Two-dimensional stochastic Navier-Stokes equations
derived from a certain variational problem
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Chapter 1

Introduction

It is known ‘that the Euler equation, which describes the motion of a fluid without viscosity,
can be derived from a certain variational problem. In fact, Arnold [2] studies the variational
problem for a certain action functional defined on a set of integral curves taking values in
volume preserving diffeomorphisms and shows that the time derivative of its critical point
satisfies the Euler equation. Laﬁer, in [13], the case where the integral Clirve is perturbed by
some random force is studied. They consider the random action functional similarly.to the
deterministic case and show that the random velocity field u(t,z) = (u'(¢,z),--- ,u™(t, z)),
which is formally derived from its random critical point, satisfies the following stochastic

Navier-Stokes equation:

o . ,
8—1:—/,LA’LL-F(’UwV)U-F\/QMVU-B(t)-(—vp:O, t>0,z€R", (1.1) .
divu=0, t>0,z€R", : (1.2)
where p = p(t, z) denotes the pressure term, x> 0 is a constant and B(t) = (B(¢), -, B"(t))

is the distributional derivative of the n-dimensional Brownian motion B(t) = (B*(t),--- , B™(t)).

[N

Furthermore, it is also shown that if a weak solution u of (1.1)-(1.2) exists, then its expectation
satisfies the Reynolds equation. However, the existence of weak solutions of (1.1)-(1.2) is not
discussed in [13]. In addition, (1.1) does not satisfy the coercivity condition (see Condition
2.2.1), which is usually required to prove the existence of weak solutions. Indeed, the exis-
tence of weak solutions of this type of equation (1.1)-(1.2) is not known so far. There are
many known results obtained by several authors about weak solutions of the various types of
stochastic Navier-Stokes equations satisfying the coercivity condition. In this thesis, we study

(1.1)-(1.2) on the following two regions:

1. two-dimensional torus T2,

2. two-dimensional Euclidean space R2.



We consider the initial value problem on each region described above, formulate the notion of
weak solutions and prove the existence of them. As pointed above, the coercivity condition
plays an important role in showing the uniform a priori estimate which leads to tightness,
which is precisely stated in Chapter 2 and 3. However, if we consider (1.1)-(1.2) on T? or R?,
although the coercivity condition is missing, the tightness can be proven. Hence, the existence
of the weak solution of (1.1)-(1.2) is shown on these two regions. In particular, on R?, it is
more difficult to obtain tightness than the case of bounded domains. The unigueness of the
weak solutions is not discussed in this paper.

This thesis is organized as follows: In Chapter 2, the existence of weak solutions on T? is

discussed and in Chapter 3, the case of R? is studied.



Chapter 2
Construction of weak solutions of a

certain stochastic ’Navier-Stokes |
equation |

2.1 Introduction

We study the initial value problem of the following type of stochastic Navier-Stokes equation
for the velocity field u = u(t, z) = (u!'(¢, z),v?(t, z)), ¢ > 0, z = (z1, z2) and the pressure term

p = p(t,z) on a two-dimensional torus T? :

oyt O’ out - . . Op
J V2 ) ) —pAu+ == =0, t>0 T,i=1,2 2.1
ot +J§1<u axj+ :U'a JB()) HAY" A+ 0, >U,z el y 4 ( )

z ox;

with the incompressibility condition:

2. o
divu=)» =— =0, t>0,z¢€T? (2.2)
4= Ox; | |

under the initial condition;

u(0,z) = up(z), =z € T? (2.3)

~

where 1 > 0 is a constant and B(t) = £ B(t) is a formal derivative of the two dimensional
Brownian motion B(t) = (B*(t), B*(t)). We solve the equation (2.1) - (2.3) in the class of
u’s bsatisfying sz’ udz = 0. We assume that ug is a V-valued deterministic function where
V= WH2(T2;, R?) N H, W'2(T?;R?) denotes the usual R?-valued Sobolev Space, see Section
2.2, and H is the family of R?>-valued square integrable functions on T? which are of divergence

free and have mean zero, that is,
H= {u € L*(T*R?) | divu =0, / udr = O} ,
T2
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where divu is defined in a distribution sense.

The equation (2.1) - (2.3) appears in a certain variational problem, see Appendix. The
solution of the equation (2.1) - (2.3) will be defined in a weak sense (see Definition 2.2.1). The
aim of this paper is to show the existence of the weak solution of (2.1) - (2.3) under a suitable
assumption on the initial condition, which will be described in Section 2.2. Our main result
will be formulated in Theorem 2.2.1.

Several authors have discussed the existence of solutions of stochastic Naviér—Stokes equa-
tions which fulfill the coercivity condition ([12],[15]). Note that (2.1) does not satisfy the
coercivity condition (see Condition 2.2.1), therefore we can not directly apply their results to
our equation. In this paper we use the following method. First we construct a solution of the
equation with the diffusion coefficient p replaced by 2+6 =0y for each § > 0 by the Galerkin’s
method. This is possible since the modified equation satlsﬁe_s the coercivity condition for each
§ > 0. In the second step, we take the limit § — 0 to construct a weak solution of our equation
by showing a uniform estimate which implies the tightness of the distributions L(u) of the
solutions (uf)ns of the approximating finite dimensional equaﬁon in L2(0,T;H) for T > 0.
Similar approach can be found in a construction of weak solutions of two-dimensional stochas-
tic Euler equations ([4],[5],[6],[7]). The cases of a bounded domain with Dirichlet boundary
condition, an unbounded domain and the periodic bouﬁdary condition are discussed in [4],[6]
and [7], respectively. However, the case with the stochastic term containihg Vu as in our
equation is not studied in these papers.

Our method does not apply for higher dimensional case. Indeed, by applying It6’s formula

for |u (¢)|3, it is easy to see the following uniform estimate :

sup {B {0} + o [ BAIREEIR}ds < oo

This estimate does not imply that (u(t))sso has a strongly convergent subsequence in H.

However, on the two-dimensional torus, we can show such statement relying on the identity:

Z Ou- Vu) @—dx—o for u € C°, (2.4)
Ox; 0z;

where C% is a family of infinitely differentiable R?-valued functions which are of divergenée

free and have mean zero, that is,

C® {ue C>(T%R?) | dive =0 / ugx_o}



The contents of this paper are as follows: In Section 2.2, we introduce several notations and
describe our main result. In Section 2.3, we give the proof of it. In Appendix, we explain the

background and the reason why we consider the equation (2.1) - (2.3).

2.2 Notationsand formulation of the result

In this section, we precisely formulate our problem. We denote the inner product of H by ¢, -,

that is,

(u., vy = Z/Tz w (z)v (z)dz, wu,v € H,

and the norm of H by | - |zz. We also denote the inner product of V by ((-,)), that is,

and the norm of V by || - ||v. Recall that V = WH3(T?; R?) N H and,

WL2(T2 R?) = {u e LA(T? R?) | O

5, © L2(T2;R2), j= 1,2},

Where +J = 1,2 are defined in a distribution sense. For o & (0 1), we denote by W*2(0, T; H)
the fractlonal Sobolev space which is the family of u € LZ(() T, H) such that

T IU IH
/ / = s|1+2‘1 dtds < 00,

holds. We also denote the norm of W*2(0,T; H) by || - H%Vw(o,'T;H), that is,

T u(t) - u(s)
llvnszn = [ o+ [ [ t_s|1+2aHdtd

The weak form of our equation is formulated as follows:

2

> ( [ (1,009 (2)ds — [ ué(xw(x)dx) | (2.5)

_il//qr (s, )l (s,2) 228 ¢’()
+\/—Zl/ (/ ‘W( )dBJ—i—,uZ/ (/ (s, 2)A¢'(z)d )ds,



for all ¢ € C® and ¢t > 0. Note that the term containing g—;, ¢ = 1,2 appearing in (2.1)

vanishes because

Z - 3531 Z (z)dz - /11‘2 p(t, z) div ¢(z)dz = 0,

holds.

Now we consider the following abstract evolution equation corresponding to (2.5):

{ du(t) + {Au(t) + B(u(t),u(t))} dt + Gu(t)dB; =0, t>0,

u(0) = wuo. (2:6)

The operators A, B and G are defined as follows. Let A be the linear operator with domain
D(A) = W22(T2, R?) NV such that

A:D(A) —-H, Au=—uPAu,

where W22(T?% R?) is the Sobolev space consisting of all v € L?(T%* R?) such that g—; €
W12(T? R?) for j = 1,2 and P is a projection from L*(T? R?) onto H. Note that A is a
nonnegative self adjoint linear operator of H. We denote by ()\;);=1,,.. its eigenvalues and by
(€j)j=1,,.. the correspondirig’ eigenfunctions. Note that e; € C° for all j and we can assume

that the eigenvalues satisfy 0 < A; < Ay < ---. We define the bilinear operator B such that
" B:VxV =V Bw) =P Vw,
Wheré V'’ is the dual space of V. The linear operator G is given by
G:V = Lug(R%H), Gu=+/2uPVv,

where Ly, S(]R2 H) denotes the family of Hilbert-Schmidt operators from R2 to H Note that
the adjoint operator (Gv)* of Gv belongs to Ly s(H;R?) and

(G0 6=~V ({32 (G0} ) for e O

8%2

‘In this setting, we give the definition of the weak solution of our equation (2.6).

