < liming e(Xk, My; ™)
ko -

Next we show the first equality. Sinceuf|Wi| C |Mgl, it holds that j(Wy; m) < j(My;m) <
e(My; ™) for any k. Thus we have '

The inequality follows from this immediately.

£(X, Way ) = lim L6 )

< lim e(Mi; m)

To show the opposite inequality, we use Lemma 4.2.11. Since W, is birational, the mor-
phism ¢y, : X} — PE»IWl defined by u}|Wy| is birational onto its image for & > 0. Denote
the image of ¢ by Yy. By Lemma 4.2.11, (X, My; ) = &(Yk, Oy, (1); ) holds because
¢y, is birational. Furthermore W} = H°(Yj, Oy, (1)) for I > 0, where W} is the image of
W — Wy. This implies that §(Oy, (1);m) = j(Wi;m) < j(Wi; ) for [ > 0. Thus we
have , :

"E(Xk,Mk;m) €(Yk,0yk<1);m)

k k
1. Oy (l);m)
= plm=——
= limJ(W]l:l;m)25(W-;Tﬁ)-

4.3 Monomial graded linear series on (Cm™

Let n be a positive integer. For a subset S C R”, we define

Vsi= @D Co* c @ Ca* = B(C)", Ocxp).

ueSNZ™ uczZn

For a convex set A in R, we define a graded linear series Wa , associated to O(cxy» by
Wak = Vka C H((C)", Ocxyr) = HO((C)", OFeyn).

It is easy to see that W , is birational if and only if dim A = n. We investigate the Seshadri
constant of Wa . in this section. ' ‘

Definition 4.3.1. For a subset S C R™ and 7 € Ry, we define §(S;m) to be
- §(8;m) = j(Vg;m) € RU {+o0}.
For a convex set A C R™, we define s(A;7) in Rxq U {+00} to be

| eWaem) ifdimA=n
s(Aym) = { : 0 otherwise.

When r =1 and M = 1, we denote them by 5(S) and s(A) instead.
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Remark 4.3.2. For any A and T, it holds that

S(kA; ™) — lim 5(kA; )
—

k ok

s(A;m) = s%p

When dim A = n, this follows from Lemma 4.2.8.

When dim A < n, Vgxa does not generically separate 1-jets, which we will show later (see
Proposition 4.5.1). Thus it holds that 3(kA;m) = j(Via; ) < 0. Moreover Via generically
separates (—1,...,—1)-jets, hence §(kA;m) = j(Vka;m) > —max;{1/m;}: Therefore we

have sup;, 5(kA;m)/k = limg 5(kA: ) /k = 0 = s(A; ).

Remark 4.3.3. The following properties are easily shown from the definitions of §(S;7) and
s(A;m): '

(1) §(Sl,m) S E(Sz,m),S(Al,m) S S(Az;m) for Sl C SQ and Al C Ag.

(2) 3(S + u;m) = 5(S;m) for u € Z™.

(3) s(tA;m) =t - s(A;m), s(A +w;m) = s(A;m) for any ¢ >0 € Q and u € Q™

Proof. (1) is clear. (2) is immediately shown by the following diagram:

Vs> ClzE, ..., 23]

n

1 O lem”

Vo Clzi?, .., 23],

To show (3), choose sufficiently divisible [ € N\ 0 such that It € Z and lu € Z". Then

S(ktA; )
k
. B(kltA;m)

= ==
S(kltA; )
klt

s(tA;m) = liin
= t\lillcrn '=t-s(A;m)

and by (2),
S(k(A + u); )

- s(A+wum) = lim

k

— lim S(kU(A + u); )

k kl

. S(KIA + klu;m)
= lim

k kl
.. E(klAm) L
= 11]£n x = s(A;m).

Following lemmas are properties of s(A;77) which are used later.

Lemma 4.3.4. Let A be a convez set in R™. Then s(A;m) = s(A°;m).
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Proof. If dim A < n, then s(A; ) = s(A°;m) = 0 by definition.
Thus we may assume dimA = n and it is enough to show s(A;m) < s(A%m). Fix
u € A°N Q™. By the convexity of A, there exists the inclusion A —u C t(A° —u) for t > 1.
Thus : v
s(A;m) = s(A —w;m) < s(H(A° —u);m) =t s(A° ™)

holds for t > 1 in Q by Remark 4.3.3 (3). By t — 1, this lemma is proved. a
Now we can show that the property (3) in Remark 4.3.3 holds for any t € R.q and u € R™

Lemma 4.3.5. Let A C R" be a convex set, u € R", and t € Ryg. Then
s(A +u; ) = s(A;m), s(tA;m) =t s(A;m).

Proof. These are all 0 if dim A < n, hence we may assume dim A = n.

Fix u' € A°N Q™. As in the proof of Lemma 4.3.4, A — v/ C (1 + #')(A° — «/) holds for
t' > 0. Translating it by u + o/, we have A+ u C (1 +t")(A° —u') + v+ v/. Choose v" € Q"
such that (u+u') — v’ € /(A° — '), then A +u C (1 + 2t')(A° — ') + »”. Thus for ¢’ > 0
in Q,

s(A + u;m) < s((1+ 2¢)(A° =)+ u"”;m) = (14 2t)s(A; )
holds by Remark 4.3.3 (3) and Lemma 4.3.4. Hence s(A+u; ) < s(A;7) follows by t' — 0.
Since the opposite inequality s(A + u;m) > s{A;7) also holds similarly, we can show that
(A +u;m) = s(A;m).

