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1 Introduction

Let G be a cyclic group of order n with a generator g, and b be an element of G. The
problem to compute 2 from the equation g = b is called discrete logarithm problem.

In several cases, including the case where G is the multiplicative group of a finite field,
or the group of rational points of an elliptic curve over a finite field, we do not know any
algorithm that can solve the discrete logarithm problem in G in polynomial time in logn.
Based on this fact, the discrete logarithm problem in such a group G is extensively applied
in cryptography. It is an important and difficult problem to estimate the greatest lower
bound for the complexity of solving the discrete logarithm problem.

There is a natural algorithm to solve the discrete logarithm problem by using the Chinese
remainder theorem for any cyclic group. If the order of the group does not have a big prime
divisor, this algorithm is effective.- We recall this algorithm in section 2.1. For a general cyclic
group, there is an algorithm with time and space complexity O(y/n), which is proposed by
[Shanks 1971]. We recall it in section 2.2. There is also an algorithm with time complexity
O(y/n) and space complexity O(1), which is proposed by [Pollard 1978]. We recall it in
section 2.3.

In the case where the group is the multiplicative group of a finite field, there are some
sub-exponential algorithms for the discrete logarithm problem in such a group. The index
calculus algorithm is discovered by Kraitchik [Kraitchik 1922] in 1922. After the discrete
logarithm problem became important in crypto-system, Pohlig [Pohlig 1977] rediscovered
the idea. Adleman [Adleman 1979] optimized the algorithm and presented it in the form we
- know it today. We recall it in section 3.1. The nmber field sieve is proposed for factoring inte-
gers originally (' See, for example, {Buhler 1993], [Lenstra-Lenstra 1993]), and transplanted
for the discrete logarithm problem ( See, for example, [Gordon 1993] [Schirokauer 1993]
[Schirokauer 2008]). We recall it in section 3.2. The function field sieve is proposed in
[Adleman 1994]. We recall a modification of the simpler and improved version in section 3.3
which is presented in [Adleman and Huang 1999). '

Alternatively, we can estimate the greatest lower bound by studying an equivalent prob-
lem of a discrete logarithm problem. Let p be an prime number. In [Huang-Raskind 2009],
they lifted the discrete logarithm problem in Ff to a real quadratic field. They defined the
“ramification signature” for the real quadratic field and proved that the discrete logarithm
problem in F) is random polynomial time equivalent to computing the ramification signa-
ture of the real quadratic field under two heuristic assumptions, namely, an assumption on
the class number and an assumption on a global unit of the real quadratic field. We recall
this work in section 4. '

In section 5, we generalize the term “ramification signature” of a real quadratic field. In
[Huang-Raskind 2009}, it is defined in the case where “p and [ split”. We generalize it to the
case where “p is unramified and [ splits”. We then lift the discrete logarithm problem in &>
(for k=T, or F,2 ) to a real quadratic field and prove that the discrete logarithm problem
in k* is random polynomial time equivalent to computing the ramification signature of the
real quadratic field , with one heuristic assumption on the class number. We also show that
in the proof of the equivalence in [Huang-Raskind 2009] one can remove the assumption on
the global unit. More precisely, we give an improvement ( Step 4 in section 5.3 below ) on
the construction of real quadratic field and global unit that makes the condition (2), (3) in
proposition 2 in section 4.1 in [Huang-Raskind 2009] be satisfied automatically. -



2 Algorithms of the discrete logarithm problem in gen-
eral cyclic group |

2.1 Reduction

There is a natural algorithm to solve the discrete logarithm problem by Chinese remainder
theorem for any cyclic group of small order. Let G be a cyclic group of order n. Let g be a
generator of G and b be an element in G. Suppose that all the prime divisors of n are small.
We describe this algorithm to compute an integer x such that ¢® = b in the following:

Suppose that n = niny where (n1,ns) = 1. If we can solve x1, zo from the equations
(g™2)*r = b"2 and (g™ )*2 = b™, we then can compute z from

=1 mod nq,
T =2 mod ns.

Clearly, this z is a solution of the equation g® = b.

Suppose that n has the prime decomposition 7 = Pt

G=G1®Go®  ®Cm,

---pem. There is a decomposition

(2

where G is‘a cyclic group of order p* for ¢ =1,2,---m.

The assumption that all the prime divisors of n are small implies that we can reduce the
discrete logarithm problem in G to the discrete logarithm problem in G; fori =1,2,--- ,m.

Now suppose that G is a cyclic group of degree p® where p is a small prime number,
g is a generator of G and b is an element in G. We want to find the solution = of the
equation g* = b. We know that = can be written as £ = zg + z1p + -+ + Ze_1p° ! Where
0, %1, ;Ze—1 € {0,1,---p—1}. We compute zg, 1, , Te—1 inductively.

1

Let us compute zg firstly. The fact p*~'z = p*~lzy ( mod p°) implies that

| (g7 ) =g m
Therefore, the fact that g* = b implies that
1

(g7 ) ="

The both sides of the last equation above are in Gpe_l, which is a cyclic group of order p.
The assumption that p is a small prime implies that we can solve this equation to get z¢
easily.

Secondly, suppose that we have computed zg, - -+ , Zr—1, We compute zj now.
The fact that (z —zg —z1p— - - — 1P " p** 1 = 24p°~1  ( mod p°) implies that
(g7 )™ = g(z—zo;mlp—-~~—mk—1p’°‘1)pe"“‘1

Therefore, the fact that g* = b implies that

(gpe_l ) = (bg—mo—xlp—"-—mk—lp’““l )pe""‘l

The both sides of the congruence above are in GPe_l, which is a cyclic group of order p. The
assumption that p is a small prime implies that we can solve this equation to get zj easily.

Hence, by induction, we can compute x.



2.2 Baby-step giant-step

Baby-step giant-step algorithm is proposed in [Shanks 1971]. It works for any cyclic group.
Given a cyclic group G of order n, a generator g of the G and an element b in G, the problem
is to find an integer a such that g = b. The baby-step giant-step algorithm is based on
rewriting a as a = im+j, with m the minimal integer that is greater than v/nand 0 <: < m
and 0 < j < m. Therefore, we have: '

bg™™) =¢ .

