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Preface

This thesis consists of four chapters. All of them are about the results of the
author on the geometry of Mori dream spaces. The first chapter deals with
foundational matters, and the other three chapters deal with more specific
topics.

The second chapter is devoted to the study of projective varieties which
admits a surjective morphism from a Mori dream space. We show that such
a variety is also a Mori dream space, and see that its geometry is strongly
controlled by that of the source of the morphism. ’

In the third chapter we consider the global Okounkov body of Mori dream
spaces. Global Okounkov body is a cone which encodes some asymptotic
information of line bundles on a variety. The question, roughly, is if the cone
is rational polyhedral or not for Mori dream spaces. We verify it for surfaces,
and reduce the problem to more naive one on the geometry of Mori dream
spaces.

In the final chapter, we prove that a projective surface of globally F-
regular type is of Fano type. Along the proof the anti-canonical MMP, whose
existence is a specific phenomena of Mori dream spaces, plays a central role.

The first and the second chapters originates from [Ok1]. The third chapter
is from [Ok2], and the last chapter is from [Ok3].

Conventions

Unless otherwise stated, every variety is assumed to be projective over a field
k, normal and geometrically connected. For the notations and terminologies
of Mori dream spaces and Cox rings we follow [HK], and for those of (V)GIT
we follow [DH] and [GIT].
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1_

Basics on Mori dream spaces

1.1 Summary

“The definition of Mori dream spaces and Cox rings were given in the paper
[HK]. In the same paper, basic facts on Mori dream spaces were established.
The purpose of this chapter is to give a review of their results, together with
some refinements. _ '

First we recall the definition of Mori dream spaces and the properties
of line bundles on them, with an emphasis on the Zariski decompositions.
Moreover we introduce a certain fan structure on the effective cone of a Mori
dream space, which encodes the information of the Zariski decompositions
(Definition-Proposition 1.2.8). To be precise, we say that two line bundles on
a Mori dream space are strongly Mori equivalent if the negative parts of their
Zariski decompositions have the same support and the positive parts define
the same rational map (see Definition 1.2.11). With this notion, we prove
that two line bundles on a Mori dream space are strongly Mori equivalent if
and only if they are contained in the relative interior of the same cone of the
fan (see §1.2.3). These are the contents of Section 1.2.

In Section 1.3 we recall the basics on the VGIT for actions of algebraic
tori on affine varieties. This will be applied to the VGIT of Cox rings of
Mori dream spaces, on which the dual tori of the Picard groups naturally
act. In such a situation, a line bundle on the Mori dream space corresponds
to a character of the tori and vice versa (modulo multiplication, in general).
With these preparations we show that the information of the Zariski decom-
position of a line bundle is equivalent to the information of the semi-stable
locus defined by the character of the line bundle. In particular we prove in
§1.3.2 that two line bundles are strongly Mori equivalent if and only if the
corresponding characters have the same semi-stable loci.



In the paper [HK], they introduced a fan structure on the movable cone
of a Mori dream space. Our fan structure on the effective cone extends
that one. In [HK] they only considered the relative interiors of the maximal
dimensional cones, but the basic ideas needed for the proof of our refined
results implicitly appears in the paper. For toric varieties, our fan structure
was classically known as the Gelfand-Kapranov-Zelevinsky - decomposition
introduced by Oda and Park [OP]. After the author finished the first version
of the draft, he found that Professor Jiirgen Hausen introduced in [H] the
notion of GIT fan, starting from the VGIT of Cox rings. This seems to
coincide with the fan structure which we introduce in this paper, which is
defined by starting from the geometry of line bundles.

1.2 Deﬁnition and basic properties of Mori
dream space

1.2.1 Reminder

In this section, we briefly recall the definition and some of the basic properties
of Mori dream space which we need in this paper. For details, see [HK]. We
follow the terminologies of the paper.

Definition 1.2.1. Let X be a normal projective variety. A small Q-factorial
modification of X is a small (i.e. isomorphic in codimension one) birational
map f: X --+ Y to another normal Q-factorial projective variety Y.

Definition 1.2.2. A normal projectiVe variety X is called a Mori dream
space provided that the following conditions hold:

1. X is Q-factorial, Pic (X) is finitely generated and Pic (X)q, ~ N* (X)),
holds. '

2. Nef (X) is the affine hull of finitely many semi-ample line bundles.

3. There is a finite collection of small Q-factorial modifications f; : X --»
X; such that each X; satisfies (1)(2) and Mov (X) is the union of the
fi(Nef (X3)).

Remark 1.2.3. The author is not sure if the assumption that the mor-
phism Pic (X ), — N' (X)g, is isomorphic follows from the finite generation
of Pic (X). We note here that it is the case at least when the base field &
is algebraically closed with uncountably many elements. In fact, finite gen-
eration of Pic (X) implies that of Pic? (X). If k is uncountable, we see that
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Picg(/k, the connected component of the identity of the Picard scheme of X,
should be zero dimensional. Hence Pic®(X) is a point. By [FGIKNV, Corol-
lary 9.6.17], the finiteness of Pic'™ (X), the subgroup of torsion elements
of Pic (X), follows from this. By [FGIKNV, Theorem 9.6.3] and [FGIKNV,
Exercise 9.6.11], a numerically trivial line’bundle should be torsion in thls
case. Thus we see that Pic (X)g — N' (X)q, is isomorphic.

When k = C, the assumption h'(Ox) = 0 is equivalent to saying that
Pic (X) is finitely generated. In general, we only have the inequality
dim Pic (X)) < h!'(Ox) (see [FGIKNV, Corollary 9.5.13 and Remark 9.5.15].)

Let X be a normal projective variety satisfying the condition (1) of Def-
inition 1.2.2. We start with recalling the definition of Mori chambers (see
[HK, Definition 1.3 and 1.4]):

Definition 1.2.4. Let Dl and Dy be two Q-Cartier divisors on X with
finitely generated section rings. Then we say Dy and D, are Mori equivalent
if the rational maps

¢p, : X =+ Proj (Rx(Ox (D)) (i =1,2)

are isomorphic: i.e. if there is an isomorphism between their target spaces
which makes the obvious triangular diagram commutative.

Note that the rational map ¢p, above is the same as the litaka fibration
of D; (in the sense of [L1, Theorem 2.1.33]).

Definition 1.2.5. A Mori chamber of X is the closure of a Mori equivaleﬁce
class in Pic (X)p with non-empty interior.

[HK, Proposition 1.11 (2)] gives the natural decomposition of the effective
cone of a Mori dream space into Mori chambers:

Proposition 1.2.6. There are finitely many contracting birational maps g; :
X --2 Y, with Y; a Mori dream space, such that

U 9r SA (V) x ex (gl)

~ gives a decomposition of the effective cone into closed rational polyhedral
subcones with dzsyomt interiors. Each gf SA (Y;) x ex(g;) is a Mori chamber
OfX ’

Above ex (g;) denotes the cone spanned by the exceptional prime divisors
of g;, and gf SA(Y;) = ex(g;) denotes the join of the cones gf SA (Y;) and
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ex(g;). We use the notation * to indicate that any element of the cone
97 SA (Y;) xex (g;) is written uniquely as the sum of the elements of the cones
97 SA (Y;) and ex (g;).

Here we point out some properties of the cone ex (g;).

Lemma 1.2.7. For any integral divisor E € ex(g;), h°(X,Ox(E)) = 1.
Moreover ex (g;) ts simplicial and its extremal rays are those cones spanned
by an exceptional prime divisor of g;. In particular N1, N2 € ex(g;) has the
same support if and only if they are contained in the relative interior of the
same face of ex (g;).

Proof. For any g, exceptional effective divisor F, the natural map Oy, —
9ixOx (FE) is isomorphic. The first claim follows from this. The second and
the third claims follow from the first one. O

1.2.2 The fan of Mori dream space

Next we introduce a fan structure on the effective cone of a Mori dream .
space:

Definition-Proposition 1.2.8. Let X be a Mori dream space. The set of
faces of Mori chambers of X forms a fan whose support coincides with the
effective cone of X. We denote it by Fan (X).

Remark 1.2.9. The fan structure on Eff (X) defined above is the extension
of that on Mov (X) introduced in [HK, Proposition 1.11(3)].

Proof. All we have to show is that the intersection of two cones of Fan (X) is
a face of each cone. Let 01,09 € Fan (X) be two cones. We show that o; Moy
is a face of os.

By the definition of a face, there exists classes of curves ¢; € N1(X)g
NY(X)¥ (i =1,2) such that ‘

R

C; C ez ={D e N'(X)g|D.L; > 0}

and
o; = Cﬁ N Eﬁ'

holds for i = 1,2.
Consider the following sequence of inclusions

o1Noy=(CiNCNE)NLE CCiNCaNly CCLNCy CCo.

From this we see that it is enough to show that C; N Cs is a face of Cy, since
we know that a face of a face again is a face (see [Fu2, page 10(4)]).
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Let g; : X --» Y; (i = 1,2) be the contracting birational map corre-
sponding to C;. We know that C; = P; x NV;, where P; = g; SA(V;) and
N; = ex (g:). | '

We divide the proof into the following claims:
Claim. 1. C;NCy = (P NPy) * (N1 NAN).

2. P1 NPy is a face of Ps.
3. Ni1NN; is a face of Ns.
4. C1NCy is a face of Cs.

Proof. (4) follows from (1)(2)(3). (1) follows from the uniqueness of the
Zariski decomposition of line bundles on a Mori dream space (see Proposition
1.2.10). (2) is stated in [HK, Proposition 1.11(3)]. We check (3). Let A =
> a;F; (a; > 0) and B = > b;E; (b; > 0) be two elements of A5 such that
A+ B e N;. By Lemma 1.2.7 h°(X, O(E)) = 1 holds for any E € N7, which
means that Supp (A+ B) C Ex(g1). Hence we see Supp (A4), Supp (B) C
Ex (g1), concluding the proof. O

O

1.2.3 Zariski decompositions and the fan

Next we give an explicit description for the Zariski decompositions (in the
sense of Cutkosky-Kawamata-Moriwaki) of line bundles on a Mori dream
space, which turns out to characterize Mori dream spaces’:

-~ Proposition 1.2.10. Let X be a Mori dream space. Consider the decompo-
sition of Eff (X)) into the Mori chambers as in Proposition 1.2.6:

Eff (X) = [ J c.

finite

Then for each chamber C there exists a small Q-factorial modification f; :
X --+ X; of X and two Q-linear maps

P,N :C — Eff (X)

such that for any Z-divisor D € C, D ~g P(D) + N(D) gives the Zariski
decomposition of D as a divisor on X;; i.e.

Lthe author would like to thank Professor Y.-H. Kiem for asking him if it could be the
case.



o P(D) €SA(X)).
e N(D)>0.
o The natural map

H(X, Ox(mP(D))) - H'(X, Ox(mD)), (L)

which is defined by the multiplication of a non-zero global section of the
line bundle Ox(mN (D)) is isomorphic for every sufficiently divisible
positive integer m.

Zariski decomposition of D is unique up to Q-linear equivalence.

Conversely a normal projective variety satisfying Definition 1.2.2 (1) and
having a decomposition of its effective cone into finitely many chambers C on
which Zariski decompositions are Q-linear actually is a Mori dream space.

