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‘Abstract

Abstract

The Brauer group of a scheme is an effective tool for studying its arithmetic and
geometric properties. For such purposes, we need to know not only the structure
of the Brauer group as an abelian group, but also explicit generators such as those
represented by norm residue symbols.

Yu. I. Manin first studied such problems for diagonal cubic surfaces. He deter-
mined the structure of the Brauer group of some diagonal cubic surfaces and found
its symbolic generators.

In this dissertation, we generalize his result. We introduce the notion of uni-
formity for generators and prove the following two results: first, diagonal cubic
surfaces of a particular form have such uniform generators represented by a norm
residue symbol; secondly, in general, diagonal cubic surfaces have no uniform gen-
erator. The latter result states that there is a limit to extend the Manin’s result stated
above. ‘
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1. Introduction

Chapter 1

Introduction

A central object of this dissertation is the Brauer group of fields and schemes. It
is named after Richard Brauer [Bra29], a twentieth-century German and American
mathematician.

We first review the history of the Brauer group. Let k be a (commutative) field.
Algebras over k are began to study in the nineteenth century. On October 16, 1843,
W. R. Hamilton [Ham44] discovered the first and the most famous example of skew
fields, namely the field of quaternions, which is now denoted by H. Historically,
however, O. Rodrigues [Rod40] had already reached the notion of quaternion in
his study about the transformation of coordinates of spaces in 1840. For details, see
[Alt89]. The skew field H is an R-algebra defined to be a 4-dimensional R-vector
space R®Ri® R j @ Rk with the following multiplication rules:

==K =ik=-1
This algebra is an example of a central simple algebra over IR, that is, an R-algebra
e which is finite-dimensional as an IR-vector space;
e which has no nontrivial two-sided ideal;
e whose center is equal to R.
Here a natural problem occurs:

How many central simple algebras are over a fixed field k (up to k-
isomorphisms)?

Related to this problem, J. H. M. Wedderburn [Wed08] proved the following strik-
ing theorem:

2010 Mathematics Subject Classification.
Primary: 14F22, 19F15. Secondary: 11R34, 14]26.
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1. Introduction

Let k be a field. For any central simple algebra A over k, there exists
a unique positive integer n and a unique central skew field D up to k-
isomorphisms such that A is isomorphic to the matrix algebra M, (D)
over D with rank 7 as k-algebras.

In a succession of works in the 1920’s due to many mathematicians including, for
example, E. Artin, R. Brauer and E. Noether, they reached the notion of similarity of
central simple algebras over k and introduced a group structure into the set of their
isomorphism classes. This is what is now called the Brauer group of k and denoted
by Br(k). The Brauer group of fields appears in various contexts. For example,
the following theorem, called the Albert-Brauer-Hasse-Noether theorem plays an
important role in class field theory:

Let k be a global field and Q) is the set of all places of k. We have the
following exact sequence:

0 — Br(k) — @ Br(k,) =¥ Q/Z — 0,
veQ)

where k; is the v-adic completion of k and inv; is the invariant map of
kv-

A generalization of the Brauer group of fields was proposed by G. Azumaya [Azu51].
He generalized central simple algebras over fields to those over local rings and de-
fined the Brauer group Br(R) of a local ring R. In honor of his work, such algebras
are now called Azumaya algebras.

The notion of the Brauer group of schemes were also considered. In a series
of papers [Gro68a], [Gro68b], [Gro68c], A. Grothendieck introduced two types of
Brauer groups of a scheme X, that is, the Brauer group Bra,(X) defined by using
Azumaya algebras on X and the cohomological Brauer group Br(X) of X. These
groups relate each other. For example, we always have an injection from Bra,(X)
to Br(X).

In the following of this chapter, Brauer groups always mean cohomological
ones. For Brauer groups defined by using Azumaya algebras, see Section 3.2. See
also [Gro68a], [Gro68b], [Gro68c], [Mil80] (Chapter IV).

Let X be a variety over a field k. The (cohomological) Brauer group Br(X) is
defined to be the second étale cohomology group Hz, (X, G;) of X with coefficient
Gy It is an important problem to understand Br(X) since this group plays an im-
portant role in studying the arithmetic and the geometry of X. For example, this
group appears as the so-called Brauer-Manin obstruction [Man71], a tool for study-
ing the Hasse principle for rational points and zero-cycles on varieties over a num-
ber field. In [CTKS87], using this obstruction, J.-L. Colliot-Thélene, D. Kanevsky,
and J.-J. Sansuc studied the Hasse principle for rational points on diagonal cubic
surfaces. For relations between Brauer groups and zero-cycles on varieties over
p-adic field, see, for example, [Lic69], [CT95b], [SS]. Besides, Br(X) also appears
in studies of the rationality problem of X. For example, M. Artin and D. Mum-
ford [AM72] constructed some examples of non-rational unirational varieties by
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1. Introduction

showing the nontriviality of unramified cohomology groups, which are kinds of
generalizations of Brauer groups. For other results and applications, see, for exam-
ple, [CTS87], [CTO89], [SkoO1].

Assume X is a proper, smooth, geometrically integral and geometrically ratio-
nal variety over k. In order to apply Brauer groups to such studies as stated above,
we have to answer the following two natural questions on Br(X):

(1) How do we determine the structure of Br(X)?
(2) How do we represent elements in Br(X)?

