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Chapt’er 1
Introduction

The main object of the present thesis is the invariant ordering of groups, a
total ordering which is compatible with the group structure. The theory of
orderable groups begun-around 1950s, and had been studied mainly from the
group theoretical point of view.

In 1990°s Patrick Dehornoy found a left-ordering of the braid group B, in

his study of left-distributive operations. This left-ordering is today called the
Dehornoy ordering. Soon after the discovery of the Dehornoy ordering, in [15],
Fenn-Greene-Rourke-Rolfsen-Wiest established a geometric description of the
Dehornoy ordering. Thurston also pointed out the left-orderability of the braid
group rather easily follows from the work of Nielsen [43], by using the hyperbolic
geometry. These observations reveal that a topological or geometric method will
be useful in studying group orderings.
- The discovery and the development of the theory of braid group orderings
gathered attention to researchers who are working in topology and geometry,
and shed a new light on the theory of group orderings, a rather classical branch
of the group theory: The study of group ordering in topological and geomet-
ric prospective. Today this “topological orderable group theory” is an active
research area, and is developing rapidly.

Roughly speaking, there are four types of problem in (topological) orderable
group theory: .

1. Orderability Problem:
Is a group G (mainly taken from topology or geometry, such as, the fun-
damental group of low-dimensional manifolds or lattice of Lie groups) left-
(bi-) orderable ?

2. Description/Construction Problem:
Find a detailed description or an explicit construction left- (bi-) orderings
of an orderable group. More generally, construct an explicit example of
left- (bi-) ordering having required additional properties.

3. Moduli Problgm:



6 CHAPTER 1. INTRODUCTION

* Study the topological space of left-orderings LO(G) of a left-orderable
group G (See Section 1.3 below), and the action of G on LO(G). What
are the topological type of LO(G) and LO(G)/G ?

4. Application Problem: »
Find a relationship between group orderings and other objects in topology
and geometry, and use group orderings to solve problems in topology and
geometry. (See authro’s paper [20], [21] for results in this direction.)

In the present thesis we will mainly treat the problem (1) and (2) above. We
will study constructions of group orderings by using various methods derived
from (algebraic) topology. Our result is also related to the problem (3), and
potentially will be used to attack the problem (4).

The main part of present thesis is divided into four chapters. Each chapter is
almost logically independent, and can be read independently. In the rest of the
introduction, we briefly review basic results and notions in left- or bi- ordering
of groups which will be used throughout this paper, and give an overview of our
results.

1.1 Left- and bi- ordering of groups -

We begin with setting up basic notations related to group orderings.

A total ordering <¢ of a group G is a left-ordering if the ordering relation
< is preserved by the left action of G itself: that is, a <g b implies ga <g gb
for all a,b,g € G. A right-ordering of G is defined in a similar way. <¢g is a
bi-ordering if < is both right- and left- ordering. ,

A group G is called left-orderable (LO) if G admits at least one left ordering.
Similarly, G is bi-orderable (BO) if G has at least one bi-ordering. A pair
(G, <@) consisting of the group G and its left- or bi- ordering <¢ is called a
left- or bi- ordered group.

The positive cone of an ordering < is a subset

P(<g)={9€G|g>c 1}

It is easy to see the positive cone P = P(<g) of a left-ordering <¢ satisfies the
following two properties:

LO1 P-PCP.

LO2 G = PI[{1}[[ P

Moreover, if <g is a bi-ordering, then P(<¢) satisfies the additional property:
BO g 'Pg=PforallgeG.

Conversely, as the next lemma shows the subset of G satisfying these prop-
erties determines a left- or bi- ordering.
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Lemma 1.1.1. A subset P of G is a positive cone of a left-ordering of <g if
and only if P has the property [LO1] and [LO2]. Similarly, P is a positive
cone of a bi-ordering if and only if P satisfies [LO1], [LO2] and [BO].

Proof. Let us define the relation <p by g <p ¢ if and only if g ¢’ € P. Then
<p is a left- (resp. bi-) ordering if P has the property [LO1] and [LO2] (resp.
[LO1], [LO2] and [BO)). O

It is classically known that the left-orderability of groups is closely related
to the 1-dimensional dynamics, as the next Theorem shows.

Theorem 1.1.1 (Folklore: See [11] for example.). A countable group G is
left-orderable if and only if G faithfully acts on the real line R as orientation
preserving homeomorphisms.

Proof. Assume that G faithfully acts on the real line R as orientation preserving
homeomorphisms, hence G is a subgroup of Homeo, (R). Fix X = {z;};=1,2,...
be a countable sequence of points of R which is dense in R. We define an
ordering <x of G by a <x b if there exists j such that a(z;) = b(z;) for all
i <j and a(z;) <g b(z;) holds. Here <g is a standard ordering of R defined by
the orientation. Clearly <x is a left-ordering of G.

Conversely, assume that ‘G has a left-ordering <. Take an enumeration
{gi}i>0 of G, and define the map ¢ : G — R as follows .

First we define t(go) = 0. For i > 1, we define t(g;) by

max {t(go),...,t(gi-1)} + 1~ g; >p max{go,...,gi-1}
t(g:) = min {¢(go),.. ., t(gi-1)} — 1 9; <p min{go,...,gi-1}
’ (t(gm) +t(gnr))/2 gm <p 9i <P gm and
(gmng) n {gla .o 'ag’é—l} = ¢

Here (gm,gn) is asubset {g € G| gm <p g <p gm}. We define an action of G
on the subset {t(g;)} of R by ¢ - t(g:) = ¢(gg;). By extending this action to the -
whole of R, we obtain a faithful action of G. 0

The correspondence between left-orderings and faithful actions on the real
line is by no means one-to-one: as the above proof shows, a left ordering derived
from dynamics depends on a choice of the sequence X, and a dynamics derived
from left-ordering depends on a choice of an enumeration G = {g;}. So the
theory of left-orderings is not a part of one-dimensional dynamical systems,
though dynamics is useful in studying orderings.

In the construction of a left-ordering from dynamics, assume that the sta-
bilizer of a finite initial subsequence I = {zi,...,z%} of X is trivial. Then
to define the ordering, we do not need to consider the rest of the sequence
{Zk+1,Tk+2,. ..} In such cases, we denote the ordering <x by <(z,,....zx} and
call it the ordering deﬁned by {z1,..., 21} ‘
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1.2 Basic property of orderable groups

In this section we review some basic properties of left- or bi-orderable groups.
First of all, we observe that the existence of left-ordering give a restriction of
possible relations in the groups. Here we present one of the typical usage of the
existence of left-orderings.

Lemma 1.2.1. If G is left-orderable then G is torsion-free.

Proof. Assume that there exists g € G — {1} such that g% =1 (N > 1). Take
a left ordering <@ of G. If necessary, by using g~ instead, we may assume
1 <g g. By the left-invariance of <g, we get

l<gg<eg’<c-<ecg" =1
which implies g = 1. This is a contradiction. ‘ O

Next we review the quotient. construction of orderings. A subset A of an
ordered group (G, <¢) is convez if the inequality a <g g <g o' for a,d’ € 4,
g € G implies g € A. If we would like to emphasize the ordering <g, we will
say that A is <g-convexr. For a convex normal subgroup H of (G,<g), the
quotient group G/H has a natural ordering <g,p induced by the ordering <¢g
defined by zH <g g yH if * <¢ y where z,y € G are arbitrary chosen coset
representatives. This ordering <g/py is a left- (resp. bi-)ordering if <¢g is a
left (resp, bi-)ordering. We call the ordered group (G/H,<g/m) the ordered

. quotient group.

An element g € G is s called the <g-minimal positive element if g is the
<G -minimal element of the positive cone P(<¢). That is, the inequality 1 <g
g <¢ g implies g = ¢’. An ordering <g.of G is called discrete if there is the.
<@-minimal positive element. Otherwise, <g is called dense.

Among all left-orderings there is a special class called a Conradian order-
ing. A Conradian ordering shares many properties of bi-ordering, and can be
regarded as an intermediate of left-orderings and bi-orderings.

Here we simply recall the definition. For details on Conradian ordermgs,
see [28]. A left-ordering <¢ is called a Conradian ordering if fgF > g holds
for all <g-positive f,g € G and k > 2. It is known that in the definition of
Conradian orderings it is sufficient to consider the case k = 2. That is, < is
Conradian if and only of fg? >¢g g holds for all <g-positive elements f,g € G
(See [34]). Recall that a group G is called locally indicable if every subgroup H
of G admits a surjective homomorphism onto Z. It was classically known that
locally indicable groups are left-orderable, but converse is not true. However,
for groups admitting a Conradian ordering (called Conradian-orderable) the
converse is true:

+

Theorem 1.2.1. A group G s locally indicable if and only if G is Conradian
orderable (that is, G admits a Conradian ordering).

" For a left-ordering <¢, the <g-Conradian soul is the maximal (with re-
spect to inclusions) <g-convex subgroup of G such that the restriction of <¢



1.3. TOPOLOGY OF THE SPACE OF ORDERINGS 9

is Conradian. The Conradian soul plays an important role in Navas’ study of
left-orderable groups [34], and is an interesting invariant of left-ordered groups.

1.3 Topology of the space of orderings

For a left-orderable group G let LO(G) be the set of all left-orderings of G. In
[44], Sikora. defined the natural topology on LO(G).

Recall that there is an one-to-one correspondence between the set of subset
of G — {1} having the properties [LO1], [LO2] and the set of all left-orderings
LO(G). So LO(G) is regarded as a subset of the powerset 26~ {1}, Now let us
consider the powerset topology on 26~ {1}, and equip the topology on LO(G)
as the relative topology as the subspace of 2G'{1}. By this topology, we regard
LO(G) as a topological space rather as a set, and call it the space of left-
orderings.

~ This topology has an alternative descrlptlon For g € G, let U, be a subset
of LO(G) defined by

Uy ={<c€LO(G) |1 <¢ g}

The topology of LO(G) coincides with the topology defined so that {Ug}geq is
an open sub-basis. ' '

The group G, or more generally, the group Aut(G) acts on LO(G) as home-
omorphisms from right as follow: For ¢ € Aut(G) and <g€ LO(G), we define
a left-ordering ¢(<¢) by g¢(<g)¢’ if and only if ¢(g) <¢ #(g').

It is known that LO(G) has the following properties:

1. LO(G) is compact and totally disconnected. Moreover, if G is countable,
G is metrizable. ([44], [34])

2. LO(G) is either finite or uncountable [31].

These results suggest that as a topological space, LO(G) is rather similar to the
~ Cantor set. The main difference is that LO(G) might be non-perfect: that is,
LO(G) might contain isolated points.

An isolated ordering is a left ordering which is an isolated point in LO(G).
Isolated orderings exist: the most trivial example is a standard ordering < of
Z. Since Z admits only two left-orderings (< and its reverse), < is an isolated .
ordering. The following preposition provides a useful criterion to show certain
left-orderings are isolated.

Propotition 1.3.1 (Navas [34]). If the positive cone of a left-ordering <g s a
finitely generated as a semigroup, then <g is isolated.

However, in a combinatorial group theory point of view, the ordering having
finitely generated positive cone seems to be quite strange. If a group G is finitely
generated, then every element g € G is written as a product of a certain finite
generating set {g1,...,9n}. However, in general to express g as a product of
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generating set, we often need to use both positive and negative generators. An
existence of left-ordering whose positive cone is finitely generated implies that
every element of g is written as a product of either a positive generating set or
a negative generating set: This is a quite restrictive condition, and we have few
examples of such left-orderings. Finding an example of isolated ordering is a
interesting problem.

1.4 Examples of group orderings
In this section we present important examples of left- or bi- orderings. These

examples motivate our study of orderable groups, and provides a lot of important
insights and stimulating phenomenons.

1.4.1 The Dehornoy ordering
Let B, be the n-strand braid group, defined by the presentation

B,={(01,...,0n_ .Y
n Leres@n-l 005 = 0;0; li—jl>1

0,007 = 040,04 lz—j|=1 >

Definition 1.4.1. For 1 <4 < n—1, An n-braid 8 is called i-positive (resp.
i-negative) if B admits a word expression which contains at least one letter o;
(resp. a;l), but contains no oif?, .. .,af_ll,ai_l. (resp. afl, .. .,al?':_ll,ai). B is

o-positive (resp. o-negative) if 8 is i-positive (resp. i-negative) for some 7 > 1.
Using these notions, the Dehornoy ordering is defined as follows.

Definition 1.4.2 (The Dehornby ordering). The Dehornoy ordering <p is a
left ordering of B, which is defined as follows: For «, 8 € B,,, we define o <p
if o143 is o-positive.

. The remarkable theorem of Dehornoy says that <p defines a left-ordering.
Theorem 1.4.1 (Dehornoy [9]). <p s a left-ordering of the braid groups.

The statement of this theorem is highly non-trivial: it says that every non-
trivial braid is either o-positive or o-negative. There are many words which are
neither o-positive nor o-negative (for example, o10207 1). Dehornoy’s theorem
says, we can modify such words into o-positive or o-negative word by using the
relations of the braid groups. »

Today there are many conceptually different proofs of Dehornoy’s theorem.
See [11]. Each approach gives a new insight in the braid groups, or more gen-
erally, (left)-orderable groups. Moreover, the Dehornoy ordering has various
interesting properties and serves as a useful source to find or create various
interesting phenomenon in group orderings. One remarkable feature of the De-
hornoy ordering is that it can produce an isolated ordering, as next example
shows. ’
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1.4.2 Dubrovin-Dubrovina ordering

The Dehornoy ordering can be modified so that it produces another intersting
left-ordering, called the Dubrovin-Dubrovina ordering.

Definition 1.4.3. The Dubrovin-Dubrovina ordering <pp is a left-ordering of
B,, defined as follows: For o, 5 € Bm we define o <pp [3 if the braid o1 is
(2 — 1)-positive or (2¢)-negative for some .

By using Dehornoy’s theorem, in [12] Dubrovin-Dubrovina showed the fol-
lowing.

Propotition 1.4.1 (Dubrovina-Dubrovin [12]). The Dubrovin-Dubrovina or-

dering defines a left-ordering of B,. Moreover, the positive cone of <pp is a

finitely generated semi-group, generated by {a1,...,an—1} where a; is defined by
a; = (O-’LO-'L+1 v O’n_l)(nl)l.

By Proposition 1.3.1, this implies that the Dubrovina-Dubrovin ordering is
an isolated ordering. On the other hand, the Dehornoy ordering itself is not
isolated (See [34],[36]).  Thus the space of the left-ordering of B,,, LO(B,,) has
an interesting property: it contains both Cantor set and isolated points. The
complete description of LO(B,,) is still unknown.

1.4.3 Magnus ordering of free groups

The simplest way to define a total ordering is to use the lexicographical ordering.
Let {v; : G — R}iez be a family of maps, not necessarily a homomorphism,
indexed by a well-ordered set Z. We say {v; }sez is a lezicographical expression of
a total ordering < of G if & < b is equivalent to the sequence of reals {v;(b) }iez i8
bigger than the sequence of reals {v;(a)}:;cz with respect to the lexicographical
ordering of RZ.

Let F,, be the free group of rank n generated by {z1,...,zn}. F, hasa
standard bi-ordering called the Magnus ordering defined as follows.

Let R{(X1,...,X,)) be the algebra of non-commutative formal power series
of the variables {X1,...,X,}. The Magnus expansion is an injective homomor-
phism u: B, — R{({X3,...,X,)) defined by p{z;) =1+ X, (See [33]).

Let 7 be the set of monomials of R{{Xy,...,X,)). We define the Deglex-
ordering <pegtex 0n Z as follows. For monomials X7 = X, --- X;, and X; =
Xj;, - X;, we define X; <peglex Xy if & < [, or k¥ = [ and the sequence of
integers (41, ...,Jk) is bigger than (41, ...,%x) with respect to the lexicographical
ordering of R*. For a monomial I € Z, let 77 : R{(X1,...,X,)) — R be a map
defined by 77(Zjez ry-J) =rrandlet vy =Trou: F, = R.

Definition 1.4.4 (Magnus ordering of free groups). The Magnus ordering <as
is a total ordering of F), defined by a lexicographical expression {vs}rez.

It is directly checked that the Magnus ordering < is a bi-ordering. See
[41] for details. The Magnus ordering is a fundamental piece in constructing of
bi-orderings: see [4], [27].
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1.5 Summary and overview of results

In this section we give a summary of main results of the present thesis. The
precise and complete statements will be given in each Chapter.

1.5.1 A construction of bi-ordering via Chen’s iterated in-~
tegral

It was classically known that a residually torsion-free nilpotent group is bi-
orderable. This was proved by using a rather classical algebraic technique, by
utilizing the sequence of central extensions. In Chapter 2 we provide a new
construction of bi-ordering based on Chen’s iterated- integral theory and the
universal holonomy map. We will call the constructed bi-ordering holonomy
ordering. Chapter 2 is based on the author’s paper [22].

The main result in-Chapter 2 is the following:

Theorem 1.5.1. Let G = 71 (M) be a residually torsion-free nilpotent group.
Then each holonomy ordering is equivalent to bi-ordering constructed by the
classical algebraic method, based on the iterated extension of bi-ordering.

Thus, our construction provides an alternative interpretation of the classical
constructions of bi-orderings. This theorem shows that bi-orderings of residually
torsion-free nilpotent group can be understood in the rational homotopy theory.
Based on this observation, we give various relationships between bi-orderings
and topological objects, such as finite type invariants of pure braids.

1.5.2 Alexander polynomial criterion of bi-orderability

In [8], Clay and Rolfsen gave a necessary condition for the fundamental group
of fibered 3-manifolds to be bi-orderable. Their condition uses the roots of the
(classical) Alexander polynomial. In Chapter 3, we will study the possibility
of extension of Clay-Rolfsen’s criterion by using the twisted Alexander polyno-
mial, a generalization of the Alexander polynomials. Chapter 3 is based on the
author’s paper [23]. _

The main result in Chapter 3 is the following:

Theorem 1.5.2. The twisted Alexander polynomial for a finite dimensional
representation with finite image cannot be used to strengthen Clay-Rolfsen’s re-
sult.

