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Preface

The purpose of this thesis is to study properties of an entire curve in a
complex projective algebraic variety, i.e., a holomorphic map from C to a
complex projective algebraic variety.

In Chapter 1, we recall some notation and basic results of jet bundles,
logarithmic jet bundles, Demailly-Semple jet bundles, Nevanlinna theory and
Kobayashi hyperbolicity.

In Chapter 2, we prove the Nevanlinna second main theorem for some
families of non-linear hypersurfaces in P"(C) using a meromorphic partial
projective connection. )

Now we state our main theorems in Chapter 2 precisely. Let s, ..., $p
be homogeneous polynomials of degree d in C[Xj,...,X,] such that

08;
det ( . > # 0.
OX 0<j5,k<n

Then we construct the meromorphic connection V =d+T on C*! defined
by

08k =y 8s,

axX, "W T gX.8Xx."

| 0Sn 00X, 3Xzan

This meromorphic connection induces the meromorphic partial projective
connection V on P*(C) (see Section 2.2).

Theorem 0.0.1. Letoy, k = 1,...,q be elements of a linear system |{so, ..., 3n}|
_such that Z1gksq oy 18 an effective reduced divisor only with simple normal
CT0SSINgs. :
Assume that X§"|so, ..., X tn|s, for non-negative integers l; < d,
j=0,...,n. Let f: C— P*(C) be a non-constant holomorphic map whose
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image is neither contained in the support of an element of the linear system
{50, ---,8n}| nor contained in the polar locus of V. Then we have

d 2d
ZN faz +Sf()

1<i<q

<q_”_+1_i(n—1) (n+1+lo+---+ln)>Tf(7",dH)

where H is a hyperplane bundle on P™(C), and S;(r) = O(log™ Ts(r) +
log* r)||. Here “||” means that the inequality holds for all r € (0,+c0)
possibly except for subset with finite Lebesque measure.

We also investigate the second main theorem for singular hypersurfaces by
pulling back meromorphic partial projective connections. As an application,
we show the second main theorem for hypersurfaces in P?(C) which is not in
general position.

Let sg,81,82 € C[Xp, X1, Xs| be homogeneous polynomials of degree d
such that det(8s;/0Xy)o<irca Z 0, and XZ7|sp, XF1 |51, X§772|s, for 0 <
lo,l1,l2 < d. Let oy,...,0, be elements of linear system |{so,s1,s2}| such
that o; is a non-singular divisor in P?(C). Assume that o; intersects oy
transversally for all 1 < j # k < ¢q. Let z1,...,z, be points of P?(C)
such that >°7 ,(o;) is an effective reduced divisor only with simple normal
crossings in P2(C)\ {z1,...,z,}. Let 7 : P2(C) — P*(C) be the blowing-up
at {z1,...,2p}, and let £ =" | E; be the exceptional divisor of 7, where
E,; is irreducible and 7(E;) = z;. Let &; be the proper transform of ¢; under
~ the blowing-up .

Theorem 0.0.2. (a) Let H be the hyperplane bundle on P*(C). Let f :
- C — P%*(C) be a holomorphic map such that f(C) is neither contained in
the support of elements of |{so,s1,s2}| mor in {det(8s;/0Xy) = 0}. Let
f:C = PC) be the lift of f.

(1) When d = 1, we have

X I,
I
I
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(ii) When d > 2, we have

ST, [B) + D2 T50, B — (6+lo + b+ BTy r, H)

q b
< Y O No(r, 1) + Y N(r, f*Ey) + Sy (r). ()
=1 i=1
(b) Furthermore, we assume that oy, ..., 0, are in m-subgeneral position.

Let Hy, Hy, Hy C P2(C) be hyperplanes in general position which do not pass
through {z1,...,2,}.
(i) When d =1, we have
q b
(@—3)Ts(r,H) < Y No(r,f*5)+m Y N(r, f*Ey)

i=1 =1
1S
+mT;N2(T, FrH;) + S¢(r). (3)

(ii) When d > 2, we have

6+l+10+1 R rOUNE T
(4= 2R e 1) < YoMt PR+ m NG FE)
m—1 3

H S Nl £ H) + 8(r). (4

In Chapter 3, we deal with entire curves in the product space of the
Riemann spheres. We prove the second main theorem for algebraic divisors
in P}(C) x P*(C) which are compactification of one-dimensional subtori in
C* x C*. ‘

Now we state our main theorem in Chapter 3. Let [X; : X;] and [Y} : V3]
be the homogeneous coordinates in the first and second factors of the product
space of the P1(C) x P}(C). Let m/,n/,m”,n” be positive integers. We
define the effective divisors D', D” on P!(C) x P(C) by the polynomials
XYy — Xryy, Xg'Yr — XYy, We prove the second main theorem
for divisors D" and D". Let Hy, H11, Hap and Hy; be the hyperplanes in
P}(C) x P*(C) which are defined by the monomials Xy, X1, Yp and Y;. Put
Zy =P*(C) x P*(C). Then there exists the sequence of the blowing-up

1,0 : Zl — Zo,
T2,1 * Z2 — Zl,

Thk—1° Lk — Lp—1.
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which satisfies the following condition (x):
Put mj; = mipaz0---omjjq fori < j. Let D', D" and H;;, 1 <14 <
2,0 < j <1 be the proper transform of D', D", and H, ; under 7. Let E;,

1 < ¢ < k be the exceptional divisor of the blowing-up 7;;-1, and let E be
the proper transform of E; under ;. Then

(x*) D+ D"+ Zi:l ijo Hi’j + Zi=1 E; is an effective reduced

divisor only with simple normal crossings in Zj.

Theorem 0.0.3. Let f : C — PY(C) x PX(C) be a non-constant holomorphic
map. Let f: C — Z be the lift of f. Assume that

f© g {(Xo: X3),[Yo : 1)) e PHO)XPHC) | CoXg'¥g*~CiX]Y® =

for all (ri,rs) € Z x Z\ {(0,0)} and all (Cy,C4) € C x C\ {(0,0)}, and
assume that there exist no holomorphic functions g., ga on C and no (a,bd) €
C x C\ {(0,0)} such that

f = (exp g1,exp g2),
ag1 + bga = (constant),
on C. Then it follows that

T, [D' + D"]) < Na(r, f*D') + No(r, f*D")

2 1
+23° 5N Ni(r, FHiy) +Q§:Ni E;) + Sg(r).

i=1 j=0

In Chapter 4, our main result is a characterization of an algebraic di-
visor on an algebraic torus whose complement is Kobayashi hyperbolically
imbedded into a toric projective variety. Before stating our main theorem in
Chapter 4, we give necessary definitions. ,

We fix a free module N = Z" of rank r over the ring Z of rational integers.
Let M := Homgz(N,Z) = Z" be the dual Z-module of N. Let

(,YtMxN=>Z

be the canonical Z-bilinear pairing. Let TN = Homgz (M, C*) = (C*)" be the
r-dimensional algebraic torus. Let Ng = N ®z R, MR =M ®zR. Let A be
a finite subset of M. Define

Ls={a—bec Mp|a,be A}.

vi
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Let V4 be an R-vector subspace of Mg generated by all elements in Ly4.
Define

Hy = {H C V4 |hyperplane of V4 generated by elements in L4},

where a hyperplane of V4 is an R-vector subspace of codimension one in Vj.

Let P be an integral convex polytope in Mg such that dim P = r. Here
“the dimension of a convex polytope P is the dimension of a subspace of Mg
which is generated by {a—b|a,b € P}. Then there exists the toric projective
~ variety X associated to P (see [Od| Chap. 2), and there exists the imbedding
t: Ty — X.

Theorem 0.0.4. Let S be a finite subset bf M such that S C P. Assume
the following conditions for all positive dimensional faces T of P:

(i) TNS # 0, and the dimension of the convez hull ofTﬂS 1s equal to the
dimension of T. :

(i1) Let H € Hons, and let ¢g : Vins —> Vins/H be the canonical mor-
phism. Let x € 7N S. Then §(¢g(r NS —z)) > dimT + 1 for all
H € H,ng, where §(dg(r NS — z)) is the number of the elements in

{¢uly—z) € Ving/H |y € TN S}

(note that this condition is independent of a choice of x in TN S).

Then Ty \ Supp D is Kobayashi hyperbolically imbedded into X for a general
divisor D of the linear system |{z1' 25 -+ 27 } 51 4n,...in)es| i Ty

As a corollary, we prove thé following: the complement of the union of
n + 1 hyperplanes of P*(C) in general position and a general hypersurface of
degree n in P™(C) is Kobayashi hyperbolically imbedded into P"(C).
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1 _

Preliminaries

In this chapter, we collect some definitions and well-known results of jet
bundles, Nevanlinna theory and Kobayashi hyperbolicity. In particular we
explain the Nevanlinna second main theorem and the Kobayashi conjecture.

1.1 Jet bundles, logarithmic jet bundles and
Demailly-Semple jet bundles

A lot of properties of entire curves are obtained from the structure of the
jet bundle. In this section, we introduce jet bundles, logarithmic jet bundles
and Demailly-Semple jet bundles.

1.1.1  Jet bundles

Let X be an n-dimensional complex manifold, and let z be a point of X. Let
f:(C,0) = (X, ) be a germ of a holomorphic map from a neighborhood of
0 € C to X such that f(0) = z. We denote by H(C, X), the set of all germs
of those holomorphic mappings. Take a holomorphic local coordinate system
(z1,--- ,2,) around z, and put f; = z;0 f, g = z;09 for f,g € H(C, X),.
Then we write f X g if
d a’ ) ,
This equivalence relation does not depend on the choice of a holomorphic
local coordinate system. Let jx.(f) denote the equivalence class of f €
H(C,X), and set “
Jo(X)e = H(C, X)o/ % .

1



Define
To(X) = | J(X)a

zeX
Let p : Jg(X) — X be the natural projection. Then J(X) naturally carries
a structure of a complex manifold, and the triple (Jx(X), p, X) forms a holo-
~morphic fiber bundle over X. This holomorphic fiber bundle is called the
k-jet bundle over X. Let f : U — X be a holomorphic map from an open
set U in C to X. Then there exists the holomorphic map 7x(f) : U = Jx(X)
such that jp(f)(2) = jks)(f), z € U. We call ji(f) the lifting of order
k of f. A holomorphic (resp. meromorphic) functional on Ji(X) which is
a polynomial on every fiber is called holomorphic (resp. meromorphic) k-jet
differential on X. We denote the sheaf of germs of holomorphic k-jet dif-
ferentials by ES%Qx, and define the sheaf of germs of holomorphic k-jet
differentials of degree m by

EgaQxe = {Q € B ®Qx0 | QUir(f(a2))) = a™Qik(f(2))
for all @ € C and for all germs of holomorphic map
f:(C0) —(X,z)}
. There exists the canonical derivative d : EZSQx . — EZS 1 Qx,0 which
is defined by the following way. Let Q € ESSQx ., and let f : (C,0) — (X, z)
be a germ of a holomorphic map. Then ’

4QUr())(z) = JQUESD).

dz

1.1.2 Logarithmic jet bundles

In this subsection, we recall some basic setup of logarithmic jet bundles due

to Noguchi [Nog2]. Let D be a simple normal crossing divisor on X. Let
~ be the cotangent bundle of X. The logarithmic jet bundle is a generalization
of logarithmic cotangent bundle Qx(log D). Let V be an affine open subset

of X, and let X3, ..., X, be a local coordinate system around every point of
V such that X ---X; =0 defines D. Then we define
dX dX;
Jo(VilogD) = V xSpecC|—2, ..., —2 dXi1,...,d Xy, . . .,
Xy X;

A X, dR X

X1 ) 3 Xz 7d +15 ) :| ‘
Let {V;}; be an affine open covering of X. By glueing {Jx(V;;log D)};, W
obtain the logarithmic jet bundle J(X;log D). A holomorphic (resp. mero-
morphic) functional on Ji(X;log D) which is a polynomial on every fiber is

called a holomorphic (resp. meromorphic) logarithmic k-jet differentialon X.

2



1.1.3 Demailly-Semple jet bundles

We recall the construction of the Demailly-Semple jet bundle due to [De].
Let Gy be the group of germs of k-jets biholomorphisms of (C, 0), that is,
the group of germs of biholomorphic maps

tn—Mp(t)=a1t—|—a2t2—l—---+aktk, ale(C*,aje(C,j22,‘

in which the composition law is taken modulo terms # of degree 7 > k.
Then Gy, acts on JpX by (¢, Jrz(f)) = Je(f 0 9) where f is a germ of a
holomorphic map f : (C,0) = (X, z). Let JyX"8 be the bundle of regular
k-jets of maps f : (C,0) — (X, z), that is , jets f such that f/(0) # 0. The
Demailly-Semple jet bundle is a compactification of J,X*¢/Gy.

Let V be a subbundle of Tx. We call the pair (X,V) as the directed
manifold. We define a sequence of directed manifolds (X, V) as follows.
Let (Xo, Vo) = (X, V). We define X = P(Vj-1) by the projectivized bundle
of lines in the vector bundle Vj,_;. Let z € Xj_;, and let v € V;_;. Then we
define V} at any point (z,[v]) € X by

Vi) = 1€ € Ty (o)) | (Thp—1)<E € C- v},

where 7y ;-1 : X — X1 is the projection map. We denote by Ox, (—1) the
tautological line bundle. Let f : (C,0) — X be a germ of a holomorphic map.
Then f lifts to fig : (C,0) — X which is tangent to V4. This lift induces the
injection Jp X8 /Gy — X}, and the image of this injection is Zariski dense in
X Moreover, the derivative fj,_; gives the value of fj;Ox(—1). We assume
that V = Qx. We define that

EemQx = {Q € B20x [Q(f o) =¢™Q(f) o,
for every germ f € JyX and every germ 9 € Gy},

i.e., EpmSlx is set of germs of Ef%Qx which are invariant under arbitrary
changes of parametrization. Let 7o : Xi — X be the projection map. Then
the following theorem follows.

Theorem 1.1.1 ([De]). The injection J,X™8/Gy — X}, induces the isomor-
phism : :
Ek,mQX jad Wk,O*OXk (m)

1.1.4  Vanishing theorem and degeneracy of entire curves

A degeneracy of entire curves in X follows from the next theorem.



Theorem 1.1.2 ([GG], [De|, [SY]). Let A be an ample line bundle on X.
Assume that there exists a non-zero secti_on

Qe H (X, ESSQx®A™)
for k,m > 0. Then Q(jx(f)) =0.

By Theorem 1.1.1, H*(X, By mlx @ A7) ~ HY(X, 70 ® A7) and this
isomorphism sometimes enables us to calculate the dimension of H%(X, ErmQx®
A, ‘ “

1.2 Nevanlinna theory

Nevanlinna theory is an intersection theory of transcendental curves and
effective divisors. We recall some basic definitions and well-known results in
Nevanlinna theory.

1.2.1 Notation

We introduce some functions which play an important role in the Nevan-
linna theory. Let E be an effective divisor on C. We write E = Y m;P;,
where {P;} is a set of discrete points in C and m; are positive integers. Put
ny(r, B) = 3 p, < min{k, m;} where k£ > 0 or +co. We define the counting
function of F by .
Ni(r, E) = / ——————nk(i’ B) g
~ 1

Let X be a complex projective algebraic manifold, and let D be a divisor on
X. Let L = [D] be the holomorphic line bundle on X which is defined by
the divisor D, and let supp D be the support of D. Let o be a holomorphic
section of L such that the zero divisor of ¢ is D. Let f : C — X be a

non-constant holomorphic map. We define the proximity function of D by

2m 1 dé
mmﬂ”‘ﬂlﬁwwm%m%+“”

where || - || is a Hermitian metric in L. Let R(L, || - ||) be the curvature form
of the metrized line bundle (L, || - ||} representing the first Chern class. Then
we define the characteristic function of L by :

tertic ne |
10 = [ [ FREI-D+ow,
1t Jap

where A(t) = {z € C||z| < t}. We set T¢(r) = T¢(r, L) if L is an ample line
bundle on X.



1.2.2 Nevanlinna first and second main theorems

In Nevanlinna theory, there exists two fundamental theorems, i.e., Nevan-
linna first and second main theorems. The first main theorem explains the
relation between the characteristic function, counting function and proximity
function. '

Theorem 1.2.1 (First Main Theorem). Let X be a complex projective man-
ifold, and let L be a holomorphic line bundle on X. Let D be an effective
divisor on X such that [D] = L. Let f : C — X be a non-constant entire
curve such that f(C) ¢ supp D. Then it follows that

T¢(r,L) = N(r, f*D) + ms(r, D) + O(1).
The first main theorem implies that
Ty(r,L) > N(r, f*D) + O(1).

To study entire curves, the first main theorem is not sufficient. The second
main theorem is an inequality which estimates the characteristic functions
from above using a counting function. The following lemma is important to
prove the second main theorem.

Lemma 1.2.2 (Lemma on logarithmic derivative). Let f be a non-constant
meromorphic function on C. Then it follows that

21 f/(rew)
+
| s

where logtr = max{0,logr}, and S¢(r) = O(log™ Ty(r) +.log* r)||. Here
“II” means that the inequality holds for all v € (0,+00) possibly except for a
Borel subset with finite Lebesque measure.

df < Sf(?”),

The cases in which the second main theorem is proved are not so many.
The following second main theorem of H. Cartan is fundamental.

Theorem 1.2.3 ([Ca]). Let Hy, Hy, ..., H, be hyperplanes of P*(C) in gen-
eral position. Let f : C — P*(C) be a holomorphic map which is not linearly
degenerate, i.e., there exists no hyperplane in P*(C) which contains f(C).
Let H be a hyperplane bundle on P*(C). Then it follows that

q

(q -—n—- 1)Tf(7'7 H) < ZNn(T7 f*Hz) + Sf(r)'

i=1



Cartan’s second main theorem implies that a holomorphic map f: C —
P*(C) which omits (n + 2) hyperplanes in general position linearly degener-
ates, i.e., f(C) is contained in a hyperplane of P*(C). After Cartan’s proof
came out, Y.-T. Siu [Sil] and J. Noguchi [Nog5] reproved Cartan’s second
main theorem using totally geodesic connections. Let V be a C*°-connection
in TX. Define the Wronskian operator by

Wk(v>f):fl/\vf'f,/\"'/\v?/—lfla f(((:,())—)]P)n((C)
Then the following theorem hoids.