Definition 2.2.1. We say that {u(t), B(t) }+>0 is a weak solution of the stochastic Navier-
Stokes equation (2.6) with the initial value ug if

1 {u(t) }s>0 is an adapted process defined on a probability space (2, F,{Fi}s>0, P).

2. uw€ L*0,T; V)N L>(0,T;H), P-a.s. for T > 0.
T ;



3. {B(t),{Fi}}t>0 is a two-dimensional Brownian motion on (Q, F, P).

4. For ebery T>0and ¢ € C, P-as.,

(u(t), @) — (uo, &) = |
- / (A, u(s))ds + / (Bu(s), ), u(s))ds — / (Gu(s))*$ dB(s),
holds for a.e.t € [0,T).

Let us recall that we say the equation (26) satisfies the coercivity condition if the following
Condition 2.2.1 holds:

| Condition 2.2.1. ([12]) G : V = Ly s(R% H) is continuous and
2(Av,v) = |Gol2 qpoany 2 llolfy — dolvl —
for all v € V and for some ’6 € (0,2}, \o >0 and p >0.
However, our equation (2.6) does not satisfy Condition 2.2.1, because
2 Au(t), u(t)) — |Gu®) yomepm =0 S A
Namely, in our case, § = 0. Now we ére ready to deécribe our main result.

Theorem 2.2.1 (Existence of the weak solution). There exists a weak solution {u(t), B () }ez0

of the stochastic Navier-Stokes equation (2.6) with the initial value ug € V.

2.3 Proof of the main result

In this section, we give the proof of Theorem 2.2.1. We divide it into four steps. Before proving

Theorem 2.2.1 we pfepare the following lemma.
lemma 2.3.1. If u € CP, then ((u,u- Vu)) =0 holds.

Proof. For any R2-valued function u on R? which is of divergence free, we can choose a c
function ¢ on R? such that v = V¢ holds, where V+¢ = (—08,¢,01¢) and 8¢ denotes gg—?—

. k
k=1,2, (see [1]). Then

?

(u,u- V) | 23)
=(81u, 81(u - VU)) =+ <82’LL, az(u . VU,)>
- =(0yu, O1u - Vu) + (Qu,u - V(Ow)) + (Gau, Bou - Vuy + (Bou, u - V(Oou)), |
8



holds. The second and the forth terms in the last line of (2.8) are equal to 0 due to the
incompressibility condition. Therefore, it suffices to show (dyu, d1u - Vu) + (dau, O - Vu) =0

to prove this lemma. Indeed, this is obtained by the following calculation:
(O1u, Oyu - Vu) + (Ohu, Oou - Vu)
2 . .
=3 / 0 (V=) 8 (V46(0) 8 (V49(@) do = o
Gkd=1YT , -

Thus, the proof is complefe. O

proof of Theorem 221
Stép 1: Approximation by finite dimensional S.D.E.s

By normalization, we can assume that (e5) j=12,. 15 a complete orthonormal system of H and
that each e; (j > 1) belongs to C. We denote by H,, the linear subspace of H spanned by
{e1, -+ ,en} and by II, the orthogonal projection from H onto H,,. We set

A5 = —"o—pPA, 5>0.

Let (Q, F, P, {E}tzo) be a filtered probability space on which a two-dimensional F;-Brownian
motion {Bi}s>0 is defined. Then, we consider the following finite dimensional stochastic dif-
ferential equations on H,,:

dul (t) + { Asu (£) + T, B(ul (£), ud (£) } dt + T, Gud (£) dB, =0,  ¢>0,
1 (0) = I uq, . :

n

(2.9)
namely,
ul (t) — Mup + /t {Ag@fb(s) + HnB(ui(s),ui(s))} ds + /t IL,Gu (s) dB, = 0. (2.10)

We can expand uf(t) € Hy, as u3(t) = 37, ui™(t)e;, where ul™(t) = (ué(t),e;). By taking

the scalar product with e;, 1 < j < n, we find
t t '
, uj’n(t) = (I ug, €;) +/ Ff’"(ufb(s))ds —|—/ a?(ui(s)) dB;, 1<j<n, ©(2.11)
Jo 0

where Ff’"(un) = —(Asun + I B(un, un), €5) and o7 (un) = ~(I.Guy)*e; for u, € Hy.
Let us assume that ul and v’ satisfy the equation (2.11) for each § > 0 and n > 1. Then,
by using the following inequality (see [18]):
[ {(u- V)v,w)| < Cllullv[lollv]fwllv,  foru,v,we CZ,

9



we have

o5 (un) — o5 (vn) Rz < Ch||tn = Unllv,
l(AJU'n - Aévmej)' S Ol'lun - Un”Vy
|<HnB(umun) - HnB(Uann)>ej>| < Cl||un - UnHVa

for every u,, v, € H,, with some C; = C1(d,n) > 0, where |- |g2 represents the Euclidean norm

of R?. Hence, we have
|2 (tn) = ™ (wn)| < 2C1[tn = vallv,  tn,n € Ha

Therefore, for any 6 > 0, n > 1 and T > 0, we see that there exists a unique solution u® of
(2.10) and ¢ belongs to C(0,T; H,), P-as.
Step 2: A priori estimate

" Note that ﬂe- 1o is an orthonormal system of V since ({1, e;)) = u™*X;{¢, e;) holds
)\. 737 (] J ¥ J
J

for any j = 1,2,--- and ¥ € C. By applying Itd’s formula for (ul(t),e;)%, j =1,---,n, we

have
(Wa(1),05)? = (ud(0), &) + (2 + B /0 (6 (s), &) (A (5), ;) ds  (12)

t
0

2V [ (06 Oud(s) eaBE 2 [ (0, 5)uE(5) - Tude) e
+ Zuz /t(akug(s), e;)2ds, te€[0,T], P-a.s.
k=10

. ' o
for 6§ >0, n >1and T > 0, where Oyu denotes 55— Note that the projection II,, defined in
k
Step 1 does not appear in (2.12). '

By multiplying (2.12) by p~?X%, we have

{(un(t), e = {(un(0),€5))* + (I) + (I1) + (I11) + (IV),

10



where
()= (2+5j /((Ui( ), e {((Aul(s), e;))ds,
(II) =—2\/_Z/ ((Oktun(s), €5))dBy,
(I1I)= —2/0 ((ud(s), e:)) ((us,(5) - Vug,(s), €;))ds,
1) =2 [ on(s),e)ds. |
k=10 |
Thus,

URCEDI Y RO ESHIHORNESEEN A0

j=1 "7 =1

—(2+ 6 / (i (s), Au(5)))ds
——@+ouY [ ol as

holds for any 6 > 0 and n > 1, W@ere we have used Parseval’s formula at the second line and

then the integration by parts formula at the last line. In addition, we have

Z—(IV <2u2/ || Bwusd s)l]vds (2.14)

=1

for any § > 0 and n > 1. By (2.13) and (2.14), we obtain

; (f; (I)+ Aﬁ] (IV)> < —w; /0 |8kl (5) |3, ds- (2.15).
In addition, | |
n ,U/ 17 5 » 5
A—] (I1I) = /O (W (5), 4 (s) - Vil ()))dis, (2.16)

holds for any § > 0 and n 2 1. Thus, we have
[l (IR, = [luq ()1 ‘ (2.17)
2 t t
<oy / (166 ()], ds — 2 /O (0 (5),ub(s) - Vb (s)))ds + 3 2 o,
k=170 j=1 v

11



for any ¢ € [0,7T], P-a.s. for T > 0. Lemma 2.3.1 shows that the second term of the right hand
side of (2.17) equals to 0. Then, by taking the expectation of (2.17), we have

BF (Il @I} < B @R} -6 [ B {|laad@)lll} ds < fllfh  (219)
: =1 YO0 ‘ -

for t € [0,T.
Since we assume that ug is a V-valued function,
T
sup EF {/ I|ui(t)[|%,dt} < 00, (2.19)
n>1,6>0 0 ) :

holds for each T > 0. Similarly, by applying It&’s formula for |ul(¢)|% and then taking the
expectation, we have
/ 2¢/2p (Vud(s") " ud(s") dBs
0

} . (2.20)
Then, the right hand side of (2.20) is bounded from above by

ol + CEP {( [ suls A ds)%} e
< ol + OB (i}é% = s>|H> (30 / e (s ||vds) |
'< ol + CEP {210 (SEEpT (s >l%1> + (s ) i) } ,

for some C > 0, where we have used-Burkholder—Davis—Gundy inequality at the first line and

Young’s inequality at the third line in (2.21). Thus,

E”f { sup |u;i<s)\%1} < Juolly +EF { sup

s€[0,T) s€[0,T7]

sup EP{ sup |uf1(s)|%{ds} < 00, - (2.22)
n>1,6>0 s€[0,T] .

holds for each T' > 0. However, if p > 2, due to the condition (2.7) we only have the following

uniform estimate with respect to n > 1:

n>1 s€[0,T}

sup EF { sup |ud(s) ’I’{ds} < oo, p>2. (2.23)
In fact, by applying It6’s formula for |ul (t)[P,

o 1] _
dluf, () < plup (6)[f (un (8), dug (8)) + 5p(0 — Dlup @O TG ()12 ey

12



In short, -

2+ 5 t . B ‘
0 < Mool + (~ 252+ pto 1)) [ (o) e el s
+ martingale. ‘

Then, EF {|ué(s)[i1} < oo holds if

' 2448 _ ]

——J-zi—up +up(p—1) <0, thatis, p€[0,2+7].

