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Abstract

We are concerned with the determination of the asymptotic behaviour of strong solutions to
the initial-boundary value problem for general semilinear parabolic equations by the asymptotic
behaviour of these strong solutions on a finite set. More precisely, if the asymptotic behaviour of
the strong solution is known on a suitable finite set which is called determining nodes, then the
asymptotic behaviour of the strong solution itself is entirely determined. We prove the above prop-
erty by the energy method. Moreover, we are concerned with the determination of the asymptotic
behaviour of mild solutions to the abstract initial value problem for semilinear parabolic evolution
equations in Lj, by the asymptotic behaviour of these mild solutions on a finite set. More pre-
cisely, if the asymptotic behaviour of the mild solution is known on determining nodes, then the
asymptotic behaviour of the mild solution itself is entirely determined. Not only the asymptotic
equivalence but also rate of monomial or exponential convergence can be clarified. We prove the
above properties by the theory of analytic semigroups on Banach spaces. As an important appli-
cation of sectorial operators, we give the linearized operator (Stokes operator) associated with the
initial-boundary value problem for the Navier-Stokes equations in a multiply-connected bounded
domain with the Navier-Dirichlet boundary condition. Furthermore, we study the asymptotic
properties of stationary solutions to this problem. As for the existence and uniqueness, this prob-
lem has uniquely a stationary solution in (WZ‘?)” satisfying L, estimates for any n < p < co. The
first result is obtained from resolvent estimates for the Stokes operator in L, , and the Banach
fixed point theorem. On the asymptotic stability, the stationary solutions are asymptotically sta-
ble in' L, , if they are small in (W;)". The second result is proved by the theory of analytic
semigroups on Banach spaces.

1 Introduction

Let n € Z, n > 2, Q be a bounded domain in R™ with its C%'-boundary 8Q, H be a closed subspace
of Ly(R), V = H}() N H. The first problem of this paper is the following strong formulation of the
initial-boundary value problem for the semilinear parabolic equation:

{dtu+Au:F(u)—l—f in Ly((0, 00); H), 1)

u(0) =wup inV,
where u is a strong solution to (1.1), A is a densely defined closed linear operator from D(A) to H,
F(u) is a nonlinear term, ug is an initial data, f is an external force. Moreover, D(A) is a domain

of A. As is explained in Section 9, a typical example of the first equation of (1.1) is the followmg
semilinear heat equation:

Oy — kA — |[ulP " u =0,



where u is the absolute temperature, x > 0 is the coefficient of heat conductivity, p > 1. The existence,
uniqueness and regularity of strong solutions to the initial-boundary value problem for the semilinear
heat equation has been much studied for fifty years. See, for example, [10] and the references given
there on the existence, uniqueness and regularity of strong solutions to the initial-boundary value
problem for the semilinear heat equation in R™ with the Dirichlet boundary condition.

The stationary problem associated with (1.1) is the following boundary value problem for the
semilinear elliptic equation:

At =F(@)+ f in H, | (1.2)

where 4 is a strong solution to (1.2), f is an external force. As is well known in [21], the stationary
problem for the semilinear heat equation in R™ with the Dirichlet boundary condition has a trivial
solution and nontrivial solutions for any 1 < p < (n 4+ 2)/(n — 2). It is one of interesting questions
whether a strong solution to (1.1) converges to a trivial or nontrivial solution to (1.2). According to the
previous result by Foias and Temam [6], the conclusion of the asymptotic properties of strong solutions
to (1.1) can be given by the theory of determining nodes. An approach of determining nodes is quite
natural from the computational point of view. In general, the asymptotic behaviour of strong solutions
to the initial-boundary value problem for semilinear parabolic equations is uniquely determined by
determining nodes which can be obtained from finite many measurements. Some problems related
to determining nodes for semilinear parabolic equations have been studied in recent years. Foias and
Temam [6] first discussed the existence of determining nodes for the Navier-Stokes equations in R?
and in R3 with the Dirichlet and periodic boundary conditions. As for partly dissipative reaction
diffusion systems in R? and in R3 with the Dirichlet, Neumann and periodic boundary conditions, Lu
~and Shao [18] obtained the same results as in [6]. Not only the existence of determining nodes but
also the number of determining nodes can be deeply studied in the one-dimensional case. See, for
example, [5], [15], [19] on the theory of determining nodes for the Kuramoto-Sivashinsky equation,
the complex Ginzburg-Landau equation and the semilinear Schrédinger equation respectively in R
with various periodic boundary conditions. As is mentioned above, the semilinear heat equation is -
a typical example of semilinear parabolic equations, but the theory of determining nodes for it has
not been constructed yet. It is necessary to discuss the existence of determining nodes for semilinear
parabolic equations such as the first equation of (1.1).

In the first problem of this paper, we are concerned with the determination of the asymptotic
behaviour of strong solutions to (1.1) by determining nodes. It is an important consequence of our
main results that the theory of determining nodes for the Navier-Stokes equations and the semilinear
heat equation can be unified. One of our main results is stated as follows: There exists a finite set F
in  such that if two strong solutions u and v to (1.1) satisfy u(z,t) — v(z,t) — 0 as t — oo for any
z € E, then u(-,t) — v(-,t) = 0in VN C%(Q) as t — oo for any 0 < y.< 1/2. We prove the above
property by the argument based on [6], [18]. Note that main results on the Lo-theory of determining
nodes were published as a paper by Kakizawa [14]. o

Let n € Z, n > 2, Q be a bounded domain in R™ with its C*!-boundary 6%, Xp (1 <p<oo)be
a closed subspace of L,(£2). The second of this paper is concerned with the following abstract initial
value problem for the semilinear parabolic evolution equation in X:
diu + Apu = F(u) + f in (0,00),

{ _ (0
u(0) = ug,
where u is a strong solution to (I), Ay is a densely defined closed linear operator in X, F(u) is a

nonlinear term, wp is an initial data, f is an external force. As is well known, (I) is the abstract
initial value problem associated with the semilinear heat equation and the Navier-Stokes equations.



See, for example, [10] and the references given there on the existence, uniqueness and regularity of
mild solutions to (I).

Some problems related to determining nodes for semilinear parabolic equations have been studied
in recent years. Not only Foias and Temam [6], Lu and Shao [18] but also Kakizawa [14] discussed
the existence of determining nodes for the semilinear parabolic equation such as the first equation
of (I) in the general closed subspace H of Ly(Q2) with the Dirichlet boundary condition. The energy
method shows their results, but it remains to consider two main difficulties, i.e., variety of boundary
conditions and rate of convergence. In fact, the Robin and Navier boundary conditions play an
important role in the semilinear heat equation and the Navier-Stokes equations respectively. Even if
determining nodes for (I) exist, it is one of serious problems whether the convergence of u(-,t) —v(, t)
to zero as t — oo is fast or slow. The new method is required for the theory of determining nodes
overcoming the above difficulties.

The second purpose of this paper is to establish the L,-theory of determining nodes for (I) with
the aid of the theory of analytic semigroups on Banach spaces, e.g., [12, Chapter 3], [20, Chapter 6].
One of our main results is stated as follows: there exists a finite set E in € such that if n/2 < p < co
and if two mild solutions v and v to (I) satisfy u(z,t) — v(z,t) — 0 as t — oo for any z € E, then
[u(t) — v(t)|xg = O(t™*) as t — oo for any 0 < a < 1. Here A% and X7 (0 < a < 1) are fractional
powers of A, and their domain, i.e., X7 = D(Ay) respectively. By virtue of our argument, variety of
boundary conditions corresponds to the analyticity of the semigroup {e'tAP}tZO generated by —A,.
Moreover, X -estimates for mild solutions to (I), which are established by the similar method to [9,
Theorem 2.6}, clarify not only the asymptotic equivalence but also rate of monomial or exponential
convergence. »

As is mentioned above, the semilinear heat equation and the Navier-Stokes equation are typical
examples of (I). The linerlized operator of (I), i.e., A, are the Laplace and Stokes operators with
suitable boundary conditions, e.g., the Dirichlet, Neumann [20], no-slip [7] and Navier [24] boundary
conditions. From the view point of asymptotic stability of stationary flows, this paper provides an
untypical but important application of A, associated with the following problem: Let n € Z, n > 2,
2 be a bounded domain in R™ with its boundary 92 which consists of two connected components I'y
and I'y, ie., 00 =Ty UT4, 0 < T < co. Throughout this paper, we assume that 'y and I'; have the
followmg propertles .

o Ty = 09, where Q is an exterior domain in R™ with its C?>'-boundary 9.
e I'y = 891, where )1 is a bounded domain in R with its Cb!-boundary 8.
e R"\ O =QUQ;.

Here and hereafter  is called a multiply-connected bounded domain with its boundary I'g U I'y
if €2 satisfies the above properties. Motion of incompressible viscous fluids in Q with the Navier-
Dirichlet boundary condition is described by the initial-boundary value problem for the system of
n + 1 equations as follows: _ '

divu =0 in Q x (0,7,

{0+ (u- V) }u — divI'(u,p) = pg in Q x (0,T),

Ult=0 = U in Q, (1.3)
uylan =0 on 982 x (0,T),

K(T(u,p)v)s + (1 = K)urp, =0 on T x (0,T),

(urlr; = h ‘ on I’y x (0,7,



where u = (u1,--- ,u,)? is the fluid velocity, p is the pressure, p is the density, u is the coefficient
of viscosity, 0 < K < 1 is a constant, ug is the initial fluid velocity, g = (g1, ,gn)T and h =
(R, ,hn)T are external forces, v € (C>}(Ty) N CH1(I"))" is the outward unit normal vector on
SO0, uy =V - u, Up = u— UV, T(u,p) is the Cauchy stress tensor defined as

(Vu + (Vu)T) ,

N =

T(u,p) = —pln + 2uD(u), D(u) =

I, is the n-th identity matrix, - is the transposition. Moreover, it is useful to remark that (T(u, p)v), =
T(u,p)v — (v-T(u,p)v)v = 2u(D(u)v),. These equations correspond to the laws of conservation of
mass and momentum respectively. The fifth equation of (1.3) is called the Navier boundary condition
which can be considered as an intermediate between the no-slip (K = 0) and slip (K = 1) bound-
ary conditions. Throughout this paper, it is required that p and p are positive constants. See, for
example, [17, 22] on conservation laws of fluid motion and the derivation of the above equations.

The stability theory of laminar flows between two concentric rotating spheres has been studied
from the numerical point of view, which is relevant to the global astrophysical and geophysical pro-
cesses. As is well known in [4, 23] and the references given there, the spherical Couette flow with the
rotating inner sphere is characterized by three parameters, i.e., the Reynolds number, clearance ratio
and angular acceleration. Formation of complicated vortices is observed at a high Reynolds number.
More precisely, the vortex structure consists of one toroidal vortex near the equator and some pairs
of spiral vortices in high-latitude regions whose axes are tilted with respect to the azimuthal direc-
tion. The laminar-turbulent transition varies from the range of clearance ratios which are classified
by the narrow, medium and wide gap cases. In the case where () is axisymmetric defined as in [3,
Definition-Lemma 1], g and h can be regarded as gravity in ) and rotation of ; respectively. The
stability theory of stationary solutions to (1.3) yields that of the generalized spherical Couette flow
from the mathematical point of view. Some stationary problems related to (1.3) have been studied in
recent years. Solonnikov and Scadilov [25] first discussed the existence and uniqueness of stationary
solutions to (1.3) in the case where K = 1. Here Ly estimates for the stationary solutions were es-
tablished. Furthermore, Itoh, Tanaka and Tani [13] treated the existence, uniqueness and asymptotic
stability of stationary solutions to the initial-boundary value problem similar to (1.3). It was proved
that the stationary solutions are asymptotically stable in Lg,(Q) if they are small in (WL (Q))",
where L, -(2) (1 < p < o0) is the closed subspace of (L,(£2))"™ defined as in Section 6.

As for the analyticity of the semigroup on Ly, »(£2) generated by the Stokes operator, our argument
is essentially based on the following resolvent problem for the system of n + 1 equations:

(divu =f in €,
M — divT'(u,p) = g - in 0,
uplan =0 ‘ on 09, : (1.4)
K(T(u,p)v)r + (1 = K)us|p, = A® on T, '
urlp, = At e on Ty, :
where )\ is the resolvent parameter, f, g = (g1, ,gnc)T, RO = (A, ;AT and Al = (R}, - AL)T

are given functions defined in Q, in Q, on I’y and on I'y respectively. Note that (1.4) is relevant to
not only the analyticity of the semigroup but also the existence and uniqueness of solutions to (1.5)
below. Our results concerning (1.4) are the existence and uniqueness of solutions to (1.4) satisfying
L, estimates. The existence and uniqueness of generalized solutions to (1.4) are obtained from the
modified method of [25]. (1.4) has a more complicated boundary condition than [7], [24], so the new
method is required for L, estimates for solutions to (1.4). It is well known in [7], [24] that we have
L, estimates for solutions to the Stokes equations in R", in R? and in the bent half-space H]} with
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the no-slip and Navier boundary conditions. By combining the localization method with the above
fact, L, estimates for solutions to (1.4) are established.

By virtue of our results concerning (1.4), we can study the asymptotic properties of solutions to
the following stationary problem for the system of n + 1 equations associated with (1.3):

(diva =0 - in £,
p(a - V)a — divT'(a,p) = pg inQ,
Uylan =0 on 0L, (1.5)
K(T(ﬂ,ﬁ)v)—f +(1- K)’L_1,7-|p0 =0 onlYy, '
Trlp, = h on I'y.

Y

First, we prove the existence and uniqueness of solutions to this problem, i.e., (1.5) has uniquely a
solution in (Wg(ﬂ))n satisfying L, estimates for any n < p < oo if g and h are small in (L,(£2))" and

in (sz “p (I'1))™ respectively. The existence and uniqueness of solutions to (1.5) is obtained from
Ly, estimates for solutions to (1.4) and the Banach fixed point theorem. Second, we proceed to obtain .
the asymptotic stability of solutions to (1.5) in Ly, ,(Q2). Set v =u — @, ¢ = p — p. Then we have the
following initial-boundary value problem for the system of n + 1 equations:

(dive =0 | in Q x (0,7),
poww — divl(v,q) = —p{(v - V)v+ (v- V)a + (- V)v} in Q x (0,7),

4 V|t=0 = uo — 4 \ in'Q, (1.6)
vylaq =0 on 89 x (0,7),
K(T(v,qv)r + (1 — K)v,|p, =0 ' ‘on I'g % (0,T),

kv¢|1~1 =0 : onT'i x (0,7).

It is proved in this paper that the abstract initial value problem for (1.6) has uniquely a mild solution
globally in time if %@ and up — @ are small in (W, (€)™ and in Ly, () respectively. The second result
yields that solutions to (1.5) are asymptotically stable in Ly () if they are small in (W (2))". The
asymptotic stability of solutions to (1.5) is proved by the theory of analytic semigroups on Banach
spaces, e.g., [12, Chapter 3], [20, Chapter 6]. :

This paper is divided into three parts, i.e., Part I (Sections 2 and 3), Part II (Sect1ons 4 and 5) and
Part III (Sections 6-8). The existence of determmmg nodes for (1.1) and (1.2) is stated and proved
in Part I. In Part II, we state and prove our main results concerning the existence of determining
nodes for (I). Part III is devoted to the analyticity of the semigroup on L, () generated by the
Stokes operator. Finally, in Section 9, we apply the L,-theory of determining nodes to the semilinear
heat equation and the Navier-Stokes equations, and give the proofs of the existence, uniqueness and
asymptotic stability of solutions to (1.5) in Ly ,(£2). '

Acknowledgment

This work was partially supported by Professor Masahiro Yamamoto (Graduate School of Mathe-
matical Sciences, The University of Tokyo). I am grateful to him for his valuable advice and constant
encouragement.

2 Part I: The Lo-theory of determining nodes

In this part, we are concerned with the Lp-theory of determining nodes for (1.1) and (1.2). This part
is organized as follows: In Section 2, we state our main results concerning the existence of determining



nodes for (1.1) and (1.2) after setting up notation and terminology used in this part. The proofs of
our main results are given in Section 3. Note that main results on the Lo-theory of determmmg nodes
~ were published as a paper by Kakizawa [14].

2.1 Function spaces

All functions which appear in Sections 2 and 3 are either H or H™-valued. For the sake of notational
simplicity, we will not distinguish them from their values, i.e., H™ will also be simply denoted by H.
Function spaces and basic notation which we use throughout this paper are introduced as follows:
The norm in Ly(2) (1 < p < oo0) and in the Sobolev space H®(Q) (k € Z, k > 0) are denoted by
- N2y and || - |gw(q) respectively, H 0(Q2) = Ly(2). Moreover, the scalar product in Ly(€2) and in
H*(Q) are denoted by (-, -) Lo(e) and (-, ) gr(q) respectively. C§°(Q) is the set of all functions which
are infinitely differentiable and have compact support in Q. H3(2) is the completion of C§°(Q) in
H'(9). Note that HE(9) is characterized as H3(Q) = {u € HY(Q) ; u|sq = 0}. As is well known in
the theory of Hilbert spaces, Lo(Q) is decomposed into Ly(Q) = He H+, where H' is the orthogonal
complement of H. Let P be the orthogonal projection of Ly(Q2) onto H. The norm in C(f) is denoted
by ||+ llo- C%7(Q) (0 < v < 1)'is the Banach space of all functions which are uniformly Holder

continuous with the exponent v on Q. The norm in C%7(Q2) is denoted by || - lcony, i€

[u(2) — u(y)|

lulln = o + (oo, Bllgasm = s P2

z,yEeQ, Ty

Let I be an open interval in R, (X,| - ||x) be a Banach space. L,(I;X) (1 < p < o0) is the
Banach space of all X-valued functions « which u is strongly measurable and |Ju||% is integrable in I.
Loo(I; X) is the Banach space of all X-valued functions v which u is strongly measurable and ||u||x
is essentially bounded in I. The norm in Ly(I; X) and in Lo (I; X) are denoted by || - || Ly(I;x) and
|| - [l Lo (1;x) Tespectively. In the case where I is a bounded closed interval in R, C(I; X) is the Banach
space of all X-valued functions which are continuous on I. If I is not bounded or closed, Cy(I; X)
is the Banach space of all X-valued functions which are bounded and continuous in 7. The norm in
C(I; X) and in Cy(I; X) is denoted by || - [|c(z;x) and || - [|¢,(z;x) respectively.

2.2 Strong solutions to (1.1) and (1.2)

In this subsection, we will make the properties of A and F(u) which appeared in (1.1). First, A is
the densely defined closed linear operator from D(A) := H2(Q) NV to H defined as

n
Au=—P Z Oz; (0450, 1)
ig=1

It is required throughout this paper that A has the following properties (A.1)—(A.4):
(A1) a;; € C¥Y(Q)) for any 4,5 =1,--- ,n
(A.2) a;; = aj; on Qforanyi,j=1,---,n.

(A.3) There exists a positive constant a such that

n

Z (%)6:&s > al€|2

for any x € Q, £ € R™.



(A.4) Set (u,v)pea) = (Au, Av) 1) lullpeay = ((u.,u)D(A))l/Q. Then || - || pa) is equivalent to the

standard norm in H? (Q). Therefore, there exist two positive constants a; and as such that

a1llullgz2) < lullpay < azllull gz
for any u.€ D(A).