For t1,ts € Q such that 0 < t; <t < t9, there exists inclusions ¢, (A — ') C A - u') C

to(A —u’). Thus we have

s(t(A —u);m) < s(H(A —u');m) < s(ta(A - u');m);
By Remark 4.3.3 (3) and the first equality of this lemma, which we have already proved,
s(t(A —u');m) = s(tA;m) and s(t;(A — u');m) = ¢t; - s(A; ) hold for ¢ = 1,2. Substituting
these inequalities, it holds that
t1 - s(A;m) < s(tA;m) <ty - s(A; ).
By t1,ta — ¢, we have s(tA;m) =t - s(A;m). : |

" Lemma 4.3.6. Let Ay C Ay C -+ C A; C --- be an increasing sequence of convex sets in
R™ and set A = ;2 A;. Then s(A; ) = sup; s(Ay; ™) = lim; s(A;;m) for any ™ € RY,

Proof. This lemma follows from Lemma 4.2.7 immediately. _ O

Lemma 4.3.7. Let A, A’ be convez sets in R™. Then the following hold:

s(A; ) + s(A; ) < s(A+ A;m), s(A) < {/n!vol( )/|m\n
Proof. This lemma follows from Vi - Viar C Vk(A +a,v0l(Wae) = nlvol(A), and Lemma
4.2.10 (3), (4). O
4.4 QOkounkov bodies and Seshadri constants

In this section, we show Theorem 4.1.1, which states that the Okounkov bodies give lower
bounds of Seshadri constants. '
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4.4.1 Definition of Okounkov bodies

For a subsemigroup I' in N x N™ and k£ € N, set

AT) = SI)n ({1} xR,
Ty = Tn({k} x N

Recall that X(T') is the closed convex cone in R x R™ spanned by I'. We consider A(T") and
T’y as subsets in R™ and N” respectively in a natural way.

Definition 4.4.1. We say a semigroup I' in N x N is birational if
i) Ty = {0} € N,
ii) T' generates Z x Z™ as a group.

These conditions are (2.3) and (2,5) in [LM] respectively. Note that I is birational if and
only if so is the graded linear series W(I')e = {W(I)}x := {Vr, }x on (C*)™ associated to
O(CX)

Remark 4.4.2. If T is finitely generatéd, i) and ii) in Definition 4.4.1 are nothing but the
condition we assume to define toric variety (X (T'), L(I")) in Definition 1.3.1. For such T', the
above A(T') is the moment polytope of (X(I'), L(T')) defined in Definition 1.3.1.

Fix a monomial order > on N" ie., > is a total order on N™ such that (i) for every

v € N\ 0, u > 0 holds, and (ii) if v > v and w € N*, then w +v > w + u. In this

chapter, v > wu does not contain the case v = u. Let X be a variety of dimension n and

z = (21,...,2,) a local coordinate system at a smooth point p € X. (In [LM], they use

”admissible flags” instead of local coordinate systems, but essentially there is no difference if

> is the lexicographic order. Local coordinate systems are used in [BC] for instance.) Then
we define a valuation

v=uy,s:0x,\{0} = N

as follows: for f € O X, \ {0}, we expand it as a formal power series

= Zuemncy2®

and define
v(f) = min{u | ¢, # 0},
where the minimum is taken with respect to the monomial order >.
Let W, be a birational graded linear series assocnated to a line bundle L on X. Then one
can define the Okounkov body of W, as follows:

Fix an isomorphism L, = Ox,. Then this isomorphism naturally induces L®k Oxp for
any k > 0 and we have the following map

Wi\ {0} < LE\ {0} = Ox, \ {0} % N™.

We write v(Wj) C N” for the image of Wy, \ {0} by this map. Note that I/(Wk) does not
depend on the choice of the isomorphism Lp = Ox,p because v maps any unit elements in
Oxp to 0 € N*. Then

Tw, =wi s = [ J{k} x v(Wi) C N x N"
keN

46



is a semigroup by construction. We define the Okounkov body of W, with respect to z and
> by : 4
. A(W,) =A,s(W,) .= A(Tw,).

Then A(W,) is an n-dimensional closed convex set in R™ because 'y, is birational as we will
prove in Lemma 4.4.3 later. In general, A(W,) is not bounded, in particular is not a convex
body (= an n-dimensional compact convex set in R™), even if W, is of finite dimensional
type. But we call it Okounkov body according to custom.

In [LM, Lemma 2.12], they assume that W, satisfies ”condition (C)”, which seems to
be a little stronger condition than being birational(= Condition (B) in [LM]), to show that
T'w. .~ generates Z X Z™ as a group for any z. But we can show that it is enough to assume
that W, is blratlonal

Lemma 4.4.3. Let W. be a birational graded linear series associated to a line bundle L on a
variety X. Then Dw, .~ 1s birational for any local coordinate system z at any smooth point
p € X and any monomial order >.

