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1 Introduction

Throughout this paper, we suppose that all manifolds are connected,
smooth and oriented and all foliations are smooth and transversely ori-
ented. -

Lie foliations were first defined by E. Fedida (cf. [4]) and have been
studied by several authors. The structure theorem for Riemannian folia-
tions by P. Molino (cf. [10]) motivates the study of Lie foliations. It says
that the lifted foliation F of a Riemannian foliation F to its transverse
orthogonal frame bundle is transversely parallelizable and the foliation
- F 7 is a Lie foliation, where L is the closure of a leaf of F.

To each Lie foliation F, there are associated two Lie algebras, the

~model Lie algebra g and the structure Lie algebra h. The structure Lie

algebra b is a subalgebra of the model Lie algebra g. The structure Lie
algebra B is uniquely determined by JF, while the model Lie algebra g
may not be uniquely determined.

We have a natural question to determine the pair of Lie algebras (g, h)
which can be realized as a Lie g-foliation J of a closed manifold M with
structure Lie algebra b. '

M. Llabrés studied a special case of this problem, that is, to determine
the pair of (g, m) which is realized as a Lie g-flow of a closed manifold M
with the structure Lie algebra R™, where flows mean one-dimensional
foliations.

E. Gallego, B. Herrera, M. Llabrés and A. Revent6s completely solved
this problem in the case where the dimension of the Lie algebras g is
three (cf. [5], [6]). :

In this paper, we study the realizing problems of (g, h) and (g, m)b in
the case where g is nilpotent Lie algebras of general dimensions. The
main theorems are the following.



Theorem 4.1 Let g be a nilpotent Lie algebra which has a rational
structure. Then (g,m) is realizable if and only if m < dimc(g), where
c(g) is the center of g.

Theorem 5.3 Let.g be a nilpotent Lie algebm and B be a subalgebra
of g. Then (g,h) is realizable if and only if § is an ideal of g and the
quotient Lie algebra h\g has a mtz'onal structure.

2 Preliminaries

2.1 Basic definitions

Let F be a codimension ¢ foliation of an n-dimensional closed manifold
M. Let X(F) be the set of vector fields which are tangent to the leaves
of F and ' '

LM, F) ={X e X(M) | [X,X(F)] C £(F) }

be the Lie algebra of projectable vector fields. Since X(F) is an ideal of
L(M,F), the quotient {(M,F) = L(M,F)/%(F) is a Lie algebra. We
call it the Lie algebra of transverse vector fields.

A family {Xq,... , X} of transverse vector fields which is linearly in-
dependent everywhere is called a transverse parallelism of F. If there
exists a transverse parallelism of 7, then the foliation F is called trans-
versely parallelizable. '

For a transverse parallelism {Xj,...,X,}, the Qg(M , F)-submodule
spanned by {Xj,.. . X,} is a Lie subalgebra of [(M, F), where

WM, F)={feC®M)|"X € X(F),X(f) =0}

is the set of basic functions on (M,F). Note that, in general, the R
vector subspace spanned by {X3,...,X,} may not be a Lie subalgebra,
that is, it may not be closed under the Lie bracket.

Definition 2.1 Let g be a g-dimensional Lie algebra. A codimension
g foliation F of M is a Lie g-foliation if there exists a transverse par-
allelism {Xi,...X,} of F such that the R vector subspace spanned by
{X1,...X,}isa Lie subalgebra of (M, F) and is isomorphic to g.

We call such transverse parallelisms transverse Lie g-parallelisms. If F
is a one dimensional Lie g-foliation, we call it Lie g-flow.
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Let F be a transversely parallelizable foliation of a closed manifold
M and suppose that F is minimal, that is, each leaf of F is dense in
M. Then there exists the Lie algebra g which is uniquely determined
by F such that F is a Lie g-foliation. In fact, for a transverse par-
allelism {X1,...,X,} of F, the Lie algebra of transverse vector fields
(M, F) coincides with the Q9(M, F)-submodule of I(M, F) spanned by
{Xq,... , X} Since F is minimal, any basic function on (M,F) is a
constant function. Thus I(M,F) coincides with the R vector subspace
(X4,... ,X'q)R spanned by {X1, ... ,X'q} which is a finite dimensional Lie
algebra over R. Therefore F is a Lie g-foliation, where g is the set of
transverse vector fields I(M, F). ’ . '
_ For a transversely parallelizable foliation which is not necessarily min-
imal, we have the following structure theorem. '

Theorem 2.2 ([12], Theorem 1) Let F be a codimension q trans-
versely parallelizable foliation of a closed manifold M. Then

(i) there emists a locally trivial fibration m: M — W such that each
fiber is the closure of a leaf of F.

(i) There exists the Lie algebra Y which is uniquely determined by F
such that, for each fiber F of the fibration w, the induced foliation
Flr is a Lie h-foliation.

Moreover if F is a Lie g-foliation, then ) is a subalgebra of g.

The fibration 7: M — W is called the basic fibration, W is called the
basic manifold, the dimension of W is called the basic dimension, and
the Lie algebra § is called the structure Lie algebra of (M, F).

Let F be a fiber of the basic fibration 7: M — W. Then Fl|r is
" a minimal transversely parallelizable foliation. Hence the Lie algebrd
of transverse vector fields I(F, F|r) is a (¢ — dim W)-dimensional Lie
algebra over R. The structure Lie algebra b is given by the Lie algebra
of transverse vector fields [(F, F|r).

Let F be a minimal Lie g-low on a closed manifold M. Then the
Lie algebra g is abelian (cf. [1], Theorem 1). Therefore, the structure
Lie algebra of a one-dimensional transversely parallelizable foliation is
abelian and thus it is isomorphic to R™ for some m.

To end this subsection, we define the notions of realizability of a pair
(9,h) of a Lie algebra g and its subalgebra h and of a pair (g,m) of a
Lie algebra g and an integer m (< dim g).



Definition 2.3 For a ¢-dimensional Lie algebra g and its subalgebra b,
a pair (g,b) is realizable if there exists a closed manifold M and a Lie
g-foliation of M such that the structure Lie algebra is b.

Definition 2.4 For a g-dimensional Lie algebra g and an integer m with
0 < m < g, a pair (g,m) is realizable if there exists a closed manifold
M and a Lie g-flow on M such that the dimension of the structure Lie
algebra is equal to m.

2.2 The Darboux cover

In this section, we construct a covering map, which is called the Dar-
boux covering, for a given Lie g-foliation and introduce a structure the-
orem proved by E. Fedida (cf. [4] and [13]). The contents of this section
are referred to [4], [12] and [13].

Let M be a closed manifold and g be a g-dimensional Lie algebra. Let
QY(M;g) be the set of g-valued differential 1-forms on M. A g-valued
differential 1-form w € Q'(M;g) is a Maurer-Cartan form if w satisfies
the equation

1
dw + §[w, w] =0,
where [w,w] is the g-valued differential 2-form on M defined by
[w, Wl(X,Y) = [w(X),w(Y)].