Note that A = —xA is a typical example of A. The norm |[—~&A-||1,(q) induced by —kA is equivalent
to the standard norm in H?((2), which follows from [11, Theorem 8.12]. Second, F'(u) is the nonlinear
" term satisfying the following properties (F.1), (F.2):

(F.1) F(0)=0.
(F.2) There exist two constants C' > 0 and p > 1 such that
1P (@) — FO)llzay < CllulEsch, + N0l i)l — vl
for any u,v € D(A4).

It is important for our main results that F(u) = |u[?~!u and F(u) = —P(u - V)u can be considered.
By virtue of (A.1)-(A.4), the scalar product and the norm in V' can be introduced as follows:

n

(u,v)a = 3 (@500 02,0) oy, ulle = (w,w)a)'/2:

4,5=1

It follows easily from (A.3) and the Schwarz inequality that || - ||, and the standard norm in H((Q)
are equivalent norms in V. Consequently, there exist two positive constants az and a4 such that

azlull g ) < llulle < asllullgr(q)
for any w € V. Finally, strong solutions to (1.1) and (1.2) are defined as follows:

Definition 2.1. Let ug € V, f € La((0,00); H). Then u is called a strong solution to (1.1) if it
satisfies :

u € LZ((Oa OO); D(A)) N Cb([oa OO); V)) diu € L2((0a OO); H)
and (1.1). Let S(uo, f) be the set of all functions which are strong solutions to (1.1).
Definition 2.2. Let f € H. Then 4 is called a strong solution to (1.2) if it satisfies

e D(A)

and (1.2). Let S(f) be the set of all functions which are strong solutions to (1.2).

2.3 Main results on the Ly-theory of determining nodes

Our main results of Sections 2 and 3 will be stated in this subsection. We begin by formulation of
determining nodes. For any N € Z, N > 1, z € , u € D(A), set

EN={:1:15.'..,:UN; €0, i=1,--- N},

dy(z) = i_rlninN |z — 2],

=41y



dy = magcde(:z:),
e

() = maxJu(z)].

Note that En and dy can be considered as determining nodes and the density of Ey in  respectively.
As for strong solutions to (1.1) and (1.2), the following assumptions (H.1)—-(H.4) are essentially
required for our main results.

(H.1) S(f) # 0 for any f € H.

(H.2) There exists a positive constant M (f) for any f € H such that

@l peay < M(f)
for any 4 € S(f).
(H.3) S(uo, f) # 0 for any ug € V, f € Loo((0,00); H).

(H.4) There existska positive constant M(f,ty) for any R > 0, f € Loo((0,00); H), to > 0 such that

“u”Cb([to,oo);D(A)) < M(fa tO)
for any u € S(V(R), f), where

SVR), )= |J So,f), V(R):={u €V ; |uola < R}.
up€V(R)

Compared with Foias and Temam [6], this part is concerned with the La-theory of determining nodes
for (1.1) and (1.2) which unifies the Navier-Stokes equations and the semilinear heat equation. Our
main results are given by the following theorems on the existence of determining nodes for (1.1) and
(1.2):

Theorem 2.1. Let n= 2,3, f € H, and assume (H.1), (H.2). Then there exists a positive constant

01 depending only on Q, A, F' and M(f) such that if 0 < dy < 81 and if @, 0 € S(f) satisfy
() = ()

foranyi=1,--- N, then
4 =v1in Q.

Theorerﬁ 2.2. Letn=2,3, R>0, f € Loo((0,00); H), to > 0, and assume (H.2)~(H.4),
f(t)—)f;oEHinHast%oo.

Then there exists a positive constant dy depending only on Q, A, F, M(f,ty) and M(fs) such that
if 0 <dy < dg and if u € S(V(R), f) satisfies

u(z;,t) > €ERast— oo
foranyi=1,--- N, then (1.2) has uniquely a strong solution us € S(fwo) satisfying
u(t) = U in VNC®(Q) as t — 0o

for any 0 < v < 1/2 and uoo(z;) = & for anyi=1,--- ,N.

8



Theorem 2.3. Letn =2,3, R>0, f,g € L((0,00); H), to > 0, and assume (H.3), (H.4),
ft)—g(t) = 0in H as t — oo.

Then there exists a positive constant §3 depending only on , A, F, M(f,ty) and M(g,to) such that
if 0 <dy < 03 and if u € S(V(R), f), ve S(V(R), g) satisfy

u(z;,t) —v(zi,t) = 0 as t — o0
foranyi=1--- N, then

u(t) —v(t) = 0in VN O™ (Q) as t — oo
forany 0 < vy <1/2.

2.4 Auxiliary lemmata

In this subsection, we will state three interpolation inequalities concerning the density of determining
nodes. The following lemma yields that the standard norms in C(Q), in L2(Q) and in H(Q) are
connected with dpy.

Lemma 2.1. Let n = 2,3. Then There exists a positive constant C1 depending only on Q such that

lull o < nv(w) + Crdy” lul peay . (2.1)
for any u € D(A).
Proof. See [6, Lemma 2.1]. - O

Lemma 2.2. Let n = 2,3. Then There exist two positive constants Co and Cs depending only on Q
such that

lullz2() < Com(u) + Cady® [[ul piay - (2:2)
for any u € D(A). |
Proof. See [6, Lemma 2.1]. ‘ (

Lemma 2.3. Let n =2,3. Then There exist two positive constants Cy and Cs dependmg only on 2
such that

lull ) < Cady*nwv (w) + Csdyf* |lull peay | (2.3)
for any v € D(4).
Proof. See [6, Lemma 2.1]. ' O

3 Existence of determining nodes for (1.1) and (1.2)

Theorems 2.1-2.3 will be proved in this subsection. The proofs of Theorems 2.1-2.3 are based on the
energy method with the aid of Lemma 2.3.



3.1 Proof of Theorem 2.1

Recall that © satisfies

A% = F(9) + f. | | (3.1)
Then it follows from (1.2), (3.1) that

Al@ — ) = F(3) — F(3). | | (32
By taking the H-norm of (3.2) and .(F.2), we obtain

1%~ 3llogay < 20M (PP~ 5]l (33)
Notice that n(z — ©) = 0, which follows from @(z;) = ¥(z;) for any i = 1,--- , N. Then (2.3) yields

i =51l sy < Csdif Il — Bllpca. , (3.4)
Therefore, by (3.3), (3.4), we have

= loea) < 26Cs M7~ a5~ Fl e

(1 —2CCsM(FyP~tdy i — 3l pay < O , ) (3.5)
Assume that

1-2CCsM(FP~1di* > 0,

1 | , ,
0<dN<(2005M(f) i | (3.6)

Then (3.5) implies % in 2. Consequently, the sufficient condition for (3.6) is

1
(2CCsM(f)p—1)4

0<éh <

This completes the proof of Theorem 2.1.

3.2 Proof of Theorem 2.2

We begin with the energy-type estimate for strong solutions to (1.1). Consider two times ¢ and s
satisfying ¢ < s, write s = ¢t + 7 for any 7 > 0, and set v(¢t) = u(¢t + 7), g(¢t) = f(t + 7). Then (1.1)
implies that v satisfies

dv + Av = Flv)+g. | (3.7)
It is easy to see from (1.1), (3.7) that
di(u—v) + A(u—v) = F(u) — F(v) + f — g. | (3.8)

By taking the H-scalar product of (3.8) with A(u —v) and (F.2), we get

1 ' B , »
5 (lu=vli2)+llu—vlpea < 2CM(f, )" lu—vllm @ lu—vllpeay +lu—vlpwlf —gllzz@). (3.9)
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Notice that

Y e = vllpeay, (3.10)

lu = vl 1) < Cady*n(u — v) + Csd
which follows from (2.3). Then, by (3.9), (3.10) and the Cauchy inequality, we have

di(llu = vl12) + (1 = ACCsM(f,t0)P~1dy )l — ][}

iy \ (3.11)
< 8C?CIM(f,10)*P Dy ny (u — v)? +2I|f — gl 32 (- |
Assume that |
1—4CCsM (¥, to)p Lg% > 0,
: 1
0<dy< (400 2T (3.12)
and set
2 1/4
A= —;(1 — ACCsM(f, 1) M) > 0,
4
h(t) = 80204 (f,t0) 2PV (u — i{)(t))z +2[(f - 972
Then (3.11) yields '
de(||(u = v)(E)[12) + Al (w — v)(£)||2 < h(2) : (3.13)

for any ¢ > tg. We shall show that {u(t)}t>¢, is a Cauchy sequence in V' with the aid of (3.13). Since
f(t) = fooin H as t — oo and u(z;,t) — & as t — oo for any i = 1,--- , N, we have h(t) — 0 as
t — co. Therefore, there exists a positive constant ¢ for any positive constant ¢ such that |h(¢)| < e
for any ¢ > t.. It is easy to see from (3.13) that

di(ll(w = o)OID) + M@ —v)IZ < | (3.14)

for any ¢ > te. The Gronwall lemma and (3.14) imply
u®) = u(e)]2 < fi(u = v)(t)[2e ) + < (1 — e7XE)) (3.15)
for any ¢ > t.. By taking ¢ and s to infinity in (3.15), we have

limsup ||u(t) — u(s)]% < <.
t,8—00

>

Since ¢ is an arbitrary positive constant, we conclude that u(t) —v(t) = 0in V as ¢,s — o0, ie,
{u(t)}t>t, is a Cauchy sequence in V. The completeness of V yields that there exists a function
U € V satisfying

u(t) = Uoo In V as t — oo. ' (3.16)

As for the function v Which' is obtained above, we shall prove that ue € S(foo) and ueo(z;) = &; for
any ¢ = 1,--- ,N. Notice that {u(t)}+>¢, is bounded in D(A) by virtue of (H.4). Then (3.16) implies
Uso € D(A) and

u(t) = U in CP7(Q) ast —-00 (3.17)
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for any 0 < v < 1/2, which follows from the Rellich-Kondrachov theorem [1, Theorem 6.3]. Since
u(zsyt) = & ast — oo for any ¢ = 1,--- | N, it follows from (3.17) that ue(z;) = & for any
i = 1,---,N. By taking ¢ to infinity in the first equation of (1.1), a straightforward argument
shows that us € S(fso). Assume that dy < §1(M(foo)). Then (1.2) has uniquely a strong solution
Uso € S(foo) satistying ue(z;) = & for any i = 1,--- , N, which follows from Theorem 2.1. Therefore,
the sufficient condition for (3.12) and desired properties of uq, is

) 1
0 < 42 < min {51(M(foo))> (4CC’5M(f, to)p—1)4} )

which completes the proof of Theorem 2.2.

3.3 Proof of Theorem 2.3

In the same manner as in Subsection 3.2, we shall establish the energy-type estimate for strong
solution to (1.1). Recall that v satisfies '

dw+ Av=F(v)+g. ‘ (3.18)
It follows easily from (1.1), (3.18) that |
di(u—v)+Alu—v)=F(u) — Flv)+ f —g. (3.19)

By taking the H-scalar product of (3.19) with A(u — v) and (F.2), we have

1. 2 2
el = ol2) + llu — vlb e
< C(M(f,t0)P ™ + M(g,%0)" Hllu — vl gyl — vlipay + llu — vlipwylf — 9llz2@)-
Notice that '
lu — vl g1y < Cadi*na(u — v) + Csdyt *lu = vllpay, ~ (3.21)
which follows from (2.3). Then, by (3.20), (3.21) and the Cauchy inequality, we get
de(llu— vll2) + {1 = 2CCs(M (£, t0)P* + M(g, t0)"" ) dy *Hlu — vlB 4 (3.2
< 2C2CH(M(f, t)P ™1 + Mg, to)P ") 2y (u — v)? + 2 f ~ 9llZ20y-
Assume that |
1 2CCs5(M(f,t0)P ™} + M(g, to)?"V)dy* > 0,
1
0<dy < : , 3.23
NS 120G (M(F, to)P~T + M(g, to)P~ 1) }* (3:23)
and set
a3 1 : 1y g1/4
A= Z;E{l —2065(M(f7 to)p_ + M(gu tO)p— )dN } > O:
4 R
h(t) = 2C2C2(M(f,t0)P " + M(g, t0)" " )2dn*nn ((u — 0)(®)* + || (f - 9720
Then (3.22) gives '
de(ll(w — v)(D)2) + All(u — v) ()12 < R(t) (3.24)
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for any t > t5. By (3.24), we shall prove that u(t) — v(t) — 0in V as ¢ — oco. Notice that
ft)—g(t) = 0in H as t — oo and u(z;,t) — v(x;,t) = 0 as t — oo for any j = 1,--- , N. Then we
have h(t) — 0 as ¢t — oco. Hence, there exists a positive constant #. for any positive constant € such
that |h(t)| < e for any ¢ > t.. We can see easily from (3.24) that

di(|I(w =) ()12) + All(w =) @)I7 < € (3.25)
for any ¢ > t.. It follows from the Gronwall lemma and (3.25) that

—At— € At~
1w =) O3 < [I(w = v)(te)llae™E7%) + yd—e Me=te)) (3.26)
for any t > t.. By taking ¢ to infinity in (3.26), we have
limsup [|(u — v)(8)]2 < =
t—c0 A

Since € is an arbitrary positive constant, we conclude that
u(t)—v(t) = 0in V as t — oo. (3.27)

It remains to prove that u(t) — v(t) — 0 in C%7(Q) as t — oo for any 0 < v < 1/2. We can see easily
from (H.4) that {(u — v)(?)}i>t, is bounded in D(4). By the Rellich-Kondrachov theorem, (3.27)
yields ‘

u(t) —v(t) = 0in C%(Q) as t — oco.
Consequently, the sufficient condition for (3.23) is

1

{2005 (M(f) tO)p_l - M(g) tO)p_l)}A’1 ‘
This completes the proof of Theorem 2.3. '

0<d3<

4 Part II: The L,-theory of determining nodes

In this part, we are concerned with the Ly-theory of determining nodes for (I). This part is organized
as follows: In Section 4, we state our main results concerning the existence of determining nodes for
(I) after setting up notation and terminology used in this part. The proofs of our main results are
given in Section 5. ’

4.1 Function spaces

All functions appearing in Sections 4 and 5 are either X, or (X,)"-valued. For the sake of notational
“simplicity, we will not distinguish them from their values, i.e., (X,)™ will also be simply denoted by
Xp-.
Function spaces and basic notation which we use throughout Sections 4 and 5 are introduced as
follows: The norm in L,(Q) (1 < r < 0o) and the norm in the Sobolev space W*(Q) (k € Z, k > 0)
are denoted by || - [|z,.@) and || - |lyx(q) respectively, W2(Q) = L. (9). C§°(Q) is the set of all functions
which are infinitely differentiable and have compact support in . W,ffO(Q) is the completion of C°(Q)
in WE(Q). C*(Q) (0 < v < 1) is the Holder space defined as in [1, 1.26-1.29], C*0(Q) = C*(Q),
(@) = C(Q). -

Let I be an interval in R, (X,| - ||x) be a Banach space. C(I;X) is the set of all X-valued
functions which are continuous in I. Cy(I; X) is the set of all X-valued functions which are bounded
continuous in I. ;
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4.2 Sectorial operators in X, and analytic semigroups on X,

In this subsection, we will make the properties of A, and F(u) which appeared in (I). Let (X, | - ||x)
be a Banach space, A be a densely defined closed linear operator in X. Then the resolvent set and
the spectrum of A are denoted by p(A) and o(A) respectively, Rec(A) := {ReX ; X € o(A)}. First,
for any 1 < p < 0o, Ap is the densely defined closed linear operator in X, satisfying the following
properties (A.5), (A.6):

(A.5) A, is a sectorial operator in X, defined as in [12, Definition 1.3.1], D(4,) C Wg(ﬂ), where
D(Ay) is the domain of A,.

(A.6) Reo(Ap) > 0, where Reo(A4p) > 0 means that ReA > 0 for any A € o(4,).

It is well known in [12, Theorem 1.3.4 and Definition 1.4.1], [20, Theorem 2.5.2 and Definition 2.6.7]
that —A, generates a uniformly bounded analytic semigroup {e~*4r};>q on X,,, fractional powers
A% of A, can be defined for any oo > 0, AJ = I, where I, is the identity operator in L,(€2). Let
us 1ntroduce the Banach space derived from Ay, X is defined as X = D(A7) with the norm
- s = 145 - 15,0, X2 = Xp.

We state some lemmata concerning sectorlal operators in Banach spaces. See, for example, [12,
Chapter 1], [20, Chapter 2] on the theory of analytic semigroups on Banach spaces and fractional
powers of sectorial operators. : -

Lemma 4.1. Let 1 <p < oo, o >0, 0 < Ay < Ay, where Ay :=min{A\; > 0; A € Rec(4,)}. Then
there exists a positive constant Cp o x, depending only on n, Q, p, Ap, o and A1 such that

lAge ™ ullz,0) < Cpant™ e |lullL, @) (4.1)
for any u € X,
Proof. See [12, Theorem 1.4.3]. O
Lemma 4.2. Let 1 < p < o0, a > 0, 0 < 8 < . Then there exists a positive éonstant Cpap

depending only on n, €, p, Ap, a and B such that

' 1 a .
lull s < Crapllully, s Il s (42)
for any v € X7

Proof. See [12, Exercise 1.4.5]. | O

Lemma 4.3. Letl <p< oo, 0<a<1. Then

| . 1 20—k 1 1
X2 s WEQ) if k€Z, k>0, 1<r<o00, —— —= < =< =, (4.3)
' p n r T
1 2a—(k
X¢ s CH@Q)ifkeZ, k>0, 0<y<1, =—— ;J”)_o, (4.4)
p
where — is the continuous inclusion. '
Proof. See [12, Theorem 1.6.1]. o

Second, F'(u) is the nonlinear term satisfying the following properties (F.3), (F.4):
(F.3) F(0) = 0.
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(F.4) There exist three constants Cp, > 0, 0 < aq < 1 and ¢ > 1 such that

-1 -1
1 () = F(o)l ) < Colllulligar + lIoll5en)llu = vllxgs
for any u,v € X7*.
Finally, we are concerned with mild solutions to (I). As is well known, (I) is reduced to the following
abstract integral equation:

t 13 ‘
u(t) = e~tryq + / e~ (t=5)4 B () (s)ds + / (=545 £(5)ds (1)
0 0

for any ¢ > 0. A mild solution to (I) is defined as follows:

Definition 4.1. Let 1 <p < o0, 0 < ag < 1, ug € X2, f € C((0,00); Xp). Then u is called a mild
solution to (I) if it satisfies :

u € Cy([0, 00); X20)

- and (II). Let S(uog, f) be the set of all functions which are mild solutions to (I).

4.3 Main results on the L,-theory of determining nodes

Our main results of Sections 4 and 5 will be stated in this subsection. We begin with formulation of
_determining nodes. For any N € Z, N > 1, z € £, u € C(Q), set

Ey={z1,--,zn; & €Q, i=1,--- N},
i=1,,

dN = magch(m), ‘
e

m(w) = max, [u(ai)].