This means that if p > 2; the uniform estimate of (2.23) with respect to § > 0 cannot be
expected.

Finally, by proceeding similarly to [12], it is easy to see that we have
1

sup EF {||u}|lwezorvy} <00, a€ (0,5

): (2.24)
n>1,6€(0,1] 2

for each T' > 0. Indeed, let us set

t t t '
o8 () =TLyug — / Asul (s)ds — / LBl (s), 4 (s))ds — / I, Gl () dB,
0 0 0
=J5 + IO (1) + 50 (1) + T3 (t).

Then, we have

sup nglH < 00, sup EP {“Jl llwl 2 OTV')} ' (225)
n>1 n>1,6€(0,1] ’

sup EP {-HJ;L’(SHWL%O,T;V')} < O, ) } ) (226)
n>1,6>0 . :

1

5 - (2.27)

sup EF {HJ;L’&HWCZQ(O,T;H)} < oo, ac€/(0,
n>1,6>0

Thus, (2.24) follows. By (2.19) and (2.24), {£(u)}n>16e0,1) 18 tight in L*(0,T; H), where
L(uf) is the law of u}, (see [12], Theorem 2.1).

On the other hand, we can choose some & € (0,%) and p >  such that for each T > 0
and 6 > 0, |

s B {3 llwesorn f <00, (2.28)
- n2l
holds. Indeed, let us set |

B {1195 Fyes 0w } )

JnJ Jn6 , '

- { [ ol [ Hpi)"dtd

. 0 lt s|

=)+ UD. -

13



Then, by (2.23) we have

: |
<o/ E{(/ i (s 1Hds) }dtso'supEP{sup |u;i<s>|’;1}<oo,
n>1 s€[0,T] :

for some C and C’ depending onp > 1, T > 0 and § > 0. Similarly, we have

<
(I1) < c/o /O 2 {(/ 1 (s |Hds> }dsdt
T T
<C </ / [t — s|§”1‘p°‘dsdt> sup EF { sup |ufl(s)|’f{} ,
0 0 n>1 s€[0,T] .

~ for some C depeilding onp>1,T>0andd>0. Thus (2.28) follows if we choose suitable
a € (0,1) and p > L. By (2.25), (2.26) and (2.28), {L(u)}nz1 is tight in C(0,T; D(A)) for
each § > 0, where D(A)' is the dual space of D(A) (see [12], Theorem 2.2). As a result, for each
§ > 0, we can construct the weak solution {u’(t), B¥(£)}s>o defined on a certain probability

space (Q°, F P?, (F?)s>0) of the following abstract stochastic differential equation:

{d? (t) + {Asu’ (t) + B(u’(t),u(t)) } dt + Gu’(¢) dB°(t) =0, >0,
U (0) = Ug,

(see [12], Definition 3.1 and Theorem 3.2).

(2.29)

Step 3: Compactness argument

Note that uf € Qp = L°(0,T; H) N L2(0, T; V) N C(0,T; D(A)'), P*-a.s. for 6 > 0. Then, by
(2.19), (2.22) and Fatow’s lemma, it is easy to see that

sup EF’ { sup Iu‘s(t)ﬁ{} < 00, (2.30)
6>0 te[0,T]
and
] T » ‘
sup BP*{ / ()| dt} < oo, (2.31)
50 0

hold. Let us set

| ul(t) =L ug — / Asu’(s /Ot B(u ds - / G’ (s) dB%(s)

—%+A@+ﬁ@+%ﬂ,
in V'. Then, by Fatou’s lemma we also have
[Jolss < 00, sup EP{|[]lwazozvn} < oo, (2.32)
5€(0,1]
%ug) EPé{IlJ§| lW1=2(O,T;V’)} < oo, ?.118 EPE{HJésl IW""z(O,T;H)} < 0Q.
> >

14



Thus, by proceeding similarly to [12], we see

sup EP6{|IU6I|WQ,2(O’T:V/)} <00, - . (233)
§e(0,1] _

)

holds. Let us choose any sequence {4(n)}n>1 such that § (n) converges to 0 as n — co0. Two

estimates (2.31) and (2.33) show that the family of Q° = L(u’, B) is tight in L*(0,T;H) x

C(0,T;R?), where L(u’, B%) is the joint law of u’ and B°. Thus, we can find a subsequence

{6(nx) }r>1 and a probability measure @ on L*(0, T; H) x C(0, T; R?) such that Q°("*) converges '
to Q weakly in L?(0,T;H) x C(0,T;R?) as k — co. By Skorohod’s embedding theorem, we

see that there exist a filtered probability space (€, ', {F]}t>0,P’) and random variables e,

By, €, B defined on € in such a way that E(Ek,ék) and L’(E,B) are equal to Q%) and Q,

respectively, and (£, By) converges to (€, B) in L?(0,T; H) x C(0, T; R?), P-a.s. (see [8]). For

each £ > 1 and ¢ € C, we set

M) =(En(t), @) — (0, @) 30
_ 2+<;(nk),u/o (gk(S),A¢)ds—/0 ((gk(s)'v)qﬁ,é:k(s)/)ds, 0<t<T.

Then, since u*™) is a solution of (2.29) driven by a Brownian motion B‘K“’J and the law
of (uSm) B8 is equal to that of (€, By) for each k > 1, we see JTJ,? is a continuous F;-

martingale whose quadratic variation is given by
(W2, 572)) (0 = [ (~G&(o)r o (~GE)e)ds (2.35)
0
t ~ ‘ o~
= [ 2{(2:6.67 + (2u6.Eu(9)} b

Moreover, we have

/ — 2 .
sup EF { sup lM,‘f(t)’ } < 00, (2.36)
k>1 t€[0,T1] .

for every T > 0. Indeed, (2.36) is easily obtained by (2.31). In particular, {M ,f } is a square

k>1
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integrable martingale. It is easy to check that

{0 -
< 4E" {WE (T) - Mi(T)'z}
¥ { / | (~Gal6))6 - (~GEa(s))"s

0

2
. ds}
R2
/- T Ing -~
< 8 (ongl + 1020180 B { [ 16s(9) = Gl
— 0, as ki, ks — o0,

and Lebesgue’s theorem at the last. Therefore, for T > 0 and ¢ € CZ°, we can choose a

subsequence {1\7,35,} converging P-a.s. uniformly on ¢t € [0,T]. We denote its limit by M¢.
Obviously, '

te[0,T]

EF { sup W,ﬁ%(t) _ J\7¢(t)\2} 0, (2.37)

as k' — oo. Furthermore, since & — ¢ in L2(0,T; H), P-a.s. we can choose a subsequence
{k"} of {k'} such that we have P-a.s.,

lim (& (1), ¢) = (£(t), 9), (2.38)

. k-0
for a.e~t € [0,T] and any ¢ € C. By (2.31) and the fact that the family of {£} is bounded
in L?(0,T; H), we see

lim EF {((32¢, M) ) ()} = EF { / (~GE(s)s <<—Gé<s>>*¢>*ds}
=57 { [2u{ (e, & + @7} s},

holds for any ¢t € [0,7] and ¢ € C. Consequently, it is easy to see that M®is a square

integrable continuous F]-martingale whose quadratic variation is given by

(3, 52)) (0 = [ (~Gdlo)s (—Gé(o)reyas (239

= / o {(8:6,€(5))* + (226,€(5))* } ds, teT) Paas,

for any T > 0 and ¢ € C. Thus, by applying the representation theorem for the martingale
M , there exist another filtered probability space (Q”, F”,P”, {F; }+>0) and a two-dimensional
16 ‘ '



F! x F!'-Brownian motion B = (EE, §2) defined on (' x Q”, F' x F", P’ x P") such that for
any ¢ € C°, we have that P’ x P"-a.s., ' ‘

g

— ~ ~

_ M¢(t,w',w”)=/t(—Gf(s,w',w"))*qﬁdB(s,w',w”) (2.40)
: 0 . '
| 0 | _
=3 [ Va6, & NP sh ), 1€ 0T,
i o ‘

where M%(t,o/,w") = M%(t,o/) and &(t,w',w") = £(t, '), (see [11]).
Step 4: Construction of a weak solution

We will check the convergence of the right hand side of (2‘34). As we mentioned in Step 3, it

is clear that P’ x P"-a.s.,

hold for a.e-t € [0,7] and ¢ € C.

