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Abstract 
 
 

Protein sub-cellular localization is an important feature and has been commonly 

used to support many functional hypotheses. The leucine-rich nuclear export signal (NES) 

is an important sub-cellular targeting signal, which is involved in processes such as signal 

transduction and cell cycle regulation. Although 15 years has passed since its discovery, 

limited structural information and high sequence diversity have hampered understanding 

of this signal. A consensus sequence was proposed based on early examples, but later 

evidence demonstrated its low sensitivity (~37%). To raise the sensitivity, a more general 

consensus sequence has been widely used at a cost of greatly increased spurious matches. 

Despite continued interest amongst molecular biologists in the function and regulation of 

NES-containing proteins, further bioinformatic characterization of this import signal 

remains at a standstill. Indeed, most of the recently discovered NES sites have been 

identified by the consensus sequence despite its unsatisfactory trade-off. On the other hand, 

the NetNES server provides the only computational method currently available. Although 

these two methods have been widely used to attempt to find the correct NES position 

within potential NES-containing proteins, their performance has not yet been evaluated on 

the basic task of discriminating NES-containing proteins from other proteins. To better 

characterize the NES, we propose a new approach, NESsential, not only capable of finding 

the correct position of many NES’s at the site level, but potential NES-containing proteins 

at the protein level. We also collected 70 NES-containing proteins recently discovered to 

update the dataset to approximately two-fold larger than NESbase, the largest previously 

available dataset.   
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Chapter 1 

Introduction 
 
 

Amongst the complicated “route map” of protein sub-cellular localization, the 

nucleocytoplasmic traffic of proteins occurs through the nuclear pore complexes (NPC), 

which allow passive diffusion of small proteins (<40kDa) but require active, i.e. energy-

dependent transportation, for larger proteins. The active nucleocytoplasmic pathways are 

mostly mediated by karyopherin proteins and the specific sequence signals of cargo 

molecules; nuclear localization signals (NLS) and nuclear export signals (NES), for each 

direction respectively. Compared with classical NLS’s, the classical “leucine-rich” NES’s 

are more difficult to identify correctly because the NES consensus sequence often 

spuriously matches regions forming the hydrophobic core of proteins [1]. The karyopherin 

Exportin 1/CRM1(chromosomal region maintenance 1) mediates the export of many 

cellular and viral proteins containing leucine-rich NES’s (Figure 1.1). To date, there are 

over 75 proteins containing this leucine-rich NES verified experimentally. Many of them 

are related to signal transduction, cell cycle regulation and, moreover, the export of 

unspliced or partially spliced viral mRNA such as the HIV-1 Rev protein. Recently, this 

export pathway has also been suggested to be involved in the mechanism inducing the 

abnormal localization of many tumor suppressors containing leucine-rich NES’s, p53 for 

instance, in various cancer cells [2]. 
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Figure 1.1: The Exportin-1/CRM1 mediated export pathway. 

 

 

Contrary to its growing importance, we know little about this CRM1-meditated 

leucine-rich nuclear export signal (NES, hereafter), other than the abundance of 

hydrophobic residues, mostly leucine, and the specific spacing between them. Limited 

structural information is one factor which hampers further characterization of the NES. 

Based on 2nd structure prediction and eight structures (six determined by X-ray 

crystallography) of NES-containing proteins, previous research had suggested a strong 

preference of alpha-helical structure and a bias against beta-strands in the N-terminal end 

of NES’s. However, in 2007, the first NES consisting entirely of a beta-sheet was reported in 

Fibroblast Growth Factor-1 (FGF-1) [3]. Figure 1.2 (Figure 7B from the original paper) 

shows the diversity of local structure of NES sites. 

 

Unfortunately, no complete structures are available for CRM1 bound to classical 

NES containing proteins. However, in 2009, the crystal structure of CRM1 in complex with 

snurpotin 1 (SNUPN), an export substrate previously considered to be exported through an 

NES-independent interaction with CRM1, was reported [4][5]. This complex structure 

revealed some details of the binding interface including a minor binding patch near the N-

terminus of SNUPN resembling the classical NES. However, this NES mimic may not be 

sufficient enough to understand the classical NES, because of its much lower binding 
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affinity. Furthermore, the multipartite recognition and the number of critical hydrophobic 

residues within this NES mimic are different than what is known about the classical NES’s 

and so far observed only in this CRM1-SNUPN complex. 

 

 

 

 

Figure 1.2: The diversity of local structure of NES sites. 

 

 

The first proposed consensus sequence of this classical NES is L-x-(2,3)-[LIVFM]-

x(2,3)-L-x-[LI] where x is any amino acid, defined from analysis of mutant variants of 

HTLV-1 Rex and HIV-1 Rev [6] following the discovery of NES in the human 

immunodeficiency virus type 1 (HIV-1) Rev protein [7] and cAMP-dependent protein 

kinase inhibitor (PKI) [8]. This consensus sequence had been widely used until la Cour et al. 

indicated that the majority of NES’s (63%) in NESbase, a database collecting experimentally 

verified NES’s, deviated from this consensus sequence [9]. Given that the consensus 

sequence was originally defined by mutant variants of only two proteins, it's not surprising 

that the incapacity of this consensus sequence has become increasingly evident as more 

NES-containing proteins are verified. By allowing a more general consensus sequence, 
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[LIVFM]-x-(2,3)-[LIVFM]-x(2,3)-[LIVFM]-x-[LIVFM], sensitivity can be improved (from 

37% to 72%) at a cost of greatly increasing false positives (precision dropped from 52% to 

16%) [10]. In practice, this “tolerant” consensus sequence has then been commonly 

accepted though such a trade-off seems to be unsatisfactory (see Table 1.1). 

 

 

Table 1.1: The trade-off between sensitivity and precision for each consensus sequence 
 First proposed consensus sequence More general consensus sequence 

Sensitivity 37% 72% 

Precision 52% 16% 

*Sensitivity: the proportion of NES regions that contain the consensus sequence. 
*Precision: the proportion of consensus sequences that are found within NES regions. 
 

 

Based on NESbase, la Cour et al provided the NetNES web server [10] aiming to 

solve this condition. The prediction of the NetNES server is performed from primary 

sequence and implemented by the combination of a hidden Markov model (HMM) and a 

neural network. Instead of the site-level recognition obtained by consensus sequence match 

searches, NetNES performs NES prediction at the residue level. Tested on a small set of 

independent NES-containing proteins, three out of five NES’s were correctly located by 

NetNES. Despite the growing number of experimentally verified NES-containing proteins 

in recent years, NESbase has stopped updating since 2003. Thus there is an urgent need to 

collect the NES-containing proteins discovered since then, not only to re-evaluate NetNES, 

but also to provide a more complete dataset for public use.   

 

Kosugi et al. developed an essay to detect NES’s, and proposed an alternative set 

of consensus sequences [11]. However, they didn’t evaluate the trade-off between 

sensitivity and precision, and in fact their precision is even lower than the more tolerant 

consensus sequence mentioned above (see Figure 2.4).  