First we look at the question (1). Let 7t: X — Speck be the structure morphism. By
the geometrical rationality of X, the group Br(X)/ Br(k) := Br(X)/7* Br(k) injects
into the Galois cohomology group H!(k,Pic(X)), where X is the base change of
X to a separable closure of k. Moreover, if we assume that X(k) # @ or that the
cohomological dimension cd(k) of k is less than or equal to 2, these groups are
isomorphic. Thus, if we know the Galois action on Pic(X), it is possible to compute
H(k, Pic(X)) and hence we have an answer to the question (1). On the other hand,
if H'(k, Pic(X)) # 0, X(k) = @ and cd (k) is greater than 2, it is a difficult problem
to determine the structure of Br(X)/ Br(k).

Next, we look at the question (2). One way to represent elements of Br(X) is to
use norm residue symbols. The Brauer group of X can be considered as a subgroup
of Br(k(X)), where k(X) is the function field of X. On the other hand, for any field
K and a positive integer n prime to ch(K), we have the norm residue map

{+/3nt KP(K) — HY(K, p5?),

where K}M(K) is the second Milnor K-group of K. Hence, if k contains a primitive
n-th root of unity, we have the composite map

KM(k(X)) U8 H2(k(X), 482) 2 H2(K(X), pn) < Br(K(X)),

and can represent n-torsion elements in Br(X) in terms of norm residue symbols. In
a particular case, for example, when ch(k) = 0 and k contains all roots of unity, by
a theorem of A. S. Merkurjev and A. A. Suslin ([MS82], Theorem 11.5), such repre-
sentation exists for all elements of Br(X). Such representation is useful to calculate
some objects relating to Brauer groups such as the Brauer-Manin obstruction, so it
is an important question to find such one.

However, there are some problems. First, it is difficult to decide which element
in Br(k(X)) belongs to Br(X). Moreover, even if we know that an element e € Br(X)
can be represented by norm residue symbols, it does not necessarily mean that we
can represent e as a symbol { f, g}, not a sum of symbols.

In [Man86], under the assumption k contains a primitive cubic root { of unity,
Yu. I. Manin gave a complete answer to the above questions for smooth projective
cubic surfaces V over k defined by a homogeneous equation x® +y3 + 23 + dt> = 0
with d € k*\ (k*)2. See also [CTS87]. In this case, we have the following:



1. Introduction

Theorem 1.0.1 (Manin). (1) Br(V)/Br(k) 2 (Z /3Z)%

(2) the elements

x+qy { x—l—z}
= T ’ = y T B kV
e {dx+y}3 2= %35y, € Brl()

are contained in Br(V);
(3) the images of e1 and ey in Br(V') / Br(k) are generators of this group.

Using these symbolic representations, S. Saito and K. Sato [SS] recently com-
puted the degree-zero part of the Chow group of zero-cycles on such cubic surfaces
over p-adic fields explicitly, even in the case p = 3.

In this dissertation, we study the problem in a more general setting where the
equation of V is of the forms x3 + 3 + ¢z® +d#® = 0 and x° + by® + cz® + d3 = 0.

In the sequel of this chapter, k is always assumed to be of characteristic 0 and
contain a fixed primitive cubic root { of unity. First, we prove the following theo-
rem, which gives an answer to the questions (1) and (2) for the case x® + y® + ¢z® +
dt® = 0.

Theorem 1.0.2 (Theorem 5.1.1). Let k be as above and V be the cubic surface over k
defined by an equation x> +y> + ¢z> + dt® = 0, where cand d € k*. Assume that c, d, cd
and d/ c are not contained in (k*)3. Then

(1) the group Br(V')/ Br(k) is isomorphic to Z /3 Z;

(2) the element
o = {iﬂ} € Br(k(V)
c x4+ Yy 3
is contained in Br(V);

(3) the image of e in Br(V)/ Br(k) is a generator of this group.

The claim (1) is essentially due to [CTKS87]. Recently Colliot-Thélene and
O. Wittenberg found a symbolic generator of Br(X)/ Br(k) for an affine surface
X : x®+y®+ 228 = at® when k does not contain a primitive cubic root of unity
([CTW12], Proposition 2.1). In this case, our symbolic generator was also appeared
in the proof of that proposition.

We note that in the result of Manin and Theorem 1.0.2, we can take generators
uniformly. More precisely, for example in Theorem 1.0.2, let ¢ and d be indetermi-
nates, F = k(c,d), V the cubic surface x> + 4> + cz® + dt* = 0 over F, and

d
e = {335,

an elementin Br(V'). Let P = (co, dp) be a point in k* x k* with co, dy, codo and dy/ co
not contained in (k*)3, and Vp the surface defined by x3 + > + ¢oz® + dpt® = 0. If we
want a symbolic generator of Br(Vp)/ Br(k), we can get it by specializing e(c, d) at P.
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1. Introduction

We denote this element by sp(e(c,d); P). A precise definition of the specialization
will be given in Subsection 3.2.5. In general, it is not necessary that the Brauer group
of a given variety has such uniform generators. However, it is desirable that we
take uniform generators if they exist, since we can make a calculation simultaneously
for varieties defined by the same form of equations by using them.