Similarly, we see P’ x P"-a.s.,

¢ ¢ ' s
——Q—)M/O (&pn(8), Ag)ds = ,u/o (£(s), Ap)ds, (2.42)
holds for'any ¢ € [0,T] and ¢ € C3°. Indeed, this is easily obtained by the fact that the family
of {£:} is a bounded set in L2(0, T; H), P’ x P"-a.s. Thus, (2.42) holds.

Next we are concerned with the non-linear term. It is enough to check

Ty

[ [ @6y @y - €y@ey} s » 0, ak oo (24)

for each 4,7 = 1,2. Indeed, (2.43) is easily obtained by the triangular inequality while using
the fact that the family of {£} is a bounded set in L?(0,T; H) and ¢ belongs to C®. Thus,

we have P’ x P’-a.s., *

t
lim .
k! =00 0

(G916, Gt = [ ((E(S) - V) E(s))ds,

for any ¢ € [0,T] and ¢ € C°.
As a result, for any ¢ € C°, we find that P’ x P"-a.s., M,fﬁ, (t) converges to
W0 = (€0,) — twnnd) — s [ €0 A0s— [ (&) VIoénds, @)

for a.e-t € [0,T].
17



From (2.40) and (2.44), it follows that {£(t), B(£) }so on (¥ X', F'x F", { FIx F' Y10, P' X
IP") satisfies the properties 3 and 4 of Definition 2.2.1. The properties 1 and 2 of Definition
2.2.1 are checked as follows. It is clear that £(t) is an F; x F{-adapted process. Finally, we
will show & € L°(0,T; H) N L2(O T, V) P’ x P'-a.s. Indeed, it follows by (2.31), (2.30) and
Fatou’s lemma. Thus, {£(£), B(t)}ss0 on (' x @7, F' x F", {Fi x F' o0, P’ x P) is a weak

~ solution of (2.6) with the initial value u. This concludes the proof of Theorem 2.2.1.

D .

| Appendix. Background of our problem

In this appendix, we will explain our motivation. Wé denote by Diff(R™) the family of volume
preserving diffecomorphisms of R”. Let ®(t) = (®1(t), -+, ®a(t)), t € [0,1] be an integral
curve which takes values in Diff(R") and ¥°, ' € Diff(R") be given. If we consider the action
functional J defined by

. J(®) = Z\M|2dxdt, | (2.45)
| 0 Sz’ Ot

under the condition ®(0) = ¥° and &(1) =T it is known that the time derivative

u(t,2) = (w(t,2), -+ ,u"(t,0)) = W(t@-%t,w»,--»aﬁ; (t,87(t,2)),

of a statlonary point ®(t, T) = (B1(t, ), , Bn(t,z)) of J satisfies the Euler equation:

Bu ‘ n
_3}.4_(” Viu+Vp=0, t>0,z€R" (2.46)
divu =0, t>0,zeR",

where p = p(t, z) is the pressure term, see [13].

In [13], the case where the integral curve appearing above is affected by some random
force is studied, that is, for'an nLdimensional Brownian motion B = (B?,--- , B") defined on a
probability space (Q, F, P) and % ¥! € Diff(R"™), a.s., the.follox}ving random action functional

Jp is introduced:
dB]
2u—=|? ‘
/ n / Y % Pz, (2.47)

“where ®(0,w) = ¥°(w) and ®(1,w) \Ifl( ). By proceeding similarly to the deterministic

case,

u(t,a;,w) = (ul(t, z,w), - U, z,w))

. =B _ @B ~
= (_a_g%(t, (D_l(t7$)7w)7 T aatn (t7 @—1({;"93),(,0)) ) t >'07 S Rn? we Q7

18



would satisfy

O(ui + VIEBY) N (00 o e\ 0P _ "
— +; uaxj+\/2yamjoB T3, =0 >0 zERY

(2.48
i=1,---,n, )

divu =0, . t>0, xR

where ®F is the random stationary point of Jp:

&8 (t, z,w) |
= (BB(t, z,w) + /2uB'(t,w), - , 85 (t, z,w) + /2uB™(t,w)), t>0,zcR", we.

Note that the notation o appearing in the stochastic term means the Stratonovich sense. It is
seen in [13] that if there exists a weak solution u(t, z,w) of the equation (2.48) with the initial
value ug € WH2(R™;R") satisfying div up = 0, its expectation T(t,z) = [, u(t, z,w)P(dw)

satisfies the following Reynolds equation:

a—-
a—lz—uAE-I-(E'V)E-I-Vp:—(u—ﬂ) Mu-1), t>0z€cR
diva = 0, t>0,zeR"

However, the existence of the weak solution of (2.48) is not shown in [13]. Note that a

Stratonovich integral can be rewritten into an It integral by using the following formula
(see [13]): .
t o i ] t 9.1t . 1 )
| 2e6)0dBi(s) = [ Go(0B () + 5 (Mg, ),
0

a:j 0 8xj Bz

where M,,: denotes the martingale part determined uniquely by the decomposition of the
o2 ‘ .
process 27“; and ({M,,:, B?)) the quadratic variation of M, and B’. Thus, we arrive at the
dz; B:z:j

following stochastic Navier-Stokes equation:

— + /2uB; Jo— 4+ /2u=—B] | — pAu’ = t R"™
5 + 2 t+;(u 890j+ ,uaxj t) pAY +8:vi 0, >0, z € R,

1=1,---,n,
“divu =0, t>0,zeR"
| | (2.49)
In this paper, we discuss the 'equ‘ation (2.49) on a tWo—dimen_sional torus T2, in which we
disregard the term Bi(t), i = 1,2. This is reasonable because Y7, [r2 B! (t)#'(z)dz formally
vanishes by the property of [, ¢(z)dz =0, ¢ € C°.
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Chapter 3

Weak solutions of non coercive

stochastic Navier-Stokes equations in
R* | |

3.1 Introduction

In this paper we study the following type of the stochastic Navier-Stokes equation with respect
~to u = (ul(t, z),u3(t, z)),t > 0,z € R%:

bu

phu+ (u-Viu++/2uVu- Blt)+Vp=0, t>0,z€R? (3.1)

ot .
divu =0, t>0,z€R? ' (3.2)
u(0) =up, =€ R? _ (3.3)

where p = p(t, z) denotes the pressure term, u > 0 is a constant and B(t) = %£(B(t), B*(t))
the distributional derivative of the two-dimensional Brownian motion B(t) = (B(¢t), B(¢)).
Furthermore, g is a deterministic V(R?)-valued function on R? with compact support. Here
V(R?) is the set of functions defined as follows (see Section 3.2):

V(R?) = WY(R* R?) N H(R?),
where
H(R?) = {u € L*(R%R?) | div u = 0}.

Note that equation (3.1)-(3.3) are formally derived as the Euler-Lagrange equation satisfied

by a critical point of a random energy functional defined on the space of volume preserving

diffeomorphisms in R? perturbed by Brownian motion (see [13], [20]). In [13], the velocity

' defined as the time derivative of the associated stationary point satisfies the stochastic Navier-

Stokes equation (3.1)-(3.3) and as a result, it is shown that the‘expectation of the solution
20



of (3.1)-(3.3) satisfies the Reynolds equation. In [20], the existence of the weak solution of
(3.1)-(3.3) in the case of the two-dimensional torus is studied.

On the other hand, [9] considers an energy functional different from that of [20], [13], and
shows that the deterministic Navier-Stokes equation is related to its stationary point. In this
paper, we try to study the equation (3.1)-(3.3) not in the case of a two-dimensional torus but
on the whole space R2. |

In comparing with the case of stochastic Navier-Stokes equations onia bounded domain,
the case of unbounded domains requires more efforts because of the lack of compactness.