)

Note that En and dy can be regarded as determining nodes and the density of Ex in Q respectively.
As for mild solutions to (I), the following assumptions (H.5), (H.6) are essentially required for our
main results. ‘ ’

(H5) S(U’Oa f) 7& 0 fOI‘ any ugp € XZC)XO, e C((07 oo)ﬁXp)

(H.6) There exists a positive constant M(f,%o) for any R > 0, f € C((0,00); X,), to > 0 such that

12ll gy 0,00):x21) < M (S, to)

for any u € S(X;°(R), f), where

SR, )= | S, 1), X5(R) = {uo € X3°; |luollxe0 < R}.
ug€Xp 0 (R)

- Compared with Kakizawa [14], this part is devoted to the L,-theory of determining nodes for (I). Our
main results overcome variety of boundary conditions, and clarify not only the asymptotic equivalence
but also rate of monomial or exponential convergence. First, the following theorem yields the existence
of determining nodes for (I) and rate of monomial convergence.
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Theorem 4.1. Let n/2 < p< oo, 0< apg <1, R>0, f,g € C((0,00); Xp), to > 0, and assume
(H.5), (H.6), |

f(t)—g(t) = 0in X, as t — oo.

Then there ezists a positive constant 61 depending only on n, Q, p, Ap, F, ag, M(f,t0) and M(g, o)
such that if 0 <dy < 61 and if u € S(XF°(R), f), v € S(X°(R), g) satisfy

w(zs,t) —v(z,t) = 0 as t — o0
foranyi=1.--- N, then
(i) For any ap < a < 1,

||lu(t) — v(t)||Xg = O(t*~ %) as t — oo. (4.5)

(ii) Forany k€ Z, k>0,0<y<1, k+vy<2a—n/p,
[u(t) — v(t) ey = OE™™) as t — oo | (4.6)
provided that n/(2p) < a < 1.

Second, we proceed to the existence of determining nodes for (I) and rate of exponential conver-
gence. '

Theorem 4.2. Let n/2 < p < oo; 0<ag <1l R>0, fg € C((0,00); Xp), to > 0, and assume
(H5), (H.6), ' ‘

1£) ~ 90l = Oe™) as £ oo

for some 0 < X < A1. Then there ezists a positive constant 6y depending onlyonn, Q, p, Ap, F, ag,
M(f,t0) and M(g,to) such that if 0 < dny < 02 and if u € S(XF°(R), f), v € S(XJ°(R),g) satisfy

u(xs, t) — v(zi,t) = O(e™ ) as t — oo
foranyi=1,---,N, then
(i) Foranyap < a <1,

[u(t) —v(@®)llxg = O(taofo‘e“Alt) as t — oo. (4.7

(i) Foranyk€Z, k>0,0<v<1, k+v<2a—n/p,

[u(t) = vl ora@) = O(t*°™%™™) as t — oo | (4.8)

provided that n/(2p) < a < 1.
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4.4 Auvxiliary lemmata

In this subsection, we will state three interpolation inequalities concerning the density of determining
nodes. The following lemma yields that the standard norms in C(Q), in LP(Q) and in Xﬁ are
connected with dpy.

Lemma 4.4. Let n/2 <p<oo, n/(2p) <a<1,0<vy<1,0<~vy<2a—n/p. Then there exists a
positive constant Cy depending only on n, , p, a and v such that

lull o) < mv(u) + Crdyy|lull xg . (4.9)
for any u € X7.
Proof. Tt follows from (4.4) that

”UHoOn(ﬁ) < Cl”U”X;;a

[u(@) - u(y)| < Cilz - y|"||ullxg,

lu(z)] < [u(y)] + Cilz — y|"|lullxg | (4.10)
for any z,y € Q. By taking the maximum with fespect toy € EN, (4.10) leads to (4.9). o

Lemma 4.5. Letn/2 <p<oo,n/(2p) <a<1,0<y<1,0<vy<2a—n/p. Then there exist two
positive constants Cy and Cs depending only on n, €}, p, a and v such that

lullz, @) < Conn(u) + Cadyflullxg (4.11)
for any v € X7
Proof. It is equivalent to (4.9) that

(@) < nn(w) + Crdy llullxg | (4.12)
for any z € (). By taking the L,-norm of (4.12), we obtain

lull ) < 127 (v (w) + Crd}llull xg)- (4.13)
Set Oy = ||/, O3 = |Q[V/?Cy. Then (4.11) is established by (4.13). O

Lemma 4.6. Letn/2 <p<oo,n/(2p) < a<1,0<8<a, 0<y<1,0<y<2a~—n/p. Then
there exist two positive constants Cy and Cs depending only on n, 0, p, a, B and v such that

lullg < Cady™® () + Codg ™ ul g ‘ (414)
for any u € X7 '
Proof. It follows from (4.2), (4.11) that
1
lull g < Crasllull s lullSs
< Cp,8(Conw (1) + Cad}|lullxg)*~ ﬂ/anunﬂ/‘“ |
1-— 1— (1- 1—
< Cpyays(Cy ™ P (w) =12 + C3~P/%d] 1)), 15l
< Cp,aﬁcl ﬂ/a ( )1—5/&Hu”5/a+c aﬁcl B/ad’)/(l_ﬂ/a)HU”Xa,
lullxp < (1= B8/0)CpasCaCs ¥/ 2dy™ /¥ (w) + (14 8/@)Cpa,sC3 ™ *d} =2/ |ul xg. (4.15)

Set Cy = (1 — B/0)Cpa5C2C5 7%, Cs = (1 + B/)CpasCa */®. Then (4.15) implies (4.14). O
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4.5 XJ-estimates for mild solutions to (I)

This subsection provides X *-estimates for mild solutions to (I). Note that v € S (X5°(R), f) and
v € S(Xp°(R),g) satisfy '

¢

, t
u(t) = e~t0)Apy1g) +/ e~ (=94 F(u)(s)ds + / e~ (=94 £(5)ds, (4.16)
to . to
t t '
o(t) = e~ (00 4py (1) —I—/ e~ =942 B (4)(s)ds +/ e~ =) eg(s)ds (4.17)
to to

for any ¢ > ty. By subtracting (4.17) from (4.16), we obtain -

lu(t) = v(t)llxg <Cpa-apt™® e |lu(to) — v(to)l xz0 ,
t .
+ Cpan Op A (- 8)"“6‘A1(t's)(HU(S)H?& + HU(S)H?(?JHU(S) —(s)l|xgads
0 .

: t
+ Cpans [ (6972 I 1(5) =~ o9 pds
7

0

(4.18)

for any ag < a < 1, t > ty. Here and hereafter we set
it
I a=0)(®) = [ (¢ 572 u(s) - o(s) s,
i to

1

2,.(f—a)t) = / (t — )76 £(5) — g(5)] 1, s

to
for any ag < a< 1, t > tg.

5 Existence of determining nodes for (I)

Theorems 4.1 and 4.2 will be proved in this subsection. The proofs of Theorems 4.1 and 4.2 are based
on the similar method to [9, Theorem 2.6] with the aid of Lemma 4.6.

5.1 Proof of Theorem 4.1

As is mentioned above, we shall establish X -estimates for u —v. Set

Ba(u—0)(t) = max ¢ u(s) = o(s) x5,

E(f —9)@) = max [f(s) - 9(s)l L,

to<s<t

Hyy (1= v)(t) = max nv(u(s) — v(s))

for any ag < oo < 1, t > to. Then (4.18) yields
Ea(u = v)(t) <Cp,a—ag,n [[u(to) — v(to) | xgo
+ Cpoox Co(M(f,£0)77" + Mg, 10)7~ )12~ Ig 5, (u — )(2) - (51)
+ Cpant® L5 5, (f — 9)(t) |
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for any a9 < o < 1, t > . By choosing max{ag, a1,n/(2p)} < a2 < 1 and applying (4.14) with
a=asand f=a; to I} @ , we have

8

_ . |
1070005, (u =) (1) <Cyd(ea/a2) e / (t — s)"%e ME=)p (u(s) — v(s))ds
t
1 0 ¢
4 CSd’]yv( —al/az)ta—ao/t (t _ 5)_ae_>‘1(t_s)”u(8) _ U(S)”ngds
) 0

for any ap < a < 1, t > tg, which implies
) t
100 L | (u - v)(t) <Cad @012 (4 — v) (1) /t (t - 5)~ e N(t=9)gs
=)

t
. C5d-yN(1—a1/a2)ta—aoEa2 (u— U)(t)/ (t — s)"*s™0 22 M(t-9) gg
to

for any ap < a < 1,t > ty. Let 0 < § < 1 — a9 be taken arbitrarily, and recall that there exists a
positive constant C;s », depending only on F, o, 6 and A; such that

tl—ao(l _ T)(Se—)\lt(l-—T) S C(S,A:U

t1~a2(1 _ T)éé_Alt(l_T) S C&)‘l

for any t > 0, 0 < 7 < 1. Then it follows that

a—ag 7l
t Iah

1
(0= 0)(0) SCuCip,d /D Hy(u—0)() [ (1= )40
0
1
+ C5Cap, di %) Bgy (u — ) (1) /0 (1 7)=(@+é) rao=az

£2720TL 5. (u—v)(t) <C4Cs (1 — & — 8)~1d~73/%9) Hy (u — ) (1) 652)
+ C5Cs.0, B(1 — o — 8,1+ ap — ag)dl V) B, (u— v) (1) '

for any g < @ < 1—46, t > to, where B(z,y) (z > 0, y > 0) is the beta function. As for Ii)\l, we
have '

¢
197002 5 (f — 9) (1) St E(f — g)(t) / (t—s)" % M(7)ds
to
for any g < o < 1, t > ty. By the same argument as in (5.2), we obtain

o 1
270 2 | (f — g)(#) gcé,klg(f_g)/o (1 - 1)@+

+

1270025, (f = 9)(8) € Cspy (L= = 8) 7 E(f - 9)(¥) (5.3)
for any ap < a <1 -9, t > t9. Consequently, it follows from (5.1)—(5.3) that
Eo(u—v)(t) < Cpa—aollulto) — 'U(tO)”X,‘,’O
+ Cpan CoCiuCian (1 — e — 8) 1M (f, 10)47 + M (g, t0)4~1)d~71/%2) Hyy (u — w)(2)
+ Cpans CoC5Cs 0 B(L — 0 — 6,1+ ap — ag)(M(f,t0)7™" + M(g, t0)T )1 ™/ B (u — v) (1)
+ Cpan Cixy (1 —a—8)E(f — g)(t)
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for any ag < a<1—246,t>ty. Assume that

1
0<dy < , ‘ ’
N {Cp,02.0 CpC5Cs5 0, B(1 — ag — 6,1 4 g — ) (M (f, 0)9~1 + M (g, t0)9~1)}1/{v(1-0a/e2)}
(5.5)
and set
K}l\ _ : ' Cp,az—ao)\l
1

1 — Cpn0a CpCsCs0, B(1 — az — 6,1 + ag — an)(M(f, t0)4-1 + Mg, to)a-1)d) ~21/22) "

Cp,az 0 CoCuCi, (1 — ag — 8)"H(M(f, t0)7~" + M (g, o)1~ )d V(@1 /22)
1 — Cp.ap 20 CpCsCs.5, B(1 — aig — 6,1 + g — an)(M(f,£0)9~1 + M(g, tg)e~1)d1 1 ~o/@2)
- ~ CpognCsp (1 — a2 —8)7! |
1 — Cp oy CoCsCsa B(1 — g — 6,1 + g — aa) (M (f, 10)2~1 + M(g, to)a~1)d1{ ~o1/*)
Then (5.4) yields ‘

2 _
K;, =

3 _
K5, =

Eoy(u—0)(t) < K}, |lu(to) — v(to) | xz0 + K3, Hy(u—v)(t) + K3, E(f - 9)(t) (5.6)

for any ¢ > tg. Set

1 —
Ka,Al "Op,a—ao,/\l

+ Cpans CpCsCax B(L — o = 6,1+ g — ) (M(f, 10)2™" + M (g, 1) )d}\ '~/ K},

K25, =Cpax CpCuCisxn (1 —a— 8) 1 (M(f, 1)  + M@, tp)T 1) d " a/e2)
+ Cpari CoCsCsa, B(1 — a — 6,1 + ag — az)(M(f, 10)4™" + M(g, o) 1d} 1/ *2 K3 |
KE ), =CpanCin(l—a—8) |
+ Cpary CpCsCs5, B(L — a — 6,1+ ag — az)(M(f, 1)1 + M(g, to)¢1)dj ~* /) K3 .
for any ap < @ <1 — 6. Then it follows from (5.4), (5.6) that -

Ea(u—v)(t) < Ka, lu(to) = vlto)llxgo + K3 5, Hy (u— 0)(t) + K3 5, B(f — 9)(2) (5.7)

for any ag < oo < 1—4, t > tg, which leads to (4.5). Furthermore, the arbitrariness of the choice of §
“allows us to assume that ag < @ < 1. In the case where n/(2p) < a < 1, we can see easily from (4.4),
(5.7) that (4.6) holds for any k € Z, k > 0, 0 < v < 1, k+ vy < 2a — n/p. Therefore, the sufficient
condition for (4.5), (4.6) is .

1

0<§ : ;
1= {Cp,023. CpCs5Cs0, B(1 — ag — 8,1 + ag — a2) (M (f, t0)21 + M(g, to)2 1)}/ {v(A-an/az)}
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5.2 Proof of Theorem 4.2

In the same manner as in Subsection 5.1, we shall obtain exponentlally weighted X -estimates for
u—wv. Let A1 < X9 < Ay, and set ‘

B, (u—v)(t) = max 157 M lu(s) — v(s)lxg,

B (f ~ )t —trgggtemuf( $) = 9(5)llz,@);
Hi o (u=)(t) = max, ™y (u(s) = o(s)

for any ag < o < 1, t > 9. Then ('J4.18) implies

Eox (v = 0)(t) SCpa—ap [[u(to) — v(to)l xao
+ Cpya o Cp(M(f,t0)71 + Mg, t0)T™)t5 %Ly (u — v)(1) (5.8)
+ Cpant® ™M I\, (f — 9)(1)
for any ag < a < 1, t > #5. By choosing max{ao,oq,n/(2p)} < ag <1 and applymg (4.14) with
a=azand 8= qaj to I} )y WE obtain
¢ .
a0 ML | (u—v)(t) <Cyd~(er/e2)ema0 / (t — 5) @~ P2=A)lE=s) sy (1y(5) — v(s))ds
. to .
t
+ Csd’]yv(l—m/ozz)ta—ozo/t (t _ S)-—cve—(h—)\l)(t—s)e)qs“u(s) _ ’U(S)”X;cz‘ds
0
for any ag < a < 1, t > tg, which gives
¢

1270 MITT | (u—v)(¢) <Cyd 1/ a0y (u— v)(t) / (t — s) e Pz 2)(E=s)gg
to

t
+ C5d’]):/§1—a1/052)t04—a0Ea2,/\1 (u _ U) (t) / (t _ S)—asao—aze—()\z—Al)(t——s)ds
|7

0

for any ag < a < 1,t>1y. Let 0 < é < 1— ag be taken arbitrarily, and recall that
tl—ozo (1 _ 7_)56—(A2—)\1)t(1——7') < 057)\2_)\1,

tl—ag (1 _ 7_)66—(A2—X1)t(1—7) < Cg’,\2_)\1

for any ¢t > 0, 0 < 7 < 1. Then it follows that

1 N
120Nl | (u— v)(t) SC4Chag-r d YOV Hy 5 (u— v)(t) / (1—7)"tdgr
) 0

o
+ CsCopm A D B (= 0)(8) /O (1 — 7)ot o0-azg,

19-90MITL (1 0)(£) SCiCpgny(1 — o — 8)2d7 1) Hyy (1w — 0)(1) 59
+ C5Cs pg-2 Bl—a—6,1+ 09 — cvz)ci;{,(l_o‘l/az)EOQ,)\1 (u — v)(¢) .
for any ag < a<1—4,t>1. Concerning Ig’/\z, we have
‘ ¢
170N L (F — 9)() S TP EN (f — 9)(t) / (t = 5) % Qa9 g

to
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for any ag < a <1, t > t9. The same argument as in (5.9) shows that
1

1070 M2\ (F = 9)() < Corg—ni Br (f — 9) / (1—7)~(Hgr,
.40

te700MZ L, (F = 9)() < Caponi (1= a = )T By (f — 9)(2) (5.10)
for any ap < a <1 -4, t > tg. Therefore, we conclude from (5.8)—(5.10) that

B (u=0)(2) < Cpa—agn[[ulto) — v(to) ]l xgo

+ Cp o CoCiuCi agny (1 — o = 8) "L (M (£, £0)21 + M{(g, o)™ 1)d= "1/ Hy . (u— v)(t)

+ Cprora CoCsC52n 21 B(1 — o — 6,1+ ag — o) (M (f, 10)% 1 + M(g,£0)4 Il ™/ B 5 (u — v)(2)
+ CpapaCspo-n (1 = @ = 8) 1By (f — 9)(t)

(5.11)

for any g < < 1 -4, t > tg. Assume that *

0<dy < 1

N 1Cpr0,2a CoCsCo 03 B(L — az = 8,1 + ag — an) (M (f, t0)0~1 + M(g, t)a—1) }/ 010 =ar/ez)}”

(5.12)

and set

Li Cp,az—ao,h
1=

1~ Cpas 22 CpCsCsrp—21 B(1 — ag — 8,1+ ag — ag) (M (f, 10)~1 + M(g, to)a—1)d]* ~e1/*2)

- Cp o 20 CpCaCis pg -3, (1 — g — 8) UM (f, 1)t + M(g, to)q—l)d—'y(oq/oQ)

1-— C’pm,,\ZC'pCng,)\z_,\lB(i —ag— 6,14+ ag— aa)(M(f,t0)?1 + M(g;to)q_l)d}’\;l_o‘l/az)’
| CpazpeCopo—n (1 — g — 8)7!

1 — Cpas 22 CpCsCs 20— B(1 — ag — 6,1 + ag — a2 ) (M (f,t0)21 + M (g, to)q_l)va(l—al/ag) :

~Then (5.11) implies

By (u = v)(t) < L, [u(to) — v(to)llxg0 + L3, Hyag (w = v)(8) + L3, Ex, (f — 9)(2) (5.13)

3
Ly, =

for any t > tg. Set

Lé,)\l :Cp,a—ao,h
+ CparsCpC5Cs2, 3 B(1 — 0= 6,1+ ag — ) (M(f, £0) ™" + M(g, £0) ™1 )dJe ~/*2) L},

’

Li,,\l =Cp,a. 2 CpCiaCs3y-2, (1 —a —8) M (M(f, o) + M(g, to)q—l)d'—y(al/az)
+ CparaCpC5Cs 35 —2 B(L — o — 8,1 + ag — a) (M (£, t0)4* + M(g, to)q——l)d}(r(l—al/ag)[&l,
Li,)\l =CparCsrgr (1 —a—3)7t
+ Cp.arsCpC5C5 552 B(1 — a — 8,1 + ag — a)(M(f, 1)L + M{(g, tO)q_l)d;Y\;(l_al/a2)L§1.
Then it follows from (5.11), (5.13) that

Eap(u = 0)(t) < Lg , llulto) — v(to)l| xzo + L3 5, Hyp (u = 0)() + L5, By (f — 9)() (5.14)
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for any ap < a < 1—4, t > tp, which yields (4.7). Moreover, the arbitrariness of the choice of § allows
us to assume that ap < o < 1. It is easy to see from (4.4), (5.14) in the case where n/(2p) < a <1
that (4.8) holds for any k € Z, k > 0,0 <y < 1, K+~ < 2a — n/p. Hence, the sufficient condition
for (4.7), (4.8) is

: 1
{Cp,a2,20CpC5Cs 00— B(1 — ag — 0,1 + g — a2) (M (f, 0)9~1 + M (g, )9~ 1)}/ {v(1—ea/a2)}’

0<dy <

6 Part IIT: The resolvent problem for the Stokes eoiuations

In this part, we are concerned with the existence and uniqueness of solutions to (1.4) satisfying L, -
estimates. This part is organized as follows: In Section 6, we define basic notation in this part, and
state our results concerning the analyticity of the semigroup on L, () generated by the Stokes
operator. It is stated in Section 7 that we have L, estimates for solutions to the Stokes equations in
R™, in R? and in the bent-half space H}. Section 8 is devoted to the study of (1.4), i.e., the existence
and uniqueness of solutions to (1.4) and resolvent estimates for the Stokes operator in L ,(f2).