Proof. The condition i) in Definition 4.4.1 is clearly satisfied. Thus it is enough to show
that Ty, generates Z x Z™ as a group. Suppose that z is a local coordinate system and >
is a monomial order. Fix k >> 0. Then the function field K(X) is generated by { f/g €
K(X)|f,g € Wk,g # 0} over C because W, is birational. Hence any F' € K(X) \ {0} is
written as F = G/H, where G, H are written as some polynomials over C of some elements
in {f/g € K(X)|f,g € Wg,g # 0}. Therefore we can write as ' = G'/H’ for some
G',H' € Wy, for some | € N\ 0. Thus v(F) = v(G") —v(H') € v(Wy) — v(Wg) C Z™ (note
that v is naturally extended to K(X)\ {0}). Since the valuation v : K(X)\ {0} — Z" is
surjective, the group Z" is generated by {v(Wy) — v(Wi) }ien. Thus the subgroup {0} x Z™
in Z x Z™ is generated by {0} x {v(Wx) —v(Wi)}i C T'w, — T'ws,

On the other hand, s € W\ {0} and sg4+1 € Wiy1 \ {0} induce the element (1, v(sk41) —
v(st)) € T'w, — T'w, C Z x Z™. Since the group Z x Z" is generated by {0} x Z™ and
(1, v(sk41) — v(sg)), the semigroup 'y, generates Z x Z™ as a group. O

4.4.2 Proof of Theorem 4.1.1

First, we state the idea of the proof. Let X be a projective variety and L a line bundle
on X. Suppose that V C H®(X,L) is a subspace and set W, = {Wi} by W), = V¥ C
H°(X,kL). Anderson [An] proved that (Proj@, V¥, O(1)) degenerates to the toric variety
(ProjC[l'w,],O(1)) if T'w, is finitely generated as a semigroup. From this result and the
lower semicontinuities of Seshadri constants, Theorem 4.1.1 for W, = {V*}, is easily shown
if Ty, is finitely generated. But it seems that Iy, is seldom finitely generated, even if
W, = {H°(X,kL)}y for a very ample L on X (cf. [LM, Lemma 1.7]).

Thus we modify the above idea. Instead of the degeneration of the variety or the section
ring €, Wi, we degenerate W, for each k severally. This is one of the main reason why
we define Seshadri constants by using jet separations in this chapter, instead of the usual
definition by blowing ups as Lemmas 4.2.11 and 4.2.12.

Lemma 4.4.4. Let I’ C N x N” be a birational semigroup. Then
3(Ts;m)
k
holds for any ™ € RL,. In other words, e(Wa(ry,e; ™) = e(W(I')e; M) holds.

3(Tx; m)

| s(A(T);m) = sup (T = lim
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Proof. By definition, it holds that _
S(kA(T); m) 3(kA(T);m)

e(Wam,e; M) = s(A(T);m) = sup : = lim -
and I -
E(W(D).: ) = sup o ';m) i & 'Zm)_

Since I'y, is contained in kA(T) for any k, e(Wa(r)e; ) > e(W(T')s; M) is clear. Thus it

suffices to show

5(Tx; m) 5(kA(T); m)
AL A Rb2A —

lillcn > lim

When T is finitely generated, there exists @ = ([,u) € I' C N x N” such that (2(T") +
@) N (N x N*) C T by [Kh, §3, Proposition 3] (see also [LM, Subsection 2.1]). This gives the
inclusion (kA(T)NN")+u C Ty, hence $(KA(T);m) = s((EA(T)NNY) +u; M) < §(Tps; M)
holds. Thus we have

i ST SR
k k k k
k k

In general case, we take an increasing sequence I'* C I'? C --- C I such that each I'! is
a finitely generated birational subsemigroup of I" and Ui21 I'; = T'. Then it iseasy to show

U; A(T")° = A(T")°. By Lemmas 4.3.4 and 4.3.6, we have

s(A(T);m) = s(A(F)°;m) = lim s(A(T")%; ) = lim s(A(I‘i);m).

Since each I is finitely generated, we can apply this lemma to I'¥. Then we have

, o .. STpm) (T )
S(A(T");m) = hlgn ’ < hlin P
— . N . §(Fk;m)
Thus s(A(T");m) = lim s(A(T"); ) < limyg — holds. O

Broadly speaking, the geometrical meaning of Lemma 4.4.4 is that Seshadri constants of
ample line bundles (on non-normal toric varieties) at very general points do not change by
normalizations. In fact, (Proj @, Wa)r, O(1)) = (Proj C[E(T")N(N x Z™)], O(1)) is nothing
but the normalization of the toric variety (Proj@, W(I')k, O(1)) = (ProjC[I'}, O(1)) when
I is finitely generated.

To prove Proposition 4.4.7, which is the key of the proof of Theorem 4.1.1, we need one
more lemma.

Lemma 4.4.5. Let > be a monomial order on N® and S o finite set in N*. Then there exists
a vector oo € (N'\ 0)™ satisfying the following:

Ifv>uforueS andv €N, then o-v > a-u holds, where o - u,c - v are the usual
inner products.

Proof. ‘For each u € S, set S, = {v € N"|v > u}. Let I, be the ideal in the polynomial
ring C[N"] = Clzy,...,,] generated by {z"|v € S,}. By Hilbert’s basis theorem, I, is
generated by z¥#1, ..., z%*u for some k, € N and v, ..., Uy, € Sy. Therefore any v € S, is
contained in v,; + N" for some j.

We use the following fact (cf. [Ro, Theorem 2.5]):
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Fact 4.4.6. Let > be a monomial order on N®. Then there exists an integer s > 1 with
1 < s < n, s vectors uy, ..., us € R™ which satisfy the following:
Foru,veN", v>u zf and only if m(v) > m(u), where

7N RS ue (g -y, ..., U - u)

and >, 18 the lexicographic order on R®.