‘We describe the algorithm as follows: .

1. Let m be the minimal integer greater than /7. Let f be a Hash function that maps
any element in G to a memory address. ‘

2. Compute ¢7 for 0 < j < m, and save the pairs (j,¢’) in the memory address f(g7).

—mi

3. ‘For 0 < i < m, compute by and compare it with the second coordinate in the
memory address f(bg—™*). If they are the same when ¢ = ig, denote the first coordinate in
the memory address f(bg™™") by jo, and return igm + jo.

The running time of the algorithm and the space complexity is O(,/7), much better than
the O(n) running time of the naive brute force calculation.

2.3 Pollard’s rho élgorithm

The Pollard’s rho algorithm is proposed by Pollard [Pollard 1978]. Given a cyclic group G
of order n, a generator « of the group and a group element 3, we state the Pollard’s rho
algorithm to find an integer = such that a® = 5.

1. Divide G into three subset GoI1G1 11 Gy of approximately equal size. Define f: G —
G by

oy if y.€ Gg,
flog=1{ ¥ ifyedy,
v8 ifvyeG,..

and define g : G x Z/nZ — Z/nZ and h : G X Z/nZ — Z/nZ by

a if vy € Gy, - b+1 ifye Gy,
g(v,a) =< 2a ifvye Gy, and h{y,b)=<¢ 20 ifyeGy,
a+1l ifye@G,. b if v € Gs.

respectively.
2. Letag=0,00=0,v%=1€G,i=1,
3. Compute v; := f(¥i-1), @i = g(¥i-1,i-1), b := h(vi=1,bi-1);
3. Compute ya; := f(f(Y2i—2)), 025 := g(f(v2i—2)> 9(Y2i—2, @2i—2)), bas := R(f (V2i=2), h(Y2i—2, b2i—2));
4. If y; = yo; and ged(b; — by, n) = 1 then return (b; — b2;) " (a; — az;) mod n.
5. If «; 5 ~2; then i + i+ 1, and go to step 2.
Proof. Because v; = a% ,B’z |

The running time of Pollard’s rho ‘algorithrn is approximately O(y/n).



3 Algorithms of the discrete logarithm problem in the
multiplicative group of finite fields

3.1 Index calculus algorithm

The index calculus algorithm is discovered by Kraitchik [Kraitchik 1922] in 1922. After
‘the discrete logarithm problem became important in crypto-system, Pohlig [Pohlig 1977)
rediscovered the idea. Adleman [Adleman 1979 optlrmzed the algorithm and presented it
in the form we know it today.

Let p be an big prime number, g and b be two p051t1ve integers that do not divided by p.
We describe the index calculus algorithm to solve z from the equation g* (" mod p):

1. Take a bound B > 0, Let S be the set consisting of all the prime numbers less than
B and ¢ be the maximal number in S.

2. Forn=1,2,---, compute (g" mod p). If it is B-smooth (i.e. all the prime divisors of
n are bounded by B ), we can write it by (¢" mod p) = 2°n3€h5% - - . g°%. We can compute
el by division. Hence, we get a'system of linear equations:

e% log, 2 + e log, 3+ -+ el log, g = n for n where (¢" mod p) is B-smooth,

where log,, is the discrete logarithm in Fj'.

We can solve log, 2,1og, 3, - -log, ¢ from this system of linear equations as long as We‘
have enough equations. : _
3. For k=1,2,---, compute (¢*b mod p) and test that whether it is B-smooth. If it is,
write it as
gtb = 2/23%55 ... gfe mod p.
Hence, we have
k +log, b= folog, 2+ f3log, 3+ --- fglog, g.

We.can compute log, b from this formula.

Assuming an optimal selection of the smooth bound B, the expected running time of the
index-calculus algorithm is ezp(c(log p)? (loglogp)#) for some positive constant c.

3.2 Number field sieve

The nmber field sieve is proposed for factoring integers originally ( See, for example, [Buhler 1993],
[Lenstra-Lenstra 1993]), and transplanted for the discrete logarithm problem ( See, for ex-
ample, [Gordon 1993] [Schirokauer 1993] [Schirokauer 2008]).

Given a big prime pg, a big odd pfime divisor ! of pg — 1, a positive integer ¢ such that g
mod p is a generator of F) and a positive integer v, we describe the general number field
sieve to compute log, v mod I.

1. Let d be the minimal integer that is greater than 33 (log po)%(loglogpg)"é. Take

1 1 2 1 1 2
u = O(ezp((3)3 (logpo) s (log log po) 3) and y = O(ezp((§)3 (log po)# (log log po) 3).
- 1 )
2. Let m be the maximal integer that is less than pf. We then write py by m-adic

represent: -
po=m%+am?t +.-. +aq,




where a; = 0,1,--- ,m— 1.
3. Let f(z) =2+ a;z? 1 +---+aq, and K := Q[z]/(f(z)), then (py, z —m) is a point

in Spec Zle ([m; We assume that the discriminant of f is not divided by .

4. Let T:={(a,b) € Z x Z; la] <u,0 <b<u, a—bmande(a—bm)lsysmooth}

5. Let B be the set of the prime ideals of Z which correspond to prime numbers bounded
by y. Let B’ be the set of the closed points in SpecOg which are over the points in B.