The above statement is a bit vague: more precise statement will be given
in Chapter 3. This is surprising since in almost all known criterions using the
Alexander polynomial can be strengthened by using twisted Alexander polyno-
mials. In the course of proof, we will .also observe an interesting property of
ordered quotient of bi-orderable groups.
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1.5.3 Dehornoy-like ordering

In Chapter 4, motivated by the Dehornoy ordering of the braid group, we in-
troduce a class of left-orderings called a Dehornoy-like ordering. Chapter 4 is
based on the author’s preprint [24].

In the first part of Chapter 4 we establish fundamental properties of Dehornoy-
like orderinig. We will show that under the condition which we call Property F,
a Dehornoy-like ordering produces an isolated ordering and vice versa.

Theorem 1.5.3. Let S be an ordered finite generating set of G having Property
- F and A be the twisted generating set of S. Then S defines a Dehornoy-like
ordering of G if and only if A defines an isolated left ordering of G.

In the second part of Chapter 4, we construct new»éxamples of Dehornoy-like
orderings. Our examples are the group of the form Z xz Z, the amalgamated
free product of two cyclic groups.

Theorem 1.5.4. Let Gy =Lz Z = {x,y | 2™ = y"). Take a generating set
S={s1=ayz ™ 55 =2™ y71} and A= {a = z,b = yz~™H1}.

1. 8 defines a Dehornoy-like ordering <p.
2. A defines an isolated left ordering <a.

We will also S’cudy more deitailed properties of the Dehornoy-like ordering of
Z g 7, and show that they provide another interesting example of left-ordering:
a left-ordering having no non-trivial convex subgroups.

1.5.4 Isolated ordering

As we have already mentioned, it is an interesting problem to find a method to
construct isolated orderings. In Chapter 5, we will show the following theorem
which provides a lot of new examples of isolated orderings.

Theorem 1.5.5. Let G and H be finitely generated groups, zg be a non-trivial -
central element of G, and zg be a non-trivial element of H.

Let G = {g1,...,9m} be a finite generating set of G which defines an isolated
left ordering <g of G such that

1<gg1<ag... <6 9m <G 2¢

holds. Similarly, let H = {h1,...,hn} be a finite generating set of H which
defines an isolated left ordering <g of H such that

1<ghi <y ...<ghp <y zy

holds. Assume that the left-ordering <g is zg-right invariant.

Let X = Gz H = G *(35—zy) H be an amalgamated free product of
G and H. Fori = 1,...,m, let z; = gizﬁlhl. Then the generating set
{1, 1Zmsh1,...,hn} of X defines an isolated left ordering <x of X which
only depends on the isolated orderings <g,<m and zg,zg.
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Chapter 5 is based on the author’s paper [25]. More precise properties of the
constructed isolated ordering <x will be also studied. By using this theorem,
we will construct an isolated ordering with trivial center, or group having a lot
of non-conjugate isolated orderings.
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Chapter 2

Bi-orderings via iterated
integrals

In this section we give a new point of view of a construction of bi-orderings
based on Chen’s iterated integral theory.

2.1 Classical construction of bi-orderings for a
residually torsion-free nilpotent group

A group G is called residually torsion-free nilpotent if Goo = (\;51 Gi = {1},
where Gy, is the k-th dimension subgroup of G defined by Gy = {g € G|g—1¢€
Jk}. Here J denotes the augmentation ideal of the group ring ZG. The free
group is a typical example of residually torsion-free nilpotent groups. It was
classically known that a residually torsion-free nilpotent group is bi-orderable.
First of all, we review the classical construction of bi-orderings based on the
following well-known lemma (see [32], for example). ‘

Lemma 2.1.1. Let H, K be bi-orderable groups and 1 — H — G LK1
be a group extension. For a bi-ordering <x of K and a bi-ordering <z of H,
define an. ordering <g of G by g <g ¢’ if p(9) <k p(g’) or, p(g) = p(¢’) and
1 <y g7 Y¢'. If <gy is invariant under the action of G, that is, if h <g h'
implies ghg™' <z gh’g™" for all g € G and h,h' € H, then <g is a bi-ordering
of G.

Using Lemma 2.1.1, we construct a bi-ordering of a residually torsion-free
nilpotent group G as follows. We inductively construct a bi-ordering <j of
G /Gy for each k > 0. *To begin with, G/G1 = {1} so let <; be the trivial
bi-ordering.

To define <g41, first we choose a bi-ordering <j, of the torsion-free abelian
group Gj/Gr41. Observe that there is a central extension

1— Gk/Gk_|_1 — G/Gk+1 — G/Gk — 1.

15
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From this central extension and bi-orderings <j and <}, we construct an or-
dering <p41 of G/Gr41 as in Lemma 2.1.1. Since the extension is central, the
assumption of Lemma 2.1.1 is automatically satisfied so <y is a bi-ordering
of G/Gry1.

Since G is torsion-free nilpotent, the sequence of bi-orderings < defines a
bi-ordering < of G. We call this bi-ordering < an iterated extension ordering
of G derived from {<}}.

2.2 Chen’s iterated integral and holonomy rep-
resentation

~ In this section we briefly review Chen’s iterated integral theory. For details,
see [6]. We restrict our attention to smooth manifolds, although thereis a
generalization of Chen’s iterated integral theories for simplicial complexes due
to Hain [19], and our methods can. also be applied for such general iterated
integrals. ‘ :

Let M be a connected smooth manifold with a base point. We denote the
de Rham DGA of M by A} r(M) and the based loop space of M by QM. Let
A4 be the standard g-dimensional simplex

Ag={(t1,...,t) ERI|0<t; <. <, <1}

and ev : QM x Ay, — MY be the evaluation map

ev(77 (tla s ’tq)) = (’Y(tl)a s ,V(tq))'

Formally, the iterated integral map [ is defined as the composition

[ Abr(M) 2 Ap (M) % Apa(Ax AM) ¥ Abal2h)

where x is a cross-product and [ A, Is an integration along fiber.

We mainly use iterated integrals of 1-forms that is described as follows. Let
Wi, .., Wn be 1-forms of M, and v : [0,1] — M be a piecewise smooth path.
Let us denote the pull-back of w; by v by v*w; = a;(t)dt. Then the iterated
integral |, LWL W along ~ is explicitly written as the multiple integral

/wl...wq _ / cu(tr)an(ts) -+~ argltg)dtrdts - - - dt,.
~ 0<t; < <tg <1

From now on, we always assume that the real homology group of M is finite
dimensional. Let {X3,...,X,,} be a homogeneous, ordered basis of H,{M;R)
chosen so that {X1,..., X} forms a basis of H;(M;R).

Let J be the augmentation ideal of TH, the tensor algebra of H = H,(M;R)
and TH = liLnTH /JY be the nilpotent completion of TH. Then TH is identi-
fied with the algebra of non-commutative formal power series R({(X1,..., Xp)).
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Let J be the nilpotent completion of J, which is an ideal of TH that consists
of formal power series with zero constant term. We define a grading of TH by
the formula deg X1 -+ Xy = p1 + -+ +pr — k where p; denotes the degree of X,
and define an involution £ : A% z(M) — A% (M) by e(w) = (=1)de8wy,

Let § be a degree 1 derivation of TH and @ = Zil"__,ip Wiyeoiy Xig 0 X

: ip

be an element of ALp(M) ® TH. We call a pair (@, d) is a formal homology
connection if the following three conditions hold.

1. 6X; ¢ j?
2. degwi, .., =deg Xy, - X;,.

3. do+ 0@ = e(@) A G.

~ Such a pair (w,0) always exists and we can choose @ so that the coefficient
w; represents the cohomology class which is the dual of X; € H,.(M;R). There
are many choices of formal homology connections, but in some cases there is a
canonical choice. For example, if M is a compact Riemannian manifold, one
can find a canonical formal homology connection by using the de Rham-Hodge
decomposition of A}, 5 (M).

Let R be the degree 0 part of ’fﬁ, identified with I{I-I\l =R{X1,..., X)),
the nilpotent completion of the tensor algebra of Hy = H1(M;R). Let w be the
degree 0 part of the formal homology connection & and N be the degree 0 part
of §(TH). Let us denote the quotient algebra R/N (resp. R/(N + J*)) by R
(resp. Ry). R is nothing but the 0-th homology group of the complex (Cf?[ ,8).
The (Chen’s) holonomy representation is a homomorphism © : m(M) — R
defined by

@([7]):1+Z/ww---w
Ci=177 i

and the order k holonomy representation is a homomorphism ©y, : w1 (M) — Ry
defined by

k
Or(Y) =1 +;wa ‘W
Chen’s results are summarized as follows. :
Theorem 2.2.1 (Chen [6]). Let ©, O be as above. Then,
1. Ker® = m(M)s and KerOyp = m(M)g.

- 2. O induces an isomorphism of Hopf algebras © : m — R, where m ]
the nilpotent completion of the group ring Ry (M).

3. Oy induces an isomorphism of Hopf algebras Oy : Ry (M)/J* — Ry.

‘Thus, if 7 (M) is residually torsion-free nilpotent, then the universal holon-
omy map is injective.
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Remark 2.2.1. If M is simply connected (more generally, if M is a nilpotent
space), a formal homology connection computes the homology group of the
based loop space QM. More precisely, there exists a natural isomorphism of
Hopf algebras

H,(QM) = H,(TH,6).

Remark 2.2.2. To define the holonomy map, we do not need the whole formal
homology connection (@, §). We only need the degree 0 and 1 parts. The degree
< 1 part of a formal homology connection is computed by AI%%(M ), the degree
< 2 part of the de Rham DGA, so to define the holonomy map it is sufficient
to assume that H<o(M;R) is finite dimensional.

We say M has a quadratic formal homology connection if the ideal N is
quadratic. That is, the ideal NV is generated by elements of Hq(M) ® Hy(M).
Let U* : Hy(M) — H1(M)® Hi(M) be the dual of the cup product. It is known
that the quadratic part of the ideal V is generated by the image of U*. Thus, if
M has a quadratic formal homology connection, then the ideal NV is determined
by the cup products. '

The condition that M has a quadratic formal homology connection is equiv-
alent to the condition that M is formal in the sense of Sullivan’s rational ho-
motopy theory [46]. That is, if we regard the de Rham cohomology H},n(M)
as a DGA having zero differential, then there is a sequence of DGAs and DGA
morphisms ,

‘ Apr(M) = Ay — Ay — -+ — Ay — Hpp(M)

such that each map induces an isomorphism on cohomology groups.

2.3 Holonomy construction of bi-orderings

In this section we give a construction of bi-invariant orderings by using Chen’s
holonomy map.

2.3.1 Definition of holonomy orderings

Let M b€ a connected smooth manifold and G be its fundamental group. We
always assume that H<o(M;R) is finite dimensional so that the holonomy map
is defined. We use the notations in section 2.2.

Let R=F°RD> F IR > --- be the decreasing filtration of R induced by
the powers of the ideal J. This filtration is multiplicative: F*R-F'R C F*HR
holds. Let us choose a subspace R of R so that F* = @,-, R* holds. Then
this filtration defines the grading R = @?io R,

Let B = {v; };¢z be an ordered, homogeneous basis of R such that the degree
is non-decreasing. That is, degv; < degv; if 4 < j. Let {vf : R — R}z be
the dual basis of . We denote by <z the total ordering of the vector space
R defined by the lexicographical expression v}. That is, for a,b € R, we define
a <p b if the sequence of reals {v;(b)}icz are bigger than {v}(a)}icz with
respect to the lexicographical ordering of RZ. : ‘
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The holonomy ordering is a total ordering < of G/Gu defined by a < b if
O(a) < ©(b). In other words, the holonomy ordering is an ordering defined by
the lexicographical expression {v} 0 ©};ez.

Theorem 2.3.1. The holonomy ordering is a bi-ordering of G/Gwo.

Proof. First observe that from the definition of Chen’s holonomy map ©, the
image of © lies in 1 + FY(R). Now assume that a < b for a,b € G. Then we
write their images as

O(a) =1+ Aci+Ai+ A5y, O(b) =1+ Ac; + B + B,

where A«; (resp. A;, As;) is degree < i (resp. ¢, > %) part. Since a < b, A; <g
B; hold. We show the left-invariance of the holonomy ordering <. The proof of
right-invariance is similar. For g € G, let us write ©(g) = 1 + G«; + G; + G>4,
where G«; (resp. Gy, Gs;) represents the degree < i (resp. 7, ¢ >) part. Since
R;-R; C F*IR, the degree < i part of ©(ga) is the same as the degree < i
part of ©(g) - (1 + A«,). Similarly, the degree i part of ©(ga) is given by
A+ G + [T+ Ac)( + Goi))s, where [(T + Aci)(1 + G<;)]; represents the
degree i part of (1 + A<;)(1+ G).

On the other hand, the degree < i part of ©(gb) is the same as the degree
< ¢ part of ©(g) - (1 + A <;), and the degree i part of ©(gb) is given by
B +Gi+[(14+A<i)(14+G<)]s. Thus, ©(gb)—O(ga) = B;—A;+ (higher parts),
so we conclude ga < gb. i in

This provides a geometric proof of bi-orderability of residually torsion-free
nilpotent groups.

Corollary 2.3.1. If a group G is residually torsion-free nilpotent, then G is
bi-orderable.

The map v} 0© : G — R is written as the iterated integral [y] — f,y Wi Wk
of some 1-forms wy,...,wg. Thus, the lexicographical expression of the holon-
omy ordering is given as the iterated integrals.

2.3.2 Comparison with classical constructions

Now we show that the classical construction of bi-ordering is equivalent to the
holonomy construction.

Theorem 2.3.2. Let G = m(M) be a residually torsion-free nilpotent group.
Then each holonomy ordering is an iterated extension ordering and conversely,
each iterated extension ordering is a holonomy ordering. Thus, the holonomy
ordering construction is equivalent to the iterated extension ordering construc-
tion.

Proof. We use notations in Section 2.2 and 2.3.1. Let {v;} be an ordered, ho-
mogeneous, degree non-decreasing basis of R which defines a holonomy ordering
<g. By definition of R;, the universal holonomy map provides an isomorphism
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(Gr/Gry1) ®R 2 R;. So we can regard G /Gy41 as an integer lattice of R;. Let
<}, be the restriction of the ordering <z to G /Gg41. Then <}, is a bi-ordering,
and the holonomy ordering <y is nothing but the iterated extension ordering
derived from this sequence of orderings {<} }.

Conversely, let <o be an iterated extension ordering of G de@ed from
{<%}. Then the ordering <j, is naturally extended as a bi-ordering <}, of (Gy/
Gr+1) ® R = R;. Let us take an ordered basis {v(x) ;}i=1,2,... of Ry so that the
dual basis {vz‘k), ,} gives a lexicographical expression of the ordering </,. Now by
correcting the basis {v),;} of Ry, for all &, we obtain an ordered, homogeneous,
degree non-decreasing basis {v;} of R. The holonomy ordering defined by the
basis {v;} is identical with <¢. O

We show that the holonomy ordering construction is indeed an extension of
the Magnus ordering of the free group F,,. The following proposition is directly
obtained from Theorem 2.3.2 since the Magnus ordering is an iterated extension
ordering. However, here we present a different and direct proof which is based
on the fact that Magnus expansion is equivalent to Chen’s holonomy map.

Propotition 2.3.1. The Magnus ordering < of the free group is a holonomy
ordering.

Proof. Let D, be the n-punctured disc and {zi,...,z,} be a generator of
- m1(Dyp) = F,. Take 1-forms wy,...,w, of D, so that their representing coho-
mology classes {[w;]} are dual to {z;}, and they satisfy the equation w; Aw; = 0.
Then, the formal homology connection is taken as (w = Y & ; w;X;,0) and the
holonomy representation defines an injective homomorphism

©: F, - R{X1,...,Xn)).

Let us denote ©(z;) =1+ X; + XiZQ, where XEZ is the degree > 2 part.

Let B be Deglex-ordered monomial basis of R = ({Xy,..., X)), and < be
the holonomy ordering defined by (w,0) and B. Let a be an automorphism of
R((X1,...,Xn)) defined by a(X;) = X;+ X7 Then © = aop holds. For each
element z € R{(Xy,...,X,)), @ preserves the lowest degree part of z. Hence if
a <ps b then a < b holds, so these two orderings are identical. O

2.3.3 Application: bi-ordering of pure braid group‘s and
finite type invariants

In this section we describe a relationship between holonomy orderings and finite
type invariants of pure braids. This relation is based on the work of Kohno [29],
which relates iterated integral and finite type invariants of braids. For details
of pure braid groups and their finite type invariants, see [29].

For 1 <i < j < n,let H;; = ker (2 — z;) be a hyperplane of C*. The
hyperplane arrangement A, = {H;; |1 < i < j < n} is called the braid
arrangement. We denote by M4 the complement of the arrangement C™ —
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Ugea H- The fundamental group of My is the pure braid group F,, which is
torsion-free nilpotent.

First let us review the definition of finite type invariants. A singular pure
braid is a pure braid having transversal double points. We denote the set of sin-
gular pure braids having k singular points by S*P, and let SP, = Ukso Skp,.
Each map v : P, — R can be extended to the map v : SP, — R by defining
5(><) = ’U(X) - v(;\/) A map v is called a finite type invariant of order k
if 5(8) = 0 for all B € S2*P,. Let Vix(P,) be the set of order k finite type
invariants and V(P,) = U5 Vi(Pn) be the set of all finite type invariants.
Then Vi, (P,,) and V(P,) are R-vector spaces.

Finite type invariants and holonomy orderings are related as follows.