Proof. Let C be a Mori chamber. Then we have a birational contraction
gi : X --» Y; to another Mori dream space Y;. We can replace X with one
of its SQMs so that g; becomes a morphism by (3) of Definition 1.2.2. Now
we define the maps P, N as follows:

o P(D) = ggiD.
e N(D)=D - P(D).

By Lemma 1.2.7 h%(X, Ox(mN(D))) = 1 holds for all sufficiently divisible
positive integer m. Thus the map (1.1) is uniquely defined up to constant.
When m is sufficiently divisible so that mP(D) is a Z-divisor, it is easy to
see that this map has the required properties.

The uniqueness of the Zariski decomposition follows from the fact that
the positive parts are movable. ‘ .

The last statement can be shown by checking the finite generation of a

Cox ring via exactly the same argument as in Lemma 2.2.2.
O

Now we define a stronger version of the Mori equivalence relation, which
is closely related to the fan of Mori dream spaces defined above:

Definition 1.2.11. Let X be a Mori dream space. Two line bundles L, M
are said to be strongly Mori equivalent if they are Mori equivalent and

Supp (N(L)) = Supp (N(M))

holds, where N (L) (resp. N(M)) is the negative part of the Zariski decom-
position of L (resp. M).



The notion of strong Mori equivalence can be re-formulated in the follow-
ing way.

- Lemma 1.2.12. Let L, M be two line bundles on'a Mori dream space X . L
and M are strongly Mori equivalent if and only if they are Mori equivalent
and B(L) = B(M) holds, where B denotes the stable base locus of the line
bundle. ' '

Proof. ‘if’ part is trivial, so we prove the ‘only if’ part.

Since L and M are Mori equivalent, the positive parts P(L) and P(M),
which are movable, are the pull-backs of some ample divisors under the same
contracting rational map ¢ : X --» Y. Therefore the stable base loci of P(L)
and P(M) are the same as the locus of indeterminacy of the rational map .
Now note that the stable base locus of L is the union of the support of N(L)
and the stable base locus of P(L). The same thing holds for M, concluding
the proof. : O

Now we state the relationship between the notion of strong Mori equiva-
lence and the fan structure of Mori dream spaces.

Proposition 1.2.13. For a Mori dream space X, a strong Mori equivalence
class coincides with the relative interior of a cone of Fan (X) and vice versa.

Proof. Let C be a Mori chamber and let C = P x N be the Zariski decompo-
sition of the chamber. By an elementary fact on convex cones, the join of a
face of P with a face of N is a face of C, and any face of C is of this form.
Moreover if C' is a face of C and C' = P x N is the decomposition,

relint __ prelint relint
C =P x* N

holds. ‘

Recall also that the relative interior of a face of P is a strong Mori equiv-
alence class. This follows from the fact that two semi-ample line bundles are
Mori equivalent if and only if the set of curves contracted by the morphisms
coincide.

The same thing also holds for N by Lemma 1.2.7.

Now Proposition 1.2.13 follows immediately from these facts.

1.3 Mori dfeam space and GIT revisited

In this section, we re-establish the relation between the variation of GIT quo-
tients (VGIT for short) of Cox rings and the geometry of Mori dream spaces. -
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To be precise, we give an explicit description for VGIT of actions of tori on
affine varieties with torsion divisor class groups. After that we establish the
correspondence between the fan structure defined in Definition-Proposition
1.2.8 , and the GIT chambers and cells. This refines a result of [HK], in
which they thought of the correspondence between the GIT chambers and
the Mori chambers. The results of this section will be used later in the proof
of Theorem 2.1.2 via GIT.

Remark 1.3.1. In [HK] they quoted some results on VGIT from the paper
[DH], in which every variety acted on by a reductive group is assumed to be
proper. Since we have to deal with affine varieties defined by Cox rings, we
need another version: namely, VGIT for affine varieties. One big difference
from the proper case is -the fact that for a 1-parameter subgroup A of the
group and a point z on the variety, the limit point lim; ,o A(¢)x does not
exist in general. As a consequence, the wall defined by the point £ may not
be a convex set, contrary to the proper case.

1.3.1 VGIT of torus actions on affine varieties

The purpose of this subsection is to give an explicit description for the VGIT
of actions of algebraic tori on affine varieties. First we fix some notations.

Let GG be a reductive group acting on a normal affine variety V. Assume
for simplicity that only finitely many elements of G acts on V trivially.

We denote by x(G) the space of characters of G, and by x.(G) the space | |

of 1-parameter subgroups of G. Note that there is a natural pairing

(x,\) =n,

where x € x(G), A € x.(G) and (x o A\)(¢) = t™

In the rest of this paper, for'a character x € x(G) we denote by U, :=
V*¢(Ly) the semi-stable locus of V' with respect to the linearization L,. Here
L,, is the linearized line bundle on V' whose underlying line bundle is trivial
and the action of GG is given by the formula

g ) =x(9)f(g7 )

forgEG,fe(’)VandeV.

We denote by g, : Uy = @y, = U,//G the quotient map.

Now we recall the numemcal crlterlon of stability for affine varieties [K,
Proposition 2.5]:

Proposition 1.3.2. Let G, V as above. Let x € x(G) be a character of G.
Then



1. z € V is L, semi-stable <= {(x,\) > 0 holds for any I-parameter
subgroup A € x.(G) \ {0} such that lim,_,0 A(t) - = exists.

2. z €V is Ly stable <= (x,A) > 0 holds for any 1-parameter subgroup
A€ Xo(G) \ {0} such that lim;_,q A(t) - = exists.

We rephrase this criterion in the case when G is an algebraic torus 7.
Let V C A be a T-equivariant embedding of V into an affine space. It is
well-known that A admits a weight decomposmon A= AX, where
Ay ={zeAlg-c=x(g)xVgeT}

Take a point z € V C A. According to the decomposition above, there
‘exists a unique decomposition z = > z,. Now since V is closed in A, we see

lim; o A(t) -z exists in V
<~ limp o A(t) -z existsin A ‘
< (x,A) >0 holds for all x such that z, # 0.

Let st (z) = {x € x(T)|zy # 0} C x(T') be the state set of the point
x € V. Note that there are only finitely many possibility for the set st (z),
since it is a subset of the finite set st (A) = {x € x(T)|A, # 0}.

Denote by D, C x(T)g the cone spanned by st (z). Then

x€x(T)

Proposition 1.3.3. For a character x € x(T),
1. z € V is semi-stable with respect to L, if and only if x € D, holds.

2. z € V is stable with respect to L, if and only if x € D2, where D,
denotes the interior of the set D, (possibly empty).

"Proof. This is almost tautological. From Proposition 1.3.2 and the argument
above, z € V' is semi-stable with respect to x if and only if (), A) > 0 holds
for any 1-parameter subgroup A which is semi-positive definite on the cone
D,: i.e. the set of such characters x is the double dual cone of the cone D,.
Since D, is rational polyhedral, the double dual coincides with itself by [Fu2,
(1) on page 9].

Stable case can be checked similarly. O

Set C = CT(V) = U,y Dz- We define the following notions according
to [DH].

Definition 1.3.4. A wall defined by « € V is the set D,. A GIT chamber
is a connected component of the set C' \ | J,cy 0Ds-
Two characters x, X’ are said to be wall equivalent if V55¢(x) = V*55(/)

holds. A connected component of a wall equivalence class, which is not a
chamber, is called a (GIT) cell.



Definition 1.3.5. Two characters x, x’ are said to be GIT equivalent if
Ve (x) = V*(x') holds.

Via similar arguments as in [DH, Theorem 3.3.2] and [DH, Lemma 3.3.10],
we can check the following

Lemma 1.3.6. 1. A GIT chamber is o GIT equivalence class.
2. For any GIT chamber C,

c= (] D
zeVs(C)

holds.

3. A cell is contained in a GIT equivalence class.

1.3.2 Strong Mori equivalence = GIT equivalence

Let X be a Mori dream space, and fix a Cox ring R = Rx(T"), where I' is a
finitely generated group of Weil divisors as usual.

The purpose of this subsection is to show that the following three kinds
of sets are the same:

e the relative interior of a cone of Fan (X).
e a strong Mori equivalence class.
e a GIT equivalence class.

In the paper [HK], they proved this fact only for the cones of maximal di-
mension. We need the refined version as above for the two proofs of Theorem
2.1.2. '

We first recall some basic facts about the relationship between Mori dream
space and VGIT (see [HK] for detail).

Reminder 1.3.7. Set Vx = Spec(Rx(I')). Recall that the torus Tx :=
Homg,(I', k*) acts naturally on Vx as follows: for any element g € T, a
divisor D € T and f € H%(X, Ox(D)), set

g-f=9(D)f.
As stated in [HK, Theorem 2.3], we have a natural isomorphism

7,[) : X(TX)R — F]R =~ Pic (X)]R
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in such a way that D € I" corresponds to the character evp : g — g(D).

For any D € T, it is easy to see that Qe, = ProjRx(Ox(D)). In
particular, if we take an ample A € I', gy, = idx holds.

By the universal property of categorical quotients, we obtain the rational
map ' '

X = QevA -—? QevD7

and it is easy to see that this coincides with the rational map @o, (py : X --»
Proj (Rx(Ox(D))). '

Summing up, we obtain the following commutative diagram.

Vo2 (ev 1) ~—2— Vo (ev4) (V5 (evp) Vs (evp)
/T | Geva /T ALY
Vei(evy) /T <= V*s(ev )\ V*(evp) /T ——> V=(evp)//T
Xeomm o e ~ Proj Rx (Ox (D))

In the diagram, C denotes an open immersion and /T (resp. //T) denotes
a geometric (resp. categorical) quotient by the torus T

Now we can state our main observation:

Proposition 1.3.8. Two line bundles L, M on X are strongly Mori equiv-
alent if and only if Ugy, = Usy,, t.e. evy and evy are GIT equivalent. It
is also equivalent to saying that the two line bundles are contained in the
relative interior of the same cone of Fan (X).

Proof. The last line follows from Proposition 1.2.13. For the first line, the
arguments in [HK, Proof of Theorem 2.3] literally works: in the proof they
only proved that the relative interiors of the Mori chambers are identified
(via ) with the GIT chambers, but the arguments can be applied more
generally to arbitrary strong Mori equivalence classes.

We only sketch the proof (see [HK, Proof of Theorem 2.3] for detail).

Fix a character y which corresponds to an ample line bundle on X. For
an arbitrary character y € CT(V) N x(T), let ¥(y) = P + N be the Zariski
decomposition of the corresponding Q-line bundle.

Then we can show that

Uy \ Uy = g (Supp (NV))
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holds in codimension one.
This follows from the following equality

H(X, Ox(mip(y))) = H*(Uy, Lg™)T,

which is the same equation as (2.3.2) in [HK, Proof of Theorem 2.3|, as
pointed out there. From this we can immediately conclude that GIT equiva-
lence implies the strong Mori equivalence. Conversely if we assume the strong
Mori equivalence of ¥(y) and 9(z) for two characters y and z, then we see
that @y = @, and that U, and U, coincide in codimension one. The rest of
the arguments is precisely the same as in [HK, Proof of Theorem 2.3]. O

Corollary 1.3.9. Any GIT equivalence class is contained in o GIT cell.
Combined with (3) of Lemma 1.3.6, this means that a GIT equivalence class
and a cell are the same thing in this case.