In addition, our equation does not satisfy the coercivity condition which usually gives the
tightness. Let us explain briefly our strategy taken in this paper to construct the solution
of the equation (3.1)-(3.3). First, we consider a family of modified equations with 2[-period
(I € N) in each variable whose viscosity coeflicient is slightly larger than p > 0, thafc is, 2‘2*—5;),
d > 0, so that the approximating equations satisfy the coercivity condition. We construct its
weak solution u*® by using a. standard Galerkin approximation. For suitable cutoff functions

RLS 15

xr T lg2, it can be shown that the family w is uniformly bounded in the space

= XRU
L*(Q, L2(0, T; V(R?)) with respect to R, and . Finally, we take a limit of u®" as § — 0
and R — oo simultaneously and show that its limit satisfies the équation (3.1)-(3.3) in a weak
sense. | '

S.o far, there are several known results about weak solutions of stochastic Navier-Stokes
equations ([17], [3], [12], [15], [16], [19]). However, no results are known in the case where
the equation does not satisfy the coercivity condition in a bounded or unbounded domain in
R"(n > 2). As a consequence, there is no easy way to obtain tightness' of suitable Galerkin
appréximation in L2-spaces.
| [17] and [3] study the equation with a trace class Wiener process and a spatially homo-
geneous initial distribution and the existence of the spatially homogeneous weak solution in
a weighted Sobolev space is proven. There are also several results about the case of the two-
dimensional torus ([20], [14], [7]). Especially, [20] studies the case where the equation does not
satisfy the coercivity condition in a two—dimehsional torus, then shows that there exists a weak
solution. On the other hand, [19] shows that there exists a spatially homogeneous weak solu-
tion of the equations in R™(n > 2) with a spatially homogeneous H'-valued initial distribution
independent of the space-time white noise. [15] and [16] study the stochastic Navier-Stokes
equations on R™(n > 2) satisfying the coercivity condition. In this paper, we partly use the

meéthod which is studied in [19] and [3], that is, we construct the solution by taking the limit
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of the sequence of periodic solutions. This paper is orgamzed as follows: In Section 3.2, we-
introduce notations used in this paper and our main result. Section 3.3 and Section 3.4 contain -

~ the proof of our main results.

3.2 Notations and results 9

In this section we introduce for several notations appearing later. Set T, = (—I,1)?, 1 € N. We

denote by
per(l) {u EIC“(RZ;]RZ) | u is 2l-periodic in (z1,z2) € R?},

the family of smooth vector fields u having period 2! in each variable (z1, ;) € R%. We also

denote by Cg2, ,(I) the subspace of divergence free vector fields u satisfying and le‘ud:v =0,

that is,
Ce, (1) ={u e CZ(l) | /T udz =0, divu = 0 in T}.
l ,
We also denote the following function spaces:

CP = {u € C™(R?% R?) | supp u is compact},
CF() = {ue CF | suppu C O},

cgj;:,{uecgw udz =0, divu=OinR2},

R2
We denote by H() the set of square integrable vector fields u on T'; which aie of divergence
zero and satisfy [ ,udz = 0, that is,

H(l) = {U € L*(T;R?) | /T udz =0, divu =0 in Tl} )
!

Let (u,v); = Z / x)dz be its inner product and |u|; = (u, u) ; 1ts norm. In addition,

we set
V() = WH(T;; R?) n H(l),

' 2
with its inner product ((u,v)); = z<%—, _83?1)
J J

22
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Let us set Z2 = Z*\{0} and T? = R?/21Z?. Let
H,.(I) = {u € L*(T?;R?) | / udz = 0, divu = 0 in R? } ,
Juz

be the Hilbert space with inner product (u, v)per = Z 4(k)o(k) and associated norm |u|per =
» ' kezd
(Z Iﬁ(k)lz)%, u,v € Hper (1), where 4(k) represents the k = (ki, ko)-th Fourier coefficient of
keZ2 ‘ '
the Fourier expansion of u. In addition, we set

Vier (1) = WH(TF; R?) 0 He, (1),
with inner product {(u, v))per = 3 | (%kwa(km(k) and associated norm [[ulper = (> (§|k|)2m(k)|2)%

kez? kez?
for u,v € Vpe(I). Note that |ulper = |uli if v € Hpe, (1) and ||ullper = [Julli if u € Ve (D).

Similarly, let us set

H(R?) = {uv € L*(R*%R?*) | divu=0in R*},
with its inner product and the norm denoted by (-,-) and | - |, respectively, and
| V(R?) = WH(R% R*) N H(R?), .

with its inner product and the norm denoted by ((,-)) and || - ||, respectively. For an open set
Q C R?, let us define

H(Q) = {v € H(R?) | supp v C 0},
V(Q) = {u e V(R?) | supp u C Q}.

In addition, define

Ho = {u | uffey = [ lu(e)fde < oo},

2
Ou(z)
— 2 e—
Vo= {u | ulfyey == 3, [ 15502 < o0}
j=1 J
HQ:{UEHQ| diV’lJ,:O},
Vo={ueVy| divu=0}

We denote by Hy,e, Vioe the set of vector-fields whose countable semi norms ||ul|o,r, ||ul|1,r are

finite for all R € N , respectively, that is,
Hioo = {u € (C2Y| [lullos < oo for all R € N},
Vioe = {u € (CY| |lullg < oo for all RN},
23



whete ||u||o,g, ||ul|1,r are defined as follows:

lulloq = / lu(z)Pdz,
B

=3 [ 5P

where Bp is the open ball with radius R € N centered at the origin. In addition, let us set

Hy,. = {’LL c Hlocl div ’LL(CC) =0,z € RQ},
Viee = {U S Viocl div U(Q?) =0,z € RQ}

and Vi the topological dual space of V... Note that the divergence appearing in each class is

understood in the distributional sense. Let Au = —plPAv be the Stokes operator with domain
D(4) = V(R*) n W*?(R% R?),

where P represents the Leray projection. It is well known that A is a non negative self adjoint
linear operator. Furthermore, let B be defined by
© (B(u,v),w) = / (u(z) - Viv(z) - wz)dz, u,v,w € CF,
R2

and G : Vige —+ Li.s(R% Hjoc) be defined by

Gu = ﬁﬂVu,

where Ly g(R?; H) denotes the space of Hilbert-Schmidt operators from R? to H. By Sobolev’s
embedding theorem, we see that B can be uniquely extended to a V), -valued bilinear operator

on Vige X Viee. Indeed,
8Uj

ou;
| : Uiax]@jdﬂ < lui|L4(BR)l_a$‘ILZ(BR)I¢J'IL4(BR)
R i i

< |wil gy luilm e $ilm ey, weelsy, =12

holds. This implies B is a Vio.'-valued bilinear operator on Viee X Vige. In our equation, the
noise is finite-dimensional and thus its covariance is trivially of finite trace, so the square root -
is Hilbert-Schmidt. The abstract stochastic evolution equation associated with (3.1)-(3.3) is

defined as follows:

{ du(t) + Au(t) + Blu(t), u(t)) + Gu(t) - dB(t) =0, >0,

u(0) = uo. (34)
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Definition 3.2.1. We say {u(t), B(t) }:>0 is a weak solution of (3.4) if
1. u(t) is an adapted process on a probability space (0, F, P,{Fi}+>0),
0 ue L2(0,T; Vo) N L(0, T; Hipe), a.s.
3. {B(t), Fi}i>0 18 a two-dimensional Brownian motion,

4. For every ¢ € CS?U, P-a.s., the following equality

(u(8)¢) = o, )+ [ {ule), Ad)ds
= [B(s), 9)uls)ds — [ (Gu(s))s-aB(s),
hqlds for a.e. t€[0,T).

Remark 3.2.1. The term containing Vp drops out in the weak form of the solution since
- [ Vp-¢dz =~ [p divédz =0 holds.

Remark 3.2.2. We can regard the second condition of the Definition 8.2.1 as

we () L*0,T; Vp,) N L=(0,T; Hp,), a.s.
ReN )

“Now we can formulate our main result in this paper.

Theorem 3.2.1. Let ug € V(R?) have compact support. Then, there exists a weak solution of

(3.4).

3.3 Proof of Theorem 3.2.1

We will separate the proof into four steps.

step 1
We denote by A;s the Stokes operator with viscosity %u, that is,
2+46
Al’a’u, = LA[U,
2
where
A = —uPAu,
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with domain
D(A) = Vyer (1) N W>2(TF; R?).