6. The assumption that the discriminant of f is not divided by  implies that SpecZlz]/(f(z))
and Ok are unramified at [. Therefore, we have |

OK®Z/ZZ=Flt1 @"’@]Fltk,

where tl, ,t are positive integers. Let ¢ be the least common multiple of ¢1, - ,tg. Let
e:=~t—1 and r:.= {’y € (’)K, Nm(y) #0 mod [}, we then have the following commutative
diagram:

O, W(Fs) S, UM (Fp) —————> @5, IW(F e ) 1PW(Eys,)
(OK ®Zl) ZOK/Z2(9K

A Z[:z:] /l2 ﬁg_
‘ f(fc) f(z)

For any v € T', the image of ¢ under the homomorphism X can be written as (Ao (7)+A1 ('y)a:—!-
o Ag—1z2%71), where Ag(7), -+, Aa_1(7) € F;. Therefore, we get the homomorphisms -

)\ii r — Iy
v o= NG =01, ,d—1

7. If g and v are y-smooth, consider the map:

TU{g,v} —» Fifg Fi¥'g Fé

@H) ET — {upla—bmlpes, {usla—bo)bpen {Milo— b))z,
g = {vp(9) }peB, 0, 0,
v s {vp(v)}pEBa Oa 07

Increase the smoothness bound y if necessary, there exist-integers k, 5 (for (a b) € T) and
kg such that

E(a,b)ET k(abyvpla —bm) + kgvp(g9) +vp(v) =0 mod! forpe€ B,
Y (ayer Fanbsla — bx) =0 modl for f€ B,
> (apyer kaprila — bz) =0 mod! fori=0,1, -+,d— 1.

We solve k5 for (a,b) € T and k, from this system of linear equations. Then we have
log, v = —k; mod ! with probability greater than 1 — 2172

7. If g'is y-smooth but v is not y-smooth, we take a y-smooth element v € Z[z]/(f(x))




“such that v/ = v mod (p, — m). Consider the map:

TUu{g,v} — IF?B@ : ]F?BIGB F¢
(a,b)eT = A{vp(a—bm)}pen, {vsla—bx)}pep, {Aila- bx) par
g > {Up(g)}PEBv g 0)
v = 0, 7 {'Uﬁ (v")}ﬁGBH {AZ (U/)};i;ol :

Increase the smoothness bound y if necessary, there exist integers ko (for (a,b) € T) and
kg such that

Y (amyer Fasyup(a —bm) + kgup(g) =0 modl forpe B,
> @bt Fanbsla—bz) +vs(v’) =0 mod!l for S e B,
Y (abyer Fantila = bz) + (V) =0 mod! fori=0,1,---,d-1."

We solve k(g 3y for (a,b) € T and kg from this system of linear equations. Then we have
log,v =k, mod [ with probability greater than 1 — 2172,

7". If v is y-smooth but g is not y-smooth, we take a y-smooth element ¢’ € Z[z] / (F (=)
such that ¢’ = ¢ mod (p,z — m). Consider the map:

TuU{gv} — Fifg. Fi%' g Fd
(@b)eT = {vpla—bm)lpes, {vsla—bz)}sen, {N (a—bw) Yizo
4 — 0, {vs(9)}sem, I Cp)

v = {op(0)}pes, -0 0.

Increase the smoothness bound y if necessary, there exist 1ntegers ko b (for (a, b) € T) and
kg such that

Z(a,b)eT kapyvpla —bm) +uv,(v) =0 modl forpe B,

Y (ayer Fanbs(a —b2) + kgup(g) =0 mod! for fe B,
Y (apyer FapAila —bz) + Xi(g) =0 mod! fori=0,1,---,d-1.

We solve k(, 3 for (a,b) € T and k, from this system of linear equations. Then we have
log, v =k, mod [ with probability greater than 1 — 22,

7. If both g and v are not y-smooth, we take a y-smooth element g’ € Z[z]/(f(z)) such
that ¢’ = g mod (p,z —m) and an y-smooth element v € Z[z]/(f(z)) such that v/ = v
mod (p, z —m). Consider the map:

TU{gv} — Fifo Fi¥ @ F¢

(@,0) €T = {vpla—bm)}per, {vgla—bx)}gep, {Nila— b:c)}d_
g — 0 {vs(¢)}sem;  {N (9’)}1_0,
v’ = 0 {vp(v ')}ﬁeB' e CR)

Increase the smoothness bound y if necessary, there exist integers k. (for (a,b) € T') and
kg such that

2 (apyer Kby vpla — bm) =0 modl forpeB,
2 aner Kapbsla —bz) + kovg(g') +vg(v') =0 modl for fe B,
Y aner Fanrila=bz) + kghi(g) + X(v') =0 modl fori=0,1,---,d— 1L

We solve k) for (a,b) € T and kg from this system of linear equations. Then we have
log, v = —k; mod ! with probability greater than 1 — 2172,



Proof. We give the proof of step 7 only. The proof of step 7/,7" and 7" is similar. By
the algorithm, we have

f(m) H (a — bm)Fer gy € (Z\ 0) — FX'" mod p.
(a,b)eT

The proposition 3.1 below shows that we have

P T (a—tayer e (22l
AL @)

with probability greater than 1 —2/~%2. We have x =m mod (p,z —m). Therefore, we have

Fm) ] (a—bm)Fer e FX |

(a,b)eT

with probability greater than 1—2/~2. Hence, we have g*vv € FX!, and log, v = —k; mod !
with probability greater than 1 — 22,

Proposition 3.1. Assume that the class number is not divided by | and g,v are y—smooth.
Then.: ‘

1. Tlapyer(a = bm)*enthy € (Z\ 0)". | _

2. Tl(amer(a—bz)*=r € (Ox \0) and f'(2)! [1(4pyer(a — bx)F=r € (?—([;—]))l with proba-
bility greater than 1 — 2172,

Proof.

1. Clearly.

2. We have Uﬂ,(H(a’b)eT(a—bw)k‘“’b) =0 mod [ for any8 € SpecO. Hence (I Laperia—

bz)ker) = I for some ideal I of Ox. The assumption that the class number of K is not
divided by ! implies that
I =hOg for some h € Q.

Therefore, :
H (a — bz)Fer = h'y  for some u € OF.
(a,b)eT

We will show that p is in (9}2-1 with probability greater than 1 — 202
The fact that Z(a’b) er kapAi(a —bz) =0 mod ! implies that

A I (a—bz)k) =0.
] v (a,b)eT
We have also A(g!) = 0. Hence A(u) = 0. It means that
Ao(p) =+ =Ag-1(p) = 0.