Theorem 1.2.4 ([Nog5]). Let f : C — X be a V-nondegenerate holomorphic
curve and let D = > D; be an effective reduced divisor only with simple
normal crossings. Assume

2

(i) log |W(V, )| is subharmonic;
(i) every D; is V-totally geodesic.

Then we have v
Ty(r, L(D)) + Ty(r, Kx) < > _ Nu(r, f*Di) + Sy(r).

Let V be the Fubini-Study metric connection on P*(C). Then hyper-
planes in P*(C) are totally geodesic with respect to V. In [Nog5], Noguchi
proved that W(V, f) is holomorphic, and obtained Cartan’s second main the-
orem. K. Yamanoi also proved Cartan’s second main theorem by showing the
algebro-geometric version of Nevanlinna’s lemma, on logarithmic derivative

(ANLD) in [Ya].

We give another new case in which the second main theorem was proved.
In Noguchi, Winkelmann and Yamanoi [NWY1], [NWY3], the second main
theorem for holomorphic map f from C to a semi-Abelian variety A was
proved;

Theorem 1.2.5 ([NWY3]). Let f : C — A be a holomorphic map which is
not algebraically degenerate, i.e., f(C) is Zariski dense in A. There ezists
the compactification of A such that A is smooth, equivalent with respect to
the A-action, independent of f, and it follows that

Ty (r, [D]) < Ni(r, D) + Ty (r, (D).,

for arbitrary e > 0, where D is the closure of D in A.



There exist a lot of applications of this theorem, for example, see [NWY?2]
and [CN].

We would like to mention M. McQuillan’s work in [Mcl]. Let X be a
complex projective algebraic manifold, and let E be a vector bundle over
X. We define P(E) = Proj ®g>9 S?E. This algebraic variety comes with a
tautological line sheaf O(1).

Theorem 1.2.6 (McQuillan’s tautological inequality). Let D be an effective
simple normal crossing divisor on X. Let f : C — X be a non-constant
holomorphic map such that f(C) ¢ D. Let f' : C — P(Qx(log D))) be the
canonical lifting of f. Then it follows that '

Tp(r,0(1)) < Ny(r, D) + Sf(r).

Theorem 1.2.6 implies the lemma on logarithmic derivative if the dimen-
sion of the target space is one. McQuillan used Theorem 1.2.6 to prove the
second main theorem for a parabolic leaf of a singular foliation on a surface of
general type. McQuillan also obtained the following theorem by combining
the second main theorem for parabolic leaf and F. Bogomolov’s theorem [Bo].

Theorem 1.2.7 ([Mcl]). If X is a surface of general type with ¢ > ¢, then
all entire curves of X are algebraically degenerate.

1.3 Kobayashi hyperbolicity and Kobayashi
hyperbolic imbeddings

In this sectioh, we recall some basic definitions and results in Kobayashi
hyperbolicity.

1.3.1 Definition

Let A(1) be the unit disk in the complex plane C. Let p be the Poincaré
distance on A(1). Then

,1+])\|, N ETW
)Y

for z,w € A(1). Let X be a complex space and let p, ¢ be points of X. A chain
of holomorphic disks from p to ¢ is a chain of points p = po,p1,...,Pc = ¢

of X, pairs of points a;, b1, a2,bs,...,ax, b in A(1), and holomorphic maps
fi,..., fx from A(1) to X such that

fla)) =pic1, fb)=pi, forl<i<k.

’ =1 =
p(z,w) = log o0

7



Let o be such a chain. Define its length I(«) by

k

) = 3" plaib),

i=1
and define the Kobayashi pseudodistance dx between p and ¢ by .
dx( ', q) = inf l(a).

Definition 1.3.1. The complex space X is Kobayashi hyperbolic if the pseu-
dodistance dx is a distance.

Example 1.3.2.

(i) The Kobayashi pseudodistance on C is identically zero.

(ii) The Kobayashi pseudodistance on A(1) is equal to the Poincaré dis-
tance.

(iii) Let X =P(C)\{0,1,00}. The unit disk A(1) is the universal covering
space of X. Because a complex manifold is Kobayashi hyperbolic if
and only if its universal covering space is Kobayashi hyperbolic, X is
Kobayashi hyperbolic(small Picard theorem).

Let X,Y be complex spaces, and let f : X — Y be a holomoprhic map.
By the definition of the Kobayashi pseudodistance, it follows that ‘

dy(f(.’]?),f(y)) < d_)((l',y)

for z,y € X. Hence there exists no non-constant holomorphic map from C to
a Kobayashi hyperbolic complex space. If the Kobayashi hyperbolic complex
space is compact, the converse is also true.

Theorem 1.3.3 ([Br]). A compact complex space X is Kobayashi hyperbolic
if and only if there exist no non-constant entire curves in X.

Now we define the Kobayashi hyperbolic imbedding. Let X be a complex
space, and let Y be a locally closed complex subspace of X such that the
closure Y is compact in X.

Definition 1.3.4. Y is Kobayashi hyperbolically imbedded into X if, for
every pair of distinct point p,q € Y, there exist a neighborhood U,V of p, q
in X such that

dy(UNY,VNY)>0.



Next theorem is an analogy of Theorem 1.3.3.

Theorem 1.3.5 ([Zal], [Za2]). Let X be a compact complez manifold, and
let D;,i =1,...,k be smooth divisors in X such that D = Zle D; has only
simple normal crossing. Then X \ D is Kobayashi hyperbolically imbedded
into X if and only if the following conditions are satisfied:

(i) There ezist no non-constant entire curves in X \ D.

(it) Let I,J be a partition of {1,...,k}. Then there exist no non-constant
entire curves in (N;er Di \ U;es Dj-

The following theorem is a generalization of the big Picard theorem.

Theorem 1.3.6 ([Ki]). Let X be an m-dimensional complex manifold and let
A be a closed complex subspace of X consisting of hypersurfaces with normal
crossing singularities. Let Z be a complex space and Y be a locally closed
" complex subspace of Z. IfY is Kobayashi hyperbolically imbedded into Z,

- then every holomorphic map h : X \ A — Y extends to a holomorphic map
h:X —Z.

Kobayashi hyperbolic imbedding is also closely related to a bounded-
ness property of a family of holomorphic mappings (see, e.g., [Ko2| Chap. 6,
[Nog3]). :

1.3.2 Kobayashi conjecture
It is a famous conjecture proposed by S. Kobayashi that

(a) a generic hypersurface of degree d > 2n — 1 in P*(C) is Koba,yashib
hyperbolic; :

-(b) the complement of a generic hypersurface of degree d > 2n+1 in P*(C)
is Kobayashi hyperbolically imbedded into P*(C).

If the hypersurface is a union of hyperplanes in P*(C), Conjecture (b)
holds; :

Theorem 1.3.7 ([Fu]). Let Hi,...,H, be hyperplanes of P*(C) in general
position and g > 2n + 1. Then P*(C) \ UL, H; is Kobayashi hyperbolically
imbedded into P*(C).

In [De], Demailly calculated the dimension of H%(Xy, Ox, (m)® A~!) us-
* ing the Rieman-Roch formula and the vanishing theorem due to Bogomolov.
By Theorem 1.1.2 and McQuillan’s result [Mcl], hyperbolicity of high degree
generic hypersurfaces in P?(C) was proved.
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Theorem 1.3.8 ([Mc2], [DE], [Pa]). A very generic hypersurfaces in P3(C)
of degree d > 18 is Kobuyashi hyperbolic.

The above theorem was extended to a logarithmic case, and the following
~theorem was obtained.

Theorem 1.3.9 ([DL], [Ro]). The complement of a very generic hypersur-
faces of degree d > 14 in P?(C) is Kobayashi hyperbolically imbedded into
P%(C).

It is an important problem to construct explicit families of hyperbolic
hypersurfaces in P*(C). In [MN], K. Masuda and J. Noguchi constructed
Kobayashi hyperbolic hypersurfaces in an arbitrary dimensional complex pro-
jective space. Using a stability of the Kobayashi hyperbolicity and deforming
a union of hyperplanes in P?(C), M. Zaidenberg [Za3] showed that there exists
hypersurfaces of degree five in P?(C) such that the complement is Kobayashi
hyperbolically imbedded in P?(C). J. Duval [Du] constructed the hyper-

“surfaces of degree six in P*(C) which are Kobayashi hyperbolic. Kobayashi
hyperbolic hypersurfaces of degree five in P*(C) are not found yet.
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2 —

" The second main theorem for
hypersurfaces in the projective space

2.1 Introduction

In the Nevanlinna theory, it has been a fundamental problem to prove the
Second Main Theorem for a holomorphic map from C to P*(C). In 1933,
H. Cartan [Ca] proved the Second Main Theorem for hyperplanes in general
position. The case of non-linear hypersurfaces had been studied by many
authors. For examples, J. Noguchi [Nogl|, B. Shiffman [Sh2], Eremenko and
Sodin [ES], Y. -T. Siu [Si2], and M. Ru [Ru]. In these results, the degree of
hypersurfaces does not appear in the defect relation. In A. Biancofiore [Bi],
the degree of hypersurfaces concerns the defect relation for special holomor-
phic mappings. In this paper, the degree of hypersurfaces appears in our
defect relation.

To prove the Second Main Theorem, we use meromorphic partial pro-
jective connection which is defined in J.-P. Demailly [De]. We recall the
definition and some basic properties of a meromorphic partial projective con-
nection in §2.2. A reference of this section is §11 of J.-P. Demailly [De]. In
the Nevanlinna theory, the idea of using meromorphic connection is due to
Y. -T. Siu [Sil]. Later, by using meromorphic connection, A. Nadel [Na]
constructed Kobayashi hyperbolic hypersurfaces in P3(C). J. El Goul [E]]
also constructed Kobayashi hyperbolic hypersurfaces in P3(C) by simplifying
Nadel’s method. J.-P. Demailly [De| developed a new general concept called
meromorphic partial projective connections. However, the Nevanlinna theory
was not used in A. Nadel [Na], J. El Goul [El], J.-P. Demailly [De], or J.-P.
Demailly and J. El Goul [DE]. These papers mainly dealt with holomorphic
curves into non-linear hypersurfaces of P*(C) by using a negative curvature
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method.

In §2.6, we prove the Nevanlinna Second Main Theorem for singuular hy-
persurfaces by using the pull back of a meromorphic partial projective con-
nection. The Second Main Theorem for singular divisors was dealt with in B.
Shiffman [Sh1]. In B. Shiffman [Sh1], a singular divisor is reduced to smooth
one by resolving the singularity. In this paper, we also resolve the singularity
of divisors. By the same method, we show the Second Main Theorem for
hypersurfaces in m-subgeneral position (m > 2) in P?(C) such that any two
hypersurfaces intersect transversally. We say that hypersurfaces are in m-
subgeneral position if the intersection of any m + 1 hypersurfaces is empty.
In the case where hypersurfaces are hyperplanes, E. I. Nochka proved the
Second Main Theorem in [Noc]. The approach that we employ is different
from Nochka’s one (see Theorem 0.0.2).

2.2 Meromorphic partial projective connec-
tions and totally geodesic hypersurfaces

In this section, we recall some definitions and properties of meromorphic
partial projective connections and totally geodesic hypersurfaces. A reference
for this section is J.-P. Demailly [De], §11.

Let X be an n-dimensional complex projective algebraic manifold. Let
{U;}1<j<n be an affine open covering of X.

Definition 2.2.1. A meromorphic partial projective connection V relative
to an affine open covering {U;}i<j<n of X is a collection of meromorphic
connections V; on Uy, satisfying

Vj — Vi = O ®IdTX -+ IdTX &® ﬁjk on Uj N U,

for all 1 < j,k < N, where aji, B, are meromorphic one-forms on U; N U.
We write V = {(V;, U;) h<j<n- |

Let S; be the smallest subvariety of X such that V; is a holomorphic
connection on U; \ S; N U;. We set supp (V)oo = U<y S and call it the
polar locus of V. 4

Example 2.2.2. Let {U; }o<;<n be an affine open covering of P*(C) such that

Ui ={[Xo:---: X,] € P(C)| X; # 0}. There is the canonical isomorphism
U; ~ C™ and we take flat connections d; on U;. Then {(d;,U;)}o<j<n is @
partial projective connection on P"(C). O
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Let f be a holomorphic map from C to X, and let V be a meromorphic
partial projective connection relative to an afﬁne covering {U;} of X. Assume
that f(C) is not contained in the polar locus of V. We write

m—times

v =00V,
By the definition of a meromorphic partial projective connection, we have
F@ AVl (@) A AV P ()
— PEAVep@f ) A ATED () € ATXpe,
for f(2) € Uj N U \ supp (V)

Definition 2.2.3. The Wronskian Wy(f) of f relative to a meromorphic
partial projective connection V is defined by

Wo(F)E) = F() A Vsl (DA AVSF () € ATXp,
where V is V; for f(z) € U; \ supp (V)

Let P*(C) be an n-dimensional complex projective space, and let 7 :
C™*1\ {0} — P*(C) be the canonical projection. Put U; = {[Xo:-+-: X,] €

P*(C) | X; # 0} where [Xg : ... : X, is a homogeneous coordinate system

of P*(C). In Uj, we take a local coordinate system

Xo o K Xgm o Xn
Xj?v ’ )(.7 N A)(‘7 7"'7Xj °

Let n; : U; — C**1\ {0} be a holomorphic map such that

j—th
(Xo X X X Xo 4 K
77] X]7 ,XJ ? X]7 7X XJ’ b} h) 7X] .

Then 7 o n; = Idy,. A meromorphic connection V on C™*! induces a mero-
morphic connection V,; on U; by

VJ' = Ty (77;( V),
where nJV is the induced connection on 7;Tgn+1 and my : Tentr — 7 Tpn (g
is the projection.

The following lemma is Corollary 11.10. of J.-P. Demailly [De]:

13



Lemma 2.2.4. LetV = d+T be a meromorphic connection 0n§h+1, and let
e = 2;0/02; be the Euler vector field on C**'. Then {(m.(1V), U;)}o<j<n
is a meromorphic partial projective connection on P*(C) provided that

(i) the Christoffel symbols f;‘ﬂ of V are homogeneous rational functions of
degree —1,

(i) on every intersection (w~*U;) N (w~U;) (i # j) there are meromorphic
Junctions o, B and meromorphic 1-forms v, & on C**1\ {0} such that

Tle,v) = av +(v)e, T(w,e) = B+ EW)e,
for all vector fields v, w.
Proof. See the proof of Lemma 11.8. of J.-P. Demailly [De]. O

Let D be a reduced effective divisor of an n-dimensional complex projec-
tive algebraic manifold X, and let V be a meromorphic connection. Take
the holomorphic function s on an open set U C X such that D|y = (s), and
take a local coordinate system (z1,...,2,) on U.

We define that D is totally geodesic with respect to V on U if there
exist meromorphic one-forms a = >, .. a;dz;, b = Y2 .o bdz; and a
meromorphic two-form ¢ =", ; ., ¢judz; ® dz, such that no polar locus of
aj, b, or ¢j, (1 < j, 1 < n) contains supp D|y, and

V*(ds) =d?’s —dsol=a®ds +ds®b+ sc

in U, where V* is the induced connection on TY.
The following Lemma 2.2.5 was obtained by J.-P. Demailly [De].-

Lemma 2.2.5. Assume that D 1is totally geodesic with respect to V on U,
i.e., there exist meromorphic one-forms a, b and meromorphic two-form c on
U such that

V*(ds) =a®ds+ds® b+ sc.

Let B be a holomorphic function on U such that Ba, Bb, Bc are holomorphic
forms. LetV be a domain in C. Let f : V — U be a holomorphic map. Then
we have

dé(so f
LCo D) mp@so N+ Y wslads- VEL)
0<I<k—2
+(ds- Vi) (2),  zeV
for k € N. Here v, and v, are meromorphic functions on V such that
B (v and B*=1(f)vix are holomorphic functions on V.
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Proof. The lemma holds for £ =1, because
dsof _ ,
= ds- f'.

We shall prove the lemma by induction over the order k. Hence we assume
that the lemma has already been proved for k£ — 1. Then we have

d (d*(sof)
d_z( dzk-1 >(z)
:%(yk 1(z)(s0 f)(z Z Yie-1(2)(ds - V?,f)( )
0<I<k—3
4 ds- v;':—2>f'><z>)
_ d")’k_l d(s o f)

1 () (s 0 £)(2) + s (9 22 L )
b3 (B s VO + wecs(a) g s V) )

0<i<k—3
d _
+——(ds VD). (2.1)
It follows that

d
—(ds - V1))

') -

(ds - VGV F)(2) + (V3 (ds) - (V;l?f))()

(ds -vﬁf“ () + (alf) - £)(2)(ds - YV £)(2)

Hds )G - (TONE) + (50 HEED - (F V) ER-2)
By (2.1) and (2.2), the lemma holds. O

Let V = {(V;,U;) }1<j<n be a meromorphic partial projective connection
relative to an affine covering {U;}1<j<n of X, and let s; be a holomorphic
function on U; such that Dy, = (s;). By the definition of the meromorphic

partial projective connection,

V; = Vi = ajr ® ldry +1d7, ® Bji,
on U; N Uy with meromorphic one-forms o, and B;z. Then we have
(V5 = Vi) ds; = —ds; ® ok — Bjk ® ds;.

This implies that D is totally geodesic with respect to V; on U; NUy if D is
totally geodesic with respect to Vk and supp D[U,mUk is not contalned in the
polar loci of o, Bjk-
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Definition 2.2.6. Let V be a meromorphic partial projective connection
relative to an affine open covering {U;} of X. Let D be an effective divisor
on X such that supp D|y; ¢ supp (V). Then D is said to be totally geodesic
with respect to V if D|y, is totally geodesic with respect to V; on U; for all
7.