. 6.1 Function spaces

Function spaces and basic notation which we use throughout Sections 6-8 are introduced as follows:
Let G be an open set in R™ with its boundary 0G, v be the outward unit normal vector on 9G,
} be a multiply-connected bounded domain with its boundary T'o UT1. (Ly(G), || - llz,(s)) and
WEG), | - \[W;c(g)) (1<p< oo, ke€Z, k>0) are the Lebesgue and Sobolev spaces respectively,
W2(G) = Lp(G). W, (G) :={ue (WI’,“(G))” s wloc = 0} (WH@), | - ]|W5(G)) is the homogeneous
Sobolev space defined as : '

Wy (G) = {p € Lpoc(G) 5 Vp € (Lp(G)™}, Py ey = VPN zpiepn-

In the case where G = (), Wpl(Q) is characterized as
Wpl(Q) = {p € W,}(Q) ; /Qp(a:)dx = O}.

(W5 (G), Illws(a)) (s > 0, s & Z) is the Sobolev-Slobodetskii space defined as Wy (G) = (Lp(G), Wf)(G))S/(S),p,
where (Xo, X1)sp (0 < 8 < 1) is an interpolation space between two Banach spaces Xy and X by the -

K or J-method, (s) := min{k € Z ; k > s}. Let us introduce solenoidal function spaces. C§% () :=

{u € (Cg°()™ 5 divu = 0} Ly () (1 < p < 00) is the completion of C§%(Q) in (Ly(2))™. Tt

follows from [7, Lemma 5.3] that (L,(€2))™ is decomposed into (Ly(2))"™ = Ly 5(Q) & Ly »(€2), where
Lyx(Q):={Vp; pe WI}(Q)} Let P, be the projection of (Ly(€2))™ onto Ly +(2). As for generalized
solutions to (1.2), we define the following function spaces: '

Hy() ={ue Wy ()" ; wlaa =0, urlr, = 0}, J5(Q) = Hy(Q) N Ly (%),

L) = {pe L, ; [ sz =0}

It is useful to remark that u € Wzﬂf‘lfl(ﬂ) yields divu € WI?(Q) for k=0,1.

Let I be an interval in R, (X, - ||x) be a Banach space. C(I;X) is the set of all X-valued
functions which are continuous in I. Cy(I; X) is the set of all X-valued functions which are bounded
continuous in 1.
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Let (X, || - lx) and (Y; || - |y') be Banach spaces. (B(X;Y), || 8(x;y)) is the Banach space of all
bounded linear operators from X to Y, B(X) := B(X; X), : ‘

: ”AIHY
A y) = Sup .
I4llzcesy) zex\{0} llzllx

|<f; v>Lp* (G)| .

bl

”fHWp HG) T vEW}}S:(lg)\{O} HU”W}}*(G)
where p* is the dual exponent to p defined as 1/p + 1/p* = 1. Note that (H, ), |l - ||Hp_1(ﬂ)) is
similarly defined.

It is useful to remark that z=(z1, - ,2,)T €R" and Vy = (0, ,0s,)" are simply denoted
by z = (z/,2,)T, 2/ = (21, - ,%n—1)T € R" ! and V, = (V.,,0:.)7, Vo = (Ope, -+ , O 1)T
respectively. Note that y, 2z, £ and so on are similarly defined. Moreover, simplified notation is given
as follows: We simply denote a generic positive constant depending only on n, Q, p, ¢, p, 4 and
K by C. As for boundary conditions, h° € (Wz}_l/ P(Tg))™ and A € (VV2 /p (T'1))™ are suitably
extended to A0 € (W;‘l/p(aa))” and hl € (W,?_l/p(aﬂ))" respectively, which yields h° € (WE)"
and h! € (W2(Q))™. Tt is sufficient to be assumed that h0 and h! are extensions of h and hl to 5
defined as

RO(z) = hO(z) if x € Ty,
1o if 2 €Ty

and

) =
hl(SC) ifzely

respectively. For the sake of notational simplicity, we will not distinguish (R%, k1) and (RO, AY), i.e
(R%, hY) will also be simply denoted by (h0, Al).

6.2 Results on the resolvent problem for the Stokes equations

This subsection provides our results of Sections 6-8 after some preliminaries. We begin with resolvent
estimates for the Stokes operator in L, (). Set

Se ={A€ C\ {0} ; |argh| <7 —¢} i

for any 0 < € < 7/2. For the sake of notatlonal simplicity, we introduce the following norms in
WHG) N W H@) and in W’“(G) respectively:

L) = Pz + M e+ D> 18%flL,e

a€Z™,a>0,|a|=1

I¥, 6(g Z || (E=9)/ Z 0%l (@)

Q€Z™,a>0,|a|=1
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for any open set G in R™. _

Compared with Farwig and Sohr [7] and Shibata and Shimada [24], this part is concerned with
(1.4) which has more complicated boundary condition than [7], [24]. The following theorem yields
the existence and uniqueness of solutions to (1.4) in (W2(2))™.

Theorem 6.1. Let ) be a multiply-connected bounded domain with its boundary NgUI'1, 0 < K < 1,
1<p<oo,0<e<n/2 feWh),ge L) 1 € Wy *(To))", BIr, = 0, h!
(W2 1/p(I‘1))”, hylr, = 0. Then (1.4) has uniquely a solution (u,p) € (W2(Q))™ x WI} Q) satzsfymg

250 + Iplwyy < Coel5a(f) + gl oy + Ianh®) + 125 o(hh)) 6.1)

for any A € S U {0}, where Cy ¢ is a positive constant depending only on n, Q, p, €, p and K.

Let (X,] - [lx) be a Banach space, A be a densely defined closed linear operator in X. Then the
resolvent set and the spectrum of A are denoted by p(A) and o(A) respectively, Rea(A4) := {ReX; A €
o(A)}. The Stokes operator A, and its domain D(A,) are introduced as follows:

Apu = —PpdivT'(u, p),

D(Ap) = {u € (W; ()" N Lpg(Q) 3 K(T(u,p)v)r + (1 = K)urlr, =0, urlr, =0}

for any 1 < p < co. It is useful to remark that Apu = —P(—Vp + pAu) = —pPpAu. Theorem
6.1 allows us to establish resolvent estimates for —A,, consequently, —A4, is a sectorial operator in
Ly () defined as in [12, Definition 1.3.1].

Theorem 6.2. Let ) be a multiply-connected bounded domain with its boundary ToUT'1, 0 < K < 1,
l1<p<oo,0<e<m/2. Then p(—Ap) D S U{0}, and

Co,e
||—|—1

I(A Ty + Ap) ML, ) < (6.2)
for any A € S; U {0}, where Cp. is a positive constant depending only on n, Q, p, €, p and K.
Therefore, — A, is the infinitesimal generator of a uniformly bounded analytic semigroup {e‘tAP}tZO
on Ly (), and there exists a positive constant Cp . », depending only onn, Q, p, €, pu, K and Ay for
any 0 < A1 < Ay such that

e~ 2 |l 5(z,.0 (@) < Cpepe

for any t > 0, where A1 :=min{A; >0 ; A\ € Rec(4,)}.

Fractional powers A7 can be defined for any a > 0, AO = I,, which follows from Theorem 6.2.
Let us introduce the Banach space derived from Ag. X is defined as X = D(Af) with the norm

I ke = 145 - lzp@ms Xp = Lo (). '
6.3 Auxiliary lemmata

‘In this subsection, we will state and prove some lemmata which play an important role throughout
Sections 6-8. The following lemma yields the existence of solutions to the auxiliary boundary value
problem.
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Lemma 6.1. Let Q be a bounded domain with its C%'-boundary 8Q, 1 < p < oo, f € LP(Q),
he (Wpl_l/p(f‘l))”, hy|r, =0, and consider the following boundary value problem: '
divu =f in €, ,
uylag =0 on 09, 7 (6.3)
urlp, =h on T4y,
Then (6.3) has a solution u € (W, ()" satisfying
[ullwg@nr < ColllFllzy) + 1Al a1/ p,y0a)5 , - (64)
where Cy, 15 a positive constant depending only on n, Q and p.

Proof. Let k€ (W */P(89))™ be the extension of A to 8 defined as
. ifz el |
P(z) = 0 it z € Iy,
h(z) if z €Ty,
and consider the following boundary value problem:
divu =f  in €,
uylan =0 on 99, (6.5)

urlon = b on 8Q.

Then [2, Theorem 1] yields that (6.5) has uniquely a solution u € (W3 ()™ satisfying (6.4). This
completes the proof of Lemma 6.1. O

As for the existence and uniqueness of solutions to the auxiliary problem, Lemma 6.1 admits that
we have the following lemma:

Lemma 6.2. Let Q be a multiply-connected bounded domain .with its boundary TouU I, u € HX(Q),
and consider the following problem:

(p, divo) 1, ) = (4, V) (@))n (6.6)
for any v € HY(Q). Then (6.6) has uniquely a solution p € Ly(Q) satisfying

IPllzo0) < Cllullwz@)ym |
where C is a positive constant depending only on n and Q.

Proof. There exists uniquely a function v = Ap € H}(Q) for any p € Ly () such that we have (6.6)
for any v € H3(f), which follows from the Riesz representation theorem. By substituting v = Ap
into (6.6), we have

14Dz < 10, divAD) o)) < Cllpll @l APl @

This inequality yields |'|Ap||(W21(Q))n < Clplliryq, ie, A € B(Ly(Q); HY(Q)). Furthermore, the

inverse operator of A is also bounded. Indeed, Lemma 6.1 admits that (6.3) with f =p and h =0
has a solution v € H2(Q) satisfying (6.4) for any p € L2 (). By substituting the solution v into (6.6),
we obtain : ' : ‘

12113500y < 1(4P, )yl < 148l @y 10l wz @y < CllADI vz @y 1Pl o)

which gives |[p| 1, < C||Apl| (wi(q))- 1t follows from the inequality that A7l is defined as a bounded
linear operator A~! € B(H}(); L2(£2)). This completes the proof of Lemma 6.2. O
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We are devoted to the basic property of H3(Q) with the aid of Lemma 6.2. The orthogonal
decomposition of H3(Q) is given by the following lemma:

Lemma 6.3. Let Q be a multiply-connected bounded domain with its boundary ToUTy, A € B(Ly(Q); HI(Q))
be a bounded linear operator defined as in Lemma 6.2. Then Hi(SY) is decomposed into H(Q) =
J3(Q) @ R(4).

Proof. Let v € H}(Q) \ R(A). Then it follows that
(p, diVU)Lz(Q) = (Ap, v)w @) =0

for any p € Ly(Q), which implies divy = 0. Consequently, we have v € J3 (). O

We proceed to the Korn inequality for functions in H}(£2). In contrast to the case where T'g = 69
and I'; = @, Theorems 6.1 and 6.2 are valid for any 0 < K < 1, which is essent1a11y depending on the
following lemma:

Lemma 6.4. Let Q) be a multiply-connected bounded domain with its boundary o UT'y. Then

2
lullZg e < CID@)IE,, o) 00 (6.7

for any w € H3(9)), where C is @ positive constant depending only on.n and €.
Proof. See [25, Lemma 4]. O

The following lemma yields the generalized Poincaré inequality which is required for Wp_l esti-
mates for the external force. '

Lemma 6.5. Let Q be a bounded domain with its boundary ), 1 <p<oo € Wl(Q) p €
Ly« (©2) \ {0}, and set

= [ rtas ) [ )iz

Then
1~ el < Coll Flis . 6.8)

where Cp, is a positive constant depending only on n, {1 and p.

Proof. Assume that (6.8) does not hold for any f € WZ}(Q) Then there exists a function fm, € W} ()
for any m € N such that

1fm = pallzo) = mllf i - " (6.9)

Set

Jm = Cfm
[ fm = ctullz )

dm =

Then it is easy to see from (6.9) that ||gm| z,@) = 1 and ||gm||W1(Q) < 1/m. Since |gmlwi(a) <2

holds for any m € N, i.e., {gm}m is bounded in W} (2), we can choose a subsequence of {gm}m Whl-Ch
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converges Wéakly to a function g € W} (€2) in W} (Q). Note that ||g|lz, ) =1 and g = 1/|Q/*?. On
the other hand, we have : '

fyonterotaris = g ([ oot o | wéx)dx) "

The strong convergence in L,(§2) implies that

gp(z)dez =g | o(z)dz=0.
Q Q

This contradicts g # 0 and ¢ # 0, which completes the proof of Lemma 6.5. _ O

In order to obtain L, estimates for the pressure, we utilize the following lemma on the existence
and uniqueness of solutions to the auxiliary boundary value problem.

Lemma 6.6. Let Q be a bounded domain with its CY -boundary 89, 1 < p < oo, f € Lp(ﬂ), and
consider the following boundary value problem:

Au=f in{ ' ' |
u=J i | (6.10)
dyu=0 on 0f.

Then (6.10) has unigquely. a solution u € WS(Q) N L,(Q) satisfying

ullwz@) < Coll fllz @) ' | (6.11)
where Cp, s a positive co}nstant depending only on n, Q and p.

Proof. See [24, Proposition 5.5]. O

7 L, estimates for solutions to (1.4) in unbounded domains

We will state and prove some theorems which are essential for Theorems 6.1 and 6.2. In proving our
results, simplified notation is given as follows: We simply denote a generic positive constant depending
only on n, Q, p, £, p, p and K by C. It is useful to remark that a generic positive constant depending
only on the above elements and additive elements (e.g., Ag, & and so on) is simply denoted by C,,,
C, and so on respectively. As for boundary conditions, h° € (W,} R (I'p))™ and Al € (Wg —1/r (Ty))™
are suitably extended to A’ € (Wpl i/ (092))™ and Al € (Wg i/ (0K))™ respectively, which yields
nd € (WZ}(Q))” and Al € (Wg(ﬂ))”

In this section, we will state some theorems concerning L, estimates for solutions to (1.4) in
unbounded domains, e.g., R, R} and H).

b

7.1 L, estimates for solutions to (1.4) in R

In this subsection, we consider the following resolvent problem in R™:

divu = fo %n R, | ('/7'1)
Au—divT(u,p) =¢ inR™ : o

By applying the Fourier multiplier theorem to the solution formula of (7.1), we have the following
theorem on L, estimates for solutions to (7.1):
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Theorem 7.1. Let 1 <p < o0, 0 <& < /2, f € WHR™) N Wp‘l(Rn), g € (Lp(R™))™. Then (7.1)
has uniquely a solution (u,p) € (W2(R™))™ x I/Vp1 (R™) satisfying
; 1,-1 -
Iy s e () + 1Pl @y < Cpe(Ly5gen (F) + llgll iz, eyn) (7.2)
for any X € S;, where Cp ¢ is a positive constant depending only on n, p, € and p.

Proof. See [7, Theorem 1.3], [24, Theorem 2.1]. O

7.2 - L, estimates for solutions to (1.4) in R}

This subsection is devote to the study of (1.4) in the case of the half-space. First, we discuss the
followmg resolvent problem in R :

(divy = f in RQ‘_,
Mu — divT(u,p) =g in R7, , (7.3)
ulorr = h on OR7T..

The Fourier multiplier theorem admits that we have the following theorem on L, estimates for
solutions to (7.3): :

‘Theorem 7.2. Let 1 < p < 00, 0 < e < 7/2, f € Wp(R%)N W;l(RZﬁ), g € (Lp(R%))*, h €
(WZ(RR))™. Then (7.3) has uniquely a solution (u,p) € (WZ(R%))"™ x W;(Rﬁ) for any X € S, and
there exists a positive constant Cp . 5, depending only on n, p, €, u and Ao for any Ag > 0 such that

Ipz,,\,m (u) + HPHWI;(M) < Cpeno (I;,’,\_,ii (F) + lgllzpmayym + Ig,,\,Rz;(h)) A (7.4)
for any X € Sg, [A| > Xo.
Proof. See [7, Theorem 1.3]. O

Second, we proceed to establish L, estimates for solutions to the following resolvent problem in
R7:

divy = f in R%,
M —divT(u,p) =g in R, (7.5)
un|6Ri =0 on 3R7_f_,

—K(p0z,v') + (1 — K)u/|orr = B’ on OR%.
Similarly to Theorem 7.2, we obtain the following theorem:

Theorem 7.3. Let 0< K <1,1<p< o0, 0<e<n/2, f € WIRL)NW,L(R?), g € (Lp,(RT)",
h e (Wa(R%))", hn = 0. Then (7.5) has uniquely a solution (u,p) € (W2(R7%))"™ x WI(R”) for any
A€ S, and there exists a positive constant Cp . », depending only onn, p, €, p and )\0 for any Ag >0
such that

I3 () + 1Pl ey < Cpepo Tpign (F) + gl z,@pyn + 15 s gn (1)) (7.6)
for any A € S;, |A| = Ao

Proof. See [7, Corollary 1.5], [24, Theorem 3.1]. O
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7.3 L, estimates for solutions to (1.4) in H}
Let w e C’“’l(R”_l) satisfy
V'l (e, @n-1)n-1 < 00, ' . (7.7)
and set | | |
H'={z=(¢,2,)T €R"; 2z, > w(z'), 2’ € R"'},
OH. = {z = (z/,zn)" €R"; @y = w(2)), & e R},
M; = IVl gy ey

forany j = 0,--- , k. Then the outward unit normal vector v, € (C*1(8H"))™ on OHT is characterized
as

(V'w(=), =1)*
1+ [V'w(z) )12

vo(r) =

In this subsection, we are concerned with (1.4) in the case of the bent half-space. The first result is
L, estimates for solutions to the following resolvent problem in H:

divu = f in H?,
M — divT'(u,p) =g in HZ, ' : (7.8)
\ulozg = h on OH?. \

It is easy to see from Theorem 7.2 and the Banach fixed point theorem that we have the following
theorem:

Theorem 7.4. Let w € CYY(R™Y) satisfy (7.7), 1 <p < o0, 0 <e < 7/2, f € Wy (H]) ﬂng(HZ}),
g € (Ly(HM)", h € (W2(HD))™. Then there exist two positive constants M depending only on n,
p, € and p and A\;. > 1 depending only on n, p, €, p and My such that if My < M, then (7.8) has
uniquely a solution (u,p) € W2(HD))"™ x Wl(H") satisfying

1,-1
Ig,A,Hg (u) + ||P||W1;(Hg) < Cp,e(Ip,A,Hg(f) + lgll¢z,camym + Ig,A,Hg(h)) ‘ (7.9)
for any A € S, |A| > A1, where Cp ¢ is a positive constant depending only on n, p, € and p.