Regard Ao, A1, -+ Ag—1 as linear maps from OX/O% to F;. The Dirichlet’s unit theorem
implies that dimy, (O} /OF") < d — 1. Hence dimy, Hom(O%/OX, F;) < d~ 1. The lemma




3.2 below shows that Ag, A1, - -+, Ag—1 generate Homy, (O / (DIX{Z, ;) with probability greater
than 1 — 2/=2. Therefore, u € O} with probability greater than 1 — 2/=2. Therefore,
Z[z]

I[ (@-b)s € ©x\0f and f@)' ] (e bw)r & (s \O)
(abjeT (a,b)eT

with probability greater 1 — 2172, n

Lemma 3.2. Let k and r be two positive integers. Let V' be a linear space of dimension
'k over F;. Take v1,vq, - ,Upyr from V random and mdependent then the probabzlzty that
V1, V2, -+, Vktr generate V is greater than 1 — 2177~

a
Remark 3.3. For the computation of the valuation vg(a — bz), there are two cases:

1. For prime number p € Z, if all the points in Z[x]/(f(x)) over p are regular, the points
in SpecOx over p are same as the points in SpecZ|z]/(f(x)) over p. Therefore, every point
in them is represented by the term (p,(x)), where r(z) is an irreducible polynomial in Fy[z]
which is a decomposition term of f(z) mod p. For any a—bx € Z[z]/(f(z)), there is at most

one point B over p such that the valuation vg(a — bz) is positive. Hence, we can compute it
by vp(Nm(a — bz)).

2. For prime number p € Z, if there exists a point in SpecZ[z]/(f(z)) over p which is
non-regular, we have to resolve the singularity to get the points in SpecOg over p. In this
case, we have to use more complex representation.

We represent an order in K, or an ideal of an order in K by basis of the form a0, a1,0+
11%," ;04—1,0F " —I-ad_l,d_la;d‘l (ai,j € Q) as a. Z-module. Given an order @ in K and
a prime number p, let I, := Ngespeco,pesf = gespeco,pepB be the p-radical of O©. The
following proposition tells us how to compute ,:

Proposition 3.4. With the notation as above, then
- 1. I,/pO is the nilradical of O/pO.
2. If k is a positive integer such that p* > dimg,(O/p0O), then

o

I, . O
o/ el el
20 er(Fr, 20 p(’))

Define O, := {h € Ok;p"h € Z[z]/(f(x)) for some k € N}, then we have O, ® Z,) =
Ok ® Zy), where Zy) is the localization of Z at the prime 1deal (p). To compute O,, we
use the following theorem:

Theorem 3.5. Let O be an order in a number field K and let p be a prime number. Set
| = {he K;hI, C I}
Then either O = O, in which case all the points in O over p are regular, or O C O’ C O
and p| [0 : O] | p?, where d is the degree of the extension K/Q.
Proof See [Cohen 1993], Theorem 6.1.3. ]

Clearly, we have O C 1(’) Hence, we only need to compute the subspace O'/O of the
F,-linear space % (9 /O. In fact we have the following proposition:



Proposition 3.6. With the above notation, we have

00 = ker(%@/,@ — Hom(I,/pl,, %Ip IL)).

Using this proposition, we can compute O by linear algebra over Fp,.
_ We call the process that compute O’ from O “solve singularity of O at p”.

Using the Theorem 3.5, we can compute O, from Z[z]/(f(z)) iteratively. To be specific, -
we solve the singularity of @ = Z[z]/(f(z)) at p to get O', then we solve the singularity of
O’ at p to get O”, and repeat this process until we get a ring O™ satisfying that the solving
singularity of O™ at p is itself. By Theorem 3.5, we have O, = O™.

" After computing O, we can compute the decomposition of (p) in O in the same way
as the décomposition of (p) in O,. For the algorithm, we refer to [Cohen 1993] section 6.2.2
- section 6.2.5.

We then compute the valuation vg(h) for a given 8 € SpecOp over pand a h € K
through the following proposition'
Proposition 3.7. Let O be an order in K, ,B be an invertible prime ideal of O and a be an
element in B\ O. Then we have:

For any h € O, vg(h) is the largest integer v such that a’h € O.

Proof. It is similar to [Cohen 193], Lemma 4.8.16. N
To compute the valuation vg(h), we take an element a € 871\ O by ‘

pB~/pO = ker(O/pO — End(8/p0)).
Then we can compute the valuation by Proposition 3.7.

If we make the assumption that for —u < a < 4,0 <b <, (a —bm)Nm(a - bz) is
random and has a uniform dlstribution in [0, 2du?*+'p], the running time of number theory
sieve is exp(($ + o(1))(log p)  (loglog p) ).

3.3 Function field sieve

The functibn field sieve is proposed in [Adleman 1994]. We describe a modification of a
simpler and improved version which is presented in [Adleman and Huang 1999].

Let p be a small prime number, B > 1 be a real number. A polynomial in F,, is said to
be B-smooth if its every irreducible divisor has degree at most B. Let g(z) be a polynomial
in Fplz] of minimal degree such that f(z) := z" + g(z) is irreducible. Let ¢ = p™ and
ro= Z%}. we use Flz]/(f(z)) as a model of Fy. Given two elements ¢,u € Fy satisfying
u € (t) represented by two B-smooth elements ¢(z),u(z) € F,lz] respectively, and two

integral parameters C > 0 and d > 1, we describe the function field sieve to compute log, u.

Let k:=dx 27, where "z means the mmlmal integer that not less than x.- We have
n<k<n+dand

" f(z) = 2® + 2¥"g(z) = m(z)? + 2P g (x)

10.



where m(z) = z" 2. Let H(z,y) = y? +2*"g(z) € Fylz,y] . Let X := SpecF,[z] and Y be
the complete regular curve defined by H(z,y) = 0. There is a point P = (f(z),y — m(x))
with residue field F, in Y. Let K be the rational function field of Y, and Ok be the integral
closure of Fplz] in K. We assume that the class number of K is co-prime to .