Proof. Take o € Fan(X). If 0" is not contained in a cell, the stable
loci are not constant on it: i.e. there exists a point z € Vx such that

D2 N omelint £ () but o™ ¢ DS. Since D, and o are rational polyhedral
. cones, this means c"®" ¢ D, contradicting the fact that o™¥" is a GIT
equivalence class. O
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2 —

Images of Mori dream spaces

2.1 Summary

The purpose of this chapter is to study the geometry of the images of mor-

phisms from Mori dream spaces. We rely on the ring-theoretic viewpoint of

the geometry of Mori dream spaces, and from this perspective what we do is

the study of the behavior of multi-section rings under surjective morphisms.
The first result is the following

Theorem 2.1.1. Let X,Y be normal Q-factorial projective varieties, and
f: X =Y be a surjective morphism. If X is a Mori dream space, then so
isY.

We give an application of Theorem 2.1.1. When chark = 0, it is known
(e.g. see [FG2, Corollary 5.2]) that the image of a variety of Fano type again
is a variety of Fano type. Recall that a variety of Fano type is a Mori dream
space at least in characteristic zero ([BCHM, Corollary 1.3.2]).

Theorem 2.1.1 can be used in another proof of this result. In [GOST,
Theorem 1.2], it was shown that a Mori dream space of globally F-regular
type is a variety of Fano type and vice versa. Since the property of being
of globally F-regular type is also preserved under surjective morphisms, by
using Theorem 2.1.1, we can avoid the arguments in [FG1] which uses the
~ theory of variation of Hodge structures (see [GOST] for detail).

We also expect that Theorem 2.1.1 will be useful to construct new exam-
ples of Mori dream spaces (see Example 2.7.2).

Here we explain the structure of the proof. Theorem 2.1.1 will be proven
by checking that a Cox ring of Y is of finite type over the base field (see
Fact 2.4.3). We deduce it from the finite generation of a Cox ring of X. By
taking the Stein factorization of f, the proof is divided into two parts: the
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case when [ is an algebraic fiber space (§2.2) and the case when f is a finite
morphism (§2.3). A finite morphism will be further decomposed into the
separable part and the purely inseparable part, and treated independently
(but with somewhat similar ideas). Combining them, Theorem 2.1.1 will be
proven in §2.4.

In [B], it was shown that the projective GIT quotient of an invariant open
subset of a Mori dream space by an action of a reductive group is a Mori
dream space. Our proof of Theorem 2.1.1 for finite morphisms seems to have
something in common with the arguments in [B].

Now let f : X — Y be a surjective morphism between Mori dream spaces.
We denote the fan of X (resp. Y) by Fan (X) (resp. Fan (Y)). We establish

the comparison theorem of the fan of ¥ with that of X.
' To see this, note that we can regard Pic (Y)p as a subspace of Pic (X)g
via the natural injection

f*: Pic (V)i — Pic(X)g,

so that we can restrict Fan (X) to the fan on Pic(Y)y by intersecting the
cones of Fan (X) with Pic (Y')g. Then we have the following theorem.

Theorem 2.1.2. With the same assumptions as in Theorem 2.1.1, the fan
of Y coincides with the restriction of the fan of X to the subspace Pic(Y)g C
Pic (X)g: i.e.

» Fan (V) = Fan (X)|p;c (Y)g

holds.

See Example 2.7.1 for an illustration of Theorem 2.1.2.

We give two proofs to Theorem 2.1.2 corresponding to the two charac-
terizations of the relative interiors of the cones explained above. These are
treated respectively in §2.5 and §2.6. In both of the proofs, a result on the
behavior of multi-section rings under finite morphisms (Theorem 2.3.1) is
repeatedly used.
~ In the final section, we extend our results to Q-factorial Mori dream
spaces and Mori dream regions.

2.2 Finite generation of multi-section rings
on Mori dream space

We first prepare the notation for multi-section rings.
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Definition 2.2.1. Let X be a normal variety with H%(X,Ox) = k. Let
I' ¢ Wdiv (X) be a sub-semigroup of Weil divisors. The multi-section ring
Rx(T") associated to I is the [-graded k-algebra defined by

Rx(T) = @) H*(X, 0x(D)).

Der

Similarly for a divisor D on X, we define the section ring of D by

Rx(0x(D)) = & E°(X, 0x(mD)).

m>0

In this section we prove the finiteness of multi-section rings on a Mori
dream space. This has first been proven in [B, Theorem 1.2] by using the
finite generation theorem for invariant subrings. Our proof is based on the
Zariski decompositions on Mori dream spaces, hence is more geometric.

Lemma 2.2.2. Let X be a Mori dream space. LetT' C Wdiv (X) be a finitely
generated group of Weil divisors. Then the multi-section ring Rx(T') is of
finite type over k. More generally, for any open subset U C X, Ry(L|y) is
of finite type over k. '

“Proof. We may assume that the natural map I' — Div (X )g is injective. To
see this we borrow some ideas from [B].

In general we can find a splitting I' = I'g & I'; such that I'y coincides with
the kernel of I' — Div (X)g. Then we see

Rx(T') 2 Rx(I')[y).

Note that I'; maps injectively to Pic (X)¢, and that I'g is a finitely generated
free abelian group. Thus we may assume I' = I';. '

Let C be a Mori chamber. Set I'e = I' N C. Note that it is a finitely
generated semigroup. Let g; : X --» Y; be the birational map corresponding
to C.

Recall from the proof of Proposition 1.2.10 that for all D € T'¢

D = g7 9D + (D — g; g: D),

as an equality of Q-divisors, gives the Zariski decomposition of D. Since I’
is finitely generated and there are only finitely many Mori chambers, there
exists a positive integer m > 0 such that for any Mori chamber C and D €
(mI')¢, the positive and the negative parts of the above decomposition are
both Z-divisors.

We can replace I' with mI', since Rx(mI') C Rx (") is finite.
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With these preparations, we can compute Rx(I'c) as follows:
Rx(I'c) = Ry(P(I'c))[N (Tc)]-

We construct an isomorphism ¢ from the LHS to the RHS. Choose 0 # sp €
H%(X,Ox(D)) for each D € N(I'¢) such that sp ® spr = sp4pr holds for all
D,D’. Given s € H(X,Ox(D)), where D € T, set

L8

p(s) =s® Sz_vl(D)XN(D)-

Above xN®) is the monomial corresponding to N(D) € N(I'¢). Due to the
property of the Zariski decompositions, ¢ is an isomorphism.

Now since P(I'¢) is a finitely generated semigroup of semi-ample divisors,
and N(T'¢) is a finitely generated semigroup, we see that Rx(I'¢) is of finite
type over k (see [HK, Lemma 2.8]). ’

Since there are only finitely many chambers, Rx(I") itself is finitely gen-
erated over k (by the union of finite sets of generators for each Rx(I'¢)).

Finally, the conclusion for general open subsets U follows from the case
when U = X (see the last two paragraphs of the proof of [B, Theorem 1.2]).
Note that this is the only place we need the finite generation theorem for
invariant subrings. , v O

2.3 Finite generation of multi-section rings
under a finite morphism

In this section we prove that finite generation of multi-section rings is invari-
ant under finite morphisms.

Theorem 2.3.1. Let f : X = Y be a finite surjective morphism. Let T' C
Wdiv (Y') be a finitely generated semigroup of Weil divisors. Then the natural
morphism of multi-section rings Ry (I') C Rx (f*I") is finite if one of the rings
is of finite type over k. Moreover, Ry (L) is of finite type over k if and only
if Rx(f*T) is.

See Definition 2.2.1 for the definition of multi-section rings.

2.3.1 Preliminary for the proof of Theorem 2.3.1

In the proof of Theorem 2.3.1, we frequently use universal torsors. We pre-
pare some notations here.
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Definition 2.3.2. Let I' ¢ Wdiv (Y') be a finitely generated semigroup of

Weil divisors. We set
Sy(T) = P ov(D),

Der

and call it the universal torsor associated to I.

Remark 2.3.3.
1. Note that o
HO(Y,Sy) = @ H(Y, Oy (D)) = Ry(T)
Del
holds.

2. Ry(T") does not change if we replace Y with the non-singular locus of
Y. When f: X — Y is a finite morphism, we may assume that X,Y
are non-singular by removing suitable ‘closed subsets of codimensions
at least two. Hence we will freely assume that the varieties involved
are non-singular.

3. Note that if we assume that Y is non-singular, then Sy is a flat Oy
module.

4. Rx(f*T) = HY(Y, f.Sx(f*T)), and we can calculate

f:Sx (1) = L @ Ox(f*D) = @ OY(D)®byf*OX = Sy(I)®oy fLO0x.

DeT DeT

Now we go. back to the proof Theorem 2.3.1. ‘if’ part of the second claim
follows from the first claim, so we prove the first claim of Theorem 2.3.1 and
the ‘only if’ part of its second claim.

Let :
X&vhy (2.1)
bethe decomposition of f into the purely inseparable part g and the separable -
part & (i.e. Y is the normalization of Y in the separable closure of k(Y) in
k(X).) |

~ Therefore we may assume that f is either purely inseparable or separable.
We treat each case separately in the following two subsections, although the
ideas are basically the same.
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2.3.2 Purely inseparable case

Assume that f is a purely inseparable morphism. We can divide the extension
kE(Y) C k(X) into subextensions of degree p, so that we may assume that

deg (f) =p.
The key idea for this case is to describe f as a “uniform geometric quo-
tient” by an action of a rational vector field on X:

Proposition 2.3.4. Let f : X — Y be a finite surjective morphism of degree
p between normal varieties. Then there exists a rational vector field on X
i.e. 6 € Deryy)k(X) such that

Oy = 0% ={f €0x|sf =0}

holds. Moreover this quotient is uniform; i.e. for a flat morphism Z — 'Y,
set W =X Xy Z and dz = 6 Qo, lo,. Then

Oy = 0% | (2.2)
holds.

Proof. First half is well-known (see [RS, p. 1206]). We check the uniformity
(2.2). ‘ .
- Consider the following sequence of Oy modules, which is exact by defini-
tion:
0— Oy = Ox 5 k(X) (2.3)

(since f is finite, we dropped f.). Since Z is flat over Y, by tensoring ®o, Oz
with (2.3) we obtain

0— OZ — OW 5—Z> k(X) Koy Oz,

concluding the proof.
' O

Corollary 2.3.5. With the same notations as in Proposition 2.8.4, assume
that Z and W are both normal varieties. Then

HO(W, 0w ) C H(Z,05) C H' (W, Oy)

holds. In particular HY(W, Ow) is of finite type over k if and only if H(Z, Oz)
is, and in that case H*(Z,0z) C H*(W, Ow) is finite.
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Proof. By Proposition 2.3.4, we see that W — Z is a quotient by the induced
vector field 6z on W. Therefore

Oz = (Ow)’
holds. Since a derivation kills the p-th powers of functions,
0%, C (Ow)%? =0y

holds. Taking H°, we obtain the proof for the first line.

Next note that if R is an algebra of finite type over k, then RP also is of
finite type over k and R is a finitely generated module over RP. ‘only if’ part
of the second line follows from this. To see ‘if’ part, note that the extension
k(W) C k(Z) is finite and Z is an integral extension of W. O

Proof of Theorem 2.8.1 when f is purely inseparable.

