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Abstract

In this thesis, we propose two extensions of a topological field theory. One is
a construction of new observables. The other is a perturbation theory around a
special point of the theory.

First, we construct the new observables in the supersymmetric quantum me-
chanics on a Riemaniann manifold. The observables of this theory correspond to
the differential forms on the instanton moduli space. In our case, this space is the
space of the gradient trajectories of the Morse function on the manifold, which
is a subspace of the space of paths with both endpoints fixed. We consruct such
differential forms by the mothod of iterated integrals. We find that the result-
ing observables are sensitive to the information of the non-commutativity of the
fundamental group of the moduli space.

Second, we develop a proper method of a perturbation theory around a special
limiting point of the topological field theory. It is known that in this special point,
one can compute the correlation functions beyond the topological sector of the
theory. This limiting point is characterized by the infinite value of a parameter A
of the theory. However, at this point A = oo, the theory becomes quite different
from the original theory with a finte value of A. To get desired information, we
need to know the value of the correlation functions away from the point A = oo.
We find that it can be achieved by a kind of perturbation theory around the point
A = oo. This perturbation theory has properties different from the usual one for
a quantum mechanics. We carry out the perturbation theory by the method of
the resolvent. We find that the computation on the inifinite dimensional Hilbert
space can be reduced to a finite dimensional matrix computation.

After reviewing some basic properties of topological field theories, we discuss

the two extensions above.
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Chapter 1
Introduction and overview

In general, it is a difficult problem to analyze the dynamics of a quantum field
theory (QFT), since a general QFT has infinite degrees of freedom and compli-
cated interactions. In the early days of the development of the QFT, to compute
physical correlation functions, people used perturbation theory that is typically
represented by techniques of the Feynman diagrams or some other approxima-
tion methods. Since then, a number of approaches have been developed which
enable one to compute some exact quantities in QFT. The theories of supersym-
metric QFT’s are representative of such approaches. In a supersymmetric theory,
cancellations of the degrees of freedom between bosons and fermions are crucial.
If the supersymmetry is not spontaneously broken, the theory has the lowest en-
ergy states that are called supersymmetric ground states. The supersymmetric
ground states are also called BPS states in relation to the representation theory of
supersymmetry algebras. These states are stable so that they are independent of
the coupling constants or the potential of the theory.

In a series of papers [23], [24], [25], Witten considered a supersymmetric quan-
tum mechanics that describes a particle moving on a manifold X. There he found
that the BPS states of the supersymmetric quantum mechanics have close relation-
ship with the topology of the manifold X. In [23]], [24], He defined an invariant
of the theory called the supersymmetric index or Witten index and showed that it
coincides with the Euler characteristic of X. Besides, in [25], he showed that if one
regards the potential of the particle as a Morse function on X and takes the effect
of the tunneling into consideration, one can reproduce the Morse theory of the

cohomology of X. Along these lines, supersymmetric quantum mechanics were
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4 Chapter 1: Introduction and overview

used to give a physical explanation of the Atiyah-Singer index theorem [1]. Such
an approach of using QFT’s to study geometries and topologies of spaces made a
tremendous impact on mathematicians. In turn, QFI’s became more rigorous by
treating them by mathematical or geometrical methods. In this way, the physics
and the mathematics have been developed by influencing each other.

Under these circumstances, Witten pushed his ideas further and found a su-
persymmetric QFT where the physical states of the theory consist only of BPS
states [27]. Consequently the physical correlations functions of this theory are
independent of the metric and the coupling constants. QFT’s with such prop-
erties are called topological field theories (TFI’s). In [27], Witten constructed a
theory that is obtained from four-dimensional Yang-Mills theory by applying an
operation called “topological twist”. The resulting theory is called the topolog-
ical Yang-Mills theory. This theory has been used to study the topology of the
moduli space of instantons. More precisely, it was shown that the correlation
functions of this theory gives the topological invariants of the moduli space of
instantons. The topology of the instanton moduli space had been independently
studied by Donaldson by more mathematical means and the results of these two
approaches coincided. Thus, the topological Yang-Mills theory is often called the
Donaldson-Witten theory.

After these developments, applying the method of the topological twist to the
two-dimensional supersymmetric sigma model [22], a two-dimensional TFT that
describes the topology of the space of maps from a Riemann surface to a target
space were obtained in [26]. This TFT is called the topological sigma model [2].
This theory subsequently developed into the so called topological string theory.
It inspired the study of the mirror symmetry and many other interesting and
important mathematical concepts.

In such developments of TFT’s, there appeared a geometrical picture called the
Mathai-Quillen formalism [21]. This formalism was originally found as a method
for computing the Euler characteristic of manifolds. Later it was shown that one
can construct TFT’s by applying this formalism to the infinite dimensional space
of fields. Mathai-Quillen formalism states that a TFT has a first order differential
equation which is called the instanton equation or the BPS equation and the par-
tition function of the theory coincides with the Euler characteristic of the space of

the solution of the instanton equation, i.e., the instanton moduli space. One can



also show that the BPS states correspond to the closed forms on the moduli space
and hence the correlation functions of the BPS state are represented by the inte-
gration of the closed forms over the moduli space. Therefore the BPS correlation
functions are naturally topological quantities. They give the intersection numbers
of the homology cycles in the moduli space.

As we mentioned above, given a TFT, there exists a corresponding physical
supersymmetric QFT. The TFT can only compute a sector of the physical theory
where only the BPS states appear. This sector is called the topological sector or
BPS sector of the physical theory.

Frenkel, Losev, Nekrasov (FLN) [10] proposed a method of computing the
correlation functions of the physical theory beyond the topological sector, still
making use of the techniques of the topological theory. First they consider the case
of the supersymmetric quantum mechanics and then applied the similar method
to the 2D supersymmetric sigma model and the 4D supersymmetric Yang-Mills
theory [12]. The reference [11] provides a short review of these works by the
original authors.

It is clear, however, that such correlation functions beyond the topological sec-
tor depend on the metrics and the coupling constants of the theory. Therefore,
their computational method is actually applicable only to a certain limit of the
theory. In this limit, a real parameter A of the theory goes to infinity, and it is
shown that the limiting shape of the action becomes a delta functional supported
on the instanton moduli space. Thus the contributions to the path integral are
localized to the instanton moduli space and they can be given by the finite di-
mensional integrals which one can perform. .

However, in the limit A = oo, the theory becomes quite different from the
original physical theory and it is difficult to obtain the information of the origi-
nal theory with a finite value of A. To get the desired information, we need to
know the value of the correlation functions away from the point A = co. One
naturally expects that it can be achieved by a kind of perturbation theory around
A = co. But, as FLN showed, such a perturbation theory has properties quite dif-
ferent from the usual one for a quantum mechanics. Because of such nontrivial
properties, the explicit computation using the perturbation theory has not been
done.

In this thesis, we propose two new extensions based on the consideration of
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[10]. One is a construction of new observables in the supersymmetric quantum
mechanics. As we described above, the BPS observables of this theory are the
closed forms on the instanton moduli space. In our case, this space is the space
of the gradient trajectories of the Morse function. A nontrivial gradient trajectory
must start from a critical point of the Morse function and end at another critical
point. Therefore we will consider differential forms on the space of such trajec-
tories, i.e., the space of the paths with both endpoints fixed. There is a method
for constructing such differential forms. It is known as the method of iterated
integrals. This method has been developed by Chen [6], [7] and was used to
study the de Rham theory of the path space. We apply this method to construct
observables of the supersymmetric quantum mechanics. We will find that the
resulting observables can detect the information of the non-commutativity of the
fundamental group of the moduli space. Thus, using these observables, we can
get the new information about the geometry of the moduli space.

The second extension is the development of the proper method to carry out
the perturbation theory around the point A = co. The basic reason why the usual
perturbation method is not applicable is that the Hamiltonian of interest is not
hermitean nor diagonalizable. Specifically, the Hamiltonian in the limit A = oo
has the Jordan block of the finite length. We will carry out the perturbation theory
by the method of the resolvent [16]. We will see that due to the special form of the
perturbed Hamiltonian, we can reduce the computation of the operator on the in-
finite dimensional Hilbert space to a finite dimensional matrix computation. This
is the second of our new results. By this method we will compute the eigenvalues

of the perturbed Hamiltonian to the second order.



Organization of the thesis This thesis is organized as follows. In chapter 2,
we recall several basic facts about the supersymmetric quantum mechanics. We
treat the supersymmetric mechanics describing a particle moving on a Rieman-
nian manifold with a potential derived from a Morse function on the manifold.
We show that the wave functions of the particle are localized around the critical
points of the Morse function and they are approximated by the supersymmetric
harmonic oscillator near the critical points.

In chapter 3, first we review general properties of TFT’s of Witten type. Then
we explain the Mathai-Quillen formalism of the TFT’s. We see there the path
integral of the TFT has a nice geometrical interpretation using the notion of the
Poincaré duality. To construct the topological theory of the quantum mechanics,
we need to apply the Mathai-Quillen formalism to the space of paths.

Therefore in chapter 4, we review the properties of the geometry of path space
as a preparation for applying the Mathai-Quillen formalism. We also review the
notion of iterated integrals as differential forms on the path space. These are
identified with our new observables of the topological quantum mechanics.

In chapter 5, we apply the Mathai-Quillen formalism to the path space and
obtain a theory of topological quantum mechanics. Then we compute, as an
example, a correlation function that contains a new observable.

In chapter 6, we carry out the perturbation theory around the point A = oo.
First we review the theory of the resolvent. Then using the perturbative expan-
sion of the resolvent, we obtain an eigenprojections onto an eigenspace of the
perturbed Hamiltonian. We see that the resulting eigenprojections can be repre-
sented by finite size matrices so that we can compute the perturbed eigenvalues.
We carry out the perturbation theory to the second order.

In chapter 7, we conclude the thesis by summarizing and indicating the future

directions.






Chapter 2
Supersymmetric quantum mechanics

We begin by reviewing some properties of the supersymmetric quantum mechan-

ics which will be used in the later chapters.

2.1 Supersymmetry algebra

The supersymmetry is a symmetry between bosons and fermions. In the super-
symmetric quantum mechanics, they are generated by two real, or one complex
fermionic charges. The algebra generated by these charges are called supersym-
metry algebra. In what follows, we recall the explicit form of the supersymmetry

algebra.
Supersymmetry algebra is a Z,-graded algebra. The Z;-grading is defined by

the operator (—1)f, where F is called the fermion number and it takes the values
0 or 1 (mod2) on the operators. There are two real odd operators Q1 and Q; called

supercharges. There is a Hamiltonian operator H, which is an even operator.

(-DFQi =-Qi(-1)f, (-DFQ=-Q(-1)". (2.1)
(-1)FH = H(-1)%. (2.2)
H=Qi=05 (2.3)

Q1Q2 + Q2Q1 = 0. (2.4)
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Define complex supercharges Q and Q* by

QZZ%(Ql‘f‘in)/ Q"= L(Q) - iQy). (2.5)

1
V2 V2
They obey the commutation rules

{Q.Q"} =2H, {QQ={Q"Q"}=0. (2.6)

Consequently, the complex supercharges are conserved. In other words, they

commute with the Hamiltonian.