Let sq,...,8, be homogeneous polynomials of C[Xj,...,X,] such that
deg(so) = -+ = deg(sp) = d and det(9s;/0Xx)ocjjkcn # 0. We define a
meromorphic connection V=d+T onCrt! by
Z 05y 2 8s,. .

0X. >\ ” 8Xz-8XJg’

0<ALn

for 0 < i,j <n. Then V*ds; = 0forall 0 < j <n. Let U; = {[Xo : -~ :
Xn] € P*(C) | X; # 0} be an affine open subset of P*(C). Let n; : U; —
C™*1\ {0} be the canonical section of the C*-fiber bundle C** \ {0} — P

such that
. j—th

Bi([Xo s+ X)) = <X° i;)

J

Then meromorphic connection V induces a meromorphic partial projective
connection V = {(m.(n;V),U;)} on P*(C) by Lemma 2.2.4 (see §11 of J.-P.
Demailly [De]). A reduced divisor s of the linear system |{so,...,s,}| is
totally geodesic with respect to V if supp (s) is not contained in supp (V)eo.

Remark 2.2.7. Let (2,...,2j-1,2j11,- -, 2a) be alocal coordinate system
on U; such that z = Xk/X Put V; = m,(n;V) = d+ (I},) where I}, is
a Chrlstoffel symbols with respect to thls coordinate system. Then one can
check that

F?‘ n*F)‘ — zm*l“fu , ‘
V*d(nise) = deg(sx) 0}« an I’ dzzdzu
i
on Uj.
The following lemma was obtained by J.-P. Demailly [De].

‘Lemma 2.2.8. Let V = {(V;,U;)}o<i<n be the meromorphic partial pro-
jective connection on P*(C) constructed as above. Let f: C — P*(C) be a

non-constant holomorphic map such that f(C) is not contained in supp (V)
Then ‘ ‘
Wo(f) = ' AVpf A AVEDf =0
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if and only if f(C) is contained in a support of an element of a linear system

I{s0,---,8n}-
. Proof. Assume that Wy(f) = 0. Let z be a point of C such that f(z) is not
contained in supp (V). There exists j such that f(z) € U;. We can take a
non-trivial solution (g, - ,a,) € C**1\ {0} which sutisfies

o7;] 77;30(]0(2)) T to, U;Sn(f(z)) =0,

o ((jdso) - f')(2) + -+ + am ((77dss) - [')(2) = 0,

oo ((5ds0) - V5 1')(2) - + o (jdsn) - V) (2) = 0

for 1 <1< n—1where V=V;. Let s=o0psy+ -+ o8, be an element
of the linear system |{so,. .., sp}|. It follows that

s(f(2)) =0, (ds-f)(z)=0, (@ds-VRf))=0  (23)

forall 1 <1 < n—1. Then there exist holomorphic functions ag,- - , agx_1
for K < n — 1 on a neighborhood of z such that

V;’f)f/ = aof/ —+ alv]r/fl +--- 4+ ak—lvyf_l)fl (24)

on that neighborhood. By (2.3) and (2.4), we have

(ds- V@ f)(z) =0
for all [ € N. Because supp (s) is totally geodesic with respect to V, we have

d(so
(dzl )(z) =0

for all I € N by Lemma 2.2.5. Therefore so f = 0. Then the image of f is
contained in a support of (s). ‘

Conversely, assume that s is an element of the linear system |{so, ..., s, }|
such that so f = 0. Then, by Lemma 2.2.5,

(ds- f)(z) =0, (ds-V3f)(z)=0

for all I € N. So f, Vgcl,) f' are elements of a kernel of ds. Because the
- dimension of Ker(ds) is less than n — 1, we have Wy (f) = 0. O
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2.3 Proof of Theorem 0.0.1

To prove the Second Main Theorem, we need Borel’s lemma.

Lemma 2.3.1. Let h(r) > 0 be a monotone increasing function in r > 1.
Then, for arbitrary 6 > 0, we have

dh(r) 1

< ).

) < (b

Proof. See Noguchi-Ochiai [NOJ, Chapter V, §5. -d

Let X be an n-dimensional complex projective algebraic manifold, and let
o; (1 <14 < q) be a holomorphic section of the holomorphic line bundle L; on -
X. Let V = {(V;,U;) }1<j<n be a meromorphic partial projective connection
relative to an affine covering {U; }1<;<n of X. Let 8 be a holomorphic section
of the holomorphic line bundle L on X such that 8V, is holomorphic on U;
forall1 <j<N.

Lemma 2.3.2. Assume that (o;) is smooth and Y i<icg(04) 18 a simple
normal crossing divisor of X. Assume that supp (o;) is not contained in
supp (V)eo and (o;) is totally geodesic with respect to V for 1 < j < gq.
Let f : C = X be a holomorphic map such that f(C) is not contained in
supp (V)eo and the Wronskian Wy (f) £ 0. Then we have '

oo™ ||Wv(f)(z)”/\"TX“ﬁ(f(z))||z(“_1)/2Ez_g_ .
/|z|=rl : o loi(F @), 77 <550,

where S¢(r) = O(log™ r + log™ T¢(r))|.

Proof. Take an open covering {V;}1<j<n such that V; € U; (i.e., topological
closure Vj is contained in U; and V; is compact), and take a partition of
unity {¢;}1<j<n subordinate to the covering {V;}1<;<n. Take holomorphic
functions 21, . .., z, on U; such that dzi, . .., dz, are linearly independent and

U; N Usupp (05) = {w € U;| z1.(w) - - - 2y (w) = 0},

=1

for some p, 0 < p <n. We put f; = z;0 f, (V;’f)f’)l =dz- ngf)f’. Then we
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have

1F AV f A AV 0D | BRI
. log™
%3(f)log I EAGI P

= ¢;(f)log* (%(f)llﬂ(f)!lﬁ("_m

i 5 1 Ji
() 08 " "
3L, 57
L TET e TEE e e (e )
(V5 ><" V(@ ><" V1% n' . '
e e (V) e (VR
on f~1(U;) where ¢; is a C*°-function on U;. By Lemma 2.2.5,
dof,
l . %
(VR = D auwz) gy (2),
0<k<i+1
for 1 <4 < p. Here a;;x are meromorphic functions on f~(U;) such that
ai11(2)(B o f(2)) is a holomorphic function. Hence it follows that

g IS AV A VDl anrx BN d
jl=r = Ne(Olz, zw

’S/M_, +zz/l*'ﬁ’f'9

1<k<p 1<i<n Y I71=T

s Z/ () log* fO ()],

pH1<k<n 1<I<n jef=r

where ®, ¥ is a-bounded C*°~function on X. By using the lemma on loga~
rithmic derivative, it follows that

0]
/| g BT <50

|fe(2)| 27
[ et 150015
(l)
z)| do o df
S/|z _ \fk |%*/lzl:r‘lf(f(z»}ogﬂfk(z)%

IA

. df
[ EE s G + 55t
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Tt follows that

a1 ' o y2dd
[ e 5@z =5 [ w@est I4@rg
<3 o8 I +00)

where || - ||rx is a hermitian metric of T'X.
By Lemma 2.3.1 and the concavity of log, we have that for § > 0,

1 , do
3 oE 15 @l

[ st @l + 115

og (14 [ 175y ) +0)

A IA

IN

27r dr |z|<r

o [ s Y Ldz na) ) + o)

IN

27r

NI N e N L ] E i =) e T I

(

log (1 LA O] dz) +o(1)
(
(

1+ 7(di JE: /| 7Gx YL dz) ) +o()|

og 1+ ;—( [Z] e M Gras naz) ) o)
) '

Then we have

/ log™" IWo(£)(DIarex 1B 130 do
|z|=r

VAN

IN
A

iz loa(f (2) s om
= (f(2)) log* |We(f)(= )”/\"TX”:B(f(Z))”Ln 72 dp
G = nfe)os Lllo(FE). 2

J
< Sg(r).
‘ O

Theorem 2.3.3. Let Kx be the canonical line bundle of X. Under the
hypothesis of Lemma 2.3.2, we have

S Ty, L)+ Ty (r, Kx) — gln = DTH(n L) € 3 Nolr, £(00)) + S5(r).

1<i<q 1<i<q
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Proof. We denote by ord, (¢; o f) the order of zero of ¢; o f at the point
of z € C, and we denote by ord, B(f)"*~D/2Wy(f) the order of zero of
B(f)MD2W(f) at the point z € C. If ord, (0,0 f) > n+1 for z € C,
then '

ord, B(f)"" VW (f) > ord,(o; 0 f) —n,

by Lemma 2.2.5. So we have, by the Nevanlinna First Main Theorem,

STy, L)~ Nl £7(03) — T A ) = Sl = D7y, 1)

W (@) zx IBEEDIE" " do
S 11

From Lemma 2.3.2 the theorem follows. o | O

Proof of Theorem 0.0.1. We construct the meromorphic partial projective
connection

V = {(V;,U;) }ogi<ns

on P*(C) as in §2. By Cramer’s rule, the degree of the pole divisor of each
V; is less than or equal to lp + -+ 41, + n + 1. The Main Theorem follows
from Theorem 2.3.3 and Kprn = —(n+ 1)H. O

Now we show two typical corollaries. Define the defect

i N(r, f*o;)
5:((c;)) = 1 — limsup ——2=—-—2.
f(( ])) . Tf(T, [D]])
Corollary 2.3.4. (Defect Relation) Under the hypothesis of Theorem 0.0.1,
we have

> (o) < T 4 L= Dl 4+ b+t 1)

d
1<5<g

Proof. This is deduced from Theorem 0.0.1 and the same arguments in
Noguchi-Ochiai [NO]|, Chapter V, §5. i

Remark 2.3.5. When ¢ = 1 and

n-+1 1
m — 1.
— oz = Dnllo+---+l+n+1) <1,

the holomorphic map omitting the hypersurface is algebraically degenerate
by Corollary 2.3.4.
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Corollary 2.3.6. (Ramification Theorem) Assume that

ffo; > pysupp(fro;)

for some positive integers u;, 1 < j < q. Under the hypothesis of Theo-
rem 0.0.1, we have

' n n+1 1
—— )< —(n — .
E (1 ) S —+ 2d(n Dn(lo+---+1l,+n+1)

1<j<q Hi

Proof. This is deduced from Theorem 0.0.1 and the same arguments in
Noguchi-Ochiai [NO], Chapter V, §5. O

Example 2.3.7. Put so = X¢,...,s, = X2 € C[Xy,...,X,) Letoy,...,0, €
I{s0, .-, 8n}| be smooth Fermat hypersurfaces such that the divisor oy +-- -+
04 is of simple normal crossing. By Theorem 0.0.1, we have

(q_”jl‘l 21d(n—-1)n(n—|—1))Tf'rdH ZN (r, f*(04)) + S¢(r)-

d

Example 2.3.8. Put sp = X¢,...,8,1 = X%_|,8, = X3 HeoXg + -+ +
enXn) € ClXo,..., X0, €0,...,6n ER. Let 0 =59+ --- + s,. Assume that
the hypersurface defined by o in P*(C) is smooth. Let f : C — P™(C) be a

holomorphic map such that the image of f is Zariski dense in P*(C). If

(n+1)(n*—n+1)
d

the image of f intersects the hypersurface defined byba. O

< 1,

2.4 Restriction of the merofnorphic partial
projective connection

Let sg, ..., 8ntp be homogeneous polynomials in C[Xj,- - , Xn4p] such that

0s;
det ( J )
X 0<j,k<n+q

Let X C P™*?(C) be a smooth n-dimensional complete intersection for some
hypersurfaces associated to elements of linear system |sg,...,Sntp|- Then

£ 0.
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{

we construct the meromorphic partial projective connection V associated to
{80, .- - Sn+p} on P"*P(C) as in §2. We may assume that V is a meromorphic
partial projective connection on X because elements of |sg, . . ., Spy,| is totally
geodesic with respect to V. :

For o = (a, - - -, Antp) € C*PT we pu

Sq = QpSg + *** + WpypSnip-
We denote the hypersurface in P*?(C) corresponding to sq by Y.
The next lemma is due to Theorem 11.19. of J.-P. Demailly [De].
Lemma 2.4.1. Let
Z=YuNn --NYy C P"?(C)

be a smooth n-dimensional complete intersection, for linearly independent
elements ol,...,aP € C"P*l sych that dsgs A <+ A dsqr does not vanish
along Z. Assume that Z is not contained in {det(0s;/0Xk)o<jk<ntq = 0}
Let f : C — Z be a non-constant holomorphic map. Assume that f(C) is not
contained in {det(0s;/0Xy)o<jk<ntq = 0} nor contained in a hypersurface
Y, which satisfies Z ¢ Y,. Then we have

Wv(f) zf,/\vf’fl/\/\vgff—l)f’?—éo
Proof. See the proof of the Theorem 11.19. of J.-P. Demailly [De] O

Let ¢ : Z — P"*P(C) be the inclusion map from Z to P"*?(C), and let
Hyz =i*H be the pull back of the hyperplane bundle on P**?(C).

Theorem 2.4.2. Let f : C — Z be a holomorphic map such that f(C) is not
contained in {det(9s;/0Xk)o<jk<ntq = 0} nor contained in a hypersurface

Y, which satisfies Z ¢ Y,. Assume that X¢9|so, ..., ‘XS;;"‘L”BMP for

that (i*o;) is smooth and ), ., %" (0;) is a simply normal crossing divisor
on Z. Then we have :

- 1 1 |
(q +p— % — ﬁn(n -Dn+1+l+ -+ ln+p)>Tf(T’,de)
< Z Nu(r, froj) + Sg(r).
1<j<q

Proof. Because the canonical line bundle Kz = (pd — n — p — 1)Hz, Theo-
rem 2.3.3 implies the statement. O
In paricular, if ¢ = 0 and
n+p+1 1 :
————g—-——— —2—dn(n—1)(n+1+lo+---+ln+p) >0,

then f is algebraically degenerate (cf. Theorem 11.19 of J.-P. Demailly [De]).
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2.5 Pull back of the meromorphic partial pro-
| jective connection

Let X and X be n-dimensional complex projective algebraic manifolds. Let
7 : X — X be a surjective holomorphic map. Then there exists a proper sub-
variety S of X such that X\ 77%(S) and X \ S are locally biholomorphic. Let
V = {(V,,U;) }1<j<n be a meromorphic partial projective connection on X
relative to an affine open covering {U; }1<;j<n on X. We shall now construct
the meromorphic partial projective connection V= {(VJ,W Wi h<j<n on
X. Let p € n U, C X. Let u,v € I'(V,Tx) be local holomorphic vector
fields on a small neighborhood V' of p. Then V' \ 7~1(S) is locally biholomor-
phic with (V) \ S. We define

(Vi)utlna-1(s) = (Tulia-18) " (Vi) mauTuvlv\a-1s,

on V\7~1S. Then, the meromorphic vector field (ﬁk)uvhf\ﬂ-—l(s) on V\7r718

is uniquely extended to the meromorphic vector field on V. In this way,

we define the meromorphic connection Vi on 7~1(Uy). Let ay; and Bi; be
meromorphic one-forms on U; N U; such that

Vi - Vj = Qyj ® IdTX + Id-TX ® /Bz]

Then we have

Vi — VJ = 7I'*Oéij & IdeZ + IdT)‘f & W*,Bij.

So V ={ (V;,m1U;) h1<j<n is & meromorphic partial projective connection
on X relative to an affine open covering {7 1U; i hi<j<n of X.

Assume that  is the blowing-up of X at a point of X. Let D be a reduced
effective divisor in X such that supp D is not contained in supp (V). Take
a holomorphic function s; on U; such that D|y, = (s;).

Lemma 2.5.1. Assume that D is totally geodesic with respect to V, and the
strict transform of D under w is smooth. Then the strict transform of D is
totally geodeszc with respect to the meromorphic partial projective connection

V= {(vj,ﬂ' Yo ))}1<J<N on X.

Proof. There exist meromorphic one-forms a;, b; and meromorphic two-form
cj on Uj such that no polar locus of a;, b;, ¢; does not contain supp D|y,, and
a;, b;, c; satisfy

Vj *de = a; &® de + de &® bj + 8;C4,
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for all 1 < 7 < N. So we have

V dn*s; = m*a; ® dn* sJ—I—dﬂ' s; ® Tb; + rs;mrey.
Let £ be an exceptional divisor of 7. Let D be a strict transform of D under
the blowing-up 7. Then, suppD is not contained in supp (V)(X,. We may

assume that there exists a holomorphic function e on an affine open subset
in 77*(U;) such that (e) = E|y. Then we have

~ T8
DlV = < ekj>7

for some non-negative integer k. On V, it follows that
d(ﬂ*sj> _dr's; % ms; de

ek ek ek e
=, [ dr*s;
Vj< ek]>_d( >®d7rsj+ —Vidr*s;
z_k@ dﬂ'Sj
ok
1 .
+ g(ﬂ a; ® dn*s; + dn*s; @ b + w*s; wrc;)
N de dr*s; —dm*s; . T8
= (7’[’ G,]—k?>® ek + ek & b —+ 7I'CJ7
= m*s; de TS, de TS =, [ de
H_k—L ) = — J Iv*( = }.
T =) o T (0)

So we have

~. . T*8; =, [ dr*s; = T8, de
() - H(%2) ()




where p , d
- . e ~ . e
aj=7raj—k?, bjzﬂbj—k—é—,

de de de de ~ de

’5j=k7r*aj®?+k?®7r*bj+7r*cj—k2—6—®?—kV;‘f;.