Suppose that f is purely inseparable. As mentioned before, we may
assume that deg (f) = p. . '

Note that we have a natural inclusion Sy (I') C f.Sx(f*T) of quasi-
coherent sheaves of Oy algebras, which in turn is the product of the natural
map Oy C f.Ox with ids, ) (Remark 2.3.3 (4)).

By Remark 2.3.3 (2)(3), we may assume that X,Y are non-singular and
hence Sy (I") is a torus bundle over Oy.

Therefore we can apply Corollary 2.3.5 for f : X — Y and the morphism
Z = Speco,Sy(l') — Y. Since H*(Z,0z) = Ry(T) and H'(W,Oy) =
Rx(f*T") (see Remark 2.3.3 (1) and (4)), we obtain the desired conclusions.

O

2.3.3 Separable case

Assume that f is separable. This case is relatively easier; by passing to
a Galois closure, we can describe Y as a uniform geometric quotient by the
Galois group, so that we can apply the finite generation theorem for invariant
subrings.

Proof of Theorem 2.8.1 when f is separable. Suppose that f is separable. Let
k(W) be the Galois closure of k(Y') C k(X), and let W be the normalization
of X in k(W). If we denote by G the Galois group of W/Y, we see that G
acts on W and Y & W/G. By removing suitable closed subsets, we assume
that X,Y, W are all non-singular.

Since W/X also is Galois, it is the uniform geometric quotient of the

action of Gal(W/X) on W. Since Sx(T') is locally free on X, it is a flat Ox
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algebra, and hence we have
SX(P) — SW(F)GGI(W/X).

In particular we see that Rx([') = Ry (T')%%MW/X), Therefore Ry (T') is an
integral extension of Rx(T").

Suppose that Rx(I') is of finite type over k. By the finiteness theorem
for integral closures, we see Ry (') also is of finite type over k.

Similarly, we can show that Ry (T') = Ry (I')¢. Since G is a finite group,
we obtain the finiteness of Ry (T").

Finally, the finiteness of Ry (I') C Rx(f*I") follows from these descrip-
tions, concluding the proof. O

2.4’ Proof of Theorem 2.1.1

We prove Theorem 2.1.1 by using the fact that the finite generation of the
Cox ring characterizes Mori dream spaces.
First of all, we recall the definition of Cox rings.

Definition 2.4.1. Let X be a normal projective variety with finitely gener-
ated Cl(X). Let I' € Wdiv (X) be a finitely generated subgroup such that
g is naturally isomorphic to C1(X)g,. A Cox ring of X is the multi-section
ring
Rx(T) = P H°(X,0x(D))
Der
for such T'.

Remark 2.4.2. Our definition of Cox rings depends on the choice of T", but
the basic properties such as finite generation does not depend on the choice.
There is a canonical way to define Cox rings (see [ADHL, Section 4.2]),
and the finite generation of the Cox ring in our sense is equivalent to the
finite generation of their Cox ring. See [GOST, Remark 2.17] for detail.

The following is the characterization of Mori dream spaces via the finite
generation of their Cox rings.

Fact 2.4.3. [HK, Proposition 2.9] says that a normal projective variety sat-
isfying Definition 1.2.2 (1) is a Mori dream space if and only if a Coz ring.
of the vartety is of finite type over k.

Now we go back to the proof of Theorem 2.1.1. First of all, we check the
condition (1) of Definition 1.2.2 for Y
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Lemma 2.4.4. Under the same assumption as Theorem 2.1.1, Pic(Y) is
finitely generated and Pic (Y)g ~ N* (Y)q holds.

Proof. Let
X&yvhy

be the Stein factorization of f. Let L € Pic(Y') be a numerically trivial line
bundle. Then f*L is also numerically trivial by the projection formula of
intersection theory. By the assumption, there exists a positive integer m such
that f*L®™ =~ Ox. By taking g, and using the projection formula, we see
- that h*L®¥™ = Oy. Now suppose L = O(D) for a Cartier divisor D. Since
h is a finite morphism, we have h.h*D ~ deg(h)D. Hence mdeg(h)D ~
hih*mD ~ 0. Thus we checked the second claim.

In order to show that the finite generation of Pic(Y’), consider the fol-
lowing diagram:

m—ﬁwm(yeymm—»mwﬂm~+o

(
oo
0 — Pic®" (X) — Pic (X) — Pic/™* (X) — 0

In the diagram above, Pic*™ (X) is the torsion part of Pic(X) and
Pic/™ (X) is the quotient of Pic (X) by Pic™"™ (X).

Using the similar arguments as above, we can show that the group ho-
momorphism f* : Pic/™ (V) — Pic/™ (X) is injective. Hence we see that
Pic/™ (V) is finitely generated.

Finally we see the finiteness of the torsion part. As we checked, there ex-
" ists a non-zero constant m such that for any numerically trivial line bundle
LonY, L®™ = Oy holds. This means that Pic® (Y) is contained in the sub-
group of m-division points of Pic® (Y'), which is a finite set since Picg,/k with
its reduced structure is an abelian variety (see [FGIKNV, Remark 9.5.25]).
Together with [FGIKNV, Corollary 9.6.17], the finiteness of Pic*™ (V) fol-
lows. O

Remark 2.4.5. Using similar arguments we can directly check the following
lemma, which are worth noting.

For a surjective morphism f : X — Y between normal projective vari-
eties, f* : Pic (Y)g — Pic (X)g is injective. We regard Pic (Y)g as a subspace
of Pic (X)g via the mapping f*. Then -

Lemma 2.4.6. With the same assumptions as in Theorem 2.1.1, the follow-
ing equalities hold:
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1. Nef (V) = Nef (X) NPic(YV)p = SA(X) NPic(Y)g = SA(Y).
2. Eff (Y) = Eff (X) NPic (V). '
Now we go back to the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. By Lemma 2.4.4 and Fact 2.4.3, it is enough to show
the finiteness of a Cox ring of Y. ' '

Set I' € Div(Y) be a finitely generated subgroup of rank p(Y) whose
image in Pic (V) is of finite index. By Lemma 2.2.2, we know that Rx(f*T)
is of finite type over k. On the other hand

Rx(f'T) = Ry (R'T)

holds, since g is an algebraic fiber space. Since A is finite, by Theorem 2:3.1
we see that Ry (I") is of finite type over k. O

2.5 Comparison of the fans -without GIT-

In this section we prove Theorem 2.1.2 via direct arguments. The problem
is reduced to the following

Theorem 2.5.1.> Let f : X — Y be a surjective morphism between Mori
dream spaces. Then two line bundles L and M on Y are strongly Mori
equivalent if and only if f*L and f*M are strongly Mori equivalent.

See Definition 1.2.11 for the notion of strong Mori equivalence.
We first check that Theorem 2.1.2 actually follows from this.

Proof of Theorem 2.1.2. Take any o € Fan (V). By Proposition 1.2.13 and
"Theorem 2.5.1, there exists a cone & € Fan (X) such that

O_relint — Zrelint A Pic (Y)R

holds. Since RHS is not empty, we can check

o = (T A Pic (Y)g) = = N Pic (Y)g.

Conversely, let ¥ € Fan (X) be a cone which intersects with Pic (Y)g. Let
Y be the largest face of ¥ such that :

5 N Pic (Y)g = = N Pic (¥)g
holds. Note that ¥ N Pic (Y)g # 0 holds.

22



Again by Proposition 1.2.13 and Theorem 2.5.1, there exists a cone o €
Fan (V') such that ‘ ‘
Elrelmt N Pic (Y)]R — O'Telmt.

Taking the closures, we obtain
Y NPic(Y)g = NPic(Y) = 0.
O

Proof of Theorem 2.5.1. Note first that the stable base loci of line bundles
are compatible with pull-backs via surjective morphisms between projective
varieties. Therefore, in view of Lemma 1.2.12, it is enough to show the
following claim:

Claim. L, M are Mori equivalent if and only if f*L and f*M are Mori
equivalent.

Let
fL, f*M € Eff (X) N f*Pic (V)

be Mori equivalent line bundles. We prove that L, M are Mori equivalent.
First of all, take the Stein factorization of f:

X5y hy

Consider the following diagram.

Proj Rx (f*M) ~Proj Rx(f*L)
7
(pf*& ~ N _ - (Zf*L
= ~X7 =
Proj Ry (h*M) o ProjRy(h'L)
¥
<Ph*1\71 > Phd éh*L
\Y/

In the diagram above, the top horizontal arrow is an isomorphism which
makes the upper triangle commutative, whose existence is guaranteed since
f*L and f*M are Mori equivalent. Note that the two side vertical morphisms
are isomorphisms, since g is an algebraic fiber space.

Now it is easy to see that the isomorphism from Proj Rg,(h*M ) to Proj Ry (h*L)
which is obtained by composing the three isomorphisms in the diagram is
compatible with the rational maps @p=pr and @p+r.
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Therefore we obtain the following diagram.

Proj Ry (h*M) - Proj Ry (h*L)

A N /7

wh*ﬁ R : e éh*L
~ Y -~

Proj Ry (M) h Proj Ry (L)
A3 N P 7
IV - e L

~ Y ~

In the diagram above, the top horizontal arrow is the isomorphism ob-
tained as above, hence the top triangle is commutative. We can show that
the two side vertical morphisms are finite, since h is. In fact, by Theorem
- 2.3.1 Ry(h*L) is finite over Ry (L) (take as I' the free abelian group gener-
ated by L. Then Ry (L) = Ry(T') holds). The finiteness of the morphism
Proj Ry (h*L) — Proj Ry (L) follows from this. _ '

Finally, there exists an isomorphism from Proj Ry (M) to Proj Ry (L)
which are compatible with any other maps. In order to prove this, recall the
following decomposition of the morphism A from §2.3:

|44

L\

Y —>5—>Y

In the diagram above, S is the separable closure of 57/ Y and W is the
Galois closure of S/Y.

The function field of Proj Ry (M), as a subfield of the function field of
Proj Ry (h* M), can be obtained by repeatedly taking the subfields of elements
killed by vector fields which corresponds to a chain of degree p subextensions
of Y — S (see Proposition 2.3.4), taking the algebraic closure in k(W) (see
[L1, Example 2.1.12]), and taking the fields of invariants by the Galois group
G(W/Y) (see the arguments in §2.3.3). Note that these vector fields and
Galois extensions depend only on the function fields of Proj Ry (h*M), Y and
Y. Therefore Proj Ry (M) and Proj Ry (L) should be isomorphic compatibly
with the isomorphism between Ry (h*M) and Ry (h*L). _

Conversely, take two Mori equivalent line bundles L, M on Y. We show
that f*L and f*M are Mori equivalent. For this, we can trace back the
arguments above.
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Consider the following diagram:

Proj Ry (h* M) Proj Ry (h*L)
A 7
pwsi~__cw

TY”

In the diagram above, the bottom horizontal arrow ¢ is an isomorphism
which makes the bottom triangle commutative. The existence of such an
isomorphism is guaranteed by the Mori equivalence of L and M.