Let
Mx = {A € X;[Fp(A) : F,] < B}
y :={Q €Y;Q is over a point in Mx}

An element h € Ok is called B—sfnooth, if its norm is B-smooth. Let

S = {{a(z),b(z)) € Fplz] @ Fplz]; (a(z), b(z)) = 1,dega(z) < C,degb(z) < C,
a(z} = b(z)m(z) and a(a:) — b(x)y are B-smooth}.

We consider the map

SU{u(z),v(z)} — ‘ (Z/rZ)tMx & (Z/rZ)My
(a(z),b(z)) € S = {va(a(z) —blz)m(z)) mod r}a, {vg(a(z) —b(z)y) mod r}g,
u(z) — {va(u(z)) mod r}a, {0}q,
t(z) — {va(t(z)) modr}a, {O}Q7

Increase the smooth bound B if necessary, there are non—nega‘mve integers {ka,b}(a,pycs and
k; such that

> (apyes kapvala(@) —b(z)m(z)) +valu(z)) + kt'UA(‘t(w)) =0 modr for A€ M,,
Za,beS kapvg(a(z) — b(z)y) =0 modr for Qe My.

Solve {kqb}(a,pyes and k, from this system of linear equations. Then

H(a’b)es(a(w) - b(w)m(x))’;’butkf € (Fp[z] \ 0)7,
(IL(epyeslalz) — b(x)y)ken) = I for some ideal T of Ok.

There is a g € Ok such that I = (g), because the class number of K is co- prime to r. Hence
thereis a p € O =Fy such that

[ (a(@) - b(z)y)*r = g"n.
(a,b)es

- Module (f(z),y — m(x)), we have
II (a@) —b@)m(a))rr = g7p

(a,b)es
Notice that g" € Fx" = F and u € F;'. Hence we have
11 (a(e) - b()m(z))*=* € FY.
(a,b)esS :
We also have

(I (al@) —b@ym@)=rut® mod (f(z))) € (

(a,b)eS

Fplz]

( ))Xr F;T=F;

Therefore, we have
uth € Fy.
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Let ¢ := " and n = ut®. Solve the discrete logarithm problem t'¢ = 7 in ]FX and get e.
Science ut®* =", we can compute

logiu = re — k.

If we make the assumption that for dega(z) < C and degb(z) < C, (a(z)—b(z)}m(z)) Nm(a(z)—
b(z)y) is random and has a uniform distribution in {h(z) € Fy[z];degh < d+k +c+
n—1}, and n < (log g/ loglogg)® for ¢ — oo, the running time of function field sieve is

exp(O(1)(log g)mex{3:1~ ¢} (log log p)™in{3.¢}),

!

4 Ramification signature for prime fields

In [Huang-Raskind 2009], the authors lifted the discrete logarithm problem in Fy to a real
quadratic field. They defined the “ramification signature” for the real quadratlc field and
proved that the discrete logarithm problem in ) is random polynomial time equivalent to
computing the ramification signature of the real quadric field under two heuristic assump-
tions, namely, an assumption on the class number and an assumption on a global unit of
the real quadratic field. Let us recall this work. ‘

4.1 » Definition

Let p,l be two prime integers with p = 1( mod I) and [ > 2. Let K be a real quadratic
field where p and [ split. Let o be a global unit of K. For any place v of K let P, denote -
the prime ideal corresponding to w. For any finite set S of places of K, let G5 denote the
Galois group of a maximal extension of K that is unramified outside of S.

Proposition 4.1. Let S be the set consisting of one place u over I, one place v over p, and
both archimedean places. Suppose that

(1) 1t hg where hi is the class number of K ;

(2) &t~ #£ 1( mod P2) for all places w | I;

(3) "7 # 1( mod P,).

Then the Fi-dimension of H*(Gs,Z/IZ) is one. Ifx is any nonzero element of this
group; then x is ramified ot u and v.

Proof. See [Huang-Raskind 2009], section4.2, proposmon 2. [ |
Remark 4.2. If x is any nonzero element of H 1(Gs, Z/1Z), it satisfies

(Xu: o) + <va av) =0 (A)

Denote the integral ring Ox in K by Ax, its completion at u by A,,, its completion at v by
A,. Through the natural isomorphism A% /AX! 22 (Z/I2Z)* /(Z/1PZ)*t, AX /A is generated
by 1+1. For any generator g of FX /FX!, it is regarded as a generator of AX/AX! through the
natural isomorphism AX /A% 22 k(v)* /k(v)*!. Clearly, (1+1, xu)~*(g, x») is independent of
the choice of x # 0 € Hom(m1(U),Z/IZ). This term is called the ramification signature
, with respect to 1 4+ and g, of the cyclic extension of degree | over K which is ramified at
u, v and unramified elsewhere.
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4.2 Reduction from signature computation problem to discrete log-
arithm problem

Suppose given p,l, K = Q(+/D), U, u,v, a, g, as in Proposition 4.1. Then the computation
of the ramification signature, with respect to 1+ and g, of the cyclic extension of degree
1 over K which is ramified at u,v and unramified elsewhere can be reduced to a discrete
logarithm problem in F¢ as follows:

Let us consider the following commutative diagram:

Af — AX — 7 - — 7 /7

l |

(Z/PZ)* — (Z/1*Z)* [(Z/PZ)*.

If the image in (Z/I2Z)* of o equals £(1 +1)Y, where € is an (I — 1)-st root of unity, then
its image in (Z/1?°Z)* /(Z/1*Z)** will be equal to (1 + 1)V. We can easily compute §, y and
consequently the first term in (A) (o, x) = y{1+1,x).

For the second term in (A), if the image of o under the morphism Af — AXJAX =
IF;;/IF;;’ is a = g™, then (o, xo) = Mm{g, Xo)-

Therefore, if one can compute m from a = ¢™, then one can compute
R p ?

(1 + Z,Xu>_l<g>Xv> = —‘m_ly € Z/ZZ.