O

2.6 The second main theorem for singular di-
visors

Let X be an n-dimensional complex algebraic projective manifold, and let =
be the blowing-up of X at the point p of X. Let U be an affine open neigh-
borhood of p, and let V be a meromorphic connection on U. Let z,..., 2, be
holomorphic functions on U such that dzi,...,dz, are linearly independent
onUand p={z € U|z(z)="--+=z,(x) = 0}. Then,

T HU) = {(z,[y1 : - yn)) € UXPH(C) | 25(x)y; = 2j(z)y;  for all 4,5}

Let Uy = {(z, [y : -+ : ya]) € 7 1(U) | yse # 0} be an affine open set of X.
Define a holomorphic function u; = y;/yx on Uy. Then '

duy, ..., dug_1,dzg, dtgss, . .., di,,

are linearly independent on Uk, and E |5, = (#r) where E is the exceptional
divisor of . We shall now show that Wg has only logarithmic poles on the

exceptional divisor. Here V is the pull back of V.
We may assume “k = 1” without loss of generality.
We have

10 00

o0 0

(0 0 0
*\ 0z Ous " Ouy,
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We denote the above Jacobian matrix by A. Then we have

1 0O --- 0 \
—Ug/Zl ]./Zl
\ —Up /21 O 1/2
Put V = d+ T where I' = (T,)i<apu<n is 2 conn‘ection‘form with re-
spect to the local frame 8/0z,...,0/0z,, i.e., = > i [}, dz. Let

T'= ( #)1< au<n De the connection form of the meromorphlc connection V
on U, with respect to the local frame 8/9z1,0/dus, . .. ,8/0uy,. Then we have
I' = A7'dA + A7'm*TA. Since

dn*z dz dn*z; . dz
T L2 2 =duj+uj—1,
21 21 2] 21
it follows that
*I‘I)\ le

= ¢ Au— + Z B2 udU;

21

where ¢; . is a meromorphic function on Ul. Let 8 be a holomorphic func-
tion on U such that 8V is holomorphic on U. It follows that 78 ¢1,,, is
holomorphic function. So 7*8 A~'7*T'A has only logarithmic poles on the
exceptional divisor.

It follows that

( 1 0 0 \ 0 0o --- 0
—’LLQ/Zl, ]./Z1 dUQ dz1

A7ldA = 3 O S O
\—un/zl O 1/ duy, O dz

0 0 0\
(duz)/zl (le)/Zl

N

\ (dun)/2z1. O | (dz)/z
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We define the meromorphic connection Vion U, by

- = d - d
Vi=V-2oldg—Tdg® 2L

A 21

Then {(V,T,),(Vy,0;)} is a meromorphic partial projective connection on
Ui, so Wg = ng. One sees that

_ d d
Vi = d+AMrTA+ A7NdA - —;—1 ®1dyz — Idpg ® ;
1 ) 1

0 0 0 \
(d'UQ)/Zl (dzl)/zl

= d+A"'mrTA+

(dun)/ 2 C (dz)/n )

” 0
! \ (dz)/z 0 - 0
dn | @)t 0 0
1 C ; (dun:)/zl 0 . 0
\ 1)
, 0
— d4+ A rTA- O
(:)

Therefore 7*f3 V1 has only logarithmic poles on the exceptional divisor. In
the same way as above, we can construct the meromorphic connection Vj
on Uy for every k, 1 < k < n. Then we obtain the meromorphic partial
projective connection {(V;, U;) }1<i<n on 7=1(U) such that each 7*8 V; has
only logarithmic poles on the exceptional divisor.

Let X be an n-dimensional complex algebraic projective manifold, and
let S be a reduced effective divisor on X such that the singular locus of
S is {z1,...,2,} C X where z; is a point of X. Let 7 : X — X be the
blowing-up at {z1,...,z,}. Let E;, 1 < i < p be irreducible divisors of X
such that E = {J; ., Ei is an exceptional divisor of 7 and m(E;) = z;. Let
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'V ={(V;,U;) }1<j<n be a meromorphic partial projective connection on X
relative to an affine open covering {U;}1<;<n of X. Assume that S is not
contained in the polar locus of V, and S is totally geodesic with respect to
V. Let 8 € I'(X, L) be a holomorphic section of a line bundle L on X such
that SV; is holomorphic for every j.

Lemma 2.6.1. Let f : C — X be a non-constant holomorphic map such
that f(C )_is mot contained in the polar locus of V and Wy(f) # 0. Let
f C — X denote the lift of f. Assume that the proper transform ScX of
S is non-singular, and S intersects E transversally. Let ¢ be a holomorphic
section of a holomorphic line bundle of X such that (o) = S. Then it follows

that ) 2
/ o (T A2z IBE @IE
g
jzf=r BB 27r

Proof. We may assume that each U; has at most one singular point of S. Let
I={1,2,--- ,N}, and let I’ and I” be subsets of I such that

I/:{iGIlUim{xh'" 7;(;p}7é@},
I"=I\I'={i e I|U;N{zy,-- ,z,} = 0}.
Let V = {(7*V;, 7 2(U;)) }1<i<y be the pull back of V. If j € I, there exists
one z, € U;. By the above argument we can construct a meromorphic
partial projective connection {(V; 1, Usi) 1r<k<n on 7=1(U;) such that each
T ﬂV] & has only logarithmic poles on E,. Here {U~7 k }1<k<n is the affine > open

covering of 7~}(U;). We define an affine open covering {;};-1, . of X and
a meromorphic partial projective connection {(V;,Q;)}h1<j<n on X by

< S¢(r).

{(Vik Uin) Yernghgn U{(V5, 770 Y,

where (V;,€;) is equal to (V5 Ujx), j € I', or equal to (V;,71U;), j € I".
Then it follows that the Wronskian of V is equal to the Wronskian of v.
Take an open covering {V;}1<jcns of X such that V; € Q;, and take a
partition of unity {¢@;}1<j<n subordinate to the open covering {V;}1<j<nv.
IfQ; = ﬁj,k for some j € I',1 < k < n, then S intersects exceptional divisor
E transversally in ;. So we can take holomorphic functions Xi,--- , X, in
€; such that (X1) = Flg, and (X3) = S|, and dXy;--- ,dX, are linearly
independent. We trivialize the n-jet bundle of X on by

X3,

n

xO ... ’X’(Ll)’Xl(Z) XD
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where dX; = Xl(l) and Xm(k) = Xl(kH). There exists a meromorphic n-jet
differential w on {; such that .

0 0

Let B; be a holomorphic function in €; such that (,BZ) 7*Blq,. From
Lemma 2.2.5 it follows that

2 n(n-1)/2 %
IB’L X2

is logarithmic n-jet dlfferentlal along the divisor (Xl) + (X3) (cf. Noguchi
[Nogl]). So it follows that

~ We(H@ 2 BA I g0
i(f)log* = < Sxr), .
iy P 8 EOEE 2 < 5i(7)

by the same arguments as that in the proof of Lemma 2.3.2. If ; = 7~ Yu;)

for j € I”, the above mequahty also holds. Because X 5> Xisa
bimeromorphlc map, we have Sy(r) = ~(7') So we complete the proof. O

Theorem 2.6.2. Under the hypothesz’s of Lemma 2.6.1, we have

TH(r, 18]) + Ty (r, Kx) + +(n—1) ZT (r, [E3])

< Ny(r, *8) + %n(n ~ )Ty(r, L) + %n(n —1)> N(r, f*E;) + Ss(r).

i=1

Proof. Let e; € T'(X,[E;]) be a holomorphic section of E; such that (e;) =
E;. By Lemma 2.6.1, it follows that

n(n—

 IWe (Dl g rgl A2 T, lles F 6
/ log™ —— —
el=r 15 Fllz 2m

P
<——nn—1z #r, E;) + S¢(r).

Then we have
D

Tyt 81) + Tytr, Kz) — 2l =~ 1) S Tytr, [B]) ~ gn(n ~ VTY(r, D)
< No(r, F5) - %n(n ~1) Y my(r B) + (r).



Since N(r, f*E;) = TH(r, [E]) — m(r, B;) and Kg = Kx + (n — 1) Y0, E;
we complete the proof. a

Example 2.6.3. Let
S = {X& (1 X2 + 2 X2) + X¥ + X¢ = 0},

&1 7é O, 3] 7é O, |€1| 7é |€2|.
Then S is smooth except the point [1:0:0]. Let

™ : P*(C) = P(C)

be the blowing-up at [1: 0 : 0] € P%(C) and S be the proper transformation
of S. One can check that S is non-singular, and S intersects transversally
the exceptional divisor E of . Let f : C — P2(C) be a holomorphic map
and f : C — P2(C) be the lift of f. Put s = XZ2(e1X2 + £2X2), 5, = X9,
s2 = X¢. Then we construct a meromorphic partial projective connection V
on P?(C) as in §2. Then the degree of the pole of V is five. By Theorem 2.6.2,
we have : '
Tx(r, [S]) + T(r, [E]) — 8T¢(r, H) < No(r, f*S) + N(r, f*E) + Sy(r),

where H is a hyperplane bundle of P?(C). Because 7*S = S + 2E, and
Ty(r,H) = T(r,m*H) > T§(r, E), we have

9 .~ .
(1 — E>Tf(r’ H) < No(r, f*S) + N(r, f*E) + S¢(r).
O
Now we prove Theorem 0.0.2.

proof of Theorem 0.0.2. We construct the meromorphic partial projective
connection V on P?(C) as in §2. Then o1,...,0, are totally geodesic with
respect to V. When d = 1, the pole degree of V is 0. When d > 2, the pole
degree of V is 3 + ly + 1 + l5. Because o; intersects o; transversally for all
1 <14 # j < g, the divisor o1 + -+ + 04 + E is simple normal crossing, and
the divisor &y +- - - + 7, is smooth. (1) and (2) follow by the same arguments
as that in the proof of Theorem 2.6.2.
If 01,...,04 are in m-subgeneral position. We have



on P2(C). Tt follows that
Z Tf (T’ [JZ]) < Z Tf(r7 [a]) +m Z Tf<r7 [Ez]) (2'5)

Take hyperplanes {L,, L!}1<;<, in P*(C) such that L and L} pass through

27 K]
z;, and the divisor Hy + Hy + Hs + > 0_,(L; + L}) is in general position.
Then, by Cartan’s Second Main Theorem (cf, [Ca]) we have

ZTf( )+ ZTf [L'] +[L3]) — 3Ty(r, H)

< ZNQTH —l—ZNz(T (L + LH))"'Sf()

Let L’ and L” be proper transforms of L}, L} under the blowing-up 7. Since
Ty(r,L;+ L) = T5(r, L; + L;’ ) + 2THr, Ey),

.and
N(r, f*(L; + L)) = N(r, f*(Z; + L} + 2N(r, f* Ey),

we have

23 T
=1
<2y (r,f*E)JrZN'rf L +IY) +ZNzer)+Sf()

i=1 ) i=1 =1

By the First Main Theorem,
Ty(r, [LY) + [L7]) > N(r, F*(Z; + L))

Therefore we have

D » 3
S Tir, B) < SONC FE) + 5 S Nolr, FUH) 4 S5(0). (26)
=1 i=1 =1

Then we deduce (3) and (4) from (1), (2), (2.5), and (2.6). O
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Holomorphic curves into the product
space of the Riemann spheres

| 3.1 Ihtroduction

The purpose of this Chapter is to prove the second main theorem for a
holomorphic map from the complex plane C to the product space of the
one-dimensional projective spaces P!(C) x P(C).

The second main theorem for hypersurfaces in P!(C) x P}(C) is first
obtained in Noguchi [Nog5]. In Section 5 of Noguchi [Nog5], there are some
additional conditions for maps from C to P!(C) x P(C). In our paper, we
do not assume these conditions.

In Siu [Sil], a meromorphic connection is used to prove the second main
theorem. Because C*xC* is a Lie group, there exists the canonical connection
on C* x C*. We extend this connection to the meromorphic connection V
on P}(C) x P}(C). This meromorphic connction V is used in Section 5 of
Noguchi [Nogh]. We also use V to prove Theorem 0.0.3. This connection
does not “vary” under the blowing-up, and plays an important role in our
arguments.

" Let 4 : C*xC* — P}(C) xPL(C) be the inclusion map where C* = C\ {0}.
Then Z, is the compactification of the semi-Abelian variety C* x C*. If holo-
morphic map f : C — P}(C) x P}(C) does not intersect Hi o, H11, Ho 0, Ha 1,
then f is a holomorphic map from C to the semi-Abelian variety C* x C*.
In Noguchi, Winkelmann and Yamanoi [NWY1], [NWY3]|, the second main
theorem for holomorphic map f from C to a semi-Abelian variety A with D
is proved, where D is an effective reduced divisor on A. If A = C* x C*, and
D = D'+ D" in Theorem 1.2.5, Theorem 0.0.3 deals with the holomorphic
curves into A.
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3.2 Meromorphic connection“ and blowing-up

Let D', D" be divisors on P!(C) x P!(C) defined by the polynomials X5 Y —
XY, Xe'vr - Xr'YE . Let i . C*xC* — PY(C)xP(C) be the inclusion
map. Then supp:*D’ is a subgroup of C* x C*. Therefore there exists the
canonical connection V on C*x C* such that supp ¢*D’ is totally geodesic with
respect to V. This connection is extended to the meromorphic connection
on P}(C) x PY(C). We also denote this extended connection by V. Let
Uiy = {([Xo : X1], Yo : Y1]) € PH(C) x PH(C)|X; #0,Y; #0}, 0 <4, < L.
Take the canonical local coordinate system (z,w) on U;; ~ C x C. Then,
the meromorphic connection V is written by

—dz
i+ (5 %)

on U; ;. It is easy to see that suppi*D” is also totally geodesic with respect
to V.

The universal covering space of C* X C* is Cx C. The connection on CxC
which is induced by V is the flat connection d on CxC. Let f : C — C*x C*
be a non-constant holomorphic map, and let F' : C — C x C be the lift of f.
Then f' AV f =0 if and only if F is a translation of a linear map.

Lemma 3.2.1. Let f : C — P(C) x PY(C) be a non-constant holomorphic
map such that f(C) is not contained in the support of H;;, 1 =1,2, j =0,1.
Then f satisfies

f’ A Vflfl = 0,
if and only if f satisfies the following condition (%) or (ii):

(1) |
F(C€) c {(Xo : X1, [¥o : Yi]) € PH(C) x P*(C) | X5'Yg? — CX{'Y{* = 0},

for some (r1,7m2) € Z x Z\ {(0,0)} and some C € C\ {0}.

(ii) ,
There exist holomorphic functions g1,g2 on C and (a,b) € Cx C\ {(0,0)}
such that

f = (expgi,expgy) : C — PYC) x PX(C),

agr + bga = (constant),
on C.
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Proof. Without loss of generality, we may assume that f(0) € C* x C*. The
holomorphic map

(exp(2mv/—1-),exp(2mv/~1+)) : C x C = C* x C*,

is the universal covering of C* x C*. The induced connection on the covering
space C x C by V is the flat connection d. We put f = (fi, f2) where f; and
Jf2 are meromorphic functions on C. Let

1
hiz—lo ) =]_,2
ory=T &S
Assume that f' AV f' = 0. Then there exists a meromorphic function h on
C such that ' W) ‘ W)
' 1\2) ) _ g 112
() ) = (K3 )
on C. '
This means that

hi(z) = hi(0)exp H(z), i=1,2,

- 'in a simple connected neighborhood U of 0 € C. Here

H(z) = /0 " h()d.

If A}(0) = 0, it follows that h; is a constant function. Hence (k) (0), h5(0)) €
C x C\ {(0,0)}. It holds that

hi(2) = hL(0) /O exp H(t)dt + hi(0), i=1,2.

It follows that
h(0)ha(2) — Ky (0)ha(2) = hy(0)ha(0) — Ay (0)h2(0). |
Conversely, assume that there exists (a,b) € C x C\ {(0,0)} such that
ahy(z) + bha(z) = (constant),

on C. Then ak)(z) + bhh(2z) = 0,ah(z) + bh4(z) = 0. Therefore it follows
that f’ AN Vf/f, = 0.
Therefore f' AV f' = 0 if and only if there exists (a,b) € Cx C\ {(0,0)}
such that ‘ _
alog fi(z) + blog f2(2z) = (constant),
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on C.
Assume that

. alog fi(2) + blog f2(2) = c, o (3.1)
for some (a,b) € C x'C\ {(0,0)}, c € C. Without loss of generality, we may
assume that a = 1. For z € C, we put

fi(z2) = (z—x)"hi(2), i=1,2,

where r; € Z, hi(2) is a holomorphic function on an open neighborhood of
such that h;(z) # 0. Then, by (3.1), we have ry + bro = 0. When 7, # 0 for
some z € C, it follows that '

log(f1(2))™ + log(f2(2))™™ = rac.

Then it holds that the meromorphic function (fy(z))"2(f2(2))™™ is a constant
function on C. This means that ‘

F(©) c {([Xo : Xa), [% : Yi]) € PY(C) x P(C) | X[Yg* — CX32¥y = 0},

forri € Z, 1o € Z\ {0}, C € C. When ry =0 for all z € C, we have r; =0
for all x € C. This means that there exist holomorphic functions g;, g, on C
such that f; = expg;, ¢ =1,2. Then ¢g; + bgy = c.

Conversely, if f satisfies the condition (7) or (i¢). It is easy to see that
there exists (a,b) € C x C\ {(0,0)} such that '

alog f1(z) + blog f2(2) = (constant),
on C. ‘ ’ -0

Remark 3.2.2. The condition of (b) in Lemma 3.2.1 does not mean the .

algebraical degeneracy of f(C). For example, take
f(z) = (exp z,exp vV~12) : C — P}(C) x P*(C). |

The divisor ,

D'+D"+> Y Hy,

. =1 j=0
is not simple normal crossing at {([0 : 1],[0 : 1]), ([0 : 1],[1 : 0]),([1 : O],[0 :
1),(11 : 0],[1 = 0} < PYC) x PY(C). Put Z; = PYC) x P(C). Let
M0 Z1 — Zy be the blowing-up of Z, at the center {([0 : 1],[0 : 1]), ([0 :
1L [1:0]), (120,00 :1]),([1:0],[1:0)}. Let Df,D{,H; ;1 be the strict
transform of I, D", H; ; under 1, and let E; be the exceptional divisor of
7T1’0.
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If the divisor .
Dy + D7 + Z Z H; ;1 + Ex,
i=1 j=0
is not simple normal crossing in Z;, we blow up Z; at the points where that
divisor is not simple normal crossing. We repeat this process for several times.
We put the [-th blowing-up m;—1 : Z; =+ Z;_;. Let E; be the exceptional
divisor of m;;_;. We define :

Tji = Mit14 © Mit241 O " * O Wjj-1,

for i < j ( we define m;; =1d). Let Dj, D, H; ;, be the strict transform of
D', D", H,; under mp, and let E;;, 1 < ¢ <[, be the strict transform of E;
under ;.