A g-valued 1-form w is non-singular if w,: T, M — g is surjective at any
point z € M. ‘ :

Let F be a codimension ¢ foliation of M. If there exists a non-singular
Maurer-Cartan form w € Q(M; g) on M such that TF = Ker(w), then
F is a Lie g-foliation. In fact, we choose a basis {e1,...,eq} of g and
define the Lie g-parallelism {X;,...,X,} of F by

Xi(z) = @, ' (er),
where
Wy: N F — g

is the linear isomorphism induced by wy: T, M — g at the point z € M.
Conversely, suppose that F is a Lie g-foliation with a transverse
Lie g-parallelism {X7,... , Xy} By definition, the R vector subspace



(X1,...,Xg)r of I(M,F) is isomorphic to g. Define the linear isomor-
phism
Oz: 8= (Xl,...,Xq>R — Nz]:

by
a g
O‘z(z tl'Xi) = Ethz(:L’)
i=1 i=1
and define w € Q'(M, g) by

-1
wm:a;lomTzM&Nz]:aL)g,

where Ny F = T, M/T,F and 7: T,M — Nxf is the natural projection.
Then w is a non-singular Maurer-Cartan form on M such that TF =
Ker(w) (cf.[13], Lemma 4.3).

Therefore we have the following proposition.

Proposition 2.5 ([13], Lemma 4.3) Let F be a codimension q folia-
tion of o closed manifold M and g be a q-dimensional Lie algebra. Then
F is a Lie g-foliation if and only if there exists a non-singular Maurer-
Cartan form w € QY(M;g) such that TF = Ker(w).

Let F be a Lie g-foliation of a closed manifold M and w € Q'(M;g)
be a non-singular Maurer-Cartan form with Ker(w) = T'F. Let G be the
simply connected Lie group with the Lie algebra g. For any projectable
vector field X € L(M,F), the map w(X): M — g is basic, that is,
Z(w(X)) = 0 for any Z € X(F). The map w(X) is a constant map if
the corresponding transverse vector field X belong to g. Consider the
subalgebra of L, of L(M,F) defined by

Lo ={X € L(M,F) | w(X) is constant }
and the trivial left-principal G-bundle
pri: M x G — M.

Thén, for any X € L, we can define the left-invariant vector field X on
M x G by
X = X +w(X),

where we identify the set of left-invariant vector fields on G with g. The
correspondence X > X is R-linear and we have

[X,Y]=[X,Y] for any X,Y € L.

5



For each (z, g) € M x G, we define the subspace H, g) of Te,q) (M xG)
by ;
Hpg={X(z,9)| X € L, }.

Then H defines a connection on the principal G-bundle pri: M x G —
M. Since [X,Y] = [X,Y] for any X,Y € L, the connection H is
a flat connection. Hence the connection H defines the foliation G of
M x G. Fix a leaf M’ of G. Then the projections pri: M x G - M and
pro: M x G — G induce maps p1: M’ — M and py: M' — G.

Theorem 2.6 ([4]) The map py: M’ — M is a covering map and the
map po: M’ — G .is a locally trivial fibration. Moreover, the foliation F’
of M’ defined by the pull-back of F by p1 is the simple foliation defined
by pa, that is, the leaf space M'/F' is a Hausdorff space and the foliation
F' is given by the connected components of the fibers of po.

The pair (M', F') is called the Darboux covering of the Lie g-foliation
(M, F).
Let xo be an arbitrary point in M and fix a point z(, € pl_l(xg). Then
“the set S
I'={g€G]|glz) e M}

is a subgroup of G and depends neither on the choice of zg € M nor on
the choice of 2} € p7*(zo) (cf. [13], Lemma 4.5). We call the subgroup
I' the holonomy group of the Darboux covering (M’, F').

Fix a base point zq in M and let M’ be the leaf of ¢ which contains
the point zf, = (0, e), where e is the identity element of G. Then the
action of 7m1(M,zg) on M’ by the covering transformation defines the
homomorphism

h: 71‘1(M, .’L'o) -G
by

h(v) = p2(7 - 7p),
that is, h(7y) is the element of G satisfying v - Zo = (zo, h(7)). This ho-.
momorphism h: 71(M,z) — G is called the holonomy homomorphism
" of the Lie g-foliation F. The image of h coincides with the holonomy
group T ‘ : .

For an arbitrary element 2’ = (z,g) € M’ and 7y € m1 (M, z), since

m(y-2') = pi(e') = pr(z, h(7)g)



and v-z( = (2o, h(7y)e), we have vy-(z, g) = (m,h(’y)g): Thuspa: M' — G
is h-equivariant, that is, the map p»: M’ — G satisfies

pz(7 -2') = h(y)pa2(z)

for any v € m (M, o) and any ' € M'. :

Let K be the closure of the holonomy group I' in G. Then the space
K\G is a manifold and the projection f: G — K\G is a locally trivial
fibration. Since pa: M’ — G is a locally trivial fibration, the map

fopa: M — K\G

is also a locally trivial fibration. Since py is h-equivariant, the locally
trivial fibration f o ps induces the locally trivial fibration ‘

W M = K\G.

Proposition 2.7 ([4]) The closure of the leaves of F are the fibers of
the fibration ¢: M — K\G. '

Proof. Let L be a leaf of F and L’ be a leaf of 7 such that p;(L') = L.
Then pl—l(L)' = 7f1(M, xo) - L'. By Theorem 2.6, ps maps the leaf L' of
F’ to a point g € G. Since p is h-equivariant and the holonomy group
T" coincides with the image of h, we have -

pa(pT (L)) =T -po(L) =T - g.

We consider the subset pa(py (L)) of G, where L is the closure of the
leaf L in M. Since L is a closed subset and saturated by JF, the inverse
image py ' (L) is a closed subset and saturated by F’. Thus pa(p7T (L))
is a closed subset of G which contains I'- g. Since ps (p71(L)) is closed,
p2(p7 (L)) contains K - g. Hence pa(py (L)) is a union of right cosets of
K. Therefore p;*(L) is a closed subset and saturated by the the fibers
of the fibration f opy: M’ — K\G.

Set g = f(g) € K\G and consider ¢~1(g). Since pi‘l(f) is saturated
by the fibers of the fibration f o pg, the closure L is saturated by the
fibers of the fibration ¢: M — K\G. Hence ¥~1(g) = p1((f o p2)"1(3))
is contained in L. On the other hand, the leaf L is contained in the
fiber 971(g). Since 9~1(g) is a closed subset of M, we have L C ¥~1(g).
Therefore L coincides with the fiber ¥~1(3). O



By Proposition 2.7, the basic manifold for a Lie g-foliation is of the
form K\G, where K is the closure of the holonomy group. Moreover
we can describe the structure Lie algebra b of a Lie g -foliation by the
holonomy group T'. ’

Proposition 2.8 ([12], Remark 2) The structure Lie algebra  is iso-
morphic to the Lie algebra of K which is the closure of the holonomy
" group T.

Proof. Let ! be the codimension of the fibers of : M — K\G and let
F be the fiber of ¢ at f(e) € K\G. Then F is an (n — [)-dimensional
closed submanifold of M and F|r is a codimension (¢ — ) foliation of
F, where g is the codimension of F.

Let € be the Lie algebra of K, which is a subalgebra of g. Fix a
basis {e1,..., 4} of the Lie algebra g such that {e1,...,e;—} is a basis
of . Let Xi,...,X,; be projectable vector fields of F such that the
- corresponding transverse vector fields X1, X'q satisfy

for any z € M, where w;: N;F — g is the isomorphism induced by
wy: TpM — g. Fix a point z € F and consider the map

feowg: TM—>g—>’E\g

Then the tangent space T, F' coincides with the subspace Ker(fx o wy).