Note that A; is a strictly positive definite self-adjoint operator and has a compact resolvent.
Let 0 < )\gl) < )\g) < ... be the eigenvalues of A; and egl),eg), ... the associated normalized
eigenfunctions. Let us consider the following equation:

\ B3 (8) + ApsutS(t) + B (0), w3 (8)) + Gud(t) - dB() =0, >0,
ul’5(0) 0] , (3.5)

:u()’

where u(()l) is the Fourier expansion of ug in Hp, (1), that is, ug) =3 . u?o(k)e,(cl), where (k)

denotes the k-th Fourier coefficient. (3.5) satisfies the coercivity condition, hence there exists
a weak solution u"® for each | € N and § > 0, that is, we can construct a weak solution
{ub8(t), B(t)}s>0 on a probability space (244, F4¢ P {F110) such that P-a.s.,

uh® € L*(0,T; Vyper (1)) N L°°(O4, T; H,er (1)) N C([0, T); D(45)), : (3.6)

holds (see Lemma 3.4.1). The proof is similar to [12]. Let 0 < xg <1 be a C§°(R)-function
which is equal to 1 in Bg, 0 outside Bsg and satisfies |xz(z)| < ¢ for some uniform constant
¢ > 0. Let ub®® = ypub®. Now let us obtain an a priori estimate of EP* {|jub®%(2)||?}. Let

" {K;}m>1 be an increasing sequence of compact sets in R? such that
Ky CKQC"'TRQ,

and assume that K,, C K’ .,, where K¢ , denotes the interior of Ky,.1. For each Kp,, choose
two bounded open sets Qg,,, Q% _ such that K, C Qx,, ‘C‘ Qk,, C Q% C K., holds.
For each R € N and compact set K, let us choose | = [(R,K) € N such that (~[,1)? D
Qx U Bog U supp ug holds. Then,

R =l 0] BN CE)
e 0 + 3 g o)
<C (WO + 1 ©IF) .

holds for some constant C' > 0, since xg and %XR are bounded functions.

1,6 3

On the other hand, since u*® is a solution of (3.5), we obtain the following uniform estimate:

1,8
EX [l 0117} < [lu6lF, | (3.8)
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(see Lemma 3.4.2). By Parseval’s formula,
IR211 < ol 69
As a result, for any R € N and compact set K C R?, we have
PR {_Hul(R,K),é,R(t)H2} < ||uoll?,
which means that

(R,K),8 | . .
ReN,6>0 Is{lé]:?l{2 compact EP { | |Ul(R’K)’6’R(t) l |2} < oo (310)

On the other hand, for any ¢ € C*(Qx) C C*((—1,1)?) satisfying ||¢||vax) < 1, hence
||¢||V((—z,z)2) < 1, we have that

. vy (WP (1), d)via)|

/Q ubS (¢, z) - d(z)dz| < bR vineys
K

and thus,
120 vary < T F Oy | ’(3;11‘)
In addition; since (—1,1)? contains Bag, it is eésy to see that
2@ vy < Cllu @)llv ey (3.12)

holds for some constant C' > 0 using the properties of the cut-off function xg.

On the other hand, we have the following estimate (see [12] or Lemma 3.4.1):

1,6 B
EF {|[W"|lweeorvi-inzn} < oo, a€(0,2), (3.13)

where

T lo(t) = v(s)| 1
Ao = [ IOl [ / t_8|1+2aEdtds

and E is a Banach space. Thus, if we take o € (0,%), we see

sup. PRI {|1UZ(R’K)’6’R||3V0<,2(0 T-V(QK)')} < . (3.14)
ReN 66(0 1],KCR? compact . L5
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step 2

Let 0 < vx, < 1 be a Cg°(R)-function which is equal to 1 on Qg, and whose support is
contained in Q% . Set § = §. Then, the sequence of (Yr '@ %R) poy is bounded in both

L2(0,T; V(Qxk,)) and W*2(0,T; V(Qx,)"), @ € (0,1), a.s. By the following inclusion:
V(Qx,) CC H(Qk,) C V(Qx,),

{L (g, u' B 2R) ) pey is tight in L2(0, T; H(Qk, )), hence in
L*(0,T; H(R?)), where L(u) denotes the distribution of u. Thus, there exists a subsequence
{Rfll)}neN such that -

(_l<R£11))7 l(Rv('zl)))Z o Q’Kz U BZR U Supp g,

RS,y RS "
and {L(Yk,u B V) ey is convergent in L2(0,T; H(Qg, ), hence, in L2(0, T; H(R?)).

Next, let 0 < g, < 1 be a C§°(R)-function which is equal to' 1 on {2k, and whose

, . . (BD), by R
support is contained in Qf%,. Then, the family (Yx,u Rp

L%(0,T;V(Qg,)) and W*2(0,T; V(Qx,)'), a.s. From the following inclusion,

Jnen 1s bounded in both

V(QKz) cC H(QKz) C V(QKz)Ia

B, R
the family {L(Wr,u 2 V}nen is tight in L2(0,T; H(Qx,)), hence in L*(0, T; H(R?)).

Thus, there exists a subsequence {RP}nen of {RM}nen such that

(LR, U(RD))? D Que, U Bar U supp uo,
and {£(¢K2u( e
Note that

Yhnen is convergent in L2(0,T; H(Qx,)), hence, in L2(0,T; H(R?)).

URR),—y RE)

l(Rgl)), 1 rRSLl)
£(¢K2u " lKl) = £(¢K1u -RT?”TY

|K1); nEN,

where u|x denotes the restriction of u to a set K. Similarly, we can extract a suitable subse-
quence { R } e of {RY™ ™} ,en such that

(=I1(RI™), I(RI™))? D Q,.,, U Bop U supp uo,

le;,m) , 1 ;Rq(q,m)
and that {L(Yk,,u g Y}nen is convergent in L*(0, T; H(,,)), hence, in L*(0, T; H(R?)).

By‘utilization of the diagonal method, we see that for each m € N,

URSY), —fy RSV
(Rn );n;y

{['WK,LU

'Km)}neN

28



is a convergent sequence in L?(0,T; H(Qk,,)), hence in L*(0,T; H(R?)). We denote by Q its
limit. Since L2(0, T; H(R?)) x C([0, T]; R?) is a complete separable metric space, by Skorohod’s
embedding theorem, there exist another probability space (Q, F, P) on which L*(0, T; H(R?))-

valued random variables X,, X and the two-dimensional Brownian motion W are defined
) I(R (")) 171 R(")
in a such way that the distribution of X, and X are equal to L(¢xk,u "RTY ) and Q,

respectively. In addition, If’—a.‘fs.,

Xolkm = X|Kom»
- in L2(0,T; H(R?)) for every m € N and therefore X,, — X, P-a.s., in particular.
step 3

Let ué choose ¢ € C§,. Then, there exists no € N such that supp ¢ C B,, C K, C
(=R, 1(R))2 for n > ng. Clearly

Vi Xnb = (3.15)

hence
/ Yk Xnh(z) dz =
(~URE) LR
and
div(vk, xné) = 0.
Now we set
(RS, s LR :
M;f(t) = <u R (t)a ¢>l(R$L”)) < (o )’¢>I(R(") (316)
1o+ RO 1Ry
- [ 6), 20) o s
t l(RﬁL , 1n ) l(RS‘Ln)): 1n
= [ () g T (6 s
5 ; ,
. URE), L5 , ,
Since u B2 is a weak solution of (3.5), we see

1

(™), . ) ‘ _
\/—2/ D ),Tz)l(mn))dBﬂ(s). (3.17)
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e o : R, :
If we choose ¢ satisfying (3.15), since supp ¢ is contained in Bno, "R appearing in each

. IR (")) l(Rnn)) 1 R("-)
integral of both (3.16) and (3.17) can be replaced Vi, XnU that is, ¥, u BT

(”) Rnn)
Let us recall again that L{vk, u ) ) and L£(X,,) are the same. Now we set

EE(0) = (X0, ), = W™, Baiy (3.18)
2+ R
- 2B ) )

= [(0) V)6 XD

Then, we have

fz [ 056 52 i 705,

 Let us define the following filtrations:

FO(t) = 0(Xu(s),s < 1), Fult) = (At + o),

>0

N, = {A c Q| AcC B e F(oo) such that P(B) = o} ,
Falt) = o(Falt) UNG), F20) = o(| Falt)),

N = {A c Q| AcCBe F () such—that P(B) = o} ,
F(t) = o(F() UN). |

Then, for ng < m < n and any Ky containing supp ¢,

E{ sup_|M14(t) - Mi’(i)lz}

te[0,T7]

J

=EP{ sup \/ﬂ/o Z{(Xn(s)’g—i%ws‘))_<Xm(3)’g%>1(R$;”)>}de(s)

t€[0,7]
| }

[, o) = Xole)) - gts (e

o af

where the last inequality comes from the fact that the sequence {X,} is compact in L*(0,T;Hg,,).
This shows that {M%},en is a Cauchy sequence in L?(€; C([0,T];R?)). Hence, there exists
' 30
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:EP{sup \/QZ/O >
5‘¢

te[0,T]
§8uiEp { / ' /| (Xale) = X))

— 0, asm,n— oo,




a subsequence {M¢ }rew such that limg e ]\fok = M®, uniformly in [0,T], P-a.s., for T > 0.

