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RATIONALITY OF THE MODULI SPACES OF 2-ELEMENTARY K3
SURFACES

SHOUHEI MA

ABsTrRACT. K3 surfaces with non-symplectic involution are classified by open
sets of seventy-five arithmetic quotients. of type IV. We prove that sixty-seven of
those moduli spaces are rational.

1. INTRODUCTION

K3 surfaces with non-symplectic involution are basic objects in the study of K3
surfaces. They connect K3 surfaces with rational surfaces, Enriques surfaces, and
low genus curves. In this article we address the rationality problem for the moduli
spaces of K3 surfaces with non-symplectic involution. '

To be more precise, let X be a complex K3 surface with an involution ;. When ¢
acts nontrivially on H%(Kx), ¢ is called non-symplectic, and the pair (X, ¢) is called
a 2-elementary K3 surface. By Nikulin [30], the deformation type of (X, ) is de-
termined by its main invariant (r, a, 6), a triplet of integers associated to the lattice
of t-invariant cycles. He classified all main invariants of 2-elementary K3 surface,
which turned out to be seventy-five in number (see Figure 1). For each main in-
variant (7, a, ), let L_ be an even lattice of signature (2, 20 — r) whose discriminant
form is 2-elementary of length a and parity 6. Yoshikawa [35], [36] showed that
the moduli space M., s of 2-elementary K3 surfaces of type (r,a, ) is the com-
plement of a Heegner divisor in the arithmetic quotient defined by the orthogonal
group O(L_) of L_. In particular, M, ;s is irreducible of dimension 20 — r.

We shall prove the following.

Theorem 1.1. The moduli space M, 5 of 2-elementary K3 surfaces of type (r, a, 5)
is rational, possibly except when (r,a,6) = (1,1,1),(2,2,0),(10, 10, 1) and when
r+a=22,11<r<15. ’

In other terms, the arithmetic quotients defined by O(L_) for the 2-elementary
primitive sublattices L_ of the K3 lattice are mostly rational. We will later on
comment on the excluded eight M, ,5.

A few M, ;5 have been known to be rational: Mg 10,0 is the moduli of Enriques
surfaces and is rational by Kondd [18]; he also proved that Mjg 2, is rational by
identifying it with the moduli of certain trigonal curves [18]; Ms s is birational
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to the moduli of genus six curves (see [34], [3]), and so is rational by [34]. Now
Theorem 1.1 shows that these results are not of sporadic nature.

In [20] we proved that all M, ;s are unirational. The approach there was to use
some isogenies between M, ;5 to reduce the problem to fewer main invariants. In
fact, in [20] we studied certain covers of M, , s rather than M, , s themselves. But
the rationality problem is much more subtle, requiring individual treatment and
delicate analysis. Thus in this article we study the spaces M, s one by one.

While our approach is case-by-case, the schemes of proofs are mostly common,
which we shall try to explain here. We first find a birational period map

(].].) P : U/G == Mr,g’(‘)‘

from the quotient space U/G of a parameter space U by an algebraic group G. Then
we prove that U/G is rational as a problem in invariant theory (cf. [12], [31]). The
space U parametrizes (possibly singular) —2Ky-curves B on some smooth rational
surfaces Y, and the map % is defined by taking the desingularizations of the double
covers of Y branched along B. Thus our approach for 2-elementary K3 surfaces is
essentially from quotient surfaces and branch curves.

The fact that # is birational means that our construction is “canonical” for the
generic member of M, ,s. The verifications of this property mostly fall into the
following two patterns: (&) when the curves B are smooth, so that the desingu-
larization process does not take place, it is just a consequence of the equivalence
between (variety, involution) and (quotient, branch). This simple approach is taken
when r = a (¥ are del Pezzo) and when (r,a,9) = (10,8,1). (8) For many other
(r,a, ), the surfaces Y are P? or Hirzebruch surfaces F,, the curves B have simple
singularities of prescribed type, and the group G is Aut(Y). For this type of period
map we can calculate its degree systematically. A recipe of such calculation is
presented in §4.3. By finding a period map of degree 1 of this type, our rationality
problem is reduced to invariant theory over P? or F,,.

It should be noted, however, that the existence of birational period map as above,
especially of type (8), is a priori not clear. Indeed, whenr+a = 20,6 <a <9,
§ = 1, we partially give up the above approach and study a non-birational period
map U/G --» M,,s of type (). Using the recipe in §4.3, we show that it is a
quotient map by a Weyl group, and then analyze that action to derive the rationality.
The proof for these cases would be most advanced in this article. On the other hand,
when r + a < 18, some of our birational period maps seem related to Nakayama’s
minimal model process for log del Pezzo surfaces of index 2 [28], which may
explain their birationality.

Recall that for most (r, a, ) the fixed locus X* of an (X,t) € M, s is the union
of a genus g = 11 — 27!(r + a) curve C# and some other (-2)-curves ([30]). As an
application of our birational period maps, we will determine the generic structure
of the fixed curve map

(1‘2) F : Mr,a,rS - Mg, (X’ L) = Cga

when g > 3. The point is that F is the composition of the inverse period map
Pl Mygs > UJ/G with the map U/G — M, that associates to a —2Ky-curve

\)



3

B its component of maximal genus. We will find that the latter map identifies
U/G with a natural fibration over a sublocus of M, defined in terms of special
line bundles and points. Thus, via F, M, is in a nice relation to M,. This
generalizes the descriptions of Mjg 20 and Ms s ; referred above. Our period maps
will be useful in the study of 2-elementary K3 surfaces.

The rationality problem for the remaining eight M, ;¢ is open. Mj 11 and Mao o
are respectively birational to the moduli of plane sextics and of bidegree (4,4)
curves on P! x P!, Hence the rationality problem for these two may be purely
invariant-theoretic. Other six are related to point sets in P2, as explored in [20].
Mi1.11,1 is the moduli of classical Coble surfaces. Mjg 10,1 is a fibration over the
moduli of Halphen surfaces of index 2. Mjsg; and M;s 7 are finite quotients
of configuration spaces of seven points in P2. Similarly, Mj2,10,1 and Mjszo 1 are
related to configuration spaces of eight points in P2,

This article is organized as follows. §2 and §3 are preliminaries on invariant
theory. In §4, after reviewing basic theory of 2-elementary K3 surfaces, we explain
how to calculate the degrees of period maps of certain type. The proof of Theorem
1.1 begins with §5, where we treat the case r = a using del Pezzo surfaces. The
case r > a is divided according to the genus g of main fixed curves. This division
policy comes from our observation on the relation of M, ;s to M,. In §6 we treat
the case g > 7 where trigonal curves of fixed Maroni invariant are central. Section
7<n<llisforthecase g =13 —-n In§l12wetreatthecase g =1,11 <r < 14,
& = 1, where del Pezzo surfaces appear again in more nontrivial way. We study in
§13 the rest cases with g = 1, and in §14 the case g = 0.

2. RATIONALITY OF QUOTIENT VARIETY

Let U be an irreducible variety acted on by an algebraic group G. Throughout
this article we shall denote by U/G a rational quotient, namely a variety whose
function field is isomorphic to the invariant subfield C(U)¢ of the function field
C(U) of U. As C(U)C is finitely generated over C, a rational quotient always exists
(cf. [31]) and is unique up to birational equivalence. The inclusion C(U)¢ c C(U)
induces a quotient map w: U --» U/G. Every G-invariant rational map ¢: U — V'is
factorized as ¢ = i ox by a unique rational map ¢ : U/G --> V. We are interested in
the problem when U/G is rational. We recall some results and techniques following
[12] and [31]. ‘

Theorem 2.1 (Miyata [25]). If G is a connected solvable group and U is a linear
representation of G, the quotient U/G is rational.

Theorem 2.2 (Katsylo, Bogomolov [15] [5]). If U is a linear representation bf
G = SL;, X (C, the quotient U/G is rational. '

Theorem 2.2 is for the most part a consequence of Katsylo’s theorem in [15].
The exception in [15] was settled by [5]. See also [31] Theorem 2.12.

The G-action on U is almost transitive if U contains an open orbit. The follow-
ing is a special case of the slice method ([14], [12]).
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Proposition 2.3 (slice method). Let f : U — V be a G-equivariant morphism with
almost transitive G-action on V. If G, C G is the stabilizer group of a general
point v € V, then U/G is birational to f1(v)/G,.

Proof. Indeed, the fiber f~1(v)is a slice of U in the sense of [12] with the stabilizer
Gy. X m]

The G-action on U is almost free if a general point of U has trivial stabilizer.

Proposition 2.4 (no-name method). If E — U is a G-linearized vector bundle
+ with almost free G-action on U, then the induced map E|G --» U/G is birationally
equivalent to a vector bundle over U/G. \

When G is reductive, the no-name lemma is a consequence of the descent theory
. for principal G-bundle. A proof for general G is given in [9] Lemma 4.4. We will
use the no-name method also in the following form.

Proposition 2.5. Let E — U be a G-linearized vector bundle and let Gy = {g €
G, glv = id). Suppose that (i) G = G /Gy acts almost freely on U, (ii) Gy acts on E
by a scalar multiplication a : Gy — C*, and (iii) there exists a G-linearized line
bundle L — U on which Gq acts by a. Then PE/G is birational to PN x (U/G).

Proof. Apply Proposition 2.4 to the G-linearized vector bundle E® L~!. We have a
canonical identification P(E ® L1y = PE. Notice that the quotient map E® L™! -
(E ® L™1)/G is linear on the fibers (cf. [9]). u|

3. AUTOMORPHISM ACTION ON HIRZEBRUCH SURFACES

We prepare miscellaneous results concerning automorphism action on Hirze-
bruch surfaces. For n > 0 let &, be the vector bundle Op: (1) ® Op: over PL. The -
projectivization F,, = P&, is a Hirzebruch surface. Our convention is that a point
of F, represents a line in a fiber of &,. Then the section POpi(n) C F, is a (—n)-
curve which we denote by . Let 7 : F, — P! be the natural projection. If F is
a n-fiber, we shall denote the line bundle Op, (a(X + nF) + bF) by L,p. The Pi-
card group Pic(F,) consists of the bundles L, a, b € Z. For example, the section '
POp: C F, belongs to |L; ol; the fiber F belongs to |Lg |; the canonical bundle Kg,
is isomorphic to L5 ,». We have (L. F) = aand (Lyp.2) = b

Except for §3.3, we assume n > 0 in this section. Under this assumption, the
action of Aut(F,) preserves 7 and . Consequently, we have the exact sequence

(3.1) 1 - R — Aut(F,) - Aut®) —» 1

where R = Aut(&,,)/C*. Via the givén splitting &, = Op1(n) ®Op:, we may identify
a s %

(3.2) R= {ga,s = (O 1), aeC’ se Hom(()]pl,O]pl(n))}.

Thus we have R =~ CX =< H%(Opi(n)). When n is even, &, admits a PGLZ—
linearization via that of Op1(n), so that the sequence (3.1) splits.
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3.1. Linearization of line bundles. Let G = SL, =< R where SL; acts on the
component H(Op1(n)) of R in the natural way. Via the identification (3.2) and the
SL,-linearization of Opi (1), the bundle &, is G-linearized. This induces a surjective
homomorphism G — Aut(F,), whose kernel is Z/2Z generated by p = (-1, g-1,0)
when 7 is odd, and by o = (-1, g1,0) when n is even.

Lemma 3.1. Every line bundle on F,, is G-linearized.

Proof. The SL,-linearization of Op:(1) induces a G-linearization of Op(1) =
Lo,1. Moreover, Of,(Z) is the dual of the tautological bundle over F,, which is the
blow-up of &, along the zero section. Hence O, (X) = L1 —, is G-linearized. O

Proposition 3.2. When n is odd, every line bundle on F, is Aut(F,)-linearized.
When n is even, the bundle L, admits an Aut(F,)-linearization if b is even.

Proof. In the G-linearization of &,, the element o (resp. p) acts trivially when n is
even (resp. odd). Hence O, (X) is always Aut(F,)-linearized. Also Lg_p = 7" Kp1
is Aut(F,)-linearized via the PGL;-linearization of Kpi1. This proves the assertion -
for even n. The homomorphism G — C* defined by (¥.8e,s) — « induces a
1-dimensional representation V' of G on which p acts by —1. Hence the bundle
Lo = Lo,1 ® V is Aut(F,)-linearized for odd ». O

3.2. Some linear systems. We study the Aut(F,)-action on the linear systems
[Loals IL1,0l, IL1,1], and |L o). Recall that we are assuming n > 0.

Proposition 3.3. The group Aut(F,) acts on the linear system |Lq 1| transitively,
and the stabilizer of a point of |Lg 1| is connected and solvable.

Proof. We have a canonical identification |Lg 1| =~ X given by F — F N X. The
sequence (3.1) restricted to the stabilizer G, of a p € X gives the exact sequence

1 >R—>Gp,— Aut(Z, p) — 1,

where Aut(Z, p) is the stabilizer of p in Aut(Z).  Since both R and Aut(Z, p) ~
C* x C are connected and solvable, so is Gp. O

Every smooth divisor H in |L;| is a section of x disjoint from X. Hence it
corresponds to another splitting &, =~ Opi1(n) & Op: for which the image of POp: is
H.

‘Proposition 3.4. The group Aut(F,) acts transitively on the open set U C L1l of
smooth divisors. The sequence (3.1) restricted to the stabilizer Gg C Aut(F,) of
an H € U gives the exact sequence

(3.3) 1 - C*— Gy — Aut(x) — 1.

Proof. In fact, the subgroup R c Aut(F,) acts transitively on U because any two
splittings &, =~ Opi(n) ® Op: are Aut(E,)-equivalent. When H corresponds to the
original splitting of &,, we have Gy N R = {gq 0,2 € C*}. The homomorphism
Gy — Aut(Y) is surjective thanks to the SL,-linearization of Opi (1) ® Op1. |
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Proposition 3.5. The group Aut(IFn) acts on |Ly 1} almost transitively with the sta-
bilizer of a general point being connected and solvable.

Proof. We first show that the subgroup R C Aut(F,) acts on ]L1,1| almost freely.
Indeed, if an element g € R preserves (and hence fixes) a smooth D € |L 1|, then
for a general H € |L; | the n+ 1 points H N D are fixed by g. Since (L19.L1g) =n,
then g fixes H and so must be trivial. The group R preserves the sub linear system
PV, C |L1,1| of curves passing each p € Z. Since dimR = dimPV, = n + 2,
the R-action on PV), is also almost transitive. Thus Aut(F,) acts on |L1,1| almost
transitively. Let G ¢ Aut(F,) be the stabilizer of a general D € |Ly,1|. Since GNR =
{id}, the natural homomorphism G — Aut(¥) is injective. Its image is contained in
_ the stabilizer Aut(Z, p) of the point p = DNX. Then the embedding G — Aut(, p)
is open because dimG = 2. Therefore G is connected and solvable. O

Every smooth divisor in |, | is a hyperelliptic curve of genus n — 1 whose gé is
given by the restriction of .

Proposition 3.6. If U C |L, | is the open set of smooth divisors, a geometric quo-
tient U/ Aut(F,) exists and is zsomorphlc to the moduli space H,-1 of hyperelliptic
curves of genus n — 1.

Proof. Recall that H,,_; is a normal irreducible variety. We have a natural Aut(F,)-
invariant morphism ¢: U — H,-;. In order to show that ¢ is surjectlve let C
be a hyperelliptic curve of genus n—1and 7: C — P! beits g2 The curve C
is naturally embedded in P(7.O¢)" over P! by the evaluation map. Let 7.0¢ =
L+ ®L_ be the decomposition with respect to the hyperelliptic involution ¢, where
¢ acts on L, by +1. It is clear that £, =~ Opi, and a cohomology calculation
shows that £_ = Opi (—n). Thus P(r.O¢)" is isomorphic to F,. Then C belongs
to |Lp | for some b > 0, and the genus formula shows that b = 0. Therefore  is
surjective. Conversely, for a C € U the natural embedding C c P(r.O¢)" extends
to an isomorphism F, — P(7.O0¢)" (e.g:, by the evaluation at C via the canonical
identifications P(r.O¢)" =~ P(r.O¢) and F, ~ P&)). This implies that the y-fibers
are Aut(lF,)-orbits. Now our assertion follows from [27] Proposition 0.2. O

By the proof, the hyperelliptic involution of a smooth C € |L, | uniquely extends
to an involution ¢¢ of F,. Concretely, for each m-fiber F' consider the involution of
F which fixés the point F N X and exchanges the two points F N C (or fixes FNC
when F is tangent to C). This defines ¢c.

- Corollary 3.7. When n = 3, the stabilizer in Aut(F,,).of a general C € |Lp | is {tc).

Proof. By Proposition 3.6 C has no automorphism other than its hyperelliptic in-
volution. Any automorphism of F, acting trivially on C must be trivial because it
fixes three points of general m-fibers. ’ O

3.3. Trigonal curves. We allow n > 0 in this subsection. It is known that trigonal
curves are naturally related to Hirzebruch surfaces. We recall here some basic facts
(cf. [2], [22]). A canonically embedded trigonal curve C C P81 of genus g > 5
is contained in a unique rational normal scroll, that is, the image of a Hirzebruch
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surface F, by a linear system |L; ,,|. The scroll is swept out by the lines spanned by
the fibers of the trigonal map C — P! (which is unique), and may also be cut out
by the quadrics containing C. The number 7 is the scroll invariant of C, and the
number m is the Maroni invariant of C. If we regard C as a curve on F,, the system
|L1,m| gives the canonical system of C, and |Lg 1| gives the gé of C. Then C belongs
to |L3 3| for b = m — n + 2. The genus formula derives the relation g = 31 + 2b — 2.
Conversely, for a smooth curve C on F, with C € |L3 |, the linear system |L; 4|
with m = b + n — 2 is identified with |K¢| by restriction, and the curve ¢z, ,,(C) in
|L1,,|" is a canonical model of C which is contained in the scroll ALy, (Fn).

For g > 5 we denote by 7, C M, the locus of trigonal curves of scroll invariant
n in the moduli space of genus g curves. In some literature, 7, is called a Maroni
locus. General trigonal curves have scroll invariant 0 or 1 depending on whether g
is even or odd. The above facts infer the following.

Proposition 3.8. For g > 5 and n > 0 the space T, is naturally birational to a
rational quotient |L3 p|/G, where 2b = g —3n + 2 and G is the identity component -
of Aut(F,).

3.4. A coordinate system. The Hirzebruch surface F, has a natural coordinate
system. Let [X, Y] be the homogeneous coordinate of Pl Let Vy = {Y # 0} and
Vi = {X # 0} be open sets of P'. We fix the original splitting &, = Op:(n) ® Op:
and denote H = POp: C F,,. An open covering {U, i}?=1 of F, is defined by
Uy=7"'(Vo)-H, Uy=n"'(V1)-H,
Us=n"'Vo)-Z%, Us=n'(V1)-2.
Let 1 € H%Op).be the section given by the constant function 1. Let sg, s1 €
HO(Op:1(n)) be the sections given by sy = ¥” and s; = X" respectively. Note that
s1 = (Y71X)"so where we regard Y71X € HO(OVOnvl)- We shall use (1, s;) as a local
frame of &, over V;. Then we have an isomorphism U; — C? (resp. U3 — C?)
given by
(X, Y], Clal +bso)) = (Y 'X,b7'a)  (resp. = (Y™'X,a™'D)),
and an isomorphism U, — C? (resp. Uy — C?) given by
(X.7], Clal+cs1)) » X 'Ycla)  (resp. = (X'Y,a7 o).
Thus the open sets U; ~ C? have coordinates (x;, ¥;) glued by
X] =Xx3 = x;l = x‘l,
y3=yih ye=ys y=AyL ya=x"ys
The (—n)-curve X is defined by the equation y; = y» = 0.
Let us describe some of the Aut(F,)-action on F,, in terms of these coordinates.

The elements ges € R leave Us invariant. If s € H%(Opi(n)) is written as s =
o WX'Y", then go acts by

P n
(3.4 8a,s - Uz 3 (x3,y3) > (x3,0y3 + Zﬂixé) € Us.
i=0
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The group GL, acts on F, via the GL,-linearization of &,. Then the elements

| hg = (ﬁ (1)) and j = (0 ) of GL; act respectively by

1 0
(3.5) " hg: Us 3 (x3,y3) = (Bx3,y3) € Us,
(3.6) J U3z 3 (x3,¥3) = (x3,¥3) € Us.

In (3.6), the second (x3, y3) is the coordinate in Uy. This action is also regarded as
the rational transformation Us 3 (x3,y3) = (xgl,x§”y3) € Us.

We describe the linear systems |L, | in terms of these coordinates. We may
assume a, b > 0, which is equivalent to the condition that [L, 3| has no fixed com-
ponent. If C € |L, |, then CN Uy is a curve on Uy and thus defined by the equation
F(x1,y1) = 0 for a polynomial F(x1,y1). ’ ‘

Proposition 3.9. For a,b > 0 the linear system L) is identiﬁed by restriction to
U, with the projectivization of the vector space {37, fi(x1 )yl, degf; < b+ in} of
polynomials of x1,y1.