Let ey, ...,e, be the standard basis of Z" and consider the above uy,...,u, and 7. By
the definition of the lexicographic order, for any v >, 6 in R% 8-+ > -6 holds for
B=(B1,...,Bs) EREGIf B1 > ... > B, (of course, such § depends on v and §). As 7y > 6,
we consider 7(e;) >jer 7(0) = 0 and 7(vy;) >iep 7(u) for 1 <i<n,ue Sand 1 <5< ky
and choose 8 as above. Since S is a finite set, we can take a common B € R¢,. Since

B-m(u) = (Brur + - + Bsus) - u,
o e >0, o/-qu>a’.u...(*)

holdsfor 1 < i< m,u € Sand 1 < j <k, if we take o/ € Q" sufficiently near (Bius+- - Bsus).

" Multiplying o/ by a sufficiently divisible positive integer N, and set o := No/ € Z™. By (%),
it follows that o € (N\ 0)" and - vy; > o - u for u € S and j.

We show this o satisfies the condition in the statement of this lemma. Fix v € S and

v € N" guch that v > u, i.e., v is contained in S,. Then v € vy + N" for some 1 < j < ky.

Thus a-v=0a vy +a - (V—0y) > @ vy >a-u. O

Now we show the key propositibn. Roughly speaking, this states that W < H°(X, L)
generically separates jets no less than V,(w):

Proposition 4.4.7. Let L be a line bundle on an n-dimensional variety X and set v = v,

be the valuation map defined by a local coordinate system z = (z1,...,2,) at a smooth point

p € X and a monomial order > on N™, v
Then j(W;m) > §(v(W);m) holds for any subspace W of H°(X, L) and any ™ € R,

Proof. By considering an increasing sequence of finite dimensional subspaces in W, we may
assume that W is finite dimensional. '

Let m : U — C™ be the étale morphism defined by z1,..., 2, in an open neighborhood
U C X of p. By the morphism 7, we can identify O, with Ogn 5 = C{z1,...,Zn}, where
T1,...,Tn are the coordinates on C™ such that n*z; = z;. Then we can regard W as a
subsp'ace in C{z1,...,z,} by W — L, = Ox, — C{z1,...,2,}. Note that v is extended to-

%, \ {0} = C{z1,...,2,} \ {0} — N" naturally.

Choose and fix f, € v~ Y(u)NW for each u € v(W). Then it holds that V = @ueu ) Cfa
because #v(W) = dim W (cf. [LM] or [BC]). Since v(W) is a finite set, there ex1sts a €
(N'\ 0)" satisfying the following by Lemma 4.4.5: if v > u for u € v(W) and v € N, it holds
that o v > a-w.

The vector o induces the action o of CX on C{z1,...,z,} by toz¥ = t**z* for t € C*
and u € N*. For f, = ¥,Cu2’ = yCupz’ (note we identify z; and z;), the regular function
tofu

proy — t—a-uzvcuvta-v v Evcuvta-v—a-uxv

on a neighborhood of C* x {0} is naturally extended to a regular function on a neighborhood
U (in C x C") of C x {0}. Note that a-v —a-u > 0if cy 7é 0. We denote the regular
function by F,. Set W = ) CF..

uev(W.
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We prove this proposition only for r = 1. When r > 1, the proof is similar. Hence we
leave the details to the reader. .

By the assumption that » = 1, we may assume 7 = 1. Choose a very general section
o of the first projection & — C. Note that ¢(0) is contained in' {0} x (C*)* & (CX)".
(When r > 1, we choose very general sections o7,...,0, of Y — C.) Let T be the ideal sheaf
corresponding to o(C) on U C C x C", and consider the following map between flat sheaves
over C: '

, ¢:WecC{t} - O — Ofr /77 +1
for j > 0. We denote W; := W .® C{t}|{3xcr and

¢t = Pligxen : Wi = OF /T iy uen = OC"/miJ(:;

for t € C. By the flatness, ¢; is surjective for very general ¢ if so is ¢9. Thus if W, separates
m-jets at o(0) for m € Z, then W; also separates m-jets at o(t) for very general ¢. Since we
choose a very general section, it follows that

J(We) = §(Wo)

for ¢ in a neighborhood of 0. Note 7(W;) can be defined similarly in this analytic setting.
Since there is a natural identification of W; and W for ¢ € C* by the action o, we have
Jj(W) = j(W,;). Note that j(W) does not depend on whether we consider W as a subspace
in H%(X, L) or in C{z,...,2,} because 7 : U — C" is étale. On the other hand, Wy =
Voowy C Clzy, ..., y] since Fy = cuuz® + ¢ - higher term, cu, # 0. Thus j(Wp) = 5(v(W))
holds by the definition of 5(-). From these inequalities, we have j(W) > 5(v(W)). O

Now we can show the main theorem easily:

Theorem 4.4.8 (=Theorem 4.1.1). Let W, be a birational graded linear series associated to

a line bundle L on an n-dimensional variety X. Fiz a local coordinate system z = (21, .., 2n)

on X at a smooth point and a monomial order > on N™. ‘ :
Then e(We;T) > s(A,,»(Ws);m) holds for any r € N\ 0 and @ € RY,

Proof. Let I' :==T'w,,» C NxN" be the semigroup defined by W, z and > in the definition
of Okounkov bodies. Then I'y = v(Wy) C N® and A(T") = A, (W,) by definition. By
Proposition 4.4.7, we have
J(Wy; ™) > lim SvWi)im) _ . 5Tk m)

k k k
Since I' is birational by Lemma 4.4.3, it holds that

M _ s(A(F);ﬁ) = s(A;>(W.); )

from Lemma 4.4.4. Thus &(W,;7) > s(A,, >(W );m) holds. : . O

e(We;m) = lim

lim

Remark 4.4.9. Since s(A(W,); M) = e(Waw,),e; ), the above theorem says that the Seshadri
constant of W, is greater than or equal to that of Wagw,),.. For a convex'set A C R>0, Wae
is considered as a graded linear series on C". Note that A, ~(Wa.) is nothing but A itself
for the standard local coordinate system z = (z1,...,z,) at 0 € C* = SpecClzy, ..., z,] (cf.
[LM, Proposition 6.1]). Hence Seshadrl constants are mmlmal in monomial (or toric) cases
for a fixed Okounkov body.