Propotition 2.3.2. Let B = {v;}iez be an ordered basis of V(P,) such that
the order of v; are non-decreasing. Let us define a total ordering <gp- of P, by
a <p B if {vi(B) }iez is bigger than {v;(a) }iez with respect to the lezicographical
ordering. Then <g is a holonomy ordering, hence bi-invariant total ordering.
Thus, the sequence of finite type invariants {v;}icz gives a lexicographical ez-
pression of a holonomy ordering of P,.

Proof. Let © : P, — R be a holonomy map. There is a natural isomorphism
Vi(P,) = Hom(RP,/J*t1 R), so R* = Homg(R,R) = V(P,) [29]. Therefore
a degree non-decreasing dual basis of the algebra R corresponds to an order
non-decreasing basis of V(P,). Thus the basis B provides a lexicographical
expression of a holonomy ordering of P,. ‘ |

Remark 2.3.1. The holonomy map © : P, — R is known as the universal
finite type invariant of the pure braid groups (the universal representation of
the quantum group representations of pure braid groups), which is a prototype
of the Kontsevich invariant of knots. By using the Drinfel’d associator, we can
construct the universal holonomy map over the rationals in more explicit form
(See [30] for details). In particular, the conclusion of Proposition 2.3.2 holds for
Q-valued finite type invariants. :

2.4 Propérties and generalization

In this section we study structures and properties of the holonomy orderings,
based on the relationship between Chen’s theory and rational homotopy theory.

2.4.1 General case

First of all, we study properties of holonomy orderings for general spaces. The
following proposition is a.refinement of famous Stallings’ Theorem [45].

Propotition 2.4.1. If Ho(M;R) = 0, then w1 (M) contains the rank by (M) free
group F such that the restriction of a holonomy ordering < to F' is the Magnus
ordering, where by (M) is the 1st Betti number of M.
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Proof. Let {X1,...,Xm} be a basis of Hy(M;R) and {g1,...,9m} be elements
of 71 (M) such that h(g;) = X;, where h : m1(M) — Hy(M;R) is the Hurewicz
homomorphism. Let Bpeglex be an ordered basis of R = ((X1,..., X)) which
consists of the monomials of R and ordered by the Deglex-ordering. Take 1-
forms {wi,...,wn} on M so that their representing cohomology classes are dual
to {X1,...,Xm} and take a formal homology connection w = Y 7"  w; + -+

Since Ho(M;R) = 0, the ideal N must be trivial. Let © : m(M) - R =
R{{(X1,...,Xm)) be the holonomy map. We denote the holonomy ordering
with respect to the basis BpegLex by <as. Let F be a subgroup of G generated
by {g1,---,9m}. Then ©(g;) = 1+ X; + (Higher term), so as in the proof
of Proposition 2.3.1, we conclude that F is the rank m free groups, and the
restriction of <, to F is the Magnus ordering. o

One of the benefits to consider the holonomy orderings is that we can as-
sociate the properties of groups with the properties of manifolds (topological
space having the given group as its fundamental group).

Theorem 2.4.1. Let N be a smooth manifold which is a retract of M and
t: N — M be the inclusion. Then for each holonomy ordering <y of m1(N),
there exists a holonomy ordering <pr of w1 (M) such that the restriction of <ps
to ts(m1(N)) is <n.. Thus, every holonomy ordering of N can be extended as a
holonomy ordering of M. ‘ :

Proof. Let (wn,dn) be a formal homology connection of N and By be an or-
dered, degree non-decreasing basis of Ry which defines the holonomy ordering
<pn. Let 7 : M — N be a retraction. Since N is a retract of M, the de Rham
DGA of M is written as a direct sum A} (M) = r*Apzr(N)® A’ for some DGA
A’. Thus, we can construct a formal homology connection (wpr,dar) so that it
is an extension of (wp,dy). Hence, the non-commutative algebra Ry, is also
written as a direct sum Ry = Ry @ R’ for some non-commutative algebra R’.
Let Bjps be an ordered, degree non-decreasing basis of Rps obtained by adding
vectors to t«(By). Then the holonomy ordering defined by (was,dar) and Bas
is an extension of the holonomy ordering of <. ‘ O

2.4.2 Formal space case

In the case of formal space, the structure of holonomy ordering is determined
by the cohomology algebra, in particular the cup product of the 1st cohomology
groups.

Theorem 2.4.2. Assume that M and N are formal and that there exists a
continuous map v : N — M which satisfies the following conditions.

1. tx: H<o(N;R) — H<o(M;R) is injection.

2. 1. induces a decomposition H<o(M;R) = 1. H<o(N; R)® A which preserves
the dual of the cup product. That is, U*(t H2(N;R)) C wH1(N;R) ®
tH1(N;R) and U*(Ag) C A1 ® Ay hold.
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Then i : T (N) — 71 (M) is an injection, and each holonomy ordermg <y can
be extended as a holonomy ordering <ps of mi(M). :

Proof. First observe that . induces an injection To : Tm) — Tﬁl(\l\l)
Moreover, since M and N are formal, M and N have quadratic formal homology
connections. F1X such a quadratic formal homology connectlon and let Oy :
w1 (N) — THl( )Ny = Ry and ©p @ m(M) — TH1( )/Nay = Rpy be
holonomy maps.

Now the ideal Ny and Ny are generated by the image of the dual of the cup
products. Thus from the assumption we conclude that My = t. Ny + a holds,
where a is an ic ideal generated by U*(Az). Hence we conclude that Tt induces
an injection T, : Ry — Ray, thus t, : w1 (N) — 71 (M) is also an injection.

- Let By be the ordered degree non-decreasing basis of Ry, which defines
“a holonomy ordering <y of m1(N). By adding vectors to ¢.By, we form an
ordered degree non-decreasing basis Bas of Rps. Then the holonomy ordering
< defined by the basis Bys provides an extension of the holonomy ordering
<N- O

Example 2.4.1. Assume that M is a formal space and the cup product U :
HY(M;R) ® H'(M;R) — H?(M;R) is the zero map. Then, by Theorem 2.4.2
(take N as the bi(M)-punctured disc), we conclude that w1 (M) contains the
rank by (M) free group F, and every holonomy ordering of F' can be extended
as a holonomy ordering of M.

2.4.3 Generalizations of holonomy ordering and examples

We close the paper by providing a generalized construction of the holonomy
‘ordering construction which can be seen as a special case of group extension
construction described in Lemma 2.1.1. o

We call an ordered basis B = {v;}icz of Ry = Rm M is bi-ordering basis
if {v} 0 ©pr}iez is a lexicographical expression of a bi-ordering < of w1 (M)/
71 (M }oo. Theorem 2.3.1 shows that if B is degree—non—decreasmg homogeneous
basis, then B is bi-ordering basis.

Now we construct a bi-ordering basis which is not degree non—decreasmg by
using quasi-nilpotent fibration.- Let B and F' be connected manifolds having the
residually torsion-free nilpotent fundamental groups, and assume that mp(B) =
1. A fibration F — E — B is called a quasi-nilpotent fibration if m1(B) acts on
H; (F;R) nilpotently.

We can construct a bi-ordering basis of Rg = ]R?l(\E) as follo/ws\. First of
all, let us take an arbitrary bi-ordering basis {’u;-B }jeg of Rp = Rmy(B). Since
71 (B) acts on Hy(F;R) nilpotently, this fibration induces an exact sequence of
the nilpotent completions of the fundamental groups [5].

1— Rp —- Rg— Rp — 1.

Since 71 (B) acts on Hi(F;R) nilpotently, there is a basis {X1,..., X} of
H;(F;R) such that g(X;) = X; + > i/, airXy holds for all g € 1(B). Let us
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choose an ordered, degree non-decreasing basis {vf };cz of Rp = R?l(\F) as the
subset of the Deglex-ordered monomials of R{{X1,..., X:u}).

Now we are ready to give a bi-ordering basis of Rg. Let us take an ordered
basis {’u}8 Uf Yuyegxz of Rg. Here the ordering of J x T is the lexicographical
ordering defined by (4,%) > (4/,4') if and only if § > 5, or 7 = 5/ and ¢’ > 4. From
the choice of the basis {v{'}, g(vf') = vf + 3,/-, cyvf holds for all g € m(B),
and vj -vf = vPof +3,, ,vPvf. This implies that the basis {vv }(;nesxz
is a bi-ordering basis. :

Thus, we can construct a bi-ordering basis and bi-ordering using a sequence
of quasi-nilpotent fibration. We call such-a bi-ordering < generalized holonomy
orderings. In algebraic point of view, this is a construction of bi-ordering of-
71 (E) from bi-orderings of 71 (F) and 71(B) and is a special case of a group
extension construction described in Lemma 2.1.1.

Example 2.4.2 (The fundamental groups of fiber-type arrangements [27]).
Recall that a hyperplane arrangement A = {H;} of C" is called a fiber-type
arrangement if its complement M4 = C" — |y 4 H has a tower of fibrations

Ma=M, 5 M, ;75" .. 2 M; =C - {0}

where each fiber Fj of py is homeomorphic to C — {finite points}. See [14] for
the precise definition. The braid arrangement is a typical example of fiber-type
arrangement. It is known that for each fibration py, the action of m(My_1) on
Hy(Fy,) is trivial [14]. In particular, each fibration is quasi-nilpotent.

Thus, by using the tower o/fglasi—nilpotent fibrations we can construct a
bi-ordering basis of Ry;, = Rm1(M4), and bi-ordering of 71 (M4). -

On the other hand, in [27] Kim-Rolfsen constructed a bi-ordering of w1 (M.4)
by using the tower of quasi-nilpotent fibrations and the group extension con-
struction (Lemma 2.1.1). Thus Kim-Rolfsen’s bi-ordering can be seen as a
generalized holonomy ordering.



Chapter 3

Bi-orderability of fibered
3-manifold groups

In this chapter we study the bi-orderability problem for fibered 3-manifold
groups, by using the twisted Alexander polynomials.
Our starting point is the result of Perron-Rolfsen and Clay-Rolfsen.

Theorem 3.0.3 (Alexander polynomial criterion for the bi-orderability). Let
M be a fibered 3-manifold and ¢ : (M) — Z be a surjective homomorphism
induced by a fibration map M — S,

1. ([87], [88]) If all roots of the Alexzander polynomial A% (t) are positive
real, then m (M) is bi-orderable.

2. ([8]) If m1 (M) is bi-orderable, then the Alexander polynomial Af,l (t) has
at least one positive real root.

These results suggest that the Alexander polynomial is a useful tool to study
the bi-orderability of fibered 3-manifold groups. ,

For a finite dimensional linear representation of the fundamental group, a
generalization of the Alexander polynomial called the twisted Alexzander poly-
nomial is defined. We will use finite-dimensional representations over QQ having
finite image, which we simply call a finite representation.

Many results on 3-manifolds using the classical Alexander polynomial are
generalized by using the twisted Alexander polynomials for finite representa-
tion. In most cases generalized arguments are stronger than the original one.
For example, the twisted Alexander polynomials for finite representations give a
necessary and sufficient condition for 3-manifolds to be fibered [17]. Moreover,
the twisted Alexander polynomials are rather easily calculated, hence they pro-
vides practical a method to show for given 3-manifolds to have or not to have
certain properties. Thus it is natural to try to generalize Clay-Rolfsen’s result
for the twisted Alexander polynomials.

25
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However, unfortunately the main result in this section is negative:
" The twisted Alezander polynomial for finite representations cannot be used to
strengthen Clay-Rolfsen’s obstruction. See Theorem 3.2.1 and Corollary 3.2.1
for precise statement.

3.1 The maximal ordered abelian quotient

In this section we study the mazimal ordered abelian quotient of bi-ordered -
groups, which is an analog of the maximal abelian quotient which takes into
account of the bi-ordering structure. First of all we introduce the convez com-
mutator subgroup, which is a refinement of the commutator subgroup in the -
category of bi-ordered groups..

Definition 3.1.1. The conver commutator subgroup of a bi-ordered, group
(G, <¢) is a convex subgroup C¢ defined as the intersection of all convex sub-
groups of (G, <g) which contain the commutator subgroup [G, G].

Since the intersection of convex subgroups is a convex subgroup, Cg is the
minimal convex subgroup of (G, <) which contains the commutator subgroup

(eXei}

Lemma 3.1.1. Let (G,<g), (H,<g) be bi-ordered groups and 8 : (G,<g) —
(H,<p) be an order-preserving homomorphism.

1. 8(Cg) C Cxy.
2 C¢ is a normal subgroup of G

Proof. Let z € Cg. Then there is ¢, € [G, G] such that ¢ <¢ z <@ ¢. Since
6 preserves bi-orderings, 0(c) <m 6(z) < 6(c'). 0(c),0(c) € [H, H], so we
conclude 6(z) € Cy. To show (ii), observe that every inner automorphism of
G preserves the bi-ordering <g. Hence by (i), Cg is preserved by all inner
* automorphisms, so Cg is normal. O

Now we are ready to define the maximal ordered abelian quotient.

Definition 3.1.2. The mazimal ordered abelian quotient group of a bi-ordered
group (G, <g) is an ordered quotient group

A(G,<¢g) = (G/Cq,<g/cq)-

A(G, <g) plays a role similar to the maximal abelian quotient G/[G, G| in
the category of bi-ordered groups.

Lemma 3.1.2. Let (G,<g), (H,<g) be bi-ordered groups and 0 : (G,<g) —
(H, <) be an order-preserving homomorphism.

(i) 6 induces an order-preserving homomorphism 62 : A(G,<g) — A(H,<m
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(i) Let pe : H1(G;Z) = G/|G,G] = G/Cq be the natural projection, and let
Vi be the kernel of pe ®1idg : H1(G;Q) — A(G, <g)®Q. Then 0 induces
a Q-linear map 6Y : Vg — Vi, and we have a commutative diagram

11—V —— H1(G;Q) — A(G,<¢) Q@ ——1

b o

1€'VH-——>H1(H;Q)——>A(H,<H)®Q—>1

(ii) If G is finitely generated, then A(G,<g) is non-trivial.

Proof. (i) and (ii) are direct consequences of Lemma 3.1.1. (iii) follows from
[8, Lemma 2.2], which asserts that for a finitely generated G there exists the
maximal proper convex subgroup C of (G, <g), and that G/C is abelian. Since
C D Cg, this implies A(G, <) is non-trivial. , O

Recall the commutator |a,b] = a~1b71ab satisfies the commutator identities
[d, be] = [a,d[a, b][[a,b],c], [ab,c] = [a,d][[a,d],b][b,c].

Lemma 3.1.3. Let (G,<¢g) be a bi-ordered group and a,b € G.

1. [a,b] <g b ifb>¢ 1 and [a,b] >¢ b if b <g L.

2. la,b] >¢ a_i ifa>gl and[a,b] <ga~lifa<gl.

3. If [a,b] >g 1, then [a™, bm] >a [a,b] holds for m,n > 1.
Proof. Proof of (i) and (ii) are routine. To show (iii), first we show [a,b™] >¢
[a,b] by induction on m. By (ii), we have [[a,b],6™ 1] >¢ [a,b]"!. From
inductive hypothesis [a,b™ '] >¢ [a,b] holds. Thus by commutator identity

[a,b™] = [a, ™ [, b][[a, B], ™ 1] >¢ [a, b]]a, b][a,b] ! = [a, b].

Similarly, by induction on n we get an inequality [a™,b] > [a,b]. These two
inequalities give the desired inequality. O

Now we show the main result in this section, which is interseting in its own -
right. ‘

Theorem 3.1.1. Let (G,<g) be a bi-ordered group and H be a finite index
subgroup of G. Let <y be a bi-ordering of H defined by the restriction of
the ordering <g to H. Then the natural inclusion map of bi-ordered groups
i: (H,<g) — (G, <g) induces an isomorphism of Q-vector space

it A(H, <p) ® Q — A(G,<g) ® Q.
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Theorem 3.1.1 shows that the behavior of the rank of the maximal ordered
abelian quotient is different from the behavior of the rank of the usual maximal
abelian quotient. To illustrate this point more precisely, we consider finite index
subgroups of a free group. Let F' = F,, be the free group of rank n(> 1), and
<z be a bi-ordering of F'. Consider a proper, finite index subgroup H of F, and
let <z be the restriction of the bi-ordering <z to H. Then H is a free group
of rank [F : H](n — 1) + 1, hence for the rank of the maximal abelian quotient,
we have a strict inequality ;

rankg(H/[H,H|) @ Q = [F : H|(n — 1) + 1 > n = rankq(F/[F, F]) ® Q.

On the other hand, by Theorem 3.1.1, for the rank of the maximal ordered
abelian quotient, we always have an equality

rankgA(H,<g) @ Q= A(F,<r) ® Q.

Thus, the difference between the rank of the maximal abelian quotient and that
of the maximal ordered abelian quotient can be arbitrary large.

Proof of Theorem 3.1.1. Let C be the intersection of all convex subgroups of
(G, <) which contains [H, H]. Observe that <g-convex hull of Cg, that is,
the subset C' of G defined by

C'={ge€ G|3nK €Cx, h<gg<ch'}

is a convex subgroup of (G, <g). Thus, ¢’ = C and Cy = CNH. Since |G : H|
is finite, there is a finite integer N > 0 such that ¢V € H for all g € G. Thus
by Lemma 3.1.3 (iii), for any commutator [g, g’] of elements in G, we can find a
-commutator [h, h'] of elements in H that satisfies the inequality

[h’7 h/]_l <@ [g’g/] <a [ha h/]'

This shows that any convex subgroup of G containing [H, H] must contain |G, G|
as well. Therefore C = Cg, hence we get Cy = Ca N H.