Proof. Let F(x1,y1) = 0 be an equation of C|y, for a general C € |, 3|. Expanding »
F(x1,y1) = Z?:o fi(xl)yiv we have d = (C.F) = g and degfy = (C.X) = b. By
substitution, the curve C|y, on U, is defined by x’éF (x5 1 x3y2) = 0 for some k.
Putting y» = 0, we know that k = b. Since xb F (xg » X3y2) should be a polynomial
of x»,y», we must have degf; < b + in. Then the equality hO(La p) = X(La p) =
2(a + 1)(an + 2b + 2) concludes the proof. O

A defining polynomial }7 f,(xl)y‘1 in U for a curve C € |Lyy| is trans-
formed into X7, f,(xgl)xé’””y in U, into X7 fi(x3)y§ ! in U3, and into
2o f,(x41)xb+’”yj‘ in Us.

" 4. 2-ELEMENTARY K3 SURFACE

4.1. 2-elementary K3 surface. We review basic theory of 2-elementary K3 sur-
faces following [1] and [35]. Let (X,¢) be a 2—elementary K3 surface, namely X
is a complex K3 surface and ¢ is a non-symplectic involution on X. - The pres-
ence of ¢ implies that X is algebraic. We denote by L.(X,t) ¢ H*(X,Z) the lattice
of cohomology classes [ with (*/ = +I. Then L,(X,t) is the orthogonal comple-
ment of L_(X,¢) and contained in the Néron-Severi lattice NS x. If r is the rank
of Li(X,¢), then L (X,¢) and L_(X,t) have signature (1,7 — 1) and (2,20 — r) re-
spectively. Let L.(X,t)" be the dual lattice of L. (X, ). The discriminant form of
L.(X, ) is the finite quadratic form (D, q.) where Dy, = L.(X,1)"/L.(X,¢) and
g: : Dp, — Q/2Zis induced by the quadratic form on L. (X, t)". We have a canon-
ical isometry (Dr,,q+) = (Dr_,—g-). The abelian group Dy, is 2-elementary,
namely Dy, =~ (Z/2Z)" for some a > 0. The parity 6 of g, is defined by 6 = O if
g+(Dr,) € Z, and § = 1 otherwise. The triplet (r, a, §) is called the main invariant
of the lattice L. (X, t), and also of the 2-elementary K3 surface (X, ). By [29], the
isometry class of L, (X, ¢) is uniquely determined by (7, a, §).



Proposition 4.1 (Nikulin [30]). Let X* C X be the fixed locus of t.

(i) If (r,a,6) = (10,10, 0), then X* = 0. :

(i) If (r,a,6) = (10,8,0), then X* is a union of two elliptic curves.

(iii) In other cases, X* is decomposed as X* = CE U Ey U --- U Ey such that C8 is
a genus g curve and Eq,- - - |, Ex are (—2)-curves with

@.1) g=11—r“;“, =122

2

One has 6 = 0 if and only if the class of X" is divisible by 2 in L,(X, 1).

Theorem 4.2 (Nikulin [30]). The deformaﬁon type of a 2-elementary K3 surface
(X, 1) is determined by its main invariant (r, a,6). All possible main invariants of
2-elementary K3 surfaces are shown on the following Figure 1 (which is identical
to the table in (1] page 31). '

an

—_
&. MW A KA ® O S
—TTr—T—r—r—TT

Figurk 1. Distribution of main invariants (r, a, 6)

A moduli space of 2-elementary K3 surfaces of type (7, a, 6) is constructed as
follows. Let L_ be an even lattice of signature (2, 20 — ) whose discriminant form
is 2-elementary of length a and parity §. The orthogonal group O(L_) of L_ acts
on the domain

Q. ={CwePIL_8C)|(w w)=0,(w,a) >0}

The quotient space F(O(L-)) = O(L-)\Q;_ turns out to be an irreducible, normal,
quasi-projective variety of dimension 20 — r. The complex analytic divisor 6+ C
Qg _, where ¢ are (—2)-vectors in L_, is the inverse image of an algebraic divisor
H CcF(O(L.)). Weset -

k Mr,a,tS = F(O(L-)) — H.

For a 2-elementary K3 surface (X,:) of type (r,a,6) we have an isometry
®: L (X,t) = L_. Then ®(H>°(X)) is contained in Q;_. The period of (X, )
is defined by 7

PX,0) = [DEH(X))] € Mg,
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which is independent of the choice of ®.

Theorem 4.3 (Yoshikawa [35], [36]). The variety M, s is a moduli space of 2-
elementary K3 surfaces of type (r,a,6) in the sense that, for a family (X — U,1)
of such 2-elementary K3 surfaces the period map U — M, 45, u = P(X,, 1), is a
morphism of varieties, and via the period mapping the points of M, , s bijectively
correspond to the isomorphism classes of such 2-elementary K3 surfaces.

Let M, be the moduli of genus g curves. When (r, a,6) # (10, 10,0), (10, 8, 0),
setting g = 11 — 271(r + a), we have the fixed curve map

(42) F : Mr,a,5 - Mg, (Xa L) = Cga

where C8 is the genus g component of X*. In this article we will determine the
generic structure of F in terms of M, for g > 3. For example, one will find that

e Fis generically injective forr < Sandfor8§ <r<12,a <2

e The members of F(M,,s) have Clifford index < 2. If k > 0 in addition,
they have Clifford index < 1.

e When r = 2 + 4n, we have § = 0 if and only if the generic member of
F(M,.,s) possesses a theta characteristic of projective dimension 3 — n.

4.2. DPN pair. We shall explain a generalized double cover construction of 2-
elementary K3 surfaces. Recall from [1] that a DPN pair is a pair (¥,B) of a
smooth rational surface ¥ and a bi-anticanonical curve B € |-2Ky| with only A-D-
E singularities. When B is smooth, (Y, B) is called a right DPN pair. 2-elementary
K3 surfaces (X,¢) with X* # @ are in canonical correspondence with right DPN
pairs: for such an (X, ¢) the quotient ¥ = X/t is a smooth rational surface, and
the branch curve B of the quotient map X — Y is a —2Ky-curve isomorphic to
X*'. Conversely, for a right DPN pair (¥, B) the double cover f: X — Y branched
along B is a K3 surface, with the covering transformation being a non-symplectic
involution. From B one knows the invariant (7, a) of X via Proposition 4.1. Also
one has r = p(Y). The lattice L, (X, ) is generated by the sublattice f* NSy and the
classes of components of X* (cf. [20]). By [1], if B = Zf:o B; is the irreducible
decomposition of B, then (X, ¢) has parity § = 0 if and only if Zfzo(—l)"iB,- €4NSy
for some #; € {0, 1}.

Let (Y, B) be a DPN pair. A right resolution of (¥, B) is a triplet (¥Y’, B, ) such
that (Y’,B’) is a right DPN pair and 7n: ¥' — Y is a birational morphism with
7(B’) = B. When Y is obvious from the context, we also call it a right resolution of
B. A right resolution exists and is unique up to isomorphism. It may be constructed
explicitly as follows ([1]). Let

(4.3) B (¥, B) D (Y1, Bio) S o+ 5 (Yo, Bo) = (X, B)

be the blow-ups defined inductively__ by mis1 ¢ Yier — __I:', being the blow-up at the
singular points of B;, and Bi.1 = B; + Zp E, where B; is the strict transform of
B; and E), are the (—1)-curves over the triple points p of B;. Each (Y, B;) is also
a DPN pair. This process will terminate and we finally obtain a right DPN pair
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(Y',B’) = (Yy,By). Let p be a singular point of B. According to the type of

singularity, the dual graph of the curves on Y’ contracted to p is as follows.

e 3....[%]

4 o

Doy \o—©—o ©—0
Es .—.—i

2
1
2 3 74 o
4
172 73 |
05
1 °2 73 ~4 6 7

E; oeo@o@
Eq O—O0—0—0—0—0—0

1 72 73 74 75 77 78

Here black vertices represent (—2)-curves, white vertices represent (—1)-curves,
and double circles represent (—4)-curves. The (—4)-curves are components of B,
while the (—2)-curves are disjoint from B’. The (—1)-curves intersect with B’ trans-
versely at two points unless p is Ag,-type; when p is an Aj,-point, the (—1)-curve
" is tangent to B’ at one point. The labeling for the vertices will be used later. Note

that identification of the dual graph of the curves with the above abstract graph is

not unique when p is Do, -type. In that case, such an identification is obtained after
-one distinguish the three branches (resp. two tangential branches) of B at p when
- n=2(resp. n > 2). ‘

Let (7, B) be a DPN pair with a right resolution (Y’, B’, 7). Taking the double
cover of ¥’ branched over B’, we associate a 2-elementary K3 surface (X,:) to
(Y, B). The composition X — Y of the quotient map X — ¥’ and the blow-down
m is called the right covering map for (¥, B). Note that (X, ¢) is also the minimal
desingularization of the double cover of Y branched over B. By the above dual
graphs, the invariant (7, a) of (X, ¢) is calculated in terms of (¥, B) as follows. Let a,
(resp. dy, e,) be the number of singularities of B of type A, (resp. Dy, E,). Then
r = p(Y")is given by

@4 p(M)+ Y 1@ +aw)+ ) 2m(dyn + dams1) + des + Ter + 8es.

>1 m>2
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If &y is the number of components of B, the number k+1of components of X* ~ B’
is given by

(4.5) ko + Z(m —1)(dam + doms1) + €6 + 3¢7 + des.

m>2
The genus g of the main component of X* is the maximal geometric genus of com-
ponents of B. For the parity 6 we will later use the following criteria.

Lemma 4.4. Let (X,t) and (Y, B) be as above. Then (X, 1) has parity § = 1 if we
have distinct irreducible components B; of B with either of the following conditions.

(1) B; N Bj contains a node of B for every 1 <i, j < 3.

(2) By N By contains a node and a Dy-point of B.

(3) B1 N By contains a node and a Dz,,-point of B, in the latter of which By and
By share a tangent direction. '

(4) By has a node which is also a node of B.

Proof. (1) Let p; be a node of B contained in B; N By with {i, Bk = {1,2,3}.
Let C; C X be the (—2)-curve over p;. It suffices to show that the Q-cycle D =
271 21.3:1 C; belongs to L(X, ¢)¥. If F; is the component of X* over B;, then (D.F;) =
1 for every 1 < i < 3. We have (D.F) = 0 for other components F of X*. Since
2D is the pullback of a divisor on X/, D has integral intersection pairing with the
pullbacks of divisors on X/:. This proves the assertion.’

(2) Let Y” be the blow-up of Y at the D4-point, E C Y” the exceptional curve,
and B; (resp. B) the strict transform of B; (resp. B) in Y”. Then one may apply the
case (1) to the DPN pair (Y”, B+ E) and the components Bi,By,E of B+E.

(3) Blow-up Y at the D,-singularity and use the induction on #: the assertion is
reduced to the case (2).

(4) If C c X is the (—2)-curve over that node, we have 27 1Cce L, (X,0)V. O

In certain cases, the right covering map f: X — Y may be recovered from a line
bundle on X.

Lemma 4.5 (cf. [20]). Let (X, ) and (Y, B) be as above and suppose that Y is either
P2 or P! x P! or F, with n > 0. Let L € Pic(Y) be Opz(1), Opiyp1(1, 1), L1 for
respective case. Then the map f*: |L| — |f*L| is isomorphic.

Proof. The bundle f*L is nef of degree 2(L.L) > 0 so that K(f*L) = y(f*L) =
2 + (L.L). Hence the assertion follows from the coincidence A%(L) = 2+ (L.L). O

By this lemma, the morphism ¢¢z: X — |f*L|" is identified with the composi-
tion ¢y o f: X — Y — |L]¥. The morphism ¢; is an embedding when ¥ = P? or
P!xPL. IfY = F, withn > 0, ¢ contracts the (—n)-curve X. Therefore, for Y # Fy,
one may recover the morphism f: X — Y from the bundle f*L by desingularizing
the surface ¢ (X) = ¢r(Y). For Y = Fy, ¢r: F1 — P? is the blow-down of the
(—1)-curve Z, and one may recover f from f*L if one could identify the point ¢ (Z)
in P2, :

In the rest of this subsection we prepare some auxiliary results under the fol-
lowing assumption (which is necessary if one wants to obtain general members of
Mr,_a,c‘i)-
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Condition 4.6. The singularities of B are only of type A1, Dy, E7, Eg.

For such a singularity p of B, the irreducible curves on ¥’ contracted to p are
only (—4)-curves and (—1)-curves transverse to B’. The reduced preimages of those
*curves in X are (-invariant (—2)-curves, and their dual graph is the Dynkin graph
of same type as the singularity of p. We denote by A,.C L.(X, ) the generated
root lattice. Let B = ZleéBi be the irreducible decomposition of B, and F; be the
component of X* with f(F;) = B;.

Lemma 4.7. The lattice L(X, 1) is generated by the sublattice f*NSy @ (©pAp),
where p are the singularities of B, and the classes of F;, 1 <i <L

Proof. Let f': X — Y’ be the quotient map by ¢. By the construction of A, the ‘
lattice (f")* NSy is contained in f*NS y®(®,Ap). Also the components of X* other
than Fy,--- , F) are contracted by f to the triple points of B, so that their classes
are contained in ©,A . : |

We shall construct an ample divisor class on X using the objects in Lemma
4.7. Let p be a triple point of B. Choose an identification of the dual graph of the
exceptional curves over p with an abstract graph presented in p.11. Via the labeling
given for the latter, we denote by {E,;}; the (—2)-curves generating A,. Then we
define a divisor D, on X by D, = E,, 1 + Epp + 327, 1074E,, ; when p is D, -type;
D, = ¥ 107%E,; + E, ¢ when p is E7-type; and D, = 3.8, 1072E,; + Ep7
when p is Eg-type. This divisor is independent of the choice of an identification of
the graphs.

Lemma 4.8. For an arbitrary ample class H € NSy the divisor class
(4.6) 103 f*H + 10%° Z Fi+ Z D,,

) i=1 p
where p are the triple points of B, is an r-invariant ample class on X.

Proof. The class (4.6) is the pullback of a divisor class L on Y’. Note the bounds
2.pTk(Ap) < 20 and I <10 and apply the Nakai criterion to L. O

By Lemmas 4.7 and 4.8 we have a basis and a polarization of the lattice L, (X, )
defined explicitly in terms of (¥, B).

4.3. Degree of period map. Let Y be one of the following rational surfaces:
P>, P'xP, F, 1<n<4).
Suppose that one is given an irreducible, Aut(Y)-invariant locus
U c |-2Ky|

such that (i} every member B, € U satisfies Condition 4.6, (ii) the singularities of
B, of each type form an etale cover of U, and (iii) the number of components of B,
is constant. Then the 2-elementary K3 surfaces associated to the DPN pairs (Y, By,)
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have constant main invariant (r,a,6), and one obtains a period map p: U = M, 4.
Since p is Aut(Y)-invariant, it descends to a rational map

P : UJAU(Y) > Myqs.

Here U/Aut(Y) stands for a rational quotient (see §2). In this section we try to
explain how to calculate the degree of . Such calculations have been done in
some cases (e.g., [26], [18], [3]), and the method to be explained is more or less a
systemization of them. Roughly speaking, deg(#) expresses for a general (X,¢) €
M, .6 how many contractions X/t — Y exist by which the branch of X — X/t is
mapped to a member of U. '

Below we exhibit a recipe of calculation supplemented by few typical examples.
The recipe will be applied in the rest of the article to about fifty main invariants
(r,a,8). Since the materials are diverse, it seems hard to formulate those calcula-
tions into some general proposition. Instead, we shall give sufficient instruction for
each (r, a, 6) and then leave the detail to the reader by referring to the recipe below,
which we believe is not difficult to master.

We use a certain cover of M, ;5. Let L_ be the 2-elementary lattice of signature
(2,20 — r) used in the definition of M, 45, and 6(L_) be the group of isometries of
L_ which act trivially on the discriminant group Dy_. Let Mm,g be the arithmetic
quotient G(L_)\QL_', which is irreducible for 6(L_) has an element exchanging the
two components of Q7_. The natural projection

/8 Mr,a,ﬁ == Mr’ayé'

is a Galois covering. The Galois group is the orthogonal group O(Dy_) of the
discriminant form, for the homomorphism O(L_)} — O(Dy_) is surjective ([29])
and —1 € O(L-) acts trivially on Dj_. In particular, we have

deg(n) = |O(D.)|.

Since D;_ is 2-elementary, one may calculate |O(D;_)| by using [26] Corollary 2.4
and Lemma 2.5. We shall use standard notation for orthogonal/symplectic groups
in characteristic 2: O*(2n,2), O~(2n,2), and Sp(2n, 2) (see [26], [13]).

The cover Mm,g is birationally a moduli of 2-elementary K3 surfaces with
lattice-marking. We fix a primitive embedding L. c Ags where Agsz = U @ E%,
an even hyperbolic 2-elementary lattice L. of main invariant (7, a, §), and an isom-
etry L. =~ (L-)* N Ags. Suppose that one is given a 2-elementary K3 surface
(X, 1) € M, 45 and a lattice isometry j: Ly — L.(X, ). By Nikulin’s theory [29], j
can be extended to an isometry ®@: Agz — H*(X,Z). Then @ '(H*0(X)) belongs
to Q;_, and we define the period of ((X, 1), j) by [®L(H*?(X))] € M,,a,g. Since the
restriction @[y, is fixed, this definition does not depend on the choice of ®. Two
such objects ((X, ¢), j) and ((X’, ("), j’) have the same period in Mm,g if and only if
there exists a Hodge isometry ¥: H*(X,Z) — H*(X’,Z) with ¥ o j = j’. The open
set of Mm,(g over M, 4 parametrizes such periods of lattice-marked 2-elementary
K3 surfaces. ‘
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In order to calculate deg(P), we construct a generically injective 1ift of P,
5 . ﬁ/G i d Mr’a’ﬁ,

where U is a certain cover of U and G is the identity component of Aut(Y). Then
we compare the degree of the projection U/G — U/Aut(Y) with |O(Dy_)|. Here is
a more precise procedure.

(1) We define a cover U — U in which U parametrizes pairs (B, 4) where
B, € U and y is a “reasonable” labeling of the singularities, the branches
at the D»,-singularities, and the components of B,,.

(2) Let (X,1) = p(B,) be the 2-elementary K3 surface associated to (¥, By).
By Lemma 4.7, the labeling u and a natural basis of NSy induce a lat-
tice marking j of L.(X,t). Actually, Lemma 4.7 implies an appropriate
definition of the reference lattice L., and then j should be obtained natu-
rally. Considering the period of ((X, ¢), j) as defined above, we obtain a lift
p: U— M,,a,g of p. By Borel’s extension theorem ([6]), 7 is a morphism
of varieties. ’ _ ‘

- (3) One observes that the group G acts on U and that p is G-invariant. Hence
P induces a rational map P 5/ G --> M, 45, which is a lift of P.

(4) We prove that P is generically injective. For that it suffices to show that the
p-fibers. are G-orbits. If p(B,, 1) = p(By, '), we have a Hodge isometry
&: H*(X’,Z) — H*(X,Z) with ® o j/ = j for the associated ((X, ), j) and
(X',0), j"). By Lemma 4.8 @ turns out to preserve the ample cones. Then
we obtain an isomorphism ¢: X — X’ with ¢* = @ by the Torelli theorem.
Let f: X - Y, f: X’ — Y be the right covering maps and L € Pic(Y) be
the bundle as in Lemma 4.5. Since ¢"(f*L) = ®(f"*L) = f*L, by Lemma
4.5 we obtain an automorphism ¢ of ¥ with o f = f” o . This will imply
that (B, 1) = (By, i'). Since y acts trivially on NS v, We have ¥ € G.

(5) Now assume that dim(U/Aut(Y)) = 20 — r. Since M, s is irreducible,
then P is birational. Therefore deg(P) is equal to |O(Dy_)| divided by the
degree of U/G — U/ Aut(Y). The latter may be calculated geometrically.

In the above recipe the construction of U and P is left rather ambiguous. It
could be formulated generally using monodromies for the universal curve over U.
But in order to give an effective account, we find it better to describe it by typical
examples. (When Y = P2, P! x P!, the idea can also be found in [20].)

Example 4.9. We consider curves on Q = P! x P!, Let U C 100(3,3)I x100(1, 1)
be the open set of pairs (C, H) such that C and H are smooth and transverse to each
other. The space U parametrizes the nodal —2Kg-curves C + H, and we obtain a

period map P: U/Aut(Q) --» Mgg,1. In this case, the cover U should be
i‘]’ = {(C’H’pla' o ’P6) eUX Q69 {pl}?:l =CnN H}’

which parametrizes the curves C + H endowed with a labeling of its six nodes
C N H. The projection U — U is an Sg-covering.
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We shall prepare the lattice L. Let {u,v} and {ej,-- - , e} be natural basis of
the lattices U(2) and A? respectively. We define the vectors f1, f, € (U(2) & A?)V
by 2f1 = 3(u + i}) - Z?zl egand 2fr = u+v-— 21.6:1 e¢;. Then the overlattice L, =
(UQ2) @ A%, f1, f») is even and 2-elementary of main invariant (8, 6, 1).