Then there exists a positive integer k£ such that

2 1
D;c—l_‘D +ZZH’J’]€+ZEZ]C"
i=1 ]—O
is simple normal crossing. We put D' = s D" = Dy, I:Tu = H,;y, and

E; = By,

Example 3.2.3. Let D', D" be the divisor which are defined by the polyno-
mials
XoYo—Xivi,  X3YP - X7V

Let 1,0 : Z; — Z be the blowing-up as above. Then Dj+ +Zz-1 Z o Hijat
E); is not simple normal crossing at four points in Z;. Then 7r2 10 Z2 — 7y is
the blowing-up at these four points. We see that D}+ Dy +ZZ_1 St im0 Hijat

ZZ 1 Fs 2 is not simple normal crossing at two points in Z,. Then 7r3 o J3 —
Zs is the blowing-up at these two points. Then Dy+Dy+32 S o Hija+
ZZ 1 Ei 2 is normal crossing.

Let Ez’ and E;’ be irreducible components of E; such that m;o(supp F;) C
supp D’ and m;o(supp E}) C supp D”. Then E) = E} + E/, By = E, + EJ
and B = EY. Let E! and E! be the proper transform of E; and E!'. Then
it follows that o _

5,0 = D' + B, + 28,
and _ _ _ _
30D = D" + 2B/ + 3E) + 6 EL.
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Lemrha 3.2.4. There ezist affine open coverings {Ult1<s<n; of Z;, for 0 <
I <k, such that every Ul satisfies the following five conditions::
(i)

Ul~CxC.

Take the canonical local coordinate system (z,w) of UL.

(1)

2 1

SN Houlo+ Y. Eulo = (2) + (w),

i=1 j=0 1<

on UL
(iii)
Dilys = (2% —w?) (or (1—2"w?) respectively),

on U, where p' and ¢ are non-negative integers (p',q may depend on I and
s). ,
(iv)

2

Dlljp=(1-2""w") (or (¢ —w?) respectively),

on UL, where p" and ¢" are non-negative integers (p”,q" may depend on | and
s).
(v)
' : —dz g D

ToVloy =d + ( 0 _dw ) )
on UL.
Proof. We take affine open coverings {U!}1<,<n, by induction over I. For
I = 0, we put {U£}1S3S4 = {Ui,j}OSi,jSL Here Ui,j = {[XO : Xl],[Yb :
Y1) € PYC) x PY(C)|X; # 0,Y; # 0}. Then {U2}1<s<4 satisfies above five
conditions. Assume that we take the affine open covering {U!™'}1<scn,_,
of Z;_1 for I < k which satisfies the above five conditions. Let Uf"l S
{U}<o<n, .- Take the canonical local coordinate system (z,w) of Uf ™ ~
CxC.

If Dp_y|y = (27 = w?) for some positive integers p/,¢’. Then

DZ/—1|U]£"1 — (1 — Zp//wa/)’

for some non-negative integers p”, ¢”. The divisor

2 1 .
D, +D L, + Z Z Hiji1+ Z Eij1,

=1 j=0 1<i<l-1
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in Z;_, is not normal crossing at (0,0) € U/~'. Then(0,0) is contained in
the center of the blowing-up m;;—;. We have

T (UFY) = {((z,w), [Wo : WA]) € UFY x PY(C) | 2W; = wiWp).

Let Vi = {((z,w), [Wo : WA]) € w;- (Ui ) | W; # 0}, i = 0,1. Then {Vp, V1}
are affine open covering of wl,l_l(Ul 1). We show that affine open sets V; and
V1 satisfy the five conditions of lemma. Let v = Wi /W, be the holomorphic
function on V. Then (z,u) is the local coordinate system of Vj. It is easy to
verify that Vj satisfies (i), (ii), (iii) and (iv). Since

* — * —_
M1 = %, -~ Ty W= 24U,

2 0Y_(2a)(10
M1\ B, au ) T \ 8z dw u z )

Let I be the connection form of 7§, _, V|y;, with respect to the frame 8/8z,9/0u.
Then it follows that :

10 10 10\, [-% o0 10
= (0 f) () (0 (5 )L E)

we have

Since )
10\ (1 0
wz) T\ 1)
we have
0 0 1 0 —gz 0 10
P (e ) (B )(7 e ) (0 0)
0 0 z 0 1 0
= @ g T wa (dz+du) vz
_dz '
0 0\ r 0
= | & & )T 'yg_y<g+d_u> _dz _ du
(%)
= O __d_u .

Hence V; satisfies (v). In the same way, we can show that V; satisfies the
conditions of the lemma.
If

'

D;—llUi_l = (1 - zplwq,)> -DE/—1|U§_,1 = (zp - wq”),
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for some non-negative integers p’, ¢’ and some positive integers p”,q". In the
same way as above, we can take the affine open sets in m;~ ' (UF1) which
satisfy the five conditions of the lemma.
If ‘
Dicslypes = (=20, Diylgpos = (1~ "),

for some non-negative integers p', ¢', 9", ¢". Then U~! ~ T ! (UF) because

U!~! does not contain the center of the blOWing—up m—1. By the assumption
of induction, the affine open subset 7, ' (UF™) satisfies the five conditions
of the lemma.

This completes the proof. : O

3.3 Proof of the bigness of D' + D"

In this section, we show that D’ + D" is big in Z;. We note that there exists
the proof of the bigness for more general cases in Proposition 3.9. of [NWY3].

To prove the bigness of the line bundle D’ + D”, it is sufficient to show
the following lemma (cf. Theorem 2.2.16 of R. Lazarsfeld [Lal).

Lemma 3.3.1. The divisor D' + D" is nef and (D'+D")?>0.
Proof. Because ‘
(5/ + 5//)2 _ (1")’/)2 + 25/ . 5// + (1’5//)2’
it is enough to show that (D)2 = (D")? = 0 and D’ and D" are nef. Without
loss of generality, we may assume that m’ < n'. Let E] be the reduced d1v1sor-
on Z; such that
71 oD = D} +m'E;.
Let F' be the divisor on Z; such that
mt Dy =D + F.
It follows that
(D)2 = (w5 D’ — F' —m'n} , B))? |
= ('WZ,ODI)2 + (F')? + m'z(fr?:,lE{f — 27 oD’ - F'
+2m'F’ - w \Ey — 2m/n} By - mi o D
=2m/n’ + (F')? — 2m” — 2(D' + F' + m/n}, B) - F'
+2m'F' - m By — 2m'wy (B - (nf, D} 4+ m'my | EY)
= 2m'n' — 2m? — (F')? — 2D’ - F' — 2m'D, - E, — 2m”(E})>.
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Because D] - B = 2m/, we have
(D')? =2m'n’ — 2m — (F')* — 2D/ - F". (3.2)

If m' = n/, then D' = D), F' =0 and we have (D')? = 0.
Now we prove (D)% = 0 by the induction over the positive integer m'+n’.
Let E}, i =2,---k be reduced effective divisors on Z; such that

Supp( ’LZ 1D; 1 D:) =SU_ppE,:

Let E’ be the strict transform of E] under Tk There exist non-negative
integers as, ag, - - - ,a; such that

F:a2E5+03Eé+"' +ak£77,'c

Now we take another divisor A’ on P(C) x P!(C) which is defined by the
polynomial
Xgnly(.)n/_m/ _ X{nly"lnl_ml“

There is, as in Section 3, the sequence of the blowing-up

o : Wi —PYC) x P}C),

Op-1k—2 * Wio1 = Wi,

such that the following condition (k) satisfies:
Let S be the reduced divisor such that

2 1
supp (02_1,0 (A' +3°3 Hm‘) ) = supp S,
i=1 j=0

where 0x_11 = 01,00+ 00k_14—2. Then
(%) S is normal crossing in Wj_.

Let B; be the exceptional divisor of ¢;,-1, and let E; be the strict trans-
form of B; under ¢;41,0- - 0 0k_1-2. Let A’ be the strict transform of A’
under 61,90 -+ 0 Ok-1 k2. It follows that

(0'1’0 0:++0 O'k_l,k_Q)*Al = Zl + alzéi + a3§§ + e akf?,'c_l,
and

E:E;:le 1 B; , D -E=A-B_,,

41



forall2<i,5<k. Put G = a2§{ + a3§§ +o akég_l. We have

(F2=(, D-F=A4.G. - (3.3)
It follows that

(Z/)Q = (UZ—l,oA/ - G,)Z

=2m/(n' —m) — 205_, A" - G' + (G')?

=2m/(n' —m') - 2(A' + @) - G + (G")?

=2m/(n —m') — (G')* - 24" - G
By the assumption of the induction, we have

(@) 424 -G -2/ (0 —m) = 0. (34)
. By (3.2), (3.3) and (3.4), it follows that
(D')? = 2m/n’ —2m® — (F')>—2D' - F' = 2m/(n' —m) — (G')? — 24" - G’ = 0.

Then we complete the induction. By the same way, we can show that (5" )2 =
0. | |

Now we show that D’ is nef. Let m/ = dp, n’ = dq, where d is the greatest
common divisor of m’ and n’. Then it follows that

. d—1 .
Xé”'Yo”' - XY =[] (Y - (ea)'X7YY)
=0 :
where g4 = exp((2mv/~1)/d). Let C; be the irreducible divisor on P*(C) x
P}(C) which is defined by the polynomial X3Yy — (g4)'X?Y{, and let C;
be the strict transform of C; under mo. By the above arguments, we have

(Og) = 0. Because Cy and C;, 1 < i < d—1, are hnearly equivalent, we
have o _ _
C;-D' = (C)* = (Cy)* =0.

Therefore D' is nef. By the same way, we can show that 5” is nef. O

3.4 Proof of Theorem 0.0.3

Let f: C — P! (C) x PY(C) be the holomorphic map, let f:C — Zy be the
lift of f, and let ¥V = TeoV-

42




Zqg Z Zy —= 7y,

fT o7
-7

(c/

Let & € T(Z, [D')), & € T(Z, [D")), huy € T(Z, [Hs,)), & € T(Zx, Es) be
the holomorphic section such that
@ =D, @)=D" (hy)=H,; (&) =E.

Lemma 3.4.1. Assume that

f(C) ¢ supp (D' LD+ Z ZH”> ,

i=1 j=0

and assume that
I AVpf#EQ.
Then it follows that
/ log* —— _ IF A eflfl('z)ﬂ/\zizk @
e 1Pl 1E Pl gy Ton T Mo (Dl T N8Pl 5 27
= S¢(r). ' ’

Proof. For the convenience of the notation, we assume that D' and D" are
irreducible. Put

2 1
A':.5/+D” ZZEEJ_FZE
' i=1 j=0 i=1
and put
FAVAF(z
) 1P AT F @l ez,

D plE Pl ey T T Wi (Dl T 8Dy

Note that A is simple normal crossing in Zj.
Let

T € UUsuppH” ﬂUsuppEl.

“i=1j=0 =1
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By Lemma 3.2.4, there exists an afﬁne’opeh neighborhood U, of z and
local coordinate system z,,w, on U, which satisfies the five conditions of
Lemma 3.2.4. We put

V, = U, \ supp (D' + D),

and put _ B _
f]_:ZzOf, fZZwiof7
on f~1(V,). It follows that

o~

"A

<ll'

2w wwnh wwah) 0 0
ff <f1 __1f2+f1-f2f7i_1 fj) azx/\ ‘

on f~}(V,). Then it follows that )

~ ~ 2 ~ ~ ~ 2 ‘
_(AE f2 LY B_h(k) ) 3.5
£(z) e (fl) 77 <f2> «(f(2)), (3.5)

on f~1(V,), where &, is a smooth function on Ve

Let
2
z € supp D' N (U UsuppH” U UsuppE)

i=1j=0 i=1

2

. (or z €supp D’ N <U U supp H; U U suppE) , respectively)
: : i=145=0 §=1

By Lemma 3.2.4, there exists an affine open neighborhood U, of x and

local coordinate system z;,w, on U, which satisfies the five condition of

Lemma 3.2.4. Because D’ and D" are irreducible, it follows that

D'y, = (2 —1) (or D"|y, = ( — 1), respectively),

and z,(z) = 1,w;(x) = 0. We take 2, = 2, — 1. Let V be an affine open
subset of U, such that -

Aly, = (2) + (we),

e CERIE Y 0
e =+ (DT e, )

We note that z,(z) + 1+ 0 on f-1(V;). We put
fi=Zof, fa=wof,
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on f~1(V,). It follows that

~\ 2
= (flfz Rk R (b)) ) &9
= 1 I3
=20, 5
+ T (f(2))

“on f~Y(V;,), where ®, and ¥, are smooth functions on Vj.
Let z € supp D’ Nsupp D”. There exists an affine open neighborhood V,
of z and holomorphic functions z;,w, on V; such that

‘5/|Vz = (zw)’ ‘5”|Vm = (ww)a
Aly, = (z2) + (wa),
on V. It follows that dz, and dw, are linearly independent-on V. We put
}?1 = 2z 0 f~> .}é = Wz © }V

By Lemma 2.2.5, there exist holomorphic functions gy, g1, ko, h1 on V, such
that '

dz - Vi ' (1) = 9o(FNF () + 1 FFL () + FL (),
for all v € f~1(V;), and

dw, - V5 (y) = ho(F()) BV + M (FO)) B(Y) + B (),

for all v € f~1(V,). It follows that

J’ﬁ/\ﬁflfl
~ . e -
=7 (DRt MG+ ) ~ B (0DF+ 0 (NE+ )] 54 5o
Then it follows that
£2) =01 (AL + 0., (HL2 ' | (3.7)
fi o fa o s _
= f1 [2 = ffd =1 [2
+@m _;L"T_'_@m _’-"’—T—I_@CC, TT,
SNFF TP F T e E T
on f Y(V,), where ®, 1,...,®, 5 are smooth functions on V.
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Let R = {z € Z;| = is contained in two irreducible components of A }.
Note that R is a finite subset of Z;. For x € R, we take an affine open subset
V. and holomorphic functions z,,w, as above arguments. Then {V,},cg is
an open covering of Z;. We take an open covering {V.},cr of Zj such that
V) C V, and V] is relatively compact in V. We take a partition of unity
{ngz}zeR which is subordinate to the covering {V }weR Fix € R. Let
f1 = 2,0 f, fo = w, o f be a holomorphic function on f~(V;). Then f, and
fo are extended to meromorphic functions on C. By (3.5), (3.6) and (3.7),
we have : v '

[ a(Fenost g
oL L F@1ds
< [, T3 [ e

2 If”( )|d9 e _ ﬁ
+Z;/IZI~TI &' 1fi(2)] 27 +/|z|=T10g+¢z(f(%))lf1(z)|27r,

=

where T is a bounded smooth function on Z;. By using the lemma on loga-
rithmic derivative, it follows that

If’(v)l do
1 < SHr).
/7|~r ¢ Foyran =5
It holds that

1 2
[ et aFenfong -3 [ e sF@rierg

- d9
[ ot 1G5+ o‘<1>,

de

<

N —

where || - |7z, is a hermitian metric of TZ;. By the lemma on logarithmic
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derivative and the concavity of log, we have that

1 ~ do
ot log™ || 2 =
/.z _Jog* 17 )l

2
<3/, Tlog{llf( Wz, + 135
< jog (1+ . 17 () ;w) +0()
< %log (1 + %% - ||f"(z)}|%zkgdz A dz?) +0(1)
<ios (14 o ([ 1PN T naz) ) o)

e (1+2(2 2 PG, Y iz na) M) + o)
< 3log (1 + ( / i /| I (s e dz) W)Z) +o)|
< S4(r)

where 6 is any positive_ number.
Because ) . ¢:(f) =1 on C, it follows that-

/l g de =3 [ el ogm ) < 550,

2T ZER |z|=r

The following lemma is useful.

Lemma 3.4.2. It follows that

2 1

2 1
2.2 mhofha =2 Y +ZE
i=1 j=0 i=1

i=1 j=0

Proof. Let the divisor H;;; on Z; be the strict transform of H; ; under m,
and let F;;, 1 <1, be the strict transform of E; under m;;, where Ey; = E.
We show




by induction over I. If [ = 1, we have
2 1 : 2 1 ’
DD ot =2 ) Hiji+2E:
i=1 j=0 - =1 j=0

Therefore the statement of the induction holds for [ = 1. Assume that the
statement holds for [ — 1,1 <[ < k. Let C; 7 = 1,2,...,r be irreducible
divisor on Z;_; such that

1 T
supp (Z >, 7rl*—1,OHi,j> = Jsupp C:.

i=1 j=0 =1
There exist positive integers ay,as, ..., a, such that
' 2 1 r
Z Z W?—l,OH’i,j = Z Cl,iCZ
i=1 j=0 i=1

By the assumption-of the induction, we have

l T

* —
E :ﬂ-l,iEi = _S_ :(a -
=1 =1

Let z € Z;_; be one of the points of the center of m;;_1, and let F; be the
irreducible component of E; such that m;_i(supp F;) = z. Assume that
z € suppC, NsuppC, for 1 < p < g < r. Then the coefficients of F;
in $2 Zjl.zo 7 oH;; is a, + ag, and the coefficient of F; in st 7By is
ap + ag — 2. Therefore we have

2 1 l 2 1
> D mioHi =Y miBi=3 ) Hiju+ Y By
i=1 j=0 i=1 i=1 j= i=1
This complete the induction, and the lemma follows. : |

Proof Theorem 0.0.3. We put Wg (f) =F AV f,f’. We denote by ord, g the
order of zero of g at z, where g is a holomorphic section of a line bundle on a
neighborhood of z. By (3.5), (3.6) and (3.7) in Lemma 3.4.1, it follows that

o, (777 DT DLTAD ) - nt. (207)

< min{ord &(f),2} +m1n{ord a"(f),2}v

-l—ZZZmln{ord hzg(f 1}+22m1n{ord e,(f) 1}.

i=17=0
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Therefore it follows that

2 1 k
TH(r,Kz,) + THr,[D'+ D']) + Z Z THr,Hij) + > THr,E;) (3.8)
=1

=1 j

2 1
<Ny(r, D) + Ny(r, FD") 423 % (e

=1 j=0

+2 ) Ni(r, FE;) + S¢(r),

1<i<k

where Kz, is the canonical line bundle of Z;. The canonical line bundle of
Zy, is equal to '

WZ,OKPI(C)xPI(C) + g B+ Wz,zEz +.--+ E.
By Lemma 3.4.2, it follows that '

2 1

—Ty(r, KPI(C)xPl(C)) = Ty(r,0(2,2)) ZZTf(T TeoHij) (3.9)

i=1 j=0

‘+2ZZN1(T, ~*ﬁi,j)+2ZNl( r, FPE) + S(r).