{M?}en is a square martingale whose quadratic variation ((M2, M#))(t) is given by

8
(M2, M) (t) = 2;1,2 / 99 f(R(n) ds

—.2:U‘Z/ >’8m] Sa

since sﬁpp ¢ is contained in Bn,. In addition, M?(t) is a continuous JF(t)-martingale. For
any compact set Ky, we see Xy, |ky — Xlxy in L?(0,T; H(R?)), a.s. as k — oco. Hence, it
follows that M¢? is also a square integrable continuous martingale whose quadratic variation
((M?®, M?)) is given by |

((M*, M%) "2NZ/ (X(s), —>2

Thus, by the representation theorem of continuous martingales (see [11]), there exist another
probablhty space with a filtration (Q F,P, (}"t)t>o) and two-dimensional F; X E—Browman
motion B = (31 BQ) defined on (Q x Q, F x F, P x P) such that P x P-a. Se

2 t -
LEEENEDY / ,6), 5B (5,3, ),

holds for ¢ € [0, T, where M®(t,&,&) = M%(t,&) and X(s,@,@) = X(s,).

step 4
Note that the (R.H.S) of (3.18) can be rewritten to
' (n) :
(Xa(t), d) — (u™ ), 8) (3.19)

t (m)~1 t
-/ %wf (9, 88)ds = [ ((Xa(e) - V)6, X)),
for n > ng because of supp ¢ C Bn0 Now let us set (3.19) = (I) + (II) + (III) 4+ (IV}). Since
P-a.s., thus P x P-a. s., X, = X, in L*0,T; Hloc) holds by using (3.10), which means that
(1) — — [T u(X(s), Ag)ds and (IV) — — (X (s) - V)¢, X (s))ds, P x P-as., asn — 0.
As for (I) and (II) by taking a subsequence (n) we see P-a.s., thus P x P-as. , X — X, in
Hi for a.e-t € (0,T). Thus, (I) — (X(t),¢) for a.e-t € (0,T) as n’ — oo. Finally, since ug
has a compact support, we see uo( B — up, in H(R?). Thus, we have (II) — (uq, ¢). Thus,
_ the 4th condition of Definition 3.2.1 is shown. The 3rd is shown already. The 1st is clear, that
is, X (t) is F x J%—adapted. The 2nd follows easily by using Fatou’s lemma. Thus, the proof is

complete.
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3.4 Existence of weak solutions of (3.5)

In this section, we will give proofs about the a priori estimate (3.10) and Lemma 3.4.1 appearing
in Theorem 3.2.1. Although the following lemma is similar to [12], we give the proof here for

the reader’s convenience.

lemma 3.4.1. There ezists a weak solution {u"®, B(t)} of (3.5) on a probability space (Q, F, P, {F: }s0).

Furthermore, we have P-a.s.,
ub® € L2(0,T; Vper (1)) N L2(0, T; Hper (1)) N C([0, T]; D(Ar5)). (3.20)
Proof. We will take several steps to prove this lemma.

step 1.

Let I, be the orthogonal projection onto the linear subspace spanned by {eg-l)}Ij[Sn Let us set

uy’ = I,u'’. Note that us’ can be rewritten as a Fourier expansion with respect to {e,(c)}kezg,

where Z§ = Z*\{0}, that is, u}? = >, o, ub(s )l where uk®* stands for the Fourier
coefficient: ub®* = (uk(s), e, ©y,. Let us set u()J (Hnu(()l) e§1)> ubkbi(t) = (ui{‘s(t),egl))l. Now
let us consider the following finite dimensional simultaneou$ stochastic integral equations:

_ t
I (t) = u + / Fi(up®(s), - ,up™(s))ds (3.21)
0
, ,
.+/0 a;(unM (), un(s))dB(s), j=1,--+,n,
where
Ei(ut, - ,u™) = (— A156(Z)+H B( Zu el ] Zu e
{kl<n , |k <n \
Uj(u17 U ’un) = _(H"G Z ukeg))*e§l)7
. [kj<m.
that is,

u(t) = ug +/0 F(u(s))ds + /0 o(u(s))dB(s),
where u(t) = (USL(t), - ,ubd™()), up = (ug”’l, o ud™), Fu) = (Fu(w), -, Fa(w)) and
o(u) = (o1(w), - ,0n(u)). Let us set

Tp = { inf{t; [u(t)] > R},  {} is not empty,

00, otherwise..
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Then,

E{u(t ATa)} < uol? +C /0 Ef|u(s A T} ds,

holds for some C independent of R. Thus, we have E{|u(t)|*} < co. Furthermore,

|F(u) — F(v)|] < Crlu—w]|, forevery |ul,|v]| <R,

lo(w) = o(0)] < Clu —l,

holds for some constant C,Cg > 0. Therefore, (3.21) has a unique strong solution for each

6>0andn,leN.

step 2.

By applying Itd’s formula to |uk?(¢)[?,

. T .
SUPE{ sup \Uﬁi‘s(t)|12+5#/ IIU?H?} < 0.
0

n,l te[0,T7]

In addition,

. 2496
supE<{ sup |[W’(#)P } < oo, forpe (2, L]
n,l t€[0,T] 2

Indeed, by It6’s formula applied to |ul’(¢)[F, p > 2, it is easy to see that
WEOR < Ml |
rup (-2 p 1) [ e
+p /Ot s’ ()1 ﬁz(HnGﬂﬁf(S))*uﬁé(S)dB (s),

Then, sup, E {|ub’(t)[7} < oo holds if E {|uél) |f} < o0 and

2490 5
_%+p—1§0, that is, p € [0,2_|_§].

Clearly, this condition ensures that

. t R
sup B / [ () [Pk (5)| Bds < oo,
n

holds. Note that the following trivial inequality holds:

IGuliH.s(R%HPer) < 2/.1,||’LL||12 + )‘lull27 S Vpe'r(l)y')\ > 0.
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Then the stochastic term can be estimated as follows:

E{v‘sup }
s€[0,8] |
-SCE{(/QAMJ(n?4m1Gd% )2 Uk ()h%>2}
<CE { ( / P2k (1) 272 (2] [ub ()] 2 + Al () ) ds') }
<CE{( / (sup 1l (s) ) (@pup?| [ (") P b ()72

s€{0,t]

/ spluif(sv\f*(nneuff(s )7k (sdB(S)

0

L sup (o) F)ds)E)

o€(0,¢']

E { sup |u}’(s)[} }
s€[0,¢]

) t
| e { [ IR )

02 t
+—~2—->\p2/ E{ sup |[ubl(0)ff }ds,
0 c€[0,8']

<

D] —

where the first inequality comes from Burkholder’s inequality. As a result, by Gronwall’s

lemma, (3.23) follows for p € (2,2 + §].

In addition, the following estimate holds:

sup EP{H“n | We2(0,75Vper 1)) } <00, ot (0;5),
n>1,6€(0,1]

for I € Nand T > 0. Indeed, let us set
t) Hnu(()l) / A 5’LL

t
- / HnB(uff(s),uif(s))ds— / I, Gu' (s) dB,
b TR (E) A+ TR () + T ().
Then,
swp |yl < oo, s B {7 hwretomviain } < o0
n>1 n>1,6€(0,1]

4o
sup BF {17 lwra(o v | < 0

n>1,6>0

n>1,6>0
- . 1
swp EF { |15 llwesommuan | <000 @ €(0,3),
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hold. (see [20]). These estimates (3.25), (3.26) and (3.27) imply (3.24). Thus, from (3.22) and
(3.24), we see that {L(uk?)}, is tight in L?(0, T; Hpe, (1)).

On the other hand, as for J;” b8 e can choose some o € (0,1), p > 1 satlsfymg ap > 1
such that

sup EP { |15 lwes o 2:v,ert) } < 0 (3.28)

holds for l € N, § > 0 and T > 0. Indeed, (3.28) is true if we choose p = 2 + ¢and o € (%, 3).
Therefore, (3.25), (3.26) and (3.28) imply that {£(ub%)}, is also tight in C([0, T1; D(4;)"). Now
that we have the tightness, the rest of the proof is similar to [12] and we can obtain a weak

solution ub®. The proof is complete.
O

lemma 3.4.2. The following estimate holds:
1,6 .
EP {017} < Ilu I3 (3.29)

Proof. Here we use the same notations as introduced in the proof of Lemma 3.4.1. By applying

Itd’s formula to (ub?(t), egl)) 7

(W), PN — (1), €D | (3.30)
—(2+8)u / (b5 (s), €Dy, (Db (s), €, ds

. .
- 2/ (IL, (ub® (s) - Vubi(s)), e(.l))l(uﬁf(s), eg-l))lds + martingale
Jo

oubl(s) oubd(s)
(0 Z8n \5/\2 0] 2
+2‘LL/< 8371 >l +< j ’ 8332 > dS,

where ub ( ) € C2_ _(I) and we use the integration by parts in the last term. Let us multiply

per,o

©(3.30) by A1y,

(b (6), P02 — (b (1), €2 | | (331)
— @+ O [ () e Nl (e) s

-2 / (M (ud3(5) - Vi (5), e i), el”))ids + martingale

ubd (s y Oubd(s
2 6+ el P s
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holds. Since {(yX§l).—1)%e§.l)}j€Zg is orthonormal system in V,,(l), multiply (3.31) by ,u)\;l)_l,

then sum from j = 1 to |n|, we have
lun’ @)I[F — [luz’ OIIF | (3-32)
¢
<@+ 8 [ (W), dul(s)nds
Jo

o
o / (T (6 (s) - Vb (s)), ub¥(s)) uds + martingale
0

| [t Oubd(s
cou [ 12
. 0 1

oub (s
51 g,

T2

0

Note that the integrand of the second term of (R.H.S.) is equal to ({(uk?(s)- Vubki(s)), uk?(s))).
As for the first term of (R.H.S.), we have |