Fora (C,H, - ,pg) € U, we let X,01) = P(C,H) and f: X — Q be the right
covering map. The fixed curve X* is decomposed as X* = F; + F, such that f(F) =
C and f(Fy) = H. Then we define an embedding j: L, — L.(X,t) of lattices by
u - [f*0g(L,0)], v = [*0g(0,1)], &; = [f~(p)), and f; = [Fi]. By Lemma
4.7 we have j(L,) = Li(X, ). This gives a lattice-marked 2-elementary K3 surface
((X, 1), j), and we obtain a period map p: U— M&&L

The morphism p is not Aut(Q)-invariant for Aut(Q) may exchange Og(1,0)
and Op(0, 1). Rather p is invariant under the identity component G = (PGLy)*
of Aut(Q). We prove that the p-fibers are G-orbits. If two points (C, H, - , ps)
and (C",H',---, p'6) of U have the same p-period, we have a Hodge isome-
try ®: HX(X',Z) — H*(X,Z) with ® o j/ = j for the associated ((X,¢), j) and
((X’,¢), j). In particular, @ maps [(f')*Op(a, b)], [( ) Y pdl, [F ;.] respectively to
[f*Op(a, b1, [ f‘l(p,-)], [F;]. By Lemma 4.8 ® preserves the ample cones. Hence
by the Torelli theorem we obtain an isomorphism ¢: X — X’ with ¢* = ®. Then
we have an automorphism y of Q with i o f = f’ o ¢ by Lemma 4.5. Considering
the branch loci of f and f’, we have y«(C + H) = C" + H'. Also we have y(p;) = p;
because o(f~1(p;)) = ( f’)'l(pl’.). Since yr leaves the two rulings of Q invariant, we
have ¢ € G. This concludes that the p-fibers are G-orbits. In view of the equality
dim(U/G) = 12, j induces a birational lift P: U/G --> Mgg1 of P.

Since L, = U & AS, we have |O(Dz,)| = 2 -1Sp(4,2)| = 2- 6! by [26]. On the
other hand, the projection U /G — U/Aut(Q) has degree [G: Aut(Q)]-|Sg| = 26!
because Aut(Q) acts on U almost freely. Therefore P is birational.

Example 4.10. We consider curves on F;. Keeping the notation of §3, we let
U c |Lzz| X |Lg,1| be the locus of pairs (C, F) such that C is smooth, transverse to
F and X respectively, and passes the point p = F N X. The locus U parametrizes
the —2Kp, -curves C + F + X, whose singularities are the D4-point p and the three
nodes C N (F + X)\p. Hence we obtain a period map #: U/Aut(F;) --» Mg ;. In
this case, U should be the double cover

U ={(C,F,p1,p2) €UxF)? {p1.p2} =CNF\Z}.

In fj only the two nodes C N F\ p are labelled, and the rest two singularities are left
unmarked. However, the node C N X\ p is distinguished from C N F\p by the irre-
ducible decomposition of C + F + X, and the D4-point p is evidently distinguished
from the nodes. Thus U actually parametrizes the curves C + F + X endowed with
a complete and reasonable labeling of the singularities. Also the components of
C + F + X are distinguished by their classes in NS,, and this distinguishes the
three branches of C + F + X at p.
© Let us prepare the lattice L. Let {h, e} and {e1, €2, e3} be natural basis of the
lattices {(2) & A; and A? respectively. We denote the root basis of the Dy-lattice by
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{fs, €5, €6, €7} where (fs,¢;) = 1 and (e, €;) = —26;;. We put es = 2fs + 3.1 s e;.
Then we define the vectors f; € ((2) GBA‘It ®Dyg)" by 2f; =3h+2(h—e) - Zle e,
2f, =h—e—(e1 +ex+eq4 +eg), and 2f3 = e — (e3 + e4 + 7). The overlattice
L. ={2) @A‘f ® Dy, { fi}?:l) is even and 2-elementary of main invariant (9, 3, 1).

Fora(C,F, p1, p2) € l7, let (X,:) = P(C, F)and f: X — F be the right covering
map. We denote p = FN X as above. On X we define line bundles and (—2)-curves
by H = f*Li, E = f*Ly,-1, Ei = f(p) fori < 2, and E3 = f(C n Z\p). By
§4.2, the four (—2)-curves on X contracted by f to p form a Dynkin graph of type
D4. We denote by Es, Eg, E7 those over the infinitely near points of p given by
C, F, X respectively. The remaining one, denoted by F4, is a component of X*. We
have an embedding i: (Z)GBA;‘GBDL; — Li(X,))by h — [H],e — [E],e; > [E;], and
fa > [F4]. The fixed curve X* is decomposed as X* = ‘}:1 Fjsuchthat f(F1) = C,
f(F2) = F, and f(F3) = X. Then i extends to an isometry j: L. — L.(X,t) by
sending f; — [F;]. Thus we associate a lattice-marked 2-elementary K3 surface
((X, 1), J), which defines a period map p: U— M9,3,1.

Since Aut(FF;) acts trivially on NSg,, the morphism p is Aut(F;)-invariant.
We show that the p-fibers are Aut(F;)-orbits. - Indeed, if B(C,F, pi,p2) =
p(C’, F', p, py), we will obtain an isomorphism ¢: X — X’ with ¢" o j* = j for the
associated ((X, 1), j) and ((X’, ('), j'), as in the previous example. Let f: X — F;
and f': X’ — F; be the respective right covering maps. We fix a contraction
n: F; — P? of . Since @*(f')"L1p =~ f*L1p, by Lemma 4.5 we obtain an auto-
morphism ¢ of P? such that y o 7 o f = m o f’ o . The point is that y fixes 7(Z),
which is the unique Dg-singularity of the branch curves of both 7 o f and 7 o f’.
Therefore y lifts to an automorphism ¢ of F; with ¢ o f = f” o ¢. The rest of the
proof is similar to ihe previous example. Since dim(U/Aut(F1)) = 11, p descends
to a birational lift P: 5/Aut()F1) --> Mgs1 of P.

The projection ﬁ/Aut(IFl) — U/Aut(F;) is a double covering. On the other
hand, since L, ~ U(2) &.E7, we have O(Dy,) = &,. Therefore P is birational.

Example 4.11. Let U C [Op2(4)| X |Op2(2)] be the locus of pairs (C, Q) such that
Q is a union of two distinct lines and C is a smooth quartic transverse to Q. The
variety U parametrizes the sextics C + @ having nine nodes, C N Q and Sing(Q).
Hence we obtain a period map $: U/PGL3 --» Mige,1. That the parity § = 1
follows from Lemma 4.4 (1). In this case, we define the cover U as the locus in
U x (P8 of those (C,Q, p1,--- , pg) such that {p,-}?=1 = C N Q and that {p,-};‘=1
belong to the same component of Q. Such a labeling (p1,- - , pg) of the eight
- nodes takes into account the components of Q passing them. The remaining one
node, Sing(Q), is naturally distinguished from those eight. Also the components of
Q are labelled as Q = Lj + Lp where L is the one passing {pi}?zl. In this way the
nodes and components of C + Q are labelled compatibly. The projection U->U
is an &, = (S4)%-covering. '

‘We prepare the lattice L.. as follows. Let & and {ei}?=1 be natural basis of the
lattices (2) and A? respectively. We define the vectors fi, f2, 3 € ((2) @ A?)V by
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2fi =h—eg—Y7 e, 2fr=h—eg— Y% ce;,and 2f3 = 41— Y} | e;. Then the even
overlattice Ly = ((2) ® A?, { f,-}?:l) is 2-elementary of main invariant (10, 6, 1).

Fora (C,Q,---,ps) € l7, let (X,0) =P, 0)and f: X — P2 be the right cov- .
ering map. The labeling induces an isometry j: L, — Li(X,t) by h — [f*Op(1)],
e — [f‘l(pi)] fori < 8, eg [f‘l(Sing(Q))], and f; — [F;] where F; are
the components of X* with f(Fy) = Ly, f(F2) = L, and f(F3) = C. Thus we
obtain a period map j: U — M10,6,1. One may recover the morphism f from
Jj(h) by Lemma 4.5, the points p; from j(e;), and the sextic C + Q from f as the
branch locus. As before, these imply that § descends to a generically injective lift
P. U /PGL3 --» Mlo,g,l of $. Since dim(fj /PGL3) = 10, P is actually birational.

Since L, ~ U @ Dy ® A}, we have |O(Dr,)| = 2*-10%(4,2)| = 2* - 72 by [26].
On the other hand, the projection l7/PGL3 — U/PGL; has degree 2 - (4)%. This
concludes that # is birational.

Example 4.12. We consider curves on F,. We keep the notation of §3. Let U C
|L3.1] be the locus of smooth curves C such that the n-fiber F passing the point
p = CNZistangent to C at p with multiplicity 2. The —2Kg,-curve C + F + X has
the Dg-singularity p, the node g = C N F\p, and no other singularity. Taking the
right resolution of C + F + Z, we obtain a period map P: U/Aut(F,) --» Mg11. In
this case, the cover U should be U itself. Indeed, the two singularities of C + F + Z.
are distinguished by their type, and the components of C + F + X are distinguished
by their classes in NS,. The latter also distinguishes the branches of C + F + X at
p. Bverything is a priori labelled, and we need no additional marking.

We prepare the lattice L. Let {&, v} and e be natural basis of the lattices U(2)
and A; respectively, and {e1, ez, f3, €4, f5, €6} be the root basis of the Dg-lattice
whose numbering corresponds to the one given for the graph in p.11. We put e3 =
2f3+e1+ep+eq and es = 2f5 +e3 + eq + ¢5. Then we define the vectors fi, f2, f €
(UR)DA1©Dg)Y by 2fi =3u+v)+v—eyg—e1—es—es, 2f>» =v—eg—e,—e3—es,
and 2f4 = u — v — es — ¢g. The even overlattice L, = (U(2)® A1 ® D, f1, o, fa)is
2-elementary of main invariant (9, '1, D).

Foracurve C € U, let (X,1) = P(C) and f: X — F, be the right covering map.
Let A, and A, be the sublattices of L, (X, ¢) generated by the (—2)-curves contracted
by f to p and g respectively. We have a canonical isometry A; — A, mapping e
to the class of the (—2)-curve. For the Dg-point p, we assign e and e, respectively
to the branches of C and F. This uniquely determines an isometry Dg — A,
mapping the root basis to the classes of the (—2)-curves. Also we define an isometry
UQ2) = f*NSE, by a(u+v)+bv — [f*L,p]. These define an embedding i: U(2)®
A1 ® Dg — Li(X,1). The fixed curve X' is decomposed as X* = Z?:l F; such
that [F3] = j(f3),[Fs] = j(f5), and f(F1) = C, f(F2) = F,f(F4) = Z. The
assignment f; — [F;] extends i to an isometry j: Ly — LiX, t). Considering
the period of ((X,¢), j), we obtain a lift P U [Aut(Fr) --» Mg 11 of P. In this
construction, one may recover the morphism f from the class j(e+ f) by Lemma 4.5
(desingularize the quadratic cone in P%). As before, this implies that P is birational.

Since Dy, ~ Z/2Z, we have actually Mo 11 = Mo 1,1. Therefore P is birational.
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5. THEcasSEk =0

In this section we prove that the spaces M, ,; with 2 < r < 9 are rational.
The quotient ¥ = X/t of a general (X,t) € M, is a del Pezzo surface of degree
10 — r. Let Mpp(d) be the moduli of del Pezzo surfaces of degree d (we exclude
P! x P!). By the correspondence between 2-elementary K3 surfaces and right DPN
pairs, we have a fibration M,,; --» Mpp(10 — r) whose fiber over Y is birational
to |~2Ky|/Aut(Y). When r < 5, Y has no moduli so that M,.,; ~ |-2Ky|/Aut(Y).
The rationality of M, 1 is reduced to the Aut(Y)-representation H°(-2Ky). By
contrast, when r > 6, Mpp(10 — r) has positive dimension and Aut(Y) is a small
finite group. We then analyze the fibration M, .1 --> Mpp(10—r) or the fixed curve
map M,.,1 — M;i-, to deduce the rationality.

5.1. Mj,1 and one-nodal sextics. Let ¥ be the blow-up of P2 at one point p € P2.
By associating to a smooth curve B € |-2Ky]| the double cover of Y branched over
B, we have a birational map

P |-2Ky|/Aut(Y) --» Mao .

Indeed, P is generically injective by the correspondence between 2-elementary
K3 surfaces and right DPN pairs, and is dominant because | —2Ky|/Aut(Y) has
dimension 18. One may identify |—-2Ky| with the linear system of plane sextics
singular at p, and Aut(Y) with the stabilizer of p in PGLs3.

Proposition 5.1. The quotient | - 2Ky|/Aut(Y) is rational. Therefore Mo is
rational.

Proof. Let £ Y be the (—=1)-curve. Let ¢: |—2Ky| > |Og(2)| be the Aut(¥)-
equivariant map defined by B — Bls. The group Aut(Y) acts on |Ox(2)| almost
transitively. For two disinct points py, p» € T, the fiber ¢ 1(p1 + p2) is an open set
of the linear system PV of —2Ky-curves passing p; and p;. If G € Aut(Y) is the
stabilizer of p1 + p, by the slice method 2.3 we have |-2Ky|/Aut(Y) ~ PV/G.

Let F; C Y be the strict transform of the line passing p with tangent p;. Set
W = |OF,(3)| X |OF,(3)! and consider the G-equivariant map

(51) . ',0 PV - W B— (B|F1 _PI,B|F2 —pZ)'

The fiber x,b‘l(Dl, Dy) over a general (D1, D») € W is an open set of a linear sub-
space of PV. Since —2Ky is Aut(Y)-linearized, G acts on V so that  is G-birational
to the projectivization of a G-linearized vector bundle over an open set of W. The
group G acts on W almost freely. Indeed, for a general (D1, D) € W the four points
p1+Dion F| =~ P! are not projectively equivalent to the four points p» +D; on Fa,
and any nontrivial g € PGL, with g(p1 +D1) = p1 + D1 does not fix p;. Clearly an
automorphism of Y acting trivially on F; + F» must be trivial. Thus we may apply
the no-name method to see that PV/G ~ P'® x (W/G). Since dim(W/G) = 2, W/G
is rational. ‘ O
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- Note that the natural moduli map f: |[-2Ky|/Aut(Y) --» My is generically injec-
tive, for the normalization of a one-nodal plane sextic has only one gé, the restric-
tion of |Op2(1)] (see [2] Appendix A.20). The composition f o #-1 js nothing but
the fixed curve map M1 — Moy. Therefore

Corollary 5.2. The fixed curve map Myp1 — Moy is generically injective with
. a generic image being the locus of non-hyperelliptic, non-trigonal, non-bielliptic
curves possessing gé.

5.2. Ms3; and two-nodal sextics. Let Y be the blow-up of P2 at two distinct
points p1, p2. Asin §5.1, we have a natural birational map F2Ky|/Aut(Y) --> M3 31
by the double cover construction. One may identify -2Ky| with the linear system of
plane sextics singular at p1, p2, and Aut(Y) with the stabilizer of p; + p, in PGL3.
In this form, Casnati and del Centina [7] proved that |—2Ky|/Aut(Y) is rational.

Their proof is based on a direct calculation of an invariant field. Here we shall
present another simple proof.

Proposition 5.3 ([7]). The quotient |[-2Ky|/Aut(Y) i& rational. Therefore M3 31 is
rational.

Proof. Let E; C Y be the (—1)-curve over p; and let W = |Og,(2)| X |Og,(2)|. We
consider the map ¢: |-2Ky| --» W, B — (B|g,, Blg,), which is Aut(Y¥)-equivariant.
The identifications E; = P(TpiPz) show that Aut(Y) acts on W almost transitively.
If q = (g11 + q12, 21 + g22) is a general point of W, let L;; C P2 be the line passing
p; with tangent ¢;;. Then the stabilizer G C Aut(Y) of q is identified with the group
of g € PGL3 which preserve 3’; ; L;j and py + p2. In particular, G =~ &3 = (&)
The fiber ¢~!(q) is an open set of the linear system PV of sextics passing {g;;}; ;-
By the slice method we have |-2Ky|/Aut(Y) ~ PV/G.

The net PVy = p1p2 + X j Lij + |0p2(1)| is a G-invariant linear subspace of PV.
Since G is finite, we can decompose the G-representation Vas V = Vp @ VJ- The
projection PV --» PVj from Vi is a G-linearized vector bundle. Since G acts on
PV, almost freely, by the no-name method we have PV/G ~ CB x (PVy/G). The
quotient PV /G is clearly rational. . |

As in Corollary 5.2, we have the following.

Corollary 5.4. The fixed curve map Mzs1 — Mg is generically injective with
a generic image being the locus of non-hyperelliptic, non-trigonal, non-bielliptic
curves possessing gé.

5.3. Ma4, and three-nodal sextics. Let p1, p2, p3 be three linearly independent
points in P2, The blow-up Y of P2 at p; + p; + ps is a sextic del Pezzo surface.
As before, we have a birational equivalence | -2Ky|/Aut(Y) ~ Mys4,1. One may
identify |-2Ky| with the linear system of plane sextics singular at p; + p2 + p3, and
Aut(Y) with the group &, < G where G is the stabilizer of p; + p + p3 in PGL3 and
S, is generated by the standard Cremona transformation based at p; + p2 + p3. In
this form, |-2Ky|/Aut(Y) is proved to be rational by Casnati and del Centina [7].

Proposition 5.5 ([7]). The space Ma,a,1 is rational.
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Remark 5.6. The proof in [7] is by a direct calculation of an invariant field. Actu-
ally, it is also possible to glve a geometric proof as in the previous sections, but not
so short.

As noted in [7], the natural map |-2Ky|/Aut(Y) -->‘M7 is generically injective.
This is a consequence of the classical fact that a generic three-nodal plane sextic
has exactly two gg, |Op2(1)] and its transformation by the Cremona map. Thus

Corollary 5.7. The fixed curve map for Maa, is generically injective with a
generic image bemg the locus of non- hyperellzptzc non-trigonal, non-bielliptic
curves possessing g6

5.4. Mss1 and a quintic del Pezzo surface. Let Y be a quintic del Pezzo surface.
As in the previous sections, we have a birational map |-2Ky|/Aut(Y) --» Mss; by
the double cover construction (see also [3]). Shepherd-Barron [34] proved that
|- 2Ky|/Aut(Y) is rational. Also it is classically known that the natural map |-
2Ky|/Aut(Y) --» Mg is birational (cf. [34]). Therefore

Proposition 5.8 ([34], [3]). The space Ms s, is rational. The fixed curve map
Mss1 — Mg is birational. .

5.5. Mgg,1 and genus five curves. Let PV = |Op+(2)| and G(1,PV) be the Grass-
mannian of pencils of quadrics in P*. Let & — G(1, PV) be the universal quotient
bundle. The fiber & over a pencil [ = PW is the linear space H(Ops(2))/W. A
general pencil [ defines a smooth (2,2) complete intersection ¥; in P4, which is
an anticanonical model of a quartic del Pezzo surface (cf. [11]). One has the
identification &; = HO(OYI(Z)) = HO(—ZKYI) by a general property of complete
intersections. Hence a general point of the bundle P& corresponds to a pair (Y7, B)
of a quartic del Pezzo surface ¥; and a —2Ky,-curve B. This defines a period map

& --» Mee.1, which descends to a rational map £: PE/PGLs --s Mg 1. Since
Y; ¢ P* is an anticanonical model, we see that P is generically injective. The
equality dim(PE/PGLs) = 14 shows that ¥ is birational.

The —2Ky,-curve on Y; defined by a general point of P& is a (2, 2, 2) complete
intersection in P*, which is a canonical genus five curve. We study PE/PGLs from
this viewpoint. '

Let G(2, PV) be the Grassmannian of nets of quadrics in P*, and F — G(2,PV)
be the universal sub bundle. The fiber ¥p over a net P = PU is the linear subspace
U of V. The bundle PE parametrizes pairs (W, L) of a 2-plane W C V and a line
L c V/W, while the bundle PF" parametrizes pairs (U, H) of a 3-plane U c V
and a 2-plane H C U. These two objects canonically correspond by (W, L) —
(W, L), W)and (U, H) — (H, U/H). Thus we have a canonical PGLs-isomorphism
PE =~ PFY. ,

Let P = PU be a general point of G(2,PV), and B c P* be the g = 5 curve
defined by P. One may identify V = H%(Ops(2)) with S2H®(K3p), and Fp = U with
the kernel of the natural linear map S2HY(K3) — H°(2K3), which is surjective
by M. Noether. Let 7: X5 — Ms be the universal curve (over the open locus of
curves with no automorphism), K be the relative canonical bundle for 7, and G be
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' the kernel of the bundle map S27.K; — 7.K2. Since G(2,PV)/PGLs is naturally
birational to Ms, the above identification gives rise to the birational equivalence

(52) PF"V/PGLs ~ PG" ~ Mg x P2.

The moduli space Ms is rational by Katsylo [16]. Therefore v

Proposition 5.9. The quotient PF ¥ /PGLs iskrational. Hence Meg,1 is rational. .
The following assertion is also obtained.

Corollary 5.10. The fixed curve map Msgs1 — Ms is dominant, with the fiber over
a general B € Ms being birationally identified with PU" where U is the kernel of
the natural map S?H%(Kg) — H°(2K3).

The first bundle structure PE — G(1,PV) corresponds to the quotient surface
map Mgg1 --» Mpp(4), (X,1) — X/t, while the second one PF" — G(2,PV)
corresponds to the, fixed curve map. The latter is easier to handle with thanks to the
absence of automorphism of general g = 5 curves.