Since
wz(X;) = 0x(X;) = ¢

an_d‘ € = (e1,...,€-1)R, Projectable vector fields X1,...,X,_; are tan-
gent to the subspace Ke_r(f* owy) at each z € F. Thus X1,~--,Xq—l
are transverse vector fields of (F,F|r). Therefore {X1,..., Xg} is
a transverse parallelism of F|g. The structure Lie algebra }§ is given
by the Lie algebra of transverse vector fields I(F, F|r), which coincides
with (X1,..., X'q_l)R. By definition, (X7, ... an—l>R is isomorphic to &.
Therefore the structure Lie algebra b is isomorphic to £. ' |

We take the universal covering

D M— M.

Then M’ = Ker(h)\M. Let

P M — M =Ker(h)\M



be the covering map and
D=pgop':'M—>G

be the locally trivial fibration. Then the map D is h-equivariant and the
foliation F of M defined by the pull-back of F by p coincides with the
simple foliation defined by D. Therefore we have the following theorem.

Theorem 2.9 ([4]) Let F be a codimension q Lie g-foliation of a closed
manifold M and G be the simply connected Lie group with the Lie algebra
g. Let p: M — M be the universal covering of M. Fiz a transverse Lie
g-parallelism {X1,...,X,} of (M, F). Then there ezists a locally trivial
fibration D: M — G anda homomorphism h: 7 (M) — G such that

(i) D(a’- Z) = k() - D(Z) for any a € m (M) and any T € M and

(ii) the lifted foliation F = n*F is given by the fibers of the fibration
D. : \

Moreover the pair (D, h) is unique modulo the equivalence relation gen-
erated by (D,h) ~ (g-D,g-h-g7*), where g is an element of G.

The fibration D is called the developing map, the homomorphism
h is called the holonomy homomorphism and the image of h is called
the holonomy group of the Lie g-foliation F with respect to the Lie
g-parallelism {X1,..., X}

Conversely, if there exist such D and h satisfying the condition (i)
above, then the set of the fibers of D induces the Lie g-foliation F of M

such that the developing map is D and the holonomy homomorphism is
h.

2.3 Basic cohomology

Let F be a codimension g foliation of a closed manifold M. We have
defined the notion of basic functions in the section 2.1. Now we define
the notion of basic k-forms. A differential k-form w € QF(M) on M is
said to be basic if it satisfies

(i) ixw =0 and

(i) ixdw =0



for every X € X(F), where ix is the interior product by X. We denote
the set of basic k-forms on M by Q’g(M ,F). For any basic k-form w €
QF(M,F), the exterior derivative dw is a basic (k + 1)-form. Hence
{5 (M, F),d} is a subcomplex of the de Rham complex {Q*(M),d}.
We denote the cohomology by H; (M, F) and call the basic cohomology
of (M, F). If k is greater than the codimension of F, then HF(M, F) = 0.

Let F be a Riemannian foliation of M, that is, F is a foliation equipped
with a C®°(M)-bilinear symmetric from gr: X(M) x X(M) — C®(M)
which satisfies

(i) gr(X, X) is non-negative for any X € X(M),

(ii) Ker(gr) =TF and

(ili) Lx(gr) =0 for any X € X(F),

where Ker(gr) = {X € TM | Y € TM,gr(X,Y) = 0} and Lx is
the Lie derivative. Such a gr is called a transverse metric of F. A. El
Kacimi, V. Sergiescu and G. Hector [7] proved that if F is a codimension
g Riemannian foliation of a closed manifold M, then

H}(M,F)=0orR.

They also proved that the cohomology Hy (M, F) satisfies the Poincaré
duality if and only if H{(M,F) # 0. The codimension g Riemannian
foliation is said to be unimodular if H7 (M, F) # 0.

Let F be a codimension g transversely parallelizable foliation, then
a transverse parallelization {Xi,...,X,} induces the metric g on the
normal bundle NF by \
‘ 9(Xi, X;) = 65
and induces the transverse metric gr of F by

9r(X,Y)(@) = gp(X (@), p(¥ (2))),

where p: TM — NUZF is the natural projection. Hence transversely
parallelizable foliations are Riemannian foliations. In particular, Lie
g-foliations are Riemannian foliations.

If Fis a Lie g-foliation with dense leaves, then the basic cohomology
Hy (M, F) is isomorphic to the cohomology H*(g) of the Lie algebra g.
Hence, in this case, a Lie g-foliation F is unimodular if and only if the
Lie algebra g is unimodular. M. Llabrés and A. Reventés [9] proved that
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if a Lie g-foliation F is unimodular then the Lie algebra g is unimodular. -
It is not known whether the converse is true. However, if the Lie algebra
g is nilpotent, the converse is true.

Theorem 2.10 ([9], Corollary 3.3) Let F be a Lie g-foliation of a
closed manifold M. If the Lie algebra g is nilpotent, then the foliation
F is untmodular. :

2.4 Commuting sheaves

In this subsection, we define the notion of commuting sheaves, which .
are introduced by P. Molino [11], and review a result by P. Molino and
V. Sergiescu [14]. v

Let F be a codimension ¢ transversely parallelizable foliation of a
closed manifold M and U be an open subset of M. A transverse vector
field Zy € I(U, Fly) is a local commuting transverse vector field if for
any X € (M, F), the restriction X |y of X to U commutes with Zy. We
denote the set of local commuting transverse vector fields on U by C(U),
which is a subalgebra of (U, Fly). f U = M, then C(M) coincides with
the center c(M, F) of (M, F).

For each z € M, let C,(M,F) be the set of germs at 2 of the local
commuting transverse vector fields and let ‘

oM, F) = | Cu(, F)
zeM

be the set of all these germs at different points of M. Then C(M,F) is
a sheaf. '

For each open subset U of M and each Zy € C(U), we consider the
subset

zelU

of C(M, F), where (Zy), is the germ of Zy at z. Then
{OW, Zy) | U < M, Zy € C(U) }

* generates the sheaf topology of C(M,F). We call the sheaf C(M, F)
equipped with the sheaf topology commuting sheaf of the foliation F.
Let x: C(M,F) — M be the natural projection. Then this map ¥ is
continuous and the Lie algebra C(U) can be identified with the set of
continuous sections of the sheaf over U. ‘
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Proposition 2.11 ([13], Lemma 4.6) Let U be a connected open sub-
set of M, let zg be a point of U and let Zy € C(U). If Zy(zo) = 0, then
Zy =0.

Proof. Fix a transverse parallelism {X’l, . ,X'q} of F. Consider the
subset X = {z € U | Zy(z) = 0} of U. Then X is closed and non-
empty. We show that X is open. Let x be an element of X and consider
an open neighborhood U’ C U of z such that U’ is foliated by F and
Flur is a simple foliation of U’. Let

U = U =U/Fly

be the projection. Then the transverse parallelism {Xl,...,)—fq} of
(M, F) defines the parallelism {m.(X1),...,m(X,)} of U’. Thus, for
any point 7(y) € U’, there exists t1,...,t; € R such that

¢t o0 g (m(z)) = m(y),

where (;5?' is the local 1-parameter transformation group of U’ generated
by m«(X;). Since Zy commutes with X; for each i, the projected vector
field m.(Zy) commutes with 7,(X;) for each . Since m4(Zy)(n(z)) = 0
we have '

mu(Z0)(n(y)) = mu(Z0) (81 0 -+ - 0 85 (m())
= (¢§)u 00 (¢)u(Zu(n(z)))
=0

Since Zy is a transverse vector field, this means Zy(y) = 0 for any
yel. ‘ O,

By Proposition 2.11, the set of local commuting transverse vector fields
C(U) is a real Lie algebra of dimension less than or equal to g. Hence
C.(M,F) is also a real Lie algebra of dimension less than or equal to
g- We call the dimension ¢’ of C;(M,F) the dimension of the fibers
of the commuting sheaf. By Molino’s Theorem (cf. [12] ,Theorem 2),
the dimension of the fibers of the commuting sheaf coincides with the
dimension of the structure Lie algebra of (M, F).

