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Preface

In this thesis we study scattering theory for Schrodinger equations on non-compact manifolds.

From the beginning of the 20th century, quantum mechanics has been the central research
topics in physics. The principles of quantum mechanics are fundamental, and it has branched
out into almost every aspect of modern physics such as elementary particles physics and con-
densed matter physics. In quantum mechanics, a partial differential equation called a Schrodinger
equation is used to describe how the quantum state of a physical system changes in time. The
time evolution is generated by a partial differential operator with respect to space, which is
called a Hamiltonian, or a Schrédinger operator.

Scattering is a physical phenomenon where moving particles and waves are forced to deviate
from a straight trajectory by non-uniformities- of the medium or forces. Quantum scattering
describes how solutions of partial differential equations, propagating freely in the distant past,
interact with potentials at the present, and then propagate away in the distant future. Quantum
scattering is a basic tool for physicists to study microscopic structure of particles. For example,
the Rutherford scattering (also referred as Coulomb scattering) of alpha particles against gold
nuclei led to the discovery of the nuclei, or the Rutherford model of atom.

Quantum mechanics and Schrédinger equations have been studied mathematically also. A
quantum state is represented by an element of a complex Hilbert space, and a Schrodinger .
operator is a self-adjoint realization of a partial differential operator. Time evolution is a unitary
operator generated by the self-adjoint operator. Mathematical quantum scattering theory is a
perturbation theory. If the unperturbed “free” operator Hy and the perturbed “full” operator H
are close in some sense, the information of the free system makes it possible to describe the full
system. ' v

We here introduce basic concepts of mathematical quantum scattering theory. Let H be a
self-adjoint operator on a Hilbert space 4#. The Schrodinger equation with initial value £,

d
i'gbt—l =Hu, u(0) =,
has a unique solution u(¢) = exp(—itH) f. The solution of the same equation with the operator
Hjy is given by ug(t) = exp(—itHp) fo. Scattering theory investigates the asymptotics of u(¢) as
t — oo in terms of ug(¢), and the unitarily equivalence of the absolutely continuous parts Héac)

and H'), The wave operator W.. (H, Hy) for the pair (H, Hp) is defined as follows

We(H, Ho) := s-lim e e~Hop, (Hyp)
where P,.(Hp) is the orthogonal projection onto the absolutely continuous subspace of Hy. The
existence of the limit is equivalent to the condition that for every free trajectory uff () which
starts from the initial data fg: € Py (Ho)H#, there exists a trajectory u™(¢) which starts from Vi
such that

() — uig ()| = ™ £ — 7o f5F | — 0 ©0.1)

 ast — oo, If the range of wave operators W coincides with the absolute continuous subspace
P,.(H)#% of H, then the wave operators Wy are said to be complete. If the wave operators



Wy (H,Hp) exist, completeness of the wave operators Wy.(H, Hy) is equivalent to the existence
of the inverse wave operators Wi.(H,Hp). Completeness of the wave operators implies that
for every trajectory u* () which starts from the initial data f* € P,.(H)J#, there exists a free
trajectory ug: (¢) which starts from foi such that (0.1) holds. For complete wave operators the

operators H(gac) and H(%) are unitarily equivalent each other.

The operator § = W} W_ is called the scattering operator, and is unitary in Py.(Hp)#¢ when
wave operators W are complete. Since the scattering operator S commutes with Hp, S acts as a
multiplication by a operator-valued function S(A), called the scattering matrix, in the diagonal
representation for Hy. The scattering operator and scattering matrix are important objects in
mathematical physics, because they relate the initial state of a system with the final state, and is
“measured” by physical experiments.

We give two typical examples of Schrodinger operator and corresponding scattering the-
ory. Let H = Hy+ V(x) be a Schrodinger operator in the space L?(R") where Hy = —A is the
Laplacian. We assume that the potential function V' is a multiplication operator satisfying the
short-range condition V (x) = O(|x|™#), with s > 1 as |x| — oo, Then it is well-known that
the wave operators W (H,Hp) exist and are complete. The scattering operator and scattering
matrix are defined accordingly. If V satisfies the long-range condition V (x) = O(|x|~#), with
u > 0, the wave operators do not exist in general. But we can show the existence and complete-
ness of wave operators by modifying the free propagation. We note that the Coulomb potential
V(x) = |x|~! is a critical case.

We consider Schrodinger operators on mamfolds which are sums of the Laplacian on man-
ifolds and potential functions. Richard Melrose introduced the concept of scattering manifolds
and investigated their properties extensively. We also consider manifolds with asymptotically
polynomially growing ends. We here explain concepts of these manifolds briefly. First recall
the polar coordinates in Euclidean spaces R”, that is, (r,0) € Ry x S*~!, where r is the ra-
dial coordinate and € is the angular coordinates. Let Ag.-1 be the Laplacian on "L, then
the Laplacian A on the Euclidean space can be written as A = a%zz +1r72Agn-1. Denote by d 62
the Riemannian metric on "1, then the Riemannian metric dx*> on Euclidean space is written
as dx? = dr? + r*d0?. We can regard the Euclidean space as a cone, the size of which grows
proportionally to the radial parameter 7. We extend these concepts to general non-compact man-
ifolds. A non-compact Riemannian manifold M with an “end” , where the metric g is of the form
g = dr? +r>d0? for large r, is called a manifold with conic ends. Here we also assume that the
“end” is decomposed into the product of R and a compact manifold dM, called a boundary
manifold, and we take the (extended) polar coordinates (r,8) € Ry x dM, and the comple-
ment of the “end” is relatively compact. If we allow metric perturbations of g = dr? +r2d6?
which decays as r — +oo, then the corresponding manifold is called a manifold with asymp-
totically conic ends, or, a scattering manifold. If the metric in the end is asymptotically of the
form g = dr? +r**d6? with o > 0, then the corresponding manifold is called a manifold with
asymptotically polynomially growing ends, indeed, the size of this manifold at  grows as r%.

This paper is constructed by three Parts. In Part I, we show the existence of modified wave

+operators for Schrodinger equations on scattering manifolds with long-range metric perturba-
tion and long-range potentials. In Part II, we consider Schrodinger equations on manifolds with
polynomially growing ends with short-range potentials. We prove the existence and complete-
ness of wave operators. The scattering operator and scattering matrix are defined accordingly.
We investigate the properties of the scattering matrix in Part III. We show that the scattering



matrix defined on the L? space of the boundary manifold does not change the wave front set if
o > 1. We give a summary and remarks of each of these three parts.

Part I

We consider Schrodinger equations on scattering manifolds with long-range metric perturbation
and long-range potentials (see Melrose [25] about scattering manifolds). We employ the for-
mulation of Tto-Nakamura [16], which uses the two-space scattering framework of Kato [21].
Following Hérmander [13] and Derezifiski and Gérard [6], we construct exact solutions of the
Hamilton-Jacobi equation and show the existence of the modified two-space wave operators
s-1imy_, o0 €H J15(:Dr,0) using the stationary phase method, where J is an identification oper-
ator from the reference system to the original system.

We refer Reed and Simon [31] Dereziriski and Gérard [6], and Yafaev [36] for general
* concepts of wave operators and scattering theory for Schodinger equations. The concept of
wave operator was introduced by Mgller [27]. The existence of wave operators has long been
studied (see Cook [2], and Kuroda [23]) for short range potentials, which decay faster than
the Coulomb potential. For the Coulomb potential, it was proved by Dollard [7, 8] that the
wave operators do not exist unless the definition is modified. Dollard introduced the concept
of the modified wave operators. Hérmander [13] constructed exact solutions of the Hamilton-
Jacobi equation (see also [14] vol. IV) for general smooth long-range potentials and showed the
existence of modified wave operators.

The spectral properties of Laplace operators on a class of non-compact manifolds were
studied by Froése, Hislop and Perry [10, 11], and Donnelly [9] using the Mourre theory (see,
the original paper Mourre [28], and Perry, Sigal, and Simon [29]). In early 1990s, Melrose
introduced a new framework of scattering theory on a class of Riemannian manifolds with
metrics called scattering metrics. Melrose and Zworski [26] showed that the absolute scattering
matrix, which is defined through the asymptotic expansion of genera]ized eigenfunctions, is a
Fourier integral operator. Vasy [33] studied Laplace operators on such manifolds with long—
range potentials of Coulomb type decay ( [V (r,8)| < Cr™1).

Ito and Nakamura [16] studied a time-dependent scattering theory for Schrodinger operators
on scattering manifolds. They used the two-space scattering framework of Kato [21] with a
simple reference operator D?/2 on a space of the form R x dM, where dM is the boundary of
the scattering manifold M.

We employ the formulation of Ito and Nakamura [16], and consider general long-range

' - metric perturbations and potential perturbations. We assume that the scalar potential decay as

V(r,0)| <Cr¢,e > 0.

We state some remarks along with the outline of the proof. The time-dependent modifier
function S(z,p, 0) is not uniquely determined. Our choice will be a solution of the Hamilton-
Jacobi equation on the reference manifold R x dM with the long-range potential V%:

38 o 98 28
apa ap) 89 'fat:

1, 1 1 1,
h(r,0,p,0) = 5p7 + sa1p” +~a)p s+ af W0+ VE,

h(

for large ¢ and for every p in any fixed compact set of R \ {0}, where & is the corresponding
classical Hamiltonian. We choose p and 0 as variables of S because p and 8 components of the



classical trajectories have limits as t goes to infinity. The time-dependent modifier ¢~i8(t:Dr,6)

. is a Fourier multiplier in r-variable for each 6 and we only need to consider the 1-dimensional
Fourier transform with respect to r-variable. We construct solutions of the Hamilton-Jacobi
equation mainly following J. Derezifiski and C. Gérard [6].

In Section 2.1, we consider the boundary value problem for Newton equation on R x dM
with time-dependent slowly-decaying forces, which decay in time (Definition 2.1). We use an
integral equation and Banach’s contraction mapping theorem (Proposition 2.4, refer Derezifiski
[5] and Section 1.5 of [6]). We observe that the classical trajectories will stay in outgoing
(incoming) regions as ¢ — —oo(—oo).

In Section 2.2, we consider Newton equations with time-independent long-range forces
which decay in space (Definition 2.5) in appropriate outgoing (incoming) regions. By inserting
time-dependent cut-off functions, we introduce an effective time-dependent force and reduce the
time-independent problem to the time-dependent one (Theorem 2.6). Our model (the Hamil-
tonian flow induced by the classical Hamiltonian) turns:out to fit into this framework (Lemma
2.8). These tricks are also used in [6] for Hamiltonians with long-range potentials on Euclidean
spaces. ' '

In Section 2.3, in Theorem 2.10 we construct exact solutions for the Hamilton-Jacobi equa-
tion, using the classical trajectories with their dependence on initial data. Here we use the
idea by Hormandor [13] (see also Section 2.7 of [6]). We show that these solutions with their
derivatives satisfy “good estimates™, which are used to show the existence of the modifiers.

Using the Cook-Kuroda method (see Cook [2], and Kuroda [23]) and 1-dimensional Fourier
transform, we deduce the proof of the main theorem to estimates of the integral (Proposition
3.1):

as ,0S as
/[h(r,e,p,—%(t,[),e))—h(%(t,p,9),9,[),—%(!,[),9))]

_eirp‘—iS(t,P,e)ﬁ(p, 0)dp.

In Section 3, we apply the stationary phase method (Hormander [14] Section 7.’7) to the integral.
In the asymptotic expansion of the above integral, the terms in which % is not differentiated
vanish since the equation r = dS/dp holds at the stationary points.

Part 11

We study Schrodinger operators with long-range potentials on non-compact manifolds with
asymptotically polynomially growing ends. We follow the settings in Froese and Hislop [10],
and show the spectral properties of Schrédinger operators using Mourre theory (see, the original
paper Mourre [28], and Perry, Sigal, and Simon[29]). We show the Kato-smoothness (see Kato
[20]) for three types.of operators. If the perturbation is “short-range”, it admits a factorization
into a product of Kato-smooth operators. By virtue of the smooth perturbation theory of Kato,
we learn the existence and the asymptotic completeness of wave operators in the one-space
scattering framework. By employing the formulation of Ito-Nakamura [16] as described in Part
I again, we show the existence and completeness of wave operators in the two-space scattering
framework. L
Froese and Hislop [10] studied manifolds with exponentially large ends, constant ends
(tubes), vanishingly small ends, and polynomially large ends. We follow the formulation of



Froese and Hislop [10], and Theorem 4.1 may be seen as a direct generalization of [10] to
long-range pertuabations. We note that the case where the perturbations decay as < Cr~2
considerd in [10]. .

De Bi¢vre, Hislop, and Sigal [4] studied a time-dependent scattenng theory for wave equa-
tions, and proved its asymptotic completeness for several classes of manifolds, including man-
ifolds with asymptotically growing ends with short-range perturbations. We consider more
general perturbations on angular part of the metric than them. Ito and Nakamura [16] stud-
ied a time-dependent scattering theory for Schrodmger operators on scattering manifolds in the
two-space scattering framework.

Our proof of the existence and asymptotic completeness of wave operators depends on the
smooth perturbation theory of Kato [20] (see Theorem 8.1, we refer Yafaev [34] and [36] also),
which shows: “If the perturbation V = H — Hp admits a factorization into a product of Kato-
smooth operators, then the wave operators W (H, Hp) exist and are complete”. The definition
of Kato-smoothness relies on the unitary evolution generated by the self-adjoint operator H,
but this definition is equivalent to estimates of boundary values of resolvents of H (Definition
7.1). The resolvent estimates assured by the Mourre theory (Theorem 4.1) imply the limiting
absorption principle via a technique in Section 8 of [29], where the scattering theory for N-body
Schrédinger operators with short range scalar potentials on Euclidean spaces is discussed. Then
the limiting absorption principle implies the Kato smoothness of Go = (r)™*, s > % in Theorem
4.2. The Kato smoothness of G1 = Yg(r)*D, is obtained in a similar way, but we have to
extend the technique in [29] from @ =1 to @ =2 (Lemma 6.3 (i)). The Kato-smoothness of

= xr(r )_%(— _Z“AaM)% is called the radiation estimates, where Ay,, is the Laplacian on
the boundary manifold dM. Our proof in Section 7 is similar to the one in [35], Wthh relies on
the commutator method (see Putnam [30] and Kato [22]).

The limiting absorption principle implies the asymptotic completeness in the case of two-
particle Hamiltonians with short-range scalar potentials on Euclidean spaces. However, radia-
tion estimates are crucial in scattering for long-range potentials on Euclidean spaces, in order
to handle the “angular part” of the perturbations which come from modifiers (see Yafaev [36]).
We found that radiation estimates are also useful for handling short-range metric perturbations
on non-compact manifolds. We note that in Yafaev [35] the radiation estimates is used to show
the asymptotic completeness for N-body Hamiltonians with short-range potentials. ‘

. In the two-space scattering, essentially we only need to examine wave operators for the
pair (D? — k(r)Ayu, D?), where typically k(r) = r—2% if |r| is large, and r € R. Since Ay
commutes with both of D2 —k(r)Ay,, and Hy, it reduces to the 1-dimensional scattering through
the spectral representation of —Ay,,. If k(r) is short-range (& > 1/2), we only need a narutal
identifier J. If k(r) is long-range, we construct 1-dimensional time-independent modifiers for
the corresponding 1-dimensional long-range scattering problem. We employ a class of pseudo-
differential operators with oscillating symbols (see Section 10, see Yafaev [37] also) as our 1-
dimensional modifiers. We construct approximate solutions to the eikonal equation and employ
them as the oscillating factor of the symbol of the pseudo-differential operators. Then we
show the existence and asymptotic completeness of the modified wave operators, using the
1-dimensional limiting absorption principle and the composition formula of pseudodifferential
operators with oscillating symbols and usual pseudodifferential operators of Hérmander class.
We note that both the limiting absorption principle and the radiation estimates are needed for
long-range scattering on n-dimensional Euclidean spaces with n > 2. Here we do not need the



radiation estimates since we consider 1-dimensional scattering and there is no “angular part”.

Part 111

We consider a manifold M with asymptotically polynomially growing ends of growing rate r*
with a real positive number o > 2, where r is the radial parameter. The case where o0 = 1
corresponds to Euclidean spaces and scattering manifolds. Let P be a Schrodinger operator on
M. Then a time-dependent scattering theory for P with a simple reference system is constructed
in Part II (see [18]. For the scattering manifolds case & = 1 we refer Ito and Nakamura [16]
also). We show that if the growing order satisfies & > 1, then the scattering matrix do not change
the wave front set. We see how the scaling property of the corresponding classical scattering
operator determines laws of the propagation of singularities for quantum scattering operators.

Melrose and Zworski [26] showed that, for the scattering manifolds case a = 1, the scatter-
ing matrices are Fourier integral operators associated.to the canonical transform on the bound-
ary manifold generated by the geodesic flow with length 7, and hence the scattering matrices
propagate the wave front set according to the same canonical map. Their arguments use the
asymptotic expansion of generalized eigenfunctions. Ito and Nakamura [17] generalized these

- results using Egorov-type theorem, which is time-dependent theoretlcal We follow the discus-

sions of Ito and Nakamura.

The main idea is to consider the evolution:

A@R) = ltPs/BM® px —itP [ a(h! /% D,.8, hDg) P/H g —itPy[R1/®

with some symbol a. We use a semi-classical Egorov type theorem argument for this time-
dependent operator in Section 14 (see the textbook by Martinez [24]). We consider W(t) =
EHtP/IYE Jo=itPe[H/% og o time-evolution, and construct an asymptotic solution of a Heisenberg
equation which is very close to A(¢). The construCtion of the asymptotic solution relies on
the classical Hamilton flow generated by py = 1p2 -+ k(r)q(6, ®), where k(r) = r~2% The
classical scattering operator has a scaling property, and 1ts seml -classical limit satisfies for

(r—,p—,0_,0_) € T*R_ x (T*dM\ {0}),
hlinjo(Hg,hHw)sk(h_l/“r_, p—,0_,h 'o_) = (6_,0_),

where sy is the classical scattering operator and I, is a projection to *-variable (see Section
12). Thus, one may consider our results as a quantization of the classical mechanical scattering
‘on manifolds with polynomially growing ends of growing order & > 1. We note that on scatter-
ing manifolds (& = 1), (8, ®)-components of classical scattering operator is exp(7mH. \/23), the
Hamilton flow generated by 1/2q where g is the classical hamiltonian on the boundary manifold,
and the wave front set is propagated along the same map (see [26] or [17]).
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1
Part1 4
Existence of wave operators with
‘time-dependent modifiers for the |
Schrodinger equations with long-range
potentials on scattering manifolds

Abstract

We construct time-dependent wave operators for Schrodinger equations with long-range
potentials on a manifold M with asymptotically conic structure. We use the two space
scattering theory formalism, and a reference operator on a space of the form R x dM, where
JM is the boundary of M at infinity. We construct exact solutions to the Hamilton-Jacobi
equation on the reference system R x dM, and prove the existence of the modified wave
operatoss.



1 INTRODUCTION OF PART I 12

1 Introduction of Part I

We show the existence of wave operators for the Schodinger equations with long-range poten-
tials on scattering manifolds, which have asymptotically conic structure at infinity (see Melrose
[25] about scattering manifolds). We employ the formulation of Ito-Nakamura [16], which uses
the two-space scattering framework of Kato [21]. Following
Hormander [13] and Derezifiski and Gérard [6], we construct exact solutions to the Hamilton-
Jacobi equation and show the existence of the modified two-space wave operators using the
stationary phase method.

Let M be an n-dimensional smooth non-compact manifold such that M is decomposed to
McUM.., where M( is relatively compact, and M., is diffeomorphic to R x dM with a compact
manifold dM. We fix an identification map:

1: M. — Ry xdIM > (1,0).

We suppose M, NM.. C (0,1/2) x M under this identification. We also suppose that M is
- equipped with a measure H(6)d6 where H(6) is a smooth positive density .

Let {¢y : U, — R*"1},U; C dM, be alocal coordinate system of dM. We set {qbl Ry x
U, — R x R" 1} to be a local coordinate system of M., 2 R x dM, and we denote (r,0) €
R x R*~! to represent a point in M... We suppose G(x) is a smooth positive density on M such
that ’

1
G(x)dx = r""'H(0)drd® on (5:°0) X OM C Moo,
and we set
S = L*(M,G(x)dx).

Let Py be a formally self-adjoiht second order elliptic operator on 5 of the form:

— | 1-]—611 az Var T (1 o
B=-3G (a,,a@/r)a( . a3> (ae/r) on Al = (1,%) x OM

where a1,a;, and a3 are real-valued smooth tensors.

Assumption 1.1. Foranyl € Z, o. € Z""\, there is Cy, o, such that
|0,08'a;(r,0)] < Cror=Hi™!
on M.., where U; > 0. Note that we use the coordinate system in M, described above.

We will construct a time-dependent scattering theory for Py+V on S# where V is a potential.

Definition 1.2. Lez i, > 0. A finite rank differential operator VS of the form
VS = Yia VlSa (r, 6)818“ on M., is said to be a short range perturbation of |is type if for every

I, a the coefficient Vl“? isa L?

7, tensor and satisfies

/R+>< g|VlO‘(x)\ () MG(x)dx<°°
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for some M, and almost every (o, 6p) € R x OM has a neighborhood wy, g, such that
I / VS (tp, 0)PdpH(8)d6) /21#5%ldt < .
(p,6) ewpo’

Letup > 0. VX is called a long-range smooth potential if V* is a real-valued C* function
with support in M, and satisfies for any indices [, ,

IDIDSVE(r,0)| < Cjor M.

A differential operator V on M is called an admissible long-range perturbation of Py if V
is of the form V = VS + VL where VS is a short range perturbation of lg type and VE'is a
long-range smooth potential and

e=p=tr=p>0, p3=0, us=1-—¢.