5.6. M;7, and cubic surfaces. If ¥ < P3 is a cubic surface, the restric-
tion map HO(()]Ps (2)) — H°%-2Ky) is isomorphic. Hence a general point of

= |0Ops(3)| X |Ops(2)| corresponds to a pair (¥; B) of a smooth cubic surface
Y and a smooth —2Ky-curve B, which gives a 2-elementary K3 surface of type
(7,7,1). This induces a period map #: U/PGL4 --» Mj77;. Since cubic sur-
faces are anticanonically embedded, # is generically injective. By the equahty
dim(U/PGLy4) = 13, we see that P is birational.

Proposition 5.11. The quotient U/PGLy is rational. Therefore My 71 is rational.

Proof. For a general (¥, Q) € U the intersection B = Y N Q is a canonical g = 4
curve. This induces a rational map f: U/PGLy4 --» My, which is identified with
the fixed curve map My71 — My. The f-fiber over a general B € M, is the linear
system of cubics containing B, for the quadric containing B is unique. Therefore,
if 7: X4 — My is the universal curve (over an open locus) and & is the kernel of
the bundle map S37.K, — JT*Kg where K is the relative canonical bundle, then
we have the birational equivalence

(53) U/PGLy ~PE ~ My x P*.
The rationality of My is proved by Shepherd-Barron [32]. ‘ O

Corollary 5.12. The fixed curve map My 71 — Ma is dominant, with the fiber over
a general B being birationally identified with the projectivization of the kernel of
the natural map S3H(Kg) — HY(3Kp).

One may also deduce the rationality of M7 7,1 by applying the no-name lemma
to the projection U — |Op3(3)| and resorting to the rationality of Mpp(3) (cf. [12]).
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5.7. Mg g 1 and quadric del Pezzo surfaces. As before, one may use the fibration
Mgg1 > Mpp(2), (X,0) — X/t, to reduce the rationality of Mgy to that of
Mpp(2) due to Katsylo [17]. However, in order to describe the fixed curve map,
we here adopt a more roundabout approach. '

Recall that if Y is a quadric del Pezzo surface, its antlcanonlcal map ¢: ¥ — P?
is a double covering branched over a smooth quartic I'. The correspondence Y — I
induces a birational map Mpp(2) --» Ms. The covering transformation i of ¢ is the
Geiser involution of Y. Its fixed curve Y* belongs to |-2Ky|. Let V_ C HO(-2Ky)
be the line given by ¥’ and let V, = ¢* HO(O]pz(Z)) c H%(-2Ky). We have the
i-decomposition H°(-2Ky) = V. ® V_ where i v, = £1.

Lemma 5.13. Every smooth curve B € |-2Ky| has genus 3, and the map ¢lg: B —
'P? is a canonical map of B. In particular, B'is hyperelliptic if and only if B € PV.,..

Proof. The first sentence follows from the adjunction formula ~Ky|g ~ K and the .
vanishings h%(Ky) = h'(Ky) = 0. By the (-decomposition of H%(-2Ky) we have
i(B) = B if and only if B € PV,.. Hence ¢|p is generically injective (actually an
embedding) unless B € PV, which proves the last assertion. 0

Let My C |Op2(4)] be the cone over the locus of double conics 20, Q € |Op2(2)|,
with vertex T" € |Op2(4)|. It is the closure of the locus of smooth quartics tangent to
I" at eight points lying on a conic.

Lemma 5.14. The morphism ¢.: |—2Ky| — |Op2(4)| induceS an isomorphism be-
tween | —2Ky|/i and My which maps the pencils {¢*Q, Y’) Q € |0p(2)], to the
pencils 2Q,T).

Proof. If B € (¢*Q, Y"), then Bly: = ¢*Qly: = ¢ 1(Q NT) so that ¢.B is tangent to
I'at Q NT. Hence ¢.(|—2Ky|) C Mr, and the equality dimMr = dim|-2Ky| proves
the assertion. O

Now let U C |0p2(4)| X |Op2(4)| be the locus of pairs (I',I") such that I" and
I are smooth and tangent to each other at eight points lying on a conic. For a
(T,I") € U we take the double cover ¢: ¥ — P? branched over I'. By Lemma 5.14
we have ¢*T” = B + i(B) for a smooth B € |-2Ky| where i is the Geiser involution
of Y. Taking the 2-elementary K3 surface corresponding to (¥, B) = (Y,i(B)), we
obtain a well-defined morphism U — Mg 8,1, which descends to a rational map
P: U/PGL3 --» Msg .

Proposition 5.15. The map P is birational.

Proof. By the birational equivalence Mpp(2) ~ Mj and Lemma 5.14, the first
projection U — |Op2(4)], (I,T”) +— T, induces a fibration U/PGL3s — Mpp(2)
whose fiber over a general ¥ € Mpp(2) is an open set of |- 2Ky|/i. Since
Aut(Y) = (i) for a general Y, this shows that £ is generically injective. The equality
dim(U/PGL3) = 12 concludes the proof. O

Proposition 5.16. The quotient U/PGLj3 is rational. Hence Mgg 1 is rational.
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Proof. We have a PGL;3-equivariant dominant morphism
¢ : U — |0p2(4)] X [0p2(2)), T.I) e T, 0,

where Q is the unique conic with 2Q contained in the pencil (I,I”). The ¢-fiber
over a general (I', Q) is identified with an open set of the pencil (20,T") in |01[»2 4)|.
Then we may use the no-name lemma 2.5 to see that

U/PGL3 ~ P! X (|0p2(4)] X |0p2(2)])/PGLa.

The quotient (|Op2(4)| X |Op2(2)|)/PGL3 is rational by the slice method for the pro-
~ jection |Op2(4)| X |0p2(2)] — |Op2(2)| and Katsylo’s theorem 2.2. ]

By # we identify Mg g, birationally with U/PGL3. The first projection U —
|Op2(4)], (T, I") & T, induces the quotient surface map

Q: Msgg1--> Mpp(2) ~ Ms, X,0) = X/t

On the other h‘and, the second projection U — |Op2(4)|, I',I”) = I”, induces
the fixed curve map F: Mgg1 — Ms. Let J be the rational involution of Msg
induced by the involution (I',I”) — (I",T") of U. Now we know that

Proposition 5.17. The two fibrations F, Q: Mgg1 --» Ms are exchanged by the
involution J of Msgg 1. In particular, the generic fiber F~\(I") of F is birationally
identified with the cone Mp in P(S*HO(Kp)). o

The fixed locus of J contains the locus 8 ¢ Mgg; of pairs (ILT) € U, T €
|Op2(4)|. Generically, 8 may be characterized either as the locus of (1) the vertices
of F-fibers Mr+, I’ € Mjs, of (2) the vertices of Q-fibers |-2Ky|/i, Y € Mpp(2),
and of (3) quadruple covers of P? branched over smooth quartics. Via the last
description, 8 admits the structure of a ball quotient by a result of Kondd [19].

5.8. Moo, and del Pezzo surfaces of degree 1. Let Y be a del Pezzo surface
of degree 1. The bi-anticanonical map ¢_sx,: ¥ — P? is a degree 2 morphism
onto a quadratic cone @, which maps the base point of |- Ky| to the vertex pg of
Q, and which is branched over a smooth curve C € |Og(3)| and py. In view of
this, we may define a map |0p(3)| X [Op(1)| --» Moo as follows. For a general
(C,H) € 109(3)| X |0g(1)| we take the double cover ¥ — Q branched over C and
. Do, and let B € [-2Ky| be the pullback of H. (Equivalently, we take the double cover
of the desingularization F, of Q branched over C + X, and then contract the (—1)-
curve over Z.) Then we associate the 2-elementary K3 surface corresponding to the
- right DPN pair (¥, B). This construction, being Aut(Q)-invariant, defines a period

map P: (I0o(3)| X |[0o(D))/Aut(Q) --» Mgg,. Since the double cover Y — Qis a
bi-anticanonical map of Y, £ is generically injective. Then % is birational because
(100(3)] X |Og(1)])/ Aut(Q) has dimension 11.

Proposition 5.18. The guotient (|0o(3)| X |Og(1)))/Aut(Q) is rational. Therefore
Moo,1 is rational.

Proof. We may apply the no-name lemma 2.5 to the projection |Og(3)| X |Og(1)| —
|00(3)| to see that (I0o(3)IX|0o(1)])/Aut(Q) ~ ]P’3><(IOQ(3)| /Aut(Q)). The quotient
|00 (3)I/Aut(Q) is birational to Mpp(1), which is rational by Dolgachev [12]. O
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6. THECASE g > 7

In this section we prove that the spaces M, ;¢ with g > 7 and k > O are rational.
In §6.1 we construct birational period maps using trigonal curves of fixed Maroni
invariant. Then we prove the rationality for each space.

6.1. Period maps and Maroni loci. We first construct birational period maps for
M, 25 with 2 < r < 5 using curves on the Hirzebruch surface Fs_,. We keep
the notation of §3. Let U, C |L3 5| be the open set of smooth curves which are
transverse to the (r — 6)-curve X. For each C € U, the curve C + X belongs to
|- 2KF,_,| and has the r — 2 nodes C N X as the singularities. Considering the 2-
elementary K3 surfaces associated to the DPN pairs (Fs_,,C + X), we obtain a
period map P, : U,/Aut(Fs_,) --> M;r-25. :

Proposition 6.1. The map P, is birational.

Proof. Of course one may follow the recipe in §4.3, but here a more direct proof
is possible. Indeed, by Proposition 3.8, U,/Aut(Fs_,) is naturally birational to the
moduli 779-,6—, of trigonal curves of genus 12 — r and scroll invariant 6 — . Then
P, is generically injective because the fixed curve map for M, ,_» s gives the left
inverse. By comparison of dimensions, #; is birational. O

- Corollary 6.2. The fixed curve map for M, 25 with 2 < r < 5 is generically
injective, with a generic image the Maroni locus T 12-r6-r of Maroni invariant 2.

Next we construct a birational period map for Ms 2 using curves on F;. Let
U c |Lso|X|Lo,1| be the open set of pairs (C, F) such that C is smooth and transverse
to F. For each (C, F) € U the curve C + F + X belongs to |~2KF,| and has the four
nodes F N (C + X) as the singularities. By taking the right resolution of C + F + Z,
we obtain a period map £: U/Aut(F3) --» Me20.

Proposition 6.3. The map P is birational.
Proof. We proceed as in Example 4.10. Consider the following &3-cover of U:

U = {(C, F, p1, p2, p3) € U X (F3), {p1, p2, p3} = CN F}.

The variety U parametrizes the curves C + F + X equipped with labelings of the
three nodes C N F. The rest one node F N X is distinguished from those three by
the irreducible decomposmon of C + F + X. Therefore we will obtain a generically
1nJect1ve lift P: U /Aut(F3) --» Mszo of P. Since U /Aut(Fs3) has dimension 14,
P is birational. The projection U /Aut(F3) --> U/Aut(F3) is an S3-covering, while
the projection Ms,z,o -» Mg, is an O(Dy, )-covering for the lattice L, = U @ Dy:
It is easy to see that O(Dr, ) =~ &3. Hence P is birational. O

The quotient |Ls o|/Aut(F3) is birationally identified with the Maroni locus 773,
and the fibers of the projection (|[Lzp| X |Lo,1[)/Aut(F3) --> [Lapl|/Aut(Fs) are the
trigonal pencils. Therefore

Corollary 6.4. The fixed curve map for Ms2 gives a dominant map Meap --»
T73 whose general fibers are identified with the trigonal pencils.
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Remark 6.5. The locus 773 is the complement of 77,1 in the moduli of trigonal
curves. Corollary 6.4 may also be obtained from Corollary 6.2 for r = 5 by ex-
tending the fixed curve map for Ms3; to a component of the discriminant divisor.

Remark 6.6. The Maroni loci 7, in this section may be characterized in terms
of special divisors: a trigonal curve C of genus 8 < g < 10 (resp. g = 7) has
Maroni invariant 2 (resp. 1) if and only if W1 43(C) (resp. W1 (C)) is irreducible.
This follows from Maroni’s description of W' (C) (see [22] Proposmon D.

6.2. My, and Jacobian K3 surfaces. By a Jacobian K3 surface we mean a K3
surface endowed with an elliptic fibration and with its zero section.

Proposition 6.7. The space My is birational to the moduli space of Jacobian
K3 surfaces. Therefore My g is rational.

Proof. In Proposition 6.1 we saw that a general member (X, ¢} of M, is canon-
ically a double cover f: X — F4 branched over a smooth curve C + %,C € |L3g|.
The natural projection F4 — P! gives rise to an elliptic fibration X — P!, and the
(-2)-curve E = f71(T) is its section. The involution ¢ is the inverse map of the
fibration with respect to E. In this way a general member of My is equipped
with the structure of a Jacobian K3 surface. Conversely, for a Jacobian K3 surface
(X — P!, E) such that every singular fiber is irreducible, the inversion map ¢ of
X/P! with respect to E is a non-symplectic involution of X, and the quotient .of
X — P! by ¢ is the natural projection F,, — P! of a Hirzebruch surface F,. As the
image of E in F,, is a (—4)-curve, we have n = 4. Thus our first assertion is verified.
It is known that the moduli of Jacobian K3 surfaces is birational to the quotient

(H'(Op:(8)) ® H(Op1(12)))/C* X SLo,

via the Weierstrass forms of elliptic fibrations (for example, see [24]). By Katsylo’s
theorem 2.2 this quotient is rational. O

6.3. The rationality of A3 ;1. By Proposition 6.1 we have a birational equiva-
lence M3 1,1 ~ |L3,1|/Aut(F3) for the bundle L3 ; on Fs.

Proposition 6.8. The quotient |L3 1|/ Aut(F3) is rational. Hence M 11 is rational.

Proof. We apply the slice method to the map [L31| =-» £, C = Clz. Let G C
Aut(F3) be the stabilizer of a point p € X, and PV C |L3 ;| be the linear system of
curves passing p. Then we have |L3 1|/Aut(F3) ~ PV/G. The group G is connected
and solvable by Proposition 3.3, and G acts linearly on V by Proposmon 3.2. Hence
PV/G is rational by Miyata’s theorem 2.1. O

6.4. The rationality of M, ;. By Proposition 6.1 we have a birational equiva-
lence Myn1 ~ |L32|/Aut(F,) for the bundle L3 5 on Fs.

Proposition 6.9. The quotient |L3 5|/ Aut(F,) is rational. Hence M is rational.

Proof. First we define an Aut(F,)-equivariant map ¢1: |L3 3| --» S2F, to the sym-
metric product of F, as follows. For a general C € |La], let Clz = p1 + p2 and F;
be the n-fiber passing p;. We have a unique involution ¢f, of F; which fixes p; and
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-exchanges the two points C|r, — p;. Then we let g; € F; be the fixed point of ¢,
other than p;, and set ¢1(C) = g1 + g2. The ¢;-fiber over a general g1 + ¢» € S2F,
is the linear space PV of curves C with Clz = p1 + p» and ;(Cl|F;) = C|F,, where
F; is the mr-fiber passing g;, p; is F; N Z, and ¢; is the involution of F; fixing ¢; and
pi. If G1 C Aut(lF,) is the stabilizer of g1 + g2, by the slice method we have

IL32|/ Aut(F>) ~ PVi/Gh.
Next we consider the G -equivariant map
@2 PV - P(T Fy) X P(T,F2), C = (Ty,C,Tp,0).

The p,-fiber over a general (v1,v3) is the sub linear system PV, C PV; of curves
passing v; or singular at p;. One checks that G; acts almost transitively on
P(T), ) x P(T},,IFp). If G, C G is the stabilizer of (vq,v2), by the slice method
we have

PVi/G1 ~ PV, /Gs.

We analyze the G,-representation V, by using the coordinate system {U, l} _ of
F; introduced in §3.4. We may assume that q; (resp. g2) is the origin (x3,y3) =
(0,0) in U; (resp. (x4,y4) = (0,0) in Uys). Then p; is the origin (x;,y;) = (0,0) in
U;, i = 1,2. We may also assume that v; € P(T,,,[F,) is expressed as v; = C(x; + y;)
by the coordinate (x;,y;) of U; around p;. Let g, 5, hg, and j be the automorphisms
of F, described in the equations (3.4), (3.5), and (3.6) respectwely We set p =

& v10° Ay

Lemma 6.10. For p;,qi,v; as above, the stabilizer G is given by
Ga = (j) = ((p) < {g1ax¥)2eC) = Z/2Z < (Z[4Z < C).

Here jacts on Z|/4Z = C by (-1, 1), and p acts on C by —1.

Proof. First observe that j, p, and g1 ixy are contained in'G,. Conversely, we set

= {g € G2,8(q:) = q:}. The quotient G,/G;, is Z/2Z generated by j. The G-
action on X is contained in {Ag|s}gecx. Hence by the sequence (3.1) every element
of G’2 is written as g4 o hg for some g, s € R and B € C*. Since gq0 and /g
fix g;, we have g;1.5(q;) = g; so that s = AXY for some A € C. This implies that
ge,0 © hg € G5. Then gq 0 0 hg acts on Uy by (x1,y1) > (Bx1, a*lyl), and on U; by
(x2,¥2) = (B8 1x2, 2" 18%y;). Thus we must have a8 = 1 and 8* = 1. a|

Next we describe the linear system PV, by the coordinates. By Proposition 3.9
the space H%(L3,) is isomorphic to the vector space {Z?zo f,-(xl)y’i, degf; < 2i + 2}

by restriction to U;. We shall express the polynomials f; as fi(x) = ?i*bz aijx’.

Lemma 6.11. The linear subspace Vo ¢ H(Ls ) is defined by the equations
- (6.1) aoo = ag = axn'=ax =0, ao1 = ay = aia.

Proof. Let C € |L3 5| be defined by 23 0 f,(xl)y1 = (. The condition that p; € C
(resp. p2 € C) is expressed by ago = O (resp. agz = 0). The condition on the
tangent TmC (resp. T;,,C) is written as ag; = ajo (resp. apr = a14) The restriction

of C to the fiber {x; = 0} (resp. {xz = 0}) is given by Zl_ a,oy1 = 0 (resp.
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Z?:o a,-,2i+2yé = (). Since these polynomials should be anti-symmetric, we have
anp = 0 and are = 0. O

Using the coordinate Uz, we identify V, with the subspace of {Z?‘=o f,-(x3)y§‘i}
defined by (6.1), and calculate the G»-action on it. The coefficients ag; = a1p =
. ais,aii,dais,- - of the polynomials are basis of the dual space Vg’ . The subspgce
Clapr,a12) C Vg’ is Gh-invariant. Indeed, we have

giaxy : (ao1,a12) = (ao1,ai2 — 34ap1),
p : (ao1,a12) & (—ao1,a12),
j  (ao1,a12) = (ao1,a12).

Therefore the annihilator of C{aq1, a12),
V3 = {F(x3,¥3) € Va,a01 = aip = 0},

is a Gp-invariant subspace of V,. We want to apply the slice method to the projec-
tion PV, --» P(V,/V3) from V3, which is G;-equivariant. We have the coordinate
(ao1,a12): Va/Vs — C? for V,/V3. Thena = 615116112 is an inhomogeneous coordi-
nate of P(V,/V3). By the above calculation, G, acts on P(V,/V3) by

g1axy(a) = a—34, pla) = -a, j@ =a

This shows that G, acts on the affine line P(V2/V3)\{ag1 = 0} transitively with
the stabilizer of the point pg = {ajp = 0} being Gz = {j) < (o). The fiber of
the projection PV, — PV3; — P(V,/V3) over po is the hyperplane {a;> = 0} C
PV, minus PV3, which is naturally Gs-isomorphic to the G3-representation V; =
Hom(Cx3y§, V3). Hence by the slice method we have

PV»2/Gy ~ V4/Gs.
LetV4C Vg be the subspace
Vi = (Cx3y3)" ® C(x3y3, X373)-
One checks that V4 is Gs-invariant, and that with respect to the given basis G3
acts on V4 by j = ((1) (1)) and p = (_ O“_l \/0__1) In particular, Gz acts on

V4 effectively and so almost freely. Since G3 is a finite group, we have a Gs3-
decomposition V] = V4 @ V;-. Applying the no-name lemma 2.4 to the projection
V} — V4 from V-, we have

V3/Gs ~ CH x (V4/G).

Since dimVy = 2, the quotient V4/G3 is rational. This completes the proof of
Proposition 6.9. o o

6.5. The rationality of M3 ;. By Corollary 6.2, Ms 3 is birational to 771. In
[21] we proved that the moduli of trigonal curves of genus 7 is rational. Therefore

Proposition 6.12. The moduli space Ms 3 is rational.
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6.6. The rationality of Mg . Recall from Proposition 6.3 that we have a bira-
tional equivalence Mg 20 ~ (IL3ol X |Lo,1])/Aut(F3).

Propositioh 6.13. The quotient (|L3 o|X|Lo1l)/ Aut(]Fg') is rational. Therefore Mg 2
is rational.

" Proof. Applying the slice method to the projection |Lso| X |Lo1| — |Lo,il, we have
(|Laol X |1Lo1l)/Aut(F3) ~ |L3ol/G where G ¢ Aut(Fz) is the stabilizer of a point
- p € X. As in the proof of Proposition 6.8, we see that |Ls o|/G i_s rational. O

7. THECASE g = 6

In this section we prove that the spaces M, 4,5 with g = 6 and k > O are rational.
We will find curves of Clifford index 1, i.e., trigonal curves and plane quintics as
the main fixed curves.