Let g be an arbitrary point of M. Then there exists a connected open
neighborhood U of zg such that dimC(U) = ¢. Let Zyy,...,Zyy €
C(U) be local commuting transverse vector fields which are linearly in- -
dependent at each point of U. Then every element Zy € C(U) can be
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written as
Zy=a1lyL+--- aq/ZUq,,

where a; € R. Therefore we can define the bijection ¢: x~1(U) — UxR?
by ‘
¢((ZU)z)‘= (z,01,...,aqy),

where Zy = i a; Zy,;. This bijection is a homeomorphism if U x R?
is equipped vé;clh the product topology of that on U and the discrete
topology on RY. This homeomorphism ¢: x~YU) = U x RY gives a
local trivialization of the sheaf C(M,F). Thus the commuting sheaf is
a locally trivial sheaf.

We say that the commuting sheaf is trivial if there exists a global trivi-
alization ¢: C(M, F) — MxR?, in other words, there exist Z, . .. ,Zq/ €
C(M) = ¢(M, F) which are linearly independent on M.

The end of this subsection, we introduce the following theorem which
is proved by P. Molino and V. Sergiescu (cf. [14]).

Theorem 2.12 ([14], Theorem A) Let F be a Riemannian flow on
an n-dimensional closed manifold M. The following properties are equiv-
alent:

(i) F is isometric.
(ii) F is unimodular.
(i) The commuting sheaf of (M,F) is trivial.

Here a flow F is isometric if there exist a Riemannidn metric g on M
and a Killing vector field X € X(M) of g which has no singular points
such that F is the orbits of X.

3 Nilpotent Lie algebras

3.1 Basic properties of Lie groups and their Lie algebras

In this section, we describe several basic properties of Lie groups and
their Lie algebras. ;

Let g.be a g-dimensional Lie algebra over R and G be the ¢g-dimensional
simply connected Lie group with the Lie algebra g. Then we can define
the exponential map

' exp: g — G.
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There exists a neighborhood V of 0 € g such that exp|y: V — exp(V)
is a diffeomorphism. Thus the inverse is well-defined on a neighborhbod
Uofeecd. We denote it by log: U — g.

For any X,Y € g, WedeﬁneX*Yegby

X * Y log(exp X -expY).

This is well-defined near X = Y = 0. If g is abelian, then X*Y = X4Y.
In general, we have the following formula:

X xY — Z 1)+t z (X (@)t
PR
>0 Pit@i>0 pilai! - prlayn!

1<i<n

x (ad X )P (adY)? - .- (adX)p”(adY)q""lY’

where ad: g — gl(g) is the adjoint representation of g which is defined
by :
ad(X)Y = [X,Y].
This formula is called the Campbell-Baker-Hausdorff formula (cf. [3],
Chapter 1).

For any g € G, let ag: G — G be the automorphism defined by

ay(z) = 9939_1

and let Ad(g): g — g be the differential of ay at e € G. Then
Ad: G — Aut(g)

is a representation of G, which is called the adjoint representation of G.

Let H be a Lie group and h be its Lie algebra. For any smooth ho-
momorphism f: G — H, the differential df.: g — § is a homomorphism
of Lie algebras and satisfies ~

flexp X) = exp dfe(X)
for any X € g. Thus we have
ag(exp X) = exp Ad(g)X.

Since dAd: g — gl(g) coincides with the adjoint representation ad: g —
gl(g), we have _
Ad(exp X) = expad(X).

 Therefore we have

. 0 1
Ad(exp X)Y = expad(X)Y = > —(adX)*
k=0 k'
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3.2 Nilpotent Lie algebras

Let g be a Lie algebra. The descending central series of g is defined
inductively by

g =g and
g® = [g, g~ 1)),

A Lie algebra g is nilpotent if there exists an integer n such that g™ =
{0} and a connected Lie group G is nilpotent if the Lie algebra of G is
nilpotent. If g is a nilpotent Lie algebra and G is the simply connected
nilpotent Lie group with the Lie algebra g, then the exponential map

exp: g — G

is a diffeomorphism. ‘Thus the inverse map log: G — g can be defined
on the whole of G.

For a nilpotent Lie algebra g, there exists a special basis which is
introduced by A. I. Mal’cev (cf. [3], Theorem 1.1.13 and [10], Section 2).

Theorem 3.1 ([10]) Let g be a g-dimensional nilpotent Lie algebra
over K and let g1 C g2 C -+ C gi be ideals with dimg; = [;, where
K =Q orR. Then there exists a basis {X1,...,Xq} of g such that

(i) for eachl, by = (X1,..., X))k s an ideal of g and
(i) for each j € {1,...,k}, by, = gj,
‘where (X1, ..., X))k is the K vector subspace of g spanned by {X1, . .. , X1}

To prove Theorem 3.1, we prove the following lemma.

Lemma 3.2 ([3], Theorem 1.1.13) Let g be a nilpotent Lie algebra
over K, where K = Q or R. Let i be a non-zero ideal of g. Then

ine(g) # {0}
Proof. We define a descending series of ideals i®) of g by

iM =i and
i) = [g,i(-= 1)),

Then we have i) ¢ g(k). Since the Lie algebra g is nilpotent, there
exists the smallest integer » > 1 such that i(") # {0} and i""+D = {0}.
Then we have {0} #i(" Cinc(g). O
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Proof of Theorem 3.1. We prove by induction on the dimension of g.
If dim g = 1, then the assertion is trivial. Suppose that it is true for any
nilpotent Lie algebra of dimension less than q. ‘

Let g be a nilpotent Lie algebra of dimension gand g1 Cgo C -+ C gk
be ideals with dimg; = I;. By Lemma 3.2, there exists a non-trivial
element X; € gy Nc(g). Let

m: g — 9/(X1)Kk

be the natural projection. Since 7 is a surjective homomorphism, 7(g;)
is an ideal of g/(X1)k. Since the dimension of g/(X1)k is less than g,
by the hypothesis of induction, there exists a basis {7(X2),...,7(X4)}
of g/(X1) which satisfies the conditions (i) and (ii). We consider the
basis {X1,X5....,X,} of g. Then this basis satisfies the conditions (i)
and (ii). In fact, since the subspace (n(Xa2),...,n(X;))x is an ideal of
g/(X1)k and X7 € ¢(g), the subspace (Xi,..., X))k is an ideal of g.
Moreover since m(g;) = (m(X2),...,7m(X};))k and X1 € g1, we have
gj:<X17---7le>]K. . O

We call a basis satisfying (i) and (ii) a strong Mal’cev basis of g through
91,.--,0k. We call a strong Mal’cev basis of g through {0} simply a
strong Mal’cev basis of g. . '

Let G be the simply connected nilpotent Lie group with the Lie algebra,
g. Then G has a special coordinate ¢: R? — G which is defined by a
strong Mal’cev basis. ‘ '

| Proposition 3.3 ([3], Proposition 1.2.7) Let g be a g-dimensional
nilpotent Lie algebra and let {X1,...,Xq} be a strong Mal’cev basis of
g. Define the map ¢: R — G by

B(t1,. .. tg) = expt1X1 - -exptgXg.
Then

(i) there exist polynomials Pi(t),. .., Py(t) int1,...,tq such that

q .
¢(t1,...,tg) =exp | > P;(t)X;
j=1

(ii) For each j, there exists a polynomial Q;(t) intji1,...,tq such that
P;(t) =t; + Q;(¢). '

(iii) The map logog: R? — g is a polynomial diffeomorphism.
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(iv) Let gr be the ideal of g generated by {Xi,...,Xx} over R and
Gr =expgr. Then

G = exp(RX7) - - - exp(RXy).