Ou’ (s) Ouy’(s)

((ul"s(s) Aubd(s))), = —HLH2 = |- !
n \7/ = dzy 't Y Bz,

17,

by using the integration by parts formula. On the other hand, we see
(T (ug?(s) - Vup(s)), ury’ ()0 = 0. (3.33)

Indeed, in the case of two dimensional torus, there exists a stream function ¢(s) satisfying
ub3(s) = V4Le(s). (3.33) is shown by using such ¢ (see also [20] Lemma 3.1 or [10] Proposition

6.3). However, it does not hold in the case of higher dimension in general. As a result,

B { o)) < 12

Thus, the conclusion is obtained easily (see also [20] Section 3). The proof is complete. O
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1. #XEEH: Two-dimensional stochastic Navier-Stokes equations derived from a certain variational
problem

(BB \Fﬁﬁh\géb‘h%_kmﬁﬁé‘ftl A b= Z755EN)
2. K%&: Bl B8 (Yokoyama Satoshi)

I 4 5 —HRRIHERED 0 TH A FAROEES Zid T 2EMOSHTRRE LTHSNTVS, D)
BRI, UTOL S RELFREN LB TLLWHETH S, R LOKEZRET ZMAREERICE
ZEBHEE ®(t),t € [0, 1] ICBEL. RD X 3 IXINEIEL (action functional), J:

1 ", 0%,(t,z)
J@:// 24 dt,
® =], o

 BEZD, TOPEERJ OEME 20) =¥ HD &(1) = 9! OD"F'C(D—FKE%%Z% & 2RDBEITH

BEREZ DR, ZOMEYEE o) e LT, HEE (velocity field) u(t) 2 u(t) := % TEEITNI.
ubA A S—ABREWEZTC LI1E VI Armold ([1)) DERELTXIHALN TV, —A. @) i
B BHERZER (Q, F, P) TEBEBE Nz n RITT 5V ViEE) Blt,w) = (B (t,w), -+, B"(t,w)) DR
VZEB(t,w), > 0 BN L IREDOMGT % 5 V& LS IS DV T Inove, Funaki ([2]) T
ENje, [2] T, 20T Y ELBEHRR 8(t,0,0) DHE5XEND TV H LEEER u(tz,w) &, I
KT MR R o e BT VR LIxAER RS LEA BN, ER, ﬁfzﬂmgci«k@ct 5 stk
RKFICL - A =7 AHBRER/BET B LIBT3,

Cow ;0u ou!
{m*%@w

y . Op
2 — pAy =0, t>0, R* i=1,---,n,
Max] t) uu—!—axi >0,re 1 n
divu =0, v t>0,z€R™

FIEME wo BT VL THEOAY MUVBT, D, WHRMRYETHS LS GHERIEL - A b —
7 2F R 1) OMEMERIEICH LT, 58ff u(t, z,w) DEET 2 RETNE, ut,z,w) DFEE
(u(t,z) = / w(t, @, w)P(dw) DRD & 37 LA /LK (Reynolds) AR (2) 72{%71@‘(_ L. 0

REIE L ERBY O IVF VS — VR EET NEE R ICHEN D 5 N5,
{%?—umm«u)-V><u>+Vp=—<(<u-—<u>>-v><u—<u>>>, CsozeR

(1)

div (u) =0, t>0,zeR"

ULHLEDSS, (1) OBFEOFEICDOVTE 2] TER SN TWEY. ULMEARER (1) ORRIS, R
FEL A b= ZSBEROBHROBEFHCRELE L SN BBENZEM (coercivity condition) 27z
LTWaWed, TORATOABRROBEOFEEICOVTRINETOLEZAHMENTVEY, FE
MO 2 17 TR A O BMOTFEIEIC DV T Flandoli, Gatarek([3]) DIERE ELLHBENT VS, &
RY CIRBEENRENHIZEN TR (1) OFBOBKZHS S, WENSEGZRTCE T 3 KT
FOBERIFROBRIZEL V., LHALEND, 2 RTORABERSESE. BXU. 2XT2ZHMOEE
ICRTBENMEET BT LBRT, BRO—BEICE L TRARX TREDER, RRXOBRIETD
WOTH B,



1. B1BEIFXTH 5,
2. 552 B3 2 NTABBEREHDRED (1) OBMOTEE IEHH‘?%O

3. 53 213 Wilhelm Stannat [ > OEFEFETH D, 2 JTLZRR? DBAD (1) #ERL, %
DBRENWEET 5T L BT, :

1 25T b —5 X LOBEFET « X b—4 RAERROBROM
2 Rt =72 T2 IZHBWT (1) DFREZET 5. Hilbert 22 H %
H= {u€L2(T2R2|/ z)dz = 0, div u = 0},

. Sobolev ZHV % V = WIA(T% R?) NH LEHT 5, MOEHE. B, Thbb, WLEMEHze
RIRBABIH & RS TR E Ntweak form & LTEBE N, 2D, HERZEM (0, F, P) £ 20 LICE
BXhicult) BEXUTSYVER B 2RDBT L LT 5, TEEEBRS,

EE 1.1. FHAE w M VIEBLTVRIE, (1) OFEIFEET 5,
FEERIIRD K 575 ABRPETED BN B,
o 1B Galerkin ITIC X ZHER RITTHEEW D HEROBOFE, —RIEDTA
o B2 T7VUAVFHEDERE ‘
o HEIERRE. WERSH ) tightness DEA

o 55 ABME. BRI X BROBE

2 RITARBERSM LIRS MVEEDAERN (1) BEENEGEME LRV, ZT T, #ERR vk
oy, 6 > 0 & LTt ERTTBES N ARRZ2ZE AN B2BRTHABROARICXD, 6> 01
Bé@‘% L2(Q, L2(0, T; H)) O—RFHED M S & &M TE S, §EoT L2(Q, L2(0,T; H)) iK1 B350

RRBN DT 2 BAR '3'% TLIFTET. B 4ERMETHBIRE (convection term) @Wﬁ% Calid bahaod -
~1¢%p¥mﬂﬁ%‘§“%%o LA UEDS, 2 RTAEREHOBER. § > 0L T L2(Q, L2(0,T; V))
TO—HFHEZBZ T LA TE, TORR, MEBRT 25T LAARETS 2,

21@L®ﬁ&%?&mﬁ$%el-Zb—axﬁﬁﬁmﬁﬁ

ABETR, (1) 22ZEMR2 TEX D, FEOER 2 RTABRAFFEORE LIBEAKRTHZH, 3
BB D 7 5 AF, BHEOTHO, HhD. R2 LTOBIMV0THZ a7 MaBEED C® #&f\
NV EREERT D, TTTEDD0DOFHR. HREZENT 2FETHRELEINDILDTH S,
HiE, A2, (1 e N) ORPEBREAZ L OABAOFREE X, BRRICET 25HE, 5 R2 2%
MTOREMEEBRT B2 FEFR > TWAZ6HTH S, Hilbert ZEH H(R?) %

H(R?) = {ueLz(R2 R?)| div u = 0, /udx=0},
R

Sobolev Z FEE V(R?) % V(R?) = Wl’z(RZ;RZ) NH(R?) LEXT D, FEEZIHRND,
THE 2.1. WHAE wHNIAVY VaEELB, HhD VR IKBLTOWNE, (1) DBREHSEFEET 5.

MEHOFEX., EHE 1.1 OFHCEARMITHS B, HEAS R2 2B Ta VN7 FTRVWEDHIR
75:%@“% B2, 1 € NORPBERZEEZFOARROBHEEL S, EHIK, ¥BER € NOIK
= {z € R?||z| < R} £ Tl 1, Bog DHMUTIHESEHIC 0 L7453 [0, 1)-fE C®-#& cutoff F% xr
%J:lﬁ%ﬁﬁu’ﬁﬁﬁéﬁéo 2 X RER RGO OBREDFEZFMAT S T LT, cutoff TNIFFED
L2(; L2(0,T; V(R2))) /IVLD 2 TN, FIEHME uo D V(R?) /VLD2ETENLFETE S, HKA
DEK LT BHRE. | BE0 R OWERZRD BRTE3,
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