Concerning the problem whether symbolic generators can be chosen uniformly
or not, we prove the following non-existence result. Let F = k (b, c,d), where b, ¢, d
are indeterminates over k, and let V be the projective cubic surface over F defined
by the equation x® + by® + ¢z + dt® = 0. For P = (bo, co, do) € k* x k* x k*,let Vp be
the projective cubic surface over k defined by the equation x3 + boy® + coz® + dot® =
0. For e € Br(V), we will define its specialization at P, sp(e; P) € Br(Vp). Put

Pr={P € (Gnx)*(k) | Br(Vp)/ Br(k) = Z /3Z }.

Note ([CTKS87]) that Br(Vp)/ Br(k) is isomorphic to either of 0, Z /3 Z and (Z /3 Z)?
and that Manin dealt with the last case, as we stated before.
We can state our main result:

Theorem 1.0.3 (Corollary 6.2.3). Let k be a field of characteristic 0 and containing a
primitive cubic root of unity, F = k(b,c,d) and V be the projective cubic surface over F
defined by the equation

B+byP+c+df =0.

Assume dimg, k*/ (k*)® > 2. Then there is no element e € Br(V) satisfying the following
condition:

there exists a dense open subset W C (G x)® such that sp(e; -) is defined on
W (k) NPy and forall P € W(k) NPy, sp(e; P) is a generator of Br(Vp) / Br(k).

We note that the assumption dimg, k*/(k*)3 > 2 implies the Zariski density
of Px C (Gmx)® (see Proposition 6.2.1), which is essentially necessary to prove
Theorem 1.0.3. We easily see that this assumption holds for various fields, for ex-
ample, all finitely generated fields over Q({) and Q,({) for any prime number p,
and hence this is a mild assumption.

Theorem 1.0.3 is an consequence of the following

Theorem 1.0.4 (Theorem 6.1.3). Let k, F and V as above. Then

Br(V)/Br(F) = 0.

Note that this vanishingness does not follow directly from the argument stated
before since H!(F,Pic(V)) # 0, V(F) = @ and cd(F) > 3. As far as we know, this
would be the first example of computation of Brauer groups for such varieties.

This dissertation is written in the following fashion. It consists of six chapters
including this chapter.

In Chapter 2, we fix the notation and recall some classical results on cohomol-
ogy of groups. In particular, we review residue maps, which is intensively used in
the proof of Theorem 1.0.3.
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In Chapter 3, we review the definition and basic properties of Brauer groups.
First, we deal with the Brauer group of fields — its definition and its expression by
using symbols. Secondly, we consider the Brauer group of schemes. We give three
descriptions of them. Here we also define specialization of Brauer groups.

In Chapter 4, we focus on the diagonal cubic surfaces, especially their Picard
groups and Galois action on them. Some results of this chapter is found in [CTKS87]
or in [Man86], but for convenience of the reader, we include them here. At the end
of this chapter, we also recall an explicit description of a differential appearing in a
spectral sequence, which is used in the proof of Theorem 1.0.3.

In Chapter 5, we obtain a uniform symbolic generator of the Brauer group of
surfaces of the form x® + % + ¢cz® +dt® = 0.

In Chapter 6, we prove that there is no uniform generator for the case x® + by +
¢z® +d’ = 0 by showing the non-vanishingness of the image of a particular cocycle
in a certain cohomology group. In the last section of this chapter, we also discuss
the condition dimg, k*/ (k*)3 > 2 appearing in Theorem 1.0.3.



2. Preliminaries

Chapter 2

Preliminaries

2.1 Notation

For a group A and f € End(A), we denote by (A the kernel of f. For a prime
number p, we denote its p-primary subgroup by A{p}.

The term “ring” always means an associative commutative ring with unit. For
aring R, we denote its unit group by R*. For a non-commutative ring R, we denote
by R°P its opposite ring. This is the same as R as sets and its addition +gep is also
the same as the addition in R, but its multiplication -gep is defined to be:

a 'R0pb = b-R{Z.

The term “field” always mean a commutative field. If we want to say about not
only commutative but non-commutative fields, we use the term “skew fields”. For
a field k, we we denote a separable closure of k by k. We fix such a field k and each
algebraic separable extension of k is always considered as a subfield of this k. If k
is a discrete valuation field, the field k"' denotes the maximal unramified extension
of k. We denote the characteristic and the cohomological dimension of k by ch(k)
and cd (k). We define the condition (x) as follows:

k contains a primitive cubic root of unity and ch(k) = 0. (%)

When we assume that (x) holds for k, we always fix one of primitive cubic roots of
unity and denote it by .

For a profinite group G and a (left) G-module A, H%(G, A) denotes the g-th
cohomology group of G with coefficients in A. When L is a Galois extension of
k and G is the Galois group Gal(L/k), we denote its g-th cohomology group by
Hi(L/k,A). In particular, when G = G; := Gal(k/k), we denote this group by
simply H9(k, A). A® denotes the G-invariant part of A and we denote it by AL/*
when G = Gal(L/k). C1(G, A) (resp. B(G, A) and Z%(G, A)) denotes the group
of inhomogeneous g-cochains (resp. g-coboundaries and g-cocycles). If ¢ is an
element in Z7(G, A), [¢] denotes the class of ¢ in H(G, A). Similarly, (G, A)
denotes the g-th Tate cohomology group of G with coefficients in A. Other notations
are defined palallelly as in the case of H(G, A).