 

Besides finding the correct position of NES’s within NES-containing proteins as 

NetNES and consensus-based methods attempt to do, classification between NES-

containing proteins and non-NES-containing proteins is another important issue which 

hasn’t been addressed yet (Figure 1.3). It’s more challenging to tackle this issue since some 

protein-protein interaction domains, such as leucine-rich repeats, also fit the consensus 

sequence perfectly. Therefore it is important to quantitatively evaluate how effective 
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previous prediction methods are for this important task.  

 

 

 

Figure 1.3: Two important prediction tasks for NES’s and NES-containing proteins. 

 

 

In their effort to better characterize NES’s, la Cour et al. noted some correlations 

not included in the consensus sequence representation. In particular, they hypothesized 

that some protein attributes, such as flexibility, and a minor preference for negative-

charged or polar amino acids around the NES are potentially relevant to NES function. 

Instead of directly using predicted flexibility as a feature of NES’s, la Cour et al. built 

NetNES using primary sequence information alone, perhaps due to the lack of suitable 

predictors.  

 

Recent research indicates that intrinsic disordered region of proteins are often 

involved in molecular recognition with both high specificity and low affinity [12][13]. 

Interestingly, the binding affinities between NES’s and CRM1 were found to be generally 

low and, furthermore, high-affinity artificial NES’s impair the efficient release of export 

complexes from the NPC [14]. 
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In this study, we hypothesized that protein intrinsic disorder may be relevant to 

NES recognition.  We investigated the correlation between protein intrinsic disorder and 

NES sites and applied our findings to develop a new predictor, NESsential, which aims to 

not only find the correct position of NES’s at the site level, but also potential NES-

containing proteins at the protein level.   
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Chapter 2 

Material and Methods 
 
 

2.1  Training data 
 

We selected 60 NES-containing proteins from NESbase as our training data after 

the removal of redundant sequences (with sequence identity > 25%), and those lacking of 

experimental data on CRM1 dependency or sensitivity to leptomycin B (LMB), an effective 

CRM1 inhibitor, to verify the CRM1-mediated export pathway. The number of training 

data we use is slightly less than that of NetNES (64 NES-containing proteins from 

NESbase) due to the stricter identity criteria we applied for NESsential. 

 
2.2  Protein intrinsic disorder prediction 

 

To investigate the correlation between protein intrinsic disorder and NES function, 

we applied Poodle-L [15] and DISOPRED [16], two of the best performing tools for 

disorder prediction in the critical assessment of techniques for protein structure prediction 

(CASP7), to all protein sequences in the training data. We use both tools to analyze the 

correlation between intrinsic disorder and NES function, but for prediction we only report 

the result using POODLE-L, as this choice yielded better NES prediction performance (see 

Figure S1). 

 

2.3  Training and prediction pipeline of NESsential 
 

We first applied a pre-filter consensus Φx(2,3)ΦxΦ, where Φ can be substituted by 

I, V, F or M and x is any amino acid, to each protein sequence in the training set retrieving 

946 matches, including 117 NES sites and 829 spurious matches according to the annotation 

of experimentally verified NES regions. These matches constitute our positive and negative 

training examples. Subsequently, 22 features, such as predicted disorder, were extracted 

and applied to train SVM models (implemented by LIBSVM 2.9 [17]) to discriminate 

between the real NES sites from the spurious matches. LIBSVM package extends SVM and 
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provides probability estimate besides class label (see supplementary) which is further used 

in evaluation. Based on this pipeline, we proposed two types of NESsential which differ by 

a prior classification of matches by disorder prediction: the “flat” NESsential contains one 

SVM model trained by all matches, while the “split” NESsential employs different SVM 

models for disordered and ordered matches as shown in Figure 2.3.   

 

 
Figure 2.3: The training pipelines of two types of NESsential. In split NESsential, a prior 

classification is conducted according to the disorder status (by POODL-L) within the 

sequence matching the pre-filter. If every residue is predicted to be ordered, the pre-filter 

match will be classified to ordered group; otherwise, disordered group. 
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2.4  Choice of  pre-filters 
 

In our scheme, it is imperative that a pre-filter have high sensitivity.  A low 

precision is tolerable because the SVM classifier has a chance to eliminate false positives. To 

increase the transparency of the prediction process, it is also desirable for a pre-filter to be a 

simple pattern. For these reasons, we applied two general patterns with lengths of 6 and 7 

residues, ΦxxΦxΦ and ΦxxxΦxΦ, as a pre-filter. This pre-filter achieve the highest 

sensitivity amongst all available consensus sequences (Figure 2.4). Moreover, both patterns 

contain the region bounded by the second and the fourth hydrophobic position of the 

consensus sequence currently in use. Previous research indicated that the first hydrophobic 

position in the signal is less conserved [10], which is consistent with some experimental 

observation indicating the NES activity is more susceptible to mutations of the C-terminal 

hydrophobic residues within the signal [8][18]. To test the statistical significance, we 

computed the p-values for these two patterns and obtained p-values of 1.7e-16 (ΦxxΦxΦ) 

and 5.6e-7 (ΦxxxΦxΦ) respectively. These p-values indicated the probability of finding the 

two patterns within the verified NES functional regions merely by chance. 

 

 

Figure 2.4: The trade-off between different consensus sequences.  
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Chapter 3 

Results and Discussion 
 
 
 

3.1  Expanding the dataset  
 
3.1.1  Recently discovered NES-containing proteins  
 

To further understanding of NES’s and evaluate the performance of existing 

methods, it is important to use as much experimental data as possible. Starting with the 

references given by Kosugi et al. [11], we undertook a literature search to collect NES-

containing proteins which have been recently discovered and therefore not included in 

NESbase. In order to allow a fair comparison between our predictor and previous methods, 

these proteins were used only for evaluation, not training. Sequence identity (25%) was 

checked by BLASTCLUST to avoid redundancy between training and test data. As a result, 

we obtained a test set containing 70 proteins and 85 NES’s (some proteins contain multiple 

NES sites).  The addition of these newly collected proteins more than doubles the number 

of CRM1-dependent NES containing proteins organized in a single dataset. This dataset is 

itself an important resource which should contribute to future NES research (Table S1). 

 
3.1.2  Background proteins  

 

The 70 NES-containing proteins described in the previous section can serve as 

positive examples for protein level prediction. Unfortunately, it is difficult to prepare an 

ideal negative dataset, as in general it is difficult to rule out the possibility that a nuclear 

protein may have a yet undiscovered NES or that a non-nuclear protein might have a 

cryptic NES which could function if the protein were found in the nucleus. Therefore, we 

selected 541 yeast proteins currently annotated as either “cytosolic-located” (159 proteins) 

or “nuclear-located” (382 proteins) from the Universal Protein Resource (UniProt) 

[http://www.uniprot.org/] as background proteins for protein level classification 

evaluation.  A few of these background proteins might contain NES’s, but we expect that 

http://www.uniprot.org/�
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most do not. Note that we only use these background proteins for evaluation, never for 

training. 