Proof. See |7, Theorem 3.1]. : O

The second result is smnlar to the first, i.e., L, estimates for solutions to the following resolvent
problem in H:

divu = f in Hj, .
M —divl(u,p) =g in HF, (7.10)
oy =0 on DI,

K(T(u, p)v)r, + (1 — K)uqg,|ogz = h on 0HJ,

where u,,, 1= Vv, U, Ur, = U— Uy, V. In the same manner as in Theorem 5.4, we obtain the following
theorem:
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Theorem 7.5. Let w € CPHL R satisfy (7.7), 0 < K <L 1<p<oo,0<e<n/2,fE€
Wy (HZ) "W, HHE), g € (Lp(H2)", h € W}, (HP). Then there exist two positive constants M

PV

depending only onn, p, &, u and K and A1 > 1 depending only on n, D, €, b, K and My such that if
My < M, then (7.10) has uniquely a solution (u,p) € (W2(H2))™ x W} (HE) satisfying

1,-1
Iy mp () + 1Pllvirs mmy < Coe (T i (F) + 9l oz + I 5z (R)) (7.11)
for any A € S¢, |A| > A1, where Cp, . is a positive constant depending only on n, p, €, u and K.
D, ;

Proof. See [24, Theorem 4.1]. O

8 L, estimates for solutions to (1.4) in a bounded domain

8.1 Existence and uniqueness of solutions to (1.4)

This subsection deals with the existence and uniqueness of solutions to (1.4). Let G be an open set
in R™ with its boundary 9G, and set (u,w)c = (u, w)r,G), (¥, W)ac = (4, w)r,6¢)- Then we are
devote to the following variational formula in :

A, w)a = (7, divw)a + 2u(D(w), D(w))a + (K1 = 1)(w, w)r, = (g, w)a + K~ (% w)r, (8.1)

for any w € H3(Q). It is important to remark that (8.1) is the variational problem associated with
(1.4). Let us introduce the sesquilinear form By g in H3(€2) as follows:

Bya(u,w) = Ay, w)a + 2u(D(u), D(w))a + (K~ = 1)(w, w)r,.-
Note that By gn and B) gn are similarly defined. Then (8.1) yields
Bya(u,w) = (p,divw)a = (g, w)a + K~ (A%, w)r, (8.2)

for any w € Hi(Q). It follows easily that Bygq is bounded in Hj(2). As for the existence and
uniqueness of generalized solutions to (8.1) in Ji(£2), we have only to prove that By q is coercive in

Lemma 8.1. Let Q) be a multiply-connected bounded domain with its boundary To U, 0 < K <1,
0<e<m/2. Then

|Bx,a(u, w)| > sin(e/2){IN||ullfz, @y + 26l D(u )Il2 @y T E = Dlulltr, ron} (8.3)
for any u € H%(Q), xe S, u{0}.
Pfoof. An 'elem_entary calculation shows that
"|Aa + b > sin(e/2)(|A|a + b) ' (8.4)
for any a > 0,b>0, A € S, U{0}. By subs‘gituting a= ||UH%L2(Q))"’ b =2u|D(u)|? Lot + (Kt =
)||u||(L2 (To))n nto (8.4), we have (8.3). _ O

It is easy to see from Lemma 8.1 and the Lax-Milgram theorem that we have the following lemma:

Lemma 8.2. Let Q be a multiply-connected bounded domain wz’th. its boundary To U, 0 < K <1,
0<e<7/2, g€ Hy ), h® € (L2(To))™. Then (8.1) has uniquely a generalized solution u € Ji (1)
for any A € Sc U {0}, i.e., u satisfies (8.1) for any w € J3(Q).
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Proof. Tt follows from Lemmata 6.4 and 8.1 that B, gq is coercive in J3(Q2). Therefore, the Lax-
Milgram theorem admits that (8.1) has uniquely a generalized solution uw € Ji(Q) for any \ €
Se U {0}. ' O

Lemmata 6.2 and 8.2 imply that we obtain the following lemma on the existence and unlqueness
of generalized solutions to (8.1) in J3(Q) x La(Q):

Lemma 8.3. Let ) be a multiply-connected bounded domain with its boundary [y UT, 0 < K <1,
0<e<m/2, g€ H;7Y(Q), h® € (La(To))™. Then (8.1) has uniquely a generalized solution (u,p) €
J3(Q) x La(8) for any X € S: U{0}, i.e., (u,p) satisfies (8.1) for any w € HI(Q).

Proof. Set
D q(u,w) = Mu, w)a + 2u(D(u), D(w)a + (K~ = 1)(u, w)r, — (9, w)a — K (A%, w)r,,
Da(u, w) = 2u(D(u), D(w))g + (K — 1) (s, w)r, — (g, w)a — K™ (h% w)r,,

and consider the following variational problem:
Dia(u, w) = (p,divw)a ‘ (8.5)

for any w € H3(Q). Then Lemma 8.2 implies that we have only to determine uniquely a generalized
solution p € Ly(Q) corresponding to a generalized solution u € J3 (Q) obtained in Lemma 8.2. There
exist two functions w! € J3(Q) and w? € R(A) for any w € H3(f) such that w = w! + w?, which
follows from Lemma 6.3. By substituting w = w! + w? into (8.5), we have Dq(u,w?) = (p, divw?)q.
Since Dgq is bounded in H2 (), the Riesz representation theorem yields that there exists uniquely a
function v € R(A) such that Dq(u, w?) = (v, w2)(W21 (@))n- Therefore, (8.5) is reduced to the following
variational problem:

(v, w)(Wzl(Q))n = (p, divw) (o) , (8.6)

for any w' € Hi(Q). It follows from Lemma 6.2 that (8.6) has uniquely a generalized solution
p € L2(Q2), which completes the proof of Lemma 8.3. : O

We proceed to discuss the existence and uniqueness of generalized solutions to the following
variational problem:
divy = f in €, : ,
B)\,Q(ua ’UJ) - (pa leU))Q = (g7 w)Q + K—l(hoa w)ro: (87)
UTlP1 = hl on Fl
for any w € H(). It follows easily from Lemmata 6.1 and 8.3 that we have the following lemma:

Lemma 8.4. 'Let ) be a multzply connected bounded domain with its boundary U, 0 < K <1,
0<e<m/2, fela),ge H (Q), RO € (L2(To))™, h' € (Wl/z(I‘l))” hllr, = 0. Then (8.7) has
uniquely a generalized solution (u,p) € HY(Q) x La() for any X € Se U{0}, i.e., (u,p) satisfies (8.7)
for any w € H}(Q).

Proof. Consider the following boundary value problem:

divul = f in Q,
ullsgo =0 on 99, : (8.8)
utlp, =h! onTh. “
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Then (8.8) has a solution u! € (W3(£2))™, which follows from Lemma 6.1. Let u = u! + u?, where u?
is a generalized solution to the following variational problem:

Bra(u?,w) — (p,divw)q = (g, w)q+ K1 (h%, w)r, — Bra(u!, w) (8-9)

for any w € H3(£2). We can see easily that u! € (W3 (Q))" yields By o(u!,-) € Hy ' (Q). Lemma 8.3
admits that (8.9) has uniquely a generalized solution (u?,p) € J3(Q) x Ly(Q) for any X € S- U {0}.
Therefore, (ul + u?,p) is a generalized solution to (8.7). The uniqueness of generalized solutions to
(8.7) follows easily from Lemmata 6.2, 6.4 and 8.1, which completes the proof of Lemma 8.4. |

We shall obtain the existence and uniqueness of solutions to (1.4) with the aid of Theorems 7.1, .
7.4, 7.5 and Lemma 8.4. In order to reduce (1.4) to the resolvent problem in R™ and in H?, the -
localization method is carried out. First, we derive the resolvent problem in R™ from (1.4) in the
interior of Q. Set Q5 = {z € Q ; dist(z, Q) > 6} for any § > 0. Then ¢ € C§°(R™) can be defined as

elz)=1 - if z€Qy,
0<olz) <1l if zeQgm\ s,
o(z) =0" if z € R™\ Qy/9.

We can see easily from (1.4) that (pu, pp) satisfies the following resolvent problem in R™:

{div(gou) = fs ~ in R™,

8.10
Apu) - divT(pu, gp) = g5 in R", (810)

where
fs=(pf) + V- u,
95 = (pg) + (Vep)p — div(2uD(y, 9)),
D(u,p) = 5 (w(V)" + ViuT).

Set (v,q) = (¢u, pp). Then it follows from (8.10) that (v, q) satisfies the following resolvent problem
in R™:

{divv = f; in R,

8.11
M —divT'(v,q) = g5 in R™. (8.11)

Second, we proceed to derive the resolvent problem in H from (1.4) near I'g. Set Bs(zo) = {z €
R"™ ; |z — zg| < &} for any zo € T'g, § > 0. Then ¢ € C§°(R™) can be defined as

olz) =1 if z € Bs(zo),
0< (p(l‘) <1l ifze Bzg(:to) \Bg(;ﬂg),
o(z) =0 if z € R™\ Bays(zo).

It is easy to see from (1.4) that (pu, ¢p) satisfies the following resolvent problem in £

div(ipu) = fao.s in £,
AMpu) — divT(pu, op) = gao.6 in €, (8.12)
(pw)ulr, =0 on Lo,

K(2uD(pw)v); + (1 — K)(pu)r|r, = b2, 5 on Ty,
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where
fros = (pf) + V- u,

9zo,6 = (0g) + (Vo)p — div(2uD(u, ¢)),
K5 = (0h) + K(2uD(u, )v)-,

D(u, ) = %(U(Vso)T + VuT).

Let O be the orthogonal matrix such that OTv(zp) = (0,---,0,-1)7, and set z = zo + Oy, Q=
{07 (z — 20) ; = € Q}, Ty = {07 (z — z0) ; « € To}, v(y) = OT (pu)(2), aly) = (¥p)(2), Fao,6(y) =
fwo’(;(:c), Go.6(y) = 0T guy (), /120’5(3/) = OThOO’J(ZE), 7(y) = OTv(z). Then it follows from (8.12)

z

that (v, q) satisfies the following resolvent problem in Q:

divy = fwo,g : in ﬁ,

)\/U - leT(U7 q) = .6560,6 in S},’ (8.13)
vplg, =0 on T, ‘
K(@2pDw)o)z + (1 — K)vz|g, = hgo,a on Iy,

where vy 1= U - v, vi = — vl ’l‘vake a small positive constant § foxj any small positive constant gqg
such that suppv C B, (0), where B, (0) := {y € R ; |y| < €0}. Then there exist a positive constant

e1 > g9 and x € C%!(BL,(0)) such that
By () N2 C{y =, 3)" €R™; ya > x(), ¥ <e1},
Be,

)
0N C{y= (¥, y)" €R™; yo =x(¥), || < e1},

where Eél (0) :={y e R*!; |¢/| < e1}. Since #(0) = (0,---,0,—1)T, we can see easily that x(0) = 0,
V'x(0) = 0 and ¥ is characterized as

_oon . (V'x(), -7
W)= AP

Take a small positive constant 6y > & satisfying 0 < g < £1/2, let 1 € C§°(R™!) be defined as

Py) =1 if |y <1,
0<9y(y)<1l ifl<]|y|<2,
P(y') =0 if |y > 2,
w(y') =¥y /e0)x(v'), and set
Hr={y=(,yn)T €R";'yp > w(y/), ¥ eR" '},
OHD ={y =/, )T €R™; yn=w(y'), ¥ eR"'}.
Then it follows from (8.13) that (v, q) satisfies the following resolvent problem in H™:

divy = fxo,d in H7?,
M — divT (v, q) = Gag s in H5, (8.14)
U;/wlaHzg -0 on OH, .

\E@uDW)rw)r, + (1 = K)ur, lomg = 7120,5 on OH,
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where v, =V, -V, Uz, 1= v — Uy, V. Since x(0) = 0 and V'x(0) = 0, the Taylor formula yields

||V’w|[(Loo(]Rn_1))n 1 < C]Iﬂlgx |V’2 ( ,)|€0. (815)
Set
”va WJ Rn 1))n 1

for any j7 = 0,1,2. Then (8.15) implies

My < C max |V?x(y)|eo, : ' (8.16)
. [y |<ex
consequently, there exists a small positive constant g such that My < M, where M is a positive
constant which appeared in Theorem 7.5. In the same manner as above, we can derive the resolvent
problem in H}} from (1.4) near I'y.
By virtue of the localization method, Theorems 7.1, 7.4, 7.5 and Lemma 8.4, we prove the following
theorem on the existence and uniqueness of solutions to (1.4):

Theorem 8.1. Let £ be a multzply-connected bounded domain with its boundary Lo U T, 0 < K <
,1<p<oo,0<e<a/2, feCYNL (), g € (CEO))", K0 € (CHTo))™, A|r, = O,
hl (C*I'1))™, hilr, = 0. Then (1.4) has uniquely a solution (u,p) € (W2(Q))" x Wz}(ﬂ) for any
A e S U{0}. '

Proof. Lemma 8.4 admits that (8.7) has uniquely a generalized solution (u,p) € Hj () x Ly(Q). Tt

is sufficient to'obtain the regularity of generalized solutions to (8.7). In the case where 1 < p < 2,

(8.7) and the localization method in Qs yield
divy = fs in R", (8.17)
B/\O,R“ (’U, w) — (q, diVU))]Rn = ()\0 - )\)('U, ’LU)]Rn + (ga, w)Rn '

for any w € (W3 (R™)™, A > 0. Since (u,p) € HA () x Ly(Q), we have fs € Wi (R™) N W, L (R™),
(X0 — Nv € (W3 (R™)™, g5 € (Lo(R™))*. Theorem 7.1 implies that (8.17) has uniquely a solution
(v',¢") € (WZ(R™)™ x W3 (R™) satisfying

{divvl = fs in R™,

. 8.18
Bag mn (01, ) — (g%, diveo)gn = (Ao — A)(0, @)zn + (08, )z (8.18)

for any w € (W1 (R™))*, \g > 0. By subtracting (8.18) from (8.17) and setting (v?,¢?) = (v—l,q—
q'), it follows that (v2,¢%) € (W(R™))"™ x W1 (R™) and

(8.19)

[ dive? =0 in R™,
B)\O:Rn_ (Uza ’LU) - (qz, diV’w)Rn =0 4

for any w € (W2 (R™))™, Ao > 0. Let w = v? in (8.19). Then B, gn(v? v%) = 0 for any Ao > 0. We
can see easily from Lemma 8.1 that v? = 0, ie., v = v! € (WZ(R™))™. It follows from (8.19) that
—(g?, divw)gr = (V@?, w)gn = 0 for any w € (W4 (R™))", which yields that V¢? =0, i.e., Vg = V¢,
This means that (u,p) € (W2(Qs))™ x W4 (€s) for any § > 0. In the same manner as above, (8.7)
and the localization method near I'g imply -

{dm = Fops in HT,

. i (8.20)
B,z (v, w) — (g, divw) g = (M — A) (v, ) g + (Fao.0o w)an + K 1R 5, w)omg
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for any w € W21,Vw (H), where A\ is a positive constant which appeared in Theorem 7.5. Since (u,p) €
H3(Q) x La(Q), we have fuo 5 € W3 (HD) Wy (HE), (M = Nv € W3, (HE), Gzo,s € La2(HE), hY, 5 €
W3, (H2). Theorem 7.5 yields that (8.20) has uniquely a solution (!, qY) € (WE(HD)™ x Wi (H?)
satisfying

{divvl = faos in HZ, (8.21)

By, iz (0!, w) — (¢4 divw)ag = (A1 — N) (v, w)ap + (Gap,6r w)ag + KRS, 5 w)onp

for any w € W3, (HJ). By subtracting (8.21) from (8.20) and setting (v2,¢%) = (v—t,g—qb), we
obtain (v2,¢%) € (WH(HM)" x W3 (H?) and

{le’U2 =0in HJ, ' (8.22)

By, a5 (0%, w) = (¢, divw) gy =0

for any w € Wy, (HJ). Let w = v? in (8.22). Then B), gr(v?, v?) = 0. It is easy to see from Lemma
8.1that v* = 0,ie,v =12 € W3, (HJ). It follows from (8.22) that —(¢%, divw)gr = (V@®, w)pn =0
for any w € W21’,,w (H?), which implies that Vg? = 0, i.e., Vg = Vq'. Hence, there exists a positive
constant &y for any zo € I'g such that (u,p) € (WZ(Bs(zo)NQ))™ x Wy (Bs(z) ML) for any 0 < 6 < bo.
Set TS = {x € Q ; dist(z,Tg) < &} for any § > 0. Then, since I'g is compact in R™, there exists a
positive constant §; such that (u,p) € (W2Z(T$))® x W3 (T8), uy|r, = 0 for any 0.< § < d;. By the
same argument as above, which follows from the localization method near I'y and Theorem 7.4, we
‘have (u,p) € W3, (9) x W2(9). In the case where 2 < p < o0, let us introduce a sequence {p; }icz,i>0
of exponents as follows:

1 1
P=20<=-
Pi  DPi+1

<1

n
for any ¢ € Z, i > 0. Then it is easy to see that p; < p;+1 for any 1 € Z, i > 0. Since (u,p) €
(WZ(Q0))™ x Wi(), the Sobolev embedding theorem implies (u,p) € (W, ()" x Ly, (Q). Hence,
we have f5 € Wy, (R") N Wp—ll(Rn), (Ao — Nv € (W) (R™)", g5 € (Lp, (R™))™ in (8.17). Concerning
(8.20), we obtain fr, s € W2 (HZ) N Wy (HR), (M — Nv € W2, (HE), Gaos € Lpy (HD), B 5 €
W}, (HZ). The same argument as above shows that (u,p) € (W2 ()™ x I/Vpl1 (Q). Moreover,
it follows from the induction with respect to i that (u,p) € (W2 (€)™ x Wl}i (Q) implies (u,p) €
(V[/p2i+1 Q)™ x Wl}z’+l(Q) for any i € Z, i > 0. Since there exists an exponent p; such that p; > p, we
have (u,p) € (W2(Q))" x WI}(Q) As for the uniqueness of solutions to (1.4), we have only to prove

that (u,p) € (W2 ()™ x VVp1 () satisfying

(dive =0 | in 0,
A — divT(u, p) = 0 nQ, |
uylag =0 on BQ, (8.23)
K(T(u,p)v)r + (1 — K)urlr, =0 on Iy, "

L urlr, =0 “on Iy

yields (u,p) = (0,0). It is easy to see that A € S. U {0} implies X\ € S. U {0}. Let p* be the dual
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P

exponent of p defined as 1/p+1/p* = 1, w € (C(Q2))™. Then the above result admits that

divo =0 in £2,

2 — divT(v,q) = w in Q,

uyloa =0 on 99, (8.24)
K(T(v,q)v)r + (1 = K)vslr, =0 on Ty,

’U7—|p1 =0 on Tl

has uniquely a solution (v, q) € (W ()" x Wpl* (Q). It follows from (8.23), (8.24) that
(u, w)a = (u, 2w — divT(v,q))a = Bra(u,v) =0 (8.25)

for any A € S. U{0}. Since C(0) is dense in L,(€2), (8.25) and the arbitrariness of the choice of w
yield u = 0. Furthermore, we can see easily from (8.23) that Vp = 0. Recall that p € Wpl* (Q). Then
we have p = 0. This completes the proof of Theorem 8.1. O
8.2 L, estimates for solutions to (1.4) in O

The main purpose of this subsection is to prove Theorem 6.1. The proof of L, estimates for solutions
to (1.4) is essentially based on the following lemma:

Lemma 8.5. Let Q be a multz’ply—connected bounded domain with its boundary g U1, 0 < K < 1,
1<p<oo,0<e<m/2, Ao>0, feWQ), g € L) 10 € (W P(To))*, hllr, = 0,
hl e (Wy M P(T1))", hllr, = 0. Then a solution (u,p) € (W2(R))™ x WE(S) to (1.4) satisfies