[H,Q] = [H,Q"] =0. (2.7)

2.2 Supersymmetric quantum mechanics on a Rieman-

nian manifold

The following is a recollection of the supersymmetric quantum mechanics on a

Riemannian manifold.

Let X be a closed oriented n-dimensional Riemannian manifold equipped with
a metric g. (Closedness of X is equivalent to the condition that X is compact and
boundary-free.) A quantum mechanics that has X as a target space will be called
a sigma model on X. It describes a quantum mechanics of a particle moving on

the surface of X.

Let us choose a function on X, f : X — R, such that f has only isolated critical
points. Such function is called a Morse function on X. (Critial points of f are
defind as the points that have vanishing derivative of f, thatis, p € X is a critical
point if and only if df(p) =0.)

Witten considered the following supersymmetric sigma model action on X.

1. dxtdx’ 1., 9f of

— Z = B I L

Sphys /1<2Ag”” i ar T2 Sxiaw
D?f v

(2.8)
) , 1
+ iy Dyt — igh” DDz Tt + ﬁR” et nygbf’tp‘7> ,
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where, i
Degh(t) = 29" (8) + T () 9P (t). (2.9)

Here x¥, u = 1,...,n, are the coordinates of X. The real fermionic variables
y# are the superpartners of x¥, and other real fermionic variables 7, are the
conjugates of ¥¥. And A > 0 is a parameter. (This action has a slightly different

normalization from Witten’s original one.)

The space of states of this theory is identified with ()*(X), the space of complex-

valued L,-differential forms on X with the hermitean inner product

wlp) = [ GmAP, (2.10)

where, « is the Hodge dual with respect to g.

The supersymmetry algebra is generated by the operators:

Q=d, =eMdeMN =d+ AdfA (2.11)

1 1
Q" = (dy)" = geMd'e™V = 2d" + vy, (2.12)

where (Vf)* = ¢l"o,f is the gradient vector field of the Morse function f. Here
the operator d* is defined as the adjoint of d with respect to a fixed metric g on
X. But Q* is the adjoint of Q = d, with respect to the metric Ag, which explains

the overall factor A 1.

The Hamiltonian H), is given by their anti-commutator:

1
H/\ = i{Q, Q*}
1, 1

= 5 (=3 A+ Aldf|* +Ky), (2.13)

where, Ky = (Lyf + LY f)' Recall that for a vector field v, we denote by L,
the Lie derivative acting on the differential forms. Using the Cartan’s formula

Ly F= {d, 1y f}, this can be recasted into a more familiar form:

1 1 D?f
I _ nv _ T J [ a*H v
H), = 2( AA—i—)\g ayfaquLnyva[a ,a ]), (2.14)

where, at = g1y /5w, and a*# is its adjoint, that is, a*# = dx" A (see Appendix[A).
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They satisfies the anti-commutation relations

{a*t,a"} = 2¢M. (2.15)

Thus, a** and a* play the roles of the fermionic creation/annihilation operators.

2.3 An example: supersymmetric harmonic oscillator
on R

We choose X = R and f = twx?, w € R. Then, df = wxdx, and Vf = wxi.
There is one and only one critical point of f, that is the origin x = 0. The Hamil-
tonian takes the form
1 d* 1 1
V= 3yaa + /\w x> + Ew[a*,a]. (2.16)
The space of states H consists of two components, namely, the space of zero-forms

and the space of one-forms on R.
H=0O(R) = Q°(R) ® Q'(R). (2.17)

The fermionic part of the Hamiltonian jw[a*, a] (=: Hy) takes the Value —3w on
zero-forms and —|— w on one-forms. While the bosonic part —5 A dx2 + 5 2w?x? (=:

Hy)is a familiar harmonic oscillator. Therefore, the eigenvalues of Hj, are given

by
1|a)| 3|a)| 2n +1
slwl, Slwl —

Corresponding eigenfunctions of H, are given by

lw], ... (2.18)

n
Y, (x) = Ane%/\|“’|xzjwe/\|wlx2, (2.19)

where A, are appropriate normalization constants that ensure

(¥, ¥,) = /IR Ax¥ (x) ¥ (x) = 1. (2.20)



2.4 Generalization to R” 13

Now we consider the eigenvalues and eigenstates, in particular, the ground state
of the total Hamiltonian Hy = H, + Hy. It is important that they depend on the
sign of w.

2

e For w > 0, the ground state is the zero-form ¥y(x) = e~ 2w

1

e For w < 0, the ground state is the one-form ¥o(x)dx = e M@l gy

In both cases, the corresponding eigenvalue is zero, that means, they are super-
symmetric ground states. The excited states are given by ¥, (x) and ¥,(x)dx,
n > 0. Note that the eigenfunctions are localized around the origin. They expo-

nentially decrease away from the origin.

2.4 Generalization to R”

The supersymmetric harmonic oscillator can be straightforwardly generalized to

that on X = R”". Let us choose the Morse function on R” as

n

1

fx) =Y Ewy(x“)z, 0# wy €R. (2.21)

u=1
The origin of R is one and only one critical point of f. Suppose, a given 1 <
k < n, we assume that wy, ..., wy are negative and wy,1,...,wy are positive. The

Hamiltonian (2-17) takes the form

-1 92 Ao pn 1

H)\:};lﬁm—f‘zwy(xy) +§wy[a*”,a”]. (2.22)
The space of states H is decomposed to the direct sum of the space of m-forms,

wherem =1,...,n.
H=0"R") =Q'R)&--- & Q" (R). (2.23)

The bosonic part of the Hamiltonian is the n-dimensional Harmonic oscillator
and the fermionic part gives definite values depending on the signature of w,,’s.

It is easy to see that the ground state of the total Hamiltonian is

Wo(x) = e~ Bl Gt (2 gyl p LA i, (2.24)
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and corresponding eigenvalue is zero, i.e., this state is a supersymmetric ground
state. There are no other supersymmetric ground state. The excited states have

the obvious forms like

¥(x) = M@l ol gman | gz Mlerl(2 P dwnl (P gl oA dih,

(2.25)

2.5 General Riemannian manifold case

Now we consider the most general case. Since we are assuming X is compact,
there are only finite a finite number of the critical points of the Morse function
f : X = R. Let us focus on one of these critical points, say, p € X. Then, it is
known that we can find a local coordinate system around p such that the local

expression of the Morse function f is written as

n

flx) = f(p) + 1 wu(x)* + O((x)?). (2.26)

u=0

Suppose that the number of the negative eigenvalues of the Hessian of the Morse
function at p is k. This non-negative integer k is called a Morse index of f at a crit-
ical point p. Then we may assume without loss of generality that w;, ..., wy are
negative and wy1,...,wy, are positive. Then the Hamiltonian is approximately
given by the form of (ZZz2), that is, n-dimensional supersymmetric harmonic oscil-
lator. Thus, for each critical point of f, we have one approximate supersymmetric

ground state.

2.6 The main model: X = CP!

In this thesis, we will mainly study the supersymmetric quantum mechanics on
X = CIP!. 1t can be regard as a compactification of the complex plane in standard
way: CIP! = C U {co}. We choose the Fubini-Study metric on CIP!

dzdz

g = Atz (2.27)
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and the Morse function
1zz—1

4zz +1
The Hamiltonian takes the form

(2.28)

A 7z zz —1

20tz myid i (2

2
Hy=-30 + 27)%9,05 +

where, F and F are the fermionic left and right charge operators that are defined

by

F-dz=1, F-dz=1, (2.30)
F-dz=F-dz=0, (2.31)
F-1=F-1=0. (2.32)

Our Morse function has two critical points, z = 0, and z = co. Near z = 0 we

have:
1 1 _
f=—g+57+ (2.33)
while near z = o0 we have
1 1 _
f:Z—Eww—l—..., (2.34)

where w = z!

is a local coordinate near the point co. Therefore we shall find
two approximate supersymmetric ground state corresponding to these two critical
points. Furthermore, the origin z = 0 is a critical point with the Morse index zero,
and the point at infinity z = oo is a critical point with the Morse index two. So the
ground state localized around z = 0 must be a zero-form, and the one localized
around z = co must be a two form on CP'. It is easy to find these ground state.

The one corresponding z = 0 is

A -A
0¥ vac = \/n(e/‘/z — e_/\/z)e f, (235)
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and the one corresponding to z = co is

A A
oo‘ifvac - \/7_[(6)\/2 — e?/\/z)e waS/ (236)
where,
e dzdz (2.37)
FS — (1 +ZZ)2 37

is the Fubini-Study Kéhler form. Here and below we use the notation
dzdz = d°z = idz Ndz = 2dx Ndy, z=x+iy. (2.38)

It is known that these two states are not only approximate ground states, but true
supersymmetric ground states of the Hamiltonian H,.

The excited states have the approximate forms near z = 0,

0¥ nipp = 0Ann eM 9T (e72M ) (dz)P (dz)?, (2.39)

o Yuiipp = oA e—Afa’;Ua% (e”‘f)(dw)p(dw)?, nn>0,pp=01  (2.40)

where gA, 7 and A, 7 are the appropriate normalization constants.



Chapter 3

Topological field theory and the

Mathai-Quillen formalism

In this chapter, we introduce topological field theories (TFT’s) and we give a brief
general overview of their properties. We also review a beautiful construction
method for a certain class of TFT’s. This method is called Mathai-Quillen formal-

ism [21] and gives us a geometric picture of TFT’s.

3.1 Topological field theory of Witten type

A quantum field theory is called topological if there exists a set of observables (that
we shall call topological observables) such that their correlation functions do not

depend on the metric. If we denote these observables by O;, then

o

(5g7<0i1 "'Oin> = 0. (31)

Here, the correlation function is defined by the path integral,

(O ... 0; ) = /D(p O (¢)...0; (¢) e 4519, (3.2)

where, 71 is an overall coupling constant.
In general, there are two types of quantum field theory that achieve the defin-
ing properties (3-1) of TFT’s . One is called TFT’s of Schwarz type. Both their ac-

tions and their observables are locally independent of the metric. Consequently,

17



18 Chapter 3: Topological field theory and the Mathai-Quillen formalism

their correlation functions are independent of the metric. Another type is called
TFT’s of Witten type or Cohomological field theories (CohFT’s), which are of
interest for us. A CohFT do have a metric-dependent action. However, this is
compensated by an extra symmetry that is called topological symmetry. In the

following, we describe general properties of CohFT’s.