7.1. M40 and plane quintics. Let U C |Op2(5)|x|Op2(1)| be the open set of pairs
(C, L) such that C is smooth and transverse to L. The 2-elementary K3 surface
associated to the sextic C + L has parity 6 = 0. Indeed, if (¥;B; + B») is the
corresponding right DPN pair, we have By — B, € 4NSy. Thus we obtain a period
map P U/PGL3 i M6,4,0. ‘

Proposition 7.1. The period map P is birational.

Proof. We consider the following &s-cover of U.

U={(C,Lp,ps) €UX®), CNL={p1,---,ps}).
By U the sextics C + L are endowed with complete labelings of the nodes. Since
dim(U/PGL3) = 14, this induces a birational lift U /PGL; — M64 o of P by the
recipe in §4:3. The projection U/PGL3 - U /13§L3 has degree |Ss| because PGL3

acts almost freely on U. On the other hand, Mg is an O(Dr, )-cover of Mgap
for the lattice L, = U(2) ® D4. By [26] we have [O(DL+)| |07(4,2)] = 5!. This
proves the proposition. ‘ O

Proposition 7.2. The quotient (|Op2(5)| X [Op2(1)])/PGL3 is ratzonal Therefore .
Me 4 is rational.

Proof. We may apply the no-name lemma 2.5 to the projection |Op2(5)|X|0p2(1)| —
[Op2(5)|. Indeed the tautological bundle on lOPz(S)I is SLs-linearized where the
element ¢3 I acts by the multiplication by e % The group PGL3 acts almost freely
on |0Op2(5)|. Hence we have '
(I0p2(5) % |O]P’2(1)D/PGL3 ~ P? X (|0g2(5)|/PGLy).

The quotient |Op2 (5)|/PGL3 is rational by Shepherd-Barron [33]. |
Corollary 7.3. The fixed curve map for Me 4 is a dominant map onto the.locus of
plane quintics, i.e., non-hyperelliptic curves having gg, and its general fibers are
identified with the gé. ‘

Note that a smooth plane quintic has only one gg.
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7.2. Mg and trigonal curves. Let O = P! x P! and U C |0g(3,4)| x |0o(1, 0)|
be the open set of pairs (C, F) such that C is smooth and transverse to F. The
group G = PGLy X PGL; acts on U. For a (C, F) € U the 2-elementary K3 surface
(X, 1) associated to the bidegree (4, 4) curve C + F has invariant (r,a) = (6,4). In
order to calculate é, we blow-up a point p in C N F and then contract the two ruling
fibers passing p to obtain an irreducible sextic with a node or a cusp and with a
D,-singularity. By Lemma 4.7 this shows that L, (X,¢) =~ (2) ® A1 © D4, and so
(X,1) has § = 1. Thus we obtain a period map £: U/G — Mea,1.

Proposition 7.4. The period map P is birational.

Proof. Let Uc Ux Q* be the locus of (C,F,p1,---,ps) such that CNF =
{p1,- -+, ps}. Asin Example 4.9, we see that P lifts to a birational map 5/G -
M6,4,1. Note that dim(U/G) = 14. The projection U /G — U/G is an &4-covering,
while M6,4,1 is an O(Dy,, )-cover of Mg 4,1 for the lattice L, = U @A‘lt. It is easy to
calculate that O(Dy,) = Ga. v : |

Proposition 7.5. The quotient (|0(3,4)| X |0g(1,0))/G is rational. Therefore
Me 4.1 is rational.

Proof. We may apply the no-name lemma 2.5 to the projection |Og(3,4)| X
100(1,0)| = [0o(3,4). Indeed, the group G = SL; X SL; acts on H(Og(1,0))
and on the natural hyperplane bundle Opy(1) over PV = |0Op(3,4)|. The kernel of
G — Gis generated by ¢; = (1,—1) and 15 = (—1,1). Then ¢ (resp. 1) acts by 1
(resp. —1) on both H(Op(1,0)) and Opy(1). The G-action on |Og(3,4)] is almost
free, with the quotient |Og(3, 4)|/G birational to the moduli 7 of trigonal curves
of genus 6 (see Proposition 3.8). Therefore

| (109(3, 9] % 109(1,0))/G ~ P! x Te.
The space T is rational by Shepherd-Barron [32]. o

Corollary 7.6. The fixed curve map for Me a1 gives a dominant map Mga1 --> T,
whose fiber over a general C is identified with the pencil |Kc — 2T | where T is the
trigonal bundle.

Remark 7.7. One might also deduce Corollaries 7.3 and 7.6 from the birational
map Mss1 --» Ms in §5.4, by extending it to the discriminant divisor (cf. [3]).

7.3. The rationality of Ms,r5-£s with £ > 1. We construct 2-elementary K3
surfaces using curves on F,. We keep the notation of §3. For 2 < & < 5'let
Ur C |L31l % |Lo,1| be the locus of pairs (C, F) such that (i) C is smooth, (i) F
intersects with C at C N X with multiplicity k£ — 2, and (iii) |C N F\X| = 5 — k. For
k = 2, these conditions mean that F does not pass C N X and is transverse to C. In
particular, U; is open in |L3 1} X |Lo 1|. For k = 3, Uy is regarded as a sublocus of
|L3 1| because F' is uniquely determined by the point C N X.

Lemma 7.8. The variety Uy has the expected dimension 22 — k.

Proof. Let f(x1,y1) = 0 be a defining equation of a smooth C € |L3 1| as in Propo-
sition 3.9. We normalize F = {x; = 0}. Then we have (C, F) € Uy if and only if -
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the cubic polynomial f(0,y;) of y; is factorized as f(0,y;) = y’{‘zg(yl) such that
g(0) # 0 and g has no multiple root. This proves the assertion. O

For a pair (C, F') € Uy, the curve B = C+ F +X belongs to |[-2KF,| and is singular
at (CNF)U(CNI)U(FN). For k = 2 those points are distinct nodes of B. For
k > 3 the point C N X = F N X is a Dy—>-singularity of B, and the rest 5 — k points
CNF\X are nodes. Hence the 2-elementary K3 surface associated to B has invariant
(r,a) = (5 + k,5 — k), and we obtain a period map Py: Ur/Aut(Fa) --> Msips5-ks
whered =1fork<4andd=0fork =5.

Proposition 7.9. The map Py is birational.

Proof. First we treat the case k = 2 using the recipe in §4.3. Let Uz - Uz X
(F2)3 be the locus of (C,F, p1,p2,p3) suchthat CN F = {pl} . The space Uz
parametrizes the —2K,-curves B = C + F + X endowed with labehngs of the three
nodes C N F. The rest two nodes, F N X and C N Z, are distinguished by the
irreducible decomposition of B, and the components ¢ of B are identified by their
classes in NSg,. Thus we will obtain a birational lift Uz JAut(F,) --» M7 3,1 of Pa.
‘The projection U2 JAut(F,) --» U, /Aut(F,) is an S3-covering, while M7 3,1 is an
O(Dy, )-cover of M3 for the lattice L+ = U ® A1 @ Dy. Since O(Dr,) =~ G, the
map P is birational.

For k > 3 a similar argiment is possible (see Example 4.12 for k = 4), but we
may also proceed as in the proof of Proposition 6.1: since Ur may be regarded
as a sublocus of |L3 |, by Proposition 3.8 the quotient Up/Aut(F,) is naturally
birational to a sublocus of the Maroni divisor 762. Considering the fixed curve
map for Ms.rs5-zs, we see that P is generically injective. By Lemma 7.8, Py is
birational. |

Proposition 7.10. The quotient Uy /Aut(Fy) is rational. Therefore Msi5-k5 With
2 <k £ 5 is rational. :

Proof. This is analogous to the proofs of Propositions 6.8 and 6.13: we apply
the slice method to the projection Uy — |Lg 1|, whose fibers are open sets of linear
subspaces of |Ls 1| by the proof of Lemma 7.8. Then we resort to Miyata’s theorem.
Note that although L3; may not be Aut(F,)-linearized, one may use the group
GL, < R in §3 instead of Aut(FF,). ]

‘We shall study the fixed curve maps. For k > 3 we let Uy, C T2 be the closure
of the image of natural morph1sm Ur — T62. In particular, U3 coincides to 7.
By Proposition 7.9 we have

Corollary 7.11. The fixed curve map for Mz 31 is a dominant map M731 > Te2
whose general fibers are birationally identified with the gé. The fixed curve map
for Msiis—ks with k > 3 is generically injective with a generic image Uy.

In fact, it is more natural to identify the fibers of My 31 --» 762 with the non-free
pencils |K¢—2T| where T is the trigonal bundle, whose free partis {T'| (cf. Corollary
7.6). The loci U; may be described in terms of special divisors as follows.
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Proposition 7.12. Let C be a trigonal curve of genus 6 with the trigonal bundle T.
(1) The curve C has scroll invariant 2 if and only if Wi (C) is irreducible.
(2) When C has scroll invariant 2, we have C € Uy if and only if 2K¢c — 5T is
contained in Sing(SingW51 ).
(3) The locus Us is the intersection of Uy with the theta-null divisor.

Proof. (1) This follows from [22] Proposition 1 (or 2] V. A-9). Specifically, Wj (9
consists of the curve T+ W1(C) and the point K¢ —2T, and K¢ —2T is not contained
in T+ W1(C) if and only if C has scroll invariant 0. When C is an L3 j-curve on [y,
we have K¢ — 2T ~ T + pg for the point pgp = C N .

(2) The locus Uy C T2 consists of those C whose trigonal map ramifies at pg.
By [22] Proposition 1 we have W51 (C) = Wy U W_ where W, = T + W,(C) and
W_ = Kc—W, is the residual of W,.. Let V. = T+ pp+W1(C) and V_ = 2T -W;(C)
be the residual of V. Then we see that ' '

SingWl(C) =W, NW_ =V, UV_.

IfT —py ~ p1 + pp, wehave V., N V_ = {T + pg + p1,T + po + p2}. Since
2K¢ — 5T ~ T + 2py, this proves the assertion.

(3) A curve C in T has an effective even theta characteristic if and only if the
residual involution on WS1 (C) has a fixed point. By the structure of W51 (C) described
above, this is exactly when V. N V_ is one point, i.e., p; = p>. When C € Uy, this
is equivalent to the condition T ~ 3py. O

8. THECASEg =5

In this section We prove that the spaceé M;q5 with g = 5 and k > 0 are ratio-
nal. The case (k, &) = (4,0) was settled by Kondo [18] using trigonal curves with
vanishing theta-null. It turns out that the main fixed curves for other (%, §) are also
trigonal.

8.1. The rationality of M;s;. We construct 2-elementary K3 surfaces using
curves on F;. Let U C [L3z| X |L;1 0| be the open set of pairs (C, H) such that C
and H are smooth and transverse to each other. The 2-elementary K3 surface as-
sociated to the —2Kg,-curve C + H has invariant (g,k) = (5, 1). Thus we obtain a
period map P: U/Aut(F1) - M751.

Proposition 8.1. The period map P is birational.

Proof. As before, we consider an Ss-cover U of U whose fiber over a (C,HYeU
corresponds to labelings of the five nodes C N H. Noticing that the blow-down
¢: F1 — P? contracts the (—1)-curve to the unique node of ¢(C), one may proceed
as in Example 4.10 to obtain a birational lift ﬁ/Aut(]Fl) -» Mgs1 of P. The
projection M7,5,1 - My5,1 is an O(Dy, )-covering for the lattice L, = U @A? . By
[26] we have |[O(Dr,)| = |07(4,2)| = 5!, so that # is birational. O

Proposition 8.2. The quotient U/Aut(Fy) is rational. Hence M s, is rational.



33

Proof. By Proposition 3.8, |L3|/Aut(F;) is canonically birational to the moduli
7 of trigonal curves of genus 5. Since Lo is Aut(F;)-linearized, we may apply
the no-name lemma 2.5 to the projection |L3s| X |L1g] — [L3 »]. Then we have
U/Aut(Fy) ~ P2 x 75. The space 7 is rational by [21]. )

For every smooth C € [L3 5|, the restriction of |L; o] to C is identified with the
linear system |K¢ — T'| where T is the trigonal bundle. Therefore

Corollary 8.3. The fixed curve map for My s gives a dominant map Mz 51 > T
whose general fibers are birationally identified with the residuals of the gé.

8.2. The rationality of Mg.r6_r1 With k£ > 1. We consider curves on F;. For

< k < 5let Uy C |Ls3a| X |Loa| be the locus of pairs (C, F) such that (i) C is
smooth and transverse to the (—1)-curve X, (ii) F intersects with C atone of C N X
with multiplicity k — 2, and (iii) |C N F\X| = 5 — k. When k = 2, the conditions
(i1) and (iii) simply mean that F is transverse to C + X. In particular, U, is open in
|L3 2| X |Lo,1]. The projection Ug — |L3 2| is dominant for k = 2, 3, and generically
injective for k = 4,5. As in the proof of Lemma 7.8, one checks that Uy has the
expected dimension 20 — k. '

For a (C, F) € Uy, the curve B = C + F + Z belongs to | — 2Kg,{. When k = 2,
B has only nodes (the intersections of the components) as the sigularities. When
k > 3, B has the Dy;_,-point FNZ, the 5 —k nodes C N F\Z, the one node CNX\F,
and no other singularity. Thus the 2-elementary K3 surface associated to B has
invariant (r, a) = (6 +k,6 — k). When k = 4, we have parity 6 = 1 by Lemma 4.4
(3). Hence we obtain a period map Py: Ux/Aut(F;) --» Mesk-k,1-

Proposition 8.4. The map Py, is birational.

Proof. When k = 4,5, the singularities of the curves B = C + F + X are a priori
distinguished by their type and by the irreducible decomposition of B. Also the
three branches at the Dy_»-point are distinguished by the decomposition of B.
Therefore Py lifts to a birational map U/Aut(Fp) --» M@k,g_k,l by the recipe in
§4.3. One checks that M6+k,6—k,1 = Mg+ -1 in these cases.

The case k = 3 is treated in Example 4.10.

For k = 2, we label the three nodes CN F and the two nodes CNZ independently..
This is realized by an G3 X ©;-cover ﬁz of Uy. The rest node F N % of B is
distinguished from those five. Then we will obtain a birational lift U,/ Aut(Fy) --»>
: Mg41 of P,. By [26] we have |[O(Dr,)| = 2 - [Sp(2,2)] = 2 - 3! for the lattice
L,=U®Ds® A2 Therefore 5 is birational. O

Proposition 8.5. The quotient Uy/Aut(F1) is rational. Therefore M6+k5 K1 with
k > 1is rational.

Proof. The same proof as for Proposition 7.10 works. o O

For completeness, we briefly explain the birational period map for Mjo 2,0 con-
structed by Kondd [18]. Let U C |L3] be the locus of smooth curves C which are
tangent to X. The quotient U/Aut(F) is identified with the theta-null divisor 7% in
the trigonal locus. For a C € U let F be the n-fiber passing CNZ. The 2-elementary
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K3 surface associated to the —2Kp,-curve C + F + Z belongs to Mjg,0. Then the
period map U/Aut(F;) — Mjgz is birational. Kondd’s proof is essentially along
the line of §4.3. It can also be deduced using the fixed curve map.

We describe the fixed curve maps as rational maps Fy, : M6+k 6-k,1 == T5 to the
trigonal locus. By Proposition 8.4 we have

Corollary 8.6. The map Fy is dominant for k = 2,3, and is generically injective
fork =4,5. The general fibers of Fy are birationally identified with the gé, and the
general fibers of F3 are identified with the two points SingWi (), CeTs.

Proof. The F3-ﬁbeerver a general C € |Ls»| is identified with the two points
{p1,p2} =ZNC. Note that K¢ ~ 2T + p;1 + p» for the trigonal bundle T'. By [22],
Wi (C) consists of two residual components, W, = T + W1 (C) and W_ = K¢ — W,..
Then Sinng (C) is the intersection W. N W_ = {T + p1,T + p2}. O

A generic image of F4 (resp. Fs) is the locus where the trigonal map ramifies
(resp. totally ramifies) at the base point of one of Sinng (C). We also note that the
theta-null divisor 775 is exactly the locus where SingWi (C) is one point. Thus the
double covering F3: Moz 1 --> 75 is the quotient by the residuation and is ramified
at Mygz,0 over 74

9. THECASEg = 4

In this section we study the case g = 4, k > 0. Our constructions are related
to canonical models of genus 4 curves, i.e., curves on quadratic surfaces cut out
by cubics. Except for §9.4 we shall use the following notation: Q is the surface
P! x P, L, is the bundle Og(a,b), and Aut(Q)o = PGL, X PGLy is the identity
component of Aut(Q)

9.1. The rationality of Ms¢ . Let U C |L33| X |L1,1| be the open set of pairs
(C, H) such that C and H are smooth and transverse to each other. Considering the
2-elementary K3 surfaces associated to the —2Kg-curves C + H, we obtain a period
map P: U/Aut(Q) --» Mgg,1. In Example 4.9 we proved that P is birational.

Proposition 9.1. The quotient U/Aut(Q) is rational. Hence Mg is rational.

Proof. Recall that the quotient |L3 3|/ Aut(Q) is naturally birational to the moduli
My of genus 4 curves. This is a consequence of the fact that a general canonical
genus 4 curve is a complete intersection of a cubic and a unique smooth quadric.
For a smooth C € |L3 3| the linear system |Lp 1| is identified with |K¢| by restric-
tion. Then let 7: X4 — M4 be the universal genus 4 curve (over an open lo-
cus), and & be the bundle 7.Kx,/m, over My. The above remark implies that
(IL3 3|x|Ly,11)/ Aut(Q) is birational to P&. Since My is rational ([32]), soisPE. O

Corollary 9.2. The fixed curve map Mggy — My is dominant with the general
fibers birationally identified with the canonical systems.
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9.2. The rationality of My 5. For a point p € Q we denote by D, the union of
the two ruling fibers meeting at p. Let U C |L33| X Q be the open set of pairs
(C, p) such that C is smooth and transverse to D,. Taking the right resolution of
the —2Ky-curves C + D,, we obtain a period map #: U/Aut(Q) --> Mos;.

Proposition 9.3. The map P is birational.

Proof. Let U be the space of those (C, p, p1,-+- ,ps) € U x Q° such that C N
D, = {pi}?=1 and that py, ps, p3 lie on the (1, 0)-component of Dé- The space U
parametrizes the curves C + D, endowed with labelings of the six nodes C N D,
which take into account the decomposition of D,. The rest node of C+D), the point
p, is clearly distinguished from those six. Note that Aut(Q) does not act on 17, for
the definition of U involves the distinction of the two rulings. Rather U is acted on
by Aut(Q)¢. As in Example 4.9, P lifts to a birational map l7/Aut(Q)0 -3 Mg,s,l.
The projection ﬁ/Aut(Q)o -> U/Aut(Q) has degree 2 - |S3 X &3], while Mg 51 1S
an O(Dr,)-cover of Mg 51 for the lattice L+ =U&Dy® A3 By [26] we have
[0(D,)l = 10%(4,2)| = m

Proposition 9.4. The quotient (|L3 3| X Q)/Aut(Q) is rational. Therefore Mg s is
rational. ‘

Proof: Applying the slice method to the projection |L3 3[X Q@ — O, we have (|L3 3| X
Q)/Aut(Q) ~ |L33|/G where G ¢ Aut(Q) is the stabilizer of a point p € Q. Let
F1, F5 be respectively the (1,0)- and the (0, 1)-fiber passing p. We denote V =
|OF,(3)| X |OF,(3)]. We want to apply the no-name lemma to the G-equivariant map
¢: |Lasl >V, C = (Clp,,Clp,). If (D1,D3) is a general point of V, there is no
isomorphism F; — F, mapping (p, D1) to (p, D2). Since PGL acts on P! x|Op1 (3)|
almost freely, this deduces that G acts on V almost freely. A general fiber of ¢ is
an open set of a linear subspace of |L3 3|. Tensoring the natural O(1) @ O(1) over V,
we are able to use Proposition 2.5 to see that |L3 3|/G ~ P x (V/G). The quotient
V/G is rational because dim(V/G) = 2. - o -

Corollary 9.5. The fixed curve map Mos 1 N My is dominant with the general
fibers birationally identified with the products of the two trigonal pencils.

9.3. Mjpa,1 and the universal genus 4 curve. As in §9.2, for a point p € Q we
denote by D), the reducible bidegree (1, 1) curve singular at p. Let U C |L33|xQ be
the locus of pairs (C, p) such that C is smooth, passes p, and is transverse to each
component of D,. The space U is an open set of the universal bidegree (3, 3) curve.
The bidegree (4,4) curve C + D), has the Dy4-point p, the four nodes C N D,\p,
and no other singularity. The associated 2-elementary K3 surface has invariant
(g,k) = (4,3). It has parity § = 1 by Lemma 4.4 (2). Thus we obtain a period map
P: UlAut(Q) --> Mioa,1-

Proposition 9.6. The map P is birational.