Example 1. If VS = V5(r, 0) is a multiplication operator and [V5(r, 9)| <Cr717M, 11 >0, then
V'S satisfies the short-range condition above. '

If VS = Yol= 1V50g and [V5(r,0)| < Cr~17Hs=M 1 > 0, then V¥ satisfies the short-range
condition above. As the order of the derivative with respect to O-variable increases, we need
more rapid decay conditions on the coefficients.

Remark 2. If VS is a smooth function, then Py -V is essentially self-adjoint. More generally,
if VS is at most second-order differential operator with “small” smooth coefficients, then VS
is Py-bounded with relateve bound less than one, and Fy +V is essentially self-adjoint. We
assume that Py +V is essentially self-adjoint on suitable domains (see Theorem 1.3) and do not
investigate the conditions of self-adjointness.

Remark 3. If we assume aM is equipped with a pos1t1ve (2, 0)-tensor & = (h/*(8)), for some
£>0, "

10}0¢ (a3(r,6) — h(8))] < Crar™*7",

and V5 = 0, then Py+ V has a self-adjoint extension H and corresponds (via a unitary equiv-
alence) to the Laplacian on Riemannian manifolds with asymptotically conic structure. Since
€ > 0, our model includes the scattering metric of long range type described in [15]. Thus our
results are generalizations of [16].

We prepare a reference system as follows:
My=Rx oM, #; =L*(M; H(0)drd6), P;=—-=— onMs
Note that Py is essentially self-adjoint on Ci’ (M), and we denote the unique self-adjoint exten-
sion by the same symbol. Let j(r) € C*(R) be a real-valued function such that j(r) =1if r > 1
and j(r) = 0if r < 1/2. We define the identification operator J : 77 — S by

(Ju)(r,0) = r~=D/2j(Nu(r, 8) if (r,6) € M
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and Ju(x) = 0 if x ¢ M., where u € 5#;. We denote the Fourier transform with respect to
r-variable by &

Fu(p,0) = / e "Pu(r,0)dr, for u € C3(My).

We decompose the reference Hilbert space 7% as ¢ = c%‘f’ & Jf}_, where %ﬂfi are defined
by - ‘

Jff = {u € H|supp(Fu) C [0,0) x IM},
H; = {ue H|supp(Fu) C (—°,0] x IM}.

We use the following notation: For x € M, we write

| 1+rj(r) forx € Mo,
(x) =(r) =
1 for x € M,.

‘We state our main theorem.

Theorem 1.3. Let V = VL + V5 be an admissible long-range perturbation of Py, and V is sym-
metric on JF ~1C3 (My), and Py+V has a self adjoint extension H. Let S(t,p, @) be a solution
to the Hamilton-Jacobi equation which is constructed in Theorem 2.10. Then the modified wave
operators

Q4 = s-lime"H J=S:Lr6)
t—oo

exist, and are partial isometries from %”fi into € intertwining H and Ps:
eiSHQ:{: — QieiSPf.

We refer Reed and Simon [31], Derezifiski and Gérard [6], and Yafaev [36] for general con-
cepts of wave operators and scattering theory for Schodinger equations. We here briefly review
the history of wave operators. The concept of wave operator was introduced by Mgller [27].
The existence of wave operators has long been studied (see Cook [2] and Kuroda [23]) for short
range potentials, which decay faster than the Coulomb potential. For the Coulomb potential, it
was proved by Dollard [7, 8] that the wave operators do not exist unless the definition is mod-
ified. Dollard introduced the concept of the modified wave operators s-lim;_, 1. e?He™S(:Px),
Buslaev-Mateev [1] showed the existence of modified wave operators by using stationary phase
method and by employing an approximate solution to the Hamilton-Jacobi equation as a modi-
fier function S(¢,&). Hormander [13] constructed exact solutions to the Hamilton-Jacobi equa-
tion (see also [14] vol. IV).

The spectral properties of Laplace operators on a class of non-compact manifolds were stud-
ied by Froese, Hislop and Perry [10, 11], and Donnelly [9] using the Mourre theory (see, the
original paper Mourre [28], and Perry, Sigal, and Simon [29]). In early 1990s, Melrose intro-
duced a new framework of scattering theory on a class of Riemannian manifolds with metrics
~ called scattering metrics (see [25] and references therein), and showed that the absolute scatter-
ing matrix, which is defined through the asymptotic expansion of generalized eigenfunctions,
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is a Fourier integral operator. Vasy [33] studied Laplace operators on such manifolds with
long-range potentials of Coulomb type decay ( |V (r,0)] < Cr=1).

Ito and Nakamura [16] studied a time-dependent scattering theory for
Schrodinger operators on scattering manifolds. They used the two-space scattering framework
of Kato [21] with a simple reference operator D?/2 on a space of the form R x oM, where oM
is the boundary of the scattering manifold M.

We employ the formulation of Ito and Nakamura [16], and consider general long-range
" metric perturbations and potential perturbations. We assume that the scalar potential decay as
[V(r,8)| <Cr=%,e > 0.

We make some remarks along with the outline of the proof. The time-
dependent modifier function S(¢,p,0) is not uniquely determined. Our choice is a solution to
the Hamilton-Jacobi equation on the reference manifold R x dM with the long-range potential
VL
s as, ds§ '
3’ 0,p =5 (1.1)

K ’_55) ot’

k

1, 1 5 1; 1
h(r,e,p,(x)) = —2-p2+§a1p2+;a£pa)]+r—2a§ a)jwk+VL7

for large ¢ and for every p in any fixed compact set of R\ {0}, where £ is the corresponding
classical Hamiltonian. We choose p and 6 as variables of S because p and 6 components of the
classical trajectories have limits as ¢ goes to infinity. The time-dependent modifier ¢=5¢:Pr-0)
is a Fourier multiplier in r-variable for each 6 and we only need to consider the 1-dimensional
Fourier transform with respect to r-variable. We construct solutions to the Hamilton-Jacobi
equation mainly following J. Derezifiski and C. Gérard [6]. ‘

In Section 2.1, we consider the boundary value problem for Newton equation on R x dM
with time-dependent slowly-decaying forces, which decay in time (Definition 2.1). In Theorem
2.2, we construct solutions and show several estimates. We use an integral equation and Ba-
nach’s contraction mapping theorem (ﬁoposition 2.4, refer Derezifiski [5] and Section 1.5 of
[6]). In the definition of slowly-decaying forces (Definition 2.1) and the function spaces (Def-
inition 2.3), we assume different decaying rates on different variables r, 0, p, and . These are
efficiently used to show Proposition 2.4. We observe that the classical trajectories will stay in
outgoing (incoming ) regions as ¢ — oo —oo). ‘ '

In Section 2.2, we consider Newton equations with time-independent long-range forces
which decay in space (Definition 2.5) in appropriate outgoing (incoming) regions. By inserting
time-dependent cut-off functions, we introduce an effective time-dependent force and reduce the
time-independent problem to the time-dependent one (Theorem 2.6). Our model (the Hamil-
tonian flow induced by the classical Hamiltonian) turns out to fit into this framework (Lemma
2.8). These tricks are also used in [6] for Hamiltonians with long-range potentials on Euclidean
spaces. '

Finally, in Section 2.3, in Theorem 2.10 we construct exact solutions to the Hamilton-Jacobi
equation, using the classical trajectories with their dependence on initial data. Here we use the
idea by Hormandor [13], see also Section 2.7 of [6]. We show that these solutions with their
derivatives satisfy “good estimates”, which are used to show the existence of the modifiers.
Once we obtain a suitable modifier S(z,p,0), we can show the existence of modified wave
operators through stationary phase method (Section 3).
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Using the Cook-Kuroda method (see Cook [2], and Kuroda [23]) and ‘
1-dimensional Fourier transform, we deduce the proof of the main theorem to estimates of the
integral (Proposition 3.1):

oS s as
/[h(l’, eapa —"%(tap’ 6)) _h(%(t,f” 9)7 eapa —%(l‘ap) 9))]
_eirp—iS(t,p,Q)ﬁ(p, Q)dp

In Section 3, we apply the stationary phase method (Hoérmander [14] Section 7.7). In the asymp-
totic expansion of the above integral, the terms in which £ is not differentiated vanish since the
- equation r = dS/dp holds at the stationary points. To show the uniformly boundedness of
constants which appear in the asymptotic expansions of the integral, we construct diffeomor-
phisms in small neighborhoods of the stationary points which transform the phase function into
quadratic forms there (Lemma 3.2). In the constructions of these diffeomorphisms, we use the
estimates on the modifier function S.

Notations We use the following notation. Let z € R and s be a parameter. We write f(z,s) €
g(s)O((t)™™) if f(z,s) < Cg(s){t)™™ uniformly for ¢ and s. We denote f(z,s) € g(s)o(t?) if
limy e f(2,5)/g(s) = 0. '

2 Classical mechanics

In this section, we study classical trajectories and solutions to the Hamilton-Jacobi equation.

2.1 Classical trajectories with slowly-decaying time-dependent force
Let (r,0,p,0) c T*(R x R*1) and consider the Newton’s equation:
(,0,p,0)(t) = (p + F,Fo, Fp, Fo)(t, (.0, p, 0)(t)) 2.
where '
F= F(tara eapaa)) = (FraFeaFP>F(D)(t7ra e,Pa(D)
isa time-dependent force. Let € > 0 and & :%e.
‘Definition 2.1. A time-dependent force F is said to be slow-decaying if F satisfies
sup 10198 9% (Fr, Fo, By, Fo)(t)] € O((r) MmoenlbekBly (29
(r,p,0,0)eT*(RxRr-1) '
where
I’lr(l, a:k,ﬁ) = m(l7 aak+\1aﬁ)’ l’l@(l, (X.,k,ﬂ) = m(la aakaﬁ +ei)a
no(l, 00k, By =m(+1,0,k,B), ne(l,00k B)=m(l,o+e;k,B),
m(l,,0,0)=1+¢, m(l,0,1,0)=1+¢, m(l,®,2,0)=1+E¢, (2.3)
m(l,0,0,e;) =14+1+&, m(l,a,1,¢;) =1+1+¢, m(l,a,0,e;+¢e;) =1+2, ‘
m(l,0,k,B) =+, if k+[B[=3,

i,j=1,--,n—1, and ¢, = (0,---,1,0,--- ,0) € Z’}r_l is the canonical unit vector, i.e., every
component of e; is 0 except i-th component.
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In the next theorem, we show the unique existence of trajectories for the dynamics (2.1)
where the boundary conditions are the initial position and the final momentum.

Theorem 2.2. Assume that F is a time-dependent slowly-decaying force in the sense of Defini-
tion 2.1. Then there exists T such that if T <t; <ty < coand (ri, 0f,pr, @) € T*(R x R,
there exists a unique trajectory

[t1,2] 2 s+ (7,0,5,®)(s,t1,t2,73, 05, Pr, %)

satisfying

as(F,é,ﬁ,(D)(S,t],tz,ri,ef,pf,a)i)
:(P +FT7F9)FPaF_(D)(s7 (7’éaﬁaf(b)(sutla‘t%riaefapfawi))ﬂ .
(7,66)(f1,t1,t2,7‘i,ef,pf,(l)i) = (7’,’,0)[), (éaﬁ)(satl’t%ria Qfapf7a)i) = (ef7pf)

- Wesetr(s),8(s),p(s),(s) by
r(s) =#(s)=ri—(s—n)py, 8(s)=6(s)— 6y,
0()=P()~py, 0(5)=a(s) - o

Moreover the solution satisfies the following estimates uniformly for
T Stl Ss<p <o (riaefapf7a)i) € T*(RXRn_l) N

[r(s)| € o(s%) s —n], |8(s)] € O(s7%),

p(s)| €0(s7%), la(s)] € o(s")s —n[1~F, @4
- Or(s)  deur(s)  Op,r(s)  Iur(s)
9r,8(s) e 0(s) 9p8(s) I B(s)
a"iB(S) aefB(S) anP_(s) aCD,'B(S)
0, @(s) Jgp(s) Jpr@(s) O (s)
o(s%)[s—n|
O(1 C1eF o _ :
€ O(s(_%) @@ e, 2.5)
o(s0)|s —1;|1¢ _
r o(s%)|s — 1]
S 0 Of(1 e
L ogakal o | O(s(_g) P 2:6)
o o(s)|s —n|' %
Here ® is an outer product and (2.5) means, for example, d,r(s) € o(s®)|s —t|t] =€ and

99,0(s) € 0(1);;?

A straightforward computation shows that (r,8,p,®)(s) satisfies the following integral
equation:
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(I,Qap,_@_)(s)‘= (PraP97PP7P(D)(KaQaBaQ)(s) = | (27)
o () + Fo(,ri+ (u—t1)pp+r(u), 0 + 0 (u )pf+p( ), 0+ @ (u)))du
— [ (Fo(u,ri+ (u—t1)ps+r(u), 05+ 0 (u), prtpu COL-I-(D (u)))du
(Fp (w,ri+ (w—=11)pys +1(u), 07 + 8(u), py + p (u), i + () ) du
f;l(Fa)(u rz+(u*l‘1)Pf‘|‘7’( ) 9f+Q(u)7pf+E_( ) (D,-I—(D( )))
where the map P = (P, Py, Py, Py») depends on the parameters 11,12, 7;, 0, Py, ®;. We will apply

the fixed point theorem to solve (2.7). We define the Banach space on which the map P is
defined as follows:

Definition 2.3. For m Z 0, we define

27 =z C(IT.2) s sop 20 <o), 27— (e 2p s fim p = )

For m < 0, we define _
. g
7 ={2€C([T,»)): sup% < oo},
We define

Z10-81-8 ={(r,0,p,0) €Z} o xZ) x Z;E x ZL E

11,90
Then we have the following Proposition:
Proposition 2.4. For large enough T >0, the map P is a contraction map on

Z,ll0 —&1- efor any T <11 <ty < oo, (13, 0f,p7,@;) € T*(R xR*™ 1). Indeed, for some constant
¢ which does not depend on t,tp, (r;, 0r, pr, ;) but T, we have

IVxP)|, B(70-51-%) <c<l. - (2.8)
Proof. We first note that P is well defined as a map of Ztll’o’_é’l_é into itself. Indeed, for
example, if x = (r,0,p,®) ez OBI7E

|1B(x) (s)] \

/ (P (W) + F(u,7i+ (s —t1)pr +1(u), 65 + B(u), pr + p (), 0 + ©(w))) |du

< |C(u>_ +C{u)"8|du,
n

Others are similar to prove.

Now we check that P is a contraction on Ztll0 —&1-¢

constant ¢ which does not depend on #1,13, (r;, 07, P, ;) but 7. Letv € Ztl1 -

which implies P (x)(s) € Z}

1],00° .
. It suffices to show (2.8) for some
Then

§
5= V6 < =11l [ IV, Fol )l nr] [Vl
| ,

N
<z, [ ls=nlu=n) )™ Fdu.
’ 1
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If we let T — oo, the right hand side goes to zero uniformly for 77 < #; <ty < oo. Moreover, the
right hand side goes to zero as s — co. Hence taking T large enough, we may assure that

IVrBrllgezy ) <e<1

for some constant ¢ for any T < #; < t, < oo and for any (73,07, p, ;) € T*(RxR" ). Ina
similar way, we can show that for some large enough 7', (2.8) holds for any 7 < #; <fp < oo and
for any (r;, 0f,p5, @) € T*(R x R"™1), 0

Proof of Theorem 2.2 . The fixed point theorem together with Proposition 2.4 implies that
there exists a unique solution (r,0,p,®)(s) € Z1 0.=81-% for the integral equation (2.7) for
eachT <t; <ty <esand (r;, 0r,pr,0;) € TH(R X R” 1) if T is large enough (r,.8,p,0)(s) €
Z 1.0.-8,1-¢ directly means (2.4).

Let us now prove (2.5). We use the identity

(I = V2P(x))37(x) = hY = (], K, b}, k) | 29
S (VE)(u,)9% (y — x)du ’
— [1(VF) (u,)9Y(y — x)du

ftl (VE,)(u,y)d"(y —x)du
Jiy (VFo)(u,y)9"(y — x)du

where 8 =0y, 89f, dps; OF dey, x= (1,0, p, @) is the solution of (2.7), andy =(ri+u—n)pr+
r(u), 07 +0(u),ps + p(u),w;+ @(u)). By a straight computation we have

1

(h%, %, o %) € () 1%, ()75 ) 7 () DA

1,0,—€,1-&

(2.8) implies that I — V,P(x) is invertible on Z, ™ . Using (2.9), we get

. 1,0,—&,1-¢
(Orx, dgpx, Ip X, Ouyx) € Z,, ;
and

||(arix, agfx, apfx, awiX) HZtll,O,—é,l—é S O((t1>—1—é’ <t1>_§, <t1>—é, <t1>-1)”

which implies (2.5).
Now we prove (2.6) by an induction. Assume that 97 = al 8“8"8 J+|o)+k+ Bl =n>2,
and (2.6) is true for [+ |ot| +k+ |B]| < n— 1. We use the 1dent1ty

(I =V P(x)I(x) = b = (WL, KL, 05, 1Y) | 2.10)

ftl Lg>2(VIF;)(4,y)0" (y)9"(y) - - 9% (y)du
= J¢' Eq>2(V9Fp) (,y)0" (y)9% (y) -+ 9% (y)du
= J5' Eg22(VIFp) (,y)0" (3)9(y) -~ 9% (y)du
Ji Lgz2(VIFo) (,7)9% (y)0%(y) - -- % (y)du

where the sum is taken over 'y Zp 1Yp»q = 2. The induction hypothesis with a stralght
computation shows that

(hy)€(< > —I— |ﬁ|) 1,0,—&,1— 8
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Thhs we have

9] 710-e1-2 € ({11)™ IR,

which implies (2.6). o O

2.2 Classical trajectories with long-range time-independent force

We denote the outgoing region by I’R”LL‘,?" 10"
Tiifio ={(r,0,p,0) eT*RxR" Y :r>ROcU,pelo < or' =%}

forR>0,U cR*1,JCR,0>0.
- We now consider the dynamics with time-independent long-range forces.
Definition 2.5. A time-independent force F is said to be a long-range force if it satisfies
sup  |0/0g 9k (B, Fe, Fp, Fu)(1,0,p,0)| € O((R) ™ewalbakBly (211
(r>e,p>w)€FRT[-/s,J,Q
foranyR>0,U €R"1, J € (0,), 0 >0.

Asin Theorem 2.2, we show the unique existence of trajectories for the dynamics where the
boundary conditions are the initial position and the final momentum.

Theorem 2.6. Assume that F' is a time- zndependent long-range force in the sense of Definition
2.5. Then for any open U € U € R*1, open JE Je C (0,00), and Q > 0, there exists R > 0 such
that for any t > 0 and for any (r;, 6, py, @;) € FR UJ,0 there exists a unique trajectory

[O,I] ( r, >ﬁad))(s7t>rl;a9fapfaa)l)

satisfying

aS(F,éapa(b)(satariaefapfawi) = (p +FraF9anaFa))((F’é’ﬁ’(b)(sﬂt’ri’ef’pf; a)l))
: 2.12)

(Fad))(oatariaefapfawi):(riawi)a (éaﬁ)(tatarhef pfawl) (efapf)

and the estimates ,
[r(s)| € o(s+ (r))°)lsl, 18(s) € O((s+{rd) ™), | (2.13)
Ip(s)] € O((s+ (r))™%), |@(s)| € o((s + (i) *)lsl* 7,

“and

é(s,t,ri, Gf,pf,a)i) € U, f)(s,t,ri, Gf,pf,a),-) € J

where

r(s) =F(s) —ri—spy, () é() 9f
p(s)=p(s) —ps, @(s)=ad(s)—
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Moreover the solution satzsﬁes the followmg esnmates uniformly
for 0 <s <t <oo, (ry,0,pr,0%) eFRUJQ

arir(s) aef-’:(s) anK(S) aﬂ)il(s)
9,8(s) aOfQ(s) an-Q(S) Je, 8(5)
Op(s) dep(s) Ipp(s) Jup(s)
» @ (s) aefQ 5) Ops@(s) Ou@(s)
| o((s+ O(l ))0)ls] : '
€ O((s-+ (r) (r) 78, (r1) 7%, () ™),
0((S+<T:>)°)|S|1 £
g o((s+ (gzi(;)\s —11]
gl & Bl
%WB%R% | 5 | €| oty |7
[0} o((s+ (r))0)|s— 1| ~E

Proof. There exists Cy such that if p € J and r > 0, then
[r+(s—t1)p| = Co(ls— 1|+ 7). _ ‘ (2.14)

We fix constants &g, 0, & such that

2 | :
0<g<Cy, 0> CQ 0<eg < Q(Co— €)' %,
0
and introduce cut-off functions I;,Ig,lp,lw as follows. We take I, € C=(0,0) such that I, = 1
‘on a neighborhood of {r;r > Co — &}, Iy € Cy(R"™") such that Iy = 1 on U, I, € C5(0,)
such that I, = 1 on J, and I, € C3'(R"~!) such that I, = 1 on a neighborhood of {®: |@| < 0}.
Using these cut-off functions, we define the effective time-dependent force F; by

R(t,,0,p,0) = Lo ()15 (0}l (5 )F (7,0, ).

It follows from (2.11) that F;(¢,7,0,p, @) is a slowly-decaying force in the sense of Definition
2.1. Therefore, we can find T such that the boundary value problem considered in Theorem 2.2
possesses a unique solution for any T < #; <t and any r;, 8¢, pr, ;. Let us denote this solution
by '

(;ea éeaﬁea a)e)(s>t1at2ari: efapfa 0),').