 

 
3.2  Analysis of disorder prediction results 

 
3.2.1  Distribution of predicted disorder scores 
 

 Both DISOPRED and POODLE-L return a probability estimate of each residue 

being disordered. Figure 3.2.1 shows the different distribution of average predicted 

disorder scores between NES sites and spurious matches. The average scores from both 

disorder predictors are generally higher within or flanking the NES sites than in spurious 

matches. Although the scores predicted by POODLE-L show a larger difference between 

real NES and spurious sites, it should be mentioned that different cutoff values were used 

for each predictor. POODLE-L uses a simple score threshold of 0.5, but DISOPRED 

considers both the estimated false positive rate and the predicted disorder score. Thus the 

predicted disorder scores from these two predictors are not directly comparable.  

 

3.2.2  Distribution of predicted disorder scores for NES sites by POODLE-L 
 

Focusing on the predicted disorder scores made by POODLE-L, we found that the 

average predicted scores within or flanking the NES sites were generally close to the cutoff 

value of 0.5. The histograms in Figure 3.2.2 show the distribution of predicted disorder 

scores at position 0, the first residue of the ΦxxΦxΦ and ΦxxxΦxΦ matches respectively. 

The three peaks found in the distribution for NES sites, suggested that the predicted 

disorder scores tend to be either lower than 0.2 or higher than 0.6, implying that this 

position can be either very ordered or very disordered. Similar results were observed at 

other positions within the pre-filter region. We did not apply this analysis to the predicted 

disorder scores made by DISOPRED, due to the two degrees of freedom, i.e. probability 

estimate and false positive rate mentioned in the previous section. 
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Figure 3.2.1: Analysis of predicted disorder scores by POODLE-L and DISOPRED. 

Distribution of the mean score and its standard error are shown at each position, where 

position 0 represents for the first residue of match of 6-mer (ΦxxΦxΦ) or 7-mer (ΦxxxΦxΦ) 

pre-filter. The regions corresponding to ΦxxΦxΦ and ΦxxxΦxΦ are highlighted in pink. 

(where Φ denotes [LIVFM] and x denotes any amino acid). 
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Figure 3.2.2: Histograms of predicted disorder scores at the first position of 6-mer and 7-

mer NES sites. The red dash line indicates the cutoff value of POODLE-L (0.5). 
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3.3  Classification of NES-containing proteins  
vs. non-NES-containing proteins 

  
3.3.1  Overview 
 

To better characterize the NES, discrimination between NES-containing proteins 

and non-NES-containing proteins is an important issue which has not yet been addressed. 

In practice, a reliable classifier for this task will be useful in searching for potential NES-

containing proteins. In this section, we report an extensive evaluation of the effectiveness of 

current methods for this task by different performance metrics. We also demonstrate and 

discuss the complete ineffectiveness of the consensus-based method for this task. Finally 

we discuss the high scoring background proteins. 

 
3.3.2  The area under the receiver operating characteristic (ROC) curve 
 

To evaluate current methods, we first applied each predictor to the mixed set of 

NES-containing test proteins and background proteins, and retrieved the highest predicted 

score for each protein to generate a ranked list (Figure 3.3.1). Based on this list, the 

performances were evaluated and compared by the receiver operating characteristic (ROC) 

curve and the area under the ROC curve (AUC). Meanwhile, the performances of current 

consensus sequences were also plotted in the ROC space by applying a simple rule that 

proteins which have a match to the given consensus are classified as “NES-containing”. 

Surprisingly, Figure 3.3.2 shows that the corresponding points of the consensus sequences 

in ROC space are located below the diagonal, meaning that the performance is worse than 

random guessing. As for the computational methods, the AUC of flat NESsential (0.71) is 

higher than those of split NESsential (0.63) and NetNES (0.60), but none of them seem high 

enough for practical use. However, split NESsential provides some promising points, such 

as the point with 20% in true positive rate and 3% in false positive rate, which could be 

useful in searching for potential NES-containing proteins (Figure 3.3.2). 
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Figure 3.3.1: The pipeline of generating the ranked lists. NES, BG_n and BG_c in the ranked 

list denote NES-containing proteins, nuclear background proteins and cytosolic 

background proteins respectively. 
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Figure 3.3.2: The ROC curves of two types of NESsential and NetNES. The dots denoting 

the performance of current consensus sequences are also plotted in the ROC space for 

comparison.  
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3.3.3  The precision-recall (PR) curve and the retrieval effectiveness 
 

For further evaluation, we applied the Precision-Recall (PR) curve since it has 

been suggested that the PR curve can provide a more informative performance assessment 

than the ROC curve in the case of skewed datasets [19] as in our dataset. As measured by 

the 3- point and 11- point average precision, both flat and split NESsential demonstrate 

higher retrieval effectiveness than NetNES (Table 3.1). The PR-curve shown in Figure 3.3.3 

further indicates that the difference between split NESsential and NetNES is mostly due to 

the much better precision in the low recall range, while flat NESsential attained higher 

precision than NetNES at all recall levels. Most significantly, split NESsential achieves a 

precision of over 0.5 at the recall points 0.1 and 0.2.  

 

Table 3.1: The retrieval effectiveness among different methods 
 Flat NESsential Split NESsential NetNES 

3-point average precision 0.22 0.27 0.15 

11-point average precision 0.28 0.31 0.23 

*3-point average precision: the average precision at recall values of 20%, 50% and 80%. 
*11-point average precision: the average precision at 11 standard recall points, from 
0% through 100%.  
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Figure 3.3.3: The precision-recall curves of two types of NESsential and NetNES. 

 
 
 
 
 
 
 



 

 24 
 
 

3.3.4  Composition at the top positions of ranked lists  
 

The stacked bar charts (Figure 3.3.4) provide another view showing the difference 

in composition at the higher positions in the ranked lists. Among the top ranked positions, 

flat and split NESsential list two to five times the number of NES-containing test proteins 

(dark grey stack in Figure 3.3.4) than NetNES. This result demonstrates that proteins with 

high scores predicted by NESsential, split NESsential especially, have a higher chance to 

contain NES’s. 
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Figure 3.3.4: The stacked bar plots of composition at the top positions of the ranked lists 

made by two types of NESsential and NetNES. 
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3.3.5  Discussion 
 

3.3.5.1  The performance of consensus-based methods 

The fact that both consensus sequences have negative predictive power indicates 

the “reversed” classification decision is more informative than the original one. In other 

words, it implies that background proteins are more likely to match the consensus 

sequences. To find a possible explanation, we calculated the expected number of 

occurrences for both consensus sequences in NES-containing, cytosolic and nuclear 

proteins respectively (we did not compute this for the Kosugi et al. “consensus”, which is 

actually somewhat more complex than a simple regular expression). As the results show 

(Table 3.2), both consensus sequences are more likely to randomly occur in cytosolic and 

nuclear background proteins than in NES-containing proteins, due to differences in amino 

acid composition and average length. This can explain the negative correlation between 

matching the consensus sequences and whether a protein contains a NES. 