By Lemma 3.2.1 and Lemma 3.3.1, Theorem 0.0.3 follows. O

Corollary 3.4.3. Let f : C — C* x C* C P}(C) x P}(C) be a non-constant
map. Assume that

F(©) & {([Xo: Xul, [Ye : Y1]) € PY(C) x P1(C) | CoX'Yg” — CLXT'Yy? =0},

for all (r1,72) € Z x Z\ {(0,0)} and all (Cp,C1) € C x C\ {(0,0)}, and
assume that there exists no (a,b) € C x C\ {(0,0)} such that

alog f1 + blog fo = (constant),
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on C. Then it follows that

TH(r, [D]) < Nz(r,vf*D') + No(r, f*D") + Sy(r).

Proof. Because Ny(r, f*ﬁ”) = 0 and Ny(r, f*E’z) = 0, we have the corollary.

O
Example 3.4.4. Let D', D" be the divisor which are defined by the polyno-
mials
XoYo — Xi¥1,  XoY1 — XiYe.
Then

2 1
Dy +D{+3Y" N Hii+ B,

i=1 j=0
is normal crossing in Z;. Therefore D' = D!, D" = D7. Let E(g,0), E0,00)> E(00,0)> E(oo,00)
be irreducible components of E; such that

mo(supp Eoy) = ([0:1],[0:1]),  mo(supp E,e)) = ([0: 1], [1 :’O]),

T1,0(8UPP E(eo0)) = ([1:0,[0:1]),  m10(5upp Eeo,e0)) = ([1 : 0], [1 : 0]).
Let f = (fi, f2) : C = Z, be a non-constant holomorphic map, and let
f : C — Z; be the lift of f. It follows that -

TH(r,[D']) = T(r, [77,D']) — T#(r, [Eo,00)]) — T#(r; [Efeo))),

and

To(r, I3, D)) = Ty(r, O(1,1)) = T(r, f2) + T(r, fo),

where

: do
Tir, £ = [ 108" il + NG (o),
for ¢ = 1,2. By the first main theorem, we have
THr, Eo0) = N(r, [*Eo00)) +m5(r, Eo,00)),

Tf(,r’ E(OO)O)) = N(/r, f*E(Oo)O)> + mf(r’ E(OO,O))

It holds that
1w
AP+ 1f P2

’I’I’LJT(’I’, E(O,oo)) = /I 10g+

and

1 do
m#Hr, Boo0) = / log™ = S0
lol=r [f 1+ Rl
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By these equations, we have
Ts(r, D) = N(r, (f1)oo) + N(r, (f2)oo) = N(r, F*E(000)) = N(r, F* E(oo )

do
+ [ (og" 5] +log" 5D) 5
|z|=r a0

1
[ (o e o)
= AP+ [P+ 1R 2

Let f1 = P(z), fo = exp z, where P(z) is a polynomial of degree p on C.
Then T(r, f1) = plogr + O(1), and T(r, ) = |r| + O(1). Because

_|_

1 1
log ‘ < 10g+ Tz |?
VIAP + 1517 Al

it follows that
mi(r, Eo,e)) < T(r, f{*) = T(r, f) + O(1) = plog|r| + O(1).

Therefore we have
' m#r, E(o,00)) = o(r).
By the same arguments, we have
m(r, E(co,0)) = 0(r)-
Then it holds that _ , _
TH(r,D') = r+o(r).

Let D’ and D" be divisors on P}(C) x P}(C) which are defined by the
polynomials : '
XPYP - XPYP,  XPYP - XPYP

(i,e,, m=m'=n" and n =n' =m”. ) We have the following theorem.

Theorem 3.4.5. Let f: C — P*(C) x PY(C) be a non-constant holomorphic
“map. Let f:C — Z; be the lift of f. Assume that

F(©) Z {([X0 : X1], [¥o : 11]) € PH(C) x P(C) | CoXIYT? — CL XY = 0},

for all (ri,r3) € Z x Z\ {(0,0)} and all (Cp,C1) € C x C\ {(0,0)}, and
assume that there exist no holomorphic functions g1, 92 on C and no (a,b) €
Cx C\{(0,0)} such that

f=(expg,expgs) : C— PY(C) x P(C),
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ag1 + bgz = (constant),

on C. -Then it follows that
: 4 A A 7 * . |
(]. _ m——I—n) Tf’(’l", [Dl —+ _D”]) S NQ(T’, f D,) + NQ("', f D”) + Sf(’l")

Proof. Let a; = min{m,n}. It follows that
T o(D' + D") = D} + Df + a1 Fx,

- on Zy, where D] and DY are proper transform of D' and D" under 7. Let

as = min{max{m,n} — a1,a:} < a;" It follows that
Ty o(D' + D") = Dy + Dy + axE; + aymj  F,

on Zy, where Dy and D; are proper transform of D' and D” under myp.
Repeating this process, there exist positive integers as --- ,a; such that

k
WZ,O(DI —+ D”) = EI —+ 5” -+ Z aiﬂ-z,iEi-
i=1

Without loss of generality, we may assume that m < n. Then it holds
that m >a; > as > --- > ag. It follows that

: k
To(r, (B + D)) 2 Ty, m O + mym+ ) —m > Tr(r, mi ).
; ‘ i=1
By Lemma 3.4.2, we have
2 1 _ k k _
Tf('r’ WZ,OO@? 2)) = Z Z TfN(r’ Hi,j) + Z T]';(T‘, ﬂ'z,z’Ei) + Z Tf('ra Ey)
i=1 j=0 i=1 i=1
Then we have
T4(r, D' + D"))
m+n i m-+n i
> = (T;(r, m00(2,2)) = Y TH(r, vrz,z-E») + ( S m) > Txr, 7t )
i=1 i=1
o (2 _ k _
> (D3 )+ 3T )
=1 j=0 i=1

By Theorem 0.0.3, it follows. that

B < N TS 8 T, ST
TJ?(T', [D/+D”]) S NQ(?", f Dl)+N2(T, f D”>)—|—m—_|_n'Tf(’r', [D,+D//])+Sf(’f')
Then the theorem follows. . O
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Corollary 3.4.6. Assume the hypothesis of Theorem 3.4.5, and assume that

#(C) € P(C) x P(C) \ supp (D' + D",
If m +n > 5, then it follows that f(C) C suppH,; fori=1,2 and j =0, 1.

Proof. Assume that f(C) is not contained in the support of 2 E}:o H;;.
By Theorem 3.4.5, f satisfies the following condition () or condition (44):

(i) f(C) c{({X: Xi],[%: ¥i]) € PHC)xP (C) | X3 Y{*~CLX]' Y] = 0},
| for some (r1,72) € Z X Z \ {(0,0)} and some C; € C\ {(0)}.

(i)  There exist holomorphic functions gi,g2 on C and (a,b) € C x C\
{(0,0)} such that : :

f = (expgi,exp go) : C = P'(C) x P'(C),
agi + bgs = (constant),
on C.
If f satisfies condition (i), without loss of generality, we may assume that
ry > 0,79 > 0. Assume that 7o > 0. Let R be an irreducible component
of {X§'Yy? — CXT'Y{? = 0}. Then ([0 : 1],[1 : 0]),([1 : 0],[0 : 1)) €

supp R Nsuppl’, and supp R Nsupp D” contains at least one point which is
not ([0 : 1],[1: 0]) nor ([1:0],[0: 1]). Therefore the holomorphic map

f: C — supp R\ supp (D' + D")

is a constant map.
Assume that 7, = 0. We have

F(€) c{([Xo : Xu], [Yo : 1]) € P(C) x P(C) | Xg' — CXT* = 0}.

Let S be an irreducible component of { X' —CX7{* = 0}. Because m+n > 5,
m or n is more than 2, it follows that supp S Nsupp D’ or supp S N supp D"
contains at least three points. Then f is a constant map.

If f satisfies condition (ii), it is easy to see that f is a constant map. O

Remark 3.4.7. Let 210 = ([0 : 1],{1 : 1)), 21,0 = ([1 : 0,1 : 1]), 220 =
([1:1],[0:1]),221 = ([1:1],[1:0]) € Zo = P(C) x P}(C). Let W = Z; \
supp D'Usupp D", and let W* = W\ {z1, 11, 20, T21 }. By Corollary 3.4.6,
there exist no non-constant holomorphic maps from C to W*.

Let ¢ : W* — W be the inclusion map, and let dy«, dy be the Kobayashi
pseudo distance of W*, W (see Noguchi-Ochiai [NOJ). By Proposition 1.3.14.
of [NOJ], we have t*dw = dw,. Therefore W* is Brody hyperbolic but not
Kobayashi hyperbolic.
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Kobayashi hyperbolic imbeddings into |
toric varieties

4.1 Introduction

We fix a free module N = Z" of rank 7 over the ring Z of rational integers.
Let M := Homg(N,Z) = Z" be the dual Z-module of N. Let

(,): MxN—=Z

be the canonical Z-bilinear pairing. Let T := Homgz (M, C*) = (C*)" be the
r-dimensional algebraic torus. Let S be a finite subset of M. Let D be a
divisor on T which is defined by a Laurent polynomial

) E aIz?[l...z;T,

I=(i1,..,,i»r)ES

where a; € C*. ‘

By the main theorem of [Nog4], every entire curve f : C — T \supp D is
algebraically degenerate, i.e., the image of f is contained in a proper subvari-
ety of Tyy. In this paper, we deal with Kobayashi hyperbolicity of Ty \supp D,
-where f: C — T \ supp D is most degenerate to a constant. Moreover, we

give a characterization of D such that Ty \supp D is Kobayashi hyperbolically
imbedded into a toric variety.
Now, we recall some basic facts about Kobayashi hyperbolic imbedding.
. The concept of Kobayashi hyperbolic imbedding was introduced in
Kobayashi [Kol] to obtain a generalization of the big Picard theorem. The
classical big Picard theorem is stated as follows:
If a function f holomorphic on the punctured disk in C omits {0,1} C C,
then f can be extended to a meromorphic function on the full disk.
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Recall that C\ {0,1} is Kobayashi hyperbolically imbedded into P!(C).
- The following generalization of the big Picard theorem obtained in [Ki]:

Let X be an m-dimensional complex manifold and let A be a closed com-
plex subspace of X consisting of hypersurfaces with normal crossing singu-
larities. Let Z be a compler space and Y be a complex subspace of Z. If
Y is Kobayashi hyperbolically imbedded into Z, then every holomorphic map
h:X\ A—Y extends to a holomorphic map h:X = Z.

Kobayashi hyperbolic imbedding is also closely related to the structure
of a family of holomorphic mappings (see, e.g., [Ko2] Chap. 6, [Nog3]).

It is a famous conjecture proposed by S. Kobayashi that P*(C) \ YV is
Kobayashi hyperbolically imbedded into P™*(C) if Y is a generic hypersurface
of degree d > 2n+1. H. Fujimoto proved in [Fu] that Kobayashi conjecture is
true if Y is a-union of hyperplanes in P*(C), i.e., P*(C) \U?=1 H; is Kobayashi
hyperbolically imbedded into P*(C) if Hy, ..., H; are hyperplanes in general
position and d > 2n+1. As a special case of theorem, we obtain the following:

Corollary 4.1.1. Let Hy, ..., Hyi1 be hyperplanes of P*(C) in general po-
sition, and let Y be a general hypersurface of degree d in P™"(C). Ifd > n,

then -
P™(C) \ (U H; U Y)

=1
is Kobayashi hyperbolically imbedded into P™(C).

If an algebraic divisor D on T} is a union of translations of subtori in T,
it is much more elementary to prove the existence of a toric variety into which

Tn \ supp D is Kobayashi hyperbolically imbedded. Let D;, i =1,...,q be
an algebraic divisor on T which is defined by

Q4,1

z czhhr — ;= 0,

where (a;1,...,0:,) € M = Z" and ¢; € C* for i = 1,...,q. Put a; =
(a;1,-..,0;,) € M. Assume that Mg is generated by ay,...,aq, ie.,

Mg = {k1a1+---+kqaq € M]R|(k,'1,...,kq) ERq}.
Then the following theorem holds.

Theorem 4.1.2. There ezists a toric projective variety X such that
T\ supp (37, D;) is Kobayashi hyperbolically imbedded into X .
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4.2 Brody hyperbolicity of Ty \ supp D

In this section, we prove the Brody hyperbolicity of Ty \ supp D. First, we
show the following lemma.

Lemma 4.2.1. Letl € N. Let Si,...,Si11 be subsets of Z such that §(S;) <
oo forj=1,...,04+ 1. Let Qi(#1,...,2), ..., Quyi(21,...,2) be Laurent
polynomials of Clz1,277,. .., 21,2 "] such that

Qi(z,...,21) = Z a; 12 - 2,

forj=1,...,1+1. Letd; =4(S;), and let N =Y \* d;. Then Q1,...,Qun1
have no common zero point in (C*)! for general |... : (SN AR SR
RN S ] € ]P)N_l((C). v

- Proof. Let Z be the subvariety in (C*)! x PN~1(C) defined by
{((Zl, ,Zl), [ TS ]) S (C*)l X ]P)N_l((C) I
) Z aj)Izil...zzlzoforj:]_,...,l+].}.

I=(i1,...,i;)ES;

For z € (C*)!, we denote the fiber of Z over z by Z,. Then

41
dimZ, <Y di—(+1)—1=N-1-2

i=1

It follows that dimZ < (N —1—2)+1= N —2. Let p: (C*)! x PN=}(C) —
- PN=1(C) be the projection. Then dimp(Z) < N — 2, and p(Z) is contained

in a proper subvariety of PN=Y(C). If [...:ayr:... 027 ... :aqp17:...] €
PN-1(C) is not contained in p(Z), then Q,..., Q.1 have no common zero
point in (C*)%. O

Lemma 4.2.2. Let S be a finite subset in M. Assume the following condi-
tion. ‘ _ ,
Let H € Hg, and let ¢g : Mr — Mg/H be the canonical morphisrﬁ.

Then §(¢(S)) = r+1 for all H € Hg, where §(¢(S)) is the number of
the elements in {¢(y) € Mr/H |y € S}.

Then TN \ supp D and supp D contain no translation of positive dimensional
subtorus in T for a general divisor D of the linear system

{025 -+ 2} ir iny.inyes) on Ty
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Proof. Let H € Hg, and let (hy,...,h,) € M" be a Z-basis of M such that
hy,. .., hr—1 generate an R-vector subspace H. Wedenote h; = (hz 1., Rip) €

Mfori=1,...,r. Letu; := z?” zr” It follows that C[zy, 27, ..., 2, 2771 =
Clug,urt, ... ur,ust]. Let [ ...} € PHS)-Y(C), and let
Z afzil et
I=(i1,...,ir)ES
be a Laurent polynomial in Clzy, 21 L 2, z7']. Then there exist non-zero
Laurent polynomials Q1 (u1, .- -, %r—1),- .., Qe(x1,...,Ur_1)
in C[ul,ul_l, ... ,ur_l,ur_._ll] and integers d1 < dy < -+ < d; such that
t
Z apz -z = ZQi(ul’ e U U,
I=(i1,..ir)ES i=1

By the condition of the lemma, it follows that ¢ > r 4+ 1. Because of
Lemma 4.2.1, there exists a proper subvarlety Yy in PHS)~1(C) which satisfies
the followmg

Ifl...:ar:...] € PAS-YC) is not contained in Yy, then qusza o @
have no common zero point in (C*)™! forany 1< j1 <jp<...<j <t

Since the number of the elements in H g is finite, | J Hews YH is a subvariety
of PH()- l(C) :

Fix [...:a7:...] € ]P’”(S)_l(C) which is not contained in (Jpepy, Ya. Let
D be the divisor of Ty defined by the Laurent polynomial

E arzit 2T

I=(i1,...;ir)ES

Let Y be a translation of subtorus in Ty such that 1 < dimY <r—1. Let
k be the codimension of Y. There exist primitive elements

by = (b1,17 e 7'b1,r), by = (bk,h RN bk,r) € M and ¢,...,c, € C* such
that

S={(z1,...,2) € (C) |2 ..o =¢; for j=1,...,k}.

Let W be the subspace in Mg which is generated by by,...,b;. Let W’ be
the largest subspace of W generated by elements in £g. Define the canonical
morphisms ¢y : Mg — Mg/W, ¢w: : Mg — Mg/W' ¢ : Mr/W' — Mg/W.
By the definition of W', 9 is injective on ¢y (S). Without loss of generality,
we may assume that by,...,b is a basis of W’ where [ < k. There exist
bk+1 = (bk_|_1’1, e 7bk—|—1,r)a ce ,br = (b,,.,l, ceey br,r) € M such that bl, v ,br be

57




. b b b L
a basis of M. Put u; = 2" - 22", ..., up = 2,7 -+ - 22”7, There exist the
canonical isomorphisms

M/(W' QM) ~ Zbyy + -+ Zb, ~ 277,
M/(WNM) =~ Zbyy+ -+ Zb, = Z7F,

where Zbyy1 + - - - + Zb, (vesp. Zbgy1 + - - - + Zb,) is the Z-module generated
by biy1,. .., br (resp. bga1,--.,by). Therefore, we may assume that

wi(S) C Zhyyy + - -+ Zb, ~ 277,

and
w(S) C Zbpyy + -+ Zb, ~ 77,

 Let Qr(uy,...,uw) (resp. Ry(uy,...,ux)) be a Laurent polynomial of

R -1 -1 -1
Clug,ui, ..., u,u; ] (vesp. Clug,ui, ..., uk, uy ) such that
i ir 41 i
E arzit - 2r = g Qu(ug, .., w)u - ulr
I:(il ..... ir)eS J/=(jl/+1,...,j.;.)€¢wl(s)
_ Jk+1 j
.= E RJ(ul,.‘.,uk)ukH : -uﬁr.