See [LM, Remark 5.5] for another relation between Okounkov bodies and Seshadri con-
stants, though the relation is not written explicitly there. Note that the relation also holds
for a birational graded linear series.
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4.5 Computations and estimations of s(A;m), 5(S;m)

4.5.1 1In the caser=1

It is very hard to compute 5(S;7) in general, but when r = 1, we can compute it by
considering the rank of matrices. In this subsection, we mainly consider S or A which is
bounded and contained in R%,. For general S and A, we can reduce them to such cases by
Remark 4.3.3 and Lemma 4.3.6.

For u = (uy,...,u,) € Nt and A = (A1,...,\,) € N*, we define a natural number [’ﬂ eN

to be 0
LG
=G
' —1)--. - 1 .
where - zk = (U ) ) ('uk A+ 1) is the binomial coefficient.
k K :
Set 1, = (1,...,1) in (C*)™ and let n be an my_-primary ideal on (C*)". Assume that
n is generated by monomials of z; — 1,...,z, — 1. In particular, there exists a finite subset

®, C N”™ such that n is the restriction of

P Cl-1.)*C O
AENP\ &,

on (C*)", where (z — 1,)* = (z1 — DM -+« (z, — 1),
For a bounded subset S in RS, we set a matrix Agy by

U
= ([3])
(A u)ePyx (SNNR).

mtl for m € N, we denote AS’m;n+1 by Ag.m for short.

When n =my"

The following proposition is a straightforward generalization of results in [Du, Proposition
13] and [BBC+, 3.10], and the proof is same. We prove it here for the convenience of the
reader: : '

Proposition 4.5.1. Let S be a bounded set in RY, and n an my, -primary ideal generated by
monomials of xt1 — 1,...,z, — 1. Then the following are equivalent:

i). the natural map sy : Vs = Ocxyr /0 = @Dy, Clo— 1) : f = f+n is not surjective,
i) rank Ag, < #Py.
Furthermore, if #(S N N") = #®, then these are equivalent to

iii) there exists a monzero element f € Djco, Ru* C Rlug, ..., us] such that SNN" is
contained in the hypersurface in R™ defined by f.

Proof. Since Ag, is the matrix of (g, with respect to bases {z*}yesmnn and {(z — 1,)* }rca,,
the equivalence of i) and ii) is clear.
We assume #(S N Z") = #®, and show the equivalence of ii) and iii). By definition, it

holds that v
AT All---An!H H(“’“_l)'



Hence rank Ag, = rank([[;_, H;\__’fo_l(uk — 1)) For A €., any X' € N” satisfying A\— X' €
N" is also contained in ®, because n is an ideal. From this, the matrix ([]r_, H;\:k()_ Yug —
1)) changes to the matrix (u’\)(A,u) = (yM--- un’\")o\,u) by a suitable sequence of row
operations. .

Thus Ag, is not regular'if and only if rows of (u’\)( Au) are linearly dependent, and this is
equivalent to iii). ' : O

Remark 4.5.2. If n = m’{;“ for m € N, then @mal'n-l—l ={ A=, ) EN N+ .+ 2 <

- m}. Thus in this case, iii) means that S N N" is contained in a-hypersurface of degree m in
R™.

Corollary 4.5.3. For a bounded set S in R, and a bounded conver set A in RY,, it holds -
that

3(5) = max{m e Njrankds, = (")}

n
max{m € N|rank Az, = (™™
SA) = sup { | am = (")}
k
keN\O -
. max{m € N|rank Agam = (™)}
= lim .
keN\0 : k

n

Proof. This corollary follows from Lemma 4.2.8, Proposition 4.5.1 and #CI)malnH = (m+") O

Remark 4.5.4. By Corollary 4.5.3, we can compute §(S) by finite calculations. In fact Ag,,
is a (m:”) X #(S N N") matrix, hence rank Ag,, = (™) only if (™) < #(SNN"). Note
that #(S N N") is finite by the boundedness of S.

By Corollary 4.5.3, we can describe the Seshadri constant of a polarized toric variety at
a very general point as the supremum or the limit of computable numbers as follows:

Let P be an integral polytope in R™ of dimension n. Then C[I'p] = @,y Vip holds as
graded C-algebra. Thus the polarized toric variety (Xp, Lp) is also written as

(Xp,Lp) = (Proj @) Vir, O(1)).
keN )

The following corollary is essentially stated in [BBC+, 3.10], at least in case of n = 2:

Corollary 4.5.5. Let P be an integral polytope of dimension n. contained in RS, Then it
holds that

j(Lp) = max{m € N|rank Ap,, = (m N n) },

n
m € N|rank A = (™t
(X Lpil) = sup max{ | kP,m ( n >}
kEN\0 k
. max{m € N|rank App, = (™)}
= lim : = :
kEN\0 k

Proof. Note that there exists a natural embedding (C*)" < Xp and an identification
of Wpr = Vip and H°(Xp,kLp). Thus it clearly holds that j(Lp) = j(Ve) = §(P)
and e(Xp, Lp;1) = e((C*)", Wpe;1) = s(P) (or more generally j(Lp;m) = §(P;m) and
e(Xp,Lp;m) = e((C*)", Wpo; ™) = s(P;7) hold for any m € RT,). Hence this corollary
follows from Corollary 4.5.3. O
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Remark 4.5.6. For a rational polytope P C R" of dimension n, s(P) = ¢(Xp, Lp; 1p) holds
by definition. Thus s;(P) < s(P) < sy(P) follows by Proposition 3.2.7. We defined s;(P)
and sy (P) only for rational polytopes P, but it is not hard to define s1(A) and s3(A) for any
convex set A C R™. By using Lemma 4.3.6, we can easily show that s;(A) < s(A) < sa(A)
holds for any A.