Proof. We prove (i) and (ii) by induction on the dimension ¢. If g =1,
then the assertion is trivial. We assume that this holds for any nilpotent
. Lie algebra of dimension less than ¢. Let g be a nilpotent Lie algebra of
dimension q. The ideal g1 = RX; is central in g. Let

T g—g/o

be the natural projection. Then {7(X2),...,7(X,)} 1s a strong Mal’cev
basis of g/g1. By the hypothesis of induction, there exist polynomials
P;(t) in to,...,ty and Q;(t) in tj4q,. .., such that '

tom(Xa) % -+ wtgm(Xg) = Z P;(t)m(X;)
=2

and P;(t) =t; + Q;(t). Hence we have
_ q
ta Xy xtgXg = Plta, ..., t) X1+ >_ P;(t)X;.
v j=2 .
Since X7 is central, X1 *Y = X7 4+ Y for any Y € g. Therefore we have

q
B Xy w e xt X = > Pi(0)X;,
j=1

where Pi(t) =t + E(tz, ...,tq). Hence (i) and (ii) hold.

- By (ii), the map

log og(ty,. ., tn) = Y _ Pi()X;
j=1
is a polynomial diffeomorphism. ,
We prove that G = expRXj ---expRXj. Since {Xi,...,Xx} is a
strong Mal’cev basis of gi, by (ii), the map ¢x: R¥ — G}, defined by

Or(t1, .- tk) = expt1 Xy - - exptp Xy
is a diffeomorphism. Therefore we have

Gr = ¢r(RF) = expRX - - - exp RXj.

The map ¢: R? — G is called a strong Mal’cev coordinate.
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3.3 Lattice of nilpotent Lie groups

Let G be a g-dimensional Lie group and I' be a subgroup of G. We
say that the subgroﬁp T is uniform if the quotient space I'\G is compact
and the subgroup I' is uniform lattice if I' is uniform and discrete in G.

In general, it is difficult to know whether a given Lie group admits a
uniform lattice. But for a simply connected nilpotent Lie group, Mal’cev
proved the following theorem. V

Theorem 3.4 ([10], Theorem 7) Let G be a simply connected nilpo-

tent Lie group and g be the Lie algebra of G. Then G admits a lattice

if and only if g admits o rational structure, that is, g has a basis with
 respect to which the structure constants are rational.

On the other hand, Mal’cev also studied which group is realized as a
uniform lattice of a simply connected nilpotent Lie group.

Theorem 3.5 ([10], Theorem 6) A group I is isomorphic to a uni-
form lattice in a simply connected nilpotent Lie group if and only if

(i) T is finitely generated,
(i) T is nilpotent and
(iii) T has no torsion.

Let G; be simply connected Lie groups and I'; be uniform lattices of
G; (1 = 1,2). -In general, it is not-always true that any isomorphism
from I'; to I's extends to an isomorphism from G1 to Ga. But if G7 and
G» are nilpotent, it is true. |

Theorem 3.6 ([15], Theorem 2.11) Let Gy and Go be simply con-
nected nilpotent Lie groups and T be a uniform lattice in G1. Then any
homomorphism f: ' = G2 extends uniguely to a continuous homomor-
phism f G1 — Ga. In particular, for any lattices I'; in G; (i = 1,2),
any isomorphism f: 'y — 'y extends to an isomorphism f: G1 — Gs.

Let G be a simply connected nilpotent Lie group with the Lie algebra
g. Let p: G — GL(n;R) be a representation of G. The representa-
tion p is faithful if p is injective and the representation p is unipotent
if p(g) € GL(n;R) is unipotent for any ¢ € G. For any simply con-
nected nilpotent Lie group has a faithful unipotent representation (cf.
[3], Theorem 1.1.11).
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Theorem 3.7 (Blrkoff Embedding Theorem) Let G be a simply con-
nected nilpotent Lie group. Then there exists o faithful unipotent repre-
sentation p: G — GL(n; R) for some n.

Let H be a subgroup of a simply connected nilpotent Lie group G.
The sﬁbgroup H is Zariski dense in G if there exists a faithful unipotent
representation p: G — GL(n;R) such that p(H) and p(G) have the same
Zariski closure in GL(n;C). We have the following theorem (cf. [15])

Theorem 3.8 ([15], Theorem 23) Let H be a subgroup of a sim-
ply connected nilpotent Lie group G. Then the following conditions are
equivalent.

(i) H s uniform in G.
(ii) H is Zariski dense in G.

(iii) For any faithful unipotent representation p: G — GLi(n;R), p(H )
and p(G) have the same Zariski closure in GL(n;C).

4 Nilpotent Lie flows

In this section, we prove the following theorem.

Theorem 4.1 Let g be a nilpotent Lie algebra of dimension q which has
a rational structure. Then (g, m) is realizable if and only if m < dim ¢(g),
where ¢(g) is the center of g.

First we prove the following lemma which is the key to prove the
sufficiency.

Lemma 4.2 Let g be a g-dimensional nilpotent Lie algebra and F be a
codimension q Lie g-foliation of a closed manifold M. Fiz a transverse

— — N
Lie g-parallelism {X1,...,Xq} of (M,F). Let X = Y fiX; be a trans-
i=1

verse vector field, where each f; is a basic function on (M,F). If X is
in the center c(M,F) of (M, F) then each f; is constant.

To prove this we use Engel’s Theorem (cf. [3], Theorem 1.1.9).

Theorem 4.3 (Engel’s Theorem) Let V' be a g-dimensional vector
space and let g be a Lie subalgebra of gi(V). Assume that each element
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X € g is a nilpotent endomorphism of V. Then there exists a basis
{z1,...,24} of V such that X -V C Viy1 for any X € g and any
k=1,...,q, where Vj is the subspace of V spanned by {zy, ... ,zq} and

Var1 =A{0}.

Proof of Lemma 4.2. Since g is a nilpotent Lie algebra, ad(g) C gl(g)
is a Lie subalgebra consisting of nilpotent endomorphisms. Therefore we
can find a transverse Lie g-parallelism {Y3,... ,17:1} of F satisfying the

condition in Theorem 4.3. Since there exists a matrix C = (¢;5) €
GL(g;R) such that
n
Y, = Z i Xi,
i=1
we may assume that the transverse Lie g-parallelism {Xi,. .. ,)—(q} sat-

isfies the condition in Lemma 4.3.
Let afj € R be the structure constants of g with respect to the basis
{X1,...,X,}. Since ad(X;) - X; € V41, we have

7j=1
which is written as follows

q q
SNXiNX =D > fiakXe=0

g
[Xi,Xj]Z Z af?Xk
k=j+1
= a  — = =
Since X = }_ f;X; is in the center of I(M,F), we have [X;, X] = 0

j=1 =1 k=j+1
for each i = 1,...,q. By comparing the coefficients of X}, we have
Xi(f1)=0 7

k-1
Xi(fu) = _ fial;
=1

for each 7 and each k > 2. ,
We prove fi is constant by induction on the index k. First, since
X’i(fl) =0Qfori=1,...,q and f1 is a basic function, fi is constant.
Next, we assume that f; is constant for 7 < k. In the equality

a3

Xi(frrr) = Y frak,

X ]:]_
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the right hand side of the equation is constant by the induction hypoth-
esis. Since fxy1 is a function on a closed manifold M, X;(fr.+1) = 0 for
each i. Therefore fi 1 is constant. ) ]

Proof of the “only if” \part‘ of Theorem 4.1. Assume that (g,m)
is realizable. Let F be a Lie g-flow on a (g + 1)-dimensional closed
manifold M with the m-dimensional structure Lie algebra. Fix a trans-
verse Lie g-parallelism {X;,...,X,} of (M, F). Since g is nilpotent,
by Theorem 2.10, the flow F is unimodular. Then, by Theorem 2.12,
the commuting sheaf C(M, F) is trivial. Hence there exist transverse
vector fields Z1,..., Z,, which are in the center of (M, F) and linearly
independent at each z € M. By Lemma 4.3, the coefficients of Z; with
respect to the transverse Lie g-parallelism {Xi,...,X,} are constant.
Therefore each Z; is in the center of g. Since Zl, .. .,Zm are linearly
independent, we have m < dim ¢(g).