Note that the function field k(Proj Ry (h*L)) is the algebraic closure of
k(Proj Ry (L)) in k(X). The same thing holds for M, so we see that the two
function fields k(Proj Ry (h*L)) and k(Proj Ry (h*M)) coincide as subfields
of k(X). ‘ : 4

By Theorem 2.3.1, three vertical morphisms are finite. Hence we see
that Proj Ry (h*L) (resp. Proj R (h*M)) is the normalization of Proj Ry (L)
(resp. Proj Ry(M)) in the same subfield of k(Y"). Therefore the isomorphism
¢ lifts to an isomorphism between Proj Ry (h*L) and Proj Ry (h* M) making
everything commutative. Since ¢ : X — Y is an algebraic fiber space, this
isomorphism guarantees the equivalence of f*L and f*M, concluding the
proof. ‘

O

2.6 Comparison of the fans -via GIT—

In this section we prove Theorem 2.1.2 via the GIT interpretation of the
relative interiors of the cones (see Proposition 1.3.8). : :

To carry out the proof, we prepare some notations. Let f : X — Y
be a surjective morphism between Mori dream spaces. Fix a subgroup I' C
Div (Y') of rank p(Y") which maps injectively to Pic (Y),,. Fix also a subgroup
I'x C Div(X) of rank p(X) mapping injectively to Pic (X)q, and f*T' C I'x.

For such a pair (I', I'x), the natural ring homomorphism f* : Ry (I') —
Rx(I'x) induces the morphism of affine varieties

Vi : Vx = Spec Rx(I'x) — Vy = Spec Ry(I‘).
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Set T'x = Hom(I'x, k*) and Ty = Hom(T', ¥*). Via f*T" C I'x, we obtain
the surjective morphism of algebraic tori Ty : Tx — Ty. Tx (resp. Ty) acts
on Vx (resp. Vy) via the grading, and V; is an equivariant morphism with
respect. to these actions of tori and T}.

The following is the main ingredient of the proof of Theorem 2.1.2:

Proposition 2.6.1. Let f: X = Y be a surjective morphism between Mori
dream spaces. Then if we choose an appropriate pair (T,FX) as above, the
following holds:

Let Vy : Vx — Vi be the associated morphism, and evy, € x(Ty) be the
character corresponding to o line bundle L on'Y. Then

Vi (Vi (eve)) = Vilevyer) (2.4)
holds.
Remark 2.6.2. v

Vit (Ve (evr)) = Vi (evyer)

is not correct in general.

The conclusion of Proposition 2.6.1 does not hold for an arbitrary equiv-
ariant morphism between affine varieties. For example, consider the mor-
phism _

0 : A" = AN (2, ... z0) > 20,

action of G,, on both sides with weights one, and the character x of weight
one. Then ‘

(A")*(x) = A"\ {0} 2 (AT \ {0}) x A"™" = o™ ((A)*(x))-
The following is the GIT counterpart of Theorem 2.5.1

VCorollary 2.6.3. With the same assumptions as above, let L, M be line
bundles on' Y. Then Vi(evy) = Vi (evy) holds if and only if Vi (evysp) =
Vi (evyspr) holds. ‘

Proof. This follows from Proposition 2.6.1 and the surjectivity of V. O

Now it is clear that Theorem 2.1.2 immediately follows from Corollary
2.6.3, in view of Proposition 1.3.8 (see also the proof of Theorem 2.1.2 in
Section 2.5).

In the rest of this section, we prove Proposition 2.6.1. The following
lemma; is the key to the proof:
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Lemma 2.6.4. Let G be a reductive group. Let w:Z — W be a finite mor-
phism between affine varieties such that G acts on Z and W equivariantly.
Let L be a linearization on W. Then

‘W—l(Wss(E)) — ZSS(W*E)

holds.
Proof. See the proof for [GIT, Theorem 1.19] (and [GIT, Appendix to Chap—
ter 1, §C] for positive characteristic cases). O

Proof for Proposition 2.6.1. We need some preparation. Take the Stein fac-
torization ,

x5vhy
of f. Fix a subgroup I'y C Div (Y) of rank p(Y) which maps injectively
to Pic (37)@ and containing A*T". Similarly take I'x C Div (X) of rank p(X)
which maps injectively to Pic (X), and containing ¢g*I'y. Define groups @
and R by the following exact sequences: :

0T 25Ty 5Q—0

05Ty HTx =+ R—0.

For simplicity we replace I'y and I'x if necessary so that the quotients @
and R are both torsion free. Taking the duals of these sequences, we obtain
the following exact sequences of algebraic tori:

0o Tp— Ty =Ty -0
0—=Tgp—Tx =Ty — 0.

In particular, we obtain the following sequence of surjective group homo-
morphisms

Ty 2% Ty 25 T (2.5)
Next consider the following diagram.
Vx
WRl/TR
J —= Vi
™ l/ To
it Y
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In the diagram above I = Spec (Ry(h'T)) and J = Spec (Rx(g*T'y)), and
mr and 7y are natural projections. It is easy to see that they are categorical
quotients by T and Tf, respectively.

Note that T'x acts on Vx, Ty on J and V5, and Ty on [ and Vy Moreover
these actions are compatible with respect to the group homomorphisms (2.5).
Since these homomorphisms are surjective, semi-stability of points on V3 with
respect to the action of Ty is equivalent to the semi-stability with respect to
the action of T'x (similar for the points on I, Vy, and J respectively).

Now we go back to the proof of Proposition 2.6.1.

By Lemma 2.6.4, we see that

FY (Vg (evr)) = I**(evprr)

holds, since I — Vy is finite (Theorem 2.3.1).
Next we prove the following

Claim. :
7'['6_21 (Iss(elvh*‘]_',)) ‘: V{js (e’l}h*L) .

Proof of the clatm. The inclusion C is the direct consequence of the defi-
nition of semi-stability, since mg is affine. Conversely, suppose that z €
Vz*(evp=r). Then there exists a non-zero section s € Ry (I'y) which is semi-
invariant with respect to the character evp«r, and s(x) # 0 holds. Note that
semi-invariance of s with respect to the character ev,«z, and the action of Ty
implies that s'is the global section of some positive multiple of A*L, hence
5 € Ry(h*T"). Thus we obtain the other inclusion. O

Since J — V5 is isomorphic, there is nothing to argue.
Finally by arguing as in Claim, we can show that

T (J*(evpp)) = Vi (evpr)

holds. Summing up, we obtain the desired equality. I

2.7 Examples

Example 2.7.1. We borrow from [AW, Example 5.5].

Let X be the blow-up of P? in two distinct points, say p; and p,. X is
toric, hence is a Mori dream space. Let Fy, F» be the exceptional divisors
corresponding to p;,pe respectively, and let ¢ be the line passing through
the points p;,ps. Let E3 be the class of the strict transformation of a plane
containing £. We can show that X has a flopping contraction which contracts
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the strict transformation of the line /. Let X’ be the flop. Using the toric
description, we see that this is an Atiyah flop.

The effective cone of X is spanned by the divisors E;, and the movable
cone is the union of the semi-ample cones of X and X'. SA (X)) is spanned by
three divisors H, H— E, and H — F». SA (X') is spanned by H — F1, H — Es;
and Fj.

A slice of Eff (X), together with its Mori chamber decomposition is de-
scribed in the following figure: '

Es
SA (X)
H — E2 A (X H - El
H
E1 \ E2
Eff (V)

Let Y be the blow-up of P2 in p;. Then the effective cone of Y, together
with its decomposition into Mori chambers sits in Eff (X) as indicated in the
figure above (Eff (V') is denoted by the double line).

As indicated in the figure above, Eff (Y) is mapped onto the cone spanned
by Fy and H—FE7. The cone spanned by H and H — Ej is the semi-ample cone
of Y, and that spanned by H and E; corresponds to the Mori chamber of ¥
whose interior points correspond to the line bundles defining the birational
contraction to P2, ;

Now take a coordinate on P2 such that p; = (0:0:0: 1) and py = (0 :
0:1:0). Consider the action of Zy on P? defined by (z: y: 2: w) — (x:
y:w: z). This action lifts to X', and let X — Z be the quotient morphism.
The effective cone of Z together with its Mori chamber decomposition sits in
that of X as follows (Eff (Z) is denoted by the double line):
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Ey B+ B E,

As indicated in the diagram above, we can see that Z has two Mori
chambers other than the semi-ample cone (recall that SA (Z) coincides with
the restriction of SA (X) to Pic (Z)g. See Lemma 2.4.6(1)).

Let Z’ be the quotient of X’ by the involution induced from that on X.
Again by Lemma 2.4.6(1), we can check that the Mori chamber of Z obtained
by restricting SA (X') is the semi-ample cone of Z’. The morphism defined
by the ray separating SA (Z) and SA (Z') is the flipping contraction of Z
which contracts the image of £ under the quotient morphism X — 7, and 2’
is the flip.

This example shows that a Mori chamber of the target space Z is not
necessarily a face of a Mori chamber of the source X.

Example 2.7.2. This example is well-known to experts, but we give a de-
tailed explanation for the sake of completeness. The author learned this
example from Doctor Tadakazu Sawada.

Suppose that p > 0. Let A2 C P? be an standard embedding of affine
2-plane with coordinate functions z and y. Take f = f(z,y) € klz,y]
Consider the rational vector field defined by :

_ofo ofo

According to [RS], we obtain the quotient of P? by 6. That is, we obtain
a purely inseparable finite morphism 7 : P2 — Y of degree p to a normal
projective variety Y such that Oy = O3,. It is easy to see that kfz,y]° =
Klo?, 37, £ (s,y)] = k[X,Y, Z]/(27 - f(X,Y)) holds, |

Set f(z,y) = zPy+zy?. By the Fedder’s criterion for F-purity ([F, Propo-
sition 1.7]), we can check that the singularity (0 € k[z,y]°) = k[[X,Y, Z]]/(ZP—
XPY = XYP) is not F-pure. Therefore Y is not globally F-regular, despite
P? is. :
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On the other hand we can show that Y is a Mori dream space. Firstly
Picard number of Y is one since 7* : Pic (Y), — Pic (IF’Q)R is injective. We
can also check that Y is Q-factorial:

Claim. Let f : X — Y be a purely msepamble finite morphzsm between .
normal varieties. If X is Q-factorial, so is Y

Proof. Everything follows from the following lemma, Wthh can be shown
easily:

Lemma 2.7.3. Under the same assumptions, let (U, fu)y be a Cartier divi-
sor on X, where X = JU is an open covering of X and fy € k(X). Then
the pushforward of the Weil divisor corresponding to (U, fu )y corresponds to
the Cartier divisor (U, N(fv))u, where N = Nxjy : k(X) — k(Y) is the
norm function.

Let D be a Weil divisor on Y. By assumption, there exists a positive -
integer m such that mf*D = f*mD is Cartier. By the subclaim above, we
can show that f.f*mD = mdeg (f)D and that f.f*mD is Cartier. O

2.8 Amplifications

In this section, we extend our results
e to the case when varieties involved are not necessarily Q-factorial.
e to Mori dream regions.

As an example of a Mori dream region, we treat the Shokurov polytopes in
the final subsection.

2.8.1 Not necessarily Q-factorial Mori dream space

In [AHL, §2], the notion of Mori dream space has been extended to not
necessarily Q-factorial normal projective varieties. In this subsection we call
them not necéssarily Q-factorial Mori dream spaces, and show that our main
results are also valid in that context.

Definition 2.8.1. Let X be a normal projective variety. X is said to be a
not necessarily Q-factorial Mori dream space if

1. Cl(X) is finitely generated, where Cl (X) denotes the Weil divisor class
group of X.
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2. A Cox ring of X is of finite type over the base field.