Next observe that HCq is a finite index subgroup of G, hence HCqg/Cq
is a finite index subgroup of G/Cq. Thus, as Q-vector spaces we have an
isomorphism (HCg/Cg) ® Q & (G/Cqg) ® Q. Therefore we get a sequence of
isomorphisms of Q-vector spaces

(H/Cx) ® Q= (H/Ce n H) @ Q% (HCo/Ce) © Q= (G/C) ® Q.
D

3.2 The twisted Alexander polynomials crite-
rion '

In this section we show that the twisted Alexander polynomials only provides the
same obstruction of the bi-orderability as the classical Alexander polynomial.
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3.2.1 Twisted Alexander polynomial

We review the definition and basic properties of the twisted Alexander polyno-
mials. For details, see [18].

Let ¢ : m (M) — Z = (t) be a non-trivial homomorphism and V,, be a
finite dimensional left Q1 (M )-module defined by the presentation a : 71 (M) —
GL(V,,). Recall we say a is a finite representation if the image of « is finite. The
classical Alexander polynomial is obtained as the twisted Alexander polynomial
for the trivial representation € : 71 (M) — GL(Q) = Q. ,

Let a®¢ : (M) — GL(V ®gQ[t,t~1]) be the product representation given
by [a®d](g) : v @t — [a(g)](v) @+, Then V,gq4 is a left Qmy (M)-module
and the action of Qm; (M) commutes with the right action of Q[t,¢71].

The i-th twisted Alezander module is the Q[t,t~!]-module defined by the i-th
twisted coeflicient homology group

Hi(M; Vags) = Hi(Co(M) ®gry(a) Vass)

where C’*(ﬁ/[v ) is the singular chain complex of the universal cover M of M,
viewed as a right Qm; (M )-module. : ‘

Since H;(M; Vagg) is a finitely generated Q[t,t™!]-module, there exist Lau-
rant polynomials p;(t) € Q[t,t™*] and an isomorphism as Q[t,t!]-module

Hi(M; Vi) = Qft, t= ] & @D QL. 11/ (05(1).
j=1

The elements p;(t) are well-defined up to multiplication by a unit of Q[t, t1]
if we add the condition that p;(t) divides p;+1(t) for each j. The i-th twisted
Alexander polynomial A?Ei is a Laurant polynomial defined by

sz = { Tani €50

They are well-defined up to multiplication by a unit of Q[t,¢71]. In particu-
lar, the (non-zero) roots of the twisted Alexander polynomial are well-defined.
For 3-manifolds, we only use the 1st twisted Alexander polynomial and simply
denote the 1st twisted Alexander polynomial by Aﬁf’d’.

We use the following properties of the twisted Alexander polynomials.

Lemma 3.2.1. Let d- ¢ : m (M) — Z = (t) be the homomorphism defined by
d- ¢(g) = t*9 ¢, Then we have an equality

AGPEO() = ATPO ().

Lemma 3.2.2. Let a : m(M) — GL(V), I.ﬂ : m (M) — GL(W) be ﬁnite
dimensional representations, and a @ f : m(M) — GL(V @ W) be its direct
sum. Then we have an equality -

AGEPR) = ATPA() - AGP4 (D).
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Now we prove (a special case of) Shapiro’s lemma for the twisted Alexander
polynomials. Let G be a finite group and p : MG — M be a G-covering of M
corresponding to a surjective homomorphism f : w1 (M) — G. For a non-trivial
homomorphism ¢ : 7:(M) — Z, let p*¢ : Wl(Mg) — Z be its pull-back.  Let
a=o0f:7m(M)— GL(QG) be a finite representation where ¢ : G — GL(QG)
be the regular representation of G. We call such a finite representation a regular
finite representation.

Lemma 3.2.3 ((Shapiro’s Lemma for twisted Alexander polynomials [18])).
Let o : m1 (M) — GL(QG) be a regular finite representation. Then there is an
equality
a®¢ 1y _ AP @
ASE9(t) = AZ2 (1)

where A%}d’ is the classical Alexander polynomial of MG with respect to p*¢.
G

Proof. Let M be the common universal covering of M and Mg. We have the
isomorphisms of the chain complexes

C* (M) ®Q7\'1(MG) Va@pf“qs = C* (M) ®Q7r1 (M) (Q’ﬂ'l (M) ®Q7\'1(MG) ‘G),«Ot@d))

= C*(M) QQn, (M) V}J*a®¢'

Hence we obtain isomorphisms of the twisted Alexander modules and the desired
equality of the twisted Alexander polynomials. O

3.2.2 Getting stronger criterion from classical Alexander
polynomials

Assume that we have a statement of the form “If a 3-manifold M has a property
X, then its Alexzander polynomial has a property Y ”. Then we extend the argu-
ment for the twisted Alexander polynomials for finite representation according
to the following strategy, as in'[16].

1. Consider the twisted Alexander polynomials for regular finite representa-
tions. By Shapiro’s lemma, these twisted Alexander polynomials are the
classical Alexander polynomial of finite coverings.

2. Verify that the property X of 3-manifolds we are considering is preserved
by taking finite coverings. (For example, the property that the fundamen-
tal group is bi-orderable is preserved by taking any coverings.)

3. By the classical Alexander polynomial argument, the twisted Alexander
polynomial for a regular finite representation has the property Y.

4. Consider the irreducible decomposition of the regular representation and
-the corresponding factorization of the twisted Alexander polynomials (See
Remark 3.2.1 below).
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5. Study how the property Y behaves under the factorization and obtain the
property of twisted Alexander polynomials. For example, if each factor
of the polynomial also has the property Y, then we conclude that every
twisted Alexander polynomial for finite representation has the property
Y.

Remark 3.2.1. By Maschke’s theorem, representations of a finite group G over
Q are completely reducible and each irreducible representation appears as an
irreducible summand of the regular representation.” Thus by Lemma 3.2.2, we
can obtain all twisted Alexander polynomials for finite representations from the
twisted Alexander polynomials for regular finite representations. '

3.2.3 Review of Clay-Rolfsen’s argument

Now we review Clay-Rolfsen’s argument. Throughout the rest of this paper, we
always assume that 3-manifold M is fibered, and a homomorphism ¢ : 71 (M) —
Z is derived from a fibration map M — S'. We also denote the monodromy
map by 0: 2 — , and put F = m(%).

The starting point of Clay-Rolfsen’s argument is the following well-known
fact of an HNN-extension of bi-orderable groups.

Lemma 3.2.4. Let H be a bi-orderable group and G be an HNN-extension of
H by the automorphism ¢ : H — H. Then G is bi-orderable if and only if there
exists a bi-ordering of H which is preserved by ¢.

" By Lemma 3.2.4, if w1(M) is bi-orderable, there exists a bi-ordering <g
of F" which is invariant under the monodromy 6, : F — F. So 0 induces an
order-preserving map 62 : A(F,<r) — A(F,<p) by Lemma 3.1.1. Let x4(t)
be the characteristic polynomial of #2 ®idg. The key lemma shown in [8] is the
following.

Lemma 3.2.5. Let (A,<4) be a bi-ordered abelian group of finite rank and
9 : A — A be an order-preserving automorphism. Then the Q-linear map 6 ®
idg : A®Q — A®Q has at least one positive real eigenvalue.

Thus, xa(t) has at least one positive real root. Recall that the classical
Alexander polynomial Af/_,(t) is equal to the characteristic polynomial of 4, :
H;(F;Q) — Hy(F;Q). By Lemma 3.1.2, Af/f(t) divides x4 (t). Therefore we
conclude that Af/f(t) has at least one positive real root. .

Thus, the important part of the Alexander polynomial which contains in-
formation about bi-ordering (Clay-Rolfsen’s obstruction) is not the Alexander
polynomial itself, but its factor x4 (t), the characteristic polynomial of the mon-
odromy map 64 ® idg induced on the maximal ordered abelian quotient. We
say this factor of the Alexander polynomial the essential factor. )
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3.2.4 The failure of twisted Alexander polynomlal argu-
ment

Now we are ready to show that we cannot get better obstruction by using
the twisted Alexander polynomials for finite representations. According to the
strategy described in Section 3.2.2, we expect the following generalization of
Clay-Rolfsen’s obstruction.

Expected generalization 1. Let p : my (M) — GL(V) be a finite representa-
tion. If w1 (M) is bi-orderable, then the twisted Alezander polynomial AR® (1)
has at least one positive real root.

Expected generalization 2. Let p : m1(M) — GL(QG) be a regular finite
presentation. If m1(M) is bi-orderable, then the twisted Alexander polynomial
AR ®¢(t) has more positive real roots than the classical Alexander polynomial.

However thése expected generahzatlons are false as the following simple ex-
ample shows.

Example 3.2.1 (The simplest counter example). Let K be the figure-eight
knot. K is fibered, and its Alexander polynomial Ax(t) = ¢ — 3¢t + 1 has
two positive real roots. Thus, m1(S® — K) is bi-orderable by Perron-Rolfsen’s
criterion [37). Let az : 71(S® — K) — Zy be the mod 2 abelianization map.

First let us consider the alternating representation alt : m1(S% — K) —
GL(Q), defined by alt(g)(1) = az(g) - 1. Then its twisted Alexander polynomial
Aalt@d’ is equal to (t2 + 3t + 1), hence it has no positive real root. Next let us
COI’ISIdeI‘ the regular finite representation a = 71(S% — K) — GL(QZ2). Then
A%®® — (t2 43t +1)(t2 — 3t + 1), which has exactly the same positive real roots
as the classical Alexander polynomial.

Now we show that these “expected generalizations” are impossible. First of
all, we clarify the essential factor of the twisted Alexander polynomials which
contains the information of bi-orderability.

Let M be a fibered 3-manifold whose fundamental group 7r1(M } has a bi-
ordering <j;. Let a : m (M) — G — GL(QQ) be a regular finite representation.

Let p : M — M be the corresponding G-cover and <;~5 7r1(M ) — Z be the
surjective homomorphlsm induced by the induced fibration M — S'. Then
there exists an integer d such that p*p =d- d) Let %, Y be the fiber of M,
M and put F = my(%), F = 71(S) respectively. S is a regular finite covering
of X, so Fis normal subgroup of F’ having finite index in F. We regard all of
F, F and w1 (M) as subgroups of 71 (M). Let <p, <z be the restrictions of the
bi-ordering < to F, F respectively. By Lemma.-3.2.5, the orderings <p, <j
are preserved by the monodromy map 6, ] respectively. By definition of d, the
monodromy 6 is a lift of 69,

By Lemma 3.2.3, the twisted Alexander polynomial associated to « is given
as the classical Alexander polynomial

»Aﬁ/‘,w(t) = AZ9(1).
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On the other hand, since p*¢ =d - q~3, by Lemma 3.2.1 we get an equality
TAC®P (Y _ APTS () = AP (40
ASPO (1) = AZI(1) = AL (1),

For fibered 3-manifolds, the classical Alexander polynomial is equal to the char-
acteristic polynomial of the monodromy. So finally we get a description of
the twisted Alexander polynomial as the characteristic polynomjal of the mon-
odromy @, ‘

ASPP () = AZ(t%) = det(t*I - 6,)

By Clay-Rolfsen’s argument reviewed in Section 3.3, the factor of A§4®¢(t)

which leads Clay-Rolfsen’s obstruction is det(t? — (§4 ®idg)), the factor derivied
from the linear map

04 @idg: A(F;<z) ©Q — A(F;<z) ® Q.

We denote this by x 7(¢) and call it the essential factor of the twisted Alexander
polynomial.

Now we show that the essential factors for the classical and the twisted
Alexander polynomial are essentially the same.

Theorem 3.2.1. Let M be a fibered 3-manifold whose fundamental group is
bi-orderable, and let o : (M) — GL(QG) be a regular finite representation.
Then the essential factor x z(t) of the twisted Alezander polynomial Aj'(/;,®¢(t) is
given by

: x5(t) = det(t? — (62 ® idg)?).

where d is an integer determined by the representation c.

Proof. Since F is a finite index subgroup of F, by Theorem 3.1.1 we get a
commutative diagram

82 ®idg

A(F;<z)®Q A(F;<z)0Q

TV
A(Fi<p) @ Q —2 2 A(Fi<r)@Q

IR

where the vertical arrows are isomorphisms. Therefore, we obtain the desired
equality . ’
x5(t) = det(t? — (62 ® idg)) = det(t? — (0 ® idg)?).

O

This technical result provides the following negative result for an extension
of Clay-Rolfsen’s obstruction.
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Corollary 3.2.1. Let M be a fibered 8-manifold whose fundamental group is bi-
orderable. Then compared with the classical Alexander polynomial, the twisted
Alezander polynomial for a finite representation contains the same or less infor-
mation about bi-ordering of w1 (M) that gives rise to Clay-Rolfsen’s obstruction.
In other words, the twisted Alexander polynomial for finite representations can-
not be used to strengthen Clay-Rolfsen’s obstruction for the bi-orderbility.

Proof. Let B : w1 (M) RNV GL(V) be a finite representation, where f is a
surjective homorhorphism. We consider the corresponding regular finite repre-
sentation a : my (M) ERVCJN GL(QG). ,

By Lemma 3.2.2 and Remark 3.2.1, the twisted Alexander polynomial for
the finite representation 3, Aﬁw(t) is a factor of Ai,fm’(t)k for some integer k
determined by . Thus, as for the root of the twisted Alexander polynomials,
the twisted Alexander polynomial for the regular finite representation « con-
tains at least as much information as the twisted Alexander polynomial for the
representation [3. . )

However, by Theorem 3.2.1, the essential factor of the twisted Alexander
polynomial A?‘M®¢(t) is determined by « and the essential factor of the classi-
cal Alexander polynomial Aﬁ/l(t). Therefore the twisted Alexander polynomial
Aff’gb(t) contains at most as much information as the classical Alexander poly-
nomial with respect to Clay-Rolfsen’s obstruction. O



Chapter 4
‘Dehornoy-like ordering

In this chapter we study a special class of left-orderings called Dehornoy-like
ordering. A Dehornoy-like ordering is a left-ordering defined in a similar way
to the Dehornoy ordering. We introduce a property called Property F for an
ordered finite generating set S of a group G. We show that Property F allows us
to relate Dehornoy-like orderings and isolated orderings in a simple way. More-
over, using Property F’ we generalize various known properties of the Dehornoy
ordering to Dehornoy-like orderings.

In the latter half of this chapter we construct a new example of Dehornoy-
like and isolated orderings and study their detailed properties. Our examples
are generalizations of Navas’ example of Dehornoy-like and isolated orderings
[35]. We will also give a negative answer to the main question of [35], which
asks the characterization of groups having isolated ordering whose positive cone
is generated by two elements.

4.1 Dehornoy-like orderings

4.1.1 The definition of Dehornoy-like orderings

Let 8§ = {s1,..., $n} be an ordered finite generating set of G. We consider the
two sub-semigroups of G, the S-word positive semigroup and the o(S)-positive
semigroup. '
A (S-) positive word is a rion-empty word on S. We say an element g € G is
(8-) word positive or simply S-positive if g is represented by a S-positive word.
. The set of all S-word positive elements form a sub-semigroup Pgs of G, which we
call the (S-)word positive semigroup. The S-word positive semigroup is nothing
but a sub-semigroup of G generated by S. |
To define a Dehornoy-like ordering, we introduce slightly different notions.
A word w on SU S~1 is-called i-positive (or, 4(S)-positive, if we need to indicate
S) if w contains at least one s; but contains no slil, cee ,sii_ll,lsi_l. We say an
element g € G is i-positive (or, 1(S)-positive) if g is represented by an i-positive
word. An element g € G is called o-positive (o(S)-positive) if g is i-positive

35
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for some 1 < i < n. The notions of i-negative and o-negative are defined in
the similar way. The set of ¢(S)-positive elements of G forms a sub-semigroup
Ys of G. We call the semigroup s the o-positive semigroup (or, o(S)-positive
semigroup). ,

Definition 4.1.1 (Dehornoy-like ordering). A Dehornoy-like ordering is a left
ordering <p whose positive cone is equal to the o-positive semigroup s for
some ordered finite generating set S of G. In this situation, we say S defines a
Dehornoy-like ordering <p.

As we have already mentioned, the definition of Dehornoy-like orderings is
motivated from the Dehornoy ordering of the braid groups: A standard Artin
generator § = {oy,...,0n—1} of the braid group B,, defines the Dehornoy-
ordering <p.

To study Dehornoy—hke orderings we introduce the following two properties,
which are also motivated from the theory of the Dehornoy ordering.

Definition 4.1.2. Let S be an ordered finite generating set of G.

1. We say S has Property A (the Acyclic property) if no o(S)-positive words
represent the trivial element. That is, X5 does not contains the identity
element 1.

2. We say S has Property C (the Comparison property) if every non-trivial
element of G admits either o (8)-positive or o (S)-negative word expression.

Propotition 4.1.1. Let S be an ordered finite generating set of a group G.
Then S defines a Dehornoy-like ordering if and only if S has both Property A
and Property C.

Proof. Property C implies that G = ¥s UEgl U{1}, and the Property A implies
that £s, 5! and {1} are disjoint. Thus, the ¢(S)-positive monoid s satisfies
both LO1 and LO2. Converse is clear. ' O

- Now we introduce an operation to construct new ordered finite generating
sets from an ordered finite generating set which connects a Dehornoy-like or-
dering and an isolated ordering.

The twisted generating set of S is an ordered finite generating set A = Ag =
{a1,...,an} where each a; is defined by
_q{yn—i+l
a’i s (‘Si o Sn—l)( 1) .
An ordered finite generating set D = Dg = {dj,...,d,} whose twisted
generating set is equal to S is called the detwisted generating set of S. The
detwisted generating set D is given as

s—1
nl
di =14 s;lsiy m—i: even
83Sit1 n—1: odd

1 =N
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For each 1 < i< n,let S® = {s;,841,...,5,} and Gg) be the subgroup of
G generated by S®. Thus, S® is an ordered finite generating set of Gf;). We
denote the S®@-word positive semigroup and the o(S (i))—positive semigroup by
Pg), Eg) respectively. They are naturally regarded as sub-semigroup of G’g).
By definition of the twisted generating set, Agwm = (As)(i). Thus, G'(Si) = Gfi)
so we will often write G® to represent Gg) = G’Ei). ‘

Remark 4.1.1. In some literature, the notation G is used to represent the
i-th derived subgroup of G. Our G® is not related to the derived subgroups,
and as its definition shows, depends on a choice of generating set S of G.