Let us denote the generators of the topological symmetry by Q. Since Q is
a symmetry of the theory, it satisfies QS[¢] = 0 and Q[D¢] = 0. Generally, we
impose further conditions on Q. We take Q to be a nilpotent fermionic scalar

charge,
Q*=0. (3-3)

One of the remarkable properties of the CohFT is that, the energy tensor T, [¢] =
(5‘2% has the form

Tyv = Q G;u/ [(P]/ (3-4)
where, Gy is some tensor. The topological observables O; are observables that
satisfy Q O; = 0. In addition, they are metric-independent. Then the correlation

functions of the topological observables are found to be metric-independent:

o

5 Qi+ 0i) = (O3 01, Q6 )) = (Q (O - 04, G))

—0. (3-5)

Furthermore, if one of the O;’s has the form O; = QA,, topological correlations

function that contain QA vanish.

It follows that if we replace some of the topological observable O with O + QA,
the value of the correlation function does not change. Therefore, it is natural
to identify O with O + QA as topological observables. Taking into account this
fact and the condition Q> = 0, it is natural to define the space of topological

observables as the space of the cohomology classes of Q:

{(91.}:11(::3_ (3-7)
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An observable O that satisfies QO = 0 is called Q-closed, and it represents a
cohomology class of Q. On the other hand, an observables O that has the form
O = QA, for some A, is called Q-exact, and it is zero as the element of the

cohomology class of Q.

A fermionic symmetry satisfying this property is called a BRST symmetry,
and the fermionic charge Q that generates the BRST symmetry is called the BRST
charge. The topological observables are often called the BPS observables.

In the most of CohFT’s of our interest, not only the energy momentum tensor

is Q-exact, but the action itself is Q-exact,

S[gp] = Q¥lg]. (38)

In this case, we can deduce further properties of the BPS correlation functions.

They are independent from the overall coupling constant:

d d
L _(0,,...0;) / D¢ O, .. 1slo)

d(n 1) T
= (0, ... 0;,Q¥)
=(Q(0;...0,¥)) =0. (3-9)

If we regard 7 as the Planck constant, this means that the exact computation of
the correlation function is the same as the computation in the limit 7 — 0, that
is, the semi-classical approximation. In this limit, the contributions to the path
integral are localized around the classical solutions, the space of which are often
tinite dimensional. This is the notion of localization in CohFT. We will describe

the further details of it in the next section.

Similarly, if the action consists of a sum of Q-exact terms,
5=1Q¥ + Q¥+ + Q¥ (3.10)

then, BPS correlation functions are independent from any of these coupling con-

stants t]-,

(O

ip - -

i L0)=0, j=1,...,k (3.11)
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3.2 The Mathai-Quillen formalism of CohFT

It is known that a large class of topological field theories of Witten type, as known
as Cohomological Field Theories (CohFT’s), have a nice geometrical interpreta-
tion, which is called the Mathai-Quillen formalism [21], [4], [9]. This formalism
enables us to interpret various properties of CohFT’s in terms of geometry or
topology. One of the most remarkable properties of CohFT is that the path in-
tegrals, or correlation functions of BPS observables can be computed by finite
dimensional integrals over the moduli space of the BPS states. BPS observables

are interpreted as closed differential forms on the Moduli space M,

(3.12)

where, w;, i = 1,...,n are BPS observables and w; are corresponding closed
differential forms on M. The MQ formalism interpret this equation in terms of
Poincaré duality. In this section, we will show how to construct CohFT’s using
MQ formalism and how the computation of BPS correlation functions are reduced

to finite dimensional integrals over M.

3.2.1 Zero-dimensional model

Here, we consider a following very simple model. Let us take X = IR as the space
of fields. For a vector bundle on X, let us choose the tangent bundle E = TX =
TR. Clearly, TR is a trivial bundle, TR = R X RR, so that we can coordinatize TIR
globally by one local coordinate system (x,y). Suppose x parametrizes the base
space and y parametrizes the fiber direction. Next, we have to choose a section
of TR. We choose it to be y = s(x) = x. The equation s(x) = 0 is called the
BPS equation, or instanton equation. The moduli space is defined as a subspace
of X such that s(M) = 0, i.e, M := {s71(0)} = {x € X|s(x) = 0}. In our
case, s(x) = x means M = {0} = {pt.}. Next, as the BRST transformation, we
take Q =d = dx%, that is the exterior derivative on IR. Then we define the BPS
observables of this model as the cohomology classes of Q, which are equal to the

de Rham cohomology classes on IR. It has only one nontrivial cohomology class
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at degree zero, that is, a class of constant functions: H*(R) = 4, oIR. We can take

“_7

the constant function “1” as a representative of H’(IR). In summary,

Space of fields: X = R, (3.13)

Vector bundle: E = TX = TR, (3.14)

Instanton equation: x = 0, (3.15)
Moduli space: M = {0} C X, (3.16)

BRST transformation: Q =d = dx% , (3.17)
Space of BPS observables: H*(X, Q) = H*(R,d) = J,oR. (3.18)

The moduli space M is a point, which is zero dimensional. We define the

1:=1. 3
/M_{O} (3.19)

integral of 1 over M by,

Then, we have an equality

/M 1= /]R 1AS(x)dx = /_Zé(x)dx. (3.20)

This equation says that the delta form J(x)dx is a representative of the Poincaré
dual of the point M. We will describe the notion of the Poincaré duality in the

next section.

Here, we have yet another representative of the Poincaré dual of M,

HMA = \/% e_%Xde, A > 0. (3.21)

For any A > 0, the equality

/Ml = /IRl/\ﬂM'/\ (3.22)

holds. Hence, we have a one-parameter family 1, of representatives of the

Poincaré dual of M. Note that 77, tends to the delta form in the limit A — oo,

lim #a) = 6(x)dx. (3.23)
A—00
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Here, let us make a short digression. In fact, this limit is very special, because

for any non-constant function f(x), df (x) # 0, the equality

A—r00

[ o =1im [ feam (= [ f@sxdx) 624

does hold. Where, we defined the integral of f(x) over M by [, f(x) := f(0).
While, for finite value of A, this does not occur generally. This remark will be

important for later chapters.

To return to the subject, let us manipulate the integral (3:22) and transform it
to a form somewhat alike a path integral of a supersymmetric field theory. First,

define a one-form @, on the total space of the vector bundle E = IR? as,

D) = \/ge_éyzdy. (3.25)

Then, 7,1 is equal to the pullback of ®, by the sections : X — E,

A s 9 g

Mmr =58Py =/=—e
2m dx (3.26)
S e 2% dx
Vo '

Next, let us introduce two fermionic variables ¢, 7t and one bosonic variable p. We
define the BRST transformation of these variables by fermionic transformations

as,

Qx:=1¢ (=dx), Q¢ :=0, (3-27)
Qm:=p, Qp:=0. (3.28)

Note that Q is clearly nilpotent, Q> = 0. Now we can find an equality®
Ia = 5 [ apdme s (3:29)
MA ™ 2mi ’ :

where, S) := QY ,, and
, 1
Y, = m(—ix+ ﬁp). (3-30)

1The readers should not confuse the variable 7 with 7w = 3.14.
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The explicit form of the Q-exact term S, is,

— ' L >
Sy = 1px—i—zm/1—|—ﬁp. (3.31)

Thus, (3-22) can be written as,

-1 : - 1.2
. —(—ipx+intp+ 55 p°) /
(1) := i /dxd¢dpdn le A0 = iy 1. (3.32)

If we compare this equation with (3-12), it looks like a path integral of a CohFT
with Q-exact action Sy = QY.

3.2.2 Poincaré duality and Euler class
Poincaré duality

Poincaré duality is a duality between the homology and the cohomology of a
manifold. It states that if X is an n-dimensional oriented closed manifold (com-
pact and without boundary), then the kth homology group of X is isomorphic to
the (n — k)th cohomology group of X, for all integers k.

H(X) = H"*(X). (3-33)

In the language of de Rham cohomology theory, this statement becomes as
follows. Let M be a k-dimensional closed submanifold in X. Then there exist a
closed (n — k)-form yaq, dypg = 0 that represents a (n — k)th de Rham cohomol-
ogy class of X such that for any closed form w, dw = 0, the equality

o = A .
/le /Xw M (3-34)

holds. Where, i : M — X is the inclusion map, hence i*w is the restriction of
w on M. The closed form 77 is called a Poincaré dual of M. In the previous
section, we have constructed a family of the Poincaré dual of M = {0} C R = X.

In what follows, we will denote a Poincaré dual of a submanifold M by 1 4.
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Euler class

Consider a real, oriented vector bundle E — X over an compact, oriented n-
dimensional manifold X. Furthermore, assume that the rank of E is even and
such that rank(E) = 2m < n. The Euler class of E is an integral cohomology class
e(E) € H?"(X). There are a number of ways to think about ¢(E). Followings are

the two descriptions that are important for us.

e The first way is a topological description. Let s : X — E be any generic
section of E, that is, transverse to the zero section. A theorem states that the
Euler class of E is equal to the Poincaré dual of the zero locus of the generic

section s,
e(E) =nm € H™(X), M={s"1(0)}. (3.35)

e The second way is a differential geometric description. Let V be a connec-
tion on E. Using Chern-Weil theory, we can construct a representative ey (E)

of Euler class of E as,

1
(277)™

ey (E) = Pf (Fy) € H™(X), (3.36)

where Fy is the curvature of V. We regard Fy as two-form valued 2m x 2m

anti-symmetric matrix and define its Pfaffian by

Pf (Fy) = )| (27”117)1' sgn (U)F%(l)g(z) Ao A F%(zm_l)a(zm). (3.37)
0ESyy, :

It is known that the cohomology class of ey is independent of the choice of

V.

For more details, see [5].

3.2.3 The Mathai-Quillen formalism in finite dimensional spaces

The Mathai-Quillen formalism provides a representative of Euler class which in-
terpolate above two descriptions. Here we retain the notation above. Mathai-

Quillen [21] showed that a representative of the Euler class of the vector bundle
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E over X is given by

1 saa a ! a a 14
esv(E) = i /dpadﬂa o (s (%) pat 2 h papy+ima Vs® () + 75 Fab mar pH ¢ . (339)

(27

where we use the indices p, v for the coordinate on the base space X, and a,b
for the coordinate on the fiber of the bundle E, and h% is a metric of E. We
abbreviate Fy to F. We write dx* = ¢*. The variables p, are bosonic and 7, are
fermionic. A > 0 is an arbitrary parameter. This expression e, v (E) is called the

Mathai-Quillen representative of the Euler class e(E).

Let us write this expression as

1 _
es,v(E) = W/dpadnae S/ (339)
where
S = —is"(x)pa + 5 hpapy + VS (9) + PR (340)
a 2)\ a a 4/\ uv’ta . :

This can be recasted into the form

5 = Qrma(—is"(x) + 5 h"py)] (3.41)

Here Q is a fermionic transformation that is defined by

Q' := yt, (3-42)

Qyt :=0, (3-43)

Qpa := Pa — Aybaﬂbl/)y/ (3-44)
1

Qrty 1= Aybanblpy - iFyvbun—blpﬂwv/ (3-45)

where A’f » is the connection one-form associated with the connection V. We can
show that Q is nilpotent, Q> = 0. For the proof, see Appendix [Bl Therefore, Q
can be regarded as the BRST transformation. The “action” S has a Q-exact form.