7-



2.2 Cohomology of groups 2. Preliminaries

All schemes are assumed to be separated. For a scheme X, we denote X(*) be the
set of all points in X with codimension i. The field x(x) denotes the residue field
of x € X. The groups Div(X) and Pic(X) denotes the group of Cartier divisors on
X and the group of isomorphism classes of invertible sheaves on X. For a regular
scheme X, we identify these groups with the group of Weil divisors and the group
of linearly equivalent classes of Weil divisors respectively. For a Zariski sheaf / on
X, we denote its stalk at x € X by F,. For an étale sheaf 7, we denote its (étale)
stalk at x € X by Fz. Fix a positive integer 7, we denote by u, x the étale sheaf of
n-th root of unity on X. Put

. UnX @+ ® Unx j>0
Mok =S Z/nZ j=0
Hom(ypy , Z /nZ)  j<O.

The sheaf G, x denotes the étale sheaf of multiplicative units on X. We often omit
X for simplicity. H7(X, ) always denotes the g-th étale cohomology group of X,
that is, the g-th right derived functor of the global section functor I'(X, -). If Ris a
ring and X = Spec R is an affine scheme, we denote simply by H7(R, -) the group
HY(SpecR, -). In particular, if k is a field and X = Speck = {x}, for an abelian sheaf
F on X, we have the following natural isomorphism:

Hi(k, F) = H(k, Fz),

where the left-hand side is an étale cohomology group and the right hand side is a
Galois cohomology group. In this dissertation, we always identify these groups by
this isomorphism.

For a field k, a variety over k means a separated scheme of finite type over k.
For a variety X over k and a given field extension L/k, we denote X x; Lby X;. In
the case where L = k, we denote Xz by X. If X is integral, we denote by k(X) its
function field or the residue field of its generic point.

Finally, All spectral sequences are assumed to be the first quadrant spectral se-
quences.

2.2 Cohomology of groups

221 Cohomology of finite cyclic groups

At first, we focus on finite cyclic groups. Let G be a finite cyclic group of order
n and fix a generator o of G. Let A be a G-module. Then we have the following
theorem:

Theorem 2.2.1. Let [£] be an generator of the Tate cohomology group H*(G,Z) 2 Z /nZ.
Then we have the following isomorphisms

‘U [R]: B(G,A) — A™2(G, A)

forall i € Z. Moreover these isomorphisms are compatible with connecting homomor-
phisms and change of modules.



2.2 Cohomology of groups 2. Preliminaries

For a proof, see [NSWO00], Proposition 1.7.1. We recall an explicit description
of these isomorphisms in the case i = —1 and 0. The following exact sequence of
trivial G-modules

0-Z—-Q—-0Q/Z—-0

induces the long exact sequence
HY(G,Q) — HY(G,Q/ Z) — H*(G,Z) — H*(G,Q).

Since the cohomology groups H7(G, Q) = 0 for g4 > 0 by the unique divisibility of
Q, the above sequence yields the isomorphism

HY(G,Q/Z) = H*(G,Z).
We take the image of
$G-Q/Z o

under HY(G,Q / Z) = H?(G,Z) = A?(G, Z) as a generating cocycle £ of H%(G, Z).
First, we look at the case i = —1.

Proposition 2.2.2. (1) The map
277G A) = 4 ¢~ ¢(1)

induces a functorial isomorphism a 1G,A) = NeA/IgA. Here, Ng is the norm
map of G and Ig: A — A maps x to (0 — 1)x.
(2) For each x € N A, we define a 1-cocycle ®, € Z'(G, A) to be
. n_l .
@,: 0t Y a(i,—f)-olx,
j=0

where foralliand j € Z,

%)W v R
o= 5[5
Then this correspondence induces the composite of the isomorphisms

1 Uit
NA/IGA = A7Y(G, A) Y HY(G, A).

Proof. (1) This follows easily from the definition of H~1(G, A).
See [NSWO00], Chapter 1, §2.

(2) This follows from a straightforward calculation. For explicit formulas of the
cup product of inhomogeneous cochains, see [NSW00], Proposition 1.4.8.
’ O

We now consider the case i = 0.
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Proposition 2.2.3. (1) The map
2°(G,A) — A ¢ 9(1)
induces a functorial isomorphism H°(G, A) & AC /NGA.
(2) For x € AC, we define a 2-cocycle @ € Z*(G, A) to be
@y (0, 0) — a(i, j)x.

Then this correspondence induces the composite of the isomorphisms

c @) o U
A" /NgA = H°(G,A) — H*(G, A).
Proof. For a proof, see the same reference cited in Proposition 2.2.2. O
Finally, we note the following:

Proposition 2.2.4. For a exact sequence of G-modules

0—>AL>B£>C—>O

we have the following surjection
A7Y(G,C) — Ker(A(G, A) — H°(G,B)); [¢] — [a ) (2 Tﬂ :
T€G

Moreover, if we identify the left-hand side group as N.C/ I C, and the right-hand side group
as (A N NgB)/NGA, the above homomorphism maps ¢ € nC to f~1(Ng(b)) € AS,
where b € B is an element satisfying the relation g(b) = c.

Proof. This is a part of the “exact hexagon of Tate cohomology”. See [NSW00],
Proposition 1.7.2. |

222 A triviality lemma
In the sequel of this dissertation, we sometimes use the following lemma:

Lemma 2.2.5. Let G be a finite group and E = {e; }ic1 a G-set. Put

A=PZe

iel
and define the G-action on Aby g - (X; aie;) := Y.; ai(g - e;). Then we have

HY(G,A) =0.