4.3 Reduction from discrete logarithm problem in prime fields to
signature computation problem

Let g be a generator of Ff, a € F' and [ be a prime dividing p — 1. We show the computa-
tion of discrete logarithm log, a mod [ can then be reduced to computing the ramification
signature of a real quadratic field as follows.

Ifo®T = 1,thenm =0 ( mod [). Thussuppose ot # 1. We will lift a to some unit
o of a real quadratic field K such that o = a mod v for some place v of K over p, ! "1 #£1
mod I2, and o/~ # 1 mod IZ for the two places u and u’ of K over I. We do it as follows:

1. Compute b € F,f such that ab=1in F.

2. Put c:= 2t 4= Note that ¢2 — d?> = 1 and a = ¢+ d. We can assuine d # 0;
otherwise, a® = 1 a:nd m=22orp—1

3. Lift d to an integer. We have (#) = (%) = 1. We choose k € {0,1,....,0 — 1}
randomly until (“‘Hklﬁ) =1. Let z =d+ kp.

4. Let K :=Q(Wz?+1),v=(p,vVz? +1—¢),v = (p,vz?+1+c), u be any point of
SpecAg over . - : '

5. Let a:=xz++v22+1 Thus,a=d+c=ad modv,azd—cz—b mod v’
Note that Nm(e) =1, so « is a unit of K. ‘ "

Let U := SpecAx \ {u,v}. We assume that it is likely for K to satisfy the condition
in Proposition 4.1. - Then (e, Xx) + (o, x) = 0, for any x # 0 € Hom(m1(U),Z/1Z). Let
(1 +1)¥ be the image of o under the morphism

A —> AY 2 I — (Z)PZ)™ /(Z/zzz)xl
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For the first term in (A), we have {a,, x) = y(1+1,x). For the second term in (A), we have
(o, x) = (g, x). Hence we obtain

y(L+1,x) +m(g,x) = 0.

Therefore, if we can compute the ramification signature (x, 1+ 1)~ {x, g) of U with respect
to g, then we can compute m = —y{x, 1+ )" {x, g.

Therefore, we conclude that the discrete logarithm problems in F)* are random polyno-
_ mial time equivalent to some signature computation problem with the assumptions (1}, (2),
and (3) in proposition 4.1.

5 Main result

- In this section, we generalize the proposition 2 in section 4.1 in [Huang- Rasklnd 2009] ( propo—
sition 4.1 in previous section), where they considered the case where ¢ ‘p and [ split”. We
consider the more general case where “p is unramified and [ splits” here,

We then generalize the definition of “ramification signature” of a real quadratic field to
the situation “p is unramified and ! splits”. The definition in [Huang—Rasklnd 2009] is the
specialization.of our definition in the situation “p and [ split”.

We then lift the discrete logarithm problem in A% ( for & = Fp or F,2 ) to a real
quadratic field and prove that the discrete logarithm problem in &% is random polynomial
time equivalent to computing the ramification signature of the real quadratic field with one
heuristic assumption on the class number. We also show that in the proof of the equivalence
in [Huang-Raskind 2009] one can remove the assumption on the global unit. More precisely,
we give an improvement ( Step 4 in section 5.3 below ) on the construction of real quadratic
field and global unit that makes the condition (2), (3) in proposition 2 in section 4.1 in
[Huang-Raskind 2009] be satisfied automatically.

- In subsection 1, we redefine the ramification signature for a real quadratic field. In
subsection 2, we prove the reduction from the computation of a ramification signature of a
real quadratic field to the discrete logarithm problem. In subsection 3, we prove the reduction
from the discrete logarithm problem in prime field to the computation of a ramification
signature of a real quadratic field. In subsection 4, we prove the reduction from the discrete
logarithm problem in finite fields of order square of prime number to the computation of a
ramification signature of a real quadratic field.

5.1 Definition

To define the ramification signature for a real quadratic field, we need a proposition.

Proposition 5.1. Let I and p be two distinct odd prime numbers, and K = Q(v/D) be a
real quadratic field that splits over | and unramified over p. We denote the ring of integers
in K by Ak, a point over I by u and a (the) point over p in SpecAg by v. Let I, and
I, be the prime ideals of Ax corresponding to u and v, respectively. Let Z := {u,v}, and
U := SpecAx \ Z. Let A, and A, be the completions of Ax at u and v respectively. Denote
k(v) be the residue field of A at v, it is isomorphic to Fy, or Fpe

Suppose that the order n(v) of the multiplicative group k(v)* is divisible by l, the class
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number of K is not divisible by I, and there is a unit o € A%, such that

n(v)

a7l#1 mod I, o T #1 modI,.

Then we have the following:

a. There is an exact sequence

1 A /AR — AY AT & A3 AT () () —> 1. (4)
b. dimz/lz Wl(U)ab/ﬂ'l(U)abl = 1,’
c. For any nontrivial character x : m(U) — Z/IZ, x is ramified at both v and v.

Proof.

a. Let us consider the following commutative diagram:

1 » 1 KX KX 1
1 —{x1}%2 @ AXJAX @ AXJAY — {£1}2 @ K} JAX © KX JAY! @ @ty 0Z — Div(K) — 0.

Through the snake lemma and class field theory, we have the following exact sequence:

A —— (1) & AZJAX @ AX JAZ —— w1 (U)/ Tm(AX! & AF) — CU(K) —> 1.
where the term Im(AX! & AX!) is the image of AX! @ AX! under the reciprocity map

KX @K} — Gal(K2/K) @ Gal(K%* /K) — m (U)%®

As the class number of K is assumed indivisible by [, a diagram chasing shows an exact
sequence

AR AR — AJAT @ AXJAS — MU fm(U)® — 1,

The hypothesis on the existence of the global unit shows that the left morphism is nonzero.
Thus it is injective, since A% /A% is an Z/IZ- linear space of dimension 1. Therefore, we
obtain the exact sequence (A).