By enlarging T if needed, we can guarantee that

|Fe(s,t1,10, 70, 07,05, @) —ri — (s —t1)ps| < &ls — 1], (2.15)
16e(s,11, 12,11, 65, P, @) 9f| < dist(U,0°) |
|Be(s,21,12, 71, 07, pr, ;) — Pyl < dlist(J,JC)

|@e(5,11,72, 71, Bf, P, @) — 6] < €15 — 1)1 5. | ‘ (2.16)
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We claim that if R = T(Cp — &)/Co and (71,67, pf, @) € Tayr UJQ, then we can solve our
boundary problem by setting :

(7,8,p,®)(5,t,7:,0 1,07, @) := (Fe, Oc, Pey @) (r+ 5,7, 7 + 1,71, 0, 07, @%) (2.17)
where r = |r;|Co/(Co — €). Indeed, from (2.14), (2.15), and (2.16) we see that

|Fe(r +5,1,7+1,73, 0, pf, )| = (Co — €0)|s+ 7],
ée(r+sarar+tari;ef,pf,wi) S U,
ﬁe(r+sar>r‘|‘t;ri;9f,Pf,(Di) Ej,

and
|@e(r+s,1,r+1,7;,0f,p7,0)] < £1|s|1_§ +w; < .*5‘1|s|1_‘§—|-Qri1_é

- Cn — _ - - ~ .
<als (T T < O(Co—a) Els AT

Co-
< Qlfe(r-l—s,r,r—i-t,ri,Gf,pf,a),-)|l—8.

Hence we have

Fe(r+s, (Feaée:ﬁead)e)(r+sarar+tariaefapfaa)i))
=F((1’e,ée,f)e,(f)e)(r—|—s nr4t,1i,05, 05, 0;)).

Therefore the function (2.17) solves the boundary problem (2. 12) w1th the initial time-
independent force.

The estimates on (7,0,p,®)(s,t,7;,0.f,p ¢, @;) are obtained directly from
those of Theorem 2.2 using the identity (2.17) and replacing s,t;,#, there
by s+ (ri), {ri),t + (ri). ’ ‘

Finally, the uniqueness of the solution comes from the fact that any solution of (2.12) with
(2.13) is also a solution of the problem con31dered in Theorem 2.2 for the force F.(t,r,6,p, )

if time ¢ is large enough.
(i

Now we solve the dynamics with initial conditions.

Theorem 2.7. Assume F is a time-independent long-range force in the sense of Definition 2.5.
Then for any open U € U € R"™!, open J € J € (0,%0), and Q > 0, there exists R > 0 such that
for any (ro, 80, po, ) € FRT('JE, 7o there exists a unique trajectory

[0700) >S5 (Fa ézﬁ: CT.))(S,T’(), GOaPOaO)O)

satisfying
Os ( ﬁ (D)(Sa”O:GOaPOawO) = (P +FraF9an)Fw)((Faé)ﬁad))(s7r0;907p07a)0));
(’7 6 P, 5))(0,7’0,90:130;(00) = (”0;907170,@0)' -
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Set

r(s) = F(s) —ro—spo, O(s)=8(s)— 6o,
() =3(5) ~po, () = B(5) - an

Moreover the solution satisfies the following estimates uniformly for 0 < s <t < o,
(7’0, OOaPOQ 0)0) € ‘FRTU&;J,Q :

é(S,r(),’eo,po,(Do) cU, ﬁ(sa‘70760ap0awb) Ej;

ldmeoﬂﬁﬂm»%Ma@@NEWﬂMD4%
Ip(s)] € O(((ro))™®), 1@(s)] € o((s+ (ro))”)Is|' %,
Oror(s)  Oaor(s)  Ipor(s) Iayr(s)
Or0(s) 06,0(5) 9o 0(s) Iy ()
P (s) dep(s) Ipop(s) Ouyp(s)
O @(s) Oy @ afs

r o((s+ (r0))°) s — 1]
3}09%850850 % € ((?0()1))—5 . ‘<”0>_l—lﬁ|-
o o((s+ (ro))?)|s — 1|~

Proof. Let (7,0,p,®) be the solutions in Theorem 2.6 with ¢ = oo

[O’oo] 25 (I_",é,ﬁ,(b)(s,w,ri,ef,pf,wi),

as(l_’,G,ﬁ,d))(S,W,I’i,ef,pf,G)i)

= (p +FraF97FpaFC0)((faeapa@)(saooariaefapfa CO,')),

Fa (I))(O,W,Ti,ef,pf,a)i) = (I’i,a)i), (e,ﬁ)(w,w,ri,>9f,pf,Wi) = (9f7pf)
Set ‘

(rOa GOaPO,a)O)(Vi: efapf7wi) = (f) éapad))(oaooaria.efapfawi)'
It is clear that

’ (rO’a)O)(riaef)pfawi) = (ri,(l)i)-

Theorem 2.6 assures the following estimates:

|90(ria efapfa (Di) - ef‘ € O(<ri>_é)‘7 |p0(ria efapfa COi) —pfl S O(<ri>_é)ﬁ
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( ari(eo - ef) aef(eo - Qf) 8,,‘f(90 - Qf) 8wi(60 - Of) )
o (Po—ps) 9e;(Po—pPy) 9p;(Po—Pr) 9w (P0—Py)

0(1) ~1-8 g \=E (. \=E (. \=1 |
e (e Yot e @19

By taking R large enough, we can assure that the map (7o, 69, Po, @o)(;, O, P, ;) is injective.
Let (73, 6;, i, @;) (0, 60, Po, o) be the inverse function. We will show that

(Fa éaﬁa C?))(S, o, 90>p0a (Do) = (}77 éaﬁ) a))(s>6°> (ria ef’pfa (D,')(r(), 903p03 (Do))
gives the desired function. (2.18) implies

( Iro(87 —60)  Day(Br —B0) Ipo (65— B0) Iy (B — 60) )
(0 — D) ey (05 —Po) IpmlPr—Po) dan(Py — Do)

€ (o )@ et @.19)
Moreover, it is easy to see that ‘
I qaqk 48 [ 05— 6o O({ro) =~ 1Al
8,08908p08a,0 ( pf"‘pO') € < O(<r0>_l_|ﬁ|_g) . (2.20)

(2.19) and (2.20) shows the desired estimates. ' |

2.3 Solutions to the Hamilton-Jacobi equation
We state a lemma which relates the hamiltonian 4 with the time-independent force F.

Lemma 2.8. Let
1 5 | ,
h(r,0,p,0) = Epz +h(r,08,p,®)

i(,0,0,0) = 3 (1, 0)p + -l + 5 ek 0j00 + V(1 6).
Assume

10108 a;(r,0)| < Cror™~", |DIDEVL(r,0)| < Cirta,
with

mi=Wp=yu=£¢>0, u3=0.
Then for anyU € R*"1,J €R, and Q > 0,

sup 3192a%E (h)(r,0,p, w)| € O((R)~™bekB)y. 2.21)
r¥e “p ’

(r,G,p,w)Er‘RTl'ffJ’Q
This immediately implies that setting
(Fr,Fo,Fp,F) = (Iph, dph, —rh, —0gh), (2.22)

 we have (2.11), i.e., h defines a long-range time-independent force via (2.22).
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Combining' Theorem 2.7 and Lemma 2.8, we obtain solutions to the Hamilton-Jacobi equa-
tion:

Theorem 2.9. Let h,h be as in Lemma 2.8. Forany U e U e R*!,J e J € (0,), Cj o >0,
there exists T > 0 such that if a smooth function W(p, 0) defined on J x U satisfies

i 1 : _z , '
19595 (w(p,8) = 55p%)| < Cjals)'~* , (2:23)
for some s > T, then there exists a unique function S(t,p,0) defined on a region ® C (0,00) x-

(0,00) x R®™™! ( which will be defined in the proof ), with ® D (0,0) X J x U, satifying the
* Hamilton-Jacobi equation:

(3:5)(2,p,0) = h((9pS) (0, 6),0,p,—(36S) (P, 0))

with the initial value
5(0,p,0) =w(p,0).
Moreover the function S satisfies the following estimates:
. 1 - B '
9598 (S(t,p,0) — zzp2)| < Cjalt)' 5. (2.24)
Proof. Let |

[O,oo) St (F?éaﬁv(b)(tarmeOapOawO) -

be the unique trajectory of the Hamilton equations with initial value problem as in the Theorem
2.7

a( é ﬁ (D)(t r0390?p0ﬂ ) (p+FF>F9aFPaFw)((’7>é:ﬁ)_a))(taranOpoaa)O))a‘
( 0 ﬁ (I))(O r07903p0a )_ (7"0590>P0,w0)a 7 -
for (rg, By, po, o) € I‘Rff’ 70> Where we took R > 0 such that

{((3pw)(Po, 60), 60,0, — (36 W)(P0, 60)) : (60,p0) €U xJ} C T, o

Set

(.6, p, )(t; po, 60) == (7,0,5,®)(, (dp ¥)(Po0, 60), 60, Po, — (6 W) (0, 60))-

and consider the map

(Po, 60) — (p,6)(t: pos 6o) | ‘ (2.25)

and its first derivatives. We set @ := {(t,(p, 0)(t; po, 60))|(P0, 60) € J X U }. By a straight com-
putation, we obtain

d(p,0)(t,po,
pf??pgt, ;:)o) » ( >‘_
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where C depends on Cj o and not on the choice of y as long as y satisfies (2. 23) for some s.
We fix a large enough 7' > 0 so that for any s > T we have

a(pae)(IaPOa 60) _ ( 10 >
9(po, o) 01
Now (2.25) becomes an injective map for every ¢ > 0. We denote its inverse by
(pa 9) = (pOa 90) (I;P, 9)
Let

Q(#; po, 6o)

= ¥(po, 80)+ [ [4((10,p,@) (1 pocn)

+(r(t; po, 80), (9up) (u; p, 0)) — {@(t; po, 60), (940 (u; p, 6)) ] du.
Then the function

S(t,p,0) = O(t; (po, 60)(1; 0, 0))

defined on @ is the desired solution to the Hamilton-Jacobi equatio}l (see, for example, [6]
Appendix A.3). Moreover

(9p8)(z,p,8) = r(t:po(t,p, 6), 0(, P, ),
__(aGS)(tapa 6) = w(t;pO(tap) 9)) QO(tapa 9))
The derivatives of S(¢,p,0)

l<i.

33083,(S(t,p,0) - %rpz) = 9}0gh(9,5(¢,0,6),0,p,—36S(t,,0))
is a summation of the terms of the type

(9198 L) (3p5(2,p,0),6,p,—d6(1,p, )%
—1 Ya

Hakaﬁt (9p8)(t,p, 0 xHHa"dfaﬁdf( 36,5)(,p,0)),

1j=

which belongs to O((t) —m(LBANHHA=E)M) C O((r)~¢). This shows (2.24).
. ' O

Finally we extend S(z,p, 6) to a globally defined function on R x (0,00) x dM which satisfies
the same kind of estimates locally.

Theorem 2.10. Let h,h be as in Lemma 2.8 defined on T*R x T*dM. Then there exists a
function S(t,p, 0) defined on T*R X T*9M such that for every J € R\ {0}, there exists T >0
such that the Hamilton-Jacobi equation:

(0:S)(z,p,60) = h((9pS)(p,6),0,p,—(dS)(p,0)) (2.26)

is satisfied for t > |T| p€J, and 6 € M. Moreover the function S satzsﬁes the following
estimates:

19598(S(2,p,6) — 5t,c>2)| <G o). o (2.27)
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Proof. First note that since dM is compact and the Hamilton-Jacobi equation is defined in a

coordinate invariant manner, we can extend U in the Théorem 2.9 to JM. It is sufficient to

consider the case J € (0,00) and ¢t > T, since we can extend the function S in a C*-fashion.
Take a sequence of open sets in (0, ) such that :

hehehehe.., |Jh=(0

First we solve the Cauchy problem for the Hamilton-equation with initial data
1
| S(t,p,0) = -2—1,‘p2 when p €J1,t =11 >0

for a big enough 77 by Theorem 2.9 with U replaced by dM. We denote the solution by §7. We
can assume that S} is defined on (77, 0) x Jy X dM. S also satisfies (2.24) for p € J; and ¢ > T3.

Next we take y; € Cy (J1) equal to 1 in a neighborhood of Jo (the closure of Jp). We solve
the Cauchy Problem with initial data :

t
S(t,p,0) = 2151+ (1= x1)7p* when p € ot =T,

By taking 7> > T; large enough, the right hand side satisfies the conditions for 75 in Theorem
2.9. So we can solve the Cauchy Problem for such 7. We denote the solution by $,.

Repeating this procedure, we obtain a sequence S, of functions and a sequence T <k<.
such that S, is defined on J,, X [T;,,0) X oM,

Snt1=Sm for m>n+1 on J, X [T,0) X IM,

and satisfies (2.24). Thus by extending in a C* fashion, we can construct a C* function S which
satisfies (2.26), and (2.24) for large enough ¢ and p in any fixed compact subset of (0,c0). -
O

3 Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. First we give the outline of the proof.

Outline of the Proof. We consider the £ — oo case. By the density argument, it is sufficient
to show the existence of the norm limit

lim ¢ Jo=i5(.Dr,0),,

fa——)

for all 2 € C7((R\ {0}) x U, ) for all A. For such u, we have

l,e_itH%[eitHJe—iS(t’D”e)u] — [HJ _ J% (t,Dr, 0)]€_iS(I;Dr’9)M.
2

By the Cook-Kuroda method we only need to show that

|[[HJ—J§

ot (,Dr, 9)]e—iS(t,Dr,9)uH% € Ltl(1,°°)'
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We decompose

as
[T = J——(t, D, 0)]
= [P — JRo) + V] + [VET = JVH + T [Py +VE(r) - %g(t,D,, 0)].

The fisrt three terms are essentially short range terms. It is easy to check
[[PoJ — JPy] + ViJ 4 [VET — JVE] e~ 85:Dr6 u|| € L}(1,00). (3.1)
We examine the last term: |

[Po-+VE(r) = (9:8) (2, Dy, 6))e ™ Pr Dy

= hr(i’, 6,D,,— gg (t Dy, 9)) —lS(t,Dr,G)u
_h((apS)(t,Drge) 6,D,,— gg (t Dr,e)) _’S(taDn@)u
1 1 4 dS _
+(ra§Dr+2 5 é aek(r Dr,e)) iS(t,p, 6))(39,~u)
1 L Jk ~iS(t,p, e))(a 19it)
272 0i%

+ [ short range terms ].

We apply the stationary phase method to the first two terms. Then the first terms which appear
in the asymptotic expansion will vanish since the relation '

(%pS)(1.p,6) =1
gives the stationary point with respect to the p—Variaible. Therefore we obtain
1[Po+VE(r) = (3:5) (2, Dy, 0)]e™SEPrOu|| o € L1(1,00). | (3.2)
We give a detailed proof of (3.1) and (3.2) in the remaining of this section. O
First we consider the long-range term (3.2). The next proposition is our key estimate.

Proposition 3.1. Assume the assumptions of Theorem 1.3. Suppose u satisfies ii € C6°((R\
{0}) xUy) and J x U is a neighborhood of supp ii. Then we have

- N as as
|[h(r>9aDra ae(t Dr,G)) h(ap(t Dr,G),O,Dr, ae(t Drae))] .
-_e—iS(t,Dr,O)u(r,e)l S-Ct—%—l—s (3.3)
for (£,0) €I x U € (0,00) x M, and |
- as as S
|[h(7‘,9,Dr, ae(t Dr76)) h(ap(t Dr,e),O,Dr, ae(t Dr,e))]
&SPy (7,0)] < Cu(1+ || +[e]) ™ (34

for any N and for (£,0) ¢ xU.
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Proof of (3.2) . We fix a neighborhood J x U of suppit which appears in Proposition 3.1. Then

B oS : . 0S8 as
| 110,51~ 550,07, 0)) K5 (1,D1,6),0.D, ~ 55D 0)]

e_iS(I’Dr’e)u“%adt

~ AY
= VA(r,0,D,, ——(t,D;,0
/1 /MM P, 25(6,D,,6))

33 (t,D,,0))]e D”e)u(r 0)|%drH (6 )de)%d

< [7(f_ ili,0.0,~ 556,018

_E(gg(taDrae)aeaDra g;

+( / 6,0, - %8 ,01.0)

S
ap

By (3.3), the first term is finite:

_h(%(taDra 9)) 9>Dra

[ L

(¢,D;,8))]e” SOy (1. 0)2drH(0)d0)

o5 == (¢,D,,0))]e""S:Pr.6) (r,6)|2drH(6)d9)%dt.

~h(5=(1,D,,6),0,D;,~ 5=

J7 (0,51~ 550,01, 00) 5 0.0,,6),0,D1,~ 550,01, )

e SDr0)y (1. 0)|2drH (0)d6) 24t
o0 1 o

g/ (/ Ct= 2718 *1dR) % ds gc/ 7178t < oo
1 ReJ 1

By (3.4), the second term is also finite:

[, 0,51~ 550,01, 0) =5 0.01,6). 0,51~ 5510, 0)

' 1
e_’S(t’D”e)u(r, 0) |2drH(6)d9)‘2dl
- 1
</ (/; C(L+|r| +1e)™dr)?dr <o
I

‘Therefore

ow

ap Prr0:1),Dr,0)Je "Wyl 4o € L (1,00).

Imﬂmuﬁ%V%

In order to prove Proposition 3.1, we prepare a lemma.

Lemma 3.2. Let S(¢,p, ) satisfy the properties listed in Theorem 2.10. Set

frou(p) = (rP 5(,p,6)).
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For p in any fixed compact subset of R\ {0} and for large enough |t\,bthere exists a function
B (r) which gives the critical point of frg,(p):

9pfr,9,¢(P) =0<+p :Ee,t(r)'

Set Qg := (—d,d). Then there exist 0 < d < d and a function ¢, € C*(Q4;R) such that
Q57 € ¢r.0,(Qq). Setting

Vro, )= Ee,t(”) + 0o, ),
(fr,e,t o Wr,e,t)(y) = fne,t(EG,t (r)) + (Ar,e,ry,y)/Z,

where
Angs = (97 fr,et)(uez(r))
we have
0f W6, (0)] < Cr78 (k>2), OWro4(0) =1. 3.5)

Proof. We only consider the 7 > 0 and p > 0 case. First we prove that Zg (r) is Well defined.
Compute

1 oS
0= apfr,@,t(p) = ? [7’— %(tapa 9)]

We note that by (2.27),

2
;g—;@,p,m _1<cr.

tlaS

This implies th is monotonously increasing with respect to p for large enough z. Thus

there is a unique 1nverse function Eg ,(r) such that

 (Opfr04)(Egy(r)) =0

for large enough ¢ and € J, afixed compact subset of (0,0).
Now we construct ¢, ; and ;. g ;. We set

Argy: fret(Het( r) =—-55(tZe,(r),0).
Then (2.27) implies that
Apgs+1] < Cr*,
Hence we have A9 ; — —1 uniformly for r/t € J. If we set

gros(p) = er,t(EG,t(r) +p),
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then

£10:(0) = flo 1 (E0, (1) =0, &0,(0) = fl (Bo.(r)) =Asps,
2r6.:(P) = 8r0,(0) = (Bro:(P)P,P)/2,

where

1
Bros(p)i=2 | gr0.(sP)(1=s)ds, Bro,(0) = Aso

by Taylor’s formula. Now we compute

|Br,9,t(P) _Ar,e,t| :IBr,G,t( )= r,6t 0)| _2|/ 8r,9r (sp) glrfe’t(O))_(l—s)ds|
<2 sup Igr,e,t(sp) gr,e,t(o)l
0<s<1
028 / 1028
<2 sup |—-=—(t,Eg(r)+5p,0) — —=—(t,Eg,(r),0
0§s21|ta 5 ( 0,.(r)+sp,0) 8p2( 04(r),0)]
<Ct™8—0

as t — oo, uniformly for £, p € J by (2.27). Hence by taking ¢ sufficiently large, we may assume

r9t(p
ret(p)

— 1| <1/2is umformly very small. For such ¢, and p, we set

Y ¥

B,
0,:(P) .

Xr,G,t(p) = A 0.t
r7 ¥

Then we have

gr,@,t(p) - gr,@,t(o) = <Ar,9,tXr,0,t (p)>Xr’9,t(p)_>/2‘

Now we compute

Bro:(P)\s ' BrGt(p)’
X =W a )P ]
(p t,G,t)(p) ( Ar,e,t ) P Ar,G,t
Br@t(p)
24/B; . A,
= A Bede) B Arps
@B0)(P) =2 [ s (p)s(1 =5,
|876,:(s )I—I——(93S)( 0,(r)+sp,0)| <Cr7%,

9 Xs04(0) 1) <G,

Hence for small enough dy > 0 and for |p| < dy, we have |dpX,.¢ ;(p) — 1| arbitrary small for
all large enough ¢, and X9 ; : Qg — X;.0,,(Q4,) is a C*-diffeomorphism. We can pick d > 0
such that, Q; C X,.9,(€q,) for all 7,6, large enough 7,7 € J. Let ¢, be the inverse map of
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X0+ with domain Q4. Then we can also pick d > 0 such that Q 7 C 0r0,:(Q,) for all 1,0, large
enough £, € J. We note that S

gr,e,:O(Pr,e,z()’)—gr,e,t(O) _< 1,0, tXrGt ¢r,9t( ) 7,0,t © ¢r,9t( )>/2
_< r0,tY,Y >/2

We set
V0, (¥) = 06,4 (y) +Zo, (7).
Then we have

fr,G,toll/r,Gt() fr,Gt(HQt(r)) ( 11,0,tY,Y >/2

Lastly, we prove the estimates (3.5). Fork > 1,

98040 =21 [ 255501 ~5)ds| < 2suplgZst (50)
<2 sup|?3g+k5(t,39,t(r) +sp,0)] S Cct™¢
by (2.27). We also have
195/ Bre.(p)| < Ct°.
Therefore |
105X 05(P)| SCE™8 (k22), [9pX50,4(0) 1| =Cr ™%,
and we have

la)lchr,G,t(y” = |a){c¢r,9,t,()’)| < Ccr® (k > 2))
|ay1l’r,9,t(0) - 1| = [ay¢r,9,t(0) - 1| <Crt.