4.5.2 In the case r > 1

In the above subsection, we investigate s(A) or §(S). Now we consider s(A;m) for general
m. At least there are three methods to estimate s(A;m) or §(S;7) from below (though
they are not enough to obtain good estimations in general). These methods may be known
to specialists, at least for S C Z? or A C R2. But we state here in our settings for the
convenience of the reader.

The first one uses degenerations of ideals:

Proposition 4.5.7. Let 7 = (my,...,m,) € N". Assume that there exists a flat family
{ni her of ideals on (C*)™ over a smooth curve T' such that

i)y =mH @ @mIt for general t € T, where iy, ..., pry are distinct r points in

(€9,
it) ng is an my, -primary ideal generated by monomials of x — 1, for0 € T

Then Vg generically separates m-jets for a bounded subset S C RY, if rank Agn, =
dim O/no.

Proof. Let Z be the ideal on (CX)™ x T corresponding to the family {n;}scr and assume
rank Agn, = dim O/n,.
Consider the natural map

¢: Vs @c O — O(CX)nXT/I'
By the assumption rank Ag,, = dim O/ng and Proposition 4.5.1,
Go:Ve=Vs® OT’(CX)ﬁx{O} — O(CX)”XT/I|((C><)“><{O} = O(Cx)n/no

is surjective. Thus

Pt Ve ® OTl(CX)”x{t} — O(CX)nXT/II((CX)nX{t} = (’)(Cx)n/nt

is also surjective for general t € T by the flatness. This means Vg separates m-jets at
Dit,---,Dre Dy 1). In particular Vg generically separates m-jets. L

Example 4.5.8. Set T =C, M = (3,1) e N? and n, = (z — L,y — D*z — 1 —t,y — 1)2
for t € C* = T'\ 0. Then the family of ideals {n;};ccx extends over C by ny = ((z —
1% (e = 1)y — 1), (z = 1)*(y — % (z — 1)(y — 1)%, (y — 1)*). Since the family {m:}sec is
flat near 0, we can apply Proposition 4.5.7. In Figure 1 bellow, five o correspond to the
monomial generators of ng, and thirteen e are all points in ®,,. Set S be thirteen e in Figure
2. Then rank Ag,, = 13 = dim O/no. Therefore Vs generically separates (3,1)-jets, i.e.,
5(S;(3,1)) > 1 holds. :

Note that this can be shown by the method in [Du].
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The second one uses finite morphisms induced by changes of lattices (cf. [Gar, Lemma
2.1]): '

Proposition 4.5.9. Let v : Z™ — Z™ be an injection between abelian groups of same rank,
whose degree is d € N\ 0. For a convez set A C R", set A’ = 13" (A), where ig = ¢ Q idg :
RtP=Z"QR —- Z" Q@ R =R". Then,

s(Asm, ..., m) > s(Asm)
d

holds for any ™ = (mq,...,m,) € RL,.

Proof. By Lemmas 4.3.4 and 4.3.6, we may assume that A is a rational polytope. Furthermore
we may assume A, A’ are integral polytopes by Lemma 4.3.5.
- The injective morphism ¢ induces the quotient morphism

W:XA—)XA/

such that 7*Las = La. Note that 7 is a finite morphism of degree d. _
We choose very general points py, ..., p, in Xa/, then J; 77} (p;) are smooth dr-points in
Xa. Consider the following diagram: '

Xp—"> X

o |w

XA —> X,

where 4 is the blowing up along | J, 77 %(p;) and 4’ is the blowing up along {p1,...,p-}. Let
E;; be the exceptional divisor over p;;, where 771 (p;) = {pi1, ..., pia}, and E] the exceptional
divisor over p;. ‘ :

By Lemma 4.2.11, u*Lar — s(A';m)2;m;E] is nef. Thus p*La — s(A'; )38 mEy =
7 (W*Lar — s(A';m)2;m;E]) is also nef. Since ampleness is an open condition in a flat
family, p*La — s(A';m)%; ;m Ey; is also nef if p is the blowing up of X along very general
dr-points. Thus s(A;m,...,m) > s(A’;m) holds by Lemma 4.2.11. O

S — . h

d

Example 4.5.10. Let A C R3 be the convex hull of (0,0,0),(1,1,0),(1,0,1), and (0,1,1).
Set v : Z3 — Z3 by i(e;) = (1,1,0),¢(ex) = (1,0,1), and t(e3) = (0,1,1) for the standard
basis ej, ey, e3 of Z°. Then the degree of ¢ is 2, and A’ = (z'(A) is an integral polytope
corresponding to (P3,O(1)). Thus s(A;1,1) > s(A’;1) = 1 holds by Proposition 4.5.9. In
this case, s(A;1,1) =1 holds by Lemma 4.3.7.
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The last one uses degenerations of varieties'induced from polytope decomposition (cf.
'Example 3.4.9). The following is a convex set version of Example 3.4.9, and a simple gener-
alization of results in [Bi], [Ec].