b. The complete discrete valuation rings A,, and A, are isomorphic to Z/IZ and W (k(v))
( the witt ring over k(v)) respectively. Therefore, the middle term in the sequence (A) is
isomorphic to (Z/I12Z)* /(Z/1Z)*! & k(v)* /k(v)*!, and is of Z/IZ-dimension 2. The left
term in (A) has Z/lZ-dimension 1 since K is a real quadratic field, and ! is'odd. Thus, the
right term in (A) has Z/IZ-dimension 1. ‘

c. We consider the dual sequence

0 —> Hom(m (U)o, Z/IZ) — Hom(AXJAX' & AX /AKX Z/NT) —> Hom(A%JA, Z/IZ) —> 0
' (B)
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of (A). Denote the image of o under the morphism ¢ by (au,a;,). For any x # 0 €
Hom(m (U)*, Z/1Z), we have

(o, x) + (o, x) =0 . )
by (B). Therefore, the following four conditions are equivalent:
(1). x is ramified at u,
(i). {(aw,x) #0,
(ii). {aw,x) #0,
(iv). x is ramified at v.

The map j* is injective, indicating that there is not non-trivial character x : m (U) —>
Z/IZ such that it is unramified at both points » and v. Therefore, for any non-trivial
x € Hom(m(U),Z/IZ), x must -be ramified at both u and v. ' [ ]

The following corollary is proved in the proof of Proposition 5.1.

Corollary 5.2. Under the conditions in proposition 5.1, we have the following:
(i) < o, x >#0,
(i) < o, x >#0,
(i) < o, X >+ < aw,x >=0. »
for any non-trivial character x : m(U) — Z/IZ.

|

Through the natural isomorphism AY /AX! & (Z/I?Z)* /(Z/1PZ)*, AX /A is generated

by 1+ 1. For any generator g of k(v)*/k(v)*!, we regard it as a generator of AX/AX!

through the natural isomorphism AX/AX' = k(v)*/k(v)*!. Clearly, (1 + 1, xx) (g, x») is

independent of the choice of x-# 0 € Hom(mw1(U), Z/IZ). We call this term the ramification
signature of U with respect to g. ’

5.2 Reduction from signature computation problem to discrete log-
arithm problem

Suppose given p,l, K = Q(+/D), U, u,v, a, g, as in Proposition 5.1. Then the computation
of the ramification signature of U with respect to g can be reduced to a discrete logarithm
problem in k(v) as follows by using Corollary 5.2.

Let us consider the following commutative diagram:

Ak Ay —— 12 zy /zy

| |

(Z/PZ)* — (Z/1L)* /(Z/1PL)*".

If the image in (Z/I2Z)* of o equals £(1 + )Y, where ¢ is an(l — 1)-st root of unity, then
its image in (Z/12Z)* /(Z/12Z)** will be equal to (1 + [)¥. We can easily compute &, y and
consequently the first term in (C) (o, x) = y{1 +1,x).

For the second term in (C), if the image of & under the morphism A} — AX/AX =
k(v)* /k(v)*! is a = g™, then (o, Xo) = Mg, Xv)-
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By Corollary 5.2, if we can compute m from a = g™, then we can compute

A+1Lxu) e x) =—m™ly € Z/IL.

5.3 Reduction from discrete logarithm problem in prime fields to
,signature computation problem

Let % be an finite fleld. Let g be a generator of k%, a € k* and ! be a prime dividing the
order of k. In the case k = Fp, the construction in previous section gives us a real quadratic
field and a global unit in the field that enable us to reduce the computation of m satisfying
a = g™ to the signature computation problem of the real quadratic field. However, the
construction requires some conditions on the class number of the field and the unit (the
condition (1),(2) and (3) in proposition 4.1) to be satisfied. We give an improvement in
Step 4 below on the construction recalled below. With the improvement, the condition (2)
and (3) in Proposition 4.1 is satisfied automatically.

We show the computation of discrete logarithm log,a mod ! can then Be reduced to
computing the ramification signature of a real quadratic field as follows, by using Corollary
5.2.

Ifa™T = 1,thenm =0 ( mod I). Thus suppose ot # 1. We will lift a to some unit
o of a real quadratic field K such that o = a mod v for some place v of K over p, o* 1 # 1
mod 12, and o!~! # 1 mod I?, for the two places v and u’ of K over I. We do it as follows:

1. Compute b € F such that ab =1 in F.
2. Put ¢:= 242 d:= 25b. Notethat ¢? —d? =1 and a = ¢+ d. We can assume d # 0;

otherwise, a* =1 and m = 25% or p — 1.
- 3. Lift d to an integer. We have (%) = (%) = 1. We choose k € {0,1,...,1 — 1}
randomly until ((dﬂ?—iﬂ) = 1. Lemma 5.3 below for ¢ = —1 shows that we can obtain

such k with probability of about 50% each time.

4. If we find such k, let dy := d+kp € Z). We may take \/d + 1 € Z) since (dglﬂ) =1
If (dy + +/d7 +1)*"1 =1 mod I2, let x = dy; otherwise let # = dy + pl. Lemma. 5.4 below
for ¢ = —1 shows that (z +v22 + 1))"1 #1 mod 12, (z — V22 + 1)""1 # 1 mod 2.

5. Let @ ;=2 ++v22+1. Thus, a =d+c=d modv,a=d—-c=-b mod?,
o/t #1 mod I2 and &1 # 1 mod I2. _

6. Let K := Q(v/22 + 1). Note that Nm(a) =1, so a is a unit of K.

Let U := SpecAx \ {u,v}. We assume that I t hg, which is likely to be satisfied.

Corollary 5.2 then shows (o, x) + {0, x) = 0, for any x # 0 € Hom(m (U),Z/IZ). Let
(1+1)¥ be the image of a under the morphism

A% — AT — (Z)12T)% ) (Z/1PZ) <.

For the first term in (C), we have (o, x) = y{1+1, ). For the second term in (C), we have
(o, x) = m(g, x). Hence, we obtain

y(1+1,x) +mg,x) =0.