 

 

Table 3.2: The expected numbers of two consensus sequences  
 Cytosolic Nuclear NES-containing 

The first proposed consensus matches 0.21 0.19 0.17 

The more general consensus matches 3.9 2.8 2.5 

*The first proposed consensus: L-x-(2,3)-[LIVFM]-x(2,3)-L-x-[LI].  
*The more general consensus: [LIVFM]-x-(2,3)-[LIVFM]-x(2,3)-[LIVFM]-x-[LIVFM].              
 

 

3.3.5.2  Searching for potential novel NES-containing proteins 

 

According to the PR curve, split NESsential is capable of retrieving 20% of NES-

containing proteins with a precision of over 50%. Moreover, 6 out of 11 NES-containing 

proteins in the top-20 positions are correctly predicted not only at the protein level but also 

at the site level. These results demonstrate that proteins attaining a high split NESsential 

score have a high probability of containing NES’s, and should be useful when searching for 

potential candidates. We, therefore, retrained NESsential on the all of the data (using 

training and test) and computed the scores for a set of nucleocytoplasmic dually localized 

yeast proteins (Table S2) downloaded from UniProt.  Interestingly, one of the top-ranked 

proteins, the yeast nucleosome assembly protein (NAP1), was previously suggested to be 

exported by multiple proteins and CRM-1 might be one of its nuclear exporters [20] [21]. 
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However, it should be mentioned that the current annotation of subcellular localization is 

not completely perfect, which means some of the cytosolic and nuclear proteins may 

contain undiscovered NES’s, though the ratio is probably lower than for proteins annotated 

as dually localized. Therefore we also provide lists of nuclear (Table S3) and cytosolic 

proteins (Table S4) ranked by their scores given by NESsential (trained on all data). The 

top-ranked nuclear protein, the nitrogen regulatory protein GLN3 for instance, has been 

reported to contain a CRM1-mediated NES [22] (although not verified with leptomycin). 

 
 

3.4  Finding correct NES positions within 
 NES-containing proteins 

 
3.4.1  Overview 

 
 In this section, we focus on the prediction task of finding the correct NES positions 

within NES-containing proteins as previously addressed by NetNES. Due to several 

complications, the different forms of prediction for instance, it’s challenging to make a 

completely fair and objective comparison with NetNES. We first explicitly explain the 

complications and how they affected the evaluation and then report the performance of 

NESsential and NetNES. 
 
3.4.2  Complications to making a fair comparison 

  
To evaluate this prediction task previously addressed by NetNES, we plotted 

ROC curve as in the NetNES paper to estimate the residue-level prediction against 70 

independent NES-containing proteins. However, unlike the protein-level classification task, 

there are some complications to making the comparison completely fair and objective. The 

first complication is the different forms of prediction between the two methods (Figure 

3.4.1A). A conversion is required since NESsential makes predictions for each match of the 

pre-filter, while NetNES makes one for each residue. Figure 3.4.1A also illustrates the 

procedures of assigning the “site-level” predicted scores of NESsential to each residue of 

the sequence. Although the performances were comparable after the conversion, we note 

that the conversion yields a large amount of negative data -- the remaining residues 

without annotation of NES. This results in a highly skewed ratio of 1:40 between positive 

and negative data. There is another complication in ranking the predictions by their scores 
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to produce a PR-curve. This complication is caused by the different sources of gold 

standard data (Figure 3.4.1B). Some of the experimental data were verified by long 

deletions giving no exact boundaries of NES sites, yielding a mean length of 13.1 ± 9.8 

residues which is much longer than the length of pre-filter. Due to this complication, 41% 

of the positive data, i.e. residues with annotation of NES, do not overlap with the pre-filter 

matches, and are therefore assigned a zero score by NESsential. On the other hand, though 

NetNES could make a positive prediction at any position theoretically, in fact it assigns a 

zero score to 61% of the positive data. The fact that such a large proportion of the positive 

data is assigned a score zero by both approaches makes it difficult to generate the rankings 

required for plotting complete PR-curves (Figure 3.4.2). For this reason, we used the ROC 

curve for assessment, despite the highly skewed ratio between positive and negative data. 

 

 

 

Figure 3.4.1: Two complications to making a fair comparison (A) The complication caused 

by different forms of prediction and the required conversion for comparison to NetNES. (B) 

The complication caused by different sources of gold standard data. Neither gives exact 

boundaries of NES sites. 
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Figure 3.4.2: The incomplete precision-recall curves of two types of NESsential and NetNES. 
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3.4.3  The area under the receiver operating characteristic (ROC) curve 
 

According to the incomplete PR-curves (Figure 3.4.2), the residue-level 

performance of flat NESsential and NetNES are better than split NESsential, especially at 

the low recall points. To make further comparison between flat NESsential and NetNES, 

we plotted ROC curves to measure the performance. Figure 3.4.3 shows the ROC curves of 

flat NESsential and NetNES. Before calculating the AUC, two dashed lines in ROC space 

should be first mentioned. As previously mentioned, a large proportion of the positive data 

was assigned “zero” by both predictors, causing a big jump in measurable performance. 

Consider the green dash line connecting the points (0.13, 0.58) and (1, 1) for instance, the 

point (0.13, 0.58) represents for the pair of false positive rate (FP rate) and true positive rate 

(TP rate) obtained by using the smallest non-zero score predicted by NESsential as a cutoff 

value, while the point (1, 1) represents for the unconditional assignment of all residues as 

NES positions. The AUC was calculated for each curve including the dashed line. As a 

result, flat NESsential achieved a higher AUC (0.75) than that of NetNES (0.68). 
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Figure 3.4.3: The ROC curves of flat NESsential and NetNES at the residue level.  

 
 
 
 
 
 
 
 



 

 32 
 
 

3.4.4  Evaluating the site-level coverage 
 

The classification accuracy at residue level is important, but for some tasks 
site level coverage is a more relevant measure. If one knows that a protein contains an 
NES (from leptomycin B inhibition, for example), but does not know the location of the 
NES site(s), one would like a tool which can predict those sites with an acceptable 
number of false predictions. As discussed in previous sections, a completely fair 

assessment of residue or site level prediction is not easy. Thus we developed another 

assessment involving coverage at the site level. We first applied flat NESsential, split 

NESsential and NetNES to generate three scores for each residue of the 70 test proteins (85 

NES sites) as in the previous section. However, the longer length of prediction made by 

NESsential may give an unfair higher probability to overlap with NES sites. To exclude this 

effect, we only assigned the site score to the middle hydrophobic residue of the matching 

pre-filter and zero to all other residues.  