This is the very property of the CohFT.

Recall that the Euler class is the Poincaré dual of the zero locus M of the

generic section s. This means that, for any closed form w on X, we have the
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equality
/./\/l ! /; ES,V ( ) ( )

If we write as w = w(X);.., dx"1 A - - A dxtk, (3.46) can be written as

/M ifw = /clx“dt/ﬂ‘dpadrtaw(x)yl._,yklpﬂ1 ot e S, (3.47)

This looks like the localization property of the path integral of the CohFT.
The closed form w is interpreted as a BPS observable of this CohFT.

Actually, a number of CohFT’s can be obtain by formally applying the Mathai-
Quillen formalism to the infinite dimensional field space. In the later chapter, we
will do this for the space of paths and obtain the topological quantum mechanics.

Note that the “action” (3-71) consists of two Q-exact terms:

5 = Qlis"(¥)] — 55 QU upy). (348)

Therefore, by the argument of and (3-17), the integral (3-47) is independent
of A. Moreover, by a similar argument as (3-24), if we take the limit of A — oo,
(3-47) does hold even if w is not a closed form. FLN [10] made use of this property
as a means of computation of the non-BPS correlation functions in the limit of the

A — oo of the topological quantum mechanics.



Chapter 4
The path space geometry

We would like to use the Mathai-Quillen formalism to construct a topological
version of the supersymmetric quantum mechanics. To do this, we need to know
the geometry of the space of paths. Therefore, in this chapter, we review the

details of the path space geometry.

4.1 The path space

Let X be a finite dimensional smooth Riemannian manifold equipped with a
metric g. We denote the space of all the smooth paths on X by PX. This space

forms an infinite dimensional manifold and is called path space of X:
PX:={y:I — X | vissmooth}, (4.1)

where, I is the “world line”, which could be a finite interval [¢;, ¢ f], or half-line
(—o9,tf], [ti, +0o0) or the entire line (—oo, +-c0). We will refer to the elements of I

as “time”. For simplicity, let us choose I as a unit interval: I = [0, 1].

Let us also define a space of paths with both endpoints fixed as a subspace of
PX. We take xp € X as the initial point and x; € X as the final point. Then the
fixed-endpoint path space P (X; xo, x1) is defined as follows:

P(X;x0,x1) == {7 € PX | 7(0) = x0, ¥(1) = x1}. (4.2)

27
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4.2 Vector fields on PX

Here, we describe the tangent space of PX at a path <, that is T,/PX. A tan-
gent vector v(y) € T,PX represents an infinitesimal deformation of 7. Such
a deformation can be represented by a family of tangent vectors along 7y on X.
Therefore T, PX is identified with I'°(*TX), i.e., the space of smooth sections of
the pulled-back bundle y*TX. Generally, v(y) is written as the integral along the

time, like .
0
o(y) = [ o (1O gy € TPX, @3)

where summation over y = 1, ...,dimX is implicit. This is analogous to the finite

o
So we can regard 7 as a basis vectors of T, PX. A vector field on PX is of

course, a smooth function of y € PX with values in tangent vectors v(y) € T, PX.
Note that, in the case of P(X; xo, x1), the coefficients of the tangent vector v#(y(t))

must satisfy v*((0)) = v#(y(1)) = 0, because both the endpoints are fixed.

The tangent bundle T/PX admits a natural metric induced from g, the one on

TX, as follows. For any two basis vectors MV(SW’ MVL(tz) of T,/PX, we define their

inner product by

0 )

( )>7 = gw(')’(ﬁ))‘s(tl —t). (4.5)

<5'ﬂ‘(t1)’ 5V (ty

Therefore, if v1(y) = [dh v?('y(tl))wfw and vy (7y) = [dh vg('y(tz))(w%(tz) are
two vector fields, their inner product can be computed as

(01,02) = [ dtidtz o} (7(8))03(1(12)) 31 — t2)

= [ dt g} (1()o5 (1), 46

This defines the induced metric on TP X.
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4.3 Differential forms on PX

Next, we define differential forms on PX. Formally, the basis of the cotangent
vector space of PX at -y are spanned by év*(t) € T;PX, t € [0,1]. Here we
regard ¢ as the exterior derivative on PX. By varying < in PX, the differential
one-form Jv#(t) is defined. The pairing between dv*(#;) and a tangent vector

MV(SW is defined as

ovF (1) { } = 6", 6(h — o). (4.7)

0
5" (t2)

Although the differential k-forms on PX can be generated by taking the k-
fold wedge products of above one-forms, such objects are too abstract for our
computation. It is difficult to think of the infinite dimensional manifold and the
forms on it. Therefore we need some more concrete picture of the differential
forms on the path space, that are explained in what follows.

Suppose, given an arbitrary non-negative integer n. Let us consider an open

subset U of a Euclidean space R"” and a map
¢:U— PX (4-8)

such that, upon defining ¢(t,x) := ¢(x)(t), ¢ :Ix U — X become a C*-map.
Such pair (U, ¢) is called a local parameter system of the path space PX. This is
analogous to a local coordinate system of a finite dimensional manifold. Using
¢ : U — PX, we can pullback differential forms on PX to ones on the finite
dimensional space U. Suppose w is a differential form on PX, we denote its
pullback as wy := ¢*w. Of course, wy becomes a form on U. If another open
subset V. C R" and a C® map f : V — U are given, (V,¢ o f) is also a local
parameter system of PX. By the property of pullback, we have f*wy = wyor-.
Hence, by using this formula inversely, we can define differential forms on the
path space as follows. For any given local parameter system (U, ¢), a differential
k-form (k < n) w on PX is a k-form wy on U such that for any f : V — U like

above,
frwp = wyor (4-9)

is satisfied. The form defined as above is denoted by w = {wy}. This definition
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of the forms on PX has the advantage that it can avoid the difficulty from the

infinite-dimensionality of PX.

4.4 The algebra of the differential forms on the path

space

Let us choose a local parameter system (U, ¢) and fix it. For a form w = {wy},
we have
dw = {dwgp}. (4.10)

This follows from the fact that the exterior derivative and the pullback commute.

For two forms w = {wy} and T = {7y}, their sum is defined as
w+T:={wp+Tp}. (4.11)
For a scalar k € R, the scalar multiplication of w by k is
kw = {kwgy}. (4.12)
The wedge product of w and 7 is
WAT:={wp A Tp}. (4.13)

We denote by QF(PX), the linear space which consists of all k-forms on PX
and let O*(PX) 1= Py>o OF(PX). The construction above defines a structure of
differential graded algebra on Q*(PX). Since d*> = 0 on O*(PX), it becomes a
differential complex. By definition, this is the de Rham complex of PX. Therefore,
we can consider its cohomology, i.e., the de Rham cohomology of the path space
Hjr(PX).

4.5 Various constructions of differential forms on PX

Here we develop methods to construct the differential forms on the path space

PX. First we define the so-called evaluation maps. There are two kinds of such



4.5 Various constructions of differential forms on PX 31

maps. One is the evaluation map with the time fixed, which is defined by
evi: PX = X, = (), (4.14)

where t € [ is fixed. So there is a one-parameter family of the evaluation maps
with the time fixed, {ev;}, t € I. The other is the one with the time unfixed,
which is defined by

ev:IXxPX — X, (t7q)— (). (4.15)

The simplest way to get forms on PX is to use ev; : PX — X. For each t € R,

we can pullback forms on X to ones on PX by
evi : 0" (X) — Q" (PX), wr evjw. (4.16)

We can also use ev : I x PX — X to construct forms on PX. First we pullback
forms on X to ones on I x PX. Then by integrating them along the time direction,
we get forms on PX. To go into further detail, we need the notion of the local
parameter systems of PX introduced in the previous section.
Let us choose a local parameter system ¢ : U — PX, where U is an open
subset of R". Then a map
pu:IxU—X (4.17)

is defined by the composition: ¢y(t,u) := (evo¢)(t,u) = ¢(u)(t). When the
fixed local parameter system (U, ¢) is taken for granted, we often make an abuse
of notation and simply write ev instead of ¢;. Suppose w is a p-form on X, then

ev'w is a p-form on I x U and has the form
eviw=dtANa+p, (4.18)

where a and B are respectively a (p — 1)-form and p-form on I x U, and both of

them do not contain dt. Note that we have & = 1, ev*w, where 14 is the interior
dt dt

product with respect to the vector field % (see appendix [A). Using coordinate

functions(m!, ..., m") of U C R", we can write « as

N = zxylmyp_l(t,ml, v, m™) dmPUN - A dmbet (4.19)
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From the above representation, we define the integration of ev*w along the time

direction by

/ev*w = [dtigeviw
I [

1
= </0 zxm,,,yp_l(t,ml,...,m”)dt) dmM A - -« Admbr-1, (4.20)

This is a (p — 1)-form on PX. The integral above is called a fiber integration with
respect to the projection p : I x PX — PX. In this way, we can obtain a (p — 1)-

form on the path space PX from a p-form on X:
w — /ev*w. (4.21)
I
Here and subsequently, we will abbreviate [,ev*w to [ w.

The above construction is generalized to the method of iterated integrals. By
this method, from wy,...,w; € OF(X), we will get fwl ... wy, which is (p; +
-+ -+ px — k)-form on PX, where py, ..., px > 1 are the form degrees of w1, . .., wy,

respectively. We describe the detail of the construction in the following.
We denote k-direct product of X by

X=X % xX, (4.22)
k

and let 7; : Xk — X, 1 < j < k, be the projections onto jth component of X¥.

The cross product of the forms wy, ..., wy is a form on M, which is defined by
Wy X - X Wi = T wy A - A T Wy (4.23)
Let Ay be a k-simplex in R,
Me=A{(ty,... ) ER0O<H <o < <1} (4.24)
Define k-fold evaluation map

Q: A X PX — Xk (4.25)
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by ¢(t1,...,ti;7) = (7(t1),...,v(t)). By definition, we have

P (w1 X - Xwg) =@ miwi A -+ A @F i wy. (4.26)

We are now attempting to define the fiber integration with respect to the pro-
jection Ay x PX — PX,

[ g w

k

As the previous case, it is sufficient to define it for a local parameter system
¢ : U — PX, where U is an open subset of R", (k < n). Consider a following
sequence of the maps

A x U 2% A xPx % PX. (4.28)

As before, we abbreviate the composition ¢ o (1 x ¢) simply to ¢ (making an

abuse of notation), and we write interior products lj instead of 1 5,1 <j <k Let

us denote the pulled back forms by
wilt) == ¢’ mw;, 1<j<k, (420)
on A x U. These wj(t;) have the forms
wj(tj) = dtj Aaj + Bj, (4.30)

where a; and B; are (p; — 1)-forms and pj-forms on Ay x U, respectively. All of
them do not contain any of dty,...,dt;. Note that, we have aj = L]-qo*ﬂ]’.‘a)]-. The
wedge product a; A - - - A ax becomes a form on Ay x U, whose form degree is

p1+ -+ px — k(=: p— k). We can represent it as
0y A N = gy, (b Cotgmt, o mF) dmfA - A dmek, (4.31)
Then we define

/Ak P (w1 X - X wy) == </Ak Oy, At - ..dtk)dnﬂ“ A Ndmbrk,  (4.32)
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where

/ lxﬂl;’lpfkdtl coe dtk
Ay
1 ty tr 1 n
:Z/O dtk/o dtk—1~~'/0 dty apyq, (1o tigme, o, m"). (4-33)

Thus, starting from forms wy, ..., wy on X, whose degrees are py, ..., px, respec-
tively, we obtain a form || A ¢*(w1 X -+ X wy) on the path space PX, whose
degree is p1 + - - - + px — k. We denote it by

/ Wy ... Wy, (4-34)

and call it the iterated integral of the forms wy,...,wy. The iterated integral

defines a multilinear map

[:QF x - x QP — QP 4Pk (pX), (4.35)

4.6 The exterior derivative of iterated integrals

Let us focus on the fixed-endpoint path space P(X; xg, x1). We will describe the
action of the exterior derivative of P(X; xo, x1) on the iterated integrals.