-10-
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Proof. If we consider the action of G on E, the set E may split into some G-orbits:
E = [lsea Ea. If we define Ay = @,cp, Ze, then each A, is also a G-module
and we have the decomposition A = @,cp Ar as G-modules. Hence we have
HY(G,A) = @)cp H (G, Ay), so we may assume the action of G on E is transitive.

Put Ag = A ®z Q. We denote the differentials C°(G,A) — C'(G,A) and
C%(G,Ag) — CYG,Aq) by the same symbol d. For any l-cocycle ¢: G — A,
there exists ¢ € Agq such that dip = ¢. Indeed, if we take

1 -
1’P = _%ggccp(a-)’

we can show that this map satisfies the relation dyy = ¢ by using the cocycle condi-
tion on ¢.

At this point, ¥ is an element in Ag. Now we show that we can get a cochain
¢ € A satisfying d¢ = ¢ by shifting i properly. Put ¢ = Y, a;e;, where a; € Q.
Forall ¢ € G and for all i € I, we define o(i) € I as the unique element satisfying
0eq(;) = €;. Since the element

P(0) = (@) (0) = op =P = ) (a5 — ai)e;
i€l
isin A forall o € G, we have a,(;y —a; € Z for all i € I. By the transitivity of the
action of G on E, this means that the class of 4; in Q / Z is independent of i € I.
Let a € Q be a representative of this class. We put

=) (a;—a)e.

i€l
Then ¢ is in A, and noting that Y_;c;¢; € AC, we have ¢ = dip € B(G, A). This
completes the proof of Lemma 2.2.5. O
2.2.3 Aresidual exact sequence

We introduce a tool intensively used in Section 6.1. First, we recall the Hochschild-
Serre spectral sequence:

Lemma 2.2.6. Let G be a profinite group, H a closed normal subgroup of G and A be a
G-module. Then we have the following spectral sequence:

E}Y = HP(G/H, HY(H, A)) = HP(G, A).
Proof. See [NSWO00], Theorem 2.4.1. |
As an application of this spectral sequence, we have the following:

Proposition 2.2.7. Let k be a complete discrete valuation field, x its residue field, p the
characteristic of x, and I C G its inertia. Then for any torsion G,-module C with C{p} =
0, we have the following exact sequence

0 — H(x,C) — H'(k,C) - H'(x,Hom(I,C)) — 0.

Here the second map is induced by the canonical map Gy — Gy, and r is defined as follows:
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For a normalized cocycle ¢ € Z(k, C) satisfying

foralli >2,¢; =g, mod I
= 47(31,32/- . -/gn) = ¢(g1/g/2/' . '/g;fl)/

define r¢p € Z=1(x, Hom(I, C)) as:

(2.1)

forallhel, (r$)(Z1,.--, 8n1)(h) =¢(h, g1,.-., 8n-1),
where g; are lifts of g; to Gy.

Proof. We note that we can take a representative cocycle of any class in H'(k,C)
which is normalized and satisfies the above condition. For details and a proof, see
[SH53] and [GMS03], ITI, Theorem 6.1. O

2.3 FEtale cohomology

We recall some classical results on étale cohomology, which frequently appears in
the following argument.

2.3.1 Results on Limits

Lemma 2.3.1. Let X be a quasi-compact scheme, I a pseudo filtered small category and
(Fi)ieq a direct system of abelian sheaves on X indexed by I. Then

lim HY(X, F;) = HY(X, lim F7)

1 1

forall g > 0. In particular, for a set I and a collection of abelian sheaves (F;)ic; indexed

by I, we have
P HI(X, F;) = HI(X,D Fi)
i i
forall g > 0.
Proof. See [Mil80], III, Remark 3.6. O

Lemma 2.3.2. Let I be a filtered preordered set and (X;)ic1 be a projective system of quasi-
compact schemes whose transitive maps are affine, X = lim_ X;. Let F; be an abelian sheaf
on Xj, for an element iy € 1. For i > iy, F; denotes the inverse images of Fjon X;. F
denotes the inverse image of F;, on X. Then

limy H(X;, 77) = H(X, F)

1

forallg > 0.
Proof. See [AGV72], VII, Corollaire 5.8. O
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2.3.2 Spectral sequences

Lemma 2.3.3 (Leray spectral sequence). Let f: X — Y be a morphism of schemes and
F an abelian sheaf on X. Then we have the following spectral sequence:

E}" = HP(Y,Rf. F) = H'(X, F).
Proof. See [Mil80], ITI, Theorem 1.18. O

Lemma 2.3.4 (Hochschild-Serre spectral sequence). Let X be a variety over a field k,
F be a sheaf on X and L /k a Galois extension of fields. Then we have the following spectral
sequence:

EMf = HP(L/k, H (X1, F)) = HY(X, F).

Proof. See [Mil80], III, Theorem 2.20. O
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3. Brauer groups

Chapter 3

Brauer groups

3.1 Brauer group of fields

We recall some basic facts about the Brauer group of fields.