Proposition 4.5.11. Let P C R™ be an integral polytope of dimension n, and P an integral
polytope decomposition of P. We assume that P has a lifting function. Let A be a convex
set in R™ and take Py,..., P. € P such that A; := P;N A has the non-empty interior for
each 1 < i < v'. (There may be another P' € P such that (P'NA)° #0.) Set s; € N\ 0
be a positive integer and take T; € RZ, for each 1 < i < r'.

Then s(A; Ty, ..., M) > 1I<nii<r}n, s(A; ;) holds.

Proof. Fix very general points p;1,...,0is in (C*)™ for i = 1,...,7". By the existence of a
lifting function, there is a toric degeneration f : X — Al as in Example 3.4.9. We consider
each p;; as a point in the central fiber X, by the inclusion (C*)* C Xp, C Xo. For each
1 <i<7r,1<j<s, choose a very general section o; of f satisfying 0;;(0) = pi;. Set
'Tﬁi=(mi1,...,misi). ’ ‘

We consider the natural map

@ VU, kae ®c Opr = Viep ®c Opr = HO(X,£®k) — @ﬁ®k & OX/If;j-l_l
for integers k,l;; € N, where ‘Iz-j C Oy is the ideal corresponding to o;;(A?). By similar
arguments in the proofs of Proposition 4.4.7 or Proposition 4.5.7, we can show that ¢|x, :
‘ lij L+l . ;
VU, kag = D, LS ® (’)Xp/mag:) =D, O(Cx)n/mo_:;(-é is surjective for general ¢t € Al if so
is ¢|x,- Note that V), kae = €D, Viae and ¢|x, = ®iti, where

P; - V;CAS - @ L%Zc &® OXPi /mﬁfgj_‘_l = @ C’)(Cx)n/mﬁgjﬂ.
J J

Thus W), kae generically separates (l;;):-jets if Vias generically separates (1i5)-jets for all 4.
Hence

§(l€A;m1,‘...,m,,./) j(V}cA;—’ﬁl—l,...,m,«/)
FVU, kas; T, - - -, )

min j(Vias; ;) = min §(kA7; ;)
K3 K3

1

AVANAY

holds for any k. Thus we have

§(/€A,m1, e 7_77—’Ijrl)
ko
T S(kAY; ™)
3 k
= minlim ————S(kAi i)
ik k

s(A;my, ..., Ty) = lillcrn
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Example 4.5.12. Let A C R? be the convex hull of (0,0),(2,1) and (1,2). Consider the
following decomposition. '

U9 ]R2
(1,2)

h -
’

It is easy to see that there exists a lifting function, hence we can apply Proposition 4.5.11
to P = A and this decomposition. Then we have s(A;1,1,1) > minj<<z3s(P;1) = 1. In
this case s(A;1,1,1) = 1 holds by Lemma.4.3.7.

U

56



Bibliography

[AB] V. Alexeev and M. Brion, Toric degenerations of spherical varieties, Selecta Math.
(N.S.) 10 (2004), no. 4, 453-478. B

[An]  D. Anderson, Okounkov bodies and toric degenerations , arXiv:1001.4566.

[Bau] T. Bauer, Seshadri constants and periods of polarized abelian varieties, with an ap-
pendix by the author and Tomasz Szemberg. Math. Ann. 312 (1998), no. 4, 607-623.

[BBC+] T. Bauer, C. Bocci, S. Cooper, S. Di Rocco, M. Dumnicki, B. Harbourne, K. Jab-
busch, A.L. Knutsen, A. Kuronya, R. Miranda, J. Roe, H. Schenck, T. Szemberg, and
Z. Teitler, Recent developments and open problems in linear series, arXiv:1101.4363.

[BDH+] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A.L. Knutsen, W. Syzdek, and
T. Szemberg, A primer on Seshadri constants, Interactions of classical and numerical
algebraic geometry, 33-70, Contemp. Math., 496, Amer. Math. Soc., Providence, RI,
2009.

[Bat]  V.V. Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no.
4, 704-717, 927. ’

[BN] V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, Integer points
in polyhedra-geometry, number theory, representation theory, algebra, optimization,
statistics, 35-66, Contemp. Math., 452, Amer. Math. Soc., Providence, RI, 2008.

[Bi] P. Biran, Constructing new ample divisors out of old ones, Duke Math. J. 98 (1999),
no. 1, 113-135.

[BC]  S.Boucksom and H. Chen, Okounkov bodies of filtered linear series, arXiv:0911.2923.

[CT] J. Christophersen and N.O. Ilten, Stanley-Reisner degenerations of Mukai varieties,
arXiv:1102.4521.

[CC]  R. Curran and E. Cattani Restriction of A-discriminants and dual defect toric vari-
eties, J. Symbolic Comput. 42 (2007), no. 1-2, 115-135.

[Deb]  O. Debarre, Higher-dimensional algebraic geometry, Universitext. Springer-Verlag,
' New York, 2001. xiv+233 pp.

[Dem] J.P. Demailly, Singular Hermitian metrics on positive line buﬁdles, Complex alge-
braic varieties (Bayreuth, 1990), Lect. Notes Math. 1507, Springer-Verlag, 1992, pp.
87-104.