 

By this conversion, each protein will have three lists of residues ranked by 

different predictors. The performance is then assessed by the site-level coverage, i.e. the 

proportion of NES sites overlapped by the top-N ranked predictions. Table 3.3 shows the 

site-level coverage by accepting up to the top-N ranked predictions. Flat and split 

NESsential perform better than NetNES after accepting the top-3 ranked predictions, and 

successfully locate approximately 73% of the test NES sites using four predictions per 

protein, while ten are needed by NetNES. 
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Table 3.3: The site-level coverage when accepting the top-N ranked predictions 
Top-N Flat NESsential Split NESsential NetNES 

1 41% (35/85) 38% (32/85) 43% (36/85) 

2 56% (48/85) 53% (45/85) 55% (47/85) 

3 67% (57/85) 65% (55/85) 65% (55/85) 

4 73% (62/85) 72% (61/85) 67% (57/85) 

5 78% (66/85) 79% (67/85) 68% (58/85) 

6 79% (67/85) 81% (69/85) 71% (60/85) 

7 81% (69/85) 82% (70/85) 71% (60/85) 

8 86% (73/85) 84% (71/85) 72% (61/85) 

9 86% (73/85) 85% (72/85) 72% (61/85) 

10 88% (75/85) 86% (73/85) 73% (62/85) 

 
 
3.4.5  Discussion 

 

 Due to the various complications described above, it is challenging to make a 

completely fair comparison by either PR curve or ROC curve. Therefore in this section we 

provide two kinds of comparison. In residue level prediction, flat NESsential attained an 

AUC of 0.75, 0.07 higher than NetNES. We also developed an assessment of site-level 

coverage, a straightforward measurement indicating how well these predictors facilitate 

finding the correct position of NES’s within NES-containing proteins. The results show that 

both types of NESsential can achieve 73% site-level coverage considering only the top 4 

predictions for each protein, while the top 10 predictions are required for NetNES.  

 

 

3.5  Features and SVM models 
 
3.5.1  Cross-validation performance of SVM models 
 
 All SVM models used in NESsential were evaluated by the AUC under a 5-fold 

cross validation scheme. The SVM model used in flat NESsential achieved an AUC of 0.83, 

while the SVM models of the split NESsential for disordered and ordered pre-filter matches 

achieved an AUC of 0.92 and 0.75 respectively. We also applied another classification 

method, random forest and J48 decision tree to our training data. Table 3.4 shows that 
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models generated by SVM (implemented by libsvm-2.9) generally achieve higher AUC 

than by other classification method (implemented by Weka 3.6.2). Unfortunately, the cross 

validation scheme could not be directly applied to NetNES because we could not retrain it. 

 

 

Table 3.4: The AUC values under 5-fold cross validation scheme 
 Flat NESsential Split NESsential 

(disordered model) 
Split NESsential 
(ordered model) 

SVM  0.83 0.92 0.75 

Random forest  0.80 0.84 0.71 

J48 decision tree  0.67 0.73 0.54 

 

 

In this study, we reserved the test data for evaluation only when comparing to 

NetNES. However the combined dataset should give the best indication of the general 

performance of NESsential. Therefore we performed cross-validation on all of the data as 

well, resulting in AUCs of 0.80, 0.86 and 0.79, for the flat, split disordered and split ordered 

SVM models respectively.  

 

3.5.2  Features used for prediction 
 

Integrating new potentially relevant properties of NES function to those 

previously suggested, we extracted 22 biophysically inspired features from not only on the 

region matching the pre-filters, but also its upstream and downstream 10-mer flanks. These 

features mainly consist of (1) simple primary sequence attributes, such as the frequency of 

some specific amino acids: proline, negative-charged and polar residues, (2) predicted 

protein attributes (solvent accessibility and secondary structure by SABLE [23]; protein 

intrinsic disorder by Poodle-L), and (3) other properties such as the average 

hydrophobicity within the pre-filter matches (by the Kyte-Doolittle scale) and the distance 

in between the previous and next matches of pre-filters (or to the N- or C-terminal when no 

such match exists).  We calculate flank disorder and solvent accessibility features based on 

a window of length 10, which requires special handling near the ends of sequences. For 

those matches close to the termini, we regard the “missing part” of such flanks as 

extremely disordered and accessible, assigning a disorder score of 1 and solvent 

accessibility of 100 to each missing “virtual residue”. Table 3.5-3.7 provides a more detailed 

description of these 22 features. 
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To determine the relative importance of our features, we performed the F-score 

feature selection. The F-score is a commonly used statistical measure of the discriminative 

power for each feature by itself (see supplementary). The results indicated that the same 

features are used by the ordered and disordered SVM models of split NESsential, but with 

different relative importance (Table 3.5 and Table 3.6). The F-scores of the top features for 

disordered group are higher than those of the ordered group, which seems to be reflected 

in their respective AUC values. We also noticed that the top-ranked features for the 

disordered group are nearly all simple primary sequence attributes, while many of those 

for the ordered group are the predicted protein attributes, such as solvent accessibility and 

disorder. As for the model used in flat NESsential, the ranked list of features (Table 3.7) 

shows that the intrinsic disorder we proposed in this study is an important and relevant 

feature to NES-function. Since the F-score does not reveal mutual information among 

features, we also applied “leave-one-out” feature selection as a support. Although the 

differences in AUC after the removal of each feature are generally low, the combined 

analyses provide some further information about which top-ranked feature is more 

indispensable in the set of 22 features. 
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Table 3.5: The ranked list of features (disordered model of split NESsential) 
Rank Feature description F-score ΔAUC 

1 # of leucines among the 3 hydrophobic positions 0.144 0.028 

2 # of negative-charged residues in the upstream flank 0.102 0.053 

3* # of polar residues in the downstream flank 0.052 0.008 

4 Distance to previous match of Φx(2,3)ΦxΦ divided by the 
protein length 

0.051 0.006 

5 Whether a hydrophobic residue exists in the upstream -4 
position  

0.043 -0.004 

6* # of prolines within the pre-filter match Φx(2,3)ΦxΦ 0.043 0.005 

7 # of negative-charged residues in the downstream flank 0.037 0.013 

8 # of negative-charged residues within the pre-filter match 
Φx(2,3)ΦxΦ 

0.037 0.013 

9* # of polar residues in the upstream flank 0.031 0.003 

10 Avg. predicted solvent accessibility of downstream flank 0.022 -0.002 

11* # of Methionines among the 3 hydrophobic positions 0.013 -0.008 

12* Whether the first residue is involved in a beta-strand based on 
2nd structure prediction 

0.008 -0.003 

13* Whether the first two residues are involved in a beta-strand 
based on 2nd structure prediction 