O

Next we prove “if” part of Theorem 4.1, that is, we construct an
example of Lie g-flow with the m-dimensional structure Lie algebra.
To construct examples, we use a strong Mal’cev basis for a nilpotent
Lie algebra and the uniform lattice which is determined by the strong
Mal’cev basis.

Lemma 4.4 ([3], Corollary 5.1.10) Let g be a g-dimensional nilpo-
tent Lie algebra which has a rational structure. Let {X, ... , Xq} be a
strong Mal’cev basis with rational structure constants. Then there ezists
an integer X such that the subset

[ =expZ)X;---expZAX,
of G is a uniform lattice of G.

Proof. For each g’ € G, let ag: G = G be the inner automorphism
defined by oy(z) = gzg~*. Then we have

exp(Ad(g)X) = ag(exp X).

and

| —

Ad(exp X)Y = Z (adX)*Y = (expadX)Y
k=0

X

!
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for any g € G and X,Y € g. Hence, for any ¢ < 7, we have

exptX; - expuX; - exp (—tX;) = Qexprx, (expuX;)

= exp(Ad(exp tX;)uX;)
q

| —

= exp ( (ad tX;)FuX;)

k=

!

(=)
o

’ k
= exp (UXZ + Z u%(ad Xj)kXi)
k=1 ,
= exp(Pi,j,l(u,t)Xl) ce exp(Pi,j,i_l(u, t)Xi_l) -exp uX;,

where P; ;1 (u,t) are polynomials in ¢ and v having rational coefficients.
Let A be a common multiple of all the denominators in these coefficients
for all the P ; 1. '

Let {Y1,...,Y;} = {A\X1,...,AX,} be the new strong Mal’cev basis
of g. Then, for any 7 < j, we have

exptY; - expuY; - exp(—tYj)
=expR;;1(t,u)Y1---exp R; j;-1(t,u)Y;_1 - expul],

where R; ; x(u,t) are polynomials with integer coefficients.
Let
Ui=expZY; - expZY;

be the subset of G. We prove inductively that the subset I'; is a subgroup
of G. It is obvious that Ty is a subgroup of G. Assume that T is a
subgroup of G for any k < m. We prove that I',, is a subgroup of G.
By the hypothesis of induction, it is sufficient to show that

eXpNmYm - expn;¥; € I',
for any + < m and nm,,n; € Z. But this holds since
exp N Ym - expn;Y; - exp(—nnmYy) €T

for ¢ < m and ny,,n; € Z.

Hence T'; is a subgroup of G and thus I' = Ty is a subgroup of G.
Since the strong Mal’cev coordinate ¢: R? — G is a diffeomorphism,
the subgroup I'is a discrete subgroup of G. Since G = ¢([0,1]9)T’, the
subgrdup T" is uniform. O
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Proof of the “if” part of Theorem 4.1. By Lemma 4.4, there ex-
ists a strong Mal’cev basis {X1,...,X4} of g through the center c(g)
with integer structure constants such that

A =expZX;---expZX,

is a uniform lattice of G, where G is the simply connected nilpotent Lie
group with the Lie algebra g. Let ¢: R? — G be the strong Mal’cev
coordinate.

) ~ I . )
Fix an element X = ) b, X; € ¢(g) satisfying the following conditions
i=1

bi,...,bm,1 are linearly indeperident over Q and

bm+1,...,bl € Q.

Consider the uniform lattice A X Z of the (¢+1)-dimensional Lie group
G X R and the quotient manifold M = (A x Z)\(G X R). We define the
submersion D: G x R — G by

D(g,t) = g - exp(tX)

and deﬁne the homomorphism h: A x Z — G by
h=Dlaxz.
Then the pair (D, h) satisfies the equiva,riénce condition
D((é;n) - (g,t)) = h(d,n) - D(g, 1)
for any (6,n) € A x Z and (g,t) € G x R. Thus the pair (D, h) defines
a Lie g-flow F on M. The holonomy group is
F'={6-exp(nX)|dcAnecZ}

By the definition of A, since X commutes with any Y € g, we have

i q
I'= {Hexp(ni +b;n)X; - H expn;X; | ni,n € Z}.
i=1 i=l+1

The inverse image of I" by ¢ is
¢_1(P) :{(nl —I‘b]_n,-..,nl+bl7’L,TLl_|.]_,.-.,nq) I’I’Li,TI,GZ}
. by
=Zt+z| : ez
. b
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By the choice of b;, we have

dimT = dim ¢—1(T) = m.
Thus the dimension of the structure Lie algebra of F is equal to m.

Therefore (M, F) is a Lie g-flow on M with an m-dimensional structure
Lie algebra. O

For general nilpotent Lie algebras, this result does not hold. First,
there are constructed nilpotent Lie algebras which have no rational struc-
tures (cf. [2]). ‘

Example 4.5 ([2], Lemma) Let ci-“j,l <i,7<m,1,<k <n be real
numbers such that cfj = —c?i. Assume that ci-“j are. algebraically inde-
pendent over Q. Let g be the Lie algebra defined by a basis

(X1, ., Xm, Y1,. ., Y2}

with the products .

[Xi7Xj] = Z CZYk
. k=1
for¢,7 =1,...,m and all other products being zero. Then g is nilpotent
a Lie algebrd and [g,g] = (Y1,...,Y,)r. This Lie algebra g has no
rational structure if (n/2)(m? — m) > m? + n2.

Next we prove the Lie algebra g constructed above cannot be realized
as a Lie g-flow if m and n satisfy (n/2)(m? —m) > (m+1)2+ (n+1)%

Proposition 4.6 Suppose that (n/2)(m?~m) > (m+1)%2+(n+1)2, then
the Lie algebra g constructed above cannot be realized as a Lie g-flow.