J=(jk+17'"7j’r)e¢W(S)

We take H € Hg such that W' C H. Because [...: a7 :...] € PH9-YC) is
not contained in Yy, there exist at least two elements in {J'} ¢4, (s) such
that Q(c1,...,¢) # 0. Since ¢ is a one-to-one correspondence between

dw(S) and ¢w (S), there exist at least two elements in {J }reow(s) such that
Rj(cy,y...,cr) # 0. It follows that

. Jr41 jir
Dy : E Ry{cy,...,cr)upyi - ulm =0,
J=(Jr415e-0Jr)ESW (S) ‘

since Y = {(u1,...,ur) € (C*)"|u1 =c1,...,ux = cx}. Hence Y Nsupp D #
f and Y ¢ supp D This completes the proof (|

The following theorem is proved in [Nog4].

Theorem 4.2.3 ([Nog4, Main Theorem, Proposition 1.8]). Let D be an al-
gebraic effective reduced divisor of a semi-Abelian variety A over the complex
number field C (D may be the zero-divisor). Let f : C — A\ supp D be an
arbitrary holomorphic mapping. Then the Zariski closure B of the image of
f in A is a translate of a semi-Abelian subvariety of A, and BNsupp D = (.

By Lemma 4.2.2 and Theorem 4.2.3, the following theorem holds.
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Theorem 4.2.4. Let S be a finite subset in M. Assume the following con-
dition.

Let H € Hg, and let g : Mg — Mg/H be the canonical morphism.
Then §(¢u(S)) > r+1 for all H € Hg, where §(du(S)) is the number
of the elements in {¢pu(y) € Mr/H |y € S}.

Then Ty \ supp D and supp D have no non-constant holomorphic map from
 C for a general divisor D of the linear system |{z}1z§2 2 Hirsiz,in)es| on
Tn.

4.3 Proof of Theorem 0.0.4

Let P be an integral convex polytope in Mg such that dim P = r. Let D be
an algebraic effective reduced divisor on T)y. There exists the toric projective
variety X which is associated to P. We denote the closure of D in X by D. ‘
There exist Ty-invariant irreducible (Well) divisors Ajy,..., A in Ty such
that X\Uz 1A =Ty.

Lemma 4.3.1. Assume that the following two conditions are satisfied.
(a) There exists neither non-constant holomorphic map
f:C—Ty\supp D,

nor non-constant map
f:C—suppD.

(b) For any partition of indices I UJ = {1,2,...,k}, there exists neither
non-constant holomorphic map

f:(C—)ﬂA,-\(UAjUsuppﬁ),

el jeJ

nor non-constant holomorphic map

f:C— (ﬂAiﬂsuppﬁ)\UAj.

i€l jed

Then T \ supp D is Kobayashi hyperbolically imbedded in X .
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Proof. Assume Ty \ supp D is not Kobayashi hyperbolically imbedded in X.
Then there exists a non-constant holomorphic map f : C — X which satisfies
the following condition (see Theorem (3.6.5) of Kobayashi [Ko2]):

For any R >0, there exists a sequence of holomorphic maps f; : Dr —
- Tn\suppD fori=1,2,..., such that { f;}i=12,. converges uniformly on any
compact sets in Dy to f. Here Dp = {2z € C||z| < R}.

Let A be the fan of the toric projective variety X. Assume that f(z) € A;
for some ¢ and z € C. There exists an r-dimensional convex cone ¢ € A such
that

f(z) € U, := SpecClo¥ N M], -
where ¢ = {m € Mg|(z,m) > 0 for all x € o}. There exist hy,...,h, €
Cle¥ N M] such that

ANU,={h =0}N---Nn{h, =0},

and {h; =0} NTy =0 forall j = 1,...,p. Let B be a sufficiently small
neighborhood of z. Because f;(B) is contained in U, N Ty for large j, it
follows that hjo f; #0 on B for I = 1,...,p and large j. Then hjo f =0
on B for I =1,...,p by Hurwitz theorem. It follows that f(C) is contained
in A;. Hence, f(C)NA; =0 or f(C) C Aj for all j = 1,...,k By the
same argument, it follows that f(C) Nsupp D = 0 or f(C) C supp D. This
contradicts the assumption of the lemma. O

Proof of Theorem 0.0.4. Let [... : a; : ...] € PHS)=Y(C), and let D be the
divisor on Ty defined by the Laurent polynomial

E arzyt -z =0.

I=(i1,..‘,l7‘)€S .
We show that X and D satisfy the conditions (a), (b) of Lemma 4.3.1 for
general [... : a7 : ...] € PH9-Y(C). By Theorem 4.2.4, the condition (a)
of Lemma 4.3.1 holds for general [... : a; : ...] € PHS=YC). Let I,J be

a partition of {1,2,...,k}. Let Z be an irreducible component of [,.; 4.
Because there exists the one-to-one correspondence between the faces of P
and the Ty-invariant irreducible subvarieties in X (see §2.3 of Oda [Od)),
there exists the face T of P which correspondes to Z. Let [ be the dimension of
Vinp. Fixabasisby = (by1,...,b010),...,00 = (bi1,...,bir) € M of Z-module
Vinp N M. Then there is the canonical isomorphism Vynp N M ~ Z!. Let
up = 2wy =2 M Then 7\ Ujes A; is biholomorphic
to Spec Clug,u?, ..., u,u;"]. Let z € 7N S. It follows that TN S —z €
Vins MM =~ Z". Hence (D\J;.; 4,)|z is defined by the Laurent polynomial

jed

E CI’u7il oo u'l”7

I'=(i1,...,i1)e™NS—2
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where ¢y is equal to some element of {a;}sey. By the assumption of Theo-
rem 0.0.4 and Theorem 4.2.4, there exists neither non-constant holomorphic

map
f:(C—)ﬂAz-\(UAjUsuppI_)),

, i€l jeJ
nor non-constant holomorphic map
f:C— (ﬂAiﬂsuppE) \ UAJ"
i€l ' jeJ
Hence the condition (b) of Lemma 4.3.1 holds. This completes the proof. O

" The following proposition gives examples of P and S which satisfy the
conditions of Theorem 0.0.4.

Proposition 4.3.2. Let S be a finite subset of M, and let P be an integral
convez polytope in Mp such that S C P. Let g be any one-dimensional face of
P. If#(oNS) > r+1, then P satisfies the conditions (i), (ii) of Theorem 0.0.4.

Proof. Let T be a positive dimensional face of P. It is easy to see that T
satisfies the condition (i) of Theorem 0.0.4. Let H € H,ng. There exists a
one-dimensional face g of 7 such that p —x ¢ H for x € 7N S. Then it
follows that

H(pa(tN S — ) > H¢g(enS — as)) >r+1>dim7+1,

where ¢ : Erng — E;ng/H is the canonical morphism. This completes the
proof. |

Now we prove Corollary 4.1.1. Let d > r. Let

‘P={(CE1,...,$T')EMR| széd, xZZO for ’izl,...,’l"},

1=1

and let

SI{($1>---,$r)€M[in§d, ;>0 for i=1,...,7}.

i=1

Then the toric variety X defined by P is r-dimensional complex projective
space P"(C), and elements in the linear system |[{21"25? - - - 27 } 4, 4o, i)es| are
d-dimensional hypersurfaces of P"(C). It is easy to verify that S and P satisfy

the assumption of Proposition 4.3.2.
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Example 4.3.3. Let S = {(0,0),(2,0),(0,2),(1,2),(2,1)}. Let D be a divi-
sor on C* x C* = Spec C|zy, 2%, 22, 2 *] defined by the following polynomial:

2 2 2 2
apo + G2027 + Qo225 + Q122125 + Q2121 22,

where [ago : ag : doz : a1z : ag1] is a géneric point of P*(C). The following
cases satisfy the conditions of Theorem 0.0.4.

(1) Take P = {(21,2) € Mp |z + 20 < 3,20 > 0,20 > 0}. Then X is the
two-dimensional complex projective space P?(C).

(2) Take P = {(21722) € Mg ‘ 271+2<3,2120,202>20,20 < 2} Then X
is the Hirzebruch surface F;.

(3) Take P = {(21,22) € Mg |2 > 0,29 > 0,2, < 2,20 <2}. Then X is the
product space of the one-dimensional projective spaces P}(C) x P(C).

(4) Take P = {(z1,20) € MR |21 +22 < 3,21 > 0,20 > 0,21 < ‘2‘,22 < 2}
Then X is a one-point blowing-up of P}(C) x P1(C).

4.4 Proof of Theorem 4.1.2

In this section, we deal with an algebraic divisor on T which is a union of
translations of subtori. Let D;, i = 1,...,q be the algebraic divisor on Tx
which is defined by

ai,1

Zl v Zg’i,"‘ —c = 0’

where (a;1,...,0;,,) € M =Z" and ¢; € C* for 1 = 1,...,q. Put a; =
(@s1,...,0ir) € M. Assume that R-vector space Mg is generated by a1, . . ., aq,
ie.,

My = {k1a1+---—|-kqaq c MRI(k17"'7kq) € ]Rq}
Let I = (61,...,04) € {—1,+1}7 where §; = —1 or (+1). Let

Cr =Rxo(61a1) + - - + Rxo(d,a,),
where
Ryo(61a1)+ - ~+Rx0(6,a4) = {r161a1+- - -+7r,0,0, € Mg |1 >0,...,7, > 0}.
Then Cj is a convex rational polyhedral cone. We put

I = {C[ C Mg I Ie {—1,+1}q},
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and we put .
={C € II | C is strongly convex }.

The strong convexity of cone means that it contains no nonzero subspace of
M]R. Let
A(ry={CY c Ng|C e II'},

where
= {v € Ng| (v,m) >0 for all' m € C}.

Then A(r) is a finite set of r-dimensional strongly convex rational polyhedral
cones in Ng. Here the dimension of a cone ¢ is the dimension of the smallest

R-subspace of Ng containing o. Let A be the collection of all faces of cones
in A(r), ie

A = {o C Ng| there exists 7 € A(r) such that o is a face of 7 }.

Because elements in A(r) are strongly convex rational polyhedral cones, A
is a collection of strongly convex rational polyhedral cones.

Lemma 4.4.1. The collection A is a finite and complete fan in N, i.e., A
satisfies the following conditions:

(i) Every face of any o € A is contained in A.
(i) For any o,0’ € A, the intersection o N o’ is a face of both o and o’.

(i) A is a finite set and the support |A| = U,cq 0 coincides with the entire
Ng.

Proof. (1) is clear by the definition.

Let 0 € A(r), and let 7 € A. We show that o N7 is a face of 0. By
the definition, there exists ¢’ € A(r) and m € ¢’V such that 7 = o' N {m}+,
where {m}+ = {v &€ Ng| (v,m) = 0}. There exist 1 < j; <--- < 5; < g such

that z

cNao’ ' =on m{ajk}J'.
k=1 ,
It follows that o N o’ is a face of o. Because m € (0 N ¢')Y, it follows that
oNT=(cNo’)N{m}tisa face of ¢ No’. Hence o N7 is a face of 0.
Now we show the condition (ii) of the lemma. Let 7,7/ € A. There exists
o € A(r) such that 7 is a face of 0. Then o N7’ is a face of o by the above
argument. It follows that 7N 7 = 7N (e N7') is a face of 0. Hence 7N 7' is
a face of 7. In the same way, 7N 7’ is a face of 7.
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We show the condition (iii) of the lemma. The finiteness of A is obvious.

For any v € Ng, there exists (d1,...,6,) € {—1,+1}7 such that (v §a;) >0
fori=1,...,q, and C := {s161a1 + - - +sq6aq€MR|sl>O ,8q > 0} is
strongly convex. Then o :=CY € A and v € 7. O

Let X be a toric variety associated to the fan A. Then X is compact (see
Theorem 1.11. of [Od]).

A real valued function A : |A] — R is said to be a A-linear support
function if it is Z-valued on N N |A| and is linear on each o € A. Namely,
there exists [, € M for each 0 € A such that h(n) = (l;,n) for n € ¢ and
that (l5,n) = (I;,n) holds for n € 7 < ¢. Here 7 < o means that 7 is a face
of 0. Assume that, for any o € A(r) and any n € Ng , we have (I;,n) > h(n)
with the equality holding if and only if n € o. In this case, h is said to be
strictly upper convex with respect to A.

Lemma 4.4.2. X is projective.
Proof. Define A-linear support function h by

g
h(n Z |(n,a;)|
j=1

for n € Ng. Let C € II', and let (64,...,8,) € {—1,+1}? such that C =
{Rzo(slal - e ]R205qaq}. Then la- = —(510,1 + -+ 6qaq) for 0 = CV.
Hence (n,l,) > h(n) for n € Ng and the equality holds if and only if n € 0.
Therefore h is-a strictly upper convex with respect to A. Then X is a toric
projective variety (see Corollary 2.14. of [Od}). O

Let Ay, ..., Ay be Ty-invariant irreducible (Weil) divisors of X such that
X\ Ule A; = Ty. Let D; be the closure of D; in X for t = 1,...,q. In the
same way of the proof of Lemma 4.3.1, the following lemma holds.

Lemma 4.4.3. Assume that the following two conditions are satisfied.

(a’) There exists no non-constant holomorphic map
q

f:C— TN\UsuppDi.
i=1

(b)) Let I < {1,...,k}, J C {1,...,q} such that I # 0 or J # 0. Let
P={1,..k}\I, J ={1,....¢} \ J. Then there exists no non-
constant holomorphic map

f:C— (ﬂsupp A; N ﬂ suppﬁj) \ < U suppA; U U suppﬁj).

jeI jeJ jer jeJ!
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Then Ty \ UL, supp D; is Kobayashi hyperbolically imbedded in X .
Now we prove Theorem 4.1.2

Proof of Theorem 4.1.2. We show that X and D;,. .., D, satisfy the condi-
tion (a’), (b’) of Lemma 4.4.3.

. Let N
) q
f:C—Tn\ U suppD;,
j=1
be a holomorphic map. There, exist holomorphic functions gi,...,g, on C
such that

q
f=(expg,...,expgr): (C—)TN\UsuppDi.
=1

It holds that
exp(a;191 + -+ + ajrgr) — ¢; # 0,

forall j = 1,...,q on C. By the small Picard theorem, exp(a;1g1 + -+
ajr9r) — ¢; is a constant function. Hence a;191 + -+ - + ajrg- is constant.
Since a4, ..., a, generate R-vector space Mg = R", it follows that g1,...,9,
are constant functions. Therefore X and Ds,..., D, satisfy the condition
“(a’) of Lemma 4.4.3. :

Let I C {1,...,k}, J € {1,...,q} such that I # Q@ or J # 0. Let
I'={1,...,k}\I,J ={1,....¢} \ J. Let

f:C— <ﬂ supp 4; N ﬂ supp_ﬁj> \ ( U suppA; U U supp5j>,

jeI jeJ jer jeJ

be a holomorphic map. It follows that f(C) C A; (resp. f(C) C D;) or
FC)NA; =0 (resp. fF(IC)ND;=0) fori=1,...,k (resp. fori=1,...,q).
We show that f is a constant map. There exists an element of o € A(r) such
that f(C) C U, = SpecClo¥ N M]. There exist (81,...,d,) € {—1,+1}? such
that

o/ = R2061a1 + -+ RzocSqaq.

We take primitive elements by = (b11,...,b14),:-.,05 = (bg1,---,bg,) Of
M such that d;b; = &;a; where d; is a positive integer, ie., Ra; " M =
sz and ]Rzo&'ai = RZOb’i' There “exist bq+1 = (bq+1’1, .. -7bq+1,7‘)7"' . 7bl =
(bi1, ..., big) € M such that VMM = Zsgb1+- - -+Z>ob; where [ is a positive
integer. Let u; = zil P ford = L,...,I. Then Clo¥NM] = Cluy, ..., u].
Since f(C) C A;or f(C)NA; =0 fori=1,...,k, it follows that u; 0 f =0
oru;of#0onCfori=1,...,q. Since f(C) C D; or f(C)ND; =0 for
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i=1,...,q, it follows that ufiofchi or ufiofyécfi onCfor¢=1,...,q.
By the small Picard theorem, u; o f is a constant function for i = 1,...,q.
Since b; € Qxob1 + - - + Qx0b, for j > g, there exist relations such that

Pj _ Ml 1, :
u/ =w™ oyt for j>q,

where p; is a positive integer and ;; is a non-negative integer. Hence u;o f is

constant function for j > ¢, and f is a constant map. Therefore X, D1, ... Dy
satisfy the condition (b’) of Lemma 4.4.3. Ty \ supp D is Kobayashl hyper-
bolically imbedded into X by Lemma 4.4.3. d

Corollary 4.4.4, Let D(1) := {z € C||z| < 1}, and let D(1)* := D(1)\{0}.
Let f, g be holomorphic functions on D(1)* such that f # 0,9 #0, f # g and
f# g7t on D(1)*. Then f and g are extended to meromorphic functions on

D(1).

Proof. Let D and D’ be the divisors on (C*)? = SpecC[z1, 27}, 23, 25 '] de-
‘fined by 2120 — 1 =0 and z;2;* — 1 = 0. Then (f, g) is a holomorphic map
from D(1)* to (C*)? \ supp (D + D'). By Theorem 4.1.2, there exists toric
projective variety X such that (C*)2\ supp (D + D) is Kobayashi hyperbol-
ically imbedded into X. By a generalization of the big Picard theorem in
[Ki], (f,g) are extended to a holomorphic map F : D(1) — X. Since X and
PL(C) x P!(C) are birational, there exist meromorphic functions £, § on D(1)
such that the holomorphic map (£, §) : D(1) — P1(C).x P}(C) is a extension
of (f,9). O

~ Corollary 4.4.4 is the classical big Picard theorem if g = 1.