0.007 -0.003 

14* Expected number of pre-filter matches  0.006 0.004 

15 Avg. predicted solvent accessibility of the upstream flank 0.004 0.003 

16 Avg. predicted disorder score of the upstream flank 0.003 0.007 

17 Difference of predicted solvent accessibilities (2nd and 3rd Φ 
position)  

0.001 0.002 

18 Distance to next match of Φx(2,3)ΦxΦ divided by the protein 
length 

0.001 -0.005 

19 Avg. predicted disorder score of the downstream flank 0.001 0.009 

20 Avg. hydrophobicity of the pre-filter match Φx(2,3)ΦxΦ 0.000 -0.006 

21 Avg. predicted disorder score of the pre-filter match 
Φx(2,3)ΦxΦ 

0.000 0.004 

22 Avg. predicted solvent accessibility of the pre-filter match 
Φx(2,3)ΦxΦ 

0.000 0.006 

*indicates features that the mean value of spurious matches is greater than that of 
real NES site. 
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Table 3.6: The ranked list of features (ordered model of split NESsential)  
Rank Feature description F-score ΔAUC 

1 Whether a hydrophobic residue exists in the upstream -4 
position 

0.038 0.015 

2 # of leucines among the 3 hydrophobic positions 0.025 -0.018 

3 # of negative-charged residues within the pre-filter match 
Φx(2,3)ΦxΦ 

0.019 0.006 

4 Avg. predicted solvent accessibility of the pre-filter match 
Φx(2,3)ΦxΦ 

0.014 -0.014 

5 Avg. predicted disorder score of the pre-filter match 
Φx(2,3)ΦxΦ 

0.012 0.021 

6 Avg. predicted disorder score of the downstream flank 0.012 0.022 

7 # of polar residues in the downstream flank 0.009 -0.003 

8* Whether the first two residues are involved in a beta-strand 
based on 2nd structure prediction 

0.006 0.004 

9 Avg. predicted disorder score of the upstream flank 0.006 -0.003 

10 Avg. predicted solvent accessibility of the downstream flank 0.005 -0.012 

11* Avg. hydrophobicity of the pre-filter match Φx(2,3)ΦxΦ 0.005 0.003 

12 Expected number of pre-filter matches 0.005 -0.009 

13 Distance to previous match of Φx(2,3)ΦxΦ divided by the 
protein length 

0.005 -0.017 

14 # of prolines within the pre-filter match Φx(2,3)ΦxΦ 0.004 0.012 

15* Whether the first residue is involved in a beta-strand based on 
2nd structure prediction 

0.004 0.023 

16 Distance to next match of Φx(2,3)ΦxΦ divided by the protein 
length 

0.003 -0.002 

17* # of negative-charged residues in the upstream flank 0.002 -0.019 

18* Difference of predicted solvent accessibilities (2nd and 3rd Φ 
position) 

0.002 -0.014 

19* # of polar residues in the upstream flank 0.001 0.008 

20* # of negative-charged residues in the downstream flank 0.000 -0.007 

21 # of Methionines among the 3 hydrophobic positions 0.000 -0.019 

22* Avg. predicted solvent accessibility of the upstream flank 0.000 -0.004 

*indicates features that the mean value of spurious matches is greater than that of 
real NES site. 
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Table 3.7: The ranked list of features (model of flat NESsential)  
Rank Feature description F-score ΔAUC 

1 # of leucines among the 3 hydrophobic positions 0.038 0.015 

2 Avg. predicted disorder score of the pre-filter match 
Φx(2,3)ΦxΦ 

0.025 -0.018 

3 Avg. predicted disorder score of the downstream flank 0.019 0.006 

4 Avg. predicted disorder score of the upstream flank 0.014 -0.014 

5 Whether a hydrophobic residue exists in the upstream -4 
positions  

0.012 0.021 

6 # of negative-charged residues in the upstream flank 0.012 0.022 

7 Distance to previous match of Φx(2,3)ΦxΦ divided by the 
protein length 

0.009 -0.003 

8 # of negative-charged residues within the pre-filter match 
Φx(2,3)ΦxΦ 

0.006 0.004 

9 Avg. predicted solvent accessibility of the downstream flank 0.006 -0.003 

10 Avg. predicted solvent accessibility of the pre-filter match 
Φx(2,3)ΦxΦ 

0.005 -0.012 

11 # of negative-charged residues in the downstream flank 0.005 0.003 

12* Whether the first two residues are involved in a beta-strand 
based on 2nd structure prediction 

0.005 -0.009 

13* Whether the first residue is involved in a beta-strand based on 
2nd structure prediction 

0.005 -0.017 

14* # of prolines within the pre-filter match Φx(2,3)ΦxΦ 0.004 0.012 

15* Avg. hydrophobicity of the pre-filter match Φx(2,3)ΦxΦ 0.004 0.023 

16 Avg. predicted solvent accessibility of the upstream flank 0.003 -0.002 

17 Distance to next match of Φx(2,3)ΦxΦ divided by the protein 
length 

0.002 -0.019 

18* # of polar residues in the upstream flank 0.002 -0.014 

19 Expected number of pre-filter matches 0.001 0.008 

20* Difference of predicted solvent accessibilities (2nd and 3rd Φ 
position) 

0.000 -0.007 

21* # of Methionines among the 3 hydrophobic positions 0.000 -0.019 

22* # of polar residues in the downstream flank 0.000 -0.004 

*indicates features that the mean value of spurious matches is greater than that of 
real NES site. 
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3.5.3  Discussion 
 

3.5.3.1  Sequence conservation as a relevant feature 

 

Sequence conservation among orthologous proteins might be expected to provide 

useful information to improve NES recognition since the CRM1-mediated export pathway 

and the leucine-rich NES are found in all major branches of the eukaryotes. However, the 

spurious matches are often located in the hydrophobic core where the sequence is also 

conserved among orthologues. In fact, one should be careful when trying to apply 

sequence conservation to NES prediction, since NES’s are not necessarily conserved among 

all orthologues. For example, the NES of the Snail transcription factor were found to be 

conserved only in mammalian orthologues while the NES is not present in other family 

members [24]. Another example indicates that the real NES of Human TPP1 is conserved 

among human, mice and frogs. However, the spurious matches of Human TPP1 also show 

high degrees of conservation between mammals [25]. Though these examples might be 

special cases, they show that NES’s are not necessarily conserved among all orthologue 

families and a proper set of orthologous proteins is another issue requiring consideration.   

 

3.5.3.2  Directions for future improvement 

 

Since the same feature set was used in training all SVM models in this study, it’s 

interesting to discuss what caused the different performance in 5-fold cross-validation 

between the disordered and ordered models of split NESsential. One might speculate that 

the difference is a result of the different ratio between positive and negative data between 

the ordered and disordered pre-filter matches (see Figure 2.3). However, we tested this 

hypothesis by training models for the ordered group using randomly selected negative 

data to mimic the ratio found in the disordered group, but no significant improvement was 

observed. Thus it appears that the effect of unbalanced datasets cannot explain the 

difference in AUC, but rather the ordered NES’s are less well described by our feature set. 

Our features mainly focus on the local information surrounding the NES site. However, the 

ordered NES’s might be located in more buried regions and therefore require more 

complicated conformational changes to expose themselves to CRM1. Previous research has 

demonstrated some specific regulation, such as nearby phosphorylation sites [26] or the 

oligomeric state [27] of proteins with buried NES. Though these features seem to be 

required for specific proteins, we cannot exclude the possibility that these features will be 
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found in other NES-containing proteins and be helpful for future improvement, especially 

for the ordered group.  