Proof. Suppose that there exists a Lie g-flow F of a closed manifold
M. Let D: M — G be the developing map, h: m1 (M) — G be the
holonomy homomorphism of F and I' be the holonomy group of F. If
h: m (M) — G is not injective, then each leaf of F is closed in M. Thus
the closure I of I' coincides with I'. Hence the holonomy group I is a
discrete subgroup of G. Moreover, since M is compact, I' is uniform in
G. Hence I is a uniform lattice of G. This contradicts Theorem 3.4.
Therefore h: 7T1.(M ) = G is injective. Since I is a finitely generated,
by Theorem 3.5, there exists a simply connected nilpotent Lie group G’
and a uniform lattice A of G’ which is isomorphic to I. Let f: A —
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T" be an isomorphism. By Theorem 3.6, f extends to an continuous
homomorphism f: G’ — G.
Consider the homomorphism

Ford =g

induced by f, where ¢’ is the Lie algebra of G’. We show that ﬁ is
surjective. Since the group I is uniform in G, the subgroup T is Zariski
dense in G by Theorem 3.8. Therefore the R vector subspace V of
g which is spanned by logI' coincides with g. Similarly the R vector
subspace V' of g’ which is spanned by log A coincides with g’. Since
f|A = f is an isomorphism, :
Feloga: log A — logT

is bijective. :

Let Z = Y a;Z; be an arbitrary element of g, where a; € R and
Z; € logT.. Then the element X = Y a;f7(Z;) € g satisfies that
f* (X) = Z. Therefore the map f* is surjective.

Since G is a simply connected nilpotent Lie group, G is contractible.
Since D: M — G is a locally trivial fibration and G is contractible, M
is contractible. Hence M is aspherical. Since m1(M) is isomorphic to T’

and T" is isomorphic to A, the manifold M is homotopy equivalent to
A\C~¥ Therefore dim G = dim M = dim G + 1. Thus we have

dim Ker(f,) = dim G — dim G = 1.
By Lemma 3.2, Ker(f,) is in the center of g’. Therefore
0—>Ker(f*)—>g’i*+g—+0

is & central extension. Let T is a non-trivial element of Ker( f*) C g and
let s: g — g’ be a linear section of fi. Define

Y:gAg— R~ (T)r ~ Kerfy

by _ .
Y Y)T = s([X,Y]) — [s(X), s(YV)]-

We consider the new Lie algebra § by g @ (T') g with the product

[(Z1,a1T), (Z2, a2T)) = ([Z1, Za],¥(Z1, Z2)T).
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Then g is isomorphic to g’ via ¥: g — g’ which is defined by
U(Z,aT) = s(Z) + aT.

If ¢ = 0, that is, g is isomorphic to g @& (T)gr as a Lie algebra, then we
have
@?ﬂ::<}37- 7}%>R
If 1 # 0, then we have [3,3) = (Y1,...,Yn, T)r
First we assume that [g,g] = (Y1, ..., Yn, T)r. Let Ef] be the structure
constants of § with respect to the ba81s

(X1, X Ya,..., Yo, T}

Since [X;, Xj] = z ck Yk + (X, X;)T, we have &= cf; for 4,5 =

1,...,mand k = 1 ,n. Since G’ has a uniform lattlce by Theorem
3.4, the Lie’ algebra g~ has a rational structure.
~ Let {Z1, ..., Zntm+1} be a basis of g with rational structure constants
{dfj} We may assume that 7(Z1),...,7(Zp,) are linearly independent,
where
W:Ei_>§/@;a
is the natural projection. Let C =(Z1, ..., Zn)r be the vector subspace
of § which is a complement of [g,g]. Since § = C @ [g,3], for each j =
1,...,n+1, there exist V; € C and Tj € [g, 8] such that Zp,y; = V;+T;.
Then
B= {Zl,...,Zm,Tl,...,TnH} ‘
is a new basis of g and [g,9] = (11, ..., Th+1)r. Since
: n+l
[Z:, Z;] Zd Zk+z dPtE (Vi + Tk)

n+1 n+1
dfZy, + Z +ka+ZdT’}+’“Tk

MSf

B
Il

. 1
and (Z;, Z;] € (T1, ..., Tn+1)R, we have

n+1
1Z;, Z;] Z A7

On the other hand, since ¢’ = (Xj,...,Xm)r is a complement of
[9, 9], there exists S; € C’ such that
m+1

Si—Zi= Y daTk € [5,3]
k=1
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for i =1,...,m. Counsider the new basis
B ={S1,...,8mT1,. -, Tot1}

of g. Since [g,g] C c(g), we have

n+1 n+1
[Si, Sj] = [Z,L —+ Z ATy, Zj + Z )\jka]
k=1 k=1
= [Zi7Zj]
n+1
e,
k=1

Thus the structure constants of g for the basis B are the same as for the
basis B'.
Since {S1,...,Sm} is a basis of C’, there exists a non-singular matrix
, . .
A = (a;;) € GL(m;R) such that S5 = >~ a;;X;. Similarly, there exists a
i=1
: ’ n+1
non-singular matrix B = (b;;) € GL(n + 1;R) such that T; = - b;;Y;,
=
n+1 ‘
where Yy, 41 = T Since [S;,5;] = dijk, by comparing the coefficients
k=1

of Y, we have

m- m n+1
ok mAr
Z Z UpiGqjCpq = 2 dij Dier
p=1 g=1 r=1

forli,j =1,...,mand k =1,...n+ 1, where c%“ = P(X;, X;). Let

(@i;) be the inverse of A and (b;;) be the inverse of B. Then, for each
5,j=1,...,mand k=1,...,n+ 1, we have

m m ntl

Ci—cj = Z Z Z (_Zpi(_l,qjdg(;_'—rbkr. :

p=1lg=1r=1

Therefore cé“j is in the field Q(a4j,bi;). The transcendental degree of
Q(asj,bi;) is at most m? + (n + 1)2. This contradicts the assumption

that cfj are algebraically independent over Q and
(n/2)(m? —m) > (m+1)% + (n+ 1)%

In the case where [g,g] = (¥1,...,Ys)r, by the same argument, we
can prove that there exist (a;;) € GL(m + L;R) and (};) € GL(%;R)
such that cfj € Q(agj, b;j). ThQ transcendental degree of Q(agj, b;j) is at
most (m + 1)? + n®. This is a contradiction. O
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Ifn= 4‘ and m > 8, then the inequality
(n/2)(m? —m) > (m+1)* + (n+1)?

holds. Therefore, for any g > 12. there exists a g-dimensional nilpotent
 Lie algebra g such that (g, m) is not realizable for any m.

On the other hand, there exists a nilpotent Lie algebra g which has no
rational structures such that (g,m) is realizable for some m. We prove
this in the next section. .

5 Nilpotent Lie foliations

In this section we consider which pair (g,9) can be realized as a Lie
g-foliation of a closed manifold with the structure Lie algebra .

Let g be a nilpotent Lie algebra and F be a Lie g-foliation of a closed
manifold M. Let I' be the holonomy group of 7. By Theorem 2.8, the
structure Lie algebra b is isomorphic to the Lie algebra of the closure T’
of T'. Since I' is uniform in G, the closure I of I is also uniform in G.

For any closed uniform subgroup of a nilpotent Lie group has the
following property.

Lemma 5.1 ([15], Corollary 3) Let H be a closed uniform subgroup
of a nilpotent Lie group G. Then the identity component H, of H is a
normal subgroup of G.

Let I be the holonomy group of a Lie g-foliation F of a closed manifold
M. Then I is finitely generated and uniform subgroup of the simply
connected Lie group G. For a simply connected nilpotent Lie group, the
converse is true.