Then we complete the proof of Lemma 3.2.

Proof of Proposition 3.1. First we prove (3.3) for ; € J. We fix ¥ € Cg'(R) such that x(x) =
if x| < 1, and x(x) = 0if |x| > 1. We split u into two terms depending on 7,6, and ¢:

g, (p,0) =ii(p, G)x(—deL(—)),

o,(p.0) = (p,0)[1 -z (P =21)))

where we use notations defined in Lemma 3.2. The support of % 4 , is close to the critical point
of rp — S(t,p, 0), while that of 4%, , is apart from it. Note that

suppﬁﬁ’e,, C Egy(r)+ Q7 CRan(y,g ;).



3 PROOF OF THEOREM 1.3 33

By a change of variables we have

aS aS

1 r.,98 N rp—i R
/ W55 (6.0.0),0.0,~ 5500, 0)) P 5* Vi (p,0)dp

=5(t,D7,0))e™SPrOuly (1, 6)

:—2_7-ER

27 Jo
. Jr 9 t(y)eitfr)e,t (Ee’t(r))eit<Ar’9:ty’y>/2dy

1 - 38 dJS ~c
=_/ h(_'—.—(ta‘I/r,G,t(y))e))eaWr,e,t(y)af"_(ta Wr,e,t(y)a9))ur,9,z(Wr,9,t(y)a9)
. dp da0

where J;.0:(y) = |y, g ,(v)| is the Jacobian. Since |

.. 98 S
J —&
|Dph(ap(tapae)’9,pa ae(t P 6))' Ct s

we have

.. 0S8 ' oS e
|D§h(%(taWr,e,t,(y)ae)aeﬂwr,e,t( )7 89( ‘Ilr,et( ) ))' SCt 8)

. as _
|h(7‘, 9’ Wn@,?(y)a—%(tall,r,e,t(y)) 9))' < Ct 8)

DI o (Wr0,(7),0)| < C,
‘D{;Jr,e,t(y)l < C:

fory € Qg, 7 € J. Now we apply the stationary phase method (see Hormander [14] Section 7.7)
to the integral. In the asymptotic expansion of '

as - 98 as
ae(t Drae)) h’('a_ﬁ(taDr’e)aeaDra ae(

e~ —iS(t Dr,O) (7’ 9)

| Y S
ZE/ [h(i‘,ea‘Vr,G,t()’),—éﬁ(t,l//r,g’t(y),e))

S o S
_h(ap (t Wr,e,t(y): 6)) 9, Wr,e,t(y)a _%(ta Wr,e,t(y)a 9))]

ﬁze,t(w",e,t (y), 6) . JI‘,G,I (y)eitfr,e,t(Eo,t(r))eit<Ar,6,ty,)’>/2dy’

[A(,0,D,,~ t,Dy,0))]

the terms in which 7 is not differentiated will vanish since

0S
%(ta Wr,e,t(o)a 9) =T

Especially, in the first step of the asymptotic expansion, we need to estimate only the remainder
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terms. Therefore we have

a8 . 08 ds
%(t?Dhe))_h(é—ﬁ(taDrae)’.eaDra 89(

. e_lS(t7Dr76)u$e t(r 9)

_1 ds
<2 Y supl|DER(r 0, W, (3), — 55 (8, W04 (9), 6))
k<3 96

([(r,6,D,— t,Dr,6))]

~. dS ds
- h(g;(t’ Wr,e,t(y)a 9)) 9) llfr,e,t(y)’ _é—é(t) Wr,e,t(y)a 6))]
7.0, (¥r0.:(3),0) Jro |2

<cril-e,

‘We now consider uf g term.
IV :

h(r,0,D,,— 3:0 D,,0))e” fDr"’)d 4(r,6)

1 /’Ee,t( )_%d\ /°°
27r( —oo Eg,,(r)—i—%(f)
-, 0S8 S
_ &rP— —iS(z,p, 9) ~d
h(—ap(t,p,e),G,p, 5P 0))e et(P 6)dp

We consider integration over > Eg(r)+ %a? only (the other part is similar to prove). (2.27)
implies
Opfres(p) < —-C <O,
|95 froa(P) S Ct7°8, j22
in this region. Let y — h,.g ;(y) be the inverse of p — f.¢,(p). Then
|9y, (V)| <C,
0Jhrp (V)| S Ct™°, j > 2.

By a change of the variables we obtain

oS oS itfy04(p) 4d

| ‘—‘Ot(r)_l'fd (%(tapje)aeypa ae(f P, 9)) 2 ur’e’t(p,e)dp|
ity ds dS d

= |/e h(%(t’hr‘,e,t(y)a6)79’}1",9,1( )" ae(t hr,et( )’9))ur,6,t(hr,9,t(y)39)'

6. ()|

<ce .

We can show the same kind of estimations for
h(r,0,D,,— aS 55(t,Dr,0))e ‘S(I’D”_e)u‘rfe’t(r‘, 0). We have ended the proof of (3.3).
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Now we show (3.4). (2.27) implies that there exists J such that %g—g € J € J for large enough

't. Thus the absolute value of the derivative of
p — (rp —S(t,p,0))/(|r| +|t|) is bounded below for 7 ¢ J, large enough ¢, and p € suppil.
Thus we can apply the non-stationary phase method and obtain (3.4). O

Proof of (3.1), partial isometry, and intertwining property. First we consider the
short-range terms. On Mj,

PoJ —JRy+VEI —JVE = 0™ "7 r~178)0,0 + O(r—"T r~2)32 -
+ZO(r_n—5—lr_1_£)8rj.
7

These terms can be treated as a short range perturbation of (1 — &) = g type. Hence on Mo,
PyJ — JPy+VEJ — JVE V5] is a finite sum of terms of the form v; ¢(r, G)r‘%Diag‘ where
Vj,a satisfy .

S 2 Y ‘
/R+% V5 o ()% (%) G(;c)dx< o,
/ (/ |V§a(l‘P,9)|2dpd9)1/2,(1-é)|a|dt»< -,
1 (p>9)EJXU ’

for some neighborhood J x U of almost every (pg, 6p) € R x dM. We assume supp # CJ x U.

We consider the differential operators with respect to §-variable. dge™™S (t:0r.8) yields
(99S)(t,D,, 0) terms which increase as t!~¢. Hence, as in the long-range case, the inequalities
(2.27) implies

|Djog'eSEPrO)u(r, 0)] = alzl /Raé" [1P=3@r9) pIa(p, 0)]dp| < Cr+11-8) 3.6

for (£,0) € Jx U, and

10/ 9§ SEPrO) (1, 0)| < Cnv(1+|r| +|e)) 7 | (3.7)
for any N for (£,8) ¢ J x U. Thus We obtain for such v; |

v (5, 0)r="7 Djdge POl s € L) (1,00),
which proves

| ([PoJ = TP + VST + [VET — JVE)) e S0PO)y | 4 € L1 (1, 00).

We have proved the existence of the modified wave operators.
(3.3), (3.4), (3.6), and (3.7) also show that W, are partial isometries from .7} into 5.
The intertwining property follows from
s-Tim( o~ iS(t+5.Dr,6) _ ~is(Dr,6.1) P = ) (3.8)
—o0

which can be proved using (2.27) and the dominated convergence theorem. The proof of the
theorem is complete. a
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Part I1 |

Scattering theory for Schrodinger
equations on manifolds with
asymptotically polynomially growing ends

Abstract

We study a time-dependent scattering theory for Schrddinger operators on a manifold
with asymptotically polynomially growing ends. We use the Mourre theory to show the
spectral properties of self-adjoint second-order elliptic operators. We prove the existence
and the asymptotic completeness of wave operators using the smooth perturbation theory
of Kato. We also consider a two-space scattering with a simple reference system.
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4 Introduction of Part I1

We study a class of self-adjoint second-order elliptic operators, which includes Laplacians with .
long-range potentials on non-compact manifolds which are asymptotically polynomially grow-
ing at infinity. We prove Mourre estimate and apply the Mourre theory to these operators.
Then we show that there are no accumulation points of embedded eigenvalues except for the
zero energy. We obtain resolvent estimates which imply the absence of singular spectrum. We
also show the Kato-smoothness for three types of operators. We construct a time-dependent
scattering theory for two operators in our class. If the perturbation is “short-range”, it admits a
factorization into a product of Kato-smooth operators. By virtue of the smooth perturbation the-
ory of Kato, we learn the existence and the asymptotic completeness of wave operators. Lastly,
we consider a two-space scattering with a simple reference system. We follow the settings by
Ito and Nakamura.

We now describe our model: Let M be an n-dimensional smooth non-compact manifold
such that M = M¢ U M., where M is pre-compact and M., is the non-compact end as follows:
We assume that M.. has the form R x N where N is a n — 1-dimensional compact manifold,
and R = (0,0) is the real half line. Let @ be a positive C* density @ on M such that on M.,

w=dr-u

where r is a coordinate in R and g is a smooth positive density on N. We set 57 = L>(M, ®)
be our function space. We set our “free operator” a self-adjoint second-order elliptic operator
Ly which has the form:

L():D%—l—k(r)P - on (1,00) X N.

Here D, = i~19,, P is a positive self-adjoint second-order elliptic operator acting on L?(N, ),
and k is a positive smooth function of r such that the derivatives of k satisfy the following
estimates for some cp,C > 0,

cor k< —k <Crlk, . ' 4.1)
K| < Cr k. ‘
For example k(r) = r~%, with o > O satisfies the above conditions.

‘We assume that L is a second-order elliptic operator on M, essentially self-adjoint on Cy’ (M),
such that

L=L0+Ea

with E having the following properties: There are finitely many coordinate charts
(r,01,--+,6,—1) on M such that in each chart E has the form

V b1 by 1
E=(1,D,,VkDg) [ b1 a1 a D, (4.2)
‘ tbz taz as \/EDQ
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where (1(0) is defined by p = 1(60)dg, ---dg,_, and Dg = ,LL(O)‘%DQ/.L(G)% is self-adjoint on
L?(N, it). The coefficients aj,ay,by,bs, and V have support in M., and are smooth real-valued
functions of (r, 6y,--- ,6,_1) such that

18108 a;(0)] < Crar ™™, |
1010¢0;(r,0)| < Crar™ %", | 4.3)
16198V (1, 0)| < Crar ™.
Let x(r) € C*(R) be a R,.-valued fuhction such that y(r)=1ifr>1and x(r) =01if r < %,
and set ¥r(r) = x(x) with R > 0. We set our dilation generator by:

1
A= 5 (XkrDr + Drrig). R (44)

Now we state the main results.

Theorem 4.1. Suppose L = Ly + E, where k satisfies (4.1) and the coefficients in E obey the
bounds (4.3) with v = min{ vy, V,, Vv } > 0. Then Gess(L) = R U{0} and L satisfies a Mourre
estimate at each point in Ry with conjugate operator A in the sense of Definition 5.3. In
particular, eigenvalues of L do not accumulate in Ry, and 6(L) = 0. We also obtain the
resolvent estimates:

sup  [[(JAI+ )7L —2) (Al + 1)) <o
ZEAL=AFIR

if A€R\ Opp(L) and s > 1.
We prove Theorem 4.1 in Section 5.
Theorem 4.2. Under the hypotheses of Theorem 4.1, the operators
Go=(n"", |
Gy = xr(r)"*Dr,
Ga = Ar(r) 2 (kP)?
are L-smooth on A if A € R\ 6,,(L) and s > 3.
We prove Theorem 4.2 in Section 6 and Section 7.

Theorem 4.3. Suppose the short-range condition for E, that is, Vg, = Vg, = Vp; = Vp, = Vy > 1,
and Vg, = 1. Then the wave operators

W=(L,Lo) :=s- tliffw e'temtop, (Lo)

and W= (Lo, L) exist and are adjoint each other. They are complete and give the unitarily equiv-
alence between L(()ac) and L(%).
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We prove Theorem 4.3 in Section 8. We note that the wave operators W*(I,,L;) exist and
are asymptotically complete if both L; and L, satisfy the hypotheses of Theorem 4.1 (long- range
) but the dlfference L, — L; is short-range in the sense of Theorem 4.3.

Next we consider a two-space scattering. We prepare a reference system as follows:

M;=RxXN, ;= Lz(Mf,H(G)drdG),
Hy = D2 on My,
- Hy =D?+4k(r)P on'M;.

Note that Hy and Hj, are essentially self-adjoint on Cy (M), and we denote the unique self-
adjoint extensions by the same symbols. We define the identification operator J : ¢} —

by
(Ju)(r,8) = £ (r)u(r, 0) if (1,6) € M=

and Ju(x) = 0 if x ¢ M., where u € 5¢;. We denote the Fourier transform with respect to r
variable by %

(Fu)(p =—/ TP u(r,0)d

We set
%‘}i = Z g, (p)[*(R XN :dp - u)].

Then 5% = %” to ,%” -
In the two- space scattenng, we need additional cond1t10ns on k:

Definition 4.4. Suppose that k is a positive smooth function of r satisfying (4.1). k is said to be
short-range if

[k(r)| < C(r)™* ’ @45
with vy > L. k is said to be smooth long-range if

OF(r)| < C{ry ™! . - » (4.6)
~withl €N, and v > 0.
For sho_rt-range k, we have the following.

Theorem 4.5. Suppose the hypotheses of Theorem 4.3 and that k is short-range. Then the wave
operators WE(L, Hg,] ) and WE(Hy,L;J*) exist and are adjoint each other. The asymptotic
completeness

WE(L, Hos J) A = Poo(L) A
holds.

For long-range k, we need to modify the identifier.
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Theorem 4.6. Suppose k is smooth long-range in the sense of Definition 4.4. Fix A €R. Then
there exists suitable operators J= € B(#5) such that the wave operators W(L, Hy; JJ*) and
W= (Hy,L; (JJ*)*) exist and are isometric on EA(HO),}ff: and Ep(L)Pyc(L)S#, respectively,
W=(L,Ho;JJ i)fff =0, and the asymptotic completeness ‘

W(L, Ho;JJi)EA(HO)%’}ﬂ: = EA(L)Pac(L) 7
holds.

~ The construction of modifiers J * will be given in Section 9. We can also admit a; to have a
long-range part which depends only on r. For details, see Section 9.

There is a long history on spectral and scattering theory for Schrédinger operators (see,
for example, [31], [36] and references therein). Much of works are connected to differential
operators on a Euclidean space. The spectral properties of Laplace operators on a class of
non-compact manifolds were studied by Froese, Hislop and Perry [10, 11], and Donnelly [9]
using the Mourre theory (see, the original paper Mourre [28], and Perry, Sigal, and Simon[29]).
We follow the settings in Froese and Hislop [10], and Theorem 4.1 may be seen as a direct
generalization of [10]. We note that only the case with v =1 is treated in [10].

In early 1990s, Melrose introduced a new framework of scattering theory on a class of
Riemannian manifolds with metrics called scattering metrics (see [25] and references therein).
He and the other authors have studied Laplace operators on such manifolds. They also studied
the absolute scattering matrix, which is defined through the asymptotic expansion of generalized
eigenfunctions. _

De Bievre, Hislop, and Sigal [4] studied a time-dependent scattering theory and proved its
asymptotic completeness for some classes of manifolds, including manifolds with asymptoti-
cally growing ends with v > 1.

Ito and Nakamura [16] studied a time-dependent scattering theory for Schrédinger operators
on scattering manifolds. They used the two-space scattering framework of Kato [21] with a
simple reference operator D? on a space of the form R x N, where N is the boundary of the
scattering manifold M.

The case where M = M¢c U M., is a Riemannian manifold, the metric on M., is “’close” to
a warped product of R and a compact manifold N, and L is the Laplace operator, fits into
our framework. The function/k(r), varies inversely with the size of M. = Ry x N. A typical
exapmle of k which satisfies (4.1) is given by k(r) = r~%, o > 0. The case o = 2 corresponds
to scattering manifolds including asymptotically Euclidean spaces. By using results of Ito and
Nakamura [16] twice, and by applying the chain rule for wave operators, we can show the
existence and the asymptotic completeness of wave operators on scattering manifolds in.the
one-space scattering framework. Therefore our results can be considered as a generalization of
[16] for all & > 0. In [16], assumptions on a; and a3 are weakend to long-range perturbations.

Our proof of the existence and the asymptotic completeness of wave operators depends on:
the smooth perturbation theory of Kato [20] (see also Yafaev [34] and [36]). The Kato smooth-
ness of Gog = (r)~%, s > % in Theorem 4.2 is closely related to the limiting absorption principle.
The resolvent estimates in the Mourre theory (Theorem 4.1) imply the limiting absorption prin-
ciple via a technique in Section 8 of [29]. The Kato smoothness of G; = yz(r) ™*D, will be
obtained in a similar way, but we have to extend the technique in [29] froma =1to a =2

(Lemma 6.3 (i)). The Kato-smoothness of G, = X (r)"% (kP)’l‘ is called the radiation estimates.
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Our proof is quite similar to the one [35], which relies on the commutator method (see Putnam
[30] and Kato [22]). '

The limiting absorption principle suffices to show the asymptotic completeness in the case
of two-particle Hamiltonians with short-range scalar potentials. However, radiation estimates
are crucial in scattering for long-range potentials on a Euclidean space (see Yafaev [36]). We
found that radiation estimates are also useful for handling short-range metric perturbations. We
hope that we can also construct appropriate modifiers so that the technique of Yafaev can be
applied to show the existence and the asymptotic completeness of modified wave operators
with long range perturbations in our settings.

" Inthe two-space scattering, essentially we only need to examine wave operators for the pair

(Hy,Hp). However, since P commutes with both of Hy, and Hy, it reduces to the 1-dimensional
scattering. When k is short-range, we only need a narutal identifier. When £ is long-range, we
will construct 1-dimensional modifiers for the corresponding 1-dimensional long-range scatter-
ing.

-5 Application of Mourre Theory

In this section, we prove Theorem 4.1. For the sake of completeness, we give a detailed proof.
But methods and proofs used here are almost the same as those in [10] and [4], where v =2
“and v = 1, respectively, are assumed. We will prove the Mourre estimate under the condition
v > 0. The index v will explicitly appear, for example, in Lemma 5.12 and Lemma 5.7.
We first quote the Mourre theory.. We define a scale of spaces associated to a self-adjoint
operator L. '

Definition 5.1 (Scale of spaces). Let L be a self-adjoint operator on a Hilbert space 5. For
s > 0 define 76, = D((1+ |L|)?)) with the graph norm

lwlls := 1L+ 1ZD?) .
Define S _; to be the dual spaces of F¢; thought of as the closure of ¢ in the norm
Iwll-s = 11+ L)) w).

Definition 5.2 (Conjugate Operators). Let L be a self-adjoint operator on a Hilbert space €
and F; be the scale of spaces associated to L. A self adjoint operator A is called a conjugate
operator of L if

(i). D(A)NFB is dense in B, -

(ii). the form [L,iA] defined on D(A) N 3% is bounded below and extends to a bounded oper-
ator from 5 to 1,

(iii). there is a self-adjoint opefator Lo with D(Lo) = D(L) such that [Ly,iA] extends to a
bounded map from 36 to F, and D(A)ND(LoA) is a core for Ly, '

(iv). the form [[L,iA],iA| extends from 5% ND(LA) to a bounded operator from 54 to 7.

(v). €™ leaves 6 invariant and for each y € 56, SUPj|<1 le*Ay]|a < oo
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Definition 5.3 (Mourre Estimate). A self-adjoint operator L satisfies a Mourre estimate on an
interval A C R with conjugate operator A if A is a conjugate operator of L such that there exist
a positive constant & and a compact operator K such that

EA[L, iA]EA > 0EA+K.

Here Ex = EA(L) is the spectral projection for L. We say that L satisfies a Mourre estimate at
a point A € R if there exists an interval A containing A such that L satisfies a Mourre estimate
on A. '

Now we state the Mourre theory.

Theorem 5.4 (Mourre). Suppose that a self-adjoint operator L satisfies a Mourre estimate
at A € R with a conjugate operator A. Then there exists an open interval A containing A
such that L has finitely many eigenvalues in A and each eigenvalue has finite multiplicity. If
A & opp(L), then there exists an oper interval A containing A such that L has no singular
continuous spectrum in A and for s > 2,

sup (Al + D)7 (L —2) 7 (JA[+ 1) 70| < oo
ZEAL=ALIR, .

We refer to [28] and [29] for the proof of this theorem.
.In the following of this section we will show that the hypotheses of the Theorem 5.4 will be
satisfied for our case.

Lemma 5.5. Suppose f € C5(R), Dis a di]j‘efential operator with smooth coefficients, and
is a smooth cut-off function with compact support. Then XD f(L) and xDf(Ly) are compact
operators from L2(M) to L*(M).