Therefore, if we can compute the ramification signature (x, 1+ 1)~ (x, g) of U with respect
to g, then we can compute m = —y{x, 1 +1)~{x, g). :
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Therefore, we conclude that the discrete logérithm problems in F are random poly-

. nomial time equivalent to some signature computation problem with only one assumption,
namely, that on the class number.

The following are the statements and proofs of lemma 5.3 and lemma 5.4.

Lemma 5.3. Let | be an odd prime, ¢ € F). Define a map f : Z/IZ — {0,1,-1} by
a— (azl_c). Then, we have

THOl=2, T WI=0=38)/2, [FEDI=0-1/2 0 if (

C
b

7O =0, I WI=0-1/2, [fHEDI=0+0/2 0 i (

¢
5=-L

Proof. Let X be the curve defined by y? = 2% —c over F;. For any a € Fy, the cardinality
of the set { F;-rational point of X that has first coordinate a } is f(a) + 1. Therefore, the
following holds:

Do (fl@+1) = [X@).
a€l;

The curve X is isomorphic to the affine scheme defined by zw = 1 over F;, which implies
I X(F)|=1-1,and 3 cp, fla) = | X(F)| — I = ~1. Clearly,

f_l(o) = {\/Ea _\/E} if (% = 1)7‘
f7Ho)=¢ if (7 =-1).

which completes the proof. |

Lemma 5.4. Let p and [ be two distinct odd prime numbers. Let ¢ be an integer such that

d™1 =1 mod I? and a be an integer such that (azl_c) =1. We denote a square Toot of a® —c

inZ; byva? —c. If (a+va? — c)!=! € 1+1%Z;, then we have ((a+pl)-++/(a +pl)2 —c)' ' ¢
1+1%Z; and ((a +pl) — /(a+pl)2 —c)71 ¢ 1+ 127,.

Proof. By Hensel’s lemma, there is a unique square root 1/(a+z)2 —cof (a +z)? — ¢
in Z,{[z]] such that it’s image under the morphism z — 0 : Z[[z]] — Z; is va® —c. Let
h(z) := (a +z)+ +/{a + z)? — ¢, we then have

h(pl) = h(0) + ' (0)pl  mod 12,

where h'(0) = 14+ \/ﬁ = %. Therefore, we have

h(pl) = B(0)(1 + \/af__cl) mod 12,

The term —£— is not divided by [, which implies h(pl)"~* # h(0)'~! mod /2. Hence, we
have
((a+pl) + v/(a+pl)? — )~
Z (a++va?—c)! mod [2
= 1

mod 2.

The fact that ((a + pl) +/{a +pl)2 — ) H(a+pl) — Ja+p)Z o)t =d-1=1

mod 2 shows

((a+pl) - Via+ph)2—c)~t £ 1 mod 2 ~ [ |
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5.4 Reduction from discrete logarithm problem in finite fields of
order square of prime number to signature computation prob-
lem ’

Let k be an finite field. Let g be a generator of k%, a € £* and [ be a prime dividing the
order of £*. In the case k = F;,, we have showed the computation of discrete logarithm log, a
mod [ can be reduced to computing the ramification signature of a real quadratic field in
previous subsection. We also show it in the case k =2 as follows, by using Corollary 5.2.

Ifae IF;ZZ, then we have m =0 mod I. Thus we can suppose o ¢ IE‘;ZZ.

a. If I{p— 1, we must have l[p+ 1. Let G:=aP~",§:= g°~'. We then have
a=g", Nm(@=Nm@ =1 a¢Fy. -

We take ¢ € Fp such that (£) = —1. We have Fjz = F(v/#). We put @ = ag + bgv/?, where
ap, bo € F,. We can assume by # 0; otherwise, 32 = 1 and m = # orp+1.
We have a2 — b3t = Nm(a) =1 mod p. Hence, for any k € Z, the following holds:
ag+kp)? —1 b3t t :
ot kol — 1y @y (B = (=1
-p p P P

ai—1

(

We choose k& € {0,1,---,{ — 1} randomly, until (%) = 1. Lemma 53 forc =1
shows that we can obtain such k with probability about 50% each time.

If we find such k, let a1 := ag + kp € Z*. We have \/a? — 1 € Z; because (ﬁ—l——l) =1.
If (a1 ++/a? —=1)!"1 2 1 mod (2, let © = a;. Else, let z = a; + pl. Lemma 5.4 for ¢ = 1
shows that (z 4+ v22 — 1)1 # 1 mod 2.

Let K := Q(vz2 — 1). Then, K inerts over p and splits over [ because (“2;1) = —1, and

(°°2l—_1) = 1. Let v € SpecAk be the point over p and u € SpecAx be a point over I. Let
a:=z+vVrZ—1¢€ Ag. We then have o'~ Z1 mod I? and

a=ap+/ad —1=ag+bpvVt=a=gm mod v

2_
implying that =T #£1 mod [, as a ¢ ]F;zl. Asa:=xz4+ V2 -1 € Ag and Nm(a) =
z? — (22 —1) =1, we have a € A%. :

Let U = SpecAg \ {u,v}; We assume that | { hx, which is likely to be satisfied.

Corollary 5.2 then shows (&, x) + (o, x) = 0, for any x # 0 € Hom(m(U),Z/IZ). Let
(1+1)? be the image of a under the morphism

A%y AX 2T — (Z/1PZ)* )(Z)12T) 7.

For the first term in (C), we have (o, x) = y(1+1, x). For the second term in (C), we have
{ory, Xy = m{g, x). Hence, we obtain

y(L+14,x) +m(g,x) =0.

Therefore, if we can compute the ramification signature (x, 1+ )=1{x, g} of U with respect
to g, then we can compute m = —y{x, 1+ 1)={x, g).
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b. If i|p — 1, we have Nm(a) = Nm(g)™ as elements in F,. We can reduce the compu-
tation of m satisfying Nm(a) = Nm(g)™ to the signature computatlon problem of the real
quadratlc field using the algorithm in previous section.

Acknowledgments I would like to thank professor Takeshi Saito for giving me valuable
advice.
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ALONEDEE

FOCEE On The Discrete Logarithm Problem in Finite Fields
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