3.1.1 Definition

Definition 3.1.1 (Central simple algebra). Let k be a (commutative) field. A central
simple algebra A over k is defined to be a k-algebra satisfying the following:

(1) As a k-vector space, A is finitely dimensional.
(2) A issimple, thatis, A has no nontrivial two-sided ideal.
(3) The center C(A) of A is equal to k.

We have the following result due to Wedderburn [Wed08]:

Proposition 3.1.2. Let k be a field. For each central simple algebra A, there exist a unique
(up to k-isomorphisms) skew field D and a unique integer n > 0 such that A = M, (D).

Now we define the notion of Morita equivalence, which is named after a Japanese
mathematician Kiiti Morita [Mor58]:

Definition 3.1.3. Let k be a field, A and B central simple algebras over k. Take skew
fields D and E and integers m and # such that A = M,,(D) and B = M, (E). Then
A and B are (Morita) equivalent if D is k-isomorphic to E as skew fields.

For a given central simple algebra A over k, we denote its equivalent class by
[A]-

Let k be a field. A and B are central simple algebras over k. Then the tensor
product A ®y B is again a central simple algebra over k. Moreover, the equivalent
class of A ®y B is only independent of that of A and B. Therefore we can define an
operation “+” on the set Br(k) of all equivalent classes of central simple algebras
over k.
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Lemma 3.1.4. Let k be a field.
(1) The operation + is commutative;
(2) the equivalent class [k] of k is a unit with respect to +;

(3) for each central simple algebra A over k, the equivalent class of the opposite ring A°P
of A is an inverse element with respect to +.

By the above lemma, the set Br(k) has an abelian group structure.

Definition 3.1.5. Let k be a field. The Brauer group of k is defined to be the abelian
group (Br(k), +).

By the definition of Morita equivalence, the group Br(k) can be seen as the clas-
sification space of finite dimensional central skew fields over k. For a field extension
L/k and a simple central algebra A over k, the correspondence A — A ®; L yields a
group homomorphism res; /;: Br(k) — Br(L). In other words, we obtain a functor:

Br: (Category of fields) — (Ab).

One of the most important observations for Brauer groups is the following coho-
mological interpretation:

Proposition 3.1.6. Let k be a field. We have the following natural isomorphism:
Br(k) = H2(k,k).
Proof. See [NSW00], Theorem 6.3.4. O
In the following of this dissertation, we always identify the Brauer group Br(k)
with H2(k, k).
3.1.2 Symbolic elements

Some elements of Brauer groups are represented by “symbols”. In many contexts,
these symbols are more useful for computation than central simple algebras or Ga-
lois 2-cocycles.

Definition 3.1.7. Letkbe a field. For b € k* and a cyclic character y € Hom(Gk, Q/7Z).

By the following isomorphism (see Subsection 2.2.1)
s
Hom(G,Q/Z) = H' (k,Q/ Z) = H*(k, Z)
and the following cup product
H(k, k") ® H2(k, Z) — H2(k,X),
we obtain the element b U 8(x) € H2(k,k') = Br(k). We denote it by (x,b). An

element of the form is often called a symbol.
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We can define another type of symbolic elements of Brauer groups. We first
recall the definition of Milnor K-groups of a ring.

Definition 3.1.8. Let R be a ring and g be a positive integer. The g-th Milnor K-
group KM(R) of R is defined to be the quotient of

R*®zR*®z---®zR* (g times)
by its subgroup generated by elements of the forms:
1) @@ - ®a®—a®---Qay, 4a,a1,...,40 €RY;
2 au® - -®a®l-a®---®a, al-—aa,...,a4 €R"
We denote the coset of a1 ® - - - @ a, by {a,.. .,aq}.

Note that the definition above yields the skew-symmetricity as follows:

{a,b} = {a,b}+{a,—a}+{b,—b} +{b,a} — {b,a}
= {ab, —ab} — {b,a}

= —{b,a}.
We also recall Kummer theory. For a proof, see [NSW00], Theorem 6.2.1.

Lemma 3.1.9 (Kummer sequence). Let n be a positive integer and k a field with charac-
teristic prime to n. Then the following sequence

1o —k 5k —1
is exact. Here yi := {x €k | x" = 1} and themap n: k' — k maps x to x".
Lemma 3.1.10 (Hilbert’'s Theorem 90). Let L/k be a Galois extension. Then we have
HYL/k,L*) = 0.
As a corollary of these lemmas, we obtain

Corollary 3.1.11 (Kummer theory). Let n be a positive integer and k a field with charac-
teristic prime to n. Then we have

k*/ (k)" = H (k, pn).-
Now we define norm residue symbols.

Definition 3.1.12. Let 1, q be positive integers and k be a field with characteristic
prime to n. Let 2 and b € k*. Using the connecting homomorphism

h=hl:k*=H(kK) — H (k1)
induced by the Kummer sequence and the following cup product

HY(k ) ® - - - ® H (K, 1) — HO(k, u$),
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we obtain
Wk @k — Hi(kud?);
M- @ag— h(a)U---Uh(ag).
We can see that this map factors through the g-th Milnor K-group K} (k). We denote

the element hf({a1, . ..,4,}) by {a1,... 45}, and call it a (norm residue) symbol.

Remark 3.1.13. The homomorphisms k}, induces the following isomorphism:
K3 (k) /m = HI (k, ")

for any field k with characteristic prime to n, what is now known as the Voevodsky-
Rost Theorem.

In the case k contains the group y,, we can obtain elements of Brauer group
from Milnor K-groups.