Ip,,\,Q(u) +lplwi@) < Cpepo (I;,’,\_,}z(f)'i‘ 9l (2, +I;,,\,Q(ho)+Ig,,\,n(h1)+1; ;g( u)+|pllz, )
(8.26)

for any A € S¢, |A| > Ao, where Cp ¢ », 18 a positive constant depending only on n, 1, p, €, p, K and
Ao-

Proof. Tt follows from the localization method in €25 and Theorem 7.1 that

22 ke )+ lalhipagary < O xkn (F5) + 18] pcimyye) , | (8.27)
for any A € S;, 6 > 0. We can see easily that

I} s o (£5) < Co(I} 5 o(f) + Iy 5 0 (w)), . (8.28)

lgsll (2, @mym < Cslllgl iz + Ipra) + Pl @) ' (8.29)
for afly A € S, § > 0. It remains to establish the estimate for’|| f5||W;1 (- For any w € C§° (R™), set

w(a:)go(:z:)da://ﬂgo z)dx

Then (f5, w)gn = (div(pu), w)rr = —(@u, V(w — ¢))rn = (div(pu), w — cy)rr = (f5,w = cw)rn. By
applying Lemma 6.5 to the identity, we obtain

|(fo, wrr| < [(f, o(w = cw))al + [(u, Vio(w = cw))al
< ||f||Wp-1(Q)H90( Cw)”wl ot ||uH 1(Q [ Vip(w — Cw)”(Wl (@)
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|(fo, ke < Cosll Fllvryaoy + lell 2 gy 1w v, emy (8.30)
for any § > 0. (8.30) gives

”fJHW;l(Rn) < Cé(”f”W;l(Q) + HUH(W;l(Q))n) , ‘ (8.31)
for any ¢ > 0. It follows from (8.27)—(8.29), (8.31) that

Iy 5v0: (W) F Ipllwa s < G5 a(F) + gl @@y + Lo + Iplz,@) (8.32)

for any A € Se, § > 0. We proceed to obtain (8.26) near Q. By the localization method near I'g and
Theorem 7.5, there exist three positive constants dz,, Cz, and A; 4, for any z¢ € I'g such that

1,-1 3 ~ 5 )
Ig,/\,H[g ('U) + ”q”W,}(H,?,) < Gy (Ip,)\,Hg(fxo,ézo) -+ ngoﬁzo ||(Lp(H;;))n -+ I;,A,Hg(hgo,éz(])) (8-33)

for any A € Se, |A| > A1z, It is easy to see that

I;,A,Hg(fwoﬁzo) < Cao(Ipy0(F) + Iy o(w), (8.34)
120,80 |l L, (Em)n < Caoll9ll 2, @)n + Ipaa(w) + 2l @), (8.35)
I;;,A,Hg}(ﬁgo,émo) < Cay(If 5 0(h0) + I} 5 o(u)) (8.36)

for any A € Se, |A| > A1,zy. The remainder is the estimate for ”fmo,5$0 HWp—l(Hn). For any w = w(y) €
Wz}* (HZ’), set T = xo + Oya U)(I) - Qb(y) Then (f:l{o,ﬁzoaw)Hﬁ = (fﬁ:o,(szoaw)ﬂ = (fzo,émoaw - C'w)Q
Consequently, we have : ‘
|(Fao,800> ®) Bz | < |(f, 0(w — cw))al + (4, Vio(w — cw))al
< ”f”Wp—l(Q)HSD(w - Cw)”Wz}* @ T ||“||(W;1(Q))n||véo(w - %)H(Wz}* @)

l(f$0;5zoiw)H£| < Cxo(”f”Wp—l(Q) + ||U||(W;1(Q))n)||@5”WI}* (Hn)s (8.37)
which yields -
”fzo,&uo ”Wp—l(Hg) S'C:co(”f”Wp—l(Q) + HUH(Wp—l(Q))n)- | - (8.38)

It follows from (8.33)-(8.36), (8.38) that

I;?,A,Bamo @o)ne (W) T IPlw(Bs,, (z0)n2) < Cao (I;,’;,gll(f) +lgllz, @) +Ipa0(h®) +I;:):51](u) +lpllz, @)
: ' ' (8.39)

for any A € S;, |A| > A1g,. Since I'g is compact in R™, we can choose a finite number of points
{z:}i=1,.. v on T’y such that

N
T | Bs,, ().

i=1

-(8.39) implies that there exist three positive constants dp, Co and A1 o such that

Iﬁ,,\,pg (w) + Pl g < ColLalf) + lgllzys + Iopa(B®) + L5 qw) + Ipllz,@)  (8:40)
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for any A € S¢, |A| > Ao, 0 < 6 < &p. In the same manner as in (8. 40) there exist three positive
constants 01, C1 and Aq,1 such that

22 rs@ + lpllwa sy < CrZy5 o) + gl @pn + Baah) + L5 o) + lpllz,w)  (841)

for any A € Se, |A| > M1, 0 < § < &1, which follows from the localization method near I'; and
Theorem 7.4. Therefore, it follows from (8.32), (8.40), (8.41) that we have (8.26) for any \ € S,
Al > A1 := max{A10,A1,1}. ‘In the case where X € S, >\0 < |Al € A1, we consider the following
resolvent problem in £:

divu = f , in 0,
Mu—divi(u,p) = (A1 = Au+g in 9,
'U;UIBQ =0 on 08}, (8.42)
K(T(u,p)v)r + (1 — K)us|r, =h° on Iy,
L urry = Rl on I'y.

By applying the above result to (8.42), we obtain (8.26) for any A € S¢, Ay < |A| < A;. O
The following theorem yields L, estimates for solutions to (1.4). - '

Theorem 8.2. Let ) be a multiply-connected bounded domain with its boundary ToUT1, 0 < K <1,
1<p<oo,0<e<n/2, f€WHR, g € (Ly(Q)", h® € (Wp /P(To))", hllr, = 0, h! €
(W22, i, = 0. Then a unique solution (u,p) € (W2(Q)™ x WE(Q) to (1.4) satisfies

2y au) + Iplwi < C (I;,,\ o) F gl @y + Lxa®®) + 125 o(hh) (8.43)
for any A € Sc U {0}, where Cp is a positive constant depending only on n, Q, p, €, p and K.

Proof. For any v € C§°(2), set

. 1/
v=v—— | v(x)dx
o o'

Then Lemma 6.6 implies that

Aw=7 inQ
w=7 inQ, (8.44)
d,w=0 on JdQd
has uniquely a solution w € W (Q) N Ly« (Q) satisfying
lwllwz, @) < ClollL,. @)- * (8.45)

It is easy to see from p € Wpl(Q) and (8.44) that (p,v)a = (p,?)a = —(Vp, Vw)q. In order to
establish L, estimates for the pressure, we obtain

(p,v)a = =A(/, w).g + 2u(D(u), Viw)q — 2u(D(u)v, Vw)sa — (g, Vw)a, | (8.46)

which follows from the identity and (1.4). We can see easily from the Holder inequali'ty that

|(f, w)al < Hf”Wp—l(Q)Hw”Wz}*(Q)a

39



(D (), V*w)a| < Cllullwy @y lwlwz 9,

|((D()v, Vw)aal < Cllullwz oay Ilwllws, o)

(g, Vw)a| < HQH(L,,(Q))”Hw”WT}*(Q)'
It follows from (8.45), (8.46) that

[(p,v)al < CUMNS vz ) + 19l za@yn + lullwz @y + lullwroaps) vz, @)- (8.47)
(8.47) yields '

2z, 0) < CUMN vz ) + gl 2@ + ||@|I(W;(n))n + [l w2 a0))n)- (8.48)

- We proceed to obtain Wp_l estimates for the fluid velocity. Let v € (Wpl* (Q))". Then (1.4) is rewritten
as follows:

AMu,v)a = (p, divv)a — 2u(D(u), D(v))a + (T(u, p)v,v)oa + (9;v)a- (8.49)
In the same manner as above, we have
|(p, divo)al < CllplL@llvlws, @)

|(D(w), D(v))al < Cllullwz@p» lvllwz, @
(T (u, p)v, v)sal < C(llullwz )~ + llpllz,00) 1Vl (z,- 00))n

(g, v)al < gl @)n vl @)
Consequently, (8.48), (8.49) imply

All(w, v)al < CUMIF Nl @) + gl zp@pn +ullowz @ym + lullwa ayn + 1Pl Ly e0) v, @)
(8.50)

which is equivalent to
Alllell g2 @y = CUMNFllyig2 () + gl zppm +lull gz + el gz oy + lplzy00)- (8-51)
Recall that |
lullwz oy < allullwz@)n + Callullwz @)

IPllz,80) < bllplwie) + Collpllz,@
for any @ > 0, b > 0. Then it follows from (8.48), (8.51) that

Ml g2 @pyn + 1PNy 9) SCap(M fllvirz2 () + 19l zp@pn + lullwz @)n)

(8.52)
+ Callullwaay + Cablpllm oy
for any @ > 0, b > 0. By combining Lemma 8.5 with (8.52), we obtain
2y ou) + lpllws) SCa,b(I;:;,gz(f) + gl @y + paB®) + I3y o(hY) + I 5 o)) (8.53)

+ Callullwz(@n + Cabllpllwz (o)
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for any A € Se, |A| > 1,a> 0, b > 0. Assume that Ca < 1 and Cgb < 1. Then it follows from (8.53)
that

2, o) +llplwie) < CUnal) + gl @y + Baa®) + Baah!) + N1, o(w) (8.54)

for any A € Se, |A| > 1. Let A1 > 1 be a positive constant satisfying CA—l/Q < 1. Then we can see
easily from (8.44) that (8.43) holds for any A € S;, [A| > A;. In the case Where A e S U{0}, A < A,

it is sufficient to establish
0 1
gy + plhwgien < OO Mg+ I9lay @+ 1 sy 1P lzesngr ) (655)

for any A € S. U {0}, |[A| < A1. Recall that (1.4) is written by the following resolvent problem in €2

divu = f in Q,
uw—divl(u,p) = (1 - Nu+g in Q,
Uplan =0 ' on 99, (8.56)
K(T(u,p)v); + (1 — K)us|r, = 1Y on Ty,
(urlr, = Rt on I'y.

Then it follows from Lemma 8.5 that

' 0 1
lullwzye + Ipllwa ) <CUFlwa + gl @y @ym + 177 gp1-2r2 gy + 1B gyz-17p 3y 8.57)
+ llullwz @yn + 1PlL, @)

for any A € S: U{0}, |A| < A1. By virtue of (8.57), the compactness-uniqueness argument shows that
we have (8.55) for any A € S U {0}, |A| < A1 ‘ O

Set Wy /7 (T0) = {u € (Wy ™ /7(T0))" 5 wilr, = 0}, Woy/7(F1) = {w € Wy "P(T)" 5wl =
0}, and let us introduce the hnear mapping A, » from W2 () x WEHQ) to WEHQ) x (Lp())™ x

1 1/p To)N Wz,,l/p , its domain D(A, ) and range R(A, ) as follows:
2 p1 p’ .

divu
Apa(u,p) = Au — divT (u, p) ,
K(T(U,p)l/)T =+ (1 - K)U'T|Fo) uT|P1

D(Ap,)\) = W;?,J/(Q) X W;} (Q)a
R(Ap ) = {4pa(u,p) 5 (u,p) € D(Ap )}

Then it follows from Theorem 8.2 that R(Ap,») is closed in W) x (L))" x (W t/? (To) N
Wi;l/p(I‘l)). Since C*(Q) and C*(Q) N L,() are dense in W]ﬁ“ (©) and I/Vp1 (Q) respectively, it is easy
to see from Theorem 8.1 (Existence) that R(A, ») is dense in W1 () x (Lp(2))™ x (W1 e (To) N

Wiy /P(T1)). Therefore, R(Apy) = W) x (Lp(Q))" x (Wps 1/p(ro) N W2, P(T'1)). Moreover, it
follows from Theorem 8.1 (Umqueness) that Ay » is bijective for any A € S; U {0}. As is well known
in Theorem 8.2, we have (6.1). This completes the proof of Theorem 6.1.
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8.3 Resolvent estimates for —A,

The proof of Theorem 6.2 is given as follows: Let g € Ly +(€), and consider the following resolvent
problem:

Au+ Apu =g. : : (8.58)

Then (8.58) is reduced to the following resolvent problem in 2:

dive =0 in Q,
M —divT(u,p) =g in €,
uylan =0 on 02, (8.59)
K(T(u,p)v)r + (1 - K)urlr, =0 onTyq,
\UTIF; =0 on I.

Theorem 6.1 admits that (8.59) has uniquely a solution (u,p) € (W2(2))" x Wpl(ﬂ) satisfying

125 a(w) < Cllgll ) : (8.60)
for any X € S, U{0}. (8.60) implies

: C '
lullz,@)n < T 79l 2, @ (8.61)

for any A € S. U {0}, which is equivalent to (6.2). This completes the proof of Theorem 6.2.

9 - Applications

In this section, we will study various semilinear parabolic evolution equations in Banach spaces and
the Navier-Stokes equations in a multiply-connected bounded domain with the aid of our main results.
First, the Ly,-theory of determining nodes is applied to the semilinear heat equation and the Navier-
Stokes equations in Subsections 9.1, 9.2 and 9.3, 9.4 respectively. Second, we proceed to be concerned
with the asymptotic properties of solutions to (1.5) in Subsections 9.5-9.7.

9.1 Determining nodes for the semilinear heat equation I
The initial-boundary value problem for the semilinear heat equation is described as follows:
du — kAu — [ulfTlu= f in Q x (0, 00),
ulg=0 =up in 0, (9.1

ulon =0 on 99 x (0, 00),

where u is the absolute temperature, £ > 0 is the coefficient of heat conductivity, p > 1, ug is the
initial temperature, f is the external force.
Set H = Ly(Q), V = H}(Q), P = I,. Then we have the following strong formulation of (9.1):

{dtu—l—Au: flu)+f in La((0,00); L2 (), (9.2)

u(0) = ug in H}(Q),

where Au = —kAu, f(u) = |ufP~ u. It is well known in [11, Theorem 8.12] that A satisfies (A.1)-
(A.4). Moreover, an elementary calculation shows that f(u) has the following properties (f.1), (f.2):
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(£1) f(0) = O.v
(£.2) There exists a positive constant C; depending only on p such that
[f(w) = F@)] < Ca(julP™ + [0~ u — o
for any u,v € R. |
It is assured by the following lemma that F(u) = f(u) satisfies (F.1), (F.2).

Lemma 9.1. Let n = 2,3, 1 < p < n/(n—2). Then there exists a positive constant C depending
only on Q and p such that

1F@) — F@llzaey < Cllulitg, + [olErg)lu — ol | 03
for any u,v € HY(Q).

Proof. After taking the Ly-norm of (f.2), the Holder and Minkowski inequalities imply
1) = F@llzay < Gl ey + Tl )l = vl | (9.4)

for any u,v € H'(Q). It is easy to see from (9.4) and the Sobolev embedding theorem that we have
(9.3). : ‘ O

The following theorems yield that (H.3), (H.4) hold for (9.2) under suitable assumptions for p, up
and f.

Theorem 9.1. Letn = 2,3, 1 < p < n/(n—2), ugp € HY(Q), f € L2((0,00); L2(£2)). Then there
exist two positive constants €1 and g2 depending only on 2, & and p such that (9.2) has uniquely a
strong solution satisfying

Nelleygo,00) 3 () < €1
provided that
luolla < €1, I1Fllzoo(o,00)L2(02)) < €2-
Proof. Let dig € HA(Q), f € La((0,T); L3()), T > 0. Then
diu+ Au= f in Ly((0,T); La()),
u(0) = 1o in H} ()
‘has uniquely a strong solution u satisfying
u € La((0,T); D(A)) N C([0, T); Hy (), deu € La((0,T); La(S2)),

KHVU”QC([O,T];LQ(Q))"‘HdtuH%z((o,T);Lz(n))"‘HU“%Z((O,T);D(A)) < HHV%H%Z(Q)+||J?H%2((0,T);L2(Q)), (9.6)

which is well known in [16, Theorem 3.2.1]. A fixed point argument with the aid of (9.5), (9.6) and
the Banach fixed point theorem shows that there exists a positive constant T, < T depending only
on £, k, p, ug and f such that

{dt_u +Au=F(u) +f in L2((0,T); L*(Q)), (9.7)

uw(0) =wug - in H3(Q)
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has uniquely a strong solution u satisfying
u € Ly((0, Tw); D(A)) N C([0, Tu); Hy (), deu € Lo((0,Ty); Lo (K2)).

By taking the Lg-scalar product of (9.7) with- Au and the Poincaré inequality, a priori estimate for
strong solutions to (9.2) is established as follows:

(Va0 < —~MIVU®)[F,00) + 267 CPIVUOIF (o) + 267 FOIF 40 (9:8)

for any ¢ > 0, where Aq is the first eigenvalue of —A with the zero Dirichlet boundary condition, Cy
is a positive constant depending only on . Assume that

2.\ /@D | 2y \ P/ S

2 1 2 , 1 , _
/”VUUHLz(Q)‘S <—4022p> s 1 00)iza)) < <—4C§p> : ’ (9.9)
Then (9.8), (9.9) give dt(HVu(t)H%Z(Q)) < 0 for any t > 0, consequently,

a ) 1/(p-1)

2
IVullg, (o,000:L(2)) < (210—221’ (9.10)

By applying (9.10) to the existence and uniqueness of solutions to (9.7), therefore, (9.2) has uniquely
a strong solution satisfying (9.10) provided that up and f satisfy (9.9). O

Theorem 9.2. Letn =23, 1<p<n/(n—2),0<a<1, R>0, f € L%((0,00); D(4%)), tg > 0.
Then there exists a positive constant My (f,to) depending only on Q, &, p, R, f, to and a such that

lwllcy(tto,00);D04)) < Malf,to)

for any w € S(H()(R), f) satisfying |[ullc,qpo,000m3(0)) < B-

Proof. By virtue of [20, Theorems 2.5.2 and 7.3.6], A is a sectorial operator in Ly(2) satisfying
Reo(A) > 0. Since u € Cy([0, 00); H}(2)), it follows from [12, Lemma 3.3.2] that

t t
u(t) = e Mg + / e~ AR (u)(s)ds + / =4 ¢ (s)ds ' (9.11)
0 0
for any ¢t > 0,
¢ ¢
u(t) = e Hu(ty) + / e AR (u)(s)ds + / e =4 £ (s)ds ’ (9.12)
tg to

for any ¢t > to. In the case where 1/2 < 8 < 1, we can see easily from (4.1), (9.11) that

t=B+1/2¢

lu(®llp(asy <Cop-1/2, 2 ug || parszy o

t .
+Capn / (t — ) Be X109 F(w)(5) ] 2y ds | 013
+Capnn /0 (t — 8 B89 £ ()| g ds

for any ¢ > 0. Notice that D(AY?) = H}(Q) and (u,v) parzy = (4, v)e. Then, by (9.3), (9.13), we
obtain

—p4+1/2
Nulley(oooynasy < Cop-1/ate’ PR+ Copa M TP (L~ B)(CRP + || Il oo (0000 2(52))s (9-14)
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where I'(z) (z > 0) is the gamma function. Let n/4 < 8 <1, and set
M(f,t0) = Capjapaty” R+ Capp M T(L = B)(CRP + £l ee((0.005La)):
Then it follows from (4.4), (9.14) that
IF () ()l pparrey = IF()(®)lla < &/*pCEM(f,00)P (9.15)

for any t > to, where (3 is a positive constant depending only on (2. In the case where f=1itis
easy to see from (4.1), (9.12) that

lu®lipay £Co1/2., (t—t0)” 1/2g=(t=t0) [u(to)ll parrz

+ 02’1/27)\1 /to (t _ 8)—1/26-—)\1(73—3) HF(U) (».S)HD(Al/z)dS ) (9-16.)

t
+Coaman [ (1= 8O )] pgaey s
to )

for any t > to. By (9.15), (9.16) and the same argument as in (9.14), we have

|2/l ey ([2t0,00);D¢A)) SCz,l/z,Altgl/zR +Co1/2.: X212, 12 p R M (£, 80)P

. (9.17)
+ Co1-a, A T[] oo ((0,00);:D(4%)) -
Set ’
Ma(f,2t0) =Co /oty /"R + Cajop Xy 2m' kM *pCEM(f, 80)P
+ C21-a, A T(Q)| fl| Lao (0,00):0(4%))

Then the conclusion follows immediately from (9.17). O
9.2 Determining nodes for the semilinear heat equation IT
The initial-boundary value problem for the semilinear heat equation is described as follows:

Oy — kAu— |ulf "ty = f in Q x (0, 00),

Ult=0 = uo in Q, (9.18)

A\ ulsa =0 on 99 x (0, 00),

where u is the absolute temperature, x > 0 is ‘the coefficient of heat conduct1v1ty, q > 1, ug is the
initial temperature, f is the external force.