We have the following formula [17]: Let w;, ..., wy be differential forms on X
and regard the iterated integral [ w; ...wy as a differential form on P (X; xo, x1).

Then the exterior derivative of it is given by

d/wl...wk

k
= Z(—l)p7*1+l /w1 e CUj_ldCijj+1 coL Wi

\
_ =

j
k

+

(—1)pf/w1...wj_l(ijwj+1)wj+2...wk. (4-36)
1

]

In particular, for k =1

d/a) = —/da), (4-37)
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and fork =2

d/wlwz = —/dw1w2~|— (—1)p1+1/w1dw2

(4-38)
+(—1w1/kw1Aa&y

4.7 An invariant F(7) on P(X; xo, x1)

Using the formulae above we obtain a following proposition: Let w;, i = 1,...,k,
be closed one-forms on X and let ¢ be a one-form on X. Suppose that there exists

some constants ¢;; , and they satisfy a relation

Z Cijwi N\ wj + d¢ = 0. (4-39)

i<j

Then, for a path v € P(X; xo, x1), the iterated integral

F(y) = ZACijwiwj+A¢ (4-40)

i<j

is depend only on the homotopy class of <. The proof is straight forward by using

@ and G,
dF(7) :Zcijd[ywiwj—kd/ycp

i<j

:—l;cij/y(wi/\wj)—/yd¢
:_L<;cijwi/\wj+d¢>

N ~- _
=0. (4.41)

This means F(y) is locally constant on the path space P(X; xo, x1), i.e., it is invari-

ant under continuous deformations of the path +.
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4.8 An example of F(7)

Here we construct the easiest non-trivial example of F(7y). We choose X = X,

that is, the Riemann surface with the genus two. The cohomology of X, is given

by

H*(%) = HYZ2) @ H'(X2) & H* (%)

42
— Z ® Z¢* o Z. (4-42)

Hence, we have four closed two-forms. They are dual to the four cycles a1, by, a3, ba

on Y. We can choose the four closed one-forms 61, 171, 62, 772 representing the four

bl b2

cohomology classes of H'(X;) so that they satisfy

A@ZLWZ%

/biGj:/uiiy]-:O, i,j=1,2. (4-43)

On the other hand, the second cohomology class H(X,) is generated by a volume

two-form wy,. It is clear that as the cohomology class, the equalities
[01 Ain] = [62 A 2] = [w,] (4-44)
hold. Hence the difference between 6; A 17 and 6, A 17, must be a exact form,

O A — O ANipp = —de, (4.45)
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where —¢ is some one-form on ¥,. Therefore we obtain an invariant on P (Xy; xo, X1),
F(y) = /7 (01771 — 62112) + L ¢. (4.46)

In the later chapter, we will regard this invariant as an observable of quantum

mechanics.

4.9 Moduli space as a subspace of the path space

In this section we describe a notion of a space of gradient trajectories of a Morse
function. This space is defined as a subspace of the path space. This space
will be important in the later chapter, where we consider a topological quantum

mechanics sigma model.

Let us choose a Morse function f on X, that is, a smooth real function on X
with a finite number of isolated critical points. Let us consider solutions of the
following equation of the gradient flow of the Morse function f:

dvé‘t(t) — ¢, f(7(1)). (4-47)

We call the solutions of this equation gradient trajectories of the Morse function
f. If we define s* () := % — g"0,f(7), this can be regarded as a section of the
tangent bundle TPX of the path space, i.e., s : PX — TPX. We denote the space

of the gradient trajectories as

M= {yes(0)} = {7 e Px'”;(” - g”vauf(v(t))}~ (4.48)

This is a subspace of the path space PX. We call M a moduli space. This is
because in the later chapter, M will be regarded as the space of solutions of the

instanton equation of the topological quantum mechanics.

Since we are considering a compact manifold X, a gradient trajectory must
start from a critical point of f at time t = —oo and end at another critical point

at time t = +oo. Therefore the moduli space M consists of disjoint union of
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connected components My_ . :

M - U MX_,X+I (4'49)

X_, x4 Ecrit.pts.

where, M, , is a space of gradient trajectories that starts from y(—c0) = x_
and end at y(c0) = x4, and x4 are critical points of f. A theorem of Morse
theory says that the dimension of each connected component of the moduli space
M is given by

dim My, =1y, —ny, (4.50)

where, n,, are the Morse indices of the critical points x.
Now let us focus on one component of the moduli space, say, M, _ ... This is
a finite dimensional subspace of P(X;x_,x, ), the space of paths with the both

endpoints fixed. Let us denote the inclusion map by i,
it My x, = P(X;x_,xy). (4.51)
Let us choose a local coordinate patch (U, ¢) of My .,
¢ U — My, (4-52)

where, U is an open subset of REMMn_ns and ¢ is a diffeomorphism. Then we
can regard (U,io ¢) as a local parameter system of P(X;x_,x4). It covers the
direction transverse to the moduli space M, _ ... Composing these maps and the
evaluation map, we can pullback differential forms on X to ones on M,_ .. and

represent them on the local coordinate of My, :

Vit

u i> My x, <L> P(X;x_,x4) X
I (4.53)

O (U) &= O My x,) € QHP(Gx,x4)) 5 QF(X).

Example: X = CIP!

As an example, let us construct some differential forms on the moduli space in

case of a sphere X = CP".
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As in the section 2.6} we choose the metric ¢ and the Morse function f on CIP!

as,
_ dzdz (4.54)
§T U +22)7 44
and
_1zz—1 (4.55)
T4zt 455
Therefore, the corresponding gradient vector field is given by
Vf =2z0;+7z0s (4.56)
so that the instanton equations are given by
dz(t) dz(t)  _
o= g —F (4.57)
These equations are easily solved and we get the solutions
z(t) = e'm, z(t) = e'm. (4.58)

Since these solutions are the complex conjugates to each other, it is sufficient to

consider the one of them, say,
z(t) = e'm. (459)

Here, m is a point on CIP! where the flow z(t) passes by at the time t = 0. It
is given as the initial condition of the differential equations (F-57). If we choose
m # 0,00, then the flow starts from z(—c0) = 0 and ends at z(c0) = oo . Thus,
Mo = CPP' — {0,00}. If we choose m = 0, the flow is a constant map z(t) = 0
and if m = oo, then z(t) = oo. Thus, Moo = {0} and Me e = {c0}. In summary,

we find the moduli space to be
M = MU MqggU Moo = (@Pl . {o,oo}) U{0} U{co} = CPL.  (4.60)

and they have real dimensions dim Mg . = 2, dim Mo = 0, and dim Mo = 0.
Note that we can regard m as a local coordinate of the moduli space M = CIP’.

This local coordinate corresponds the map ¢ in the description above,

¢:CP' = M, ¢(m)— z(t) =e'm. (4.61)
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Next, we construct some differential forms on M. Consider the following
sequence of maps:

i ev;
=

cP' S oM 4 opx X = CP', (4.62)

Y

where, i : M < PX is the inclusion map. This sequence maps m € CP! = M
to z(t) = e'm € X. Using this sequence of maps, we can pullback forms on X to
forms on M. For example, let us consider the Kihler two-form w; on X = CPL.
The explicit form of w; is given by

idz Ndz

wa(z,z) = (t2272 € O%(X). (4.63)

We can compute the pulled-back form as

(@2(1)) (m, 1) 1= (¢*1*eviwn) (m, ) = (eviws) (m, )
i(etdm) A (etdm)
(14 (etm)(etm))?
ie*tdm A dm

= Ut emm)y © O*(M). (4.64)

In the second equality, we abbreviate (evoio¢) to ev. Similarly, by using the
evaluation map with the time unfixed, ev : R x PX — X, and by performing the
tiber integration, we can construct a one-form f wy on M as follows:

First, the pullback of w; to R x M is computed as

(p*i*eviwy)(t;m, ) = (ev¥wy)(t; m, )
_id(e'm) Nd(e'm)

(14 (etm)(etm))?
1,2t
= OJFZ—tmm)z{dm/\dm—mdt/\dmikmdt/\dm}.

Then take the coefficients of dt by the interior product ¢ 4,
dt

ieZt

a(t;m,m) := (taeviwy)(t;m,m) =
dt

Finally, by integrating it along the time direction we get a one-form on the moduli
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space,

/ wy 1= /oo dt a(t, m,m)
z(t)=etm —00

S ieZt o -
= /_oo dtm(—mdm + mdm)

! (—d—m + dg) e QY(M). (4.66)

m

2

This computation can be straightforwardly generalized to the iterated integrals.






Chapter 5
Topological quantum mechanics

In this chapter, first we construct the topological quantum mechanics on a Rie-
maniann manifold by the Mathai-Quillen formalism. Then in section We
construct new observables of the topological quantum mechanics by using the
method of the iterated integrals and consider a correlation function that contains
the new observable. The section [5.7]is one of our new result in this thesis.

In section [53]and [5-4] we review the Hamiltonian formalism of the topological

quantum mechanics along the line of FLN [10].

5.1 Construction of topological quantum mechanics

Applying the Mathai-Quillen formalism, we construct a topological theory of
quantum mechanics. Let X be a compact oriented n-dimensional Riemannian
manifold equipped with a metric g. Let us choose a Morse function f on X and
fix it:

f: X—R. (5.1)

e The space of fields is the path space PX.
e Choose the vector bundle on the path space to be the tangent bundle TPX.

e Choose the section of the tangent bundle to be gradient flow equation of the

Morse function on X.

st(x(t)) := dx;t(t) _gyvaféist))' (5.2)

43
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The instanton moduli space M C PX is therefore the space of gradient trajecto-

ries of the Morse function,
M={x¢€ 5_1(0)}

- {x € Px ) %t(t) = g”vavf(x(t))}_ (5.3)

As we described in the previous chapter, since the gradient trajectories must
start from a critical point and end at a critical point, the moduli space consists of

disjoint components,

M = U Mx,,x+- (5-4)

X_, x4 €crit.pts.