Proof. Let Q be_ a bounded domain with smooth boundafy which contains supp %. Then
xDf(Lo) and yDf (L) map L*(M) to a Sobolev space H*(Q) for any s > 0. But H* — L*(Q) —
L?(M), and the first embedding is compact by Rellich’s theorem. | O

Lemma 5.6. Let 5% be thé scale of spaces associated with Ly. Then
(i). xrD,: 56 — F#_1 is bounded for s € [—1,2],
(ii). xrD? : 5, — H#;_y is bounded for s € [0,2],
(iii). ZR(KP+1)7 : 56 — Hiy is bounded for s € [~1,2),
(iv). xr(kP+1): 74 — 545 is bounded for s € [0,2].
Proof of Lemma 5.6. We begin by.proving that
|%&Dr (Lo +C)E] < 1 | | 5.1)

for some constant C. Choose a positive constant Cy so that Ly 4 Cj is a positive operator. Let
ir=(1- XR)_%- The IMS localozation formula gives

Lo+Ci = 2r(Lo+C1)xr+ Zr(Lo+C)Fr — (1R)* — (Tp)
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This implies
Lo+C1 = xrDixr — (Xk)* — (2)*
Dy xxDr = xgxr — (4g)° — (Xg)?

as form inequalities on Cy - Since

o

xgxr — (XR)* — (ZR)*| <

this implies
D, yiD, < Ly+C.
This shows for ¢ € C7,
« 1 :
D9 < Lo+ | | 52

Since Cy’ is a core for (Lo + C)%, we can find for every ¢ € D((Lo+ C)%), a sequence ¢, € Cy’
such that ¢, — ¢ and (Lo-+C)2¢, — (Ly+C)?¢. Then

‘(DrXR‘I/a ¢)| = ]}E)I‘}OI(DYXRIVa ¢)|
= lim | (¥, xrD;9)|
= limsup [ ]| (Lo +C) 26
< vlliLo+C)29]

- which shows that ¢ € D(yzD,) and that (5.2) holds for any ¢ € D((Lo +C)%). Writing ¢ =
(Lo+C) "2y for y € L2, we see that this implies (5.1).
‘Next we will prove that '

I2xD} (Lo +C) 7' £ C. | | (5.3)
- With C; as above,

(Lo+C1)* > (Lo+C1)2z(Lo+Ci) | |
= D2 D%+ D2xg (kP + C1) + (kP +C1)xgD} + (kP+C1 2%
= D} 2xD; + 2Dy xg (kP + C1)Dy — (xg (kP +C1))" + (kP +C1)* 25

Using the fact that || and |k”| are bounded by a constant times &, we see that
(XR(KP+C1))" < Cx(kP+C1)x
for some cut-off function ¥. Using the IMS formula again, this implies

(xz(kP+C1))" < C(Ly+C)
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for some.C. Since 2D, x2(kP +C1)Dy+ (kP +Cy)? xR >0, we obtam
(Lo+C1)* > D} 4D} — C(Lo+C),

which implies for some C,
D7D} < C(Lo+C)?,

which leads to (5.3) as in the proof of (5.1).
A similar argument shows that

||DrXR(LO+C)~1“ <C. (5.4)
Now by complex interpolation, (5.3) and (5.4) implies
I(Zo+C)~ "D} xr(Lo+C) % < C.

for Rez in [0, 1], which implies (ii) of Lemma.
To prove (i) using complex interpolation, one need to prove

(Zo+C) " ZaDALo+OPF| £ C, 6
(Lo +C)2arDr(Lo+C) 7 < C. (56
Examining (5.5), we see that
|(Lo+C) ™ xzD> (14)+C)l||
< |12&Ds (Lo +C)2 || + | (Lo +C) " [Lo, 2&Dy) (Lo +C) 2.

The first term on the right hand side is bounded by (5.1). The second term can be decomposed
into two terms according to the following equation:

[Lo, %&Dy] = (D7, 2rD/] + [P, 2rD].
The first one is bounded using (ii) of Lemma; the second is bounded by
[Xr,ixrDy] = XrkP < CxrkP < C(Lo+C)

and an argument similar to the one above. This gives (5.5). (5.6) follows 31m11ar1y
(iii) and (iv) follow in.a similar way. O

Lemma 5.7. Let L,Ly and E be as in Theorem 4.1 and let 3¢, be the scale of spaces associated
with Ly. Then

(i). (F)VE : 6 — H_ is bounded for s € [0,2],

(ii).- by taking R large enough in the definition of E, we may assume that the relative Ly-bound
of E is less than 1,

(iii). (Lo—z)~' = (L—2z)~Vis compact for Im(z) # 0.
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Proof of Lemma5.7. (i) will follow by complex interpolation if we can show

KnVE(Lo+i)7t < C,
I(Lo+i)~"(r)VE|| < C.

As a typical exapmle, we choose \/HigazDr. Then
1) xxVkDear Drxr(Lo+i)~" | .
< [[4r)Y Vkaz Do xrDr(Lo +1) | +11(r) V(Do az) xrDr(Lo +1) |
~ 1 1 .
< sup{(r)¥|az|}- VDo (kP+1)"7|| - | 4r (kP +1)2 D, (Lo +) ||
r -
+sup{(r)"|Dgaz|}- || VixrD-(Lo+3) ||
r .
<C,

by assumptions on a; and Lemma 5.6.
To prove (iii), we use the resolvent formula

(Lo—2z) ' —(L—2)"
= (L-2)E(Lo-2)""
= (=2 )V () VE (Lo —2) .

The operator (L~ z)~1(r)~" xz can be approximated in norm by operators f(L)x considerd in
Lemma 5.5, and thus is compact while (r)VE (Lo —z)~! is bounded by (i). This proves (iii). [

Lemma 5.8. D(L) = D(Lgy) and the scale of spaces assoczated to L and Ly are the same. If
fEeCy, then f(L)y—f (Lo) is compact.

Proof of Lemma 5.8. The first statement is obtained by the relative boundedness, and the second
follows from (iii) of Lemma 5.7 and a Stone-Weierstrass argument. O

Lemma 5.9. 0,5(L) = [0,00).

Proof. The Persson’s formula (see, for exapmle, [3])

inf Gess (L) = sup (9,L9)

KCM¢€C°°(M\K) l[ol=1
and a Weyl sequene argument give the desired result. | O
Lemma 5.10. Let Ly be as in Theorem 4.1. Then for large enough R,
(i). [Lo,iA| extends from Cg to a bounded bperator oy — I, |
(ii). [[Lo,iA],iA] extends from Cy to a bounded operator %ﬁrz — F 5.
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Proof. To begin, we show that [D?,iA] is bounded from 5%, to #. A brief calculation shows

_ 2 1
(D7, id] = 2(xr) D} + - (4&r) "' Dr ~ 5 (tir)"-

n

The coefficients (x3r)’, (x2r)", and (x3r)"" are bounded. By taking R large enough, the bound-
edness of [D2,iA] from 4%, to S follows from that of yzD? and xgD,, which is ensured by
Lemma 5.6. ‘

Next we consider the term

[kP,iA) = —xzrk'P.

By (4.1), |rk'| < Ck. Using Lemma 5.6, it follows that [kP,iA] is bounded from %, to J7.
This completes the proof of (i).

The boundedness of the double commutator in (ii) is proven using similar arguments. We
can use Lemma 5.6 to prove the boundedness of [[D2,iA],iA] from %, to S#.5. Since

- [[kP,iA), iA] = xzr(xzrK')'P,
we need the estimates (4.1) on the second derivative of k for r large
[Pk < Ck
to prove the boundedness of [[kP,iA],iA]. O

Now we prove the Mourre estimate for unperturbated system Ly.

Lemma 5.11. Let Ly be as in Theorem 4.1 and A given by (4.4). Suppose Ay > 0. Then for
every € > O there exist an interval A about Ay and a compact operator K such that for R large,

E(Lo)|Lo, iAlEa(Lo) > min(2, co) (%o — €)E(Lo) + K.

Here Ex(Ly) is the spectral projection for Ly corresponding to A, and cq is the constant which
appears in (4.1).

Proof. Choosing R large, we have
D2, iA] = 2D, (43D, — 5 (13r)"
>2D,x2D, — gmin{Z,cO}
> 2xrD?xr — —z—min{Z, co}-
Also,
[kP,iA] = —x3rk'P > cox3kP.
Combining these two inequalities, we obtain
Lo, iA] > xr(2D? + cokP) xr — grriin{Z, co}

- >min{2,co}(xrLoXr — g)-
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We now multiply this estimate on both sides with f(Lg) where f is a smooth compactly sup-
ported characteristic function of an interval about Ag. This gives

F(Lo) Lo, iAlf (L) > min{2,co} (f (Lo trLozrf (Lo) — 5./(Lo)).
Now

F(Lo)xrLozrf(Lo)
—F(Lo)Lo(r — 1)F(Lo) + f(Lo) (tr — DLoxzf (Lo) + F (Lo)Lof (Zo).

f € Cy implies f(Lo)Lg is bounded. It is not difficult to see that Loz f(Lo) is bounded using
Lemma 5.6. Since ¥ — 1 has compact support, (xg — 1) f(Lo) is compact by Lemma 5.5. Thus,
if the support of f is within § of Ag, we have

£
f(Lo)xrLoxrf (Lo) > (Ao — E)fz(Lo) +K.
where K is a compact operator. Therefpre we have

F(Lo)[Lo,iA]f (Lo) > min{2,co} (Ao — &) f*(Lo) + K. - (5.7)

Taking f =11in a heighbourhood of A9 and multiplying from both sides with Ej(Lg), with
A small enough to ensure Ex(Lo)f(Lo) = Ea(Lp), this inequality gives the desired Mourre
estimate. '

, O
Lemma 5.12. Under the hypotheses of .Theorem 4.1,
(i). [E,iA]: 5y — F4) is bounded, |
(ii). f(L)|E,iA]f(L): is compact for f € Cy,
(iii). [[E,iA),iA] : 5€, — H2 5 is bounded.
Proof. It is easy to see that [E,iA] has the following form:
| | 7 b b 1
[E,iAl = (1,D,,VkDo)xr | b1 @ a@ |xz| D- (5.8)
'by '@y a3 VkDqg '
where & = d,d, b1, b1 and V satisfy
&(r,8)] <Cr ™Y, v>0. | (5.9)

Here we used the estimates (4.3) on the first derivatives with respect to r of coefficients in E
and the estimates (4.1) on the first derivative of k. By Lemma 5.6, (5.8) and (5.9) imply [E;iA]
is bounded from S, — %), which is (i).

The boundedness of the double commutator in (iii) is proven using similar arguments. We
" need the estimates on second derivatives with respect to 7 of coefficients in E and k.

To prove (i), note that Yz(1,D;,vVkDg)f(L) is bounded and ygr—"(1,D,,VkDg)f(L) is
compact by Lemma 5.5. Hence (5.8) implies (ii). O
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Proof of Theorem 4.1. We first show that L and A satisfy the conditions in Definition 5.2, that
is, A'is a conjugate operator of L. Since C§ C D(A) N is a core for L by hypothesis, condition
(i) in Definition 5.2 is satisfied. Condition (ii) follows from (i) of Lemma 5.10 and (i) of Lemma
5.12. The first statement of (iii) follows from Lemma 5.8 and (i) of Lemma 5.10. The second
statement follows from the inclusion Cy C D(A) ND(LoA). Condition (iv) follows from (ii) of
Lemma 5.10 and (iii) of Lemma 5.12. Let X be a vector field on M such that

o
X = rx,%(r); onM,.,

and X = 0 on Mc. Let {exp[tX]|t € R} be the flow generated by X. The flow induces a one- |
parameter unitary group defined by '

U9 (x) = B(t,)9 (expl—1X]x)

for ¢ € 5, where ®(z,x) is a welght functlon to make the dllatlon operator U () unitary. By
simple calculation, we find that

= S UrD, + D)
is the generator of the dilation operator U (¢), that is, U(z) = e #A. Now it is easy to see e~"4
- leaves D(L) = 44 invariant and to show (v) as in the Euclidean case.

Now we show the Mourre estimate. We replce Lo with L in (5.7). By Lemma 5.8, f2(L) —
f?(Lo) and f(L) — f(Lo) are compact. By Lemma 5.10, we can see that [Lo,iA]f(L) and
f(Lo)[Lo,iA] are bounded. f(L)[E,iA]f(L) is compact by (ii) of Lemma 5.12. Using these
* facts, it is easily seen that replacing Ly with L in (5.7) introduces a compact error, which can be
handled in K. Making this replacement and multiplying the resulting equation from both sides
with Ep (L), with A small enough to ensure E (Lo) f(Lo) = Ex(Lo), give the Mourre estimate

EA(L)[L,iAJEA(L) > min(2, co) (Ao — £)E(L) +K.

We have showed that L satisfies a Mourre estimate at any point A9 > 0 with conjugate operator
- A, which completes the proof of Theorem 4.1. O

6 Limiting Absorption Principle

In this section we show the limiting absorptlon principle, which leads to the Kato smoothness
of Gy and Gy in Theorem 4.2. We extend the discussion in [29].
We will prove

Theorem 6.1. Let L be as in Theorem 4.1, s > %, and A @Ry \ 6pp(L). Then
sup (I + D)L =) (Il + D)7 <o
ZEAi=AiiR+

sup (||l + )T AL —2) (A + 1) T <.
ZEAL=AFIR . .
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The first estimate is called the limiting absorption principle.
As a preliminary we prove

Lemma 6.2. Let L be as in Theorem 4.1. Then
(i). [E,irgr](L+i)~1 is bounded,
(ii). [[E,irxg),irxr](L+1i)~" is bounded,
(iii). xrDyrxr(L-+1i)~Yr)~! is bounded,
(iv). xrD*r*xr(L+1i)~Y(r)~2 is bounded.
Proof. By (4.1), (4.3) and Lemma 5.6, we can show (i) and (ii).
- Now we compute (ii1).
XDy xR(L+ 1) (1) ! |
=xrDA(L+0) " ryr(r) ™ + XRDA (L) L, rar] (L+0) ()7

The first term in the right hand side is bounded by (i) of Lemma 5.6. We have
[La rXR] = [D%arXR] + [Eaer]
=2~ (rR) Dy — (&) + [E, 7 2R]-

Using (i) of Lemma 5.6 and (1) of Lemma 6.2, we obtain the boundedness of [, rxg](L+i)~1,
which implies the boundedness of the second term.
Next we will show (iv). we begin with the equality

ARDEP ar(L+1)7H(r) ™2
= XD} (L+i) "' P xr(r) "2 + xrDZ(L+ i) VL, P xr)(L+ 1) ()72

The first term in the right hand side is bounded by (ii) of Lemma 5.6. The second term can be
decomposed into two terms according to the following:

L, &) = [D},7 x&) + [E, " ]

It is easy to see that the first one is bounded using (iii). Replacing yz by X}%, the second can be
decomposed in the following way:
E, P22 L +i)"H (™!
=2[E, rrlrar(L+0) " )7+ [rw, [, rwl)(L+ )7 ()
=2(B, rr] (L+1) " rar{r) ™! + 2, ) (L+3) L, Rl (L +0) ()7
+[riw, [E, Rl (L+) ) 7

which is bounded using (i), (ii) and the boundedness of [D?, xg](L+i)~!(r)~!, which can be
shown by the argument in (iii). This proves (iv). ' O

r

Lemma 6.3. Let L be as in Theorem 4.1. Then
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(i). (|A]Y*(L+1)~Yr)~* is bounded for 0 < o < 2
(ii). {|A|)*JA,(L+i)~Y)(r) ™15 is bounded for 0 < s < 1.

Proof of Lemma 6.3. By interpolation, it is enough to prove for & = 0,2 and s = 0, 1. The case
o = 0 is obvious. The case &¢ = 2 and s = 1 follows from (iii) and (iv) of Lemma 6.2.
The case s = 0 follows from Lemma 5.10 and Lemma 5.12. . Il

Proof of Theorem 6.1. Writing

(@A) =) L) )

= (N7 (LA+) AN (A L -2 AN - (AN @+ T ()
and using Theorem 4.1 and Lemma 6.3, we see that

N L+) -2 @+

is bounded.
Also, writing

(N TISAL )T L -2 L) AT |

= (NI TAL ) THAD T (AN (L —2)THAD - JAD T L) T A T
and using Theorem 4.1 and Lemma 6.3, we see that

()AL )T L) T L) AR

is bounded.
Since

L=—2)'=@+) " + @+ )L+ 2+ +)?L+) N L-2) 7 L+,

we obtain the desired result. , O

7 Radiation Estimates

In this section, we prove the radiation estimates. We want first to recall general definitions of
Kato-smoothness and the commutator method which allow us to find new Kato-smooth oper-
ators K given Kato-smooth operators G. For details, we refer the textbooks Yafaev [34] and
[36].

Definition 7.1. An H-bounded operator G is called H-smooth in the sense of Kato if

sup [ |G g
FEDH),||fll=1Y ==

= swp [G((H-2)" ~(H-27)6"|
zE€R+IR

< oo,
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An operator'G is called H-smooth on a Borel set A if GE(A) is H-smooth, which is equivalent
to the condition

sup [|G((H—2)~" — (H—2)"")G*|| <>,
ZEA+IR

where E(A) is the spectral projection of H on A.
Proposition 7.2. Suppose that
G*G < i[H,M] +K*K,

where M is a H-bounded operator and K is H-smooth on a Borel set A. Then G is also H-
smooth on A. :

For the proof of Proposition 7.2, see Proposition 1.19 in [36].
Now we return to our problem.

Theorem 7.3. Let L be as in Theorem 4.1. Then for large enough R,
1 1 . '
Xrr~2(kP)?:
is L-smooth on A if A @R\ opp(L).
We prepare the following lemma.

Lemma 7.4. For every € > 0, there exist a constant C > 0 such that

(co—€)G3G2 < [L,iM]+C ) GiG; ' (7.1)
J:k=0,1

where

M= %(ZRDr +D;xr)
Go=(r"",

G1 = xr(r)"*Dr,

Ga = ()72 (kP)?

1 1
S_§(1+Y)>§

and cg is the constant which appears in (4.1).

Proof of Lemma 7.4.  To calculate the commutator [L,iM], we first remark that

[DZ,iM] = 2D, xzD, (7.2)
[k(r)P,iM] = —xgk'P > coxrr ™ kP. o (7.3)

Here we used the inequality (4.1).
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For the perturbation term [E,iM]. we can prove
([, iMu,u)| < CI|Gou|® + || Grull +Clxrr™" ||| Gou*. (7.4)

It suffices to prove this estimate for each term of E in the sum (4.2). First we consider the terms
involving V.
[Va ZM] = —XRV,J )
. _liv '
(v, iMJu,10)| < Cller="F ull” < CllGoul ..

For the a; part, we have that

[Dya1Dy,iM] = —Dy(xra1)'Dr,
|([Dra1 Dy, iMlu,u)| < C||Gyul®,

For the a3 part, we have that
[DokasDe,iM) = —Deg xr (kaz)' Dg
- T _ _1 1 —
|([DokasDe,iMu,u)| < Cllxrr™||- | xrr™2 (kP)2u|* = Cllxar ™ |[[|Gaul>

Other terms can be handled in a similar way.
Combinig the inequalities (7.2), (7.3) and (7.4), we arrive at the estimate

(1L, iM]u,10) > col| Goul2 = Cl|Goul[>  C||G1ul® — | zar | Gau
> (co— &) Gaul]2 — €| Goul > ~ C|G1ul]

for an arbitrary € > 0 by taking R > 0 large enough. This gives the desired estimate (7.1). '

Proof of Theorem 7.3. Fix A € R\ opp(L) and consider (7.1). The operators Gy and G are
L-smooth on A by Theorem 6.1 and G, is L-bounded. The commutator method Proposition 7.2
implies that the operator G is also L-smooth on A. ' O

Theorem 6.1 and Theorem 7.3 directly mean Theorem4.2.

8 One-space scattering

We recall the smooth method of Kato which assures the existence of wave operators for pertur-
bations that are smooth locally. For more details, see Corollary 4.5.7. in [34].

Theorem 8.1. Suppose that H and Hy are self-adjoint operatbrs on Hilbert spaces ¢ and 76
respectively, J € B(J8, ) is the identifier, and the pertuabation HJ — JHy admits a factoriza-
tion

HJ —JHy = G*Gy,

- where Gy is Hy-bounded and G is H-bounded. Suppose {A,} is a set of intervals which exhausts
the core of the spectra of the operators Hy and H up to a set of Lebesgue measure zero. If
on each of the intervals A, the operator Gy is Hy-smooth and G is H-smooth, then the wave
operators WE(H, Hy;J) and WE(Hy, H; J*) exist.
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Now we apply Theorem 8.1 to our model.

Proof of Theorem4.3. First we note that any first order differential operator with compactly
supported smooth coefficient function is Lp- and L— locally smooth. This fact can be easily
proved as in Section6. \

The perturbation term E admits a factorization of the following form

E= Y GfBiuGn+Ec
I,m=0,1,2

where G are Lo-smooth on any A € R\ 6pp(Lo) and L-smooth on any A € R\ opp(L) and E¢
. is a second-order differential operator with compactly supported coefficient function. Then the
smooth perturbation theory of Kato shows the existence of the wave operators W= (L, Lg) and
W= (Lo, L), which proves the Theorem. O

9 Two-space scattering

In this section, we consider a two-space scattering.
First we treat the short-range case.

Proposition 9.1. Suppose that k is short-range. Then the wave operators W+ (Hy,Hy) and
w* (Hy, Hy) exist and are adjoint each other. They are asymptotically complete:

W (Hy, Ho) #; = Poc(Hy) 5.

- Proof. Let Ep(A) be the spectral projections of P on A with A € R. We decompose the pertur-
bation term with identifier Ep(A) as follows:

HEp(A) — Ep(A)Ho = VAPEp(A)VE.

The limiting absorption principle implies that v/k is locally Hp- and Hy- smooth. PEp(A) is
bounded. The smooth perturbation theory of Kato implies that the wave operators
W= (Hy,Ho; Ep(A)) and W (Hy, Hy; Ep(A)) exist and are adjoint each other.