Proof. As in §9.2, we consider the locus UcUx Q* of those (C, p, p1,- -+ , p4)
such that C N Dp\p = {p,‘}?=1 and that p1, p> lie on the (1,0)-component of D,.
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Since the three branches of C + D, at p are distihguished by the irreducible de-
composmon of C + D, then P lifts to a birational map U /Aut(Q)O - MIO4I
The space U/Aut(Q)o is an ©, x (S,)%-cover of U /Aut(Q), while M1041 is an
O(Dr, )-cover of Miga,1 for the lattice Ly = U(2) @ E7 @ A;. By [26] we have
IO(DL,)| = 2% - |0%(2,2)| = 8. O

Since |Ls 3|/ Aut(Q) is naturally biational to My, the quotient U/Aut(Q) is bira-
tional to the universal genus 4 curve, which is rational by Catanese [8]. Therefore

Proposition 9.7. The moduli space Mg a.1 is rational.

Corollary 9.8. The fixed curve map Mypa1 — My identifies Mioa bzratzonally
with the universal genus 4 curve.

9.4. Mjoapo and genus 4 curves with vanishing theta-null. We construct 2-
elementary K3 surfaces using curves on F,. We use the notation of §3. Let
U c |Lso| X |Lo2| be the open set of pairs (C,D) such that C and D = F1 + F»
are smooth and transverse to each other. The 2-elementary K3 surface (X, ) asso-
ciated to the nodal —2Kg,-curve C + D + X has invariant (g, k) = (4, 3). Since the
strict transform of C — D+ X in ¥’ = X/t belongs to 4NS y+, (X, ¢) has parity 6 = 0.
Thus we obtain a period map P: U/Aut(F,) --» Mo 0. '

Proposition 9.9. The map P is birational.

Proof. Let U € Ux(F,)% be the locus of those (C, D, p1,-: - , p) such that CND =

{p,} >, and that py, p, p3 are on the same component of D. By considering ﬁ the
nodes of C + D and the two components of D are labelled in a compatible way.
As in Example 4.11, we see that # lifts to a birational map U JAut(F,) --» Mlo 4,0-
The projection U JAut(F,) — U/Aut(F,) is an S, x (S3)%-covering, while M104 0
is an O(Dy,)-cover of Mjgao for the lattice L, = U & D2 By [26] we have
|O(Dy, )l = |0*(4,2)| = 72. This proves the proposition. O

The quotient |L3 o|/Aut(F,) is naturally birational to the theta-null divisor Mj
in My. Indeed, recall that the morphism ¢, ,: F» — P3 associated to the bundle
L1 is the minimal desingularization of the quadratic cone Q = ¢, ,(F2), and
that the restriction of ¢y, , to each smooth C € |L3p] is a canonical map of C.
Then our claim follows from the fact that a non-hyperelliptic genus 4 curve has
an effective even theta characteristic if and only if its canonical model lies on a
singular quadric. In that case the half canonical pencil is given by the pencil of
lines on Q, or equivalently, the pencil |Lg,1|.

Proposition 9.10. The quotient (113 | X |L0 20) /Aut(IFz) is rational. Hence Mipap
is rational. '

Proof. Since both L3 and Lo are Aut(F,)-linearized (Proposition 3.2) and since
a general C € M, has no automorphism, we may apply the no-name lemma 2.5 to
the projection [L3 0| X |Lo 2| — |L3,l| to see that

(IL3,0l X |Lo2)/Aut(F2) ~ P* X (L3 ol/ Aut(Fy)) ~ ]P’2 X My.
The space M is rational by Dolgachev [12]. O
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Corollary 9.11. The fixed curve map for Migag is a dominant map onto M
whose general fibers are birationally identified with the symmetric products of the
half-canonical pencils.

9.5. The rationality of M3 ; and Mjz21. Let Q = P! x PL. For a point p € Q
we denote by D, the reducible bidegree (1, 1) curve singular at p. For k = 4,5 let
Uy C |L3 3] x O be the locus of pairs (C, p) such that (i) C is smooth with p € C, (ii)
the (1, 0)-component of Dy, is tangent to C at p with multiplicity k¥ — 2, and (iii) the
(0, 1)-component of D, is transverse to C. The space Uy is-acted on by Aut(Q)o
(but not by Aut(Q)). The bidegree (4,4) curve C + D), has the Dy;_»-singularity p,
the 7 — k nodes C N D\ p, and no other singularity. Taking the right resolution of
C+ D, we obtain a period map Pr: Ur/Aut(Q)o > M74k7-k1-

Proposition 9.12. The map Py is birational.

Proof. We only have to distinguish the two intersection points other than p of C
and the (0, 1)-component of D,. This defines a double cover Uy — Uy. The rest
singularities of C + D, and the branches of C + D, at p are a priori labeled as
before. Checking dlm(Uk/Aut(Q)o) = 13 — k, we see that $; lifts to a birational
map Uk/Aut(Q)o -5 M7+k,7_k,1 The variety M7+k7 k1 1S an O(DL )-cover of
Maiir -1 for the lattice L. = (2)2 @ Eg @ A5 k. Then O(D; ) = &, for both
k = 4,5, so that P has degree 1. ' O

Proposition 9.13. The quotient Uk/Aut(Q)o is rational. Therefore M11 3,1 and
Mi22,1 are rational.

Proof. This is a consequence of the slice method for the projection Uy — Q and
Miyata’s theorem. The stabilizer of a point p € Q in Aut(Q)p is isomorphic to
(C* = C)?, which is connected and solvable. i

Corollary 9.14. The fixed curve map My131 — My is finite and dominant, with
the fiber over a general C € My being the ramlﬁcanon points of the two trigonal
maps C — P,

For k = 5 the image of the natural map Us — My consists of curves such that
one of its trigonal maps has a total ramification point. Such a point is nothing but
a Weierstrass point whose first non-gap is 3. Therefore

Corollary 9.15. The fixed curve map for My is generically injective with a
generic image being the locus of curves having a Weierstrass point whose first
non-gap is 3.

10. TuECcASEg =3

In this section we study the case g = 3, k > 0. When (k,6) # (2,0), we use
plane quartics to construct general members of M, 5. For (k,6) = (2,0) we find
hyperelliptic curves as the main fixed curves.
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10.1. The rationality of My7 1. Let U C |Op2(4)| X |Op2(2)| be the open locus

- of pairs (C, Q) such that C and Q are smooth and transverse to each other. The 2-
elementary K3 surfaces associated to the sextics C-+Q have mvanant (g, ky=(@3,1),
and we obtain a period map P: U/PGL3 --» My 71.

Proposition 10.1. T/ie map P is birational.

Proof. We consider an Sg-covering U — U whose fiber over a (C, Q) € U corre-
sponds to labelings of the elght nodes cno of C + Q. As before, we see that P
- lifts to a birational map U /PGL; --» M9,7,1 The projection M9,7,1 > Mo
is an O(Dr,)-covering for the lattice L, = U & AZ. By [26] we calculate
I0(Dr,)l = 10%(6,2)] = 8!. m

Recall that we have a natural birational equivalence |Op2(4)|/PGL3 ~ M3, for a
canonical model of a non-hyperelliptic genus 3 curve is a plane quartic.

Proposition 10.2. The quotient (|Op2(4)| X |0p2(2)I) /PGL3 is rational. Therefore
Mo 71 is rational. »

Proof. 1et n: X3 — Mj be the universal curve (over an open set), K, be the

relative canonical bundle for &, and & be the bundle n*K,zr. As the restriction map
|Op2(2)] — |2K¢| for a smooth quartic C is isomorphic, the quotient (|Op2(4)| X
|Op2(2)])/PGL3 is birational to PE. Since Mj is rational by Katsylo [17], so is
PE. O

Corollary 10.3. The fixed curve map My 71 — Ma is dominant with general fibers
being birationally identified with the bi- canomcal systems.

10.2. The rationality of Mjps1. Let U C [Op2(4)| X |Op2(2)| be the locus of pairs
(C, Q) such that Q is the union of two distinct lines, and C is smooth and transverse
to Q. In Example 4.11 we showed that the 2-elementary K3 surfaces associated
to the sextics C + Q have main invariant (7, a,6) = (10,6, 1), and that the induced
period map U/PGLj3 --» Mg is birational.

Proposition 10.4. The quotient U/PGLs is rational. Hence Mg, is rational.

Proof. We keep the notation in the proof of Proposition 10.2. Let ¥ be the bun-
dle 7. K, over M3. By restriction, the space of singular plane conics is identified
with the symmetric product of the canonical system of every smooth quartic. This
implies that U/PGLs is birational to the symmetric product of PF over Ms. Since
PF ~ Mj x P2, we have U/PGL3 ~ Ms x S2P?. Then S2P? is birational to the
quotient of C? x C? by the permutation, and so is rational. Since Mj is rational
([17]), our assertion is proved. / O

Corollary 10.5. The fixed curve map Mioe1 — Ms is dominant with general
fibers being birationally zdentlﬁed with the symmetric products of the canonical
systems.



39

10.3. Mjos,0 and hyperelliptic curves. We construct 2-elementary K3 surfaces
using curves on the Hirzebruch surface F4. We keep the notation of §3. Let U C
|Lo,0l X |L1,0| be the open set of pairs (C, H) such that C and H are smooth and
transverse to each other. The 2-elementary K3 surface (X, t) associated to the nodal
—2Kg,-curve C + H + Z has invariant (g, k) = (3,2). Since the strict transform of
C—H-ZXinY" = X/t belongs to 4NSy-, (X, ) has parity 6 = 0. Thus we obtam a
period map P: U/Aut(Fa) --» Mioeo.

Proposition 10.6. The map P is birational.

Proof. We consider an Sg-covering U — U whose fiber over a (C,H) € U corre-
sponds to labelings of the elght nodes CNHof C+H +X. In the familiar way
we will obtain a birational lift U JAut(Bg) --» M10 6,0 of $. The variety M10 6,0
is an O(Dr,)-cover of Mjge, for the lattice L, = U(2) © D2 By [26] we have
I0(DL,)| = |07(6,2)| = 8. =

Proposition 10.7. The quotient (|L,, o| X |Lq 0|)/Aut(]F4) is rational. Therefore
Miog,0 is rational.

Proof. This is a consequence of the slice method for the projection [Lpg| X |L1 0] —
L1 ol, Proposition 3.4, and Katsylo’s theorem 2.2. \ ‘- ]

Recall that the quotient |L; o/ Aut(Fy) is birational to the moduli H3 of genus 3
hyperelliptic curves (Proposition 3.6), and that the stabilizer in Aut(F4) of a general
C € |Ly ] is generated by its hyperelliptic involution (Corollary 3.7). Since XNC =
0, we have Ljolc = Loalc =~ 2Kc. Then the restriction map |L1 0| — [2Kc| is
isomorphic because hO(L_Lo) =nl (L-1,0) = 0. These show that

Corollary 10.8. The fixed curve map for Moo gives a dominant morphism
Maioeo — Hz whose general fibers are birationally identified with the quotients of
the bi-canonical systems by the hyperelliptic involutions.

We note that the hyperelliptic locus H3 is the theta-null divisor of Ms.

- 10.4. Mj; 51 and the universal genus 3 curve. Let U C |Op2(4)| X [Op2(2)] be
the locus of pairs (C, Q) such that C is smooth, Q is the union of distinct lines with
p = Sing(Q) lying on C, and each component of Q is transverse to C. The point p
is a Dy-singularity of the sextic C + Q, and the rest singularities of C + Q are the
six nodes C N Q\p. The 2-elementary K3 surface associated to C + Q has invariant
(g,k) = (3,3). Thus we obtain a period map £: U/PGL3 --» Mi15;1.

Proposition 10.9. The map P is birational.

Proof. Let U c U x (P)® be the locus of those (C,Q, pi--- , ps) such that C N
Q\Sing(Q) {p,} Ly 2 and that pq, p2, p3 lie on the same component of Q. For a
point (C, --- , pe) of U, the six nodes of C + Q and the two components of Q are -
labelled in a compatible way. In particular, the three tangents at the D4-point of
C + Q are also distinguished. Thus # lifts to a birational map U / PGL; --» M11 51
The space U/PGL3 is an &, < (&3)?-cover of U/PGLs, while M11 5,118 an O(Dr, )-
cover of Mu 5 | for the lattice L, = U & D2 ®A;. By [26] we calculate [O(Dy, )| =
O*(4,2)| = O
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Proposition 10.10. The quotient U/PGLg3 is rational. Hence Myy15,1 is mtional..

Proof. Let n: X3 — Mjs be the universal genus 3 curve (over an open locus),
and & be the subbundle of 7*7.K; whose fiber over a (C, p) is H'(K¢ - p). The
natural map U — X3, (C, Q) + (C,Sing(Q)), shows that U/PGLj is birational
to the symmetric product of P& over X3. In particular, U/PGL3 is birational to
P2 x X3. The space X3 is known to be rational: see [12] where this fact is attributed
to Shepherd-Barron. It is a consequence of the slice method and Miyata’s theorem
(associate to a pointed quartic (C, p) the pointed tangent line (T,C, p)). o

Corollary 10.11. The fixed curve map for M s lifts to a dominant map
Miis1 > X3 whose fiber over a general (C, p) is birationally identified with the
symmetric product of the pencil |K¢c — pl. '

Remark 10.12. One can also prove Propositions 10.4 and 10.10 by considering the
configuration C N Q\Sing(Q) of points and using the no-name lemma. This avoids
resorting to the rationality of Ms.

- 10.5. The rationality of Mgk g—ks With k > 4. For4 <k < 6let Ug C |Op2(4)] X
|0p2(1)]? be the locus .of triplets (C, L1, L») such that (i) C is smooth and passes
p = L1 N Ly, (ii) L, is transverse to C, and (iii) L; is tangent to C at p with
multiplicity k£ — 2 and transverse to C elsewhere. For k = 5,6 the point p is an
inflectional point of C of order k — 2. The sextic B = C + L; + L has the Dyg -
point p, the 9 — k nodes (L + L) N C\p, and no other singularity. Taking the right
resolution of B, we obtain a period map Py: Ur/PGL3 --» Mgirs—ks. Hered =1

fork=4,5,and6 =0fork = 6.

Proposition 10.13. The map Py is birational.

Proof. For k = 4 we label the three nodes L, N C\L; and the two nodes LiNnC\L,
independently. This is realized by an 3 X &,-covering U4 — Uy as before. Note
that Ly and L, are distinguished by their intersection with C. Then we will obtain
a birational Lift U4 JPGL;3 --» M12 4.1 of P4. The invariant lattice L, is isometric to
UQ) EIBA2 @ Eg. By [26] we have |O(DL+)| = 2-[Sp(2,2)| = 12. Therefore Py is
b1rat10nal

For k = 5,6 we label only the three nodes L, N C\L;, which defines an G-
covering Ur — Uy. The rest (at most one) node Ly N C\L; is obviously distin-
gulshed from those three. Therefore we will obtain a birational lift U /PGL3 -
Mg+k 8-k of Pr. The anti-invariant lattice L_ is isometric to U2@ D, GBA6 -k Then
we have O(Dy_) ~ &3, which proves the proposition. - O

Proposition 10.14. The quotient Uy /PGLj3 is rational. Therefore M2 41, M13 315
and Ma a0 are rational.

Proof. Consider the projection n: Uy — |0P2(1)l2, (C,L1,Ly) — (L1,L;). The
group PGL;3 acts almost transitively on |0p2(1)|* with the stabilizer of a general
(L1, L) being isomorphic to (C* = C)?. The n-fiber over (L1, L) is an open set of
the linear system of quartics which are tangent to L; at L; N Ly with multiplicity
> k — 2. Thus our assertion follows from the slice method for & and Miyata’s
theorem. ' o
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The fixed curve maps are described as follows. Recall that the ordinary inflec-
tional points of a smooth quartic C  P? are just the normal Weierstrass points of
C, and the inflectional points of order 4 are just the Weierstrass points of weight
2. Then let X3 be the universal genus 3 curve, Us C X3 the locus of normal
Weierstrass points, and Us C X3 the locus of Weierstrass points of weight 2.

Corollary 10.15. The fixed curve map for Mypa1 (resp. Mgk g-ks withk =5,6)
lifts to a dominant map Mip a1 - X3 (resp. Mgirg-is > Ux) whose general
~ fibers are birationally identified with the pencils |Kc — p|-

11. TeECASEg =2

In this section we treat the case g = 2, k > 0. In view of the unirationality result
[20], we may assume k < 9. The case (k,5) = (1,0) is reduced to the rationality of
Mo 4, via the structure as an arithmetic quotient. The case (k, ) = (1, 1) is settled
by analyzing the quotient rational surfaces. The cases 2 < k < 4 and (k,6) = (5,0)
are studied using genus 2 curves on Fs, and the case k > 5 with § = 1 is studied
using cuspidal plane quartics. ‘

11.1. The rationality of Miogo. Here we may take the same approach as the one
for Mlo 10,0 by Kondo [18]. Recall that Mo 8,0 is an open set of the modular variety
F(O(L-)) where L_ is the 2-elementary lattice U 2@ Fg(2). Since we have canonical
isomorphisms O(L_) = O(LY) =~ O(LY(2)), the variety F (O(L-)) is isomorphic to

F(O(LY(2))). The lattice LY (2) is isometric to U(2)? @ Eg, so that F(O(LY(2))) is
birational to Mjp4,0. In §9 4 we proved that Mg 40 is rational, and hence Mo
is rational.

11.2. The rationality of M;og 1. We construct the corresponding right DPN pairs
starting from the Hirzebruch surface F,. For a smooth curve C € |L, ] transverse
to X, let f: ¥ — FF, be the double cover branched along C. Since we have a conic
fibration Y — F, — P!, the surface Y is rational. The curve f*X is a (—4)-curve on
Y. :

Lemma 11.1. We have |-2Ky| = f*Z + f*|L1 .

'Proof: By the ramification formula we have —2Ky =~ f*L, . Since |[y 2| =
T + |L1o| and dim|L 0| = 3, it suffices to show that dim|-2Ky| = 3.. We take a
smooth curve H € |L; | transverse to C. The inverse image D = f*H is a smooth
genus 2 curve disjoint from f*X. Since Op(f*Z) =~ Op, we have ~Ky|p =~ Kp by
the adjunction formula. Then the exact sequence :

0 — Oy — —2Ky — 2Kp ® Opex(=4) = 0
shows that dim|-2Ky| = h°(2Kp) = 3. ' 0
Thus the resolution of the bi-anticanonical map ¥ --» P3 of Y is given by the
composition of f: Y — F, and the morphism ¢: F, — P3 associated to Ly .

The image ¢(F2) is a quadratic cone with vertex ¢(Z). In this way the quotient
morphism f is recovered from the bi-anticanonical map of Y. It follows that
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Lemma 11.2. For two smooth curves C,C’ € |Ly 5| transverse to X, the qssociated
double covers Y, Y’ are isomorphic if and only if C and C’ are Aut(F,)-equivalent.

Now we let U C |Ly»] X |L1,0| be the open locus of pairs (C, H) such that C and
H are smooth and that C is transverse to H + X. To a (C, H) € U we associate the
right DPN pair (Y, B) where f: Y — F, is the double cover branched along C and
B = f*(H + ). Since (¥, B) has invariant (g, k) = (2, 1), we obtain a period map
U — Miog,- By Lemmas 11.1 and 11.2 the induced map U/Aut(F,) --> Migg,1
is generically injective. In view of the equality dim(U/Aut(F,)) = 10, we have a
birational equivalence U/Aut(F,) ~ Mios,1.

Proposition 11.3. The quotient U|Aut(F,) is rational. Hence Mg, is rational.

Proof. This follows from the slice method for the projection |Ly 2| X |L1,0] — |L1,0l,
Proposition 3.4, and Katsylo’s theorem 2.2. |

Remark 11.4. The above (¥, B) are (generically) right resolution of the plane sextics
C + Q where C is a one-nodal quartic and Q is a smooth conic transverse to C.
Although thé period map for this sextic model has degree > 1, we can analyze its
fibers to derive the rationality of Mig,s,1. This alternative approach may also be of
some interest. We here give an outline for future reference.

LetU C [Op2(4)] X (P?)® be the locus of (C, p1, - -+ , ps) such that C is one-nodal
and {p,} = C n Q for a smooth conic Q. Us1ng the labeling {p,}l s W we obtain

a b1rat10na1 map U = U /PGL3 --» Mm 3,1 as before. The projection Mm g1 -
Mipg.1is an Sg=<(Z/ 2)°- -covering, which exceeds the the obvious Sg-symmetry of
U. In order to find the rest (Z/2)%-symmetry, let H be the group of even cardinality
subsets of {1,--- , 8} with the symmetric difference operation. For {i, j} € H and
(C,p1, -+, pg) € U, consider the quadratic transformation ¢: P2 --> P2 based at
pi»pj» and py = Sing(C). We set C* = ¢(C), pj = ¢(pop1), pj = ¢(pop;), and
Py = @(pp) for k # i, j. Then we have (C*,p7, - ,p;) € U, and this defines
an action of H on Y. The element {1,---,8} € H acts on U trivially (it gives
the covering transformation of the above Y — F,). Now the period map U --»
Mios.11s Sg < H-invariant, so that Mg 1 is birational to U/(Sg < H) by a degree
comparison. We can prove that U /(Sg < H) is rational.

11.3. Mj17,1 and genus 2 curves on F3. We construct 2-elementary K3 surfaces
using curves on Fs. Let U C |Lpg| X |L1,1| be the open set of pairs (C, D) such
that C and D are smooth and transverse to each other. Then the curves C + D + X
belong to [-2KF,|. Taking the right resolution of C + D + X, we obtain a period map
P U/Aut(F3) --» My17.1.