Note that our definitions of not necessarily Q-factorial Mori dream spaces
and Cox rings coincide with those of Q-factorial Mori dream spaces when the
variety is Q-factorial. Note also that the finite generation of a Cox ring is
independent of the choice of I.

Remark 2.8.2. In [AHL, Theorem 2.3], they gave a characterization of not
necessarily Q-factorial Mori dream spaces via the properties of line bundles
as in the original definition of Mori dream spaces. At the same time they
proved the existence of a small Q-factorization for such varieties. In the
proof of [AHL, Lemma 2.4], which was used in the proof of [AHL, Theorem
2.3], they used the characteristic zero assumption so that they can apply the
existence of resolutions of singularities. Actually we can avoid the use of
resolutions as follows, so that their results work in arbitrary characteristics.

Proof. We give a proof of [AHL, Lemma 2.4] which works in arbitrary char-
acteristics.

Take prime divisors Dy, ..., D, on X which generates C1(X). Let X' —
X be a birational proper morphism from a projective variety X', whose
existence is guaranteed by the Chow’s lemma. Let D; be the strict transforms
D;s. Now let X" — X’ be (the normalization of) the successive blow-ups of
X' along Djs. Let D/ be the total transform of D;. Note that D} is a Cartier.
divisor by the construction of blow-up. Let f: X” — X be the composition
of the two morphisms, and note that f,D} = D; holds.

If we regard f as the birational morphism 7 in the proof of [AHL, Lemma
2.4}, the rest of the arguments works similarly. O

We go back to our results. First, Theorem 2.1.1 also holds in this case:

Theorem 2.8.3. Let X be a not necessarily Q—fdctom’al Mori dream space,
and X — Y be a surjective morphism to another normal projective variety.
Then Y also is a not necessarily Q-factorial Mori dream space.

Proof. The proof is essentially the same as that for Theorem 2.1.1, so we only
point out where should be modified in the original one. First of all, we can
replace X with its small Q-factorization: i.e. there exists a small birational
morphism X — X from a Q-factorial normal projective variety X. This fact
implicitly appears in [AHL, Theorem 2.3] and its proof.

We should check that dimgCl(Y)y < oo. Note that Cl(Y') does not
change if we remove the singular locus of Y. If we remove the inverse image
of this locus from X, the Weil divisor class group does not increase. The rest
of the argument is the same.
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In order to prove the finite generation of a Cox ring of Y, we take the
Stein factorization of X —'Y as before. '

Nothing has to be changed for finite morphisms. For algebraic fiber
spaces, we again remove the singular locus of ¥ and its inverse image. Then
we can apply Lemma 2.2.2, since any Weil divisor on a non-singular variety

“is Cartier so that it can be pulled-back. O

For a not necessarily Q-factorial Mori dream space X, we can define the
notion of Mori equivalence, Mori chambers and so on exactly in the same
manner as before. On the other hand, we can take a small Q-factorization
X — X and the divisor class group and Mori equivalence do not change
- under this operation. Therefore we obtain

Theorem 2.8.4. Let X — Y be a surjective morphism between not neces-
sarily Q-factorial Mori dream spaces. Then

Fan (Y) = Fan (X) |Cl(y)R
holds.

‘Proof. By taking suitable small Q-factorizations of X and Y, the morphism
lifts to the one between ordinary Mori dream spaces. Thus we can reduce
the problem to our original Theorem: 2.1.2. ' O

2.8.2 Mori dream region

Let X be a normal Q-factorial projective variety.

There is a notion called Mori dream regions defined in [HK, Definition
2.12], which generalizes Mori dream spaces. In this subsection we check that
Theorem 2.1.1 can be extended to Mori dream regions.

First we recall the definition of Mori dream regions from [HK, Definition -
2.12]:

Definition 2.8.5. Let X be a normal Q-factorial projective variety. A cone
C C Pic(X)g spanned by finitely many line bundles is called a Mori dream
region (Mori dream region) if the multi-section ring

Rx(C)= @  H'X,0x(D))

DeCnPic(X)7mee

~ is of finite type over the base field.
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If the natural morphism Pic(X), — N'(X)g, is isomorphic and C =
Eff (X), C is a Mori dream region if and only if X is a Mori dream space.

As in the case of Mori dream space, Mori dream region can be char-
acterized via the existence of a decomposition into finitely many rational
polyhedral subcones such that on each of them the Zariski decomposition is
Q-linear:

Proposition 2.8.6. Let X be a normal Q-factorial projective variety and
C C Pic(X)g be a cone spanned by finitely many line bundles. It is a Mori
dream region if and only if the following conditions are satisfied:

e CNEf (X) is spanned by ﬁm’tely. many line bundles.

o The section ring of any line bundle of C N Eff (X) is of finite type
over the base field. In particular, Q-effective line bundles admit the
Zariski decompositions. Le. for such a line bundle L there exists a
decomposition L = P + N such that P is movable and N is effective,
and for all sufficiently divisible positive integer m all the global sections
of mL comes from that of mP as in (1.1) of Proposition 1.2.10.

o There exists a decomposition of C C Pic (X)g into finitely many ratio-
nal polyhedral subcones such that on each of them the Zariski decompo-
sition is Q-linear. '

Proof: ‘if’ part is exactly the same as the proof of Lemma 2.2.2. For the ‘only
if’ part, the second condition follows from [HK, ‘If’ part of Lemma 1.6]. For
the first and the third conditions, see [CL, Theorem 3.5]. o

Remark 2.8.7. In [HK, Theorem 2.13], they claim that we can find a de-
composition of C into chambers C; so that for each of them we can find a
contracting birational map g; : X --» Y; such that

Ci = CN(g; Nef (V;) xex(g;))

holds.

The author believe that it is not so easy to prove, since using that claim
we can derive the existence of a minimal model from that of the canonical
model. This is why he replaced [HK, Theorem 2.13] with Proposition 2.8.6.

Now we can show the following

Corollary 2.8.8. Let f : X — Y be a surjective morphism between normal
Q-factorial projective varieties. Let C C Pic(X)g be a finitely generated
rational polyhedral cone which is a Mori dream region. Then C|pic () @lso s
a Mori dream region.
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The proof is the same as that for Theorem 2.1.1.

Remark 2.8.9. In general, we do not know if Theorem 2.1.2 holds for Mori
dream regions. Here we give some observations to this problem.

Counsider a rational polyhedral cone which is contained in the ample cone
of a normal projective variety. It is clear that all the divisors in the cone are
strongly Mori equivalent. Taking this cone as a Mori dream region, we see
that we do not have the fan structure for Mori dream regions such that the
relative interior of the cone of the fan is an equivalence class. .

Moreover, we do not know if the GIT equivalence and the strong Mori
equivalence coincide for arbitrary Mori dream regions or not. The reason is
as follows. :

By closely looking at the proof of Proposition 1.3.8, we see that the GIT
equivalence implies the strong Mori-equivalence for arbitrary Mori dream
regions, provided that they contain ample divisors. For the proof of the
converse, it was essential that the unstable locus for ample divisors has codi-
mension at least two. Even if we take an arbitrary Mori dream region which
contains an ample divisor and consider the spec of the corresponding multi-
section ring, the unstable locus of ample divisors can have divisorial compo-
nent: the Nef cone of the blow-up of P? at a point gives such an example.
The difference comes from the fact that [HK, Lemma 2.7] holds only for Cox
rings.

Nevertheless, note that Corollary 2.6.3 and Theorem 2.5.1 holds for C and
Clpic (v)p» Where C is an arbitrary Mori dream region on X.
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Global Okounkov bodies of Mori dream
spaces

3.1 Summary

Let X be a projective variety of dimension n. A flag Y, on X is a sequence
Yo=Y%2Y 22 Y= {pt}

of closed subvarieties such that each Y; is smooth at the point Y.

For a flag Y, and a big line bundle L on X, we can define the Okounkov
body Ay, (X, L), which is a compact convex set in R™ (see [LM, Definition
1.8]). It is known that the Euclidian volume of this body coincides with the
volume of the line bundle L, up to the constant n! ([LM, Theorem 2.3]).
Therefore we can regard Okounkov body as a geometric refinement of the
volume function for line bundles. Okounkov body depends on the choice of
the flag Y,, but is determined by the numerical class of the big line bundle
L ([LM, Proposition 4.1(i)]). . ’

We can also define the notion of global Okounkov body Ay, (X), which is
a closed convex cone in R™ X N'(X)g whose fiber over a big line bundle L €
NY(X)g coincides with the Okounkov body Ay, (X, L) of L ([LM, Theorem
B]). '

In [LM], Lazarsfeld and Mustats asked the following problem ([LM, Prob-
lem 7.1]):

Problem 3.1.1. Does a Mori dream space admit a flag with respect to which
the global Okounkov body is rational polyhedral?

Problem 3.1.1 is known to be true for smooth projective toric varieties
([LM, Proposition 6.1 (ii)]); in that case, we choose the flag consisting of -
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torus invariant strata. Since Mori dream space is a generalization of toric
varieties, it is natural to ask if the same thing also holds for Mori dream
spaces.

Another supporting evidence is as follows: it is known that for a Mori
dream space X" the volume function vol(-) : Eff (X) — R is piecewise poly-
nomial (this follows from Proposition 1.2.10 and the fact that the volume of
a nef line bundle equals to its self-intersection number). Problem 3.1.1 can
be regarded as a refinement of this fact.

The purpose of this chapter is to give a positive answer to Problem 3.1.1
and to propose an approach to the problem in higher dimensions. -

We first establish a formula (see Lemma 3.3.1) which describes slices of
an Okounkov body as the Okounkov body of certain line bundles on Y7,
the first piece of the flag ¥,. This enables us to calculate Okounkov bodies’
inductively. As a first application of the formula, we obtain the following
result:

Lemma 3.1.2. Problem 8.1.1 is true for surfaces.

To deal with higher dimensional cases, we define the notion of a good
flag: ‘

Definition 3.1.3. Let X be a Mori dream space. A flagY, =Y, DY} D
-+ DY, = {pt} is said to be good if the following conditions hold:

e Y; is the birational image of a Mori dream space, say }71-, for ¢ =
1,...,n — 2, such.that there exists a sequence of closed immersions

VioYeD DY,
compatible with the projections to Y;’s.

e Y, is not contained in the base loci of line bundles on Y; 4
foralli=1,2,...,n—1

e Y, is not contained in the imag‘es of the exceptional loci of small Q-
factorial modifications of Y;'s or exceptional loci of birational mor-
phisms Y; — Y; appearing in the first condition.

Note that the last two conditions are fulfilled if Y; is a general member of a
base point free linear system.

Remark 3.1.4.
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e Since only P! is a Mori dream curve, we cannot expect in general that
Yn—1 is a Mori dream curve. But we do not need this because line
bundles on a curve behaves quite nicely. This is the reason why we do
not assume that Y,,_; is a Mori dream space.

o It seems that we should not assume that Y; itself is a Mori dream space.
In fact, when we think of a rational homogeneous variety, which is a
Mori dream space since it is Fano, a natural candidate for a good flag is
the one consisting of Schubert subvarieties. Schubert varieties are not
necessarily Q-factorial, hence we have to pass to their Bott-Samelson
resolutions.