Since P commutes with Hy and Hj,

W* (Hy, Ho; Ep(A)) = W (Hi, Ho)Ep(A),
W= (Ho, Hi; Ep(A)) = WE(Hy, H) Ep(A).
Hence W* (Hy, Hp) and W= (Ho, Hy) exist and are adoint each other. 0

Proposition 9.2. Suppose that k is short-range or long-range. Then the wave operators
W= (Lo, Hy;J) and W= (Hy,Lo; J*) exist and are adjoint each other.

Proof. The perturbation LoJ — J(D? + k(r)P) can be decomposed into a sum of products of
first-order differential operator with smooth compactly supported coefficients. Hence we can
apply the smooth method of Kato. (]

Now we obtain the following:
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Theorem 9.3. Suppose that k is short-range. Then the wave operators W= (Lo, Hy;J) and
‘W= (Hy, Lo; J*) exist and are adjoint each other. W= (Lo, Ho; )%”:F = 0. W*(Lo,Hy;J) and
W= (Hy, Lo;J*) are isometric on %”i and P (Lo) 57, respectzvely, and the asymptotic com-
pleteness

Wi(Lo,Ho;J)%f = Pac(Lo)
holds.

Proof. It follows from Proposition 9.1 and Proposition 9.2 that the wave operators
W= (Lo, Ho;J) and W= (Hy, Lo; J*) exist and are adjoint each other.
Foru € %”

Jim [lJe™ " ou]| = lull,

lim |[Je "Hoy)| =
t—Foo

Hence W= (Lo, Ho;J) ¢ =0, and W*(Lg,Hp;J) is isometric on %”i
To show the isometricity of W*(Hg, Lo;J*), it is enough to check that

lim ||(1—x)e " ou] =0

t—oo

for u € Pyc(Lo) 5. This follows from the local Lg-smoothness of 1 — ¥. O

Combining Theorem 4.3 and Theorem 9.3, we obtain Theorem 4.5 by virtue of the chain rule
of wave operators. Conversely, Theorem 9.3 and Theorem 4.5 imply Theorem 4.3. Theorem
4.5 is essentially solved in [16]. Hence Theorem 4.3 with k(r) = r~2 is essentially solved in
[16]. Our result may be considered as an extention of [16]. ‘

In the following of this section, we consider smooth long-range k. We also suppose that the
coefficient a; in E is separated into two parts, long-range 6- independent term and short-range
term:

ap = dk(r )—I—al(r 9) _ 9.1)
|a,la | <Ciry vL >0 . (9.2)
1018845 (1, 0)| < cl,a<r>‘vaf s> L | 93)

Set
Hy = Dy(1+d5(r)) Dy +k(r)P.

We formulate a long-range scattering theory for the triplet (Hy, Ho; J*) with modified identifiers
JE e B(5;,5#%). Since P commutes with Hy and Hy, it is natural to choose JE as

JE = / JEdEp(2) , 9.4)
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where
P= / AdEp(2)

is the spectral decomposition of P, and Jf are bounded operators L?(R) — L?(R). Through this
decomposmon the problem reduces to the long-range scattering for the triplet

(HLA,HO 13 ) on the real line, where H; 5 = D,(1 +ak)D, + Ak(r) and Hy ) = D? are self-
adjoint operators on L?(R). We choose Ji as a pseudo-differential operator with oscillating
symbols

I =25 (DI (®5,a%) | 9.5)
HEF ) = oy [ P pile)dp
a*(r,p) = () w(p*)o™(r,p). (9.6)

Here n € C*(R) such that (r) = 0 near r = 0 and 71 (r) = 1 for large |r|, ¥ € CS"(RJF),xf €
Cy(R) and o =1if £rp > 0and 6i =01if £rp < 0. We seach for a PDO Jf such that the
perturbation ' : : .

T =Hy 3 J5 —JEHy ,

admits a factorization into a product of H; 3 - and H 3 - smooth operators.
Roughly speaking, up to compact terms, Tf is also a PDO with symbol

£(r,p) = (1 + @£ (1) (Dr +p)? — P2+ Ak(r)) 2 P a (r, p).
Let us compute _ o
(5 p)(1+ (D, + p) =P A (ip)
=(1+ aL(r))(VCDl —l—p) + Ak(r) — p2 —i(1+ af(r))AfI)jf.
We want to find be such that
(1+ak (7)) (VOE +p)2 + Ak(r) —

is “small”. In the case a1 0, and v > 2, it is enough to set

1 T
(o) = —
¥ (rp) =3 /0 Ak(s)ds

For general a1 and v, > 0, we need to apply the method of succesive appr0x1mat10ns and to
keep [V, 1] (the largest integer which does not exceed 73 1Y iterations:
Lemma 9.4. Let ak(r),k(r) € C*(R) satisfy the smooth long-range condition:

VL—l

9lak() < c(r) '

10tk(r)| < C(r) v (9.7)
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with 1 € N, and v = max{v, L Vit > 0. We assume that v is not an integer. Let A € R\ {0}.

Then for large enough R, there exists a C*-function ®*(r,p) defined on (r,p) € T*(R,A) =
{(np)|lr| > R,p € A, £rp >0} such that

1070 (r,p)] < C(1+ 7))~ ©.8)
RI®*] = (1+ab) VO + pf> + k(1) — p?
10, 95R[®](r,p)| < C(14|r)) 71757

where V =0, and € = v([v71]+1)~1>0.

Proof. We only consider the case @ with A CR., and abbreviate “+” . Other cases are similar
to prove. ,
We fix R > 0 large enough such that |ak(r)| < 3 for |r| > R. Set

O (r,p) = |
" k(s) + ab(s)p?
(1) — [ TR
P e Atk s)p) ™
q)(N—H) = N +¢ (N+1)

¢(N+1)(rp ___/ |Vc1> (s p)| |V<I>(N—1)(S.,p)|2) ds

with N > 1.
A s1mple computation glves

R[®C) = (1+4f) (VP - [ve ),
RI®M D] = (1-+ab) (VNP — [VM ) 1 RIBW] +2(1 +a1)(V D), p).
Hence by inducetion we have
RG] = (1+ab)((VON D~ VM),
We have uniformly for p € A,
|0/05 ™| < C(1+|r))! v,
10 9o ™)| < c(1+ |V,
10 FR[S™]| < C(1+[r]) =+,
It is now sufficient to set ® = V™), ‘ O

From now on, we assume that CIDf satisfy the conclusions of Lemma 9.4 with k replaced
by Ak. We also assume that n(r) = 0 if |7| < R and xf(p) = 1 near {p —I-Vrcbf(r,p) :p?e
suppV, |r| > R}. Now we state the existence of modified wave operators:
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Lemma 9;5. The wave operators
W (Hy, Ho:J=), W* (Ho, Hu; (J%)7) | ' 9.9)
and ‘
WE(Hy, Ho; JF), W= (Ho, Hy; (JF)*) - (9.10)
exist. Operators (9.9) as well as (9.10) are adjoint each other. ;

Proof. Itis enough to consider the scattering theory for the triplets (Hj,  , Hy, ;L,Jf).
Set b = (i71(d,al)p + (1 +af)p? +7Lk(r))xf(p). a and b are in .#°. By Theorem 10.3,
there exists d € ™ with my; = 0 such that

Hp T3 = (Dy(1+d5)Dy + Ak(r)) xiE (D) (®F, a*) = b(x, D,)J (®F,aF)
=J(®F,d)
and admits the asymptotic expansion
. .

d=Y wd,

>0
d(r,p) = (3LD}p)(0,0,;7,p)
where
p(s,Tr,p) =b(r,p+t+6(r,r+s,p))a(r+s,p)

and

54.0) = [ (V@3)((1~0)r +1q)p)dr
In particular, d; € #"~t = %~ and
do(r,p) = b(r,p + (V,®3)(r,p))a(r,p),
d1(1,p) = (3p0) (1, + (V, &) (1,0)) (D)1, )
HRb(p + (V03) (1)), 5 (3D, (1. 0)) alr,p).

(9.8) implies that d1 € %1V where v = max{v, v. } Hence d —dy € &~ 17V,
Set ¢(r,p) = p. Then by Theorem 10.3 and Theorem 10.6, there exists e € ™ with
m, = 0 such that
JEHo . = 23 (D)) (®%,a%)(D})
=J ((I)i:’ )

3

and admits the asymptotic expansion

e_zl,
l( np ): (a’i .ZSQ)(OaOﬂrap)
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where

q(s,msmp) =a(np+T)e(r+s+y(rp+7,p),p +17)

and
y(r,p,0) = /0‘1 (VPCIJff)(r, (1- t)p +to)dt
In particular, ¢; € ™} = %! an
eo(r,p) = a(r,p)e (r+(Vp<I>i)(rp) p),
e1(r,p) = (9pa)(r;p)(DrE) (r+ (Vo @3) (r,p), )
+a(r;p)(DrpE) (r + (Vo @3) (1), P)
HVDA(r+ (Vp%)(0),p), 5 Voo ®5 (50))):

_ Since ¢(r,p) = p%,e1=0.Hencee—e;y € P2,
Now we have Tf = J(®3,d —e) where (d —e) — (do —eo) € 17V and

(do—e0)(r.p) = (i (Jral) (r) (p + Y+ @5 (1,0)) +R[¢i] (,p))a(r,p),
where

R®7](r,p) = (141 (r))|p + |} (r.p) > + Ak(r) — p*.
As in Lemma 9.4, we chose @jf so that R [@f] (r,p)a(r,p) € & ~17¢ with some € > 0. Therefore
Tf = J (CI>i —e) with d —e € ~17¢ and hence (r )#Ti(r)HTe is bounded. The operator

(r)~ 5 s Hy ;- and H ;-smooth on any positive bounded interval disjoint from eigenvalues of
Hj ;. So the smooth perturbatlon theory of Kato yields the Lemma. O

Now we show that these wave operators are isometric on suitable subspaces.

Lemma 9.6. .
ts:}iirglo((li)*Ji — y(Hp))e o =0 v (9.11)
f-lgn(Ji)*Jie—iHof =0. (9.12)

In particular, if A @ Ry and y € G5 (R) such that w =1 on A, then the wave operators
W (Hy,Ho;JF) are isometric on the subspace Ep, (A)ot; and W (Hy,Ho; J¥) =0.

Proof. Up to a compact term, (Ji':)"‘JjLIE is aPDO QA with symbol
n*(ry*(p*)(0*)*(r,p)-
If t — Foo, then the stationary point p = 7 of the integral
. 1 D .
(@Fe Pty (r) = ——n?(r)? / &Py (p%) (0% ) (r,p)i(p)dp -
(27)2 VR

does not belong to the support of the function 6=. Therefore supposing # € CJ (R) and in-
tegrating by parts, we estimate this integral by CN(l + || +|¢|)™N for an arbitrary N. This
proves (9.12). We apply the same argument to the PDO with sumbol n?(r)y?(p?) (O'i) (r,p)—

v?(p?) to prove (9.11). O




9 TWO-SPACE SCATTERING 59

From now on, fix A and y as in Lemma 9.6.
Lemma 9.7. The wave operators W= (Ho,Hy; (J i)“‘) are isometric on En, (N) 5. |
Proof. By Lemma 9.6, W= (Hy, Hr; (JF)*) = WE(Hy, Ho; JT)* = 0. This implies
lim |77 U] = 0, u € B, (A) 5. , | (9.13)
Moreover, J; (J;))* +J; (J; )* — y?(Hy 1) and W>(Hy ;) — W?(Hy, 2 ) are compact, and (9.13)
implies that
lim ||(J%)*e™ % ul = |lull, u € Eny (A) 227

‘t—teo
This implies the Lemma. O
Lemma 9.8. The wave operators W*(Hy, Lo+ D,akD,;J*) are isometric on Py.(Lo) .
Proof. Use the local Ly —I—Dra%Dr-smoothness of 1 —x. O

Lemma 9.9. The wave operators W (L —I—DralDr,Ho,JJ +) are isometric on EA(HO)%” and
W*(Lo+ D,ai Dy, Ho; JJ*) 5T = 0 '

Proof. It is enough to show that

SHm((J7%)" 17 — y(Ho)le 0Py = 0 | B 9.14)
sl Hm(JTE) JJEe H p = 0 (9.15)

where Py = 0 are projections onto the subspaces ,%” + Again up to a compact term
(JJ£)*JJE P is a PDO with symbol
22>y (%) (0%)*(r,p) v (P) = 0 |
“This implies (9.15). Similarly, up to a compact term, (JJ*)*JJ*Py. is a PDO with symbol

[N () (6™ (1,p) = 1y (p*) 1R, (p)-
We apply the same argument as in Lemma 9.6 to prove (9.14). _ ([l
Combinig these results, we obtain the following theorem.

Theorem 9.10. Suppose V,, = Vp, = Vp, = VW > 1, V4, = 1 and ay can be separated into
two parts as in (9.1) - (9.3). Suppose k is smooth long-range in the sense of Definition 4.4
and let the operators J* be defined by (9.4), (9.5), and (9.6) with CI> satisfying the proper-
ties listed in Lemma 9.4 with k replaced by Ak. We also assume that y(A)=1on AER,,
Nn(r) =0 if |r| < R for large enough R as is taken in Lemma 9.4. Then the wave opera-
tors Wi(L Hy;JJ%) and W*(Hy,L; (JJF)*) exist, are adjoint each other, are isometric on
EA(HO)% and E(L)Fuc(L) 2, respecttvely, w (L Ho; JJi)ji”:F = 0, and the asymptotic
k completeness

W= (L, Ho; JT*)EA(Ho) 77" = EA(L)Pac (L)
~ holds.
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10 Appendik: PDOs with oscillatihg symbols

' In this appendix, we describe a class of pseudo-differential operators with oscillating symbols..
We recall the Hérmander classes 1;"5 formeR,p>0,6 < 1. We set 5”[;”6 = ,;”3 (R4 x

R?) consists of functions a € C*(R? x R?) such that, for all multi-indices ¢, , there exist Cy g
such that :

|(929E @) (x, )| < Cap(1+ || ym1olp=1BI2

for all (x,&) € R? x R?. The best C,, g are the semi-norms of the symbol a. We denote 5 =
1"’10. We say a symbol a(x, &) is compactly supported in the variable & if there is a compact set

'K &€ R4 such that
a(x,§)=0

for all x € RY if £ ¢ K. We denote the pseuodo-differential operator (PDO) with symbol a(x, &)
by a(x D)
1

(a(x,D)u)(x) = = )

7 e SanE)i(€)dE

where i is the Fourier transform of u

(&)= ! ¢~ 58y (x)dx
() = G oo

The following is elementary.

Lemma 10.1. Suppose that a € ™ and a is compactly supported in the variable £. Then
a(x,D)(x)™™ is bounded in the space L* (RY) and a(x,D){x)™™ is compact if m' > m.

Now we define a class of symbols with oscillating factor. Let £ > 0,m € R, ® € .#17¢, and
a € ™. We denote classes of symbols of the form

e®)a(x,&)
by C™(®). We denote the PDO with symbol e ®a by J(®,a)
J(®,a) = (¢"®a)(x,D).

Clearly C™(®) C F"_; so that C™(P) are good classes if € > 1. On the other hand, the

standard calculus fails for operators from these classes if € < % However as is shown in [37],
J(®@,a1)J (@, a2)* and J (P, a1)*J (P, a,) become usual PDO and admit asymptotic expansions.

Theorem 10.2. Suppose that ® € =€ with € > 0, and a; € ™ for j = 1,2 and some
numbers mj. Suppose that a; are compactly supported in the variable E. Then the following
holds.
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(i). G=J(P,a1)J(P,a2)* is a PDO with symbol g € ™ for m =my+my and g(x,&) admits
the asymptotic expansion

1

8= Z —8a;
ialzoa!

ga(x, &) = (™D a (x,£)D% (e ay (x,));

in particular, go € & m=|ole

(ii). H=J(®,a2)*J(®,a1) is a PDO with symbol h € ™ for m = m1 +my and h(x, ) admits
the asymptotic expansion
1
h = Z '_ihaa

o0 *
ha(x,€) = D (@) ay (x,£) ¢ (7PN ay(x,£)));
| in particular, hy € m-lale,
(iii).v J(®,ay) is bounded in the space L[*(R?) ifﬁl = 0 and it is compact if my < 0.
(iv). Suppose my = my = 0. Denote by A the PDO with symbol
a(x,8) =a1(x,8)a(x, &) € A,
Then J(®, al)A](CI),az)* —Aand J(D,a2)*J(®,a1) — A are compact in L*(R?).

For the proof of Theorem 10.2, we refer Yafaev [37]. :

Next we consider the product of a PDO with oscillating symbol and a usual pseudo-
differential operator. The situation is different whether the pseudo-differential operator is on
the left and on the right.

Theorem 10.3. Suppose that ® € 17 ¢, a € S, and b € S™ for € >0 and some mg,mp € R.
Suppose a and b are compactly supported in the variable &. Then there exists a symbol d € ™4
for mg = mg +my, such that d is compactly supported in the variable &,

b(x,D)J(®,a) = J(®,d),
and admits the asymptotic expansion

1
d= ), —da,

|| >0 ™
da(x,1) = (9FDEp)(0,0,:x,1)

where

p(z,8:x,m) = b(x,n+E+r(x,x+z,1M))a(x+2z,1M)
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_.and

1
ey ) = /0 (V2®)((1 - T)x+ ), 1)d.
In particular, dy € . ma=|o| gnd

ol ) = bl + (V@) (5, m)ale ),
() = (35,1 + (V) () (D) s, 1)

Va0 (e, 1+ (Va®)(x,1), 5 (VaDE®) (s, 1))l )
if|la| =1 |
Proof. We compute
(b0, D) (@, ) ()
—(m)# [ D —HOMHOOM(r, £)a(y, m)a(m)dndydg

—(2m)"% / MR () ( / &= H@OM - SEMp(x £)a(y,1)dydE )dn
—(2m)~% [ M) (5, m)d |
where
d(x,m) = (2m)™" [ BT HOOM-0Mp(x £)a(y, n)dyde
We set
) = [ (@)1~ 2w+
Then

(3,m) — B (e, 1) = (y—x,r(z ).

By changing variables, we compute

d(xmn)
—(27)™" / FEIEN=TERM) b (x, E)aly, n)dydE

—(2m) ™" [ E My, €+, y,m))aly, mdyd
=(2m)™" / e, + L+ 1l x o+ 2,M))ar+2,1)dydé.
Set

p(z,&3x,m) = b(x,n + & +r(x,x+2,M))a(x+2,1).
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Then by Taylor’s expansion formula, we obtain the folowing:

d(xan) Z (agDCp)(anrxan)+p(N)(xan)
0<]a|<N— 1

where
1 .
Mm =N Y — [a- [ [(ae ;x.n)z% @8 dzd dt.
() = (21) |a|§,va!/o( OV [ [(08 ) ez, Cixin)ee o) dada

Set
0 (x, 1; t)—// (3°DEp)(iz, §;xm)e 0 dzdC.

Now it is enough to show that R(@) ¢ sma=1%l and the seminorms are bounded uniformly with
respect to the variable ¢. This obeys from the following two elementary lemmas.

Lemma 10.4. Fix C > 0. If |z| > C|x|, then for any n,
| / (92D%p) (12, §;xm)e0dg| < C(2) ™"
Lemma 10.5. There exists C > 0 such that

o —iz,0) yma=lol
] ] @EDER) = Cixme o0 azat < O

By integrating by parts, we can show these lemmas. o O

Theorem 10.6. Suppose that ® € #17€,a € ™, and c € ™ for € > 0 and some mg,m; € R.
Suppose a is compactly supported in the variable €. Then there exists a symbol e € #™ for
m, = my + m, such that :

J(®,a)c(x,D)* =J(®,e),
and admits the asymptotic expansion

1

€= ‘ —€a,
10%0 ol
ea(x,m) = (9FDZ4)(0,0,:x, 1)
where

Q(Z,C;x,n) :a(xan+C)E(x+Z+s(xan +C’n)an +C)

and

1
s m) = [ (Ve@)w (1- o) +c8)de
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In pafticula;; ey € M1 gnd

e()(X, 77) = a(x,ﬂ)f‘(x"‘ (an))(x7n)an)a
ea(x,n) = (9y'a) (x,1) (D5 ) (x+ (VaP)(x,1),1)
+a(x, 1) ((DF9e(x+ (Vo ®)(x,n),M)

(VD) (e (V@) (5),1), 5 V£ 2505 m)))
iflal=1

Proof is similar to Theorem 10.3.

64
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Part I11 |
Non-propagation of singularities of
scattering matrices for Schrodinger
equations on manifolds with polynomially
growing ends |

Abstract

Let M be a manifold with asymptotically polynomially growing ends of growing rate r®
with a real positive number & > 1, where r is the radial coordinate. Let P be a Schridinger
operator on M. A time-dependent scattering theory for P with a simple reference system is
constructed in [18] (Part IT of this paper), and the scattering matrix is defined. We here show
that the scattering matrices do not change the wave front set. In particular, the scattering
matrix has a smooth kernel away from the diagonal set. Physically this corresponds to the
fact that incoming waves are almost vertically reflected.
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11 Introduction of Part III

Consider a manifold M with asymptotically polynomially growing ends of growing rate r%
with a real positive number o > %, where r is the radial coordinate. The case where @ =1
corresponds to Euclidean spaces and scattering manifolds, i.e., Riemannian manifolds with
asymptotically conic structure (see Melrose [25]). Let P be a Schrodinger operator on M. We
can construct a time-dependent scattering theory for P with a simple reference system (see
[18], for the scattering manifolds case we refer Ito and Nakamura [16] also). We consider
the scattering operator and scattering matrix. Melrose and Zworski [26] showed that, for the
scattering manifolds case, the scattering matrices are Fourier integral operators associated to the
canonical transform on the boundary manifold generated by the geodesic flow with length 7.
The scattering matrices propagate the wave front set according to the same canonical map. They
use the asymptotic expansion of generalized eigenfunctions. Ito and Nakamura [17] generalized
these results using Egorov-type theorem, which is time-dependent theoretical. We here show
that if the growing order satisfies & > 1, then the scattering matrices no longer change the wave
front set. We see how the scaling property of the corresponding classical scattering operator
determines laws of the propagation of singularities for quantum scattering operators.