Let 1 < p < 00, Xp = Lyp(R), Ap = —kA, D(Ap) = WZ(Q) NW2,(Q), Fu) = |ul9= u. Then
it follows from [20, Theorems 2.5.2 and 7.3.6] that A, is a sectorial operator in L,(Q) satisfying
Reo(Ap) > 0. Moreover,-F satisfies (F.1), (F.2) by virtue of the following lemma:

Lemma 9.2. Let 1 < p < 00,
n n
<o < = —1d>=—(g—1).
0<d6<g, go+(g—1) _2p(q 1) |
Then there exists a positive constant Cp, 5 depending only onmn, ), p, q, kK, a and & such that
145 °(F () = F)lzy0) < Crslllulllg + ol v —vllxg (9.19)

for any u,v € X
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Proof. Set 1/p' = 1/p — 26/n. Then it follows from (4.3) that A,° : Ly(Q) — XJ — Ly(Q) is a
bounded linear operator. Hence, (9.2) is established by the Holder inequality and X — Ly(2). O

By the successive approximation method based on [9], we obtain the following theorem which
gives (H.5), (H.6) to (9.18) under suitable assumptions for ug and f.

Theorem 9.3. Let 1 < p < 00, ag and 0 be chosen as follows:
n 1 ~2

maxq0,—— —————=0, <o <1, §>0, —ag < <min —n—,l—ag .
2p g—1 g¢g-—1 2p v

Assume that ug € X3 and min{t, 1}1—aof5A;6f € Cp([0, 00); Lp()) satisfies
1452 £ ()12, @) = 0(t%01) as ¢ — +0.

Then there exists a positive constant € depending only onn, Q, p, q, K, ag and § such that (9.18) has
uniquely a mild solution u satisfying the following continuity properties and estimates:

(i) Foranyop<a<1-4,t>0,

min{t, 1}*"*u € Cp([0, 00); X)),

[u(t)llxg g'Cmin{t, 1}eo—« (”uo”X;xo -|—s1>118 min{s, 1}1_a0_511A;6f(3)”Lp(Q)) ,  (9.20)

where C is a positive constant depending only on n, Q, p, q, k, ag and 6 provided that ug and
f satisfy ' :

[l uoll x20 + sup min{t, 1P~ A0 f(t) || 1, < €

(i) Foranyap < aa<1-9,
[u(®)llxg = o(t*™%) as t — +0.

Proof. The proof is similar to that of [9, Theorem 2.6]. O

Remark 9.1. It is easy to see from [20, Theorems 2.5.2 and 7.3.6] that Theorem 9.3 is still valid,
instead of (9.18), for the following initial-boundary value problem:

O — kAu — [u|? lu = f in Q x (0,00),
Ulg=0 = up in €, (9.21)
KkOyu + Kksulan =0 +on 9N x (0,0), .

where ks > 0.
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9.3 Determining nodes for the Navier-Stokes equations 1

The initial-boundary value problem for the Navier-Stokes equations is described as follows:

divu =0 in Q x (0, 00),
Ou+ (u-V)u+Vp—pAu=f inQ x (0,00), (9.22)
u|t=0 = Up in , )
ulagn =0 on 90 x (0,00),
where u = (u1,- -+ ,un)7 is the fluid velocity, p is the pressure, u > 0 is the coefficient of viscosity, ug
is the initial fluid velocity, f = (f1,--- , fa)? is the external force field, -T is the transposition.

Set H" = L, (Q), V* = Hj (), P = P, where Hj () == (H} ()™ N Ly,(2). Then the
strong formulation of (9.22) is given by

{dtu +Au=f(u)+f in L2((0,00); L2(2)), (9.23)

u(0) = ug in H&U(Q),

where Au = —Py(pAu), f(u) = —Py(u - V)u. It follows from [26, Lemma 3.3.7] that A satisfies
(A.1)-(A.4). The following lemma admits that F'(u) = f(u) satisfies (F.1), (F.2).

Lemma 9.3. Let n = 2,3. Then there exists a positive constant C depending only on Q such that
[1F(w) = F(o)ll o) < Cllull@z@yr + Ivll@z@)m)llv — vl @) (9.24)
for any u,v € (H2(Q))".
Proof. It is easy to see that
F(u) — F(v) = Py(u-V)(u—v)+ Po((u —v) - V)v

for any u,v € (H*(Q))". Notice that H2(Q) < Lo (), which follows from the Sobolev embedding
theorem. Then we have

| P2(w - V) (u — )|z < Cillullzz@ynllu — vl (1) (9.25)

for any u,v € (H?*(Q))", where C; is a positive constant depending only on ). Since H(Q) <
Lg(2) < L3(N2), which follows from the Sobolev embedding theorem, we can see easily from the
Holder inequality that

1P ((u—v) - V)vll(zo )y < Collvlliazyynlu — vll(mr @y o ‘ - (9.26)

Y

for any u,v € (H?(2))", where Cs is a positive constant depending only on Q. Consequently, (9.25),
(9.26) yield clearly that we have (9.24). . ' ad

9.4 Determining nodes for the Navier-Stokes equations II

The initial-boundary value problem for the Navier-Stokes equations is described as follows:

dive = 0 in Q x (0,00),

Sru+ (u-V)u+Vp—pAu=f inQx(0,00), (9.27)
uls=o = ug in €,

ulsa =0 on A x (0, 00),
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where u = (ug,--- ,u,)? is the fluid velocity, p is the pressure, u > 0 is the coefficient of viscosity, ug
is the initial fluid velocity, f = (f1,--- , fu)* is the external force field, -7 is the transposition.

T Set (Xp)™ = Lpo(), Bp = —pA, D(By) = WZ(QQ) NW2(Q), F(u) = —Pp(u- V)u. Then 4, is

the Stokes operator in Ly, ;(§2) defined as A, = —pP,A, D(Ap) = (D(Bp))" N Ly (). It follows from

[7, Corollary 1.6] that A, is a sectorial operator in L, ,(Q) satisfying Rea(4,) > 0. Moreover, [8,

Theorem 3] implies that D(Ap) is characterized as D(Ap) = (D(Bg))" N Ly () for any 0 < o < 1.

The following lemma admits that F' satisfies (F.3), (F.4).

Lemma 9.4. Let1 < p < o0, \
1 n 1 1 n 1
<d<=4+=-[(1-= éd>=,2 0> —+ ~.
a>0, 0L <2+2< p),oz—I— >2, o+ _2p+2

Then there exists a positive constant Cp 5 depending only on n, Q, p, u, « and § such that

1452 (F(u) = @)z, @)= < Coslllullxg + vl xg)llu— vlixg (9.28)
Jor any u,v € X |
Proof. See [9, Lemma 2.2]. » ‘ O

As is well known in [9], the following theorem yields that (H.5), (H.6) hold for (9.27) under suitable
assumptions for ug and f.

Theorem 9.4. Let 1 < p < 00, ag and § be chosen as follows:
n 1
max<q0, ——=><qay<1, §>0, —ay < <1—ap.
2p 2

Assume that ug € X0 and min{t, 1}1=2 0 A=P, f € Cy([0, 00); Ly - (Q)) satisfies
7] p 1p D,

145 By f () Iz, (y)n = 0(t*° 1) as t — +0.

Then there exists a positive constant € depending only on n, Q, p, p, ag and § such that (9.27) has
uniquely a mild solution u satisfying the following continuity properties and estimates:

(i) Forany oo <a<1-4,t>0,

min{t, 1}%7*u € Cy([0, 00); Xp'),

lu(t)l|lxg < Cmin{t, 1}~ (||u0nX;o +supmins, 1}1720~0| 40P, f(s)”(Lp(Q))n) , (9.29)
8

where C' is a positive constant depending only on n, §), p, u, ag and & provided that ug and f
satisfy

||u0||X§o + igg min{¢, 1}1_a0_5],A;5pr(t)H(Lp(g))n <e.

(i) For any ap <a<1-4,

[u®)xg = o(t*~%) as t — +0.

Proof. The proof is similar to that of [9, Theorem 2.6]. ‘ ‘ O
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Remark 9.2. We can see easily from [24, Theorem 1.3} and Theorem 6.2 that Theorem 9.4 is still
valid, instead of (9.27), for the following initial-boundary value problem:

(divu =0 in Q x (0, 00),

Ou+ (u-Vu+Vp—pAu=f inQx(0,00), .

uli—0 = ug in Q, (9.30)
uylan =0 on 0% x (0, 00),

| B(u)rlan =0 on 99 x (0,00),

there B(u) is one of the following boundary conditions:

e B(u) = K(T(u,p)v) + (1 - K)u, 0.< K < 1.

;Hmz{f@@mm+u—Km 2;?

9.5 Existence and uniqueness of solutions to (1.5)

As for the asymptotic properties of solutions to (1.5), the first result is the existence and uniqueness
of solutions to (1.5) in (W2(£2))™. Theorem 6.1 admits that a fixed point argument is applied to (1.4).
We shall prove the following theorem:

Theorem 9.5. Let  be a multiply-congzected bounded domain with its boundary TuUT, 0 < K <1,
n<p<oo, g€ (L))" h e (Wg_l/p(Pl))”, hylr, = 0. Then there exists a positive constant €,
depending only on n, Q, p, p, p and K such that (1.5) has uniquely a solution (4,p) € (WI?(Q))" X
Wpl(Q) satisfying :

lallwz@pn + 1Blwi@) < Colllgllz,@n + ||hH(W3—1/p(1;‘1))n)} (9.31)
where Cp, is a positive constant depending only on n, Q, p, p, u and K provided that
gl czp@pym + 12l gr2-172pyyn < €p-

Proof. Recall that (1.5) is written by the following boundary value problem in :

(diva =0 in €,
—divT'(@,p) = g + G(@) in Q, _
Uylan =0 on 01}, ’ (9.32)
K(T(u,p)v)r + (1 — K)irlr, =0 on Iy,
iz, =h on I'y, ,
~ where G(@) := —(@-V)&. Since n < p < 0o, the Sobolev embedding theorem implies that there exists

a positive constant C; depending only on n, 2 and p such that
1G(@) (2, @) < 01||17H%W1:;(9))n ' (9.33)

- for any @ € (W; (9))™. We shall apply the Banach fixed point theorem to (7.10) in the following
Banach space: : .

X,(0) = {(8,2) € (WE@)" x W2Q) ; 15,0, < 2Ca(lgllzyt@ye + Il gy a-s7m gy}
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1@, D x, ) = ||5||(W3(Q))n + HG?”WZ}(Q),
where Cs is a positive constant which appeared in Theorem 6.1 with A = 0. Let S be the solution
mapping defined as S(v,q) = (4,p), where (,P) is a solution to (9.32) with G = G(¥). Then it
follows from Theorem 6.1 and (9.33) that :

(@ D)l xp00) < Colllgllzp@yn + IG@ N zp@pm + Bllgy2-177 1))
< Calllgllz,p@pn + 1Al g2-17pp,yyn + ClHUH(W;(g))nL

1@, D)llx, (@) < Co{l+4C1C3 (gl zyiyn + 12l gyz-170 0,y yn) Il zp@yn H Il 211 gy0)- (9:34)
Therefqre, S is a mapping in X,(§2) provided that

1

lgllcz, @y + 12l 220,y < 40102 (9.35)

Set S(#%,¢) = (@', 7") for any (¥,7%) € X,(), i = 1,2. Then (9.32) implies the following boundary
value problem in §2:

(div(z® —a') =0 in Q,
—divT(72 — al, 7 — ) = G(#?) — G(Y) in Q,
(ﬂz — ﬂl)ylag =0 ' on 0f, (9.36)
K(T(@ -4t 9% — pY)v)r + (1 — K)(@® — al),r, =0 on T, '
(u —aYr, =0 on I'y.

By Theorem 6.1 and (9.33), we have

(@ —a',7* — )lix, (@) < C2llG@®) — GO @,y
< GG | wa @y + 17 @)»IID* = Tl wam

1@ — @', 7* — ) x,00) < 4C1C3llgllcz @ + Bl 2-1/pp ))n)||?2 M lwzey- (937

Assume that

1
g1l ¢z, @)~ + ||h|| 2-1/2(p,))n m (9.38)

Then S is a contraction mapping in X,(€2). Consequently, the Banach fixed point theorem admits
that (9.32) has uniquely a solution (@,p) € X,(©2). The uniqueness of solutions to (9.32) can be
proved by L, estimates for the solutions similar to (9.37), which completes the proof of Theorem
9.5. O

9.6 Abstract initial value problem for (1.6) ,

The second result is the asymptotic stability of solutions to (1.5) in Ly (). As is well known in
[12, Chapter 3], [20, Chapter 6], not only strong solutions but also mild solutions to (1.6) can be
considered with the aid of Theorem 6.2. We shall prove the following theorem:

Theorem 9.6. Let Q be a multiply-connected bounded domain with its boundary I'oUT';, 0 < K <1,
n<p<oo, u € Lpo(Q), (4,p) € (W2(Q))™ x WI}(Q) be a solution to (1.5). Then there exist two
positive constants 0, x, and ey, depending only on n, , p, p, u, K and Ay for any 0 < Ay < Ag
such that (1.6) has uniquely a mild solution v € Cy(]0,00); Ly +(§2)) satisfying the following continuity
property and estimate:
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(i) Forany0<a<1,t>0,
teeMty e Cb([O,oo);XI?‘),

lo(@®)llxg < Cpanit™ e |lug — @llz, @) (9.39)

where Cp o 2, 15 a positive constant depending only on n, §1, p, p, p, K, a and Ay provided that

luo — @l| (2, @))n < Fprrs 18l wan < Epa-

(i) Forany0 < a<1,.
[u(®)lxg = o(t™*) as t — +0.
This subsection provides some preliminaries concerning the theory of analytic semigroups on
Banach spaces. First, we state the basic properties of the Stokes operator A, in Ly, +(£2).
Lemma 9.5. Let 1l <p< oo, a>0,0< A <Ai. Then
Nl AZe™ 5z, . @) < Cpapt *e M (9.40)
for any t > 0, where Cp,a) 18 a positive constant depending only onn, Q, p, u, K, a and ;.
Proof. See [12, Theorem 1.4.3].
Lemma 9.6. Let1 <p<o00,0< a< 1. Then X = [Lp (), D(Ap)]a, where [Xo, X1]p (0<0 <

is an interpolation space between two Banach spaces Xy and Xi by the complex method, [Xo, X1lo
Xg, [XO;XI]I = Xl.

Proof. The proof is similar to that of [8, Theorem 2]. O

i O

Lemma 9.7. Let1 < p < o00,0< o <1. Then X is continuously embedded in (HSO‘(Q))"HLP’J(Q),
where Hy () (s > 0) is the Bessel-potential space defined as Hy(Q2) = [Lyp(€2), W,@ (Q)]s/@; (s) :==
min{k € Z ; k> s}.

Proof. The lemma follows immediately from Lemma 9.6 and the basic property of interpolation spaces
by the complex method, e.g., [27, Theorems 1.9.3]. o

Second, we proceed to the abstract initial value problem for (1.6). Let 0 < T < 00, 1 < p < o0,
ug € Lps(2). Then, by applying P, to the second equatlon of (1.6), we get the following abstract
initial value problem for the evolutlon equation:

{dt'U + Apv = Gi(v) + Ga(v) + G3(v) in (0,7, (1)
v(0) = up — G,
where
Gi(v) == —Fp(v- V)U,
Ga(v) == —Pp(v- V)i,
Gs(v) = —Fp(u- V).

In order to deal with (III), we shall find a mild solution v € C([0,T]; L, +(§2)) which satisfies the
following abstract integral equation related to (III):

oft) = e~tp (ug—) + / (=512 G (1) (5)ds / " et G 1) (s)ds / et Gy (1) ()ds (1v)

0 0 0
forany 0 <t <T. Concerning Xg‘—e'stimates for nonlinear terms which appeared in (IV), the following
lemmata on Ly-estimates for G1(v), Ga2(v) and G3(v) are required. :
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Lemma 9.8. Let 1 < p < o0,

1 1 1 . 1
150, 0350, 0<8< =42 (1-2), ap+6>=, a1 +as+8> 2 +=.
2 2 P 2p 2
Then
14561 0)l ynye < Cillolxon ol o | )
for any v € Xp' a‘x{al’o‘z}, where Cy is a positive constant depending only on n, Q, p, u, K, a1, as
and 4.
Proof. See [9, Lemma, 2.2]. ’ ’ O

Lemma 9.9. Let 1 < p < o0,

1 1
a1>0,0<5<—+ﬁ 1—-=- ,a1+52£.
2 2 P 2p

Then

145° G2 )|z < Calloll e 1@l gy (9.42)

for any v € X*, where Cy is a positive constant depending only on n, 2, p, 4, K, a1 and 4.

Proof. The proof is similar to that of [9, Lemma 2.2]. Here the embedding theorem for Bessel-potential-
spaces, e.g., [27, Theorem 4.6.1] is required. O

Lemma 9.10. Let 1 < p < 00,

< - — — R —.
as >0, 0 5<2+2(1 ),a2+6>2

Then
145°G3 ()l < Callallwa@pn vl o (9.43)

for any v € X2, where C3 is a positive constant depending only on n, Q, p, u, K, ag and é.

Proof. The proof is similar to that of [9, Lemma 2.2]. Here the embedding theorem for Bessel-potential
spaces, e.g., |27, Theorem 4.6.1] is required. O

The proof of Theorem 9.6 is essentially depending on the following choice of a3 in Lemmata 9.8
and 9.9 and as in Lemmata 9.8 and 9.10:

1
D <4<,
2p

1 |
55a2<1—5,£+§ga1+a2+551 (9.44)
P

2

for any 6 > 0. It is easy to see that Lemmata 9.8-9.10 are valid for oy, a2 and  chosen as in (9.44).
Let 0<a<1-94,0< A1 < Ay, and set

t
0

wwm=/e*ﬂ%@@WMs
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for i = 1,2,3. Then it follows from Lemmata 9.5, 9.8-9.10 that

, : ¢ :
IG1(0)Ollxg < CpeasansC [ (¢ = 5)7 e Mol s (5. (9.45)
‘ . ,
192(0)(8) x5 < Charsn Coll@lows /0 (t = )@y (s) | gards, (9.46)
\ _
Hgg(v)(t)HXg < Cpat+sn Cg”ﬂ”(Wz}(Q))n/O (t— 5)_'(0‘”)6_&“—5)”v(s)||Xg2ds (9.47)

forany 0 <¢<T.