There is an obvious inclusion for o(S)-positive and .A-word positive monoids.

Lemma 4.1.1. Let § be an ordered finite generating set and A = As be the
twisted generating set of S. Then YgU Zgl D PjU P;l.

Proof. We show P4 C g U Egl. The proof of P;l CXsU Zgl is similar. Let
g € P, and w be an A-positive word expression of g. Put

i=min{j € {1,2,...,n} | w contains the letter a;}.

Since a; = (8i8i41-+ 52)"V", g is o(S)-positive if (n — i) is odd and is
o (S)-negative if (n — ) is even. : O

Now we introduce a key property called Property F' (the Filtration property)
which allows us to generalize various properties of the Dehornoy ordering for
Dehornoy-like orderings.

" Definition 4.1.3. Let § = {s1,..., sn} be an ordered finite generating set of G
and A = {ay,...,a,} be the twisted generating set of S. We say S has Property
F (the Filtration property) if

Foa;- (Pt a7t € PO, a7t - (PEHY) 0 PY)
hold for all <.

We say a finite generating set A defines an isolated ordering if the A-word
positive semigroup is the positive cone of an isolated ordering <4. First we
show a Dehornoy-like ordering and an isolated ordering are closely related if we
assume Property F. '

Theorem 4.1.1. Let S be an ordered finite generating set of G having Property
F and A be the twisted generating set of S. Then S defines o Dehornoy-like
ordering if and only if A defines an isolated left ordering.

Proof. Let n be the cardinal of the generating set S. We prove theorem by
induction on n. The case n = 1 is trivial. General cases follow from the
following two claims.

Claim 4.1.1. S has Property C if and only if P4 U P;tl u{l}=G holds.
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By Lemma 4.1.1, G = PAUP;*U{1} CZsU X5 U{l} =G.

To show the converse assume that S has Property C. Let g € G be a non-
trivial element. We assume that g is o(S)-positive. The case g is ¢(S)-negative
is proved in a similar way.

First of all, assume that ¢ has a k(S)-positive word representative for k > 1.
Then g\e G® and g is 0(8(2))—positive. By inductive hypothesis, g € Pf) U
(PEY-tu{1}y c PauPtU{1}.

Thus we assume that g is 1(S)-positive. We also assume that n is even. The
case 7 is odd is similar. Since s; = ajas, by rewriting a 1(S)-positive word
representative of g by using the twisted generating set A, we write g as

g=VoaVi---a1Vn

* where V; is a word on A® U (A®)~1 ¢ G®. By inductive hypothesis, we
may assume that either V; € PJ(f) or'V; € (Pff))‘l.. If all V; belong to P(z),
then g € P4. Assume that some V; belongs to (Pf))_l. By Property F,
a1V; C Py -ay and Viay C a1 - Py, so we can rewrite g so that it belongs to Pa.

Claim 4.1.2. S has Property A if and only if 1 € Py.

Assume that 1 ¢ Py and let g € G be a o(S)-positive element. If g has a
k(S)-positive word representative for k > 1, then g € G® so inductive hypoth-
esis shows g # 1. Thus we assume g is 1(S)-positive. Assume that n is even.
Then as we have seen in the proof of Claim 4.1.1, g € P4 so we conclude g # 1.
The case n is odd, and the case g is ¢(S)-negative are proved in a similar way.
Converse is obvious from Lemma 4.1.1. ' O

Corollary 4.1.1. Let G be a left-orderable group. If G has a Dehornoy-like
ordering having Property F, then G also has an isolated left ordering.

4.1.2 Property of Dehornoy-like orderings

In this section we study fundamental properties of Dehornoy-like orderings and
isolated orderings derived from the Dehornoy-like orderings.

Let 8 = {s1,...,8n}(n > 1) be an ordered finite generating set of a group G
~ which defines a Dehornoy-like ordering <p and A be the twisted generating set
of S. First of all, we observe that a Dehornoy-like ordering have the following
good properties with respect to the restrictions. :

Propotition 4.1.2. Let S = {s1,...,5n} be an ordered finite generating set of
G which defines a Dehornoy-like ordering <p.

1. For1<i<mn, 8® defines a Dehornoy-like ordering <%) of G, More-
over, the restriction of the Dehornoy-like ordering <p to G is equal to
the Dehornoy-like ordering <%).

2. For 1 < i < n, the subgroup G is <p-convex. In particular, <p is
discrete, and the minimal <p-positive element is sy,.
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8. If H is a <p-conwez subgroup of G, then H = G for some 1 <i < n.

Proof. Since S has Property A, S has Property A. Assume that S® does not
have Property C, so there is an element g € G(Y — {1} which is neither ¢(S®)-
positive nor o(S (i))—negative. Assume that 1 <p g, so g is represented by a
o(S)-positive word W. The case 1 >p g is similar. Since g € G{? we may find
a word representative V of g which consists of the alphabets in S® U S Ol
Then VW is ¢(S)-positive word which represents the trivial element, so this
contradicts the fact that S has Property A. Thus, S® has Property C, hence
S5 defines a Dehornoy-like ordering <(Z) Now the Property A and Property
C of SO implies Yguy = Xg N Gg), S0 <%) is equal to the restriction of <p to
G(%)

Next we show G is < p-convex. Assumethat 1 <p h <p gholdforg € el
and h € G. If b is j(S)-positive for j < 4, then g~1h is also j(S)-positive, so
g <p h. This contradicts the assumption, so h must be j(S)-positive for j > 4.
This implies A € G, so we conclude G is <p-convex.

To show there are no <g-convex subgroups other than G, it is sufficient
to show if H D G then H = G or GV = G. Assume that H # G®), hence
H contains an element g in G — G, Let us take such g so that 1 <p g holds.
Then g must be 1(S)-positive, hence we may write g = hs; P where h € G(?
and P >p 1. Then we have :

1<phsy<phsiP=g

‘Since H is convex, this implies hs; € H. Since h € G® c H, we conclude
81 € H hence H =G. . ‘ O

From now on, we will always assume that S has Property F, hence A defines
an isolated left ordering < 4. First of all we observe that <4 also has the same
properties as we have seen in Proposition 4.1.2.

Propotition 4.1.3. Let A = {a1,...,a,} be the twisted generating set of S
which defines an isolated left ordering < 4.

1. For1 < i <n, AY defines an isolated ordering < of G%. Moreover,

the restriction of the zsolated ordering <4 to G is equal to the isolated

ordering <(z)

2. For 1 < i < n, the subgroup G is <4-convez. In particular, <, is
discrete, and the minimal <a-positive element is ay:

3. If H is an <4-convexr subgroup of“G, then H=G® for some 1 <i<n.

Proof. The proofs of (1) and (3) are similar to the case of Dehornoy-like order-
ings. To show (2), assume that 1 <4 h <4 gholdfor g € G and h € G. If h #

P then we may write h as h = h'ajw where b’ € Pﬁlj“) andw € Pfj)u{l} for
j<i. It g7k’ € PYTY then g=h = (g71W)a;w >4 1. If g~10 € (P{T)-1
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then by Property F, (g7'h")a; >4 1 so g7tk = [(g7*h')a;Jw >4 1. Therefore
in both cases, g7 'h >4 1, it is a contradiction. ‘
O

To deduce more precise properties, we observe the following simple lemma.

Lemma 4.1.2.ﬁf Op— 1001 F Gn, then
-1, - - -1
an_10;tat 1,071 10001 € Pin ) _ P'El").

Proof. To make notations simple, we put p = an—1 and q=an.

By Property F, pg~'p~t,p" ¢ p € Pff—l). We show pg~1p~!1 # PJ(L‘”). The
proof of p~1¢~1p # PVS") is similar. Assume that pg~'p~! = ¢* for k > 0. Since
we have assumed that gpg # ¢, k > 1. Then

g=p Ypg oY) o =p" ¢ Fp=(p" ¢ 'p)F,

so we have 1 <4 p~1¢~!p <4 g. This contradicts Proposition 4.1.3 (2), the fact
that ¢ = a, is the minimal <4-positive element. O

Next we- show that in most cases the Dehornoy-like ordering <p is not
isolated in LO(G), so it makes a contrast to the isolated ordering <4. For
g € G and a left ordering < of G whose positive cone is P, we define <;=<-g
as the left ordering defined by the positive cone P-g. Thus, z <4 z’ if and only
if zg < x’g. This defines a right action of G on LO(G). Two left orderings are
said to be conjugate if they belong to the same G-orbit.

" Theorem 4.1.2. If Gp_1GnGn—1 7 Gn, then the Dehornoy-like ordem'ng <p is
an accumulation point of the set of its conjugates {<p -gtgeq. Thus, <p is
not isolated in LO(G), and the o(S)-positive monoid is not finitely generated.

Proof. Our argument is a generalization of Navas-Wiest’s criterion [36]. As in
the proof of Lemma 4.1.2, we put p = a,_1 and ¢ = a,, to make notation simple.

We construct a sequence of left orderings {<,} so that {<,} non-trivially
converge to <p and that each <, is conjugate to <p. Here the word non-
trivially means that <,#<p for sufficiently large n > 0.

Let <,=<p - (¢"p). Thus, 1 <, g if and only if 1 <p (¢"p)~1g(¢"p). First
we show the orderings <, converge to <p for n — oo. By definition of the
topology of LO(Q), it is sufficient to show that for an arbitrary finite set of
< p-positive elements ¢y,. .., ¢, 1 <y ¢; holds for sufficiently large N > 0.

Ifc; & G=1 then 1 <, ¢; for all n. Thus, we assume c; € Gn-1),

First we consider the case ¢; € G™. Then ¢; is (n — 1)(S)-positive, hence
by using generators {p, ¢}, ¢; is written as ¢; = ¢"pw where w € E‘(Sn_l) and
m € Z. For k > m by Property F, p~tq¢™ *p ¢ Pin_l) C E‘(s”_l). So, if we take
k > m, then

(¢°p)"'eild™p) = (07 g™ FP)wa"p
is (n — 1)(8)-positive. So 1 < ¢; for k > m.
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Next assume that ¢; € G™, so ¢; = ¢~™ (m > 0). Then (¢*p) 1c;(¢*p) =
p~lg~™p. By Lemma 4.1.2, p~1¢"™p € Pin_l)—P(n), sop~lg™pis (n—1)(S)-
positive. Therefore by rewriting the A-positive word representative of p~1qg~"p
using the generator S, we conclude 1 <p p~lg~™p. Hence 1 <j, ¢; for all k > 1.
To show the convergent sequence {<,} is non-trivial, we observe that the
minimal positive element of the ordering P, is (¢*p) " 'q(¢*p) = p~1gp. From
the assumption, p~lgp is not identical with ¢, the minimal positive element of
the ordering <p. Thus, <, are different from the ordering <p. |

It should be mentioned that our hypothesis a,_10,0,_1 # ay is really
needed. Let us consider the Klein bottle group G = (s1, 82 | $28182 = 81).
It is known that & = {s1, s2} defines a Dehornoy-like ordering <p of G (See
[35] or the proof of Theorem 4.2.1 in Section 3.1, which is valid for the Klein
bottle group case, (m,n) = (2,2)). However, since G has only finitely many
left orderings, <p must be isolated. Observe that for the twisted generat-
ing set A = {a1,a2} of S, the Klein bottle group has the same presentation
G = (a1, 09 | aza102 = a1).

Finally we determine the Conradian soul of <p and <4.

Theorem 4.1.3 (Conradian properties of Dehornoy-like and isolated order-
ings). Let S = {s1,...,8n}(n > 1) be an ordered finite generating set of a group
G which defines a Dehornoy-like ordering <p. Assume that S has Property
F and let A = {a,...,an} be the twisted generating set of S. Let <4 be the
isolated ordering defined by A. If Gn_1Gn0n-1 F Gy, then two orderings <p
and <4 have the following properties.

1. <p is not Conradian. Thus, the <p-Conradian soul is G, the infinite
cyclic subgroup generated by sp,.

2. <4 is not Conradian. Thus, the <a-Conradian soul is G™, the infinite
cyclic subgroup generated by an.

Proof. As in the proof of Lemma 4.1.2, we put p = a,—1 and ¢ = a,. To
prove theorem it is sufficient to show for n > 2, <p and <4 are not Conradian,
since by Proposition 4.1.2 and Proposition 4.1.3 if H is a <p- or <4- convex
subgroup, then H = G® for some i. First we show <4 is not Conradian. By
Lemma 4.1.2, every A-word positive representative of p~1¢~!p contains at least
one p, so we put p~1gp = Np~l¢~* where N <4 1 and k > 0. Then we obtain
an inequality '
("p)a(g"p)* = (0 'ap)d" P = N <a 1
hence <4 is not Conradian. To see <p is not Conradian, we observe

(qu+1qu+1)f1( k+2)( k41 k+1)2 — k+1 k41

pg**pg 1) (

a, plqp)d" T pg* T pgFtpg
_ q—(kﬂ,)N(p_IQ)quHquHquH :

pq

e FO N1
<p 1.
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O

4.2 Isolated and Dehornoy-like ordering on ZxzZ

4.2.1 Construction of orderings

In this section we construct Dehornoy-like and isolated left orderings of Z xz Z.
Let G = Z gz Z be the amalgamated free product of two infinite cyclic groups,
which is presented as

Gmn={z,ylz™=y"). (m>n)

by using two integers m, n. In this section we will always assume (m,n) # (2,2).
Let us consider an ordered generating set S = {s; = zyz ™!, s = 2™ 1y~ 1}
and its twisted generating set A = {a = z,b = yz~™"1}. Using S or A, the
group Gy, is presented as .

2 n—1>

Grn = (81,82] 825152 = ((s152)™ ?s1)

= {a,b| (ba™ )" =a)

respectively. »
The following is the main result of this section.

Theorem 4.2.1. Let S, A be the ordered finite generating sets of G, n, as above.
1. § defines a Dehornoy-like ordering <p.
2. A defines an isolated left ordering <.4.

By the presentation of G, it is easy to see that & have Property F and
bab # a if (m,n) # (2,2). Thus from general theories developed in the previous
Section, we obtain various properties of <p and <4.

Corollary 4.2.1. Let <p be the Dehornoy-like ordering and <a be the isolated
ordering of G = G, in Theorem 4.2.1.

1. If H is a <p-convex subgroup, then H = {1} or (sq9) or G.
2. If H is a <4-convex subgroup, then H = {1} or (b) or G.
3. The Conradian soul of <p is G® = (s5).

4. The Conradian soul of < is G = (b).

5. <p is an accumulation point of the set of its conjugates {<p - g}gec-
Thus, <p ts not isolated in LO(G). and the o(S)-positive monoid is not
finitely generated. :



4:2. ISOLATED AND DEHORNOY-LIKE ORDERING ON Z xz Z 43

The proof of Theorem 4.2.1 given here is a generalization of Navas’ argument
in [35], and mainly use the twisted generating set A not S. In subsequent section
we will also give an outline of alternative proof which mainly uses S.

Before giving a proof, first we recall the structure of the group Gy, . Let
Zmn =l *Zn = (X,Y | X™ = Y™ = 1), where Z,, is the cyclic group of
order m and let 7 : Gp . — Zp,n be a homomorphism defined by #(z ) =X,
m(y) = Y. The kernel of 7 is an infinite cyclic group generated by z™ = y™
which is the center of Gy, . Thus, we have a central extension

1=2Z—Gnpn— Zny—1

We describe an action of Z,, », on S which is used to prove Property A. Let
T= T n be the Bass-Serre tree for the free product Z, , = Zp, * Zy,. That is,
Tm,n is a tree whose vertices are disjoint union of cosets Zm n/Zm UZmn/Zn
and edges are Zm,n. Here an edge g € Z,, 5, connects two vertices gZ,, and gZy,.
(See Figure 4.1 left for example the case (m,n) = (4, 3)).

In our situation, the Bass-Serre tree T' is naturally regarded as a planer
graph. More precisely, we regard T' as embedded into the hyperbolic plane
H2. Now X acts on Tm,n 88 a rotation centered on P, and Y acts on T as
a rotation centered on @: This defines a faithful action of Z,, , on T. Let
E(T) be the set of the ends of T, which is identified with the set of infinite rays
emanating from a fixed base point of T'. The end of tree E(T) is a Cantor set,
and naturally regarded as a subset of the points at infinity S, of H2. The action
of Zy, n induces a faithful action on E(T). Moreover, the action on E(T) C S
extends an action on S = SL, since the actions of X and Y can be extended
as isometries of H?2. (Alternatively; one can directly observe this fact by using
combinatorial description of the action on E(T) given in the next section) We
call this action the standard action of Z,, ..

The standard action is easy to describe since X and Y act as rotations of
the tree T. X acts on ST so that it sends an interval [Ds, Pi+1] to the adjacent
interval [p;t1,pi+2] (here indices are taken modulo m), and Y acts on S* so
that it sends an interval [g;, g;+1] 0 [@s+1,@uv2] (here indices are taken modulo
n). See Figure 4.1 right. More detailed description of the set of ends E(T) and
the standard action will be given in next section. »

Using the standard action, we show the Property A for S, which is equivalent
to the following statement by Claim 4.1.2.

Lemma 4.2.1. If g € Py, then g # 1.