 

 
3.6  A case study of influenza viral proteins 

 

 In the previous section, we mentioned NES’s may not always be conserved during 

evolution. In this regard, the non-structural (NS1) protein of influenza A viruses should be 

an excellent case to test how well NESsential and NetNES perform, as 100’s of naturally 

occurring mutant variants are available. Recent research suggests that NES-mediated 

accumulation of NS1 in the cytoplasm increases the pathogenicity of the virus [28], which 

strengthens our expectation that the NES function of NS1 proteins should be conserved 

during evolution. We retrieved 327 full-length, non-identical NS1 protein sequences of 

human H1N1 influenza A viruses from the NCBI influenza virus resource 

[http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html]. Within the dataset, 273 NS1 

sequences are from the FLU project before 2009, while the remaining 54 sequences are from 

the 2009 pandemic. Figure 3.6.1 shows a phylogenetic tree of these sequences with the 

branch built by these pandemic 2009 and previous human H1N1 viral NS1 proteins.  

 

We measured the prediction performance by site-level coverage (top-1 ranked) as 

described in section 3.4. As a result, split NESsential achieved a much higher site-level 

coverage (99%) than NetNES (61%). Interestingly, this difference was largely due to the 

site-level coverage of NS1 proteins from the 2009 pandemic (Table 3.7), which was reported 

to be more pathogenic than seasonal A (H1N1) virus [29][30]. Surprisingly, NetNES fails to 

detect many homologues even though they share high global sequence identity. The 

consistent protein-level coverage of NESsential suggests it may be more stable in predicting 

homologous NES‘s among NS1 proteins. 

 

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html�
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Figure 3.6.1: The phylogenetic tree provided by NCBI for the 2009 pandemic and previous 

human H1N1 viral NS1 proteins. The 2009 pandemic NS1 sequences are denoted in red 

with the number of NS1 proteins in parenthesis. 

 

 

 Table 3.7: The site-level coverage when accepting the top-1 ranked predictions 
 Split NESsential NetNES 

Before 2009 (273) 99% 73% 

2009 Pandemic  (54) 100% 2% 
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Chapter 4 

Conclusion 
 

 

We have identified the different distribution of predicted protein disorder 

between real NES sites and spurious matches. Furthermore we have shown that the real 

NES sites can be naturally divided into two groups, ordered and disordered. Based on 

these analyses, we selected 22 biophysically inspired features and proposed NESsential, a 

SVM-based method implemented by LIBSVM. Meanwhile, we succeeded in enlarging the 

publicly available dataset of NES-containing proteins by about two-fold and used these 

independent and newly discovered proteins for evaluation. This up-to-date resource is a 

valuable resource for future analysis work. 

 

For the task of classifying NES-containing proteins from non-NES-containing 

proteins, both flat and split NESsential achieved higher retrieval effectiveness than the 

state-of-the-art predictor, NetNES. Indeed the consensus sequence methods are completely 

ineffective for this task and NetNES also performs quite poorly. In contrast, split 

NESsential provides a practical precision of over 50% at low recall level, which should be 

useful in searching for potential candidates containing leucine-rich NES‘s. Besides, 

NESsential also achieved a higher AUC (by 0.07) and a higher site-level coverage than 

NetNES in the task of finding correct NES positions within NES-containing proteins. 
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Supplementary materials 
 
 

Table S1: A list of 70 newly discovered NES-containing proteins 
 

UniProt_Id Verified NES region Reference 
C8ZJE1 297-305; 20-28 [31]; [32] 
O00401  225-235 [33] 
O60729 393-402 [34] 
O70201 96-104; 89-98 [35]; [36]; [37] 
O92398 100-112 [38] 
O94916 1-19 [39] 
P02554 41-50 [40] 
P03409 189-202 [41] 
P05230 145-152 [3] 
P06748 94-102 [42]; [43]; [44] 
P08353 128-137 [45] 
P0CA03 139-148; 1-10 [46] 
P11142 394-401 [47] 
P11388 1017-1028; 1054-1066 [48]; [49] 
P15336 405-413 [50] 
P16110 241-256 [51] 
P16727 228-237; 359-366 [52] 
P17861 186-208 [53] 
P19508 41-60 [54] 
P20067 91-102 [55]; [56] 
P21952 367-376 [57] 
P22363 49-58 [58] 
P28289 127-136 [59] 
P30021 485-495 [60] 
P38483 173-196 [61] 
P38936 68-78; 102-119 [62] 
P42345 975-984; 1281-1289; 535-547 [63] 
P42858 2397-2406 [64] 
P50616 2-14 [65] 
P51587 1383-1393 [66] 
P53686 299-357 [67] 
P59636 46-54 [68] 
P67775 149-158 [69] 
P97318-2 152-160; 462-469 [70] 
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Q02085 132-143 [71] 
Q02880 1034-1044 [49] 
Q14145 272-312 [72] 
Q14494 251-260 [73] 
Q14678 613-622 [74] 
Q16236-2 537-546; 175-186 [75]; [76] 
Q18PE1 240-249 [77] 
Q5EBH1 372-379 [78] 
Q5GLC3 145-165 [79] 
Q60795 545-554 [80] 
Q61699 607-617 [81] 
Q68SB1-2 4-14 [82] 
Q6UB99 2415-2424 [83] 
Q75R42 189-198 [84] 
Q83414 82-91 [85] 
Q8IXJ6 41-51 [86] 
Q8K3Y6 284-291 [87] 
Q8N720 95-109 [88] 
Q95168 719-728; 728-738; 305-313 [89] 
Q96JZ2 199-211 [90] 
Q96T21 756-770; 634-657 [91] 
Q99152 37-46 [92] 
Q99AM3 551-560 [93] 
Q99MU3 128-137 [94] 
Q9BRK4 631-642 [95] 
Q9EPW1 142-152; 361-369 [96] 
Q9GZX7 190-198 [97] 
Q9HC62 317-332 [98] 
Q9PWE8 152-160 [99] 
Q9R1A8 237-247 [100] 
Q9UMX3 70-78 [101] 
Q9UNH5 355-364 [34] 
Q9Y572 255-264; 344-354 [102] 
Q9Y8G3 434-509 [103] 
Q9YZN9 76-85 [104] 
Q9Z2A0 382-391 [105] 
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Table S2: The list of proteins annotated with dual localization ranked by the 
split NESsential trained by the combined dataset   