Definition 3.1.14. Let n be a positive integer. Let k be a field containing a primitive
n-th root {,, of unity. Leta and b € k*. Using the following isomorphism of (trivial)
Galois modules

Mo s G ® T~ O,
we obtain an element in H?(k, #) corresponding to {a,b}, € H?(k, u$?). We also
denote this element by {a,b},. By abuse of notation, its image in H2(k,k") = Br(k)
under the natural inclusion H2(k, ) — H2(k,k) is also denoted by the same
symbol.

Next we see the relation between two symbols defined above. Let k be a field
containing a primitive n-th root of unity. For a € k*, let x;, denote the image of 4
under the following homomorphism:

xnt k= HY(k,K) — H (K, tn)
~H (KZ/nZ) (yn=Z/nZ; [ i)
— H'(k,Q/Z). (Z/nZ—Q/Z;, 1~ 1/n)

Proposition 3.1.15. Let k be a field containing a primitive n-th root {, of unity. Let a and
b € k*. Then we have the following:

{a,b}n = (Xnab).
Proof. See [Ser68], XIV, Proposition 5. O

3.1.3 Residue maps

Let R be a discrete valuation ring, with fractional field k and perfect residue field «.
Then there is a residue map:

resg : Br(k) — H(x,Q / Z).

In the following, we see the definition of this map.
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Definition 3.1.16. Let R, k and x be as above. Assume that R is complete. The map
resg is defined to be:

H2(k,K7) = H2 (k™ /k, k%) 2 H2 (k™ /k,Z) = H*(x,Z) = H'(x,Q / Z).

Here the first isomorphism is a consequence of the following Hochschild-Serre
spectral sequence (see Lemma 2.2.6)

HP (k™ /k, HT (K", k7)) = HP (k")

and a theorem due to Lang ([Lan52] Theorem 12), which states that the maximal
unramified extension of a complete discrete valuation field with perfect residue
field is a C;-field. The second map v is induced by the normalized valuation on k',
the third one is defined by using an isomorphism Gal(k"" /k) = G, and the last one
is the same one as in Subsection 2.2.1.

For general discrete valuation rings, we define resy as follows.

Definition 3.1.17. Let R, kand x be as above. Let R be a completion of R with respect
to its valuation, k be the fractional field of R and & be its residue field. Note that we
have a natural isomorphism x = &. Then we define resg to be:

H2 (kK — HAk K ) =P H(%,Q/ Z) = H'(x,Q/ Z).

A virtue of symbolic representation of elements of Brauer groups is that we can
compute their images under the above residue map explicitly:

Proposition 3.1.18. Let R, k and « be as above. Let v be the normalized valuation on k and
n be a positive integer prime to ch(x). Assume that k contains a primitive n-th root {, of
unity. Using an isomorphism

Z/”lzgl’ln} 1=y,
we identify H' (x, Z /n Z) with H(x, uy) = x*/ (x*)". For a, b € k*, we have:

gv(b)

resr({a,b}a) = (~1)°°) (W) X/,

where 7 € « is the image of r € R.

Proof. We may assume that R is complete. Let 7t be a uniformizer of R. By the
formula

{m, 7} = {—m,n} +{-1,7} = {-1, 7} € KM(k),

and the skew-symmetricity of symbols, that is, {a,b} = —{b,a} foralla,b € k*, it
suffice to prove
resg({a,b}n) = 7Y,

foralla € R* and b € k*.
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We can take
¢: Gf — K (o,7) — (Vp)i-Hem)+ilo)

as a 2-cocycle corresponding to {4, b}, = (Xn.a, b). Here for each o € Gy, we fix an
integer i(c) as follows:

oYa _ i)
Ya

This cocycle is considered as a cocycle in Z2(k™ /k, (k" )*) since i(0) is determined
only by the class modulo Gy because {/a € k™%, and since ¢(o, T) is in k* C (k")*
forallo, T € Gy. ‘

The cocycle in Z2(k" /k, Z) corresponding to ¢ is the following:

n n n

’UO(P: G(kur/k)z = Z (0’,’1’) — (i(T) . i(U'T) + i(U')> ‘U(b).

Hence we can choose a cocycle € H!(x, Z /n Z) corresponding to v o ¢ as follows:
Gy —2Z/nZ;, oc—i(c)-v(b) modnZ.

Considering the following correspondences

2=\ 00)
Z/nZ =y, i(o) o) < (0%{1)

and
ova
¥/ (x)"= H (x,u,); a<o |oc— ,
(x) (%, pn) l ( G ) }
we find that the corresponding element is 7°(%), which completes the proof of this
proposition. O

3.2 Brauer group of schemes

3.21 Azumaya algebras and cohomological Brauer groups

As a generalization of the Brauer group of fields, Azumaya [Azu51] considered the
notion of “central simple algebras over a local ring”, what is now called Azumaya
algebras. His approach was generalized to schemes by Grothendieck [Gro68a],
[Gro68b], [Gro68c]. He constructed Brauer groups of schemes in two ways. One
is the way using Azumaya algebras over a scheme, and the other is the way using
a cohomological method. We recall these definitions and some basic properties.

We first look at the definition of Brauer groups defined by using Azumaya al-
gebras.