The action has a Q-exact form.

S, =QVY,, (5-5)

where,
Y, = /dt 1T, (t) [—is”(x(t)) + %g”"pv(t) , AeRy. (5.6)

Recall that x* and p, are bosonic variables, while ¥* and 71, are fermionic vari-
ables. A is a real positive parameter. The Q-action on these fields is defined
by

Quxlt =y, (5.7)

Qmy = pu — Iy’ (5.8)

Qyt =0, (5.9)
1

Qpy = Tpppu? — §Rvyp07tvl/]p1/)ar (5.10)

where, F}jp is the Levi-Civita connection associated with the Riemannian metric
g, and RY,,, is its curvature tensor. We can show straightforwardly that Q is
nilpotent, Q%> = 0. The action is

. 1 . 1
S, = /dt [—zpysﬂ(x) + 538" pupv +imDus! (x)9" + ﬁmeﬂﬂlePg :
(5.11)
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Substituting (5-2), we get

Sy = /dt [ ZPV (— — g;u/avf> )\g‘m/pypv

Zf 1 (5.12)
. v
o (Dtlpy ~ 8" DD > TR ey’
where, p

Dyt (£) = — " (8) + Tup” ()9 (1). (5.13)
If we integrate out the auxiliary filed p,, we get

1 - 1

Sy = /dt {E)\g,wx”xv + E)\gwayfavf
1
+ 17[14th# - 18141/7.[# «(0 Vf)l/) + 4ARHp07Ty7[v¢’p¢ (5-14)

df
—/\/th

Note that this action differs from the physical action (2.8) by a topological term
—A [df, that s,

d
S\ = Sphys — A/dtd—j;. (5.15)

The correlation function of the theory are given by path integrals:
<xf|e(tn7tf)HOne(tn71_tn)H . e(tl_t2)Hole(tl_1)H|xl> —

(tp)= (5.16)
/J(C Y DxDYDPDRO; (1) ... On(t) e 5N,
X

ti)=x;

If (¥'| and |¥) are states in the Hilbert space of the theory, the wave functions
corresponding them are given by definition, ¥'(x) = (¥/|x) and ¥(x) = (x|'¥).

Therefore, the correlation function between these states is given by
<1F/|e(tn7tf)HOne(tn,1—tn)H - e(t1 tz)HO et H|1Ir>

/xz ‘Y’(xf)‘I’(xi)/)(C(tf):xf DxDyYDpDrO: (1) ... Op(ty) e 517

x(t)=x;
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5.2 A correlation function with a new observable

We have described that in the Mathai-Quillen formalism of the CohFT, the BPS
observables are given by closed differential form on the instanton moduli space.
In our case, the moduli space is given by the space of gradient trajectories (5:3),
(5-4). Let us focus on one component of M, say, M,_ . This is a subspace of
the fixed-endpoint path space P(X; x_, x ). Therefore, we can regard the iterated
integral as the observable of the topological quantum mechanics. This is one
of our new proposals in this thesis. In particular, the invariant F(y) that we
have described in the section [f-7]is closed zero-form on P(X;x_, x; ), so that we
can regard it as a new BPS observable of the topological quantum mechanics.
Note that since M, ,, is a (finite dimensional) subspace of P(X;x_, x4 ), the
restriction of F(y) onto M,_, is of course a closed zero-form, too. Therefore,
BPS correlation functions that contain F(vy) are given by integrals of closed forms
on M and they will be topological invariants of the theory.

In the following, we choose the target space as X = X, and we compute a
correlation function that contains F(y) which we have constructed in the section

4.8 First we represent X, as an octagon with its edges are identified as the figure.

. vy AV

B2 a1l /P B1

\Y b2 p

A2 =
a2 a1 Al 0

vV b2

Let us choose a Morse function f on X as follows: we define the value of f at
given point p € X, by
flp) =1Ip-0l. (5.18)
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Then the origin O is a critical point of f with the Morse index zero, and the vertex
V is a critical point with the Morse index two. The middle points of the edges
Aq, Ay, By, By are the critical points with the Morse index one.

We focus on the space of the gradient trajectories of f which start from O and
end at V. We denote this space by Mg y. The space Mgy has eight connected
components so that F(vy) can give different values for different components. But,
it must be a constant on each component.

Let us consider a following BPS correlation function,

V@OF(o = [ eviwAF(), (519)
Moy

where, w := 6 (x — xp,y — yo)dx A dy is a delta-two-form that has a support on

a point (xo,y0) =: p € L. Suppose that the point p is not on any of the lines

a1,a,b1,by. Then, there exists unique gradient trajectory -y, that passes p at the

time ¢, that is, y,(t) = p holds. The integral (5.19) is contributed only from this

7Yp- So the value of the correlation function is proportional to F(v;),

vI(@(t)F(7))o « F(7p). (5.20)

When the point p moves around on X, this value does not change as long as
the corresponding 7, stays in one component of Mg v, but it can change if -y, go
into a different component.

In order to compute the actual value of F(-y) for a given v, we need some more

efforts. We leave it as a future problem.

5.3 Hamiltonian formalism

In this section, we will review a Hamiltonian formalism of our topological action.
This means that we need to define the space of states of the model and realize our
observables as linear operators acting on this space of states. Since our topological
action differs from the physical action only by a topological term —A [df , we
expect that the space of states of the topological theory could be realized as the
same space of state as the physical theory, which is the space of differential forms

on X.
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The key formula for this construction is (5.17) that relates the Hamiltonian
formalism matrix element with the Lagrangian formalism. Suppose, we would
like to compute a topological theory matrix element of an observable o) =
el Oe 1 between the states (¥'| and [¥). We denote it as (¥'[e OeH ¥ ) op.
Then the formula (5:17) says,

- ‘T”(xf)‘lf(xi)/x _. O(t)e™ SphystA [T dt Y

— [ [T M ] [0 0] [ 0] S

= <€Af(xf)‘1ﬂ(xf) ‘e_/\f(x(t)) O(t)e™M(x(1) |e—Af(xi)qf(xi) >phys‘ (5.21)

In the third line of (5:21), we have decomposed the integral A [ ates 4F as

/T:‘Z /\/ at? —H\/ dt
:()\f(xf)_ Af(x(t)) + ( f(x(t))—)\f(xi)). (5.22)

This is because, in the path integral, the observables should be arranged in the

time order.

Therefore, if we define
Y= MY, ¥i=eME, O®) := e MO(1)e, (5.23)

we obtain,
(F'10(1)[Fiop = (F'[O(t)[F) phys- (5.24)

This means that the topological theory correlation function of

O(t) = MEMO(1)e=M(x(1) between the “in” state F(x;) = e ()¥(x;) and the
“out” state ¥'(x f) = MY (i ) is the same as the physical theory correlation
function of O(t) between the states ¥ (x;) and ¥’(x¢). Thus, we can construct the
matrix elements of the Hamiltonian formalism in the topological theory, by means
of the physical theory matrix elements. The dictionary that interprets between the

topological theory and physical theory is as follows:
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e the “in” states get multiplied by e/:

Y ¥ = Ay (5.25)

e the “out” states get multiplied by e~/

Y grout — oAy (5.26)

e the operators get conjugated:

O O =eMOe M, (5.27)

Now we can find the topological theory operators corresponding 9, Q* and H),
(see (z11), z12), (Z-13)). They are given by,

Qr=eM0e ™M =4, (5.28)
Qy =M QM =gy + %d* (5.29)
~ 1

Hy =eMHye ™ = —{QA, Qi =Lys— T (5.30)

5.4 The CP' model

We apply the consideration above to the CIP' model that we described in the
section In this model recall that we have two towers of the states {0¥,7,,7}
and {«¥ 7,5} that are localized around the point 0 and o, respectively. We get

in” states and “out” states from each of them,

_ A o gout —A o
OTn np, p =e fOTTl,Tl,p,p/ OTn n P, p =e f ‘Ijn M,p,pr
— A t e
‘Flnnn 0P =e fOO‘Fﬂﬁ,P,?' TZ% P f ‘Fﬂ n,p,p: (531)
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Substituting the expression (2:39) and into the above and renormalizing the

resulting states, we find them to be

o 5= (2 "ZM) (dz)P (dzZ)P + O( -, (5.32)
ou /\ — —\ 1 _

0¥} = mt(eM2 —e=A2)nln Ianan P (dz)P (dz)P + O(A7), (5.33)
in A nn 2A —\P -1

q%npp (@uz_e—Am)n||a w0 N (dw)? (do)P + O(A1), (5.34)

¥t pp = W' (dw)P (dw)P + O(A71). (5.35)

They take following forms in the limit A — oo,

|1’l, n,p, ?> = hm OTn 7,00 =z"Z", (5-36)
= 5 : gout (_1)n+ﬁ nat 5(2)(, = P(A\P
oln, 7 p, Pl = im ¥, = Wa 96D (22) () (), (5.37)

11,7, p, D)oo := lim ¥ '8” o 5@ (w, @) (dw)P (dw)?, (5.38)

Ao ™ PP T iy

Coo<n’ﬁ/ Pr?’ = /\lgn Tzlﬁpp =w'"w". (5-39)

Therefore, in this limit, the space of “in” states is isomorphic to the direct sum

of two subspaces attached naturally to the critical points:

H™ ~ HE & H, (5.40)

11'1

where, H¢, is the space of the polynomial differential forms on Co := CP! — {}:

¢, := Clz,z] ® Aldz,dz] = Spanc{ |n,7,p,P)c, }, (5-41)

and HI is the space of the differentials of the delta-forms supported on z =

w—l

—= OQ:;
HID .= C[dy, 950 (w, @) @ Aldw, d®) = Spang{ |n, 7, p, B)eo }- (5.42)

Similarly, the out space is isomorphic to the direct sum

HOU ~ HE © HEY, (5-43)
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where, H%‘j: is the space of the polynomial differential forms on Co, := CIP* — {0}:
HE = Clo, @] © Aldw, 4] = Spanc{ ¢, (n,p, Bl ), (5.44
and H§" is the space of the differentials of the delta-forms supported on z = 0:
HEU = C[0,9:)6?)(z,Z) @ Aldz, dz] = Spanc{ o(n, 7, p, 7P| }- (5.45)
We can show that the basis

{In,p By i pFhet and Lo ppl colnippll (546

are dual to each other up to a power of i (see [10]):

o, 7,1, 71,7, p, )y = ca (0,7, BT, ,P)
= (_i)pi?(_1)p75n,m5ﬁﬁ‘5p,l—r5ﬁ,1—? , (5-47)
Com,m,r,7|\n, 71, p,P)c, = o{m, m,1,7\n,7,p,P)e = 0. (5.48)

A closer investigation in [10] shows that the action of the Hamiltonian
in the limit A — oo is given by,

Heoln,7,p,P)c, = (n+ 7+ p+7)In,7,p,P)c,
—27n+2p — 1,7+ 25 — 1,0, D)o, (5-49)
Heo|, 7,9, P)oc = (n+7+2—p =), 7, P, P)oo- (5.50)

Thus, we see that the Hamiltonian He, have Jordan blocks of the length two.