 
UniProt_Id Position Probability 
NAP1_YEAST 334 0.692092 
PTP2_YEAST 316 0.645572 
NOT2_YEAST 127 0.604863 
R101_YEAST 600 0.604778 
NOT3_YEAST 146 0.572437 
RPB7_YEAST 7 0.543616 
NOT1_YEAST 665 0.5 
RAD5_YEAST 338 0.478667 
LOS1_YEAST 606 0.433603 
RPC3_YEAST 641 0.415095 
SSB1_YEAST 53 0.414102 
DBP2_YEAST 321 0.407879 
PP12_YEAST 54 0.407583 
NOT5_YEAST 474 0.401357 
SKI3_YEAST 300 0.393377 
ARG2_YEAST 240 0.354822 
POP1_YEAST 563 0.320881 
CTK3_YEAST 197 0.319269 
DEP1_YEAST 208 0.308044 
NB35_YEAST 71 0.307779 
CC27_YEAST 7 0.306051 
RMI1_YEAST 57 0.303967 
RPB4_YEAST 47 0.302519 
BMS1_YEAST 134 0.279144 
ARP8_YEAST 310 0.27765 
RPB6_YEAST 148 0.27237 
FAP7_YEAST 93 0.269712 
DCUP_YEAST 244 0.256273 
DPB2_YEAST 405 0.25325 
PR28_YEAST 188 0.245672 
MSI1_YEAST 119 0.243744 
C1TC_YEAST 338 0.231486 
CB31_YEAST 5 0.224899 
MTD1_YEAST 310 0.220534 
ST20_YEAST 88 0.219569 
LSM1_YEAST 112 0.207213 
CEF1_YEAST 428 0.188546 
SYYC_YEAST 108 0.17009 
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LSM8_YEAST 13 0.161685 
CTK1_YEAST 165 0.160456 
NOT4_YEAST 138 0.151759 
HAT2_YEAST 55 0.145349 
UBC3_YEAST 44 0.144261 
IST3_YEAST 56 0.11431 
EGD1_YEAST 51 0.109843 
RPD3_YEAST 301 0.109094 
IPB2_YEAST 45 0.108086 
UBC2_YEAST 29 0.048252 
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Table S3: The list of proteins annotated with nuclear localization ranked by 
the split NESsential trained by the combined dataset (Prob. ≥ 0.5) 

 
UniProt_Id Position Probability 
GLN3_YEAST 723 0.925172 
HAP4_YEAST 546 0.800667 
SPB1_YEAST 665 0.783344 
NH10_YEAST 45 0.764689 
ACE1_YEAST 124 0.75475 
SMI1_YEAST 500 0.712017 
HED1_YEAST 54 0.70771 
RPC4_YEAST 259 0.695314 
SNF4_YEAST 314 0.693641 
RA18_YEAST 207 0.688935 
ITC1_YEAST 384 0.680225 
TAF7_YEAST 578 0.677138 
SPT7_YEAST 152 0.653795 
GAL4_YEAST 64 0.639153 
MSN1_YEAST 40 0.625432 
RRP1_YEAST 118 0.620273 
PDR1_YEAST 475 0.615326 
HAA1_YEAST 536 0.61197 
MET4_YEAST 604 0.607666 
ERB1_YEAST 192 0.588147 
HIR1_YEAST 419 0.586253 
CBF1_YEAST 245 0.583998 
DRS1_YEAST 649 0.568691 
NOP2_YEAST 105 0.568534 
MAD3_YEAST 381 0.564558 
ACE2_YEAST 70 0.563049 
SIR4_YEAST 979 0.562793 
SSF1_YEAST 331 0.562084 
MCM3_YEAST 834 0.55734 
PUT3_YEAST 488 0.557014 
ADR1_YEAST 766 0.555824 
MEI5_YEAST 103 0.555519 
MP10_YEAST 341 0.550755 
SWI1_YEAST 951 0.546881 
ORC6_YEAST 81 0.543549 
TAF9_YEAST 35 0.542758 
PR40_YEAST 344 0.537894 
MBP1_YEAST 757 0.536536 
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TAFC_YEAST 442 0.536245 
PR21_YEAST 215 0.534033 
PFD6_YEAST 15 0.526597 
T2FB_YEAST 390 0.523427 
REF2_YEAST 178 0.523374 
DPO2_YEAST 64 0.52287 
MAD1_YEAST 393 0.519251 
ARP5_YEAST 563 0.51651 
UTP11_YEAST 110 0.516043 
SKN7_YEAST 492 0.512903 
UGA3_YEAST 114 0.510215 
PR22_YEAST 448 0.509755 
MKS1_YEAST 370 0.508834 
MU81_YEAST 145 0.505662 
MTR4_YEAST 461 0.505412 
PIP2_YEAST 610 0.5 
HIR2_YEAST 481 0.5 
TF3A_YEAST 337 0.5 
SEN2_YEAST 215 0.5 
ORC1_YEAST 208 0.5 
ASH1_YEAST 166 0.5 
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Table S4: The list of proteins annotated with cytosolic localization ranked by 

the split NESsential trained by the combined dataset (Prob. ≥ 0.5) 

 
UniProt_Id Position Probability 
SNF7_YEAST 234 0.957903 
MDS3_YEAST 1353 0.89723 
SYV_YEAST 1053 0.662564 
NBP2_YEAST 228 0.652946 
RNA1_YEAST 347 0.634038 
BTN2_YEAST 133 0.609133 
NTF2_YEAST 54 0.578835 
STI1_YEAST 191 0.569749 
KR11_YEAST 379 0.567037 
CNS1_YEAST 294 0.565512 
VPS3_YEAST 521 0.541156 
CYPH_YEAST 53 0.536443 
NMT_YEAST 13 0.523817 
VPS5_YEAST 510 0.5173 
YBP1_YEAST 501 0.515131 
COAC_YEAST 1190 0.510611 
GLRX_YEAST 36 0.5 
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Figure S1: The precision-recall curves of different types of NESsential and NetNES. Black 

and grey solid curves represent for the performance of flat and split NESsential 

respectively while POODLE-L was replaced by another disorder predictor, DISOPRED.  
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F-score and probability estimates 
 

For the convenience of readers, we repeat the definition of the F-score given by 
Chen and Lin [http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf], and simply 
summarize how libsvm package extends SVM to give probability estimates given by Chang 
and Lin [http://www.csie.ntu.edu.tw/~htlin/paper/doc/plattprob.pdf] as follows: 

 
F-score: 

  
F-score is a simple measure of the discrimination of two sets of real numbers. Given 

training vectors xk, k = 1, . . . ,m, if the number of positive and negative instances are n+ and 
n−, respectively, then the F-score of the ith feature is defined as: 
 

 
 
where x̅ i, x̅ i(+) , x̅ i(−) are the average of the ith feature of the whole, positive, and negative 
data sets, respectively; xk,i(+) is the ith feature of the kth positive instance, and x k,i(−) is the ith 
feature of the kth negative instance. 
 
 
Probability Estimates: 
 

The original SVM predicts only class label, NES motif or not in our case, without 
probability information. LIBSVM package extends SVM and supports a function to give 
probability estimates by a sigmoid function proposed by Platt et al. (2000): 
 

 
 

Let each fi be an estimate of f(xi). The best parameter setting z* =(A*,B*) is 
determined by solving the following regularized maximum likelihood problem (with N+ of 
the yi’s positive, and N− negative): 
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