57



[DDP]

[DN]

D]

A. Dickenstein, S. Di Rocco, and R. Piene, Classifying smooth lattice polytbpes via
toric fibrations, Adv. Math. 222 (2009), no. 1, 240-254. '

A. Dickentein and B. Nill, A simple combinatorial criterion for projective toric man-
ifolds with dual defect, Math. Res. Lett. 17 (2010), no. 3, 435-448.

S. Di rocco, Generation of k-jets on toric varieties, Math. Z. 231 (1999), no. 1,
169-188. , .

[DHNP] S. Di Roccb, C. Haase, B. Nill, and A. Paffenholz Polyhedral adjunction theory,

Dy
Bl
[EKL]
[EL

[E]

[Gal]
[Gar]

[GKZ]

Preprint, arXiv:1105.2415.

M. Dumnicki, Cutting diagram method for systems of plane curves with base points,
Ann. Polon. Math. 90 (2007), no. 2, 131-143.

T. Eckl, An asymptotic version of Dumnicki’s algorithm for linear systems in CP?,
Geom. Dedicata 137 (2008), 149-162.

L. Ein, O, Kiichle, and R. Lazarsfeld, Local positivity of ample line bundles, J.
Differential Geom. 42 (1995), no. 2, 193-219. v

L. Ein and R. Lazarsfeld, Seshadri constants on smooth surfaces, Journees de Ge-
ometrie Algebrique d’Orsay (Orsay, 1992). Asterisque No. 218 (1993), 177-186.

D. Eisenbud, Commutative Algebra,with a View Toward Algebraic Geometry, Grad-
uate Texts in Math, no.150, Springer-Verlag, New York, 1995.

A. Esterov, Newton polyhedra of discriminants of projections, Discrete Comput.

Geom. 44 (2010), no. 1, 96-148.

W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131. The
William H. Roever Lectures in Geometry. Princeton University Press, Princeton,
NJ, 1993.

S. Galkin, Small toric degenerations of Fano threefolds,
http://sergey.ipmu.jp/std.pdf, 2008

L.F. Garcia, Seshadri constants in finite subgroups of abelian surfaces, Geom. Dedi-
cata 127 (2007), 43-48.

I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants, and multidi-
mensional determinants, Mathematics: Theory & Applications. Birkhuser Boston,
Inc., Boston, MA, 1994. x+523 pp.

M. Gross and B. Giebert, An invitation to toric degenerations, arXiv:0808.2749.

J.-M. Hwang and J.H. Keum, Seshadri-ezceptional foliations, Math. Ann. 325 (2003),
no. 2, 287-297. .

N.O. Ilten, J. Lewis and V. Przyjalkowski, Toric Degenerations of Fano Threefolds
Giving Weak Landau-Ginzburg Models, arXiv:1102.4664. :

V.A. Tskovskikh and Yu.G. Prokhorov, Fano varieties. Algebraic geometry, V, En-
cyclopaedia Math. Sci., 47, Springer, Berlin, 1999.

58



[1t1]
[1£2]
[13]
[KK]

[La2]

[LM]

[MP]

[Nal]

[Na2]

[Na3]

[Ok1]

[Ok2]

A. Tto, Algebro-geometric characterization of Cayley polytopes, preprint (2011).
A. Tto, Seshadri constants via toric degenerations, preprint (2011).
A. Tto, Okounkov bodies and Seshadri constants, preprint (2011).

K. Kaveh and A. G. Khovanskii, Newton convez bodies, semigroups of integral points,
graded algebras and intersection theory arXiv:0904.3350. »

A. G. Khovanskii, The Newton polytope, the Hilbert polynomial and sumsl of finite
sets, Funct. Anal. Appl. 26 (1992), no. 4, 276-281 (1993).

R. Lazarsfeld, Lengths of periods and Seshadri constants of abelian varieties, Math.
Res. Lett. 3 (1996), no. 4, 439-447.

R. Lazarsfeld, Positivity in algebraic geometry I, Ergebnisse der Mathematik
undihrer Grenzgebiete, vol. 48. Springer, Berlin (2004).

R. Lazarsfeld and M. Mustats, Convex bodies associated to linear series, Ann. Sci.
Ec. Norm. Super. (4) 42 (2009), no. 5, 783-835.

D. McDuff and L. Polterovich, Symplectic packings and algebmzc geometry, Invent.
Math. 115 (1994), no. 3, 405-434.

M. Nakamaye, Seshadri constants on abelwn varieties, Amer. J. Math 118 (1996),
no. 3, 621-635.

M. Nakamaye, Base loci of linear series are numerically determmed Trans Amer.
Math. Soc. 355 (2003), no. 2, 551-566.

M. Nakamaye, Seshadri constants and the geometry of surfaces, J. Reine Angew.
Math. 564 (2003), 205-214.

A. Okounko*v.‘, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125
(1996), no. 3, 405-411.

A. Okounkov, Why would multiplicities be log-concave?, The orbit method in geom-
etry and physics (Marseille, 2000), 329-347, Progr. Math., 213, Birkhuser Boston,
Boston, MA, 2003.

L. Robbiano, On the theory of graded structures, J. Symbohc Comput. 2 (1986)
2, 139-170.

J. Ross and R. P. Thomas, A study of the Hilbert-M@mford criterion for the stability
of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201-255.

A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998), no. 3, 505-510.

E.A. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia of Mathe-
matical Sciences, 133. Invariant Theory and Algebraic Transformation Groups, IV.
Springer-Verlag, Berlin, 2005.

K. Watanabe and M. Watanabe, The classification of Fano 3 folds with torus em-
beddings, Tokyo J. Math 5 (1982) no. 1, 37-48.

59