We describe our model. Let M be an n-dimensional smooth non-compact manifold such
that M = Mc UM, where M is pre-compact and M. is the non-compact end as follows: We
assume that M., has the form Ry x oM where dM is a n — 1-dimensional compact manifold,
and R = (0, ) is the real half line. We identify M., with R, x dM and suppose M¢c NMe C
(0, %) x dM. Let {y, : U — R*"1},U; C M be a local coordinate system of dM. We set
{I®y, :R. xUj; — R xR 1} be a local coordinate system of M., and we denote (r,0) €
R x R*1'to represent a point in JM.

We suppose that M is equipped with a smooth stnctly positive density H H(6) and a
positive (2,0)-tensor & = (hfk (6)) on IM. We set

- ——ZH G)hﬂ‘(e)a—%; on 7% = L*(IM,H(6)d®).

Q is essentially self-adjoint on 7%, and we denote its unique extension by Q.
We suppose that M is equipped with a smooth strictly positive density G = G(x) such that

G(x)dx=H(8)drd® on M.,
- and set our Hilbert space 5% = L?(M,G(x)dx). We set k as
k(r) =r2®

with growing order & > 1/2. Let P be a formally self-adjoint second-order elliptic operator on
M such that :

1y 1+a1 o oy -
P——-EG (8r,\/§89)< gy h—l—a3> (ﬁae) +V on (1,00) X IM.

where <1 t—; 2611 i f@) defines a r¢a1—va1ued smooth tensor, and V is a real-valued smooth

function. We suppose



11 INTRODUCTION OF PART Il 67

Assumption 11.1. There is u; > 1,4y > 1,us > 1 and py > 1 such that for any l € Z, y €
Z’rl, there is Cy ¢, such that

10!9a;(r,0)| < Cryr M for j=1,2,3,
10103V (r,0)] < Cppr .

P is essentially self-adjoint, Oess(P) = [0,00) and P is absolutely continuous except for
a countable discrete spectrum with the only accumulation point O (see [18] and references
therein). In a sense, P is a “short-range” perturbation of —%8,2 + k(r)Q and we can construct
a one-space scattering theory for them ([18]). We here consider a two-space time-dependent
scattering theory for P with the following reference system: We set ’

Mf =R x 8M,

Ay = L*(My,H(6)drd®),
1 92

Pf —Ea—rz- Oan

P; is the one-dimensional free Schrodinger operator, and it is self-adjoint on H?*(R) ® 54,
where, H? is the Sobolev space of order 2. Let # be the Fourier transform in r-variable, i.e.,

(Fu)(p, ) := (2m)"2 /R P u(r, 0)dr

 is defined for u € C3’(Mj), and extends to a unitary operator on L?(My). We decompose
I} ,x = {u € 57| supp(Fu) C R: x oM}

then 9 = ;. ® H5,—. Let j(r) € C*(R) such that j(r) =0if r < } and j(r) = 1if r> 1.
We set an identification operator J : 7 — S by : '

(Ju)(r,8) = j(ru(r,0) if (r,0) € M.,
and (Ju)(x) = 0 if x ¢ M... We define the two-space wave operators by

Wy := W (P, P;J) = s-lime"FJe . '
It is shown in Theorem 5 in [18] that under Assumption 11.1 the wave operators W exist, are
isometric on J#7% +, and the asymptotic completeness holds:

Wit a = Hac(P),

where J%,.(P) is the absolutely continuqus subspace of P. Then the scattering operator is
defined by

S=WIW_ : H_— H5.

and is a unitary operator there. By the intertwining property: PrS = SPy, there is S(1) € B(5%4)
for A > 0 such that :

(FSF ) (p,) = S(p?/2)u(~p, ) for p >0,uc FHy_.

S(A) is the scattering matrix and we study its properties.
-We state our main Theorem.
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Theorem 11.2. Suppose Assumption 11.1 and the growing order o, satisfies o > 1 Then for
u € 54, and A ¢ opp(P) (the pure point spectrum of P),

WEF(S(A)u) = WF(u),
where WFE(u) denotes the wave front set of u.

Remark 4. The case where M = Mc UM, is a Riemannian manifold, the metric on M. is
close” to a warped product of R and a compact manifold dM, and P is the Laplace opera-
tor, fits into our framework. The corresponding metric near infinity is dr* + r**d6?, and the
function r% varies proportionate to the size of M. = R, X dM at r.

Remark 5. The case where o =1 correéponds to scattering manifolds including asymptotically
Euclidean spaces. Melrose-Zworski [26] and Ito-Nakamura [17] showed the propagation of
wave front set by scattering matrices for Schrodinger equations on scattering manifolds: Let

q(8, ) thk (8)w;ax
]k

be the classical Hamiltonian associated to Q on 7*(dM). We denote the Hamilton flow gener-
ated by b by exp(tH)) for t € R. Then

WE(S(A)u) = exp(TH, z5) WE(u),

when ¢ = 1. If M = R" and the Hamiltonian P is a short-range perturbation of the Laplacian
—1A, then the canonical map exp(7H ./77) is the antipodal map on T*(s*1).

The main idea to prove Theorem 11.2 is to consider the evolution:
Af) = e Fr/B® pro=uP[RV% ypifeg by g hDg e/ jg=itFy/h®

with some symbol a. We use an‘semi—classic»al Egorov type theorem argument for this time-
dependent operator (see [17], also see the textbook by Martinez [24]). We consider W (¢) =

eitP/H® Jo=itP /W% 5q o time-evolution, and construct an asymptotic solution of a Heisenberg
equation which is very close to A(¢). The construction of the asymptotic solution relies on
the classical Hamilton flow generated by p; = %pz +k(r)q(8,w). The classical scattering
operator has a scaling property, and its semi-classical limit satisfies for (r_,p_,0_,0_) €
T*R_ x (T*dM\ {0}),

h1ir30(He,hna,)sk(h—1/ar_, p—,0_,h lo_) = (6_,m_),

where sy, is the classical scattering operator and IT, is a projection to *-variable. Thus, one
may consider our results as a quantization of the classical mechanical scattering on manifolds
with polynomially growing ends of growing order ¢ > 1. We note that on scattering manifolds,
(6, )-components of classical scattering operator is exp(7H \/2—) and the wave front set is
propagated along this map.

The paper is constructed as follows. In Section 12, we discuss Hamilton flows generated by
Pk=75 1p?4+k(r)q(6, ) and classical scattering theory. We show scaling properties for solutions
of classical trajectories and for classical scattering operators. In section 13, we prepare symbol
calculus and Weyl quantization on manifolds. In Section 14, we discuss an Egorov type theorem
and the construction of asymptotic solutions. We prove Theorem 11.2 in Section 15.
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12 Classical scattering and scaling properties

We consider the classical mechanics for the Hamiltonian with “polynomially growing ends”
structure on T*(M..) where M., = R x dM. We assume ¢ > 3 in this section.

12.1 Classical trajectories

We set
1
pk(r:pa 97a)) = §p2+k(r)Q(97w)>

1 ,
o(6,0) = LT W B)osax,
ik
k(r) =r~2¢,

on T*M.. =2 T*R; x T*dM. We consider the Hamilton flow

(r(1),p(2),0(2), (t)) = exp(¢Hp, ) (70, Po 60, )

which starts from (rg, po, 6o, @) € T*R x (T*dM \ 0). We assume ay # 0. It satisfies the
Hamilton equation: :

/0= =p0)

)=~k —k’(r(t)) (6(0), 0(1)) = 20r(2) ' 22(0(1), 0(1)),

() = 22 = k(r() 2L (8(0), 00)) = () L (0(0), 0 (1)),

/() = 2% = -k(r(t»gg(e@,w(t» /0228 0(s), (1))

The solution has two invariants: the total energy Eg = px(ro, po, 60, ayp) and the angular mo-
mentum go = g(6p, 0p). Then (r(¢),p(¢)) satisfies

(1) =p(),
p'(t) =K (r())q(6(z), (1)) = 2ar (1)~ ~**qp,
which depends on (6(z),®(¢)) only through go. Or we can say that (r(¢),p(¢)) obeys the re-

duced 1-dimensional classical Hamiltonian % p?+k(r)go. We set

t(t) := 7(t,70, Po, 60, M) := / k(I1,exp(sHp, ) (10, Po; 0, @))ds.

Then (8(t),

w
960 g do g
%(67(0)? 71_'__%(6’(0)

(¢)) satisfies

ot
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and (6(2), (1)) = exp(z(r)Hy) (6o, @), We set

G(t) = 0'([§7’07P0,00aw0) =V ZQ(QO)a)O)T(tﬁrOzP()a60:’0)0)'
. Then
b0 __ovm

90 9v2g

5o~ o0 (09 35=""39 (60

and (8(z),®(t)) = exp(c(2)H, /z;)(60, ). Note that exp(o(t)H, /z;) is the geodesic flow on
oM with respect to the (co)metric (h/*(8)) on T*(dM).

12.2 Classical wave operators and scattering operators

We set
wi () = exp(—tHy,) o exp(tHp,)

where p¢(r,p,0,0) = %pZ is the classical free Hamiltonian on T*My = T*R x T*dM and we
consider the limit # — oo, Here we naturally identify Ry X R x (T*dM \ 0) as a subset of
T*Mjy. Since (r(t),p(z)) obeys the reduced 1-dimensional classical Hamiltonian with short- -
range potential 2p? +k(r)qo, it is easy to see the inverse wave operators limy 1. IT, oW ()
exist, where, I, denotes a projection to *-variable. r(¢) satisfies r(¢) > c(t) for some ¢ > 0,
which implies |k(r(¢))| < C{t)~2%. Hence k(r(t)) is absolutely integrable over R and the limit

]
T:I:(’"OaPOQ 90) COO) = tliglwf(ta”OaPO, 60a 0)0) = /0 k(HTeXP(SHPk)(r07p0> 90) (UO))ds

o+(r0, Po, 60, o) = tli)rile(f, r0, 0, 60, 00) = 1/2g(60, ) T+ (10, Po, B0, )

exist. Hence the classical inverse wave operator
1 =1
wy, = limw, " (¢
ch = lmwp' ()

exist and are diffeomorphic from Ry x R x (T*dM \ 0) to R x Ry x (T*dM \ 0), and the fol-
lowing formula holds:

Ig,oW;, 1 (70, Po, 60, @) = exp(G:x (o, Po, 60, ) H. 57) (B0, ).

Let U C Ry xR x (T*dM \0) be a compact domain. Then the convergence of wk_l(t)
‘to wil is uniform on U with all the derivatives. Since the limit is diffeomorphic, its inverse
wi () has the same property on w; }(#)U. In particular, wy ' () on U, and w(f) on wil(£)U are
uniformly bounded in 7 with all the derivatives.
Note that we here consider a two-space classical scattering with a natural inclusion R x
R x (T*0M\ 0) — T*Mjy. wi(t) is well-defined only for ¢ near +o0 if p > 0, and for # near —oo
if p < 0. This is the reason why above discussions about domains are a little bit delicate.
We set the classical scattering operator

Sp = w,;io Wi, —.
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We set
reo(T—, p—, 9_,.0)_) =r_+1Ls(r—,p—,0-,0_),
and

Ooo(r—, p—,0_,0_) = 04 (Wi _(r—, p—, 0, 0_)) — 6_ (Wi —(r—,p—,0_,0_)),

for (r—,p—,0_,0_) € Rx R_ x (T*dM \ 0). Then we have

He,wsk(”—,P—, 9_,60—) = exp(O'oo(r_,p_, -, w—)H\/Z—q)(e—a'a)—)'

Proposition 12.1. r..(r—,p_,0_,0_) and Gw(r—,p—,0_,®_) take the same values as long as
the ratio of the angular momentum to the total energy q(6_,0_)/ % p? is a constant.

Proof. Let (r_,p_,0_,0_) € RxR_ x (T*dM\0) and

(r0ap0a 9(), 0)0) = Wk,v—(r—:p—a 9_, 0)_),
(r(®),p(2),0(t), (t)) = exp(tHp, ) (r0, Po, 60, @)

Then we have the formula

Cu(r_, -, 0_,0_) = /R K(r(t))dt.

Consider another (7—,p_,0_,®_) € R x R_ x (T*dM \ 0) but with the same angular momen-
tum g(6o, ) = g(6_,0_) = g(H_, ®_) and the same total energy pi(ro, o, 6o, ) = p2 /2 =
p2 /2. The corresponding classical trajectory 7(¢) can be written as a time translation of r(z)
: (t) = r(t +c) for some ¢. By changing the variables in the above formula, we learn that
7. and 0., depend only on the angular momentum g(6p, ) = g(6—, w_) and the total energy
px(r0, Po, B0, o) = p2 /2. ;

Every trajectory has a unique time ¢, when the radial momentum p (z.) becomes zero. We
call r, = r(t,) the turning point of the trajectory. We see that

Feo(7—, p—, 0—,0_) = ZH,WI:’i_(r*,O, B0, W) =: 271 oo(7+, g, @),
G+(7’*,O, 0070)0) = _G—(r*aoa 9())600)) Gw(r—-ap—) o, (D_) = 26+(r*70a 905(00)'

There is a one to one correspondence between the turning point r, and the ratio of the angular
momentum to the total energy because the relationship k(r)g = py holds. It is now enough to
show that 74 (r+, 60, @) and 6 (7,0, 6y, ax) are constants for every (6, ) € T*dM\ 0 if the
turning point 7, > 0 is fixed. So the Proposition follows from the following lemma. O

Lemma 12.2. Fix the turning point vy, > 0. Then
r+,°°(r*a 60) 0)0) = r+,°°(r*) éOa (DO); 6:|:<r*)0a 90a (D()) = G:I:(r*aou éOa (Z)O)

for any (8o, @), (8o, @) € T*IM\ 0.
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Proof. Set go = q(6o, ay) and go = q(8o, @). Take A > 0 such that gy = A2go. Denote r(t) be
the solution starting at (4,0, 89, @) and set #(t) = r(At). Then '

P(6) = A% (hr) = 22(~ 2 (1)) o = — o (A1)

Hence 7(t) is the solution starting at (ry,0, 8y, @). We note that p;. = Ap.., where, p1 and py
are the corresponding radial momentum of the scattering data. Recall that Hrw,:j_ (7+,0, 60, p) =

¥+ oo(7, Bp, ) implies
7(#) = (74 oo (7%, 60, 00) + p41) — 0 as 1 — oo.
Since ’
F2) = (s B0, @) - P7) = F(A1) = (4 (e, B0, @) + Apct) — 0 st o0,

we conclude 7 oo(rx, 6g, 0p) = 7y oo(7x, 6o, ). Compute

61 (rs, 0, B, @) = /230 /0 " k(7(s))ds = A/220 /0 " kr(As)ds
- V220 /0 " k(r(u))du = 62 (r+,0, 60, o).

Here we used the change of variables As = u. O

12.3 Scaling property o

We here show that classical trajectories exp(tHp, ), classical wave operators wy 4+, and classical
scattering operators sy, have a scaling property with the (semi-classical) scaling parameter 2 > 0.
We will consider the scaling

(r,®) — (A% ).

We note that this scaling preserves the total energy py. We choose this scaling so that @ is
scaled in a standard way, because we investigate the asymptotic behavior of quantum scattering
matrix as |@| — . v

Proposition 12.3. Let h > 0 and (rg,po, 600, 09) € T*R. x (T*dM \ 0). Then the classical
trajectories satisfy the following scaling properties:

(I, TTp) (exp (A" #tH, ) (/% rg, po, 60,5 ax))

= (h‘l/o‘Hr,l"Ip)(exp(thk)(ro,po, 6o, ),
T(h= V%% =%, po, 80, ) = K21/ %2(z, 7o, po, B0, @),
o (kY% k=Y %y, po, 60,k p) = K~V %6 (¢, 1o, po, B0, @),
(g, o) (exp (A" “tHy, ) (h™"/%ro, po, 60,5 )

= (Ig,h ™) (W' V%o (2,70, po, 60, %) exp(tH. /57) (60, ).



12 CLASSICAL SCATTERING AND SCALING PROPERTIES 73

Proof. Set go = g(6p, @) > 0. Since g is homogeneous of order 2 with respect to @ variable,
we have '

q(60,h™ @) =k 2qo.
Compute

dh= Y11, exp(tHy, ) (ro0, Po, B0, @) = K~/ *T1, exp(tHy, ) (7o, Po, 0, @),
and

01, exp(tHp, ) (ro, Po, 60, o) = (—k') (T exp(tH}, ) (70, Po, B0, @) )90

= 20.(T, exp(tH,) (o, po, 60, ) 240 |

= h~ V%20 (h~ /11, exp(tH,, ) (o, Po, 60, @p)) " 2% R 2qq
= b~ V() (k™Y %11, exp(tHp,) (70, Po, 60, 00) ) A2 o.

This implies the first equation.
We compute 7.

(h—l/at h—l/ar()) Po; 90) h_] COO)
Ve

—/ k(IL, exp(sHp, )(h™ e, po, 60,k ax)ds

' w1/

=/0 ( —l/anrexp(hl/aSHPk)(rOap07‘90aa)O))_zads
.

= / 12 (T, exp (uHy, ) (r0, Po, 60, 00)) ~2*h = %du
0 .

t

=/ W2~V (11, exp(uH,, ) (ro, Po, 60, ) )du
0

= ¥"1/%1(t, 1o, po, 6, @p).-

We compute ©.

o (k™% k= %rg, po, B0,k o) = 4/ q(60, k1 ap)T(h™"/ %, =Y/ %r¢, po, 80, kL )
= h K2 %012, o, po, B0, wp) = k' %o (2,70, po, B0, ). |
| 0
Proposition 12.4. Let i > 0, (1o, po, 6o, @) € T*R,. x (T*aM\ 0), and (r—,p_,0_, @) €

R x R_ x (T*dM\0). Then the classical wave operators and scattering operators satisfy the
following scaling properties: : :

wil (h=Y%%) (Y%, po, B0, h ™ L axy)

= ((h_l/_anrpnp)wl—;l (t)(r07p07 90) (D()),
(ITg, k™ 'T1o) exp(h! /%6 (t, 70, po, 0, ) H, /25) (60, @)).
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w]c_,:lt(h_l/quaPO) 907h—la)0)
= ((h_l/anraHp)wlzli(rOaPOa‘em (D()),
(H(a,h_lnco) exp(hl_l/aai(r(),p()a 90) a)O)H\/Z_q)(GOa (D()))

sch™ V% _,p_,0_,h @)

_( l/a( (}"_,p_ 9_,0)_.)—1"_) —P-;
(Mg, h™'ILy,) exp (! =Y/ %6 (r—, p—, 6, 0_)H ) (6, 00_)).

Proof. The proof is straightforward. O

13 Symbol classes and their quantization

We prepare pseudodifferential operator calculus. Most of the discussions and notations here are
the same as in [18]. But since we assume a different relationships between G and H, we have
different formulas for Weyl quantization. We also refer textbooks by Horemander [14] for the
standard theory of microlocal analysis.

We employ symbol calculus on 7*M, but we always suppose that the symbol is supported
in T*M.., and choose the local coordinate system as in Section 11. We also consider symbols
on T*Mj.

13.1 Symbol classes
We set a metric on T *Me.( or T*My )defined by

dr? dw?
= S +dp?+d6*+ —
81 <7’>2+ P +do°+ (a))z)v

and consider symbols in S(m, g;) with a weight function m, i.e., a € S(m, g1) if a € C* and for
any indices k,1,7, 6, there is Cy ; , 5 such that - .
9401 303a(1,p, 6, @)| < Cipyam(ryp, 8, @)(r) ().
We will consider symbol calculus for symbols supported on sets of the form:
Qm% = {(r,p,0,0)|(h/%r,p,0,ho) € Q}

with a fixed compact set Q C T*R x (T*dM \ 0) and a semiclassical small parameter # > 0.
In such cases, the metric is

* = p2/%4r% 4 dp? + d6> + h*dw’.
The h-dependent symbol a” € S(m, g}l”a) satisfies

|arka’l)aga£ah(r’p’ 0,0)| < Ck,l,%gm(h)hk/aHa'.
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13.2 Weyl quantization

Let {;} be a partition of unity on dM compatible with our coordinate system {y : U, }, i.e.,
X € C3(Uy) and ¥ 2 (0)? =1 on M. Let a € S(m,g1) be a symbol on T*(My), and let
u € Cy(My). We denote by ag and Hy the representation of # and H in the local coordinate
(1®yy, R x U, ), respectively. We quantize it by

OPMf ”*‘Z%AH /2 ay (r,Dr,0,Dg)H i/ZX/w-

Here a%’ (r,Dy,0,Dg) denotes the usual Weyl quantization on the Euclidean space R”, and we
identify R x Uy with R x y; (Uy) and denote pull-backs and push-forwards of symbols and
functions by the same notations.

Similarly, for a symbol a on T*M.., we quantize it by

' O . -1/2 1/2 .
OPAW;(G)MZZ]XAGA / QY(V,D;»,Q,DQ)GA/ JXou.
A

Here u € CJ(M), G, is the representation of G in the local coordinate {y; : Uy}, and we
identify the symbol a with a symbol on T*M; by the obvious way and denote it by the same
symbol. Since G(x)dx = H(0)drd6 on M., we have '

Oppy(a)u= ZJXAH *dY (r,D,,6 De)H;L/ Jxau

So we may identify these quantizations by using J. We omit the subscript M or My in these
Weyl quantizations for such symbols a supported in {r > 0}.