Chapter 6

Perturbation theory around the point
A = o0

In the topological theory, we have shown that a complete basis of the space of
states can be written down explicitly in the limit of A — oo, so that non-BPS
correlation functions can be computed exactly in this limit. We want to make use

of these results in the physical theory.

Recall that the relations between the matrix elements of observables in the

topological theory and the physical theory in the Hamiltonian formalism are
(F1O(0)[Fhiop = (¥|O()[F)phys. (6.1)

where,

¥ = My, Y =My, O = eMOe™M. (6.2)

However, these relations do not make any sense in the limit of A — co. Therefore,
to connect the topological theory with the physical theory, we need to compute
the matrix elements in the region of finite values of A. We should do this by some

kind of perturbation theory around the point A = oo.

FLN showed that the corresponding perturbation theory is unusual so that one
can not use standard formulae of the perturbation theory of quantum mechanics.
Because of this difficulty, this perturbation theory has not been done. We find

that even in this case, we can use a more general method of perturbation theory

53
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that making use of resolvents of operators. The resulting formula of this general
perturbation theory is known as Kato-Rellich formula. In the following sections,
we use the Kato-Rellich formula and carry out the perturbation theory in the case

X = CIP!. This is one of our new result in this thesis.

6.1 Perturbation of the Hamiltonian in CIP! model

Here, we consider the CIP! model. For starters, it is natural to compute the energy
eigenvalues of the Hamiltonian with finite values of A by using the perturbation
theory. We already know a complete set of the Hilbert space of the topological
theory,

Hin - SpanC{ |n/ﬁl p, ?>COI |nlﬁl p, ?>OO }/ (63)
Hout — SpanC{ 0<7’l,ﬁ, p/ﬁ|/ Coo <n,ﬁ, p/?‘ }/ (64)

where, n,1 € Z>o, p,p = 0,1. Their pairings are

0<mrm/ r17|nlﬁl Pl?>CO = Cos <nlﬁl P/ ?|7’l, ﬁ/ p1?>00
= (—=0)PiP (=) P S mbambp1—+0p1—7 (6.5)

Co(m,m,r,7|n, 1, p,P)c, = o{m,m,1,7|n,1,p,P)e = 0. (6.6)

For simplicity, we will restrict ourselves to the subspace of zero-forms in Hiy,
ie, p = p = 0. To simplify our notation, we will write |n,7)¢c, and |n,7)c for
n,7,p,P)c, and 1,7, p,P)eo. We will also write corresponding relevant “out”
space basis as o(m, 7| := o(m,m,2,2| , and ¢c_(m,m,| := ¢_(m,m,2,2|. Then,

their parings have simple form,

o{m, m|n, ), = ., (M, |1, M)co = Sn,mOs,m, (6.7)

C..(m,m|n, )¢, = o{m, m|n,7M)e = 0. (6.8)

The total Hamiltonian has the form ( see (5:30) and (2-29), we drop the symbol
tilde to simplify the notation),

H = Hy+ —H;. (6.9)
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The action of H on our zero-form subspace is given by, (see [10]),

Ho|n,n)c, = (n+7)|n,)c, —2m|n — 1,71 — 1) o, (6.10)
Ho|n,M)eo = (n+1+42)|n,1)o, (6.11)
Hy|n,n)c, = —2nn( |n — 1,17 —1)¢, +2|n,n)c, + |n + 1,71+ 1)c,)
+4n(n+n)(n—1,1—1)e+2|n, M+ 1+ 1,71+ 1)),  (6.12)
Hin,f)eo = -2(n+1)AA+1)([n—1,1— 1) + 2|1, 7)o — [N+ 1,71+ 1)e0).
(6.13)

Note that the unperturbed Hamiltonian Hy has Jordan blocks and hence, we can
not diagonalize Hy. Consequently, Hy is not hermitean.

We find a part of the explicit matrix form of Hy and Hj to be,

0(0,0 ¢.(0,0] oL 1] c (L1 022 c.(22] 0(33|
0,00, {0 0 0 0 0 0 0
0,00 | O 2 0 0 0 0
L1 | 0 2w 2 0 0 0
1,10 | 0 0 0 0 0 0
Hy =
2,2)c,| 0 0 0 27 4 0 0
2,20 | 0 0 0 0 0 6 0
3,3)c, | 0 0 0 0 0 -2t 6
(6.14)
0 0 0 0 0 0
0 -4 0 -2 0 0 0
-2 8t —4 161 -2 87 0
-8 0 —-16 O -8 0
Hy = (6.15)

0 -8 1lémr —16 32m -8
0O 0 =18 0 =36 0
0 0 0 —-18 24m -36

o © O O

The corresponding perturbation theory is unusual, because normally one con-

siders hermitean Hamiltonian which cannot have Jordan blocks. If Hy were a
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hermitean operator, usually one would have assumed that an eigenvalue of the
perturbed Hamiltonian H = Hy + A~!H; could be expanded into integer power
series of A1, like

E=EQ 4 AT EMW 4 A2E@ 4 (6.16)

However, in our case, we cannot justify this assumption. It entirely relies on the

hermiticity of Hy [16].

To gain some insight into our situation, let us observe a following simple
model.
A= Ag+ €A, (6.17)

a 0 01
Ao— (1 . >, A1—<1 0> (618)

We can immediately find the eigenvalues a4+ of A, to be

ar =a+t e+ el (6.19)

where

Clearly, a4 cannot be expanded into integer power series of €. It can only be

expanded into a fractional power series,

1 1
oci:aj:(el/2+§€3/2—565/2—1—...). (6.20)
Therefore we cannot assume a priori that energy eigenvalues of the Hamilto-
nian H are expanded into integer power series of A1, To analyze our perturba-
tion theory, we have to use a method different from usual quantum mechanical

perturbation theory.

6.2 Perturbation method using the resolvent

We will analyze our unusual perturbation theory by a method using the resolvent

of the Hamiltonian [16]].
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6.2.1 The theory of resolvents

First we briefly describe the general theory of resolvents of linear operators. Let
H be a linear operator acting on a Hilbert space H . We assume that H has a

discrete spectrum. Note that such a operator H has unique canonical form

H=S5+D, (6.21)
S=)Y E.P,, D=) D, (6.22)
n n

where, E,;’s are the eigenvalues of H, P,’s are the eigenprojections for the eigen-
values E;,, and D,’s are eigennilpotent operators for E,. This form is called the
Jordan canonical form or the spectral representation of H.

Let ¢ be a complex variable. The resolvent R({) of H is the operator valued
function defined by

R(C)=R({,H):=(H-7)". (6.23)

The resolvent R({) is well-defined for values of { which are not equal to any of
the eigenvalues of H. In general, if { is equal to an eigenvalue E of H, R({) has a
pole at { = E.

R(Q) satisfies a following equation called the (first) resolvent equation,

R(Z1) — R(%2) = (&1 — 2)R(C1)R(Z2)- (6.24)

This can be derived easily as follows.

LHS) = s~ g,
1 1 1 1
== C(H_Cz)H—gz_H—gl(H_a)m
= R(C1)(H — §2)R(G2) — R(C1)(H — C1)R(C2)
—R — R(C1)02R(Z2) — RICHHR(Z2) + R(£1)C1R(42)

I
~

(C1)(¢1 — $2)R(42)
= (RHS). (6.25)

~—~

Using this equation we can express a product of R({)’s as a sum of them.

The singular points, or poles of R({), are equal to the eigenvalues of H. Con-
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sider a Laurent expansion around an eigenvalue { = E € C. For simplicity, we

assume E = 0 and write the expansion as

R(C) = 2 7" Ay (6.26)

n=—oo

The coefficient operators A, are given by

1 o
Av= 5§ CIR@E, (6:27)

where, I' is a positively-oriented small circle enclosing { = 0 but excluding other

eigenvalues of H. A product of two of these coefficients can be computed as

Anin = (}m): . f o RORE dgar .
= (ﬁ) e~ 0T IRE) — R

where, I is a circle that are a little larger than T'. We used the resolvent equation

in the second line of (6.28).
<

After a short calculation, we find

AnAm = (7711 +1m — 1)An—|—m—|—1/ (6.29)
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where, the symbol 7, is defined by,

1, forn>0,

Mn = (6.30)

0, forn<DO.
In (6.29), setting n = m = —1, we get AZ_1 = —A_4. Thus, —A_; is a
projection. We denote it as P := —A_;. For n,m < 0, we get —A_3 = A2_2,
—A_y4 = —A 3A , = A?iz, .... Therefore, defining D := —A_,, we have

A_p = —DF1 fork > 2. Similarly, for n,m > 0, we have Ay = Skl g .= A,.

From the discussion above, we see that the Laurent expansion of R({) around

a general eigenvalues E, of H takes the form

- _Dk —Py - k k+1
Z g E)k+1 7 —E, Z(C En)s (6.31)

k=1

It is known that the coefficient operators P, and D,, coincide with the operators
that appear in the spectral representation of H, c.f. (6.21), (6.22).

We have following equalities
HP, = P,H = P,HP, = E,P,+D,, n=0,1,2,.... (6.32)

It is easy to see that HP, has one and only one eigenvalue E,. (E, may have

degenerate multiplicity.) For more details, see [16].

6.2.2 Perturbation theory of a resolvent

Suppose, we want to compute an eigenvalue of the perturbed Hamiltonian H(A 1) =
Hy+A~1Hy. To simplify the notation, we write € := A~L. We denote the resolvent
of H(e) by,

R(Z,€) = (H(e) =)~ (6:33)
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Note that the following equalities hold,

H(e) —{ = Hy—(+eH;
= [14€Hy(Ho— ) "](Ho — Q)
= [1+eH1R({)](Ho — 0), (6.34)

where, R({) = R(Z,0) = (Hp — {) ! is the resolvent of the unperturbed Hamilto-

nian. Taking the inverse of (6.34), we get a power series expansion of R(,€),

R(Z,€) = R(¢)[1+€eH1R(7)] ™

i €H1R
p=0
)+ Y R (Q), (6.35)
n=1
where,
RM(7) = (—1)" R(Q)H1R({)Hy ... R()H1R({) (6.36)

To compute eigenvalues of H(e), we have to find the poles of R((,€). If € is
sufficiently small, the positions of the poles of R({, €) must be very close to that
of R(Z,0). But, here we encounter a difficulty. The eigenvalues of Hy are doubly
degenerate. Therefore when we perturbed Hy by H;, generally, the degeneracy

may be removed and the eigenvalues may split.