9.7 Asymptotic stability of solutions to (1.5)

This subsection is vconcerned with the asymptotic stability of solutions to (1.5). Since the proof of
Theorem 9.6 is similar to that of [9, Theorem 2.6], we have only to obtain Xp-estimates for solutions
to (1.6) globally in time. For any 0 < Ay < A1, A1 < Ao < Ay, set

Eu(t) = Osup so‘e)‘15||v(s)||Xg.

<s<
Then (9.39) is established by the following lemma:

Lemma 9.11. Let ) be a multiply-connected bounded domain with its boundary I'oUT'y, 0 < K <1,

n < p <00, up € Lo (), (4,p) € (WZ(Q))™ x Wy () be a solution to (1.5). Then there exist two
positive constants oy, and €p 5, depending only on n, Q, p, u, K and A1 for any 0.< Ay < Ay such
that

Eo(t) < Cpanlluo — all(z, ) ~ (9.48)

forany 0 < a<1,t>0, where Cpqon, 15 a positive constant depending only on n, Q’, p, 4, K, a
p) b 1
and A1 provided that

llwo = @llz,@)n < dprs Nallwz@e < ep-
Proof. It follows from (IV), (9.45)—(9.47) that

t*e)*|lu(s)|xg <Cpaxlluo = @llz,@)m

T
+ Cp at5,2,C11%Eq, (t) Eay (t) / (t — s) (ot gm(oataz) ;m(ha—Au)(t=s) g~ M5 g
: 0
t
+ Cp,a—i—é,)\z CZHEH(WZ}(Q))ntQEal (t) / (t _ s)—(a+6)8—-a1 e—()\z—Al)(t—S)ds
0

t
+ Cp,a+6,)\2 C3||’l—ll”(Wz}(Q))ntaEa2 (t) / (t _ s)—(a+5)s—aze—(kz—/\l)(t—S)ds
0

for any 0 < a@ < 1 -4, t > 0. Recall that ¢I—(@te+d)(1 _ 7)9e-0Ce-X)t0-7)  4l-(aa+d)(]
7)0e~(2=A)t(1=7) gnq 1—(e2+8) (1 — 7)0e=(A2-2)t(1-7) 5re bounded with respect tot > 0and 0 < 7 <
1. Then there exists a positive constant Cs y, such that ’

%1 u(s) | xg <Cpapns llwo — ll(z, 0y

1
+ it 535 C1C501 By (£) By (1) / (1 — r)~(@t29) ~(eaas) g
0
| ! 28
+ Cpo+62:C2Co [l (w2 () Boa (t)/o (1 —r) et e gy

. 1
+ Cpat52:,C3C5 0, ”ﬁ”(Wz} (Q))nEaz (t) / (1- 7—)—(0!+25)7_—a2d7_7
' 0
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Eq(t) < Cagn{lluo = @l @n + Bar () Eay (8) + (|8l (w0))n (Bou (1) + By (8))} (9-49)
for any 0 < o < 1—24, ¢t > 0. By setting E(t) = max{Fy, (t), Fu,(t)}, we have

B(t) < O, (lup — il z, ey + E*(®) + lall v e B(E) - | (9.50)

for any ¢ > 0. Assume that

_ 1
|l yn < 20, (9.51)
Then (9.50) yields -
E(t) <205 (lluo — @l @ + E*(t)) (9.52)

for any ¢ > 0. An elementary calculation shows that

' 2
A _
E(t) < G -1 — lluo = @iz, @n (9.53)
for any ¢t > 0 provided that

1 .
— n S e | _
llwo — @ll(z, @) < 60T, | (9.54)

It follows from (9.49), (9.51), (9.53), (9.54) that

Ea(t) < Cas lluo = @l (z,)n ' | 1(9.55)

forany 0 < <1—-26,¢t>0. Moreovef, the arbitrariness of the choice of § allows us to assume that
0 < @< 1. This completes the proof of Lemma 9.11. O

Remark 9.3. In the case where  is a bounded domain in R™ with its C™!-boundary 9 and K =0,
the same results as in Theorems 9.5 and 9.6 can be proved by our argument with the aid of [7,
Theorem 1.2 and Corollary 1.6]. ‘

Remark 9.4. According to the same argument as in [9, Section 3], a mild solution to (1.6) can be a
strong solution under assumptions for Theorem 9.6.
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BXOHNEDES

B GEE

Determining nodes for semilinear parabolic evolution equations in
Banach spaces

(73T NZER] R OB RE e @ﬁﬁﬁkﬁﬁéﬁﬁﬁ i)

A Al Ter

R (n € Z, n > 2) OFFER Q _EOHFHEREHFER, Navier-Stokes HHEZx 1§ 2 IHAER
{BRFIEIC DT, Determining nodes L FHIN B BIEED RN 542 EE DEERELR LTz, Determining
nodes I3FREAIB L ROBEZB QBRSNS R 2HREDT L TH Y, & LEFET 1T, Determining
nodes Ey TOROMHRLZEI & VS T— 2GR Q TOMOWHAEEz —BEICRET A LN TES.
zlZU, En == {z1, - ,zNn Sz EeQ, i=1,- S, N} FBERSCTE, BASS (5 1HI) 2R TRO=D0
Fez

. #1#B: Determining nodes ® Lo ¥5h (55 2 Hi, 55 3 &) |
58 I1 &% Determining nodes @ L, ¥Hag (55 4 &1, £ 5 &)
BIER: SEERE AR LD Stokes TEIICH T 2 L VIV RRE (55 6 1, 55 7 &, 55 8 &)

KDV L, N5 ORERZ PR E /T FE\ & Navier-Stokes FTERIC/SH (55 9 i) L7z,
BIETIE, n=2Fd3 L, XD Q _EOFFRIBEIGENICT T 2 FHREMEME 1.1) &%

DEFEME (1.2) ILDWT, TRIVF—1EZFHN T Determining nodes DIFEEER Uiz, 72721, HiZ
Ly () OBFSSZER, V = HH(Q) N H TH 3.

v

du . .
{%JFAU— F(u)+f in La((0,00); H), (1.1)

u(0) = wup inV,
A= F(@)+ f in H. : ('1.2)

BIEROTIRARL, FHEIEAGEEHER L Navier-Stokes AREAZ T (1.1) DIERR u, v IEDWVT, RD
 EEE2.2, B 2.3 AT B T LI Ko T Hilbert Z2f_E D4R RIS R S % Determining
nodes M Ly HmEME LI L THS.



FE2.2. 1 =2F7E3, R>0, f € Loo((0,00); H), to > 0 & L, (H2)~(H4) PO TDOT & &,
foo € HDFEEL,
f(t) = fooin H ast — o0

LEBTLERETS. COLE, O, A, F, M(f to) & M(foo) DRIMLFT BIEER 6 DFEL,
0<dy <& HD,ucSV(R),f)&TdLE HEDi=1,--- NIZHLTE e RHBEEL, u P
u(zi,t) > & ast — ©
é:t;m;“,'(l._z) FEED 0 <y < 1/21H LT
u(t) = U in VNCY(Q) as t — oo
WD, D =1, | NATH LT oo (2:) = & D 7D > 8808 uoy € S(foo) B —EITHED.
EE2.3. n=2Fd3, R>0, fge Loo((O,‘oo);H), to>0& L, (H.3), (H4) BROITDT L L,
fit)=g(t) = 0in H ast— oo

ERBTEENETS. TDLE,Q, A F, M(f,ty) & M(g,ty) DRICKRET BIEEE 63 BEEL,
0<dy <&3hD,uecSV(R),f),veSV(R),g) £TBL%E, FEDi=1,--- ,NIRHLTu,oH

uw(zs, t) — vz, t) > 0 as t — oo
EENE, EEDO< y<1/2ITH LT
u(t) —v(t) = 0in VNC™(Q) as t — o
LixB.

#1% T Determining nodes DFEZEZE L /zDIX Foias-Temam [6] TH 5. 5l Navier-Stokes /7
BRI 2 FIHHEFYERTE DR u, v IZDWT, Ly ® node MEAZER & TRV F—EE AV TEHE
2.2, B 2.3 LARRDOEHZFA L. RICHEEDI BRSNS HHARSEREIC DV T, Lu-Shao
[18] IC & » T Foias-Temam & [AEOERNMEENT VS, & T A M, Foias-Temam & Lu-Shao 72iJ T
%<, n = 1B} % Foias-Kukavica [5], Kukavica [15], Oliver-Titi [19] DFERZRTH, HLDFE
K9 % Determining nodes DFEZH-> TH Y, HEROFH—MHICRIFI B ENTNETORMERT
Hotz. EH2.2, TH 2.3 ZAHAT A0, £7, Hilbert ZEHOERGR Ly(Q) = Ho HL & Ly(Q)
o HN\DOBERHE PZRAVT (1.1) ZEZRLT 5. ZL T, Ly D node fliflRER &L TXNVF—1E%Z
AWT EDOEHEZRD Determining nodes DFTEZFEIHT 2 T L DVE [ EBOARAETH 5.

BILE TR, RD X, OBz ES BRI 9 2 FIHERE (I) IKDWT, BT L, -
w2 IV T Determining nodes DFEFEZER L. 12720, X, & Ly(Q) (1 < p < co) DEFER 22
TH5.

du :
] {-d_t + Apu=F(u)+ f in (0,00), (I
u(0) = uo.

2B L EROBIFRAZEL, HREBMRE A2 & Navier-Stokes ARRZEL (1) O AV Ffif u, v IO
T, ROFEE 4.1, B 4.2 ZFAT B T LI & - T Banach 22 E OB IR ETERICHT 5
Determining nodes O L, HiiZfE L7 L THB. /22U, Xg = D(A) (> 0) TH 5.
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EHE4.1.n/2<p<00,0<a9<1, R>0, f,g€ C((0,0); Xp), to >0 & L, (H.5), (H.6) BEKD 1L
DTk, ‘
ft)—gt) = 0in X, as t = oo

LRBTERETS. TDEE, n, Q, p, Ay, F, ag, M(f,t0) & M(g,to) DAITHEIFS B IEEE 01
HHFEL, 0 < dy < 6 57, u € S(XE(R), /), v € S(X0(R),g) £F5 L%, ERDI=1, NIz
HLTu,o

u(z,t) — v(ziyt) = 0.as t — o0
N,
() FED g <a< 1T LT
) = o(8)xs = O(02) as t = oo

TH%. |

(i) n/(20) <a<1%B5E, FEDLEZ, k>0,0<y< 1, k+y<2a—n/plcLT
| Ju(t) = v(B)llen @y = O ™) as ¢ - o0
TH5.

EH4.2. n/2 <p<o0,0<ag<1, R>0, f,g€C((0,00); Xp), to >0 &L, (H5), (H.6) Bk 17
DTEE, BBO< N <A IEHLT | |

1£5) = 981z, ) = O(e™1%) as t — oo

THHILERETS. TDLE, n, Q,p, 4, F, ag, M(f,t0) & M(g,to) DIARIET 5 EELK 6

BHEL, 0 < dy < 82 VD, u € S(XZO(R), f), v € S(X20(R),g) LT BLE, EEDi=1,--- ,Nic
HUTu,vh

u(ws, t) — v(zi,t) = O(e™) as t = oo

%53,

() FED ay<a< LiTXLT
[u®) —v(t)|xg = O(t™=%=1) a5 t — oo
TH5.
C () n/(2p) <a <1756, AEDLE€Z, k>0,0<y<1, k+y g 20— n/plCHLT
[6®) = o)l ey = Ot %e™%) as t + o0
TH%. |
z ﬂi T Kakizawa [14] DFER K D, EHEAYZ Determining nodes D Lo Hagld TR Lz K S IcEbN

o (BEREMHDZREME) Dirichlet BEFREM P EHIEREM 2R E, #1213, Navier-Stokes FENICE
B RE 2 RT3 Navier RSN 4 L QY2 BEAIBEREZHEINBERI N TR,
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o (HREZEEFDIRER) 7z & Z Determining nodes MWEE Lz & LT, BRI AR E L D#RE
HENED K S BIGRET—HT AN ESNITHTH 5.

B 4.1, BE 42 ZREAT 270, £, X2 ORMMAEXZHVT L, D node MEAEFR (Fﬁ |
4.6) ZFEART 5. TN&LD, n/2<p<x & b f#/8 4.6 & Giga-Miyakawa [9] LD FGEZFHNT
txmo0llu(t) — v(t)]|xe Dt ICBIL T—RRA SR £ %% & 5 7% Determining nodes DFFEZFEH T % C LA
B ILE O AETH 5. BRFMFOZIRIEITDWTIE, BHERFEGZ - IR ERHEN X, T
T7 BTV ES RS ETS Lo fe. WREEBIOIGREICDNTE, 12720 Ju(t) — v(t)||xg
D tICBT 5 —RERMZAVTHLMNCTE . TOX DI, AIHFUIMRITEEE D L, B G T
#1% T Determining nodes @ L, HiZHERL2EDTH D, R OF TREEENDFELMRT
H5.

FBIIETIX, QZIMAIDER Ty L AMDOER T THENZR™ (n €Z, n>2)DFRBEHL L, X
D Q LD Stokes FERITHTT B LV ILAY MEHE (1.4) ITDWT, L, FUBZ W72 T ROEFEEL —EE
ZERLU.

[ divu = f mQ,
Mu—T(u,p)=g in €,
uylon =0 on 09, (1.4)
K(T(u,p)9)r + (1~ K)urlr, = b on T,

\,U’T’Fl =h! on Iy.

B I EOPIFERNAL, ROETH 6.1, FH 62 ZIHATET LICE-T,
Apu = —PpdivT (u, p),

D(A4p)={ue€ (WZ(Q))n N Lye() ; K(T(u,p)v)r + (1 = K)urlr, =0, urlr, =0}

WX > TEEREINS Stokes {FHZE A, ZEREDRITICH U T Determining nodes D Ly, Hagl<ISH L7z
TETH5.

EH6.1. 0<K<1,1<p<oo, 0<e<m/2 feWQ),ge L) K € (Wp /P(To)",
Kr, =0, bl € (W2 YP(T))", Bllp, =083, COLE, (14 WEBED A€ S, U{0}IHLT

I 0@ + Iplw ) < Coeinalf) + 9l @p@yr + Laah®) + I a(hh)

MELD LD & S %R (u,p) € (WE(Q))™ x WHQ) Z—BICFD. L, Cpeldn, Q,p, 6, p L KD
AT HEERTHS. ‘

EE6.2. 0<K<1,1<p<oo,0<e<n/2LT5. TDLE, p(—4,) DS.U{0} THY, EED
A€ S U{0}leRLT .
1ALy + 45) M lss, (@) < I;ﬁ 0.1)
MDD, JelZU, Cpeldn, Q,p, ¢, u & K DRIMEFTBIERHMTHSD. Lieho>T, 4,13 Ly ()
TEZFUTIVTHD, FEDO< A\ < M ITHLTn, Q, p, &, p, K & A\ DRHRET BIEEH

Cpepy DIFEL, HFED ¢ > 0ITHLT

-
le™ |l 5(z,0 @) < Cpepe

MDD, 72721, Ay :=min{); > 0 ; A1 € Reo(4p)}.
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- IFERMEE (S R, FZEM R, i o 7o 25/ HY) B0 Stokes ARERICI T2 LIV Y MHE
IZDW\C, Dirichlet 54T 35U Tl Farwig-Sohr [7] 12 & o T, Navier S5V Tl Shibata-
Shimada [24] 12 & o T L, FHlEiZ2 {72 TROGFE L —BEMEONTVS. Th&D, (14) IKDWVTI,
Solonnikov-Séadilov [25] EFELIDAEZFHWT (1.4) DILHEROFEL —ERZIT NI T2 2 BD
Niz. LT AH, ROFHAIE (6.3) IOV, KBk p=2 & L, n= 313} 3 Helmholtz DEH%
FAWTROME 6.1 ZFEAAL THD, TOEEEZKRI TN NETOMERTH > 72.

divu =f inQ,
uylag =0 on 09, (6.3)

Urlr, =h onTI4y.
6.1 1<p<oo, fely(Q), he (W /(T hulr, =0 LT 5. TDLE, (6.3)1F

lullwg@yr < Collfllzy@) + 1Rl gya-vrm g yn)s

EWIETIRY € (WQ)) BFD. 1L, Cyldn, Q& p DRICKIET BEERTHS.

EH6.1, EH 6.2 ZAIAT 5 728IC, £, Bogovskil [2] DAER% H T Solonnikov-S¢éadilov DJ5{E
 EYEL, EEORTTUCH LT (1.4) OLBMOEEL ~EMELHET 5. 2L, BAtEZAVT
(14) Z R* & H? O Stokes AEERIIXT 5 LV IR MBS &8, Farwig-Sohr & Shibata-
Shimada DFERZFAWT L, fHfiZ /23 (1.4) OEDFAE L —EEZ1E 5 T LB L ERDOIAZAIET
- ®%. Determining nodes O L, HRa\DISHICBE L TIE, EH 6.2 & D2 I BOWIFRER DTSR
ZREICTHZ S 2HMTHH LEDITBZT LN TEE.

%5 9 #i ¢, Determining nodes (DEHRR# YAFRIBYRE 58 & Navier-Stokes HENC G/ Lz, il
IZ % Determining nodes D&M & B#E U/ IFFEERE L LT, RD Q LD Navier-Stokes AFEFUICKTT 5
FIEASSERTE (1.3) IKDWT, ERBOANEAEEZZR L.

[ dive = 0 in Q% (0,7T),

{0 + (v V) }u — divT'(u,p) = pg in Q x (0,7),

U|e=0 = uo in Q, (1.3)
uylon =0 on 68 x (0,T),

K(T(u,p)v)r + (1 — K)uslr, =0  on g x (0,7),

\’Ll,7-|1‘1 =h ' on T x (0,T).

5 0 BORIFENZIE, D n < p < 0o I LT (1.3) /NS BERMR (3, 5) € (WHQ))™ x W2(Q) B
—FCTAET BT & (FH9.5) &, (@,0) B Lyo(Q) THIERE, DF D uo — 0% Ly, (Q) THIME S
THEE MEDI<a<LIEHLT

[u(t) — @l xe < Cpant™*e™ug — |z, (@)

WROIIDT & (FE9.6) ZFAH LT L THB. (1.3) LELOMEDEEMOREFE, — BN LINEL
FEMEIC DUV T, Itoh-Tanaka-Tani [13] IC X > T La-Sobolev-SlobodetskitZEf] & U 5 ¥4 7x BARIZERT 72
FAVWIFERNESNT NS, EH 9.5, 9.6 BT 57HIC, £9, ©# 6.1 £ Banach DAESE
HAERWCEHE 9.5 2T %, Z LT, €H6.2 & Giga-Miyakawa & IELIOFER AV CER 9.6 2
B9 % T L AE IMIDIFFEAETHS. T KD, L,-Sobolev ZEH &\ 5 B 2 B ZER & FIV T (1.3)
DEFBMOGEE, — BN LINEZEE2BA LN TE .