We may consider Op" (a) as an operator from J# to % by multiplying J* from the right:
Opy, . (a)J* : C5 (M) — s¢;. We may also consider Op"(a) as an operator from J#; to % by
multiplying J* from the left: JOp}y . (a) : Cy(My) — F2.

By virtue of the weights put around the locally defined pseudo differential operators, Op" (a)
is symmetric if a is real-valued.

If A = Op" (a), then we denote the Weyl symbol of A by a = Z(A).

We denote the class of pseudodifferential operators with Weyl symbols in S(m, g) by ¥(m, g).
The class F(h™, g}f’a) has the following properties:

Proposition 13.1. Suppose A; = Op" (al') € ¥(n™, g}l”a), i=1,2. Then

ArAy € W(pmthe oy
[A1,A7] € ‘I’(hm1+h2 l/aag}f’a), »
(A1) =i Op” ({df, a3}) € WM )

where {-,-} is the Poisson bracket:

{ } . 8a1 8a2 _ 8a1 8a2 8a1 aaz . aal 8a2
= ey 9r  9r dp | dw 98 96 do

(13.1)
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13.3 - Hamiltonians

Now we consider the Weyl quantization of classical harmltomans and related Schrodinger op-

erators.
We first note that if a(x, 5) =Y ;xajr(x)E;&, then

" (50 = EDjanP = T 0ka) )

Jk

We set the symbol of the full Hamiltonian

1 1+a; a or
prp0,0) =@ via) (11N 2 ) (7))

on T*M...
Then we have

Op" (p) =P+,
with f € C™ such that

laka?’f(r 9)| < Ck < )—min{2+p,1,1—|—u2+q,/.t3+2a}—k.

“So we can include this error term f into the potentlal perturbation term V, or even we may
assume that P = Op" (a). )

14 Egorov theorem

In this section, we prove Egorov-type theorem. Our discussion is almost the same as [17] but
the choice of the scaling for r, @, and ¢ is different. we employ the same scaling as in Section
12.

Suppose a(k;r,p, 0, ®) is supported in a common compact subset Q C T*R, x (T*dM \ 0)
and is uniformly bounded in C7, namely, there is Cy; 5 5 such that for every & > 0,

|0k0L0395a(h;r,p,6,0)| < ék,,,y,s.

We set
d'(r,p,0,0) = a(h; k%, p,0,ho)

Then a" is supported in Q% and 4" € S(1, g’f’a). We set
Ao =0p"(d"). |

We take £ > 0 such that

exp(tHp )QN{r:r<et)} =0.
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for all ¢ € R. Then by the scaling property,
exp(h~ Y *H, QM N {r:r < e(h %)} =0.

for 0 < h < 1. We choose 1 € C*(R) suchthatp=1forr>1andn =0 forr <1/2, and we .
set :

.
Y=n———--—1.
1 <e<h~1/ar>)
We define
A(t) — eitPf/hl/"‘J*Ye—itP/hl/aAOeitp/hl/aYJe_itPf/hl/a
for t € R. The purpose of this section is to obtain the symbols of A(¢) as a pseudo differential

operator, and to study its behavior as ¢ — oo,
We compute ’

d [ .ppife. . _.p plja i cpmlje . 1/a
E(eltp/h YJe itPp/h ): 7 (eltP/h YJe itPs/h )L(t)+R1(t)

where

__ itP /R ® px —itPs /WM
L(t) ="M T (g)e 1%

T(¢)=PYJ—JYP;+i 'h/® (%Y) J,
i

Ri(t) = the’“”/h” “(1—YJI*)T (¢)e e /h/.
We compute bounds for symbols of T'(t) and L(¢). We have
10F35 0300 (T (1))(r,p, 6, @)
<C((N™ + (M) + (1) % p) (@) + (1) 24(@)) ()~ (p) ).

‘We also have

[0F9505002(T (1)) (r,p, 6, @) ~ Yk(r)q(6,®)| -
<C((r)7H ()T (p) + () p) (@) + (1) TH T2 @)?) ()~ (p) (@) 1.

In particular,

9595 9408%(T (1)1, 0, @) = YK(r)q(0, )|
< C(g)~min{v 1 b0 ps-+H 20—k pmin{py i i} 0/ 09

on exp((t/h'/*)H,, ) Q"> (3 exp((¢/hY/*)H,,) suppah), uniformly for ¢ and h, since (r) ~
h=1/%(t) and (@) ~ A~ there.
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By the Weyl calculus, we have
L(L() =T @) (r+ /B *)p,p, 6, ).
Hence we have
10§ 9p Iy 00 (L(1)) (1 p, 0, )|
<SC((A)™ + (7 (p)? + (A% (p)(w) + (7) 2% (@)?) (A~ (p) (@),
with 7 = r+ (t/h1/®)p. We also have
10K} 0JOZT(L(2)) (1 p, 8, ) — Yh(r + (/R %)p)q(6, w)|

< C ()~ min{y i Ho O s 20}~k pmindpy o i, pi } 0/ 09 (14.1)

on exp(— (¢ /hY/*)Hf) oexp(— (/A ®)H) QM = wie (1 /1M/#)) @ > supp(a 0wy (1/1/*)).
We set

r+t
b(t51,p,0,0) = (L K +1)a(6, 0)
be the principal symbol of L(¢) with 2 = 1. We also set

W) = a owk(hlt/a).

Then bg have the following properties:
 Lemma 14.1. b}, satisfies the equation

ff;b’é+h‘1/“{lo(h—1/“t),b’a(r)} =0

and b € s(1, g, ie,
10X} 3y d0bli(r,p, 8, )| < Cp gy, st/ * 101,

Proof. By a standard calculation, we see that lg (t) is the generator of wi ' (¢) on &, i.e.,

0 1 0 O Or
- -1 0 0 O d ~
e Op.0.0)= "0 o o 1|5 [BOGTOGe.00).  (142)
0 0 -1 0 Ow

for (r,p, 0, ®) € Q. We will prove r- component of this equatlon Other components are snmlar
to prove. We compute

%Hrwl—c—l ®)() = %[H,exp(thk)(-) — 1, eXp(tHPk)(')]
TPE()~Mpexplity)()+ 1 (0 () =1 2 expley ()
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Since
dly, - _opx
%(t,r,p,e,a))——aT(r—I—tp,p,G,co)-t,
we have
dly dpr

§E(t;w’: (t)()) = fﬁ;(eXP(thk)('))-

And the cut-off 7 =1 on w,?l (£)Q. This ends the proof of (14.2).
Now we differentiate the equation '

d" = bl(t) ow (%)

with respect to ¢:

d d _1yp— - _1yp—
0=—d"() = 2B (7V/%0) () +h~ /% (:0p9990) b (e, wic (7 71)()
01 0 O o
-1 0 0 0f]|9 - 1,y
0 0 o 1o |BE T G B,
0 0 -1 0/ \do

Hence we have

d _ -
b+ {lo (1), b (1)} = 0.

Now let by(t;h;h'/%r,p, 0, ho) = bi(t;7,p, 6, ®). Then we have
bo(t;h;1,p,0,0) = a(llpwi(1)(r,p, 8, @), exp(—h' =% (t,r +1p,p, 0, )H, (6, 0)).
Hence we have
|0£9L0305b0(t; him,p, 0, )| < Crpy
uniformly in ¢ and A, which shows the desired estimates. o (]

Using these estimates and properties of classical trajectories, we will construct an asymp-
totic solution to the Heisenberg equation:

d 1

780 = —3375 [L(), B(1)], B(0) = J"AoJ.

Lemma 14.2. Let iy, = min{py, i1, o, 43}/ 0 > 0 and pty = min{pty, 1, tp + &, i3 + 20} —
1> 0. There exists b"(t;1,p,0,®) € C3(T*M;) such that - ‘
(i). b*(0)=d".

(ii). B"(t) is supported in wi(t/hY/ *)~1 suppa”.
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(iii). b"(t) € S(1,g%%), and it is bounded uniformly int € R.
1

(iv). b'(t) —a" ow(t/hV/®) € S(ht,g%), i.e., the princpal symbol of b"(t) is given by a0
wi(t/hV @), and the remainder is bounded uniformly in t.

(v). Ifwe set B(t) = Op” (b"(t)), then for any N, there exists Cy > O such that

. d i

15-B () + 3175 (L), BO]I| < Cn(e)~ 7#n", B> 0.

" (vi). B(t) converges to By as t — oo in B(54%), and the symbols b". := L(B) satisfy
bt —dtow € S(h”’.‘,g}l”a).

Proof. We set By(t) = OpW (b(1)) and write

d

= L), Bo(®)], 75(r) = Z(Ro(r).

Ro(t) = —Bo+ —7=

hl/oc

Then by (14.1), Lemma 14. 1, and the symbol calculus (Proposition 13.1), rg(t) is supported
in w; 1(z/h!/*)[supp a*] modulo O(h*)-terms, and

rh(e) € S(() 1 Hentn g%, (14.3)
We set '

() = — [ AR 5/ oo W), a4

Then bﬁ‘ is the solution of the transport equation:

< )+ % Gofe) ¢ /1), B 0)} = (), Bh(0) =0.

By (14.3) and (14.4), we observe
B(t) € S(ht, g7%)

uniformly in ¢, and b is supported in wi ' (¢/ h1/%)[suppa”] modulo O(h*)-terms. Moreover, b"
converges to a symbol supported in w [suppa | in Cf- topology as ¢ — oo,

Repeating this procedure, we can 1nduct1vely construct symbols b? € S(hkh, g}l"a) and rﬁ‘ €
S((e) =M+ DE gh%) We set b as an asymptotic sum:

bh(r) ~ Zb” =0p” (b"(2)).

By the construction, b*(¢) and Op" (b"(t)) satisfy the assertion. a

We then observe that A(z) is very close to B(¢) constructed above.
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Lemma 14.3. For any N, there is Cy such that
 JA@=BE)| <Cxh", teR.
In particular,

Ay = W-limA(t) _

t—too
have the symbols b". as pseudodifferential operators.
Proof. We first observe v
JA®) - B(z) | = le"/M“ reye B /W 4o P/ y Je=tPr /BT — B(y))|
= ]|J*Ye_”P/hl/aAoeitP/hl/aYJ - e_i’Pf/hl/aB(t)e”Pf/hl/a I
< ||[YITFYe R g PR Sy fpry _y gt W B () gitBr /B pry |
< o—itP/H® Ao PR _y Je—itpf/hl/“ B(t) P /R JY||+Rs
= lAo = B(1)[| + R2
where :
Ry = 2||(1— YJJ*Y)e~#F/M 4
and
Br) = &P/ Jem P/ B 1) i 11 pryemib 1

By local decay estimates for P, we learn Ry = O({(t) VM) for any N (see [17]). We then show
B(t) is very close to Ag uniformly in #. We compute :

digo (1) = (/v semhiH ) diB(t) (Pl prye=iem’e)
t t
1/ (eil‘P/hl/aYJe—ile/hl/a) L(t)B(t) (eitPf/hl/aJ*Ye—itP/hl/a>
h o
_ 1i/ ( AP/ y Je—itPf/hl/o‘) B(t)L(1)* ( AP/ J*Ye—itP/hl/o‘>
h o

+RiB() (e"fPf/h” “ prye=ip/h ) - hﬁ (eHP/m/"y gemtn ") BR]

_ ( JuP/nM %y, 5 —itPr/H® i V_i_
(e y i )( 2 50)+ hl/q[L(t),B(t)]>

(eHPM Prye P14 Ry o)

_|_

where

Ra(r) = RuB(t) (/" pryemiP/") - hT (/e y 1=/ B0k

(PP Fem P/ Ba) (L) — L(r)") (50" e P )

+h1/a
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We can show ||R3(¢)|| = €({¢) ™ h"). Combining this with Lemma 14.2 (iv), we learn that
e —1—ph N
1 50) | < Cwe) 4
t
with any N, and hence ||B(¢) — B(0)|| < CyH". We note
B(0)=n G) JT AT N (;) =Ag+O()

by the choice of € > 0. Combining these, we conclude the assertion. : d

15 Proof of Theorem 11.2

Suppose a(h;r,p, 6, ®) is supported in a common compact subset Q C T*R.. x (T*9dM \ 0) and
is uniformly bounded in Cj’. We set - '

Ag=0p" ("), d'(r,p,8,0) =a(h;h*/%:,p,0,h).
Let € also as in the last section.

Lemma 15.1. If 8 > 2€2, then

w-lim (Py/8)A(1)n (Py/8) = n(Fy/S)WrAoWn (Py/8).

Proof. Itis easy to show by the non-stationary phase method that

1 _ r —itPs /R
S (1 1 (e(h—l/at)>> Je (s /0),

and the claim follows easily from this. | O
This implies, combined with Lemmas 14.2 and 14.3:

Lemma 15.2. Let Ag be as above. Then WiAoWx are pseudodifferential operators with the
symbols b given in Lemma 14.2. In particular, Z(W}AoWy) are supported in wy \ [suppa”]

modulo O(h™)-terms, and the principal symbol modulo S(ht», g}l"a) are given by a" owy 1.
The converse of Lemma 15.2 is given as follows:

Lemma 15.3. Suppose (r—,p—,0_,®_) € R x R_x (T*0M \ 0) with 3p2 € 0pp(P) and é €
- Cg(Rx R_ x (T*dM\0)) is supported in a small neighborhood of (r—,p—,0—,0_). We set

A=0p" (@), @(r,p,0,0)=a(h'/"rp,0,he),

- then W_AW?* is a pseudodifferential operator with a symbol supported in wk,_[suppc'ih], and
1

has the principal symbol modulo § (h/"h,g}f’a) given by & ow;
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h

Proof. We set ag,o =d'o w,:l_. By Proposition 12.4, we have

1

= {70, TIp)wi, (1, p, 6, @), (Tlg, ™ ') exp(=h' /%6 (w1 (1,9, 6, @) H, /55(6, 0))]
(rapaeﬁw)esuppa}" |

supp a’&o = supp ao Wi,

We set ago(h; 1Y/ %1, p,0,hw) = aﬁ}o(r,p, 6,w) and
Q= {(Typ)wi,- (5p,0, @), exp(~A1"%0_(wi L (1,p, 0, 0))H, (8, 0))0 < h < 1,
(r,p,0,®) € suppa}. |
Then suppago(h;-) is supported in a compact set Q € T*Ry x (T*OM\ 0) and ago(h;-) is
bounded in C§ uniformly for 4. Hence ago(#; ) satisfies the assumptions of Lemma 15.2. We
have ‘
d" =S A—W*0p¥ (af ) )W-) € S(hH, gP).
and it is supported in supp[a"] modulo O(A)-terms. Then we set ag,l =a" 10 w,:j and set
a_p=X(A—W20p¥ (af o+ af )W-) € S, g1).
We construct a’* T =23, inductively by
a_j=SA-W*0p" (gt +af ;)W) € S(h*,g}).

1

pu— )

h h

— - h 1 .
ag,j =a_ jowy and we set ag as an asymptotlc sum:

di~ Y dh,
=0
Then by the construction, we have
(A - W*op¥ (alyW_) € S(h, &%)
By multiplying W_ an’d WZ*, we have
S(W_AW* —W_W*OpY (al)W_W*) € S(h™,g"™).

Take f € Cy (R+ \ 6,p(P)) such that f(A) = 1 in a neighborhood of A_ = $p2. Denote by Py,
the orthogonal projection on the absolutely continuous subspace of P. Since P,c = W_WZ*, we
have ‘ '

W_AW?* —W_W*OpY (d)W_W* = W_AW* — P,. Op” (a)P,c € S(h™,¢"%).
We compute

op” (ag) — P, Op” (ag)Pac = (1= Pa) op” (ag) +Pac Op” (ag)(l - Pac‘)a
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and

(1—Pac) Op™ (ah) = (1 — o) (P)Op" (ag) + (1 — Pac) (1 — f(P)) Op" (ag)

(1~ Puc)(1 = f(P)) Op" (af)-

" We note that (1 — £(P)) Op” (ah)) € S(h™,g"%) if £(A) = 1 in a neighborhood of A_ = 1p?
and a is supported in a sufficiently small neighborhood of (r—,p_,0_, ®w_). Combining these
we have .

S(W_AW?* — Op” (a)) € S(h™,81%).
O
Combining Lemmas 15.2 and 15.3, we learn the following Lemma.

Lemma 15.4. Let (r—,p—,0_,0_) e RxR_ x (T*dM\0), G € C;(RxR_ x (T*0M\0)) be
supported in a small neighborhood of (r—,p—, 60—, ®_) with p2 /2 ¢ 6,,(P), and let

~

A=0p" (@), d'(rp,0,0) =a(h"/*rp,0,ho).

Then SAS* is a pseudodifferential operator with a symbol supported in s[supp dh], and the

principal symbol modulo S (h”h, g}ll’a) is given by @ o S,:l.

We set ,%%c,i =% 5. Then ZF8F 1 is a unitary map from Hy _ to Hy . We set
ITu(r,0) = u(—r,0) foru € H#;+,

so that Z(SII).# ! is a unitary map on %9},4_. By the intertwining property of the scattering
operator, & (STI).Z ~!commutes with p and hence is decomposed to

F(SMF ! = / ? S(p2 /2)dp on 5% 1 = [X(R;L*(dM)),

where S(A) € B(L?*(dM)) is the scattering matrix.
‘We here introduce the o-wave front set as follows:

Definition 15.5. Let o > 1 and g(p,0) € 2'(Ry x IM). We say (po, 60,10, W) is not in the
a-wave front set of g if there exists a € C3'(T*(Ry x dM)) such that a(po, 6o, 7o, o) 7 0 and

la(p, 6,4/ Dp, hDg)g|| = O(k) ash— +0,

where || - || denotes the L*>(R,. x dM)-norm. We denote (po, 60,70, ) ¢ WE*(g) if this condi-
tion is satisfied, and denote the complement by WE%(g).

Note that if (p, 6,7, ®) € WF%(g) then (p,8,A1/%r, ALw) € WF%(g) for all A > 0. Also note
that we may replace a by h-dependent symbol with a principal symbol which does not vanish at

(pOa 90ar0a 0)0)
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We recall the semiclassical type characterization of the usual wave front set.
(po, 80,70, @) ¢ WE(g) if and only if there is a € Cj (T* (R4 x dM)) such that

a(po, 60,10, ) 7 0 and
|la(p,0,hDp,hDg)g|| = O (k™) as h — +0.

We present basic relationships between the WF set and the WEF? set, which follow from the
definition.

Proposition 15.6. Let (po, 6p) € R4 x dM. Then the following holds:

(i). Letro# 0. (po, '9()‘, r0,0) &€ WF%(g) if and only if (po, 60,10, 00) ¢ WE(g) for every oy €
Té’;)(aM).

(ii). Let ax # 0. (Po,Go,O ) ¢ WE(g) if and only if (Po, 0,70, 0) ¢ WF() for every
ro eT 0(R+)

We give the proof of the main Theorem We first show the propagation of the WF% s
Using Proposition above, we show the propagation of the usual WF set.

Proof of Theorem 11.2. We fix Ao = p3/2 ¢ Gpp( ) with pp > 0 and consider S(A) where A
is in a small neighborhood of Ag. Let u € L?(dM) and let v € C(R..) supported in a small
neighborhood of Ag. Then

WF(V(p)M(G)) = WF* (V(p)u(e)) = {(pveaoa w)lp € suppv, (6’ w) € WF(“)}

Now let (p—,0_,7_,®_) ¢ WF*(v(p)u(0)) and take a € Cg’ (T*(R+ x dM)) such that
a(p—,0_,7_,®_) #0and : -

la(p, 8,1/Dp, hDa)(P)u(8)]| = O() as h— +0.

Without loss of generality, we may assume that a(-) > § > 0 in a neighborhood of (p_,0_,7_, @_).
Let

A=0p” ( ), @(p,0,r,0)=d(p,0,h/ %, ho).
Then by Lemma 15.4, there exists b" € S(1, gl’a) such that
|# (sm)# A7 (st~ - op” ()| = (1)

and the principal symbol of 5" modulo S(k*, gﬁ"a) is given by a*omo s,?l, where n(r,p) =
(—r,—p). Combinig these, we have ‘

|0p” (6")7 (T1S)# ~ v (p)u(6) | = O(h™).
Let b(h;p,0,h'/%r ho) = b*(p,0,r,®), and bo(h;p,8,h/*rhw) = a" omo s (p,0,r,0).
Then by(h;-) is the principal symbol of b(h;-) modulo S(h*,g1). Recall that by the scaling
property (Proposition 12.4), we have )

scom(h~ V% _ p_,0_,h @)

— (YO (0 17, oy By @-) ), P

(Mg, h™ ') exp(h! ="/ %6 (W™ %7, p_, 0, @) H y57) (B, -)),
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and
(W1, T, T, ATy )s o (k™Y %7, p, B i~ @) — (ree+7—, p—, B, @_)

as h — 0, where 7o = 70 n(F_,p—,0-,®_). Hence by(h;-) >8>0 in a neighborhood of '
(Foo + 7, p—, 0, ®_) for small enough i > 0. By the semiclassical characterization of the o-
wave front set, we learn

(Pe, B, et 7, ) & WF(Z (T1S).7 " v(p)u(0)).

Since we can take any 7_ € R\ 0, we have

WE*(Z(T1S).7 ~v(p)u(6)) C {(p,6,7=(0,~p, 6, ®),®); p € suppv, (6, ) € WF ()}.
By Propositioﬁ 15.6, we learn that |

WE(F (T1S)# ~1v(p)u(9)) € {(p,6,0,@);p € supp, (6,) € WF(u)}.
By the definition of the\ scattering matrix, this implies

WEF(S(A)u) C WE(u)

for u € suppv. Since this argument works for §1 alSo, the above inclusion is actually an
equality, and we complete the proof of Theorem 11.2. (]
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