Proposition 11.5. The map P is birational.

'Proof. We consider an Sg-covering U — U whose fiber over a (C, Dy € U corre-
sponds to labelings of the eight nodes C N D. The rest node of C + D + Z is the one
point D N %, which is obviously d distinguished from those eight. Thus we obtain
a birational lift U/Aut(]F3) -> M1171 of P. The pro_]ectlon M1171 - Mg
is an O(Dy,)-covering for the lattice L, = U @ D4 & A5 By [26] we have
|O(Dr,)| = |0*(6,2)| = 8!, which implies that £ is birational. O
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Proposition 11.6. The quotient (|Lpol X |L11)/Aut(F3) is rational. Therefore
Mi1.71 is rational.

Proof. We apply the slice method to the pfojection |La 0l % [L1,1] = |L1,1], and then
use Proposition 3.5 and Miyata’s theorem. m]

For every smooth C € |L; | the linear system |L; ;| is identified with [4Kc}| by
restriction. Indeed, we have 4K¢ =~ Ly 4lc by the adjunction formula, and Lo 4lc =
Ly 1lc because C N X = @. Then the vanishings hO(L_u) =h! (L-1,1) = 0 prove our
claim. In view of Proposition 3.6 and Corollary 3.7, we have

Corollary 11.7. The fixed curve map Mi171 — My is dominant with a general
fiber being birationally identified with the quotient of |4K¢| by the hyperelliptic
involution.

11.4. Mi261, Mizsi, Miaso and genus 2 curves on Fz. We construct 2-
elementary K3 surfaces using curves on F3. For 3 < k < 5 let Uy C |Lpp| X
|Ly,0] % |Lo,1| be the locus of triplets (C, H, F) such that (i) C and H are smooth and
transverse to each other, (ii) F intersects with C at p = F N H with multiplicity
k—3incase k = 4,5, and is transverse to C + H in case k = 3. Itis easy to calculate
dimUy, = 19-k. Fora (C, H, F) € Uy the curve B = C+H+F+X belongs to 2K, |.
When k = 3, B-has only nodes as the singularities. When k = 4, 5, B has the Dyj_4-
singularity p, the nodes C N H\p, F N C\p, F N Z, and no other sigularity. The
2-elementary K3 surface (X, ¢) associated to B has invariant (r,a) = (9 + £,9 — k).
When k = 5, (X, ¢) has parity § = 0. Indeed, let (Y, B") be the corresponding right
DPN pair. The curve B has two components over p, say E3 and E5, whose num-
bering corresponds to the one for the vertices of the Dg-graph in p.11. Then the
sum of —E3 + E5 and the strict transform of C + F — H — X belongs to 4NS y-, which
proves § = 0. Thus we obtain a period map Px: Ur/Aut(F3) --> Moy o-s Where |
6=1ifk=3,4and 6 =0ifk = 5.

Proposition 11.8. The map Py is birational.

Proof. For k = 3 we label the six nodes C N H and the two nodes C N F inde-
pendently, which is realized by an ¢ X &;-covering Us — Us. The rest two
nodes, F N H and F N X, are dlstmgulshed by the irreducible decomposmon of B.
This defines a birational lift U3 JAut(F3) --» M12,6,1 of 3. The variety M12,6,1 is
an O(Dr,)-cover of Mia 6,1 for the lattice L, = U @ A% @ Di‘. By [26] we have
O(DL)| =2 -|Sp(4,2)| = 2- 6!. Therefore 3 has degree 1.

For k = 4, 5 we consider labelings the five nodes C N H\F, which defines an &s-
cover U, © of Uy. The rest singularities of B and the branches at the Dy;_4- pomt are
a priori d1st1ngu1shed Thus we obtain a birational lift Uk/Aut(]Fg,) -» M9+k9 )
of Pr. The variety M9+k 9—k 18 an O(Dy,_)-cover of Mo.x9-ks for the lattice L_ =
UaUQR)®Ds®AT™. We have |O(D;_)| = 07(4,2)| = 5! for both k = 4,5. Hence
P is birational. o

Proposition 11.9. The quotient Ui/ Aut(F3) is rational. Therefore M2 61, Mi3 5.1,
and Myaap are rational.
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Proof. We apply the slice method to the projection my: Uy — |Liol X [Lo1|. By
Propositions 3.4 and 3.3 the group Aut(F3) acts on |L1 9| X |Lg,1| almost transitively
with the stabilizer G of a general (H, F) being connected and solvable. The fiber
ﬂ;l(H, F) is an open set of a linear subspace PV; of |L; o|. Then PV}/G is rational
by Miyata’s theorem. O

As in the paragraph just before Corollary 11.7, we see that for every smooth
C € |Lpp| the linear system |Ljg| is identified with [3K¢| by restriction. When

k = 3, we obtain a pointed genus 2 curve (C, p) by considering either of the two.

points F N C. When k > 4, the point p = H N F determines F, and H is a general
member of |3K¢ — p|. For k = 5, p is a Weierstrass point of C. These infer the
following. '

Corollary 11.10. Let X, be the moduli of pointed genus 2 curves (C, p), and ‘W C
X» be the divisor of Weierstrass pomts The fixed curve maps for Myz 6.1, M13 5.1,
and M14 40 lift to rational maps F, t : Motrko-rs --» Xo. Then

1 Fs is dominant with a general fiber birationally identified with the quotient
of 13K¢| by the hyperelliptic involution.

2 F4 is dominant with a general fiber birationally identified with |3Kc pl

(3) Fs is a dominant map onto ‘W whose general fiber is birationally identified
with the quotient of |3K¢ — p| by the hyperelliptic involution. ‘

11.5. Moyko-r1 with £ > 5 and cuspidal plane quartics. Let U C |Op2(4)| be-

the locus of plane quartics with an ordinary cusp and with no other singularity.
For 5 < k < 8 we denote by U, C U % |Op2(1)] the locus of pairs (C, L) such
that if M c P? is the tangent line of C at the cusp, then L intersects with C at
C N M\Sing(C) with multiplicity k — 5, and is transverse to C elsewhere. The
space Uy is of dimension 19 — k. This is obvious for 5 < k < 7. For k = 8, if
we take the homogeneous coordinate [X, Y, Z] of P? and normalize p = [0,0,1],

= {Y =0}, and L = {Z = 0}, then quartics C having cusp at p with (C.M), = 3
and (C.L);ny = 3 are defined by the equations

(11.1) anY’Z’ + | ayX'YIZ+a XY + aos¥* =0,
i+j=3

in which the coefficients a. may be taken general. This shows that Us is of the
expected dimension.

For a (C, L) € Uy the sextic B = C + L+ M has an E-singularity at p = Sing(C),
9 — knodes at C N L\M, a Dy;_g-singularity at L N M (resp. two nodes at L N M
and C N M\p) in case k > 6 (resp. k = 5), and no other singularity. Hence the
2-elementary K3 surface (X, ) associated to B has invariant (r,a) = (9 + k,9 ~ k).

When k = 5, (X, 1) has parity 6 = 1 by Lemma 4.4 (1). Thus we obtain a period

map Pr: Uy --> Mork9—k1-
Proposition 11.11. The map Py, is birational.

. Proof. We.consider an Gg_g-covering ﬁk — U whose fiber over a (C,L) € Uy
corresponds to labelings the 9 — k nodes C N L\M. As described above, the rest
singular points of B are a priori distinguished by the type of singularity and by
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the irreducible decomposition of B. Also note that the two lines L and M are
distinguished by their intersection with C. Therefore we will obtain a birational
lift ﬁk/PGL3 -y Mg+k,9_k,1 of P,. The anti-invariant lattice L_ is isometric to
U?a A?'k. It is easy to check that O(Dy_) =~ Sg_. Since PGL3 acts on U almost
freely, this shows. that $; has degree 1. O

Proposition 11.12. The quotient Uy /PGL3 is rational. Therefore Moy o_k,1 with
5 € k < 8 is rational.

Proof. Let V c P2 x|O0p2(1)[? be the locus of triplets (p, M, L) such that p € M. We
have the PGL3-equivariant map nrx: Uy — 'V, (C, L) +— (Sing(C), M, L), where M
is the tangent line of C at the cusp. The group PGL3 acts on V almost transitively
with the stabilizer of a general point isomorphic to C* x (C* < C). Since a general
mi-fiber is an open set of a sub linear system of |Op2(4)], the assertion follows from
the slice method for 7r; and Miyata’s theorem. : |

Let Xy be the moduli of pointed genus 2 curves (C, p). Recall (cf. [12]) that
we have a birational map X, --» U/PGL3 by associating to a pointed curve (C, p)
the image ¢(C) C P? by the linear system |K¢ + 2p|. When p is not a Weierstrass
point, ¢(C) is a quartic with a cusp ¢(p), and the projection from ¢(p) gives the
hyperelliptic map of C. Thus we see the following.

Corollary 11.13. The fixed curve map for Moyro-r1 with 5 < k < 8 lifts to a
rational map F; © : Motko—r1 > Xo. Then »

) Fs is dominant with general fibers birationally identified with |K¢ + 2pl|.

@) Fg is dominant with general fibers birationally identified with 3p|.

3) 177 is birational.

4 Fg is generically injective with a generic image being the divisor of those
(C, p) with 5p — 2K effective minus the divisor of Weierstrass points.

12. Tuecaseg =1 ()

In this section we study the case g = 1,1 < k < 4,6 = 1. It seems (at
least to the author) difficult to use the previous methods for this case. We obtain
general members of M, s from plane sextics of the form Cy + C, where Cy is a
nodal cubic and C, is a smooth cubic intersecting with C at the node with suitable
multiplicity. But the period map for this sextic model has degree > 1. In order to
pass to a “canonical” construction, we find a Weyl group symmetry in this sextic
model, which reflects the fact that the Galois group of Mr,a,5 --> M4 is the Weyl
group or its central quotient. This leads to regard the cubics C; as anticanonical
curves on del Pezzo surfaces of degree k. |

12.1. Weyl group actions on universal families. We begin with constructing a
universal family of marked del Pezzo surfaces with an equivariant action by the
Weyl group. For 5 < d < 8 let U c (P?)? be the open set of ordered d
points in general position in the sense of [11]. There exists a geometric quotient
U4 = U?/PGL3 of U* by PGL3 (see [13]). Since any p = (p1,--- ., pa) € U4 has
trivial stabilizer, the quotient map U¢ — U is a principal PGL3-bundle by Luna’s
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etale slice theorem. Hence by [27] Proposition 7.1 the projection P? x Ut — vd
descends to a'smooth morphism X¢ — U? where X is a geometric quotient of
P2 x U? by PGL3. Here PGL3 acts on P? in the natural way. For 1 < i < d
we have the section s; of X? — U9 induced by the i-th projection U? — P2,
(p1,-++ , pd) — pi. Blowing-up the d sections s;, we obtain a family f: Y-yl
of del Pezzo surfaces of degree 9 — d. The exceptional divisor over s;, denoted by
&;, is a family of (—1)-curves.

Let Ay be the lattice (1) & (- 1)¢ with a natural orthogonal ba51s h,e1,--- ,eq.
For each p € U, the Picard lattice of the f-fiber Y g over p is isometric to Ad by
associating A to the pullback of Op2(1) and e; to the class of the (—1)-curve (&;)p.
This gives a trivialization ¢ U x Ay — R%f,Z of the local system. Thus we have
a universal famlly

12.1) " (f ¥ > U, )

of marked del Pezzo surfaces.

Recall that the Weyl group Wy is the group of isometries of Ay which fix the
vector 31 — Zl €. Letw € Wy, Foreach p € U the marked del Pezzo surface
(yp, ¢p) is transformed by w to (Y4, p o w1, which is isomorphic to v 3 ¥q)
for a q € U%. Indeed, the classes ppow “(e;) are represented by disjoint (—1)-
curves E; on Y3 4 which define a blow-down A d _, P2. Then q is the blown-down
pomts of Ej,--- ,E}. Weset w(p) = By constructlon we have an isomorphism

y - yfv(p) With (Uw)« © @p © W = @y The last equality characterizes

thw uniquely because the cohomological representation Aut(Yp 4y — O(Pic(Yy d)) is
injective. This ensures that (w'w)(p) = w’(w(p)) and that 14, oy, = pyrw forw, w’ €
W,. In this way we obtain an equivariant action of W, on the family f: Y 4 _qq,
The W -action on U is the Cremona representation. In the following we will refer
to [13] for the basic properties of the Cremona representation for each d.

On Y¢ we have two natural W,-linearized vector bundles: the relative tangent
bundle 7'y and the relative anticanonical bundle K71, The direct image f*K}}‘1 is

a Wy-linearized bundle over U?. The fiber of the P°~?-bundle P( f*KJZI) over a

point p = [(p1,- - - , pa)] of U? is identified with the linear system of plane cubics
passing the d points p1, - , pg of P2.

12.2. Mj19,1 and del Pezzo surfaces of degree 1.

12.2.1. A period map. Let f: Y& — U® be the family of marked del Pezzo sur-
faces of degree 1 constructed above. The Cremona representation of the Weyl
group Ws has kernel Z/2 whose generator wy acts on the f-fibers by the Bertini in- -
volutions. The quotient Wg/ (w0> is isomorphic to O*(8, 2) and acts on U’ 8 almost
freel

W}é let V8 c P( f*K;I) be the locus of singular anticanonical curves. The locus
8 is invariant under the Wg-action on P(f; K"l) and the p'rojection VY8 - U is
of degree 12. We denote by & the pullback of the bundle f. K by V8 - UB. An

open set of the variety P& parametrizes tnplets (y p C1,(r) of a marked del Pezzo
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surface J/S = Y, a nodal —Ky-curve C1, and a smooth —Ky-curve C,." Notice
that C; is irreducible and transverse to C» because (C1.C;) = 1. Taking a right
resolution of the DPN pair (¥, C; + C;), we obtain a 2-elementary K3 surface of
invariant (g, k) = (1, 1). This defines a period map P: P& --» Mj191.

Proposition 12.1. The map P is Wg-invariant and descends to a birational map
PE/Wg --» M11,9,1. )

Proof. Two Ws-equivalent points of P& give rise to isomorphic DPN pairs so that #
is Wg-invariant. We shall show that P lifts to a birational map PE --» Mj191. Fora
point (p, C1, C;) of PE, we have the marking ¢, of the Picard lattice of Y/ g induced
by p. The curve C; + C» has two nodes, namely the intersection point C1 N Co
and the node of C;, which are clearly distinguished. This induces a marking of the
invariant lattice of (X, L) = P(p, C1, C), which defines aliftP: PE --»> M11 9,1 of P. |
In order to show that # is birational, the key point is that the blow-down 7: y 8
P2 defined by p translates the triplet (p, Ci, C2) into the plane sextic 7(Cq + Cz)
endowed with a labeling of the nine nodes 7(C1) N m(C?). Indeed, 7(C1) N 7(C»)
consists of the eight ordered points p and the rest one point 7(C1 N C3). The first
eight nodes recover the marked del Pezzo surface, and the ninth is determined as
the base point of the associated cubic pencil. Note also that the unlabeled node
Sing(n(C1)) of n(Cy + C5) is clearly distinguished from those nine. In this way P&
is birationally identified with the PGL3-quotient of the space of such nodal sextics
with labelings. Now one may follow the recipe in §4.3 to see that % is birational.
We compare the two projections PE — PE/Wg and Mll,g,l --> Mj191. The
Bertini involution wg € Wy acts trivially on P& because it acts trivially on the
~anticanonical pencﬂs |- Ky|. Hence PE — PE/Wy is an O* (8, 2)- covermg On
the other hand, M11 9,1 18 an O(Dy, )-cover of My 9 for the lattice L, = Ue A9
Since O(Dr,) =~ O"(8, 2), this finishes the proof. |:|

12.2.2. The rationality. The Wg-action on PE gets rid of the markings of del Pezzo
surfaces. This implies that the quotient PE/ Wy is birationally a moduli of triplets
(Y, C1,C,) where Y is an (unmarked) del Pezzo surface of degree 1, and Cj (resp.
C,) is a singular (resp. smooth) —Ky-curve on Y. We consider the blow-up Y-Y
at the base point C; N C; of |- Ky|. The quotient of Y by the Bertini involution
is the Hirzebruch surface F,, and the quotient morphism ¢: Y — F, is branched
over the (—2)-curve X and over a smooth Lzg-curve I. Note that ¢~ 1(Z) is the
exceptional curve of Y — Y. The pencil |Lg 1| on F; is pulled-back by ¢ to the
pencil |[-K3| = [-Ky|. Then ¢(C}) is an Ly 1-fiber tangent to I', and ¢(C») is an Lg,1-
fiber transverse to I'. If we let U C |Lz o| X |Lo,1 |2 be the locus of tripiets T, Fy, F)
such that I is smooth and F; (resp. F3) is tangent (resp. transverse) to I', we thus
‘obtain a rational map
PE/ Wy --» U/ Aut(lF,).

Since this construction may be reversed, the map is birational. -

Proposition 12.2. The quotient U/Aut(F,) is rational. Thus Mui,9,1 is rational.
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Proof. Let V be the fiber product Fy Xpt Fy, where 7: F — P! is the natural

projection. We consider the Aut(F,)-equivariant map »
¢:U—VXx|Lyil, @, F1, F2) = ((p, q), F2),

where p is the point of tangency of I" and F1, and g = I'|r, — 2p. By §3, the group
Aut(F,) acts on'V X |Lp | almost transitively. If we normalize F; = 710, 1)
and F, = 7~ 1([1, 0]), the stabilizer G of a general point ((p, ), F») with p,q € Fy
is described by the exact sequence 0 - H — G — C* — 1, where H = {5 €
HO(OPI (2)), s([0, 1]) = 0}. In particular, G is connected and solvable. By the slice
method we have U/Aut(F,) ~ ¢ '((p,q), F2)/G. The fiber ¢ ((p, q), F2) is an
open set of the linear system PW C |L3g| of curves I with I'|r;, = 2p + g. By
‘Miyata’s theorem the quotient PW/G is rational. o

12.3. Mj» 5,1 and quadric del Pezzo surfaces.

12.3.1. A period map. Let us begin with few remarks. Let Y be a quadric del
Pezzo surface and ¢: ¥ — P? be the anticanonical map, which is branched along
a smooth quartic I'. The pullback ¢*L of a line L < P? is singular if and only
if L is tangent to I. Therefore the reduced curve ¢~ 1(1") the fixed locus of the
Geiser involution, is the locus of singular points of anticanonical curves on Y. For
every p € ¢ L(I') we have a unique singular —Ky-curve C, with p € Sing(C,),
which is the pullback of the tangent line L, of I' at ¢(p). The singular curve C, is
irreducible and nodal if and only if L, is an ordinary tangent line. In this case, the
Geiser involution exchanges the two tangents of C, at p. On the other hand, C;, has
only one tangent at p if and only if ¢(p) is an inflectional point, i.e., a Weierstrass
point of I'.

Now let f: Y7 — U’ be the family of marked quadric del Pezzo surfaces
constructed in §12.1. The Cremona representation of the Weyl group W has kernel
Z/2 whose generator wg acts on the f -fibers by the Geiser involutions. The quotient
W+7/(wo) is isomorphic to Sp(6, 2) and acts on U almost freely.

Let C c Y7 be the fixed locus of wy. We define a double cover C of C as the

locus in (PTy)|c of triplets (p, p,v) such that v € IP(TPJ/I_?,) is a tan'gent at p of the -

anticanonical curve on M 7 singular at p. The locus C is invariant under the W;-
action on (PT¢)|c. In partlcular the Geiser involution ‘W acts on c by the covering

transformation of C — C. The branch divisor of C — C is the family of the
Weierstrass points.
We pull back the bundle f, K =1 on U by the projection C — U, and consider

its subbundle & whose fiber over a (p, p,v) € C is the vector space of anticanonical -

forms on LWP vanishing at p. An open set of the variety PE parametrizes quadruples

(Y7,C1,v,Cy) such that Y7 = Y is a marked quadric del Pezzo surface, C; is an
P P ,

irreducible nodal —Ky-curve, v is one of the tangents of C at the node, and C; is
a smooth —Ky-curve passing the node of C;. Then Cy + Cy is a —2Ky-curve with
the Dy4-singularity Cy N C; and with no other singularity. Its two tangents given by
C; at the D4-point are distinguished by v. The 2-elementary K3 surface associated
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to. the DPN pair (¥, C; + C3) has invariant (g, k) = (1,2). Thus we obtain a period
map P: P& --» M1231

Proposition 12.3. The map P is Wy-invariant and descends to a birational map
PE/ W7 --> M12,8,1~

Proof. The Wy-invariance of P is straightforward. The marking ¢p of Pic(y7 ) and
_ the labeling v for the D4-point C; N C; induce a marking of the invariant 1attlce of
X,) = P(p,C1,v,Cr). This defines a lift P: PE > Mlz,g,l of P. Asin §12.2,
the blow-down 7: J/ 7T 5 p? determined by p translates the quadruple (p, C1,v, C2)
into the plane sextic 7r(C1 + C5) endowed with a labeling of its seven nodes, p, and
of the two tangents at its D4-point 7(C1 N C2) given by m(C1). Applying the recipe
in §4.3 for such sextics with labelings, we see that # is birational. The projection
Miag1 > Miag, is an O(Dy_)-covering for the lattice L. = U @ U(2) @A?. By
[26] we have [O(Dy )| = 2 - [Sp(6,2)| = |[W7|. Since Wy acts on P& almost freely,
this concludes that the induced map PE/W; --> My, 51 is birational. ' O

12.3.2. The rationality. We shall prove that PE/Wj is rational. The Weyl group
W+ acts on the markings of del Pezzo surfaces, and the Geiser involution wy €
W7 is the covering transformation of C — C. These facts infer that PE/W7 is
birationally a moduli space of triplets (¥, p, C) where Y is an (unmarked) quadric
del Pezzo surface, p € Y is a fixed point of the Geiser involution, and C is a —Ky-
curve passing p. The anticanonical map ¥ — P? translates (¥, p, C) into the triplet
(T, q, L) such that T is a smooth plane quartic, g € I, and L is a line passing g. If
U C |Op2(4)] X P2 x |Op2(1)| denotes the space of such triplets (T, g, L) we obtain a
birational equivalence
PE/ W, ~ U/PGL3.