Lemma 5.2 Let G be a simply connected nilpotent Lie group and g be -
its Lie algebra. Let I' be a finitely generated uniform subgroup of G.
Then there exists a closed manifold M and a Lie g-foliation F of M
such that the holonomy group is I ' '

Proof. Since G is a simply connected nilpotent Lie group, the subgroup
I' of G is nilpotent and torsion-free. Thus, by Theorem 3.5, there exists
a simply connected nilpotent Lie group G’ and a uniform lattice A of G/
such that A is isomorphic to I'. Let f: A — I be an isomorphism. By
Theorem 3.6, f extends to an continuous homomorphism f: G' — G.
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Consider the homomorphism
ford =g

induced by f , where g is the Lie algebra of G’. By the proof of Propo-
sition 4.6, the map f* is surjective. Hence, the map f G—Gisa
submersion. The submersion

G =G
and the homomorphism
fla=f:A-=T

define a Lie g-foliation of a closed manifold M = A\G’ with the holon-
omy group I'. : O

Theorem 5.3 Let g be a g-dimensional nilpotent Lie algebra and b be
an I-dimensional subalgebra of g. Then (g,%) is realizable if and only if
b is an ideal and H\g has a rational structure.

Proof. Suppose that there exists a Lie g-foliation F of a closed manifold
M with the structure Lie algebra . Let I" be the holonomy group of F.
Then b is the Lie algebra of I's, where T, is the identity component of the
closure of . Since I is uniform and closed, by Lemma 5.1, T, is a normal
subgroup of G. Therefore § is an ideal of g. The homogeneous space
I'\G is compact and diffeomorphic to (T\I)\(T.\G). Hence the discrete
subgroup T \I' of T',\G is a uniform lattice. Therefore, by Theorem 3.4,
g/b has a rational structure.

Suppose that b is an ideal of g and h\g has a rational structure Let
p: g — b\g be the natural projection and {p(Z1),...,p(Z;—1)} be a
strong Mal’cev basis of h\g with rational structure constants. By The-
orem 4.4, we may assume that

exp Zp(Z1) -+ - exp Zp(Zo—1)

is a uniform lattice of H\G. Let {Xj, ..., X} be a strong Mal’cev basis
of g through h. Consider the new basis

B={X1,...,X1,Z1,..., Zq_1}

of g. We show this basis B is also. strong Mal’cev basis of g through b.
Since {X1,..., X4} is a strong Mal’cev basis of g, for each 1 < [, the R
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“ vector subspace (X1, ..., X;)r of g which is spanned by {Xi,...,X;} is
an ideal of g. Since p(Z1),...,p(Z,;) is a strong Mal’cev basis of h\g,
we have

for any 5 > i. Hence we have

[Zi,Zj] G f) $ (Zl, .. 7Zi>R
= (X1, X1, %0, T

Therefore B is a strong Mal’cev basis of g through b.
Fix an irrational number @ and let I" be the subgroup of G generated
by

{exp Xi,expaXi,...,exp Xj, exp aXi,exp Z1, . .. ,exp Zg_1}.

Then I' is finitely generated and uiniform. We show that the identity
component I, of the closure of I' coincides with H = exp ). Let

p:RI=R' xRI !5 g

be the strong Mal'cev coordinate with respect to the basis B, which is
defined by

¢(517‘ . 7Sl>t1 7tq—l)

=exps1Xi---expsX;-exptiZ - -expty_iZg.

Consider the subset

l g1
V = {Z(nz —+ mia)Xi + Z ki Z; | 5, My, Ky € Z}
=1 =1
= (Z-l—aZ)Xl@"'@(Z—I—GZ)XIEBZZl@"'EBZ_Zq_Z

Then we have ¢(V) C I'. Since the closure of V' is
7= Q}RX‘@EBZZ
=b®692a
i=1

and ¢ is a diffeomorphism, we have
¢(b©{0}) = ¢(Vo) = $(V), C ..
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On the other hand, since B is a strong Mal’cev basis through b, we have

H = ¢(h & {0}).

" Hence H is contained in T. :
We show that T is contained in H. Let : G — H\G be the natural
projection and I be the subset of G generated by

{H,exp Z1,...,exp Zq_;}.
Then T is contained in IV. Since H is a normal subgroup of G, we have

B(T") = (Blexp Z1), ..., Blexp Zg1))
= (expp(Z1),...,expp(Z4-1)).

By definition of {p(Z1),...,p(Z4—;)}, the subset
exp Zp(Z1) - - - exp Zp(Zy—1)-
is a uniform lattice of H \G and thus we have
(expp(Z1),...,expp(Zy—1)) = expZp(Z1) - - - exp Zp(Z4—;).

Hence 5(I") is discrete in H\G. Therefore 5~1(p(I")) is a closed subgroup
of G. On the other hand, since H is a normal subgroup of G, we have

i) =H-T' =T
Thus IV is a closed subgroup of G. Therefore we have -
r.cr,=I'.=H.

Since I is a finitely generated and uniform subgroup of G, by Lemma
5.2, there exists a Lie g-foliation of a closed manifold M with the holon-
omy group I'. The structure Lie algebra coincides with the Lie algebra -
of T = H. Therefore the structure Lie algebra is §. |

Let F be a Lie foliation, then F is minimal if and only if the holonomy
group is dense in G. Thus we have the following corollary.

Corollary 5.4 For any nilpotent Lie algebra g, there exists a minimal
Lie g-foliation F of a closed manifold M.
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Proof. Since g is an ideal of g and g/g = {0} has the rational structure,
by Theorem 5.3, (g,9) is realizable. Therefore there exists a Lie g-
foliation JF of a closed manifold M with the structure Lie algebra g. Let
T" be the holonomy group of F. Then the Lie algebra of I'. coincides
with g. Therefore we have I'. = G. This means that the Lie g-foliation
F is minimal. O

Corollary 5.5 There exists a nilpotent Lie algebra g which has no ra-
tional structures such that g can be realized as a Lie g-flow, that is,
(g,m) is realizable for some m.

Proof. Fix an ¢’-dimensional nilpotent Lie algebra g’ which has no ra-
tional structures. Let G’ be the simply connected nilpotent Lie group
with the Lie algebra g’. By the proof of Lemma, 5.2, there exists a simply
connected nilpotent Lie group G” with dimension ¢” which admits a uni-
form lattice and there exists a submersion homomorphism F: G” — G.
If ¢ = ¢, then F: G — G’ is isomorphism. This contradicts the
assumption that g’ has no rational structures. Hence ¢” > ¢'.
Consider the induced homomorphism

Fo..g' —4¢.

Since F' is submersion, Fy is surjective. Let [ > 0 be the dimension of
Ker(F}). Since G” has a uniform lattice, by Theorem 3.4, the Lie algebra,
g” of G" admits a rational structure. Let {Xi,..., Xy} be a strong
Mal’cev basis of g” through Ker(Fy) and define ideals by (0 < k < 1) of

g// by
ho = {0} and
7 bk = R—span{Xl, PN ,Xk}.
Let
i ¢ /b = 6" /bes1

be the natural projection. Then we have the sequence of nilpotent Lie
algebras

pi— F,
8" =8"/0 20 af . P gy Tl

Since ; = Ker(Fy), the hilpot_ent Lie algebra g” /b, is isomorphic to g’ via
F,. Since g” has a rational structure and g’ has no rational structures,
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there exists k < [ such that g”/b; has a rational structure and g”/Hy 1
has no rational structures. ‘
Let G and G7/,; be simply connected nilpotent Lie groups with Lie

algebras g} and g _ ,, respectively. Since

+10
dim g” /b — dimg"/bg41 = 1,

we have
dim Gy — dim Gy, = 1.

Since g”/hi has a rational structure, by Theorem 3.4, there exists a
lattice A in GY. Since pi: ¢”/br — 8" /bi+1 is surjective, the map

D =expopyolog: Gy — Gp 4

is a submersion homomorphism. Then the submersion D and the homo-
morphism
h=D|a: A= Gy, 11

define a Lie g”/hj41-flow on M = A\GY.
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