Proof. Let g € P4 and put A=n(a) = X and B=7(b) =YX ™ =YVX.
If g € Kerm, that is, g = a™ for N > 0, then g # 1 is obvious so we assume
g # a™¥. Let us put

w(g) = A’*B™ ... A1B"

where 0 < 8; <m (i <k),0<sg <mand 0<b; (1>1),0<b;.
First observe that the dynamics of B, A and (BA™1)'B are given by the
following formulas. .
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a3
dn

=g N g2 = Pm
D2

Pm-1

Figure 4.1: Bass-Serre Tree and action of Zm',n on St

Blpm;pm-1] = Y X[pm,Pm—1] = Y[p1,pm| = Vg1, ¢2]
= [g2,a3] C [pm,p1]
A'pm,p1] € [PmsPm-1] (£ m—1)
(BA™ V)'Blpm,pm-1] = (YXX™ )Y X[pm,0m-1] = Y [p1, 1]
C Y q1,q0] C [go+is @3+i) C [Pm,D1]-
Here [pm,pm—1] represents the interval [pm,p1] U [p1,p2] U -+ U [Dm_2,Pm—1].
Since (BA™ 1)"~1B = A, we can assume that the above word expression does

not contain a subword of the form (BA™ 1)"~1B. Thus, by using the above
formulas repeatedly, we conclude

W(g)[prk—laprk] = [prk>p7"k+1] (Sk 7é Oa T1 7é O)
() [Pms P1] = [Prys Pri+1] (s = 0,71 #0)
7(g)[p1, p2] = [Pm., 1] (sx # 0,71 = 0)

So we conclude w(g) # 1 if s # 0 or 1 # 0. If s = r1 = 0, we need more
careful argument to treat the case the word n(g) contains a subword of the form
(BA™ 1)t Let us write ,
— sp—1 m—1\% e T1
w(g) =B (BA™)B---A

%

where we take i the maximal among such description of the word 7(g). That
is, the prefix of the word * is not BA™~1. Then for i # 0,

7(9)1gi> gi-+1] C B*"H(BA™ ) [pm, p1] C B [pm, p1]-

Thus if s; # 1, then m(g)[gn,q1] C [g2,93]. and if s; = 1, then*w(g)[g2, g3] =
[¢244,q3+4]- Thus we proved that in all cases 7(g) acts on S* non trivially, hence

g#1 ‘ a

Next we show Property C, which is equivalent to the following statement
according to Claim 4.1.1.
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Lemma 4.2.2. P4U{1}UP'=G .

Proof. Let g € G be a non-trivial element. Since a™ = (ba™ 1)® = (a™1b)" is
central, we may write ¢ as

g= amMaskbrk ceeaSipm,

where 0 < s; <m (1 < k), 0 <sp <mand0<b (¢ >1),0<b. Among
such word expressions, we choose the word expression w so that k is minimal.
If mM + s, > 0, then g € P4. So we assume that mM + s; < 0 and we prove
g e P;tl by induction on k. The case k = 1 is a direct consequence of Property
F.

First observe that from a relation a='b = (a™'b)1~", we get a relation

a—lbr — [(am—lb)Z—nb—la—m—l—Z]'r—l(am—lb)l—n
for all r > 0. Thus, by applying this relation, g is written as
. g= X(am_ib)l—n LqSk-1pTR-T L

for some X .€ P;l. Unless s4_1 = Sg—2 = -+ = Sg—(n—1) = M — 1 and
Th—1 = Tk—2 = *** = Pk—(n—1) = 1, by reducing this word expression, we obtain
a word expression of the form '

/ .
g=X'a"1pig%-1 ...

where X’ € P;l and i < k. By inductive hypothesis, a~lbrigsi-1... € P;l,
hence we conclude g € P;l. '

Now assume sy_1 = Sp_2 ="+ = Sg_(n—1) =M—land rg_1 =rg_g="""
Tk—(n—1) = L. Since (a™~1p)"~! = b~lq, by replacing the subword (a™~1b)"
with b~'a and canceling b~ ! we obtain another word representative

-1

g= a(m+1)Maskbrk—lask_n+lb7‘k_n .
which contradicts the assumption that we have chosen the first word represen-
tative of g so that k is minimal. : O

These two lemmas and Theorem 4.1.1 prove Theorem 4.2.1.

4.2.2 Dynamics of the Dehornoy-like ordering of Z %z Z

In this section we give an alternative definition of the Dehornoy-like ordering
<p of Gpn by using the dynamics of Gy, n. Recall that Gy, is a central
extension of Z, , by Z. By lifting the standard action of Z,, , on Sl_, we obtain
a faithful orientation-preserving action of Gy, , on the real line. We call this
action the standard action of Gy, and denote it by © : G, ., — Homeo (R).

We give a detailed description of the action of G, » on R. First of all, we
give a combinatorial description of the end of the tree T' = T, 5.
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1 (n—1) . (m—1) or (n—1)

Figure 4.2: Labeling of edge

Let us take a basepoint % of T" as the midpoint of P and . For each edge
of T, we assign a label as in Figure 4.2.. Let e be a point of E(T'), which is
represented by an infinite ray -, emanating from *. Then by reading a label on
edge along the infinite path ~y., 7. is encoded by an infinite sequence of integers
+lyly -

Now let p : R — S be the universal cover, and E(T) = p~1(E(T)) C R.
Then the standard action G, ,, preserves E(T). A point of E(T) is given as the
sequence of integers (N; +l1l3---) where N € Z. Observe that the set of such
a sequence of integers has a natural lexicographical ordering. This ordering of
E( ) is identical with the ordering induced by the standard ordering <r of R,
so we denote the ordering by the same symbol <g.

The action of G, 5, on E( ) is easy to describe, since X and Y act on' Ty, p,
as rotations of the tree.

(N;+i ) - (N54(+1) ) (i £m—1)
z: D)) - E C

(Nj+(m — (N+1);—-)
(N;—i ) N;+1i' )
(Ny+i---) — ((N+1);-1i---)
y:q (Ny=i--) = (N —(E+1) ) (i#n—1)
N;=(n—=1) --+) = (N;+--)

See Figure 4.3.
Therefore, the action of s1, s2 and 52 are given by the formula

(N;+i--+) = (N;+11(6+1) ---)
(i £ m-1)
(N;+{m~ 1)) — (N;4+1(54+1)---)
. | (i #n-1)
) (Ni+(m-1)(n—1)i--) = (Ns+(E+ 1))
| ‘ (6 m—1)
(N +m = (n=1)(m=1)-) = ((N+1);=)
(N;—4---Y) = (N 4111 ---)
(Nit ) = (Nidm-Dn-1) )
)W) e W meDE-D ) £)
2 (Nj=li--w) = (N;+(@E—-1)---)  (i#1)
(Ni-11-) = (Vi)
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(N:—i---)

(N;+1i--)

(N:+(m—1)-)

(V1))

(N;+i--+) - (N;=1(+1) --)  (iAm—1)
1. ) Wit(m—1j)i---) = (N;=(@+1) ) (i#Fn-1)
2 W - D=1 ) o (Vi)

(Ni= e ) , > (N;—11--+)

Let B = (0;—1111---) and F = (0;+1111---) be the point of E(T) and
let <(g,r} be a left-ordering of Gy, » defined by the sequence {E, F'} and the
standard action ©. The following theorem gives an alternative definition of <p.

Theorem 4.2.2. The left ordering <(g r) is identical with the Dehornoy-like
ordering <p defined by S. '

Proof. By the formula of the action of Gy, on E(Tmn) given above, it is
easy to see that for 1(S)-positive element g € G, E <g g(F). Thus by
Property C of S, g(E) = E if and only if g = s for ¢ € Z. Similarly, s{(F) =
(0;-++(m~1)(n~1)---) > Fif ¢ > 0. Thus, we conclude 1 <p gthen1 <;g r} g,
hence two orderings are identical. O

We remark that a more direct proof is possible. That is, we can prove that
<{g,F} is a Dehornoy-like ordering without using Theorem 4.2.1. In fact, the
proof of Theorem 4.2.2 provides an alternative (but essentially equivalent since
it uses the standard action of G, ) proof of the fact that S has Property A.
On the other hand, using the description of the standard action given here, we
can give a completely different proof of Property C, as we give an outline here.
Let g € G. If g(E) = E, then g = s§ for k € Z. So assume g(E) < F,
so g(BE) = (N;lilalz---) where N <0, I; € {+,~}. Let c(g) be the minimal
integer such that [;; = 1 for all j' > j. We define the complexity of g by C(g) =
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(IN],c(g)). Now we can find 1(S)-positive element p, such that C(pgg) < C(g).
The construction of pg is not difficult but requires complex case-by-case studies,
so we omit the details. Here we compare the complexity by the lexicographical
ordering of Z x Z. Since C(g) = (0,0) implies g(F) = E, by induction of the
complexity we prove ¢ is o(S)-negative.

Remark 4.2.1. Regard G3» = Bj; as the mapping class group of the 3-
punctured disc D3 with a hyperbolic metric and let 33 C H? be the universal
cover of D3. By considering the action on the set of points at infinity of D3, we
obtain an action of G3o on R which we call the Nielsen-Thurston action. The

. Dehornoy ordering <p of By = G35 is defined by the Nielsen-Thurston action.
See [43]. In the case (m,n) = (3,2) the standard action © derived from Bass-
Serre tree is conjugate to the Nielsen-Thurston action hence the Dehornoy-like
ordering of G, , is also regarded as a generalization of the Dehornoy ordering
of Bz, from the dynamical point of view.

‘We say a Dehornoy-like ordering < p defined by an ordered finite generating
set S has Property S (the Subword property) if g <p wg holds for all S-word
positive element w and for all g € G. The Dehornoy ordering of the braid
group B, has Property S ([11]). One remarkable fact is that our Dehornoy-like
ordering <p of Gy, n does not have Property S except for the braid group case.

‘Theorem 4.2.3. The Dehornoy-like ordering <p of G, does not have Prop-
erty S unless (m,n) = (3,2).

Proof. We use the dynamical description of <p given in Theofe_m 4.2.2. If
m > 2-and n # 2, then

[s1(s251)]E = (0;+211---) <g (0;+(m —1)(n —1)1---) = [s281]E
hence s1(s251) <p (8281)- O

However we show that the Dehornoy-like ordering <p of G, has a slightly
weaker property which can be regarded as a partial subword property.

Theorem 4.2.4. Let <p be the Dehornoy-like ordering of G pn. Then g <p
s2g holds for all g € G. '

Proof. Observe that the standard action of s on E(T) is monotone increasing.
That is; for any p € E(T), we have p <g so2(p). Thus, g(E) < s29(E). The
equality holds only if g(E) = E, so in this case ¢ = s§ (k € Z). So in this case
we -also have a strict inequality g <p sag. O

Remark 4.2.2. A direct proof of Theorem 4.2.3 which does not use the dy-
namics is easy once we found a counter example. If (m,n) # (3,2), then
808182 = 518281 W for an S-positive word W, so

1.1 .1 1,11 -1
S7783 787 Ss281 = 87 S5 87 (525182)S5

1,1 -1 Y e—1
= 87 85 87 (s15281W)s;

— =1
= Ws;
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The last word is 1(S)-positive hence s1(s251) <p (s2$1). Using dynamics we
can easily find a lot of other counter examples. The main point is that, as we
can easily see, the action s; is not monotone increasing unlike the action of s;.
That is, there are many points p € E(T) such that s1(p) <g p.

Remark 4.2.3. Another good property of the standard generator S = {01,032}
of Bj is that the S-word positive monoid Ps U {1} = By is a Garside monoid
"hence BJ has various nice lattice-theoretical properties. See [3],[10] for a defi-
nition and basic facts of Garside monoid and Garside groups. In particular, the
monoid B7 is atomic. That is, if we define the partial ordering < on Bg," by
g =g if g~lg’ € B, then for every g € G, the length of a strict chain

11 < <g=g

is finite. However, if m > 3, then the S-word positive monoid Ps U {1} is not
atomic. If m > 3, then sg5182 = 51525152W holds for W € Ps so we have a
chain

- = 8%828182 ~ 8181528159 W = 51898189 < 818598152 W = 595189

having infinite length. Thus for m > 3, Ps U {1} is not a Garside monoid.

On the other hand, the groups G, have a lot of Garside group struc-
tures. For example, take a generating set X = {z,y} of Gm , so that Gy, =
(z,y|z™ = y™). Then the X-word positive monoid PrU{1} is a Garside monoid.
Moreover, if m and n are coprime, that is, if G, 5, is a torus knot group, then
there are other Garside group structures due to Picantin [39]. Thus, unlike the
Dehornoy ordering of B,,, a relationship between general Dehornoy-like order-.
ings and Garside structures of groups seem to be weak. It is an interesting
problem to find other family of left-orderings which is more related to Garside
group structure.

In the remaining case (m,n) = (3,3), the author could not determine
whether Ps U {1} is a Garside monoid or not.

4.2.3 Exotic orderings: left orderings with no non-trivial
proper convex subgroups

In [7], Clay constructed left orderings of free groups which has no non-trivial
proper convex subgroups by using the Dehornoy ordering of Bsz. Such an or-
dering is interesting, because many known constructions of left orderings, such
as a method to use group extensions, produce an ordering having proper non-
trivial convex subgroups. In this section we construct such orderings by using
a Dehornoy-like ordering of G, ,. By using the dynamics, we prove a stronger
result even for the 3-strand braid group case.

Let H be a normal subgroup of G = Gn,,. By abuse of notations, we
also use <p to represent both the Dehornoy like ordering of G = Gy, and
its restriction to H. First we observe the following lemma, where the partial
subword property plays an important role. »
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Lemma 4.2.3. Let C be a non-trivial <p-convezr subgroup ofH and G@ =
G2, IfGP N H = {1}, then skcs;* € C forallk € Z and c € C.

Proof. Let ¢ € H be a <p-positive element. Since G? N H = {1}, ¢ must be
1(S)-positive. So skc1s;* is 1(S)-negative, hence csfc~'s;* <p ¢. On the
other hand, by Theorem 4.2.4, cs’ﬁc‘1 >p 1. This implies that cs’zcc_l(E) =
cske1s7®(E) >g E, so cskc™1s5® >p 1. Since we assumed that H is a normal
subgroup, cssc~'sy* € H. Since C is a <p-convex subgroup, eskelsyF e C.
Hence we conclude s§cs;* € C. O

Now we show that in most cases, the restriction of the Dehornoy-like ordering
to a normal subgroup of Gy, ,, yields a left-ordering having no non-trivial proper
convex subgroups.

Theorem 4.2.5. Let H be a normal subgroup of G = Gy, such that GPNH =
{1}. Then the restriction of the Dehornoy-like ordering <p to H contains no
non-trivial proper convex subgroup.

Proof. Let C' be a non-trivial <p-convex subgroup of H and ¢ € C be <p-
positive element. Since ¢ must be 1-positive, by Lemma 4.2.3, we may assume
that ¢ = s38182w where w is a 1-positive element, by taking a power of ¢
and conjugate by ss if necessary. Similarly, we also obtain ¢’ € C such that
¢ = w'sys159 where w' is a l-positive element. By computing the standard
action of ¢’c, then we obtain’

de(E) = w'sgsys2s150w(E) >r w'ses;sisyse(E) = w'(1;—11(n — 1)11--+)
Sp o (1;—1111---).

Thus, for any h € H, (dc)V(E) >g (N;—1111--+) >g h(E) >g E holds for
sufficiently large N > 0. Since C is convex and c'c € C, this implies h € C so

we conclude C' = H.
O

The assumption that G® N H = {1} is necessary, since H N G? yields a
< p-convex subgroup of H. ;

" Remark 4.2.4. Observe that the hypothesis G® N H = {1} implies that H
is not a finite index subgroup of G. Since G = G n = Z %z Z, [26, Corollary,
Page 253] shows that if H is finitely generated then H is a free subgroup of G.

Theorem 4.2.5 provides an example of a left-ordering of the free group of
infinite rank which does not have any non-trivial proper convex subgroups. For
example, take F = [B}, B}, where B} = [Bs, Bs] & F, be the commutator
subgroup of Bs that is isomorphic to the rank 2 free group. '



Chapter 5

Construction of isolated
group ordering

In this chapter we study isolated group orderings. We will concentrate our at-
tention to genuine isolated left orderings: that is, we mainly consider the case
G admits infinitely many (uncountably) many left orderings, since the classi-
fication of groups having only finitely many left-orderings is given by Tararin.
See [28]. OI it is difficult to construct genuine isolated left orderings of groups.

Only two families of isolated orderings are known. ‘

1. Dubrovina-Dubrovin ordering (See Section 1.4.2)

2. The central extension of the Hecke groups, which has a presentation of
the form
T, ={a,b|b=ab"a)
This example was found by Navas, in [35].

Now we observed in Chapter 4 that the Navas’s example of isolated orderings
are extended as follows. :

2’ The amalgamated free product of two cyclic groups, which has a presen-
tation of the form ’

Gmm = (a,b] (ba™ )" 1b = a)

The main theorem of this chapter provides a new construction of isolated
left orderings by means of the partially central cyclic amalgamation. From two
groups having (not necessarily genuine) isolated orderings, we construct a new
group having an isolated left ordering. In almost all cases, the constructed
isolated orderings are genuine. Our construction is not related to Dehornoy-
like ordering construction given in previous Chapter, and gives a lot of new
isolated ordering which cannot be obtained from the deformation of Dehornoy-
like orderings.

51
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Theorem 5.0.6 (Construction of isolated left ordering via partially central
cyclic amalgamation). Let G and H be finitely generated groups. Let zg be a
non-trivial central element of G, and zg be a non-trivial element of H.

Let G ={91,...,9m} be a finite generating set of G which defines an isolated
left ordering <g of G. We take a numbering of elements of G so that 1 <g
91 <@ ... <@ gm holds. Similarly, let H = {h1,...,hn} be a finite generating
set of H which defines an isolated left ordering <z of H such that the inequality
1 <g hy <g ... <y hn holds. We assume the cofinality assumption CF(G),
CF(H), and the invariance assumption INV(H).