With this notion, we can show

Theorem 3.1.5. Let X be a Mors dredm space and Y, is a good flag . Then
Ay, (X) is a rational polyhedral cone.

The final part of the chapter is devoted to a discussion on how to construct
such a flag.

Shin-Yao Jow proved ([S, Theorem 6]) that a sufficiently ample and very
general divisor of a Mori dream space of dimension at least three again is a
Mori dream space, provided that the ambient variety satisfies certain GIT
condition. Therefore, the following naive expectation arises:

Problem 3.1.6. Let X be a Mori dream space of dimension at least three
(not necessarily satisfying the GIT condition above). Let A be a sufficiently
ample and very general divisor of X. Then A also is a Mori dream space.

Note that in general a smooth ample divisor of a Mori dream space may
not be a Mori dream space (see [Og] and [Ka] for such examples). So far
Problem 3.1.6 has no approach. ;

Therefore we are forced to construct good flags on a case-by-case basis.
We discuss two examples. The first one is a Mori dream 3-fold given in [KLM,
Proposition 3.5]. In the paper an example of flags with respect to which the
Okounkov body is not rational polyhedral, but we can find a good flag such
that the global Okounkov body is rational polyhedral. A

The second one is rational homogeneous varieties. There is a natural can-
didate for the flag Y, so that the global Okounkov body is rational polyhedral,
but there still remains some difficulty.

" Here is a historical remark. The notion of Okounkov body first appeared
in the works of Andrei Okounkov. His aim was to describe the multiplicities
of irreducible representations appearing in a representation in terms of the
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volume of certain convex bodies so that he can prove that the log concav-
ity holds for the multiplicities by using the Brunn-Minkowski inequality for
* convex bodies ([Ok] is an interesting survey).

Later Lazarsfeld and Mustatd defined similar convex bodies (which they
called the Okounkov body) for big line bundles and did a foundational work
([LM]). In this case, the volume of the convex body associated to a big line
bundle coincides with the volume of the line bundle as mentioned above.

3.2 (Global) Okounkov body

In this section we recall the definition and first properties of (global) Ok-
ounkov bodies. Most of the subjects in this section was taken from [LM].
Consider any divisor D on X. We begin by defining a function

v =vy, 1 H(X,0x(D)\ {0} — Z" , s+ v(s) = (1(s),. .., va(s))-
Given
0+#se H(X,0x(D)),

set to begin with
: v1 = v1(s) = ordy,(s).

After choosing a local equation for Y7 in X, say t1, s determines a section
si=s®t/" € H'X,0x(D—wn"))

that does not vanish (identically) along Y7, and so we get by restricting a
non-zero section

S1 € HO(YE, Oyl(D — V1Y1)).

Then take
Vs = 1o(s) = ordy,(s1).

In general,‘given integers ay,. .., a; > 0 denote by O(D —a1Y1 —asYo — ... —
a;Y;)|y, the line bundle :

Ox (D), ® Ox(—a1Y1)y; ® Oy (—a:Y2)y; ® ... ® Oy, (—a:Yi)y,

on Y;. Suppose inductively that for 4 < k one has constructed non-vanishing
sections :
8; € HO<Y¢',O(D—I/1Y1—V2}/2—...—ViY;)|yi>,

with vi41(s) = ordy;,,(s;), so that in particular
Vera(s) = ordy,,, (sk)-
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Dividing by the appropriate power of a local equation of Y1, in Y} yields a
section '

k1 € HY <Yk> O(D —nY—wY— ... — kak)!yk ® Oyk(~Vk+1Yk+1)>

not vanishing along Y;,;. Then take

Spr1 = Spp1|Yes1 € HP (Y;H.l, O(D —nYi —wYe— ... — Vk+1Yk+1)|yk+l>

to continue the process. Note that while the sections 3; and s; will depend
on the choice of a local equation of each Y; in Y;_;, the values v4(s) € N do
not.

Definition 3.2.1. (Graded sémigfoup of a divisor). The graded semi-
group of D is the sub-semigroup

D(D) = Ty(D) = {(.(s),m)]0 # s € H(X,0x(mD)) ,m >0}
of N™ x N = N"*1, , » 0
Writing I' = I‘(D), denote by
J ' S(T) C R™

the intersection of all the closed convex cones containing I'. The Okounkov
body of D is then the slice of this cone at the level one:

Definition 3.2.2. (Okoﬁnkov body). The Okounkov body of D (with
respect to the fixed flag Y,) is the compact convex set

Ay,(X,D) = (T) N (R™ x {1}).
We view A(D) in the natural way as a closed convex subset of R".

We can show that it is compact, and that it depends only on the numerical
class of the divisor D (see [LM] for detail).

‘Remark 3.2.3. Ay, (X, L) does depend on the choice of the flag Y. For
example, even if X is a toric Fano and L is ample, we have to chose a
suitable flag Y, to make Ay, (X, L) rational polyhedral (see [KLM, Example
3.4)).

There is a globalization of this notion (see [LM, §4.2]):
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Theorem-Definition 3.2.4. There exists a closed convex cone
Ay,(X) C R le(X)R

characterized by the property that the fibre of Ay, (X) over any big class
£ € N (X)q is Ay, (X,8), ie.

pry (NAX) = Av(X,§) € R"x{¢} =R"

The cone Ay, (X) is called the global Okounkov body of X with respect
to the flag V..

The following theorem says that the global Okounkov body is a refinement -
of the volume function:

Theorem 3.2.5. If D is any big divisor on X, then

volgn (A(D)) = %-VOIX(D).

The quantity on the right is the volume of D, defined as the limit

. B°(X,0x(mD))
lim , , .
m—00 m»/n!

VOlX (D) —def

3.3 Inductive calculation of Okounkov bodies

3.3.1 Slices of Okounkov bodies

We recall some facts on the slices of Okounkov bodies. = .

Lemma 3.3.1. Let X be a normal projective variety and L be a big line
bundle on X. LetY, be a flag on X such that Yy ¢ B, (L), where B, (L)
denotes the augmented base locus of the line bundle L (see [L2, Definition
10.8.2]). Toke some rational number t € Qso which satisfies the following
properties:

o I.— 1Y) is big
o I.—tY7 admits a Zariski decomposition

o V] ¢ B+(P(L~ty?l));
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where P(L — tYl) is the positive part of L — tY;.
Then

Ay, (D)=t = Ay, (L) N {1 =t} = Ay, (Y1, P(L = Y1)y, (3.1)

holds up to the parallel transportation by the valuation vector of the restriction
" of the section of N(L —tY7).

Proof. Since Y1 ¢ B. (L) we have
AY- (L)V1=t = AY. (}/1|X, L— tYi),

where the right hand side denotes the restricted Okounkov body (see [LM,
Theorem 4.24]). By a property of the Zariski decomposition, the right hand
side of (3.1) is a parallel transportation of Ay, (Y1|X,P(L — tY7)) by the
valuation vector mentioned in the statement of the lemma. :
By [LM, Corollary 4.25 (i)], (n — 1)! times the volume of Ay, (Y;|X, P)
equals to the restricted volume of P. By [ELMNP, Corollary 2.17], the
restricted volume of P equals to (P™!-Y7) since Y; € B, (P). On the other
hand, since P is nef, the volume of Ply,, which in turn equals the (n — 1)!
times the volume of the Okounkov body Ay, (Y1, Ply,), equals to (P! Y7).
Summing up, we see that Ay, (Y1|X, P) C Ay, (Y1, Ply;) are closed convex
bodies of the same volume. Hence they must coincide. a

3.3.2 A decomposition of the Effective cone

Fix a flag Y, on a Mori dream space X ‘such that Y] avoids the base loci of
effective line bundles on X. Consider the projection map 7 defined by

7 : Pic (X)g X R® = Pic (X)g X R; (D,11,13,...,vn) — (D, 11).

The purpose of this subsection is to prove the existence of a decomposition
of m(Ay, (X)) C Eff (X) X Ryg into finitely many rational polyhedral cones
such that on each of the cones the function ¢ : (D,t) — P(D — tY7) is
rationally linear. :

Consider the linear mapping

T : Eff (X) x Rso — Pic(X)g; (D, t) = D — tY;.

By Lemma 3.5.2, for each Mori chamber C' C Pic (X)g, C =T }(C) is a
rational polyhedral cone. Combined with Proposition 1.2.10, we see that ¢ is
rationally linear on C. Therefore we have the decomposition T} (Eff (X)) =
|JC into rational polyhedral subcones such that on each of the subcones ¢
is rationally linear. Now we can show the following lemma.
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Lemma 3.3.2. 7(Ay, (X)) = T-YEf (X)) holds.

Proof. T"Y(Eff (X)) C 7(Ay,(X)) follows from Lemma 3.3.1. Conversely,
choose a point (D, t) from the interior of 7(Ay, (X)).
Then we can apply [LM, Corollary A.3] to obtain
7D, ) [ Av.(X) = Ay, (V1| X, D — t13).

Moreover we know that the left hand side has an interior point. Hence
D —tY; € Eff (X) must hold. Since T7(Eff (X)) is closed, this is enough to
show the lemma. H

Thus we obtain the desired decomposition of 7(Ay, (X)).

3.3.3 Proof of Lemma 3.1.2

Proof of Lemma 3.1.2. Let 'Y, be a good flag. Consider the following projec-
tion ' '
7 : Pic (X)p x R? = Pic(X)g x R; (D, v1,v3) = (D, ).

Let C C Eff (X) x R>g be a chamber as in §3.3.2. By Lemma 3.5.1, it
is enough to show that 771(C) () Ay,(X) is a rational polyhedral cone. To
prove it, it is enough to show that the function

(D> t) — Vol (Ay. (D)V1=t) (32)
is rationally linear on C, since | |

Ay, (D)V1=t - [07 Vol (AY. (D)uizt)]

holds.
But we know from Lemma 3.3.1 that the right hand side of (3.2) equals
deg (Ay, (Y1, P(D — tY1)|y;)) = Y1.(P(D — tY1)), which is clearly ratio-
nally linear in (D, t). | ‘ a

3.3.4 Proof of Theorem 3.1.5
Proof of Theorem 8.1.5. Consider the following projection

7 : Pic (X)g X R" = Pic(X)g X R; (D,v1,v0,...,0) = (D, v1).

Let C C Eff (X) x Ry be a chamber as in §3.3.2. By Lemma 3.5.1, it is
enough to show that 771(C) (] Ay, (X) is a rational polyhedral convex cone.
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Consider the following linear mapping:
¢ : Pic (X)gxR™ — Pic (Y1)g xR (D, t,') = (P(D—tY1) |y, V' = (N(D — tY1))),

where v/ = (vg,v3,...,). Let pc be the restriction of ¢ to 771(C). Recall
that ¢ is rationally linear. Now since Ay, (X, D),,=: = Ay, (Y1,P(D —
tY)|y,) + V' (N(D —tYy)), for each (D, t,v') € 771(C)

(D,t,") € Ay,(X) <= ¢c(D,t, V') € Ay, (V1).

Therefore 771(C) N Ayv.(X) = ¢z (Ay,(Y1)). Since we assumed that Y, is
a good flag, Y7 is the image of a birational morphism from a Mori dream
space.Y; and we can identify Ay, (¥;) with a subcone of the global Okounkov
body of ¥; (with respect to the flag obtained by Y;’s). Hence it is a rational
polyhedral cone. By Lemma 3.5.2, it follows that ¢;'(Ay,(Y7)) also is a
rational polyhedral cone. ' R

3.4 Discussions about good flags

In this section, we discuss the existence problem of good flags.