In Proposition 10.14 (for k = 4) we proved that this quotient U/PGLj is rational.
Therefore

Proposition 12.4. The moduli space Mia 3,1 is rational.

The final step of the proof shows that we have a natural birational map
Mizga > Mizar.

12.4. Mji37,1 and cubic surfaces. -~

12.4.1. A period map. We begin with the remark that for every point p of a cubic
dél Pezzo surface Y, there uniquely exists a —Ky-curve C » singular at p. Indeed, if
 we embed Y in P3 naturally, C » is the intersection of ¥ with the tangent plane of ¥
at p. When p is generic, C, is irreducible and nodal. For later use, we also explain
an alternative construction. The blow-up YofYata general p € Y is a quadric
del Pezzo surface. Let E C Y be the (=1)-curve over p, and ¢: Y — P? be the
anticanonical map of Y which is branched over a smooth quartic I'. Then ¢(E) is a
bitangent of T, and ¢*¢(E) = E + «(E) where ¢ is the Geiser involution of Y. Since
¢*¢(E) is a —K5-curve, the image of «(E) in Y gives the desired curve Cp. The fact
that ¢ and ¢ are given by the projection ¥ < P3 --» P? from p connects these two
constructions.
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Let f: Y® — UP® be the family of marked cubic surfaces constructed in §12.1.
The Weyl group Ws acts on U® almost freely because a generic cubic surface has
no automorphism. We shall denote a point of the variety PT; as (p, p,v) where
peU,pec Mg, and v € ]P’(prg). Then we let Z C PTy be the locus of
(p, p,v) such that v is one of the tangents of the anticanonical curve C, singular at
p. The locus Z is Ws-invariant and is a double cover of Y%. The branch divisor
of Z — Y is the family of the Hessian quartics restricted to the marked cubic
surfaces. '

We pull-back the vector bundle f*ijl on U by the projection Z — 1(6, and
consider its subbundle & whose fiber over a (p, p, v) € Z is the space of anticanon-
ical forms on yg which vanish at p and whose first derivatives at p vanish at v.
" Then & is a Wg-linearized vector bundle over Z. An open set of the variety P&
parametrizes triplets (Y 6 p, C) where MS = Y is a marked cubic surface, p € Y is
such that the singular —Ky-curve C, is irreducible and nodal, and C is a smooth
-Ky-curve with (C.Cp), = 3. By v is chosen which branch of C,, at p is tangent
to C. The curve C, + C has the Dg-singularity p as its only singularity. Thus,
taking the right resolution of the DPN pairs (¥, C, + C), we obtain a period map
P PE -->» M13,7,1.

Proposition 12.5. The map P is Ws-invariant and descends to a birational map
PE/Wg --> M13,7,1.

Proof. This is analogous to Propositions 12.1 and 12.3: for a triplet (p,C,, C) in
P&, the blow-down 7: yg — P? determined by p translates (p, C,,C) into the
plane sextic 7(Cp, + C) endowed with the labeling p of its six nodes. The rest
_ singularity of 7(C,, +C) is the Dg-point 7(p), at which the three branches of 7(C, +
C) are a priori distinguished by the irreducible decomposition of 7(C, + C) and by
the intersection multipliciity at 7(p). By the recipe in §4.3 we. see that P lifts to a
birational map P& --» Mjs71. The variety Mis 71 is an O(Dy_)-cover of Miz7.1
for the lattice L_ = U @ U(2) @A? . Since O(D; ) ~ 07(6,2) = W, our assertion
is proved. ' 0

12.4.2. The rationality. We shall prove that P&/ Wy is rational. First we apply the
no-name method to the We-linearized bundle & over Z to see that -

PE/Wg ~ Pl x (Z/We).

The variety Z is a moduli of triplets (yg, p,v) where yg = Y is a marked cubic
surface, p € Y, and v € P(T,7Y) is one of the tangents of the singular —Ky-curve
Cp. The Ws-action takes off the markings of surfaces. Let Y — Y be the blow-up
at p, and E be the (-1)-curve over p. When p is generic, Yisa quadric del Pezzo
surface. As explained in the beginning of §12.4.1, if we regard v as a point g of E,
then g is contained in E N ((E) where ¢ is the Geiser involution of Y. By applying
the anticanonical map Y — P2 of Y, the new triplet (Y,E, q) is then translated into
a triplet (T', L, P) of a smooth quartic I, a bitangent L of I', and a point PinI' N L.
Therefore, if U c |Op2(4)| X P? denotes the space of pairs (T, P) of a smooth quartic
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I' and a tangent point P of a bitangent of I', we have a rational map
(12.2) Z/Ws --» U/PGLs.

Conversely, for a point (T, P) of U, we take the double cover ¢: Y — P2 branched
along I. If L is the tangent line of T at P, we have ¢*L = E + «(E) for a (~1)-curve
E and the Geiser involution ¢ of Y. Since the triplet (Y E,¢~1(P)) is isomorphic
to (Y, «(E), ¢~ 1(P)) by ¢, we may contract either E or ¢«(E) to obtain a well-defined
inverse map of (12.2). Thus Z/Ws is birational to U/PGLs;.

Proposition 12.6. The quoﬁent U/PGLj is rational. Hence M3 7, is rational.

Proof. For a point (I, P) of U, let Q be the another tangent point of the bitangent
at P. This defines a PGL3-equivariant map ¢: U — P? x P2, (T, P) — (P, Q). The
PGL3-action on P? X P? is almost transitive with the stabilizer G of a general (P, Q)
isomorphic to (C* (C)z._ By the slice method we have U/PGL3 ~ ¢ (P, Q)/G.
The fiber ¢ 1(P, Q) is an open set of the linear system PV of quartics I" with FIE =
2P + 20Q. By Miyata’s theorem PV/G is rational. |

12.5. Mjs6,1 and quartic del Pezzo surfaces.

12.5.1. A period map. We first note the following.

Lemma 12.7. Let Y be a quartic del Pezzo surface and let (p,v) be a general point
of PTY, where p € Y and v € P(T,Y). Then there uniquely exists an irreducible
nodal —Ky-curve Cp,,, whose node is p with one of the tangents being v.

Proof. Let Y’ — Y be the blow-up at p with the exceptional curve D’, and YovY
be the blow-up at v € D’ with the exceptional curve E. Then Y is the blow-up
of P2 at seven points in almost general position in the sense of [11], and the strict
transform D of D’ is the unique (—2)-curve on Y. Hence the anticanonical map
¢ Y — P2 is the composition of the contraction Y — Y, of D and a double
covering Yo — P? branched along a quartic I' with exactly one node. The curve
L = ¢(E) is a line passing the node and tangent to I" elsewhere. We have ¢*L =
E + «(E) + D where ¢ is the involution of Y induced by the covering transformation
of ?0 — P2. Then the image of «(E) in Y is the desired curve Cp,v- The uniqueness
of Cp,, follows from intersection calculation. - O

Pulling back the pencil of lines passing L N ['\Sing(I'), we obtain the pencil of
~Ksg-curves passing £ N «(E). Then its image in |- Ky]| is the pencil I, of —Ky-
curves whose general member C is smooth and passes p and v with (C.Cp,,), = 4.
(There is another pencil of —Ky-curves passing (p,v) with (C.Cp,,), = 4: the one
of those singular at p.)

Now let f: Y> — U be the family of marked quartic del Pezzo surfaces con-
structed in §12.1. The kernel of the Cremona representation of the Weyl group Ws
is isomorphic to (Z/2)*, which is the automorphism group of a-general f-fiber. Let
]P’TJ(Z C PT be the open set of triplets (p, p, v) such that there exists an anticanonical

curve Cp, on Y; as in Lemma 12.7.
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- Let ¥ be the pullback of the bundle f*ijl by the natural projection ]P’TJQ — U.
We consider the subbundle & of # such that the fiber of PE over a (p, p,v) is the
pencil /,, described above. By the uniqueness of Cpy, & is invariant under the Ws-
action on . An open set of PE parametrizes triplets (Y3, C pv» C) such that Y 15, =
is a marked quartic del Pezzo surface, C,, is an irreducible nodal —Ky-curve, and
C is a smooth —~Ky-curve with (C.Cp,,), = 4. The —2Ky-curve Cp,, + C has the
Dg-point p as its only singularity. The 2-elementary K3 surface (X, ¢) associated
to the DPN pair (Y,Cp,, + C) has invariant (g, k) = (1,4). We show that (X, ¢) has
parity 6 = 1. If 7: ¥ — P? is the blow-down given by p, the sextic 7(Cp, + C) has
the five nodes p, the Dg-point 7(p), and no other singularity. Then we may apply
Lemma 4.4 (3). Thus we obtain a period map P: PE --» Myag1-

Proposition 12.8. The period map P is Ws-invariant and descends to a birational
map PE/Ws --> M1
Proof. This is proved in the same way as Propositions 12.1, 12.3, and 12.5. The

projection M14 61 > Miae 1 has degree [O(Dy_)| for the lattice L_ = U oU(2)®A%,
which by [26] is equal to 2% - |07 (4,2)| = 2* - 5! = |Ws|. O

12.5.2. The rationality. We shall prove that P&/Ws is rational. By the no-name
method for the Ws-linearized bundle & over IP’TJ?, we have

PE/Ws ~ P! x (PTf/Ws).
The variety PTy/Ws is the moduli of triplets (¥, p,v) where Y is an (unmarked)
quartic del Pezzo surface, p € Y, and v € P(T,Y). As in the proof of Lemma 12.7,
for a general (Y, p,v) we blow-up Y at p and v and then apply the anticanonical
map to obtain a one-nodal quartic I and a line L passing the node of I" and tangent
to I elsewhere. If U C |Op2(4)| X |Op2(1)| is the space of such pairs (I, L), we thus
obtain a rational map

(12.3) PTs/Ws --» U/PGL.

Conversely, given a (I', L) € U, we take the d double cover Yy — P? branched along
I' and then the minimal desingularization Y — Y. The covering tr transformation
of Yo — P? induces an involution ¢ of Y. The pullback of L to Y is written as
E + ((E) + D where D is the (—2)-curve over the double point of ?0, and F is' a
(=1)-curve with (E.D) = (E.«(E)) = 1. Notice that ¢ exchanges E and ((E), and
leaves D invariant. Then we contract £ (or equivalently, :(E)) and D successively
to obtain a point (¥, p,v) of PTs/Ws. This gives a well-defined inverse map of
(12.3), and thus PTr/Ws is birational to U/PGLs;.

Proposition 12.9. The quotient U/PGL3 is rational. Hence Myag 1 is rational.
Proof. We have the PGL3-equivariant morphism
¢: U — P xP? (T, L) > (Sing(), L N T\Sing(I)).

As in the proof of Proposition 12.6, we have U/PGL3 ~ ¢~ (P, Q)/(CX = C)? for a
general point (P, Q) € P2 x P2. Then ¢ (P, Q) is identified with an open set of a
linear system of quartics, so that our assertion follows from Miyata’s theorem. O
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Remark 12.10. Del Pezzo surfaces in this section are not the quotient surfaces of 2-
elementary K3 surfaces, but rather their “canonical” blow-down — compare with
§5 where del Pezzo surfaces appear as the quotient surfaces. These two series are
related by mirror symmetry for lattice-polarized K3 surfaces.

~ Remark 12.11. The Weyl group symmetry translated to the moduli of labelled sex-
tics Cq + C» is generated by the renumbering of labelings and by quadratic trans-
formations based at ordinary intersection points of C; and C, (cf. Remark 11.4).

13. Tuecase g = 1 (1)

In this section we treat the case g = 1, k > 4, (k, 8) # (4, 1). By the unirationality
result [20] we may assume k < 7. For k > 5 we use plane cubics with a chosen
inflectional point to construct birational period maps.

13.1. The rationality of Mi460. The space Mjae is proven to be rational in the
same way as for Mjog,0. The anti-invariant lattice L_ for Mjae g is isometric to
U(2?@®D,. Then we have LY(2) ~ U? @Dy, so that M4, is birational to Mi420-
In §10.5 we proved that Mj4 o is rational.

13.2. The rationality of M;jssi. Let U C |Op2(3)| X [Op2(2)] X P2 be the locus
of triplets (C, @, p) such that (i) C is smooth, (ii) p is an inflectional point of C,
and (iii) Q is smooth, passes p, and is transverse to C. If L C P? is the tangent
line of C at p, the sextic B = C + Q + L has a Dg-singularity at p, five nodes at
C N Q\p, one node at @ N L\p, and no other singularity. The 2-elementary K3
surface associated to the sextic B has invariant (g, k) = (1,5). Thus we obtain a
period map P: U/PGL3 — Mis5,1.

’  Proposition 13.1. The period map P is birational.

Proof. We consider an Gs-cover U of U whose fiber over a (C,Q, p) € U corre-
sponds to labelings of the five nodes C N Q\p. As in the previous sections, P lifts
to a birational map U /PGL3 -3 -Mls,s,l- The variety Mliil is an O(D;_)-cover
of Mys s, for the lattice L_ = U @ U(2) @A?. Since PGLj acts on U almost freely
and since |O(Dy )| = [0™(4,2)| = 5! by [26], P has degree 1. O

Proposition 13.2. The quotient U/PGLj is rational. Hence Mis s is rational.

Proof. Let V C |Op2(2)] X |0p2(1)] X P? be the locus of triplets (Q, L; p) such that
p € QN L. We have a PGL3-equivariant map nr: U — V defined by (C, Q, p)
(Q, L, p), where L is the tangent line of C at p. A general 7-fiber is an open set of a
linear system PW of cubics. The group PGL3 acts-on V almost transitively with the
stabilizer G of a general point (@, L, p) isomorphic to C*. Indeed, since Q is anti-
canonically embedded, G is identified with the group of automorphisms of Q =~ P!
fixing the two points Q N L. By the slice method we have U/PGL3 ~ PW/G, and
PW/G is clearly rational. |
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13.3. The rationality of Mg 41 and Mi731. For k = 6,7, let U C [Op(3)] X
|0p2(1)}? be the locus of quadruplets (C, Ly, Ly, L3) such that (i) C is smooth, (ii)
L1, Ly, L3 are linearly independent, (iii) p = L; N L, is an inflectional point of C
with tangent line L;, (iv) Ly, L3 are respectively transverse to C, and (v) C passes
(resp. does not pass) L, N L3 for k = 7 (resp. k = 6). When k = 6, the singularities
of the sextic B = C + Z?:l L; are

Sing(B) = p+ I, NC\p) + (L3 N C) + (L3 N L) + (Ls N Lp),

where p is a Dg-singularity and the rest points are nodes. When k = 7, denoting
g = Ly N L3, we have

Sing(B) = p+ g+ (L2 N C\{p,q}) + (L3 N C\g) + (L3 N Ly),

where p is a Dg-singularity, g is a D4—singuiarity, and the rest points are nodes. The
2-elementary K3 surface associated to B has invariant (r,a) = (10 + &, 10 — k), and
we obtain a period map P: Ur/PGL3 — Miosx,10-,1-

Proposition 13.3. The map Py, is birational.

Proof. For k = 6 we label the three nodes L3 N C and the two nodes L, N C\p '
independently, which is realized by an &3 X &;-cover 176 of Ug. For k = 7 we dis-
tinguish the two nodes L3 N C\g, which defines a double cover ff7 of U5. Note that
in both cases, the three lines L; are distinguished by their intersection properties,
and hence the rest nodes are a priori labelled. As before, we see that Py lifts to a
birational map Uk/PGL3 -> M10+k 10-k,1- Then M10+k 10-k,1 1s an O(Dy_)-cover of
Mi104k.10-,1 for the lattice L_ = U U(2)€BA8“k By [26] we have |O(D;_)| = 12,2
for k = 6,7 respectively, which concludes the proof. O

Proposition 13.4. The quotieﬁt Ur/PGL3 is rational. Therefore Miga1 and
Miz.3,1 are rational.

Proof. This follows from the slice method for the projection 7: Uy — 10p2(1)3.
General n-fibers are open subsets of linear systems of cubics, and PGL; acts on
|OP2(1)|3 almost transitively with a general stabilizer isomorphic to (C*)2. O

Remark 13.5. Degenerating the above sextic models, one sees that

(1) Myg2, is birational to the Kummer modular surface for SL2(Z),

(2) Mgz is birational to the pullback of the Kummer modular surface for
I'o(2) by the Fricke involution,

(3) Mjg,1,1 is birational to the modular curve for I'g(3),

via their fixed curve maps. Note that Mjg2,1 and Mig2 are Heegner divisors of
Mji73.1, though they look like boundary divisors of toroidal compactification.

14. Tuecaseg =0

" In this section we study the case g = 0, k > 4. In view of the unirationality
result [20], we treat only Mise,1 and Mi7s,:1. We use cuspidal plane cubics to
obtain birational period maps. . ’ '
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14.1. The rationality of Mjs¢ 1. Let V C |Op2(3)] be the variety of cuspidal plane
cubics. Let U C V X |0Op2(2)| be the open set of pairs (C, Q) such that @ is smooth
and transverse to C + L, where L is the tangent line of C at the cusp. Then the
sextic B = C + Q + L has an E7-singularity at the cusp of C, eight nodes at C N Q
and L N Q, and no other singularity. The associated 2-elementary K3 surface has
invariant (g, k) = (0, 5), and we obtain a period map £: U/PGL3 — Mysg,1.

Proposition 14.1. The map P is birational.

Proof. We label the six nodes C N Q and the two nodes L N Q independently.
This defines an Sg x S,-cover U of U. By the familiar method we see that P
lifts to a birational map U /PGL3 --» Mwm. The variety M16,6,1 is an O(Dy_)-
cover of Mige,1 for the lattice L_ = U (2)? @A%. By [26] we calculate |O(Dy_)| =
2-|Sp(4,2)| = 2 - 6!, which implies that deg(¥) = 1. o

Proposition 14.2. The quotient U/PGL3 is rational. Hence Migsg,1 is rational.

Proof. The slice method for the projection U — V shows that U/PGL3 ~
|0p2(2)|/G, where G is the stabilizer of a C € V. Since G ~ C*, the quotient
|Op2(2)|/G is clearly rational. O

Remark 14.3. General members of Mg 1 can also be obtained from six general

lines on P2. Matsumoto-Sasaki- Yoshida [23] studied this sextic model, and showed

that the period map is the quotient map by the association involution. Therefore

M 66,1 is birational to the moduli of double-sixers (cf. [13]), which is rational by

Coble [10] (see [4] for a proof by Dolgachev). This is an alternative approach for

the rationality of Mieg,1. Conversely, this section may offer another proof of the
result of Coble.

14.2. The rationality of M;7s 1. Let V be the space of cuspidal plane cubics and
U c V x |0p2(2)} be the locus of pairs (C, Q) such that Q is the union of distinct
lines and transverse to C+ L, where L is the tangent line of C at the cusp. The sextic
C + Q + L has an E;-singularity at the cusp of C, nine nodes at CN Q, LN Q, and
Sing(Q), and no other singularity. Hence the associated 2-elementary K3 surface
has invariant (g, k) = (0, 6), and we obtain a period map £: U/PGL3 — M;j75.1.

" Proposition 14.4. The map P is birational.

Proof Let U c U X (]Pz)6 be the locus of (C,Q,p1, -+, pe) such that C N Q =
{ p,} and that py; p2, p3 belong to the same component of Q. By U, the six nodes
cn Q and the two components of O are labeled compatibly. As before, P lifts

to a birational map U /PGL3; — M17 5.1 Since PGL3 acts on U almost freely,

U JPGL3 is an &, x (G3)2-cover of U/PGL3. On the other hand, M17 51 18 an
O(Dy_)-cover of Mj75, for the lattice L_ = U(2)2 ® A;. By [26] we calculate
0D = 10%(4,2)| = 2- 3!~ =

Proposition 14.5. The quotient U/PGLj is rational. Hence M7 5, is rational.

Proof. Consider the PGL3-equivariantmapn: U — VxP?, (C, Q) — (C,Sing(Q)).
A general fiber 771(C, p) is an open set of the net of conics singular at p. It is
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straightforward to see that PGL3 acts on V x P? almost freely Then we may apply
the no-name lemma 2.5 to see that

U/PGL3 ~ P x ((V X P?)/PGL3).
The quotient (V X P2)/PGL3 is of dimension 1 and so is rational. O
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