CF(G) g; <¢ zg holds for all 4.
CF(H) h; <g zg holds for all 1.
INV(H) <y is zH--m'ght invariant.

Let X =Gxz H=G *ézG=ZH> H be an amalgamated free product of G and
H. Fori=1,...,m, letz; = gizﬁlhl. Then we have the following results:

1. The generating set {z1,...,Zm,h1,...,hn} of X defines an isolated left
ordering <x of X. _ ’

2. The isolated ordering <x does not depend on a choice of o generating
sets G and H. Thus, <x only depends on isolated orderings <q,<g and

ZQs2H-

8. The natural inclusions vq : G — X and vy : H — X are order-preserving
homomorphism.

4.1 <x 21 <x +  <x Tm <x h1 <x -+ <x hn <x zg = 2g. Moreover,
z = zg = zp 18 <x-positive cofinal and the isolated ordering <x is z-right
invariant. :

5. For an isolated ordering <, let r(<) be the minimal number of the gener-
ator of the positive cone P(<). Then r(<x) < r(<g) +r(<m).

6. Let Y be a non-trivial propér subgroup of X. If Y is <x-convezx, then
Y = (z1), the infinite cyclic group generated by 1.

“We call the construction of isolated ordering described in Theorem 5.0.6 the
partially central cyclic amalgamation construction. ‘

As we will see in Lemma 5.1.3 in Section 5.1.1, the cofinality assumption
CF(G) (resp. CF(H)) are understood as an assumption on zg and <g (resp.
zg and <g). Thus, Theorem 5.0.6 (2) shows that the choice of generating
sets G and H is not important, though it is useful to describe and understand
-the isolated ordering <x. Therefore the generating sets G and H . play rather
auxiliary roles and are not essential in our partially ¢entral cyclic amalgamation
construction. This makes a contrast with the construction using Dehornoy-like
orderings.
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Theorem 5.0.6 (3) shows that the partially central cyclic amalgamation con-
struction can be seen as a mixing of two isolated orderings <g and <z. We
remark that Theorem 5.0.6 (4) implies that we can iterate the partially central
cyclic amalgamation construction. Thus, we can actually produce many isolated
orderings by using the partially central cyclic amalgamation constructions.

The proof of Theorem 5.0.6 (1) given in this paper is constructive so the
proof actually provide an explicit algorithm to compute the isolated ordering
<x. In particular, the isolated ordering <x can be determined algorithmically
if we have algorithms to compute isolated orderings <g and <jz. See Section
5.1.7. '

Unlike the partial central cyclic amalgamation (the amalgamated free prod-
uct in Theorem 5.0.6), the usual free product does not preserve the property
that the group has an isolated left orderings. For example, Navas showed that
the free group of rank two Fy = Z % Z has no isolated orderings [34], whereas
the infinite cyclic group Z has isolated orderings. Indeed, recently Rivas [40]
proved that the free product of groups does not have any isolated left orderings.
Similarly, the direct product of groups also does not preserve the property that
the group has an isolated left orderings: Z x Z has no isolated orderings.

5.1 Construction of isolated left orderings

5.1.1 Cofinality and Invariance assumption

First of all we review the assumptions in the statement of Theorem 5.0.6 again,
and deduce their consequences. This clarifies the role of each hypothesis in
Theorem 5.0.6.

Let G and H be countable groups having an isolated left ordering <g, <z
respectively. Let zg € G be a non-trivial central element of G, and let zgx be
a non-trivial element of A, which might be not central. We consider the group
X obtained as an amalgamated free product

X = G*ZHZ G*(ZG=2H> H,

which is again countable.

Let G = {g1,---,9m} be a generating set of G which defines an isolated left
ordering <o of G. We take a numbering of elements of G so that 1 <¢ g1 <¢
+++ <@g gm holds. Similarly, let H = {h1,..., h,} be a generating set of H which
defines an isolated left ordering <z of H, and we assume that the inequality
1<y hy <g---<g hy holds.

As next lemma shows, the choice of the numbering of G implies that g; (resp.
hi1) is the <g-minimal (resp. <g-minimal) positive element, hence g; (resp. h1)
is independent of a choice of the generating set'G (resp. H).

Lemma 5.1.1. Let G = {g1,...,9m} be a generating set of a group G which
defines an isolated left ordering <g of G. Assume that g1 is the <g-minimal
element of the set G. Then g1 is the <g-minimal positive element. In particular,
<@ is discrete. Moreover, <g is g1-right invariant.
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Proof. Assume g € G satisfies the inequality 1 <g g <g g1. Since 1 <g g, g1 is
written as a G-positive word g = ¢4, -+~ ¢gs,- If i1 # 1, then gl_lgi1 >¢ 1, which
is a contradiction. If [ > 1, then g7 191’1 >g 1 unless i1 = 1. So we conclude
g=91.

The g;-right invariance of the ordering <g now follows from the fact gy is
<e-minimal positive element: If @ >g b, then b~lag; >g b7 ta >¢ 1. Thus,
b~lag1 >¢ g1 s0 ag1 >¢ bgi. O

To obtain an isolated ordering of X from <g and <z, we impose the fol-
lowing assumptions, which we call the cofinality assumption and the invariance
assumption.

CF(G) ¢; <g #g holds for all 1.
CF(H) h; <g zg holds for all 4.
INV(H) <y is zg-right invariant.

We here remark that the invariance assumption for < is automatically satisfied:
that is, <g is zg-right invariant since we have chosen zg as a central element.
First we observe the following simple lemma.

Lemma 5.1.2. Let <y be a discrete left ordering of a group H, and let hy be
the <g-minimal positive element. If <g is an h-right invariant for h € H, then
h commutes with hy.

Proof. <g is an h-right invariant, so hhih™! >z 1 and h=hih >g 1. hy is the
< g-minimal positive element, kRh1h~! >x hy and h=1hih >g hi. Thus, we get
hh1 >g hih and hi1h >g hhy, hence hhy = hih. O

By Lemma 5.1.1 and Lemma 5.1.2, the invariance assumption [INV(H)]
implies that zy commutes with hy. ‘

Recall that an element ¢ € G and a left-ordering < of G, g is called <¢-
cofinalif forall g’ € G, there exists integers m and M such that g™ <¢ ¢’ <g g™
holds. Although the cofinality assumptions [CF(G)] and [CF(G)] involves the
- generating sets G and H, these assumptions should be regarded as assumptions
on zg, zx and isolated orderings <g, <g as the next lemma shows.

Lemma 5.1.3. Assume the invariance assumption [INV (H)] is satisfied. A
generating set H satisfying the cofinality assumption [CF(H)] ezists if and only
if zg is <g-positive cofinal and H # (zm). Moreover, in such case we may
choose a generating set H so that the cardinal of H is equal to the rank of the
isolated ordering <y .

Proof. It is easy to see if a generating set H satisfies the cofinality assumption
[CF(H)] and the invariance assumption [INV(H)] is satisfied, then zg is <g-
positive cofinal and H # (zg). We show that under the invariance assumption
[INV(H)], if zg is <g-positive cofinal and H # (zg), then we can choose
a generating set H = {h1,...,hg} which defines the ordering <g so that H
satisfies [CF(H)] and k = r(<g).
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Let us take a generating set #' = {h], ..., h}} of H which defines the isolated
ordering <y and k = r(<g). Assume that b} <y ... <g b}, <g zg <y
hiyq <@ -++ <g hy. Since zg is <g-cofinal, for each i there is a non-negative
integer N; such that 1 <gy z;IN"hg < zg. Let hy = zI}N"hg. By assumption,
h; =h; if i < s. Since H # (zm), zg >g b} = h1. So if necessary, by replacing
h; with h;~1h;, we can assume that h; # zg for all 4.

We show that zgy is written by a {A{,...,h}}-positive word. Assume that
zg = VAW, where i > s and V, W are H’-positive or non-empty words. Then
zgW ™t = VRWW™! = Vh] >y Vzg, hence we get 1 > W >p 25'V2gy.
However, <y is zy-right invariant, zI}1VzH >g 1. This is a contradiction.

Therefore, the generating set H = {h1,...,hs} also defines the isolated
ordering <z. So ‘H is a generating set which satisfies the cofinality assumption
[CF(H)] with cardinal k = r(<g). : O

Thus, under the invariance assumption [INV (H)], we can always find a gen-
erating set H which defines <z and satisfies the cofinality assumption [CF (H)]
if the condition on <z and zgy in Lemma 5.1.3 is satisfied. Moreover, if nec-
essary we may choose H so that the cardinal of H is equal to the rank of <g.
Since for zg and <¢ the invariance assumption is automatically satisfied, we
can always find a generating set G which defines < and satisfies the cofinality

-assumption [CF(G)] if zg is <g-positive cofinal and G # (z¢).

Now we put Ay = thl"l. Since zz and h; do not depend on a choice of
a generating set H, so is Ag. As an element of H, Ay is characterized by the
following property.

Lemma 5.1.4. Ay is the <g-mazimal element which is strictly smaller than
ZH- )
Proof. Assume that thl_l = Ay <g h <g zg holds for some ‘h € H. Then

hl_1 <g szlh <g 1. By Lemma 5.1.1, hl’1 is the <py-maximal element which
is strictly smaller than 1, we get zf}lh = hl_l, hence h = thl_l. |

Finally, we put z; = giA;Il = gizf}lhl and let X = {z1,...,Zm}. Then
{X,H} generates the group X. The following lemma is rather obvious, but
plays an important role in the proof of Theorem 5.0.6. '

Lemma 5.1.5. zp = zg commutes with all x;.

Proof. By Lemma 5.1.2, zg commutes with Ay = thl_l. Since zg = zg-
commutes with all g;; we conclude that zy commutes with all z; = giAﬁl. O

5.1.2 Property A and Property C criterion

To prove that {X,H} defines an isolated left ordering <x of X, we use the
following criterion which is a genelarization of Property A and C introduced in
Chapter 4.

Definition 5.1.1. Let & = {s1,...,5m} be a generating set of a group G and
let W be a sub-semigroup of (SUS™1)*.
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1. We say W has the Property A (Acyclic Property) if no words in W repre-
sent the trivial element of G.

2. We say W has the Property C (Comparison Property) if for each non-
trivial element g € G, either g or g~! is represented by a word w € W.

Propotition 5.1.1. Let W be a sub-semigroup of (SUS™1)*. Let P = n(W),
where 7 : (SUSTY)* — G be the natural projection. Then P is equal to a
positive cone of a left ordering of G if and only if W has Property A and C.

Proof. If W is a positive cone of a left ordering, then it is obvious that W has
Property A and C. We show the converse. Since W is a sub-semigroup, P is a
sub-semigroup of G. By Property C, G = P U {1} U P~1. Property A implies
1 € P, hence G is decomposed as a disjoint union, G = P[[{1} [ P~!. This
shows that P is a positive cone of a left ordering. |

Definition 5.1.2. The set of words W in Proposition 5.1.1 is called a language
defining a left-ordering <g.

As a special case, we get a criterion for a finite generating set to define an
isolated ordering, which will be used to show {X,H} indeed defines an isolated
ordering. '

.Corollary 5.1.1. A finite generating set G = {91, -, 9m} of a group G defines
an isolated ordering of G if and only if the following condition [Property A]
and [Property C] hold:

Property A If g € G is represented by a G-positive word, then g # 1.
Property C If g # 1, then g is represented by either an G-positive or an G-

negative word.

5.1.3 Reduced standard factorization

Now we begin to show that {X, H} indeed defines an isolated left ordering of X.
As the first step of the proof, we introduce a notion of standard factorization.

Let PX be a sub-semigroup of X generated by X = {z1,...,Zm}. A stan-
dard factorization of z € X is a factorization of z € X of the form

Flz)=rpig1--pa
where 7,q1,- -+ ,q1 € H, p1,...,p € PX which satisfies the conditions
1 ¢ >gl{i#l),and ¢ 2m 1.
2. q; # 2 for all N > 0.

For a standard factorization F(x) = rpiq1---piqi, we say [ is a complexity
of a standard factorization F(z), and denote by c(F).
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A distinguished subfactorization of a standard factorization F(z) is a part
of the standard factorization F(z) of the form :

W = TaGiPit1Gi+1 """ Pitrfitr:
which satisfies the two conditions
l.gg=Agforall j=4,i+1,...,04+7.
2. pje{z1,.- Tm} forallj=i+1,...,i+r.
3. p, :‘pixgl e PXU{1}

Since g; = x;Ag, a distinguished sub-factorization w is naturally regarded
as a G-positive word. We will often denote a distinguished subfactorization w
by [g], by using an element g € G represented by a G-positive word w, as .

T = Thdqi- 'pi—l.Qi——lp;—{-l(xa(Ii  DitrQitr)Pidrt1Qitr+1 " PIGL
= Tpiqi-- 'pi—lqi—1p§+1[g]pi+r+1qi+r+1 g

Let us take z, so that pj,. 1 = &5 'Piyr+1 € PX U {1}. We say a distin-
guished subfactorization w is reducible if gg, > z¢ holds for some choice of
such z,,. We say a distinguished subfactorization w is mazimal if there are no
other distinguished subfactorization which contains w. That is, ¢;..1 # Ay, and
Qitr+1 D i pigry1 € X ={21,..., 20 }.

Now we define the notion of a reduced standard factorization, which plays
an important role in the proof of both Property A and Property C.

Definition 5.1.3 (Reduced standard factorization). Let F(z) = rpiq1---miqr
be a standard factorization. We say F is reduced if q; <y zpy for all ¢ and F
containsg no reducible distinguished subfactorization.

First we show the existence of the reduced standard subfactorization. The
proof of next lemma utilize the standard form of amalgamated free product,
and mainly works in the generating set {G, H}. ’

Lemma 5.1.6. Every element x € X admits a reduced standard subfactoriza-
tion.

Proof. Since X is an amalgamated free product of G and H, every z € X is
written as :
T = QoW1q1W292 - - Wik

" where ¢; € H, w; € G, and ¢; # 28 and w; # z¥ for any N € Z and i > 0.

Since zg is <g-cofinal, for each ¢ > 0 there exists N; which satisfies
zg" <g w; <@g zg”'l.

We put w; = z&N ‘w;. Then w} satisfies the inequality

1 <@ ’w,z-k.<g 2y
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Similarly, zz is <g-cofinal, for each ¢ > 0, there exists M, which satlsﬁes the

inequality

M; M; 1
zyt <m Apgi <mg 2zt

“Let L; = sz(N + Mj), and put ¢f = zI}L (zg ’Aqu)zH Since <g is
zp-right invariant, 1 <z ¢ <z zg holds. Since we have assumed that ¢; # zH,
q; # Ag. Thus, 1 <y ¢} <y An. )

Then we get a reduced standard factorization of z as follows.

T = qoWiqy---wWiq

N;_
= gz w)a (28 ws) -+ (2g " wiiy a1 (zmiwi)a

(quH ywilgzi) - wisy (G- 1Z§’)wz*qz

(q023y )w1(Q1ZH) wiy (@12 W At ey (2" Ara)
= (QO Hwi(a ZH ) Wi AR ! NI+ML( I}Nl MApq- 1ZN1+MI)("U?AI}1)Q;
= (QOZ )wI(QLZH ) -zﬁ’*Ml (wl—lAH Jai—1(wi AH @

= (qozH")(wi‘AI}l)qi‘ o (Wi ARG (W AR g

Now we choose an arbitrary G-positive word expression of each w;, and rewrite
them by the generators {X,H} by using the relation g; = z;Ag. Then we
get a standard factorization F(z). By construction, all distinguished sub-
factorization is derived from wj, so all distinguished sub-factorization are not

reducible.
O

5.1.4 Reducing operation and the proof of Property A

In the proof of Lemma 5.1.6 given in previous section, we mainly use the gen-
erating set {G,H}. In this section we give an alternative way to get a reduced
standard factorization, which works mainly in the generating set {X, H}.

For a standard factorization F(zx), let' d(F) be the number of maximal re-
ducible distinguished subfactorizations. We may regard a pair of non-negative
integers (c(F), d(F)) as a complexity of standard factorization. We say a stan-
dard factorization F(x) = rp1g1---piqi is pre-reduced if 1 <y g; <g zg holds
for all 4.

The following Lemma 5.1.7 and Lemma 5.1.8 gives another proof of existence
of a reduced standard factorization.

Lemma 5.1.7 (Existence of pre-reduced standard factorization). Every element
x € X admits a pre-reduced standard factorization.

Proof. Since z;! = Apg; ' = Agzi'(2¢g] "), every element z has a standard
factorization

F(z) =rprq1- - miar-
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For each 1, take M; > 0 so that z}\{/fi <g ¢ <g zf‘-{/f”l. Let L; = ZjZi M;
and ¢f = z;lL"qizIIf“ = z;{Li“(z;IM"' qi)zi{*l. Since <y is zy-right invariant,

1 <g g <m zf. Therefore, we get a pre-reduced standard factorization

T = g
= o pe1q-p(ZE )

= g1 -1 (@125 )mig)

—Mi—My_1, —M~M;_1
= Trp1iqr- - Pl-17g (ZH

—Li_
= P11 Pi-1Zg Q1]

Ml)

Q-125")01q]

Loypig} - ;-

(rzg

o

Lemma 5.1.8 (Reducing operation). Let F{x) = rpi1q1 - piqi be a pre-reduced
standard factorization of x € X. If F(z) contains a reducible distinguished
subfactorization, then we can find another pre-reduced standard factorization

F'(z) =r'piqg) -+ which satisfies either ¢(F') < c(F) or d(F') < d(F). More-
over, if r >y 1 then ' >g 1. :

Proof. Let g be a maximal reducible distinguished subfactorization. Then the
pre-reduced standard factorization JF(x) is written as -

F(z) = rp1q1 -+ Die19i—1059]Tuplds < - D1
Now take N > 0 so that zY <g ggu <¢ 25"

z = IT‘P1<J1 o 'pi—lq'i—lpfli [g]xuplsqs R 21l
= TP1q1 - Pim1Gi-1Pi26 (25 99u) AR Dids - mia

For j <1, let p} = z;Iijzﬁ and let p} = zI}Npgz;_,N. Then,

¢ = (rz2p)piqr Pi_19i-1P5 (99uzg” ) AT Pgs - D1y
First of all, assume that (25" 99u) = 26 = zm. Then
¢ = (rzg)pia Pi1Gi-1 (0 g Ag s i
= (rzp)piqr - Pi16i-1(Pfhapl)gs - pigy

In this case, by modifying the last standard factorization into a pre-reduced
standard factorization as in the proof of Lemma 5.1.7, we get-a new pre-reduced
standard factorization F’ of z which satisfies ¢(F’) < ¢(F).
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Next assume that (gguzC_;N) # zg. Then let ¢’ = (zc_;Nggu)gl_l. Then
1<¢ ¢ < zayy ! and we get a new pre-reduced standard factorization

Flz) = (rz)piar pi_16i-10; 9 1A D.es - - miay
' = (ng)p?fh o Di 1010 9 (X10)) s - - g
= Ap if and only if p; = Ay, hence d(F’) < d(F). O

Now we are ready to prove Property A.