As mentioned before, Problem 3.1.6 is true if X satisfies the small unstable
locus condition (see [S]). \

If we take (P!)* as X, then it does not satisfy the condition. Moreover
a general hypersurface of multi-degree (2,2,2,2) of X is not a Mori dream
space ([Og]). This example shows that we can not expect that an arbitrary
ample divisor which is general in its linear system is a Mori dream space.
So far we know nothing about Problem 3.1.6. In the rest of this subsection,
we consider two examples of Mori dream spaces which (almost) admit good
flags. o

The first example is a Mori dream space given in [KLM, Proposition 3.5].
‘We use the same notations as in the paper.

Let H be a sufficiently general member. We see that H — n(H) is
a blow-up of 7(H) & P? in n(H)((C:UCs) = {8 points}. By [TVV,
Example 1.1(a)], H turns out to be a Mori dream space. Set Y7 = H, and
choose Y3, Y3 sufficiently generally. This gives a good flag for X, and Ay, (X)
is a rational polyhedral cone by Theorem 3.1.5.

The second one is a rational homogeneous variety. In this case, the flag
Y, consisting of Schubert varieties seems to be the most natural one. We
cannot expect that Schubert varieties are Q-factorial, but still we can take
‘their Bott-Samelson resolutions. The author heard from Dave Anderson that
it has been proven that Bott-Samelson varieties are log Fano, hence are Mori .
dream spaces.
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The problem is that we cannot expect that Y; is smooth at Y,. In this
sense Y, is an ”almost” good flag. If we use the chain of Bott-Samelson
resolutions in the definition of the valuation, then the ”global Okounkov
body” defined by the valuation is rational polyhedral, though the valuation
is not defined by a good flag in the usual sense.

3.5 Some combinatorial lemmas

In this section, we recall some elementary combinatorial facts which we need.

Lemma 3.5.1. Let A C RP*? be g closed cone. Letm : RPY? — R be the nat-
ural projection, and assume that w(A) is a rational polyhedral cone. Suppose
furthermore that w(A) is decomposed into finitely many rational polyhedral
cones, and for each cone C 7~ (C) (A is rational polyhedral. Then A itself
is a rational polyhedral cone.

Lemma 3.5.2. Let T : RP — R? be a linear mapping defined over Q, and let
A C R? be a rational polyhedral cone. Then so is T~1(A). In particular, if we
restrict T' to another rational polyhedral cone A’ C RP, the same conclusion
holds: i.e. (T|a)"H(A) = A'(NT7(A) is a rational polyhedral cone.
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Surfaces of globally F-regular type are
| of Fano type

4.1 Summary

It was proven ([SS, Theorem 1.2]) that a variety of Fano type defined over a
field of characteristic zero is of globally F-regular type. In the same paper,
they asked if the converse is true or not [SS, Question 7.1].

Since a variety of Fano type in characteristic zero is a Mori dream space
[BCHM, Corollary 1.3.2], the converse to [SS, Theorem 1.2], if true, implies
that a variety of globally F-regular type is a Mori dream space. If we assume
in advance that the variety is a Mori dream space, we can prove the converse
([GOST, Theorem 1.2}).

The purpose of this chapter is to prove the converse for surfaces, without
assuming that the variety is a Mori dream space.

Theorem 4.1.1. Let X be a projective surface defined over a field of char-
acteristic zero. Suppose that X is of globally F-reqular type. Then X is of
Fano type.

The strategy of our proof is an extension of that for the proof of [SS,
Theorem 1.2]. We find a (— K x)-MMP such that after finitely many divisorial
contractions we obtain a model on which the anti-canonical divisor is semi-
ample and big, and the singularity is at worst log terminal.

In the proof of [SS, Theorem 1.2] we took the existence of a (—Kx)-MMP
for granted, since X was assumed to be a Mori dream space. In the proof
~of Theorem 4.1.1, we first show that a globally F-regular surface is a Mori
dream space (Proposition 4.2.4). Thus we get an anti-canonical MMP for
Xy, where X, is a reduction of X to a positive characteristic. The point
is that we can lift it to characteristic zero. Since each step of the MMP
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is defined by a globally generated line bundles, it is enough to lift the line
bundles and the global sections. These follow from a vanishing theorem for
nef line bundles on globally F-regular varieties and some deformation theory.
The rest of the argument is the same as the proof of [GOST, Theorem 1.2].

4.2 Preparations

Definition 4.2.1. Let X be a normal projective variety, and A be an effec-
tive Q-divisor on X .- The pair (X, A) is called a log Fano pair if it is a klt
pair and —(Kx + A) is ample.

A normal projective variety X is said to be of Fano type if there exists
an effective Q-divisor A on X such that (X, A) is a log Fano pair.

Lemma 4.2.2. Let A be a complete discrete valuation ring, and f: X4 —
Spec A be a projective morphism whose geometric fibers are integral normal
schemes. Set Spec A = {&, u}, where & (resp. p) is the generic (resp. the
closed) point of Spec A. We denote by X, (X,,) the generic (closed) fiber of
[ Suppose that H*(X,, Ox,) = 0 holds. Then any line bundle L, on X,
extends to a line bundle L on X4 so that La|x, ~ L.

Proof. Let m be the maximal ideal of A. Set A, = A/m”“ and X, =
X4®4A,. Consider the formal scheme X obtained by taking the completion
of X4 along X,,. If we could extend L, to a coherent sheaf L4 on X, we can
find a coherent sheaf I 4 on X 4 which restricts to L 4 by [FGIKNV, Theorem
8.4.2). Since every fiber of L4 at a closed point of X4 is one dimensional
(recall that L4 is an extension of the line bundle L, ), we see that Ly is an
invertible sheaf.

In order to construct I, 4, s 1s well known, it is enough to show that we
can lift L, to L4 for any n > 0. Set Lo = L. »

By [FGIKNV, Theorem 8.5.3 (b)], the obstruction to extending L, to
a coherent sheaf on Xn4y lies in Exty (Ln, Ln) ~ H?*(X,,Ox,), which is
vanishing by the assumption (note that the normal bundle of X, in X, is
trivial). Therefore we get an extension Lyi; of L. O

The following was proven in [SS, Theorem 1.2].

Theorem 4.2.3. Let X be a normal Q-factorial projective variety defined
over an F-finite field which ts globally F-regular. Then X 1is of Fano type.
In particular, —Kx 1s big.

Prbposition 4.2.4. Let X be a projective surface defined over an F-finite
field, which is of globally F-reqular type. Then X is a Mori dream space.
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Proof. By [HWY, Lemma, 2.1], the minimal resolution of X is also globally
F-regular type. By Theorem 2.1.1, it is enough to show that the minimal
resolution is a Mori dream space. Hence we may assume that X itself is
smooth.

By [Sm, Corollary 4.3], it follows that H!'(X,Ox) = 0. Moreover by
Theorem 4.2.3, we see that 2Kx, has no global section. By the characteri-
zation of rational surfaces ([Z]), we see that X, is rational. Since —Kx, is
big by Theorem 4.2.3, we conclude that X, is a Mori dream space by [TVV,
Theorem 1]. _ O

Remark 4.2.5. By Theorem 4.2.3, Proposition 4.2.4 would follow from the
cone and contraction theorems for klt surface pairs in positive characterit-
cics, whose reference was unclear to the author. Recently Professor Fujino
informed me of a preprint by Hiromu Tanaka in preparation, in which the
author establishes such results.

The following is a key for the proof.

Proposition 4.2.6. Let A and f : X4 — SpecA be as in Lemma 4.2.2.
Assume that X, is globally F-reqular. Suppose that there exists an algebraic
fiber space g, : X, — Y, to a normal projective variety Y,,. Then g, extends
to an algebraic fiber space g4 : X4 — Ya over A.

Proof. Let L, be a line bundle on X, whose complete linear system defines
the morphism gu. Note in particular that L, is nef. Since X, is globally F-
regular, we see H?(X,,Ox,) = 0 and H*(X,,, L,) = 0 by [Sm, Corollary 4.3].
By Lemma 4.2.2, L, lifts to a line bundle L4 on X4. By [Har, Chapter III,
Corollary 12.9], we see that H'(X4, L4) = 0 holds. Applying [Har, Chapter
ITI, Theorem 12.11 (b)] for ¢ = 1, and then [Har, Chapter III, Theorem 12.11
_(a)] for i = 0, H%(X 4, La) is a free A module and HO(XA,LA) ®4 k(p) ~
H®(X,,L,). Therefore we see that L, is globally generated over Spec A and
its complete linear system defines an algebraic fiber space ga @ X4 — Ya,
which restricts to g,. 0J

In the final step, we need the following easy

Proposition 4.2.7. Let X be a normal projective variety over a field k, and
k C K be an extension of fields. If the base ch(mge X=X QK is a Mori
dream space, so is X.

Proof. Let I' C Div X be a finitely generated group of Cartier divisoré on X
which defines a Cox ring of X. Then :

Rx(I') @ K = Rx, (')
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holds, where I'gx is the pull-back of T" to Xx.

By Lemma 2.2.2, we see that Rx,(T'x) & Rx(I') ® K is of finite type
over K. Since the finite generation descends under the base field extension,
we see that Rx(T") is of finite type over k, concluding the proof. O

4.3 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Let m: X4 — Spec A be a model of X, and assume
that X, is globally F-regular for a closed point i € Spec A. By Proposition
4.2.4, X, is a Mori dream space.

Since X, is a Mori dream space, we can run a (—Kx,)-MMP, say X, =
Xyo — Xy1 — -+ = X, so that —Kx, , is nef and big. Since each
morphism is an algebraic fiber space, we see that all X,; are globally F-
regular type and Mori dream space ([GOST, Lemma 2.12] and Theorem
2.1.1). Since X, is a Mori dream space, —Kx,, is semi-ample.

Let A, be the localization of A at u, and let A be the completion of A,
by its maximal ideal. We take the base change of X4 — SpecA by A C A.
As in Lemma 4.2.2, we set £ (resp. 1) the generic (closed) point of Spec A.
Here we note that the generic fiber X; = X4 ®4 Q(A) is still of globally
F-regular type.

By Proposition 4.2.6, the MMP described above lifts over Spec A. Taking
its restriction to characteristic 0, we obtain a (—Kx,)-MMP X, = X —
Xe1 — -+ = X¢y such that —Kx, , is semi-ample and big. -

Using the similar arguments as the proof of [GOST, Theorem 1.2], we see
that X, is a variety of Fano type. Therefore by the cone theorem (see [KM]),
we see that X, is a Mori dream surface. By Proposition 4.2.7, X itself is
a Mori dream surface. Hence by [GOST, Theorem 1.2], we see that it is of
Fano type. ’ O

4.4 What about higher dimensions?

We point out the remaining obstructions to extending our approach to higher
dimensional cases.

1. We do not know if a globally F-regular variety is a Mori dream space.
We suspect it is true, but is verified so far only for surfaces as seen
above.

2. In dimensions greater than 2, we may have flips in anti-canonical MMPs.
We can lift the flipping contraction to characteristic zero as proven
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above, but we do not know if we can lift the flipped morphism.
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