66




Bibliography

[DE]

[DL]

[Dy]

A. Biancofiore, A hypersurface defect relation for a class of mero-
morphic maps, Trans. Amer. Math. Soc. 270 (1982), no. 1, 47-60.

F'. Bogomolov, Families of curves on a surface of general type, Dokl.
Akad. Nauk SSSR 236 (1977), no. 5, 1041-1044.

R. Brody, Compact manifolds and hyperbolicity, Trans. Amer.
Math. Soc. 235 (1978), 213-219.

H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions

- holomorphes données, Mathematica (Cluj) 7 (1933), 5-31.

P. Corvaja and J. Noguchi, A New Unicity Theorem and Er-
dos’ Problem for Polarized Seml Abelian Varletles Arxiv preprint
arXiv:0907.5066, 2009.

J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projec-
tive varieties and jet differentials, Algebraic geometry Santa Cruz
1995, pp. 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer.
Math. Soc., Providence, RI, 1997.

J.-P. Demailly and J. El Goul, Hyperbolicity of generic surfaces of
high degree in projective 3-space, Amer. J. Math. 122 (2000), no
3, 515-546.

G. Dethloff and S. Lu, Logarithmic jet bundles and applications,
Osaka J. Math. 38 (2001), no. 1, 185-237.

J. Duval, Une sextique hyperbolique dans P3(C), Math. Ann. 330
(2004) no. 3, 473-476,

67




[Fu]

[GG]

J. El Goul, Logarithmic Jets and hyperbohclty, Osaka J. Math. 40
(2003), no. 2, 469—491.

A.E. Eremenko and M.L. Sodin, Distribution of values of meromor-
phic functions and meromorphic curves from the standpoint of po-
tential theory, Algebra i Analiz 3 (1991), no. 1, 131-164; translation
in St. Petersburg Math. J. 3 (1992), no. -1, 109-136.

H. Fujimoto, On holomorphic maps into a taut complex space,
Nagoya Math. J. 46 (1972), 49-61.

M. Green and P. Grlﬂiths, Two applications of algebraic geometry
to entire holomorphic mappings, The Chern Symposium 1979 (Proc.
Internat. Sympos., Berkeley, Cahf 1979) pp. 41-74, Springer, New
York-Berlin, 1980.

P. Kiernan, Hyperbolically imbedded spaces and the big Picard the-
orem, Math. Ann. 204 (1973), 203-209.

S. Kobayashi, Hyperbolic- manifolds and holomorphic mappings,
Pure and Applied Mathematics 2, Marcel Dekker, Inc., New York
1970.

S. Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical
Sciences|, vol. 318, Springer-Verlag, Berlin, 1998.

R. Lazarsfeld, Positivity in algebraic geometry I, Springer Verlag,
2004.

K. Masuda and J. Noguchi, A construction of hyperbolic hypersur-
face of P*(C), Math. Ann. 304 (1996), no. 2, 339-362.

M. McQuillan, Diophantine approximations and foliations, Inst.
Hautes Etudes Sci. Publ. Math. No. 87 (1998), 121-174.

M. McQuillan, Holomorphic curves on hyperplane sections of 3-folds,
Geom. Funct. Anal. 9 (1999), no. 2, 370-392.

AM. Nadel, Hyperbolic surfaces in P3, Duke Math. J. 58 (1989),
no. 3, 749-771.

E.I. Nochka, On the theory of meromorphic curves, Dokl. Akad.
Nauk SSSR 269 (1983), no. 3, 547-552.

68




[Nogl] |

[Nog2]

[Nog3]

[Nog4]

[Nog5]

[NO]

J. Noguchi, Holomorphic curves in algebraic varieties, Hiroshima
Math. J. 7 (1977), no. 3, 833-853.

J. Nogﬁchi, Logarithmic jet spaces and extensions of de Franchis’
theorem. Contributions to several complex variables, 227-249, As-
pects Math., E9, Vieweg, Braunschweig, 1986.

J. Noguchi, Moduli spaces of holomorphic mappings into hyperboli-
cally imbedded complex spaces and locally symmetric spaces, Invent.
Math. 93 (1988), 15-34. ‘

J. Noguchi', On holomorphic curves in semi-Abelian varieties, Math.

7. 228 (1998), 713-721.

J. Noguchi, Connections and the second main theorem for Holomor-
phic Curves, to appear in J. Math. Sci. Univ. Tokyo.

J. Noguchi, T. Ochiai, Geometric function theory in several complex
variables, Translated from the Japanese by Noguchi. Translations
of Mathematical Monographs, 80. American Mathematical Society,
Providence, RI, 1990.

[NWY1] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main the-

orem for holomorphic curves into seml—Abehan varieties, Acta Math.
188 no.1 (2002), 129-161.

INWY2] J. Noguchi, J. Winkelmann and K. Yamanoi, Degeneracy of holo-

morphic curves into algebraic varieties, J. Math. Pures Appl. 88
(2007), no. 3, 293-306.

[NWY3] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main the-

[Od]

[Pa]

orem for holomorphic curves into semi-Abelian varieties II, Forum
Math.20 (2008), 469-503.

T. Oda, Convex Bodies and Algebraic Geometry. An Introduction
to the Theory of Toric Varieties, Erg. Math. 3/15. Springer-Verlag,
Berlin-Tokyo 1985.

M. Paun, Vector fields on the total space of hypersurfaces in the

. projective space and hyperbohc1ty, Math. Ann. 340 (2008), no. 4,

875-892.

E. Rousseau, Logarithmic vector fields and hyperbolicity, Nagoya
Math. J. 195 (2009), 21-40.

69



[Ru]
[Shi]
[Sh2]
[Si1]

[Si2]
[SY]
[Yal

[Ti1]
[Ti2]
[Ti3]

[Zal]
[Za2]

[Za3]

M. Ru, A defect relation for holomorphic curves intersecting hyper-
surfaces, Amer. J. Math. 126 (2004), no. 1, 215-226.

B. Shiffman, Nevanlinna defect relations for singular divisors, Invent.
Math. 31 (1975), no. 2, 155-182.

B. Shiffman, On holomorphic curves and meromorphic maps in pro-

- jective space, Indiana Univ. Math. J. 28 (1979), no. 4, 627-641.

Y .-T. Siu, Defect relations for holomorphic maps between spaces of
different dimensions, Duke Math. J. 55 (1987), 213-251.

Y .-T. Siu, Recent techniques in hyperbolicity problems, Several com-
plex variables (Berkeley, CA, 1995-1996), pp. 429-508, Math. Sci.
Res. Inst. Publ. 37, Cambridge Univ. Press, Cambridge, 1999.

Y.-T. Siu and S. K. Yeung, Defects for ample divisors of abelian va-

- rieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees,

Amer. J. Math. 119 (1997), no. 5, 1139-1172.

K.‘ Yamanoi, Algebro-geometric version of Nevanlinna’s lemma
on logarithmic derivative and applications, Nagoya Math. J. 173
(2004), 23-63.

Y. Tiba, The second main theorem of hypersurfaces in the projective
space, to appear in Math. Z.

Y. Tiba, Holomorphic curves into the product space of the Riemann
spheres, to appear in J. Math. Sci. Univ. Tokyo.

Y. Tiba, Kobayashi Hyperbolic Imbeddings into Toric Varieties, sub-
mitted.

M. Zaidenberg, On hyperbolic embedding of complements of divisors
and the limiting behavior of the Kobayashi Rroyden metric, Math.
USSR Sbornic 55 (1986), 55-70.

M. Zaidenberg, Criteria for hyperbolicity of imbedding of comple-
ments to hypersurfaces, Uspekhi Mat. Nauk 41 (1986), no. 1(247),
191-192. ,

M. Zaidenberg, Stability of hyperb‘olic embeddedness and the con-
struction of examples, Math. USSR-Sbornic 63 (1989), no. 2, 351-
361.

70




X DNBDEES
XA H: Entire curves in projective algebraic varieties

(HEREERRAAADIERIFRICDOWT)

K4 T/

1 §H=

R. 27U HiE, %Ei?ﬁi@ﬁﬁ*”ﬁﬁﬁ@ﬁ \Z‘E%uﬁ’\%t&)k 1925 FOFRITBN TR
Yy U YRR LT (Ne) . 37 V) VR CIRE—EEE L S L EEE L
ENB 2 ODEFEAH D, F—EEEEISFEEE, RN, BEER LTINS 3 DOBKD
BREPRLZEDT, %_Iﬁi@i@ﬁﬂaﬁwké&é%ﬁﬁﬁaﬁ@k%éfi@f:&ﬁ’m&mbt
DTH3. 2T 7)) U FERIEZOBREBITEEN, EESREOROEAER EETFEH, S
BREBRENOERIGES) ZMFERTIENEFRLZ>TVS. %_Eﬁﬁﬁfo\ﬁﬁ_ﬁmn\%
FEBELLTRDESBREDNH S:

(a) EERHEZEHE P(C) KB 2 —ROMBICH ZBPEINTSHE_FEEH (H. Cartan
[Ca))

(b) T —NIVERRA L ZORTFICH T 2 T EEH (Noguchl—Wlnkelmann—Yamano1 INWY1],
INWY2])

(c) ~ﬂ§?§@ﬁ®£ﬁﬂﬁl§%&ﬁb:?ﬁé TeIERIBRARIC N 9 28 FEFE#H (M. McQuillan [Mc)) .

T/ PR S, IERIHHRZ AR B BRIC I EEZBIRTH 5. IS RIKILIEEERE
Eﬂlﬁﬁ%#fdzb\‘k SBEERSRAETDH D, IMONEHEIC DOV TIIRD/PIATENELTHS.

(1) HEREIRZE P"(C) I Bl TRE d > 2n — 1 O—REBHTEIZ/ MR TH 3.

(2) WEIBZER PA(C) BT d > 2n + 1 O—RBIEOBEAI P (C) 1o/
FNCEDIAEFN TV S. -

IMAFRIC DWTR, EESITTHFED K. Masuda-J. Noguchi [MN] TRE iz, /IMAFAR (1)
IKDWT n=3 D&EZX J-P. Demailly, J. El Goul [DE]|, M. Piun [Pa] ZZ ETHLIMAEEINT
AR LTS, EiAMKBR (2 10DV TH n =2 D& 21 Q. Dethloff, S. Lu [DL,
E. Rousseau [Ro] Ic X D ERZRNCHER L TV 5.

KRXDBRBUTOLEOTHS. F—WTEII 2y bR, xTU7 ) /ﬂ‘fi o/ AR R
DEARZERBPEEICOVWTENS. ThHR3BROHTRELFEDNIEANLBRTHS. 5
THITI J.-P. Demailly [De] TEAE NG NEERERZE> THHE_FEEHEIHT
%. P*(C) TORFGBHmEL—ROMBICAWBIROE_FEEE 2> T35, E=HTiE
HEAEG2E-> T PL(C) x P(C) Ic9 2E_FEEHZMAT 5. ENHTRRBEN -5 X
DORFZROTZZE-RD, % b—Y v I SRR BDIAEN S T 0&E2E5X 5.

*chiba@ms.u-tokyo.ac.jp




2 ERHREMOBHEICNT 2E-TEEE

H. Cartan [Ca) I2 & D RS2 P(C) D—RORE % 5BTEICH 5 5= SEEEAE
WENTLOK, TS 5 SREMETNT 5 C LAKESIME AT WLOR
fmffmcﬁsﬁaﬁuﬁa%_zgiﬁﬂznmaﬂm |

S0y -y 5n 2 C[Xos. .., Xo] D A RERBERT, HHEER Iy, ..., I, IKHLT

Xg_l°|so, e, Xg_l"|sn,

Os: \
dt( J) #0,
0Xy / 0<jje<n

BT L TR, cOLE O k) BEEEE Y —d+T %

05y . 0%sq
. 0(%;15)(_)\ ri’j - 6X16XJ
TERKT 5. COHEHE P7(C) RcHHNEREER vV 275895 (J.-P. Demailly [De] ) .
RL4iZ, TOV B2ES>TCROE_FEEHZIHT 5.

EE 2.1 (Theorem 0.0.1) o1,...,00 ZFER [{s0,...,8n}| DITT Yf_, o) FHAMERRR
W&d3. H 7% PYC) OMFHEELTS. £z f: C - P*C) ZIERIFRT, ZDOBIHRESR
{50, ., 5n}| DTEDER, V DEOERIEA>TVENEDLT S, COEZRBED D,

: 1 1
(q—% 2d( —Dnn+14++---+1, ))Tf('r,dH)

< Y Na(r, frou) + Sy(r),

1<i<q

TTT, Sp(r) REREDNEVEREL, (0,00) DREEREFISMES DN TROTEZ A
7z 9. ‘
St(r) = O(logr + log Ty (r, H)).

Il X REERESHELELTX 5 X 72%@.?5 % (proper modification) & L7z & i
X EoOSBHWEREERZTERT C LT, X HcbHENEREERSHESNS. Chicko
T—ROMBEICZWVETFEICNT 2 ROE_TEEH 2R/ .

EH 2.2 (Theorem 0.0.2) Sy,...,8, Z P?(C) O mE—ROMNBICHIEFEEETS. {21,
ooy Tpy B 81,..., 8, DEMTERRTIM TR PX(C) DREALTS. P2(C) - PX(C) %
{xl,...,xp} T7ua—7w 7pb7":%0)&bf, Hl,HQ,H3 % Pz(C) @ﬁl‘?ﬁﬁf’ {xl,...,xp} %ﬁ
BRVWED LTS, ERIER f: C — PY(C) ZIERLREt DL T 5. TTT f B FEIERL
i, f OBZET PXC) DBFENEELARNTLLETE. COLERNKDILD.

(q—=3)Ty(r,H) < ZN2(T 7&) —l—mZN(r F*E;)
i=1

+m—_ ZN2(7~, FYH) + S4(r).

=1

—ﬁé%@uﬁcgm\iﬁ$ﬁuﬁ@‘%%_¢zﬁi@@ E. Nochka [Noc] i& & *)Earﬁlﬂ:’fﬁq:ﬂé?h
TWVWBHB LEDFEE 2. 2 i& Nochka DEDLIFEKLS.



3 U—IVBREOERCHTZE_TETE

BTV - VEREOERETH S PI(C) x P1(C) WDOERIEREHRS . £fTdsERE LTI
Noguchi [Nog] B, & 2RAlRFH T CRIEEZFEEHENHS. TT TR, Z0OL S BEGR2E
BTG S L ZFHT 3. PHC) x PHC) Il 2 KRB P —5 X C* x C* BEENTVS
B, ZOHRDESHTHBERFOIV T ME D, D" e 28 _FEEHZIAHTS. T

D' 2™ —w™ =0, D": ™ y" -1=0,

THY z,wldCx CCP(C) x PC) DRFTEZERLTS. REM—5 X HICidFHEAERV
WEEL, BOBE VIS U TR 2 5. OBV 2 PL(C) x P(C) LicHEAERL L
THRLTHBL. Z=PY{C) xPY(C) BT, m:Z - Z ZBULEERELTS. T3¢ 7 F
CEABEERPFEINT, ThE V 5L, COLERDEBNTRENS.

EHE 3.1 (Theorem 0.0.3) f:C — PY(C) x PL(C) % ERIER & LT f:C—ZBZEDYT b
£9%. £ D,D" 2 D'\D" D nlckBBEH E=),_ E %V OBOBKNDHELTS. f
DED C* x C* OB BRI FHOHTBBOMTEICTENS T LREVET S L RDKDILD.

TH(r, D) < Ny(r, f*D') + Na(r, f*D") + 2 Z Ni(r, F*E;) + S¢(r).
i=1

4 b=V BBEADIHIEE B AR
REW F—S5 X (C" LOEF D 20— VEER

i i -1 -1
E arzit -2 € Clzr, 21 -2y 2r, 2 )
I=(31,.00sir)

TEZLNBZLDLTS. COLE, FZEM (C)\ D HH3 k—V v 7 Bt/ NI 8
DRENB L 5% D DRMIE DN CELET 5. T E BB TR BB,

Fefir 0 Z FOBEMEEE N=2" LT, M =Homz(N,Z) £3%. 8% RICHIRELT:
ED% Np=N@zR, Mp =M @zR L. r B +—5 A% In=N®zC* L $5%. M
CEENBRMHIRE AICHLT,

La={a—be Mg|a,bec A}
LERTD. Vo B L4 OTERKTERENS Mg O R FEIBEAZRE LT,
Ha:={H CVa| L4 DILTERENS Vy ODEXIZE}

EEERTD. IELZCTVSBEEEIR, RIUT 1 DR LOEHLZEMNTHS. £/, P % My
CEEND r ITROSEAK LTS, COLE PICARELSEN N v 7 2/E X BERIC

- EEENS.

I 4.1 (Theorem 0.0.4) S 2 M OFDOERHEITEATSCP 95, P bCE’;i’h%EE@
IEXRTTHE 7 i UTROFMZRET %:

@) TNS£BTHY, TNS DIEDRTE T DIRTTE —HT 3.

(ii) H € Hrng LT, ¢g: Vonsg — Vong/H ZBERRERBEL TS, 2 2 7NS DHB—RE
Lt & $(du(rNS — ) >dimT+1 MERD H € Hons KL THEDIEZDET S.

TOLE IR {222 25 i, iyes| D—RETTEZBNS Ty DEF D IZHLT,
Ty \D & X I/HERINCEDIAE N TV 5.




Eiz, FEROISA L LTMATE 2) IKEELERDRIMELNS.
R 4.2 (Corollary 4.1.1) n XITHFZER P*(C) KBWT —ROMBEILH S (n+1) KOHEF
M Ho, H,...,H, B2 %. TOLEXEK n O—R2EHE S 1K LT, P*(C) \ (SU Uro Hi
i3 P (C) W/ MATR IR DA E NS .
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