To make our picture more concrete, we will focus on an eigenvalue E(0) = 2
of Hyp and study how it varies as a function of €. First, the Laurent expansion
of R({) around the point { = 2 takes the form,

—D, )

C—22 72 nZ(é 2)"sy"Y, (637)

R(Z) =
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e=0 €e>0
r r
where,
0 0 0 0
0 0
=2 0
D, = , Pr=
0 0
1
-1 0
52 = 1 0 (6.38)
2
0 o1
2 2

We can represent the eigenprojection of Hy associated with the eigenvalue E(0) =

2 as
o f R 0)d (639)
If we replace R({,0) with R({, €) for sufficiently small €,
Po(e) = —5— f R €. (6.40)
25T o 40

is a total eigenprojection associated with the two possibly split eigenvalues close
to 2. The perturbation expansion of P, (¢) is obtained by substituting (6.35) into
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(6-49). This leads to,

pe) =Y &P, P =p,
n=0

A = T | R@HR@OH: . ROHRQME

(6.41)

(6.42)

Furthermore, substituting the Laurent expansion (6.37) of R({), we can perform

the contour integral along I'. The resulting formula is known as Kato-Rellich

formula for the total eigenprojection. For example, we get

P\Y = —D,H,S3 — P,HS; — S,H1 Py — S3H D,

PP = Y sYH s H ST,
kq+ko+kz=2

where,

5O —_p, sW=s1 siW=_D§ n>1.

(6.43)
(6.44)

(6.45)

Now we can perturbatively compute the matrix H(e)P;(e). We will find that

for each order of perturbation expansion of Py(e) = Y, e”Pz(n), the resulting

matrix H(e)P,(€) has only a finite number of nonzero entries. Therefore we can

explicitly compute its characteristic polynomial and obtain the eigenvalues. We

will perform this computation for the first and second orders.

The first order perturbation

We can straightforwardly compute (6.43) and obtain

H(G)P2(€)1st. =
0 0 0 0 0 0
0 2 — 4¢ — 8¢? 0 2¢ — 4¢? 0 0
—2¢+4€2 —2m+8me +64me? 2 —4e — 82  —18me +40me?  2e —4e?  —dre 4 8me?
0 8e — 64€2 0 —8e? 0 0
8¢2 —87te + 6471€? 8¢ — 64€2 647162 —8¢2 16712
0 —72¢% 0 0 0 0

0 0 —72¢2 0 0 0

o 0o o o oo

(6.46)
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Thus, we have a finite-size matrix of 7 x 7. We find the relevant eigenvalues of

this matrix to be
E(e) =2 —4e + O(e?), (doubly degenerate!). (6.47)

The other five eigenvalues are of course zero up to the order O(e?).

The second order perturbation

The expression in (6.44) has 21 terms, although we suppress showing all of them.
Similar to the first order case, H(€)P>(€).nq. has a finite-size non-zero block of

8 x 8. The relevant eigenvalues are found to be

E(e) =2 —4e —8€* + O(€%), (also doubly degenerate.) (6.48)






Chapter 7

Conclusions and Discussions

In this thesis, we proposed two extensions of the topological quantum mechanics
on Riemannian manifolds based on the consideration of [10].

First we construct a class of new observable of topological quantum mechanics
by using the method of iterated integrals. This method is one for a construction of
differential forms on a space of paths. According to the Mathai-Quillen formalism
of the cohomological field theory, observables of a cohomological field theory
correspond to differential forms on the instanton moduli space of the theory. In
the case of the topological quantum mechanics on a Riemannian manifold, the
instanton moduli space is given by the space of the gradient trajectories of the
Morse function on the manifold, which is a subspace of the space of paths on the
manifold with the both endpoints fixed. Therefore the differential forms on the
space of paths can be regarded as the new observables of the topological quantum
mechanics. It is known that the method of the iterated integral can draw out the
information about the non-commutativity of the fundamental group of the space.
Thus, we expect that we can get new information about the geometry of the
instanton moduli space by dealing with the new observables.

We gave a nontrivial example of the correlation function that contains this
new observable. Though we focused only on the case of finite dimensional target
space, FNL [12] shows the ways to regard the two-dimensional sigma model and
the four-dimensional Yang-Mills theory as supersymmetric mechanics with the
infinite dimensional target spaces. Therefore if we apply the method of iterated
integrals to these infinite-dimensional model, we expect to have more interesting

observables. They will draw out the information about the fundamental group

65



66 Chapter 7: Conclusions and Discussions

of the instanton moduli of the sigma model and the Yang-Mills theory. It will be
worth while to push forward this ideas.

Second, we carried out the unusual perturbation theory around the point
A = oo and obtained the energy eigenvalues of the first excited states of the
Hamiltonian to the second order of the perturbation theory. The basic reason
why this perturbation theory is unusual is that the unperturbed Hamiltonian is
not hermitean nor diagonalizable. We saw that in this case, usual perturbation
method of the quantum mechanics is not applicable. We avoided this difficulty
by using the method of the resolvent. The computation of the Hamiltonian on
the infinite Hilbert space was reduced to a finite dimensional matrix computa-
tion. We saw that the degeneracy of the eigenvalues were not removed and the
Jordan block structure was still remaining. It is seemingly strange, but in fact it
is reasonable because the difference of the almost degenerate energy eigenvalues
are proportional to e~ M) =f)l That is, the degeneracy is removed by a non-
perturbative effect. To compute this difference explicitly, we will need to take into
account the effect of the instanton, or tunneling effect. It would be interesting to

compute this non-perturbative effects explicitly.
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Appendix A

Manipulation of differential forms in

a local coordinate

Let X be a n-dimensional Riemannian manifold and v, w be two vector fields on
TX. Then, there are three basic operators acting on differential forms. Namely,
the exterior derivative d, the interior product i, and the Lie derivative £,. Here

we recollect their properties in terms of a local coordinate system on X.

First, d, 1,, and L, satisfy the following algebra:

{d,d} = 24> =0, (A.1)
{d, 1} = Lo, (A.2)
{10,100} =0, (A.3)
(Lo, tw] = o) (A.4)
[d, Lo] =0, (A.5)
(Lo, Lo] = Ly - (A.6)

The most important formula for us is (A.2), which is know as Cartan’s formula.

Let us choose a local coordinate (U, x*) around a point on X. Then, U is

diffeomorphic to R". A k-form w € QF(X) is, on U, expressed as

w(x) = %wyl...ykdxm A Ndxt, (A7)

69
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A vector field v is, on U, expressed as
v(x) = v (x)=—. (A.8)

The exterior derivative and the interior products with respect to v are,

d
— dxt — = dyH
d =dx S = dx"ay, (A.9)
by = 0 (xX)1 /00 = 0F ()1 (A.10)
The basic properties of 1, are,
odx’ =06, 1uf(x) =0, (A.11)
w(wAn) = (uw) A+ (—1)%w A (tum), (A.12)

where, f(x) is a zero-form, i.e., a function, and w is a k-form. For example, let us

choose

0 0
v(x) = 57 +]/@, (A.13)

and
w = w(x,y)dx A\dy. (A.14)

Then, we can calculate as
tow = (X1 5x + Yla ay) (w(x, y)dx A dy)

= xw(x,y)ta/9x(dx A dy) + yw(x,y)ia/5y(dx A dy)
= xw(x,y)dy —yw(x,y)dx. (A.15)
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Cartan’s formula is useful for calculation of Lie derivatives. For example,

Low = (doiy+1p0d)w(x,y)dx Ady

=0
= d[xw(x, y)dy — yw(x,y)dx]

= w(x,y)dx Ndy + xaa—(;](x,y)dx Ndy —w(x,y)dy N\ dx — yaa—j(x, y)dy N dx
ow ow
= w0 y) +x5-(0y) - y@(x,y)]dx Ady. (A.16)






Appendix B

The nilpotency of the BRST

transformation

Here we will prove that the BRST transformation that appears the Mathai-Quillen

formalism is nilpotent, Q? =0, on the space of fields x*, ¥, 7, pa.

B.1 The definition of O

Recall that the Q-transformation is defined by

Qxt = yH, (B.1)

Qyt =0, (B.2)

Qpa = Pa — Aybaﬂblpy/ (B3)
1

Qry = Ayban—blpy - EFbeaﬂbwywv' (B.4)

The curvature F associated with the connection A is defined by
F:=dA+ ANA. (B.5)
That is in the component form,

1
Fb = EFWbadx” Adx’, (B.6)

Flo=0uA) =AY, + AL AS — AL AL, (B.7)
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The curvature F satisfies the so-called Bianchi identity,

DF :=dF+[AANF]=0. (B.8)
In the component form,
(0pFY o+ AL Fuf g — Af oFf )dxt Adx’ AdxP. (B.9)

B.2 The proof of Q° =0

First note that, Q?x# = 0 and Q*y* = 0 is trivial.
Next, we will prove Q?m, = 0.

an.a = Q(Pa - A]Abunblpy)

= gfzﬂ/\_(QAyba)nuw}i\_Ayba(an)w}i+Ayba7rb(Q¢y)' (B-IO)
(i) (if) (iti) =0
N _ ab U 1 b HappV
= a va : .
(1) Ay pup” — EFy T (B.11)
i) = —9, AL mutyY. (B.12)
wa PP

(iii) = _Ayba(pb - Alcx bncwv)lpy
= —Alppt — ASLAL T iy
N———

exchange dummy
subscripts b<c

= _Aybapblpy - AvbcAyCanblpylpv' (B.13)
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75

Qg = (i) + (if) + (i)
1
= <W_ EFbeanblpylpv) + <_aVAyba7Tb¢ylpv>
+ <_ bu b _AvbcAyCu¢y¢V>

1
(aA +AvbAya+2 yva)anjl/)

1
) F‘uvba

= 0.

Next we will show Q?p, = 0.

1
Q2pa = Q( apblpy 2 ]/tv anblpywv)
= (QA )pud! +AL (Qpy)¢H — A, py(QyH)
" e ’ g
(i) (if) =

N

(iii) (zv) =0

(i) = _aVAybapblpy¢v'
.. 1
(ii) = AL, (A brm/z =5 B e ¢ yP g

exchange dummy subscript bese.
= —AJ’CA PP — DA L ge,

(i) = 58P T 9 .

(iv) = —%nya(pb — APy

1 1
- _EPVVbapbwylpv + E Ap Y unc IPV’P lpp
N———’

exchange b<+c

1 1
= ) ;w apbl/} l/J +5 Apc uv aﬂbWIIJ l/)p

(Q W a)n—blpyqj _EFbea(an)lpylP +2 v anb Q(q)ylpv)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)
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Appendix B: The nilpotency of the BRST transformation

Q%pa

= (i) + (ii) + (iii) + (iv)
= (_aVAybapblpleJV)

1
+ (_AvbcAﬂcapblpylpv ) Aﬂcavabcnblpylpvlpp)

exchange y<p

1

+ (EaPPyvbaﬁblpylpvlpp)

1 1
+ (_EFMbanlpylpv + EAPchHVCaﬂblpyvalpp)

1
- - <?VAyba + AvbcAyC1i+§Pyvba) poyy’
1 b b rc c b [/BRTNN Y

+ E(?PFyva+Ap cFyvu _Ap quv €>7Tb1nb ("

Bianchi identity

=0,

which completes the proof.

(B.19)
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