Propotition 5.1.2 (Property A). If x is expressed as an {X, H}-positive word,
then x # 1.

Proof. Assume that z is expressed by an {X,H}-positive word. Such a word
expression can be modified to a standard factorization which is also an {X, H}-
positive word. By the proof of Lemma 5.1.7, we can modify such a standard
factorization so that it is pre-reduced, preserving the property that it is also an
{X, H}-positive word. By Lemma 5.1.8, we may modify the {X, H}-positive pre-
reduced standard expression F(x) so that it is { X, H}-positive reduced standard
factorization. :

Now let us rewrite F(z) as a word on {G,H} as follows. First we replace
each distinguished subword [g] in F(z) by the corresponding G-positive word.
Then we remove the rest of x; by using the relation z; = giA;II. Thus, we
write z = WoViW; - - - V,,W,,, where W; is a word on H*! and V; is a word on
G*1. Since F(z) is a reduced standard expression, V;, W; ¢ (zH> for 4 > 0. This
1mphes that z # 1, since X = G *(;5—zy) H.

|

5.1.5 Proof of Property C

Next we give a proof of Property C. To being with, we observe a simple, but
useful observation.

Lemma 5.1.9.
;e = N(X, H)AZ

where N (X, H) represents a {X, H}-negative word.

Proof. Since zg = zg and x; = giAl}l, we have
zr = A (97 T2a0r 1Al

Therefore

hflxi = (h7 2 Ag )z (25 0100 A = (hy h1)2T (25 9190 AF

Since zG gz <G 1 and g1 is <@-minimal positive, z,; lg; <@ g1 , hence z; 1919; <G
1. Thus, (h; Yh1)oT (25" g19:) is written as an {X, H}-negative word.
‘ O
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Now\v%ze are ready to prove Property C.

Propotition 5.1.3 (Property C). Each non-trivial element z € X is expressed
by an {X, H}-positive word or an {X,H}-negative word.

Proof. Let x be a non-trivial element of X and take a reduced standard factor-
ization of z, '
v Flz)=rpq1---niqi-

Recall that each p; is written as an X-positive word and each ¢; is written as
an H-positive word. If r >g 1, r is also written as an H-positive or an empty
word, hence we may express z as an {X, H}-positive word.

By induction on { = ¢(F), we prove that  is expressed by an {X, H }-negative
word under the assumption r» <z 1.

First assume that ¢ # Apg. Since r <y 1, we can express r as r =
N'(H)hT!, where N'(H) is an H-negative word or an empty word. Take an
X-positive word expression of p; = x;, %;, - - - ;. Then by Lemma 5.1.9,

rp1page- - = (N'(H)hy 1)(3;113;1,2 i, )q1P2G2 <

' = N(H)(hy xi1)xiz"'xipq1p2q2"'
N(X, H)AF zi, - @5, q1p2ga -+

= N(X,H)(hy ®s,) - Ti,q1p2q2 -

N(X, H)AF @1pagz -+ -

N(X,H) represents a {X, H}-negative word.

Since S is a reduced standard factorization, ¢; <y zy. By Lemma 5.1.4
Apg is the <g-maximal element of H which is strictly smaller than zy, so
Q1 <g Ag. We have assumed that ¢; # Ag, (Aﬁlql) <g 1. Therefore, we
may write x as ’

= N(X,H)(Ag'q1)p2gs - pi-1as-
Then (Al}lql )p2gs - - - p1—1q1 is a reduced standard factorization with complexity
(I —1). By induction, (A%7'g1)p2gs - - pi—-1q; is written as an {X, H}-negative
word, hence we conclude that x is written as an {X, H}-negative word

Next assume that g1 = Ap. let w = [g] be the maximal distinguished subfac-
torization of F(x) which contains g;. Thus, the reduced standard factorization
S is written as

F(z) = rot[9]zupi@spst1 - - Digi
where p, = z;1ps € PX U {1}.
Then by Lemma 5.1.9,

. r = rp’l[g]xupsqspsﬂ DI
= N(X,H)hT gz ArAF DL+ mis
= N(X,H)h1 ' [glguAG'Pigs - - mra
= N(X,H)An(z5"99.)AF'Pits - miay
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The d1st1ngu1shed subfactorization g is irreducible, hence z, Y9g. <a 1. ThlS
implies that z5'gg, = AZ' N(X,H), hence

= N(X, H)AHA;;N(X; H)(Aﬁlpst e 'pIQZ)
N(X, H)(AFPgs - iar)

If p # 1, then (A " Yp!gs -+ i) is a reduced standard factorization. Hence
by induction, (A o Pags - - piqr) is expressed by an {X, H }-negative word.

Since we have chosen the maximal dlstlngulshed sub-factorization g, if p, =1
then g5 # Ag. Thus ¢, <y Ap, and (Ay qs)pq+1 - p1q; is a reduced standard
factorization. By induction, (A'gs)pg+1---piq is expressed by an {X,H}-
negative word.

Thus we conclude z is expressed by an {X, H}-negative word. O

5.1.6 Proof of Theorem 5.0.6

Now we are ready to prove Theorem 5.0.6.

Proof of Theorem 5.0.6. In Proposition 5.1.2 and Proposition 5.1.3;, we have
. already confirmed the Property A and C for the generating set {X, H}. Hence
by Corollary 5.1.1 the generating set {X,H} indeed defines an isolated left
ordering <x of X.

Now we show the ordering <x is independent of the choice of generating
sets G and H. Let ¢’ = {¢],...} and H' = {h],...} be other generating sets
of G and H satisfying [CF(G)] and [CF(H)]. Recall that Ay = th does
not depend on a choice of a generating set H. Let z; = g;A Hl, z, = ngI‘_I ,
X ={z1,...,},and X' ={z,..., }.

Since H and ‘H' are generator of the same semigroup, we may write h; as an
H’-positive word. Similarly, since G and G’ are generator of the same semigroup,
we may write g; as a G'-positive word g; = g;, g;, - - - g7, Thus,

T = gAG = 9, 9%, ~~-g§lAI}1 ay, Apgzi, Ag -z, Agz)
so z; is written as an {&”, H'}-positive word. Thus, if z € X is expressed by an
{X, H}-positive word, then z is also represented by an {X’, H'}-positive word.
By interchanging the role of (G, H) and (G’, H'), we conclude that {X,H} and
{&’,H'} generates the same sub-semigroup of X. Hence they define the same
isolated ordering of X. :

(3) is obvious from the definition of <x.

The inequality fi; <x ha <x -+- <x hy is obvious from the definition. By
Lemma 5.1.9, z; <x hl for all 1. Novv we show z; <x x; if i < j. Since
9 <g g; ifi <3, 97 gy is written as a G-positive word. Novv by definition
gi = T;A g, so we may express G- pos1t1ve word expression of g; *g; as an {X, H}-
posmve word expression of the form g; gj = P(X H)Ag. Therefore «; 13:]
Apg; g]A I — P(X,H), so z; < z;. The assertion that z = zg = zgy is
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< x-positive cofinal is obvious. To see <x is z-right invariant, we observe that
z7 2z =2 >x 1 and z7hjz >x 1. Now for z,2’ € X, assume z <x ', o
z~1z' is written as {X, H}-positive word w = s7 - - - 8, Where s; denotes z; or
hj. Then z7Y(z71z)z = (2 1s12)-+- (27 1smz) >x 1, hence zz <x z'z. This
completes the proof of (4).

To show (5), recall that by Lemma 5.1.3, we may choose the generating sets
G and ‘M so that the cardinal of G, H are equal to r(<g), r(<m) respectively.
Thus, r(<x) < r(<q) +r(<H).

Finally, we prove that (z;) is the unique < x-convex non-trivial proper sub-
group of X. Recall by (2), (4) and Lemma 5.1.1, z; is the minimal <x-positive
element of X, hence z; does not depend on a choice of G and H. In particular,

“{z1) is a non-trivial < x-convex subgroup.

Let C be a <x-convex subgroup of X. Assume that C O (z1). Let y €
C —(z1) be an <x-positive element. Then y is written as y = 27*z; P(X,H) or
y =z P(X,H) wherem > 0,1 >0, j > 1 and P(X,H) is an {X, H}-positive
word. Since z; € C, we may choose y so that m = 0.

First we consider the case X ¢ (z1). Then we may choose y so that 1 <
o < <x vy holds, so the convexity assumption implies o € C ‘Now observe that
z7 lpg = AHgl oo AG = = AgP(X,H), hence

1 <x hy < zghT' = Ag <x AgP(X,H) = 27 'z,

Since a:l_lxz € C, this implies X UH = {x1,...,2k, h1,...,hp} C C. Therefore
we conclude C = X.

Next we consider the case X C (z1). This happens only when G =Z = (g;)
and zg = g . Then We may choose y so that 1 < h1 <x y holds, so h; € C.
Then z7'h; = Aggythy = ATt zad1 'h1 s0 zgg7 = gl € C. This implies
za=zg€C,s0C=X.

: O

5.1.7 Computational issues B

In- this section we briefly mention the computational issue concerning the iso-
lated ordering <x. Let G = (S| R) be a group presentation and <g be a left
ordering of G. The order-decision problem for < is the algorithmic problem of
deciding for an element g € G given as a word on SUS™! whether 1 <g g holds
or not. Clearly, the order-decision problem is harder than the word problem,
since 1 <g g implies 1 # g. It is interesting to find an example of a left ordering
<g of a group G, such that the order-decision problem for < is unsolvable but
the word problem for G is solvable.

There is another algorithmic problem which is related to the order-decision
problem of isolated orderings. We say a word on G U G™1 is G-definite if w is
G-positive or G-negative, or empty. If G defines an isolated ordering ‘of G, then
every g € G admits a G-definite word expression. The G-definite search problem
is a problem to find a G-definite word expression of a given element of G.
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Theorem 5.1.1. Let us take G, H, X, <g,<m, za,2u,9,H, X as in Theorem
5.0.6.

1. The order-decision problem for <x is solvable if and only if the order-
decision problem for <g and <g are solvable.

2. The{X, ’H}—deﬁm’te search problem is solvable if and only if the G-definite
search problem and the H-search problem are solvable.

Proof. Observe that since the restriction of <x to G and H yields the ordering
<¢ and <y respectively, if the order-decision problem for <x. is.solvable, then
so is for <g and <g. Assume that {X, H}-definite search problem is solvable.
It is easy to see that this imp}lies' ‘H-definite search problem is solvable. Since if
z € G C X, then {X, H}-definite word expression of z is naturally transformed
into G-positive word by using ¢g; = 2;Ag and zg = zg, hence G-definite search
problem is also solvable.

The proof of converse is implicit in the proof of Theorem 5.0.6 (1). Recall
that in the proof of Property C (Proposition 5.1.3), we have shown that for a
reduced standard factorization F(z) = rpigr---pqi, ¢ >x 1'if r > 1 and
z <x 1if rg < 1. Moreover, the proof of Property C (Proposition 5.1.3) is
constructive, hence we can algorithmically compute an {X, H}-negative word
expression of z if r <y 1 if the G-definite search problem and the H-search
problem is solvable.

Thus, to solve the order-decision problem or { X, H }-definite search problem,
it is sufficient to compute a reduced standard factorization. We have established
two different method to obtain a reduced standard factorization, in the proof
of Lemma 5.1.6 and Lemma 5.1.8. Both proofs are constructive, hence we can
algorithmically compute a reduced standard expression. O

It is not difficult to analyze a computational complexity of order-decision
problem or the {X,H}-definite search problems based on the algorithm ob-
tained from the proof of Proposition 5.1.3, Lemma 5.1.6 and Lemma 5.1.8. In
particular, we get tthe following result on the computational complexities.

Propotition 5.1.4. Let us toke G, H, X, <qa, <H, z¢, 2,9, H, X as in Theo-
“rem 5.0.6.

1. If the order-decision problem for <g and <g are solvable in polynomial
time with respect to the input of the word length, then the order-decision
problem for <x is also solvable in polynomial time.

2. If the G-definite sedrch problem and the H-definite search problem is solv-
able in polynomial time, then {X, H}-definite search problem is also solv-
able in polynomial time.

3. Moreover, if one can always find a G-definite and a H-definite word ex-
pression whose length are polynomial with respect to the length of the in-
put word, then one can always find {X, H}-definite word expression whose
length is polynomial with respect to the length of the input word.
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5.2 Examples

In this section we give examples of isolated left orderings produced by Theorem
5.0.6.

5.2.1 Examples and new phenomenons

First we give examples of isolated left orderings produced by Theorem 5.0.6. All
examples in this section are new, and have various properties which previously
known isolated orderings do not have. For the sake of simplicity, in the following
examples we only use the infinite cyclic group Z, the most fundamental example
of group having isolated orderings, as the basic building blocks. Other groups
and isolated orderings, such as groups having only finitely many left-orderings,
or the braid group B, with the Dubrovina-Dubrovin ordering <pp, also can be
used to construct new examples of isolated orderings.

Example 5.2.1. Let a1,...,a,m (m > 1) be positive integers bigger than one
and consider the group obtained as a central cyclic amalgamated free product
of m infinite cyclic groups Z% (i=1,...,n),

G=Gaynr, = 51720 = ZD) 5q (2P g (- - - (ZD wg 2.0 )

= (T1,..., T |2} =22 = ... = 22m)

By Theorem 5.0.6, the group G has an isolated left ordering <¢.

The group G is the simplest example of groups and isolated orderings con-
structed by Theorem 5.0.6, but nevertheless has various interesting properties
which have not appeared in the previous examples:

(1) r(<g) =m.

Since G is an amalgamated free product of m infinite cyclic groups, the rank
of G is m. On the other hand, Theorem 5.0.6 (5) says ¢(<¢g) < m. Hence the
rank of isolated ordering <¢ is m.

(2): The isolated orderings <g of G is not derived from Dehornoy-like or-
derings if m > 2.

As we have seen in Theorem 4.1.1, a Dehornoy-like ordering having Property
F produces isolated orderings and vise versa. Now we observe that < cannot
be obtained from Dehornoy-like ordering if m > 2. Assume that < is obtained
from the Dehornoy-like ordering <p. Then by Proposition 4.1.3 there exists
at least r(<g) — 1 proper, <g-convex nontrivial subgroups. However, we have
seen that in Theorem 5.0.6 (6) the isolated orderings <@ has only one proper,
< @g-convex nontrivial subgroups.

(8): The natural right G-action on LO(G) has at least 2™ distinct orbits
derived from isolated orderings. ‘
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. Recall that there exists a natural, continuous right G-action on LO(G),
Observe that we have two choices of isolated orderings for each infinite cyclic
group factor Z(. Thus by Theorem 5.0.6 we can construct 2™ distinct isolated
left orderings of G. It is easy to see all of them belong to distinct G-orbits.
Hence, we have at least 2™ different G-orbits derived from isolated orderings.
Recall that m = r(<g) is equal to r(G), the rank of G.

(4): The natural right Aut(G)-action on LO(G) has at least 2™ distinct
orbits derived from isolated orderings if all ay,...,a;, are distinct.

As in the group G itself, there is a natural right Aut(G)—éction on LO(G).
As in (3), if all aq,...,a,, are distinct, then we have 2™ distinct Aut(G)-orbit
derived from isolated orderings. '

Example 5.2.2. Next we consider the construction of the case zy is non-
central. First of all, let Gy, o = (b,c|b™ = c™). By Example 5.2.1, Gy, », has an
isolated left ordering <, , which is defined by {bc!~", c}.

Then bc!™™ - b™ = bc is non-central element, but is <, ,-positive cofinal.
<m,n is (bc'~™)-right invariant by Lemma 5.1.1, and <, is also b™-right in-
variant since b™ is central: Thus, <y, is (bc)-right invariant.

Thus, we can take bc as an element zz in Theorem 5.0.6. Now we consider
the group G’ = Z *z, Gmn = Z %z (Z %z Z) defined by

p’q’m7n

{a,b,c|b™ = c", af = (be)?)

This group has an isolated left ordering <g, defined by {a(bc)'=9,bcl=", c}.
Let us put z = a(bc)179, y = (bc)!~™, and z = ¢. Then the group Gp g mn is
" presented as

G gmm = (T: 9, 2 |,(yzn_1)m = 2", (z(y2")? )P = (yz")9)

Now we observe a remarkable feature of the group Gy, ; m, .-

(5): The center of G' = G}, ; 1, 18 trivial.

Since G is an amalgamated free product of G, ,, and Z, central element in
G’ is written as aPV = (bc)? for some N. However, if N # 0, (bc)?" do not
commute with b, hence it is not central.

This is the first example of group having isolated left ordering with trivial
center. In a similar manner, we can construct many new examples of groups
having isolated ordering with trivial center.
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