Definition 3.2.1. Let X be a scheme. An Ox-algebra A is called an Azumaya alge-
bra A over X if it is locally free Ox-module and A, ®0, k() is a central simple
algebra over x(x) forall x € X.
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For a scheme X and an Ox-module F, we denote by Endp, (F) the following
Ox-algebra defined by
U~ End@u (f |u)

For a scheme X and a positive integer 1, we denote by M,(Ox) the sheaf of all
matrices defined by
U ~ M, (0Ox(U)).

Proposition 3.2.2. Let A be an Ox-algebra which is finite type as an Ox-module. Then
the following are equivalent:

(1) Ais an Azumaya algebra.
(2) Ais a locally free Ox-module and the canonical homomorphism
A®o, AP — Endp,(A); a®b— (c— ach)

is isomorphic, where AP is the opposite sheaf of Ox-algebra A, whose section on
U C X is defined to be
AP(U) := (A(U))°P.

(3) For all x € X, there exist a positive integer n, a open neighborhood U of x and a
finite étale surjective morphism 7t : U’ — U such that w* (A |y) = Mn(Ow) as
Oyr-algebras, where v (A |i1) is the pull-back of A |y as Oy-module.

Proof. See [Gro68a] and [Mil80], IV, Proposition 2.1. O

Definition 3.2.3. Let X be a scheme. Two Azumaya algebras .4 and A’ are equiv-
alent if there exist locally free Ox-modules £ and £’ of finite rank over Oy, such
that

A®o, Endo, (&) = A’ ®oy Endoy (8').

This is in fact an equivalence relation. Likewise in the case of fields, we can
define an operation + on the set Bra,(X) of all equivalent classes of Azumaya al-
gebras on X to be: '

[A] +[A] = [A®o, A].

We also have the following lemma:
Lemma 3.2.4. Let X be a scheme.
(1) The operation + is commutative.
(2) The equivalent class [Ox] of Ox is a unit with respect to +.

(3) For each Azumaya algebra A on X, the equivalent class of the opposite algebra AP
of A is an inverse element with respect to +.

Therefore we get the Brauer group of a scheme:

Definition 3.2.5. Let X be a scheme. The Brauer group of X is defined to be the
abelian group (Bra,(X), +).
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For a morphism f: X — Y of schemes and an Azumaya algebra AonY, f* A
is also an Azumaya algebra on X. Moreover, its class [f* A] is determined only by
the class [A]. These facts imply

Bra,: (Schemes) — (Ab)

is a contravariant functor.
On the other hand, we can also consider the cohomological Brauer group:

Definition 3.2.6. Let X be a scheme. the cohomological Brauer group Br(X) of X is
defined to be:
Br(X) := H?(X,Gp).
Moreover, for a morphism f: X — Y of schemes, we have a natural homomor-
phism
Br(f): H2(Y,Gm) — HX(X, f* Gp) — H*(X,Gp).

This yields the following contravariant functor
Br: (Schemes) — (Ab).

For f: X — Y, we often denote Br(f) simply by f*.
At the end of this subsection, we state a result on relations between Bra,(X)
and Br(X).

Proposition 3.2.7. There exists a natural injective homomorphism 6: Bra,(X) — Br(X).

Proof. See [Mil80], Chapter IV and [Gir71]. O
In the following of this dissertation, Brauer group of a scheme X always means

the cohomological one.

3.2.2 Unramified Brauer groups

In this subsection, we recall a description of the Brauer group of a scheme as an
unramified Brauer group. The main reference of this subsection is [CT95a]. Recall
that for a scheme X, we denote by X () the set of all points in X with codimension
i. We say an integer 7 is invertible on X if # is prime to ch(x(x)) for all x € X.

We prove the following theorem:

Theorem 3.2.8. Let X be a noetherian regular integral scheme, 1 be the generic point of
X. Then for each prime ¢ which is invertible on X, we have the following exact sequence:

0 Br(X){¢} — Br(c(n){6} &2 @ HI(x(x),Q/Z){¢}.
xeXx®

Here, the map 0y is the residue map at x defined below.

We first see the injectivity. This holds without restriction to £-primary part.
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Proposition 3.2.9. Let X and y be as above. we have the canonical inclusion
Br(X) — Br(x(y))-
Proof. We have the following exact sequence:
0 — Gy — ju Gmy — Divxy — 0, (3.1)

where j : 7 = Speck() — X and Divx = Coker(Gy — jx Gmy) is the sheaf of
Cartier divisor on X. By the regularity of X, we have

Divx = P ix. Z,
xeX®

where iy : x = Speck(x) — X. Thus we get the exact sequence

RN @ Hl(X,ix* Z)— HZ(X,Gm) — HZ(X,]'* Gumy) — -+
xeX®

because of the commutativity of direct sums and étale cohomology. Therefore the
claim is a consequence of the following two lemmas:

Lemma 3.2.10. We have
H(X, ju Gmy) — H*(x(1), Gm)-
Proof. We have the following exact sequence
H(X,RYjs Gn) = HX(X, j« Gm) — H?(x(1), Gn)
by the Leray spectral sequence
H?(X, R}, Gy) = H(x(17), Gm).

Hence it suffices to show R'j, G, = 0. For x € X, we have (RYj, Gy )z = H' (Kz, Gm),
where Kx is the fractional field of Ox . This group is trivial by Hilbert’s Theorem
90 and hence we have R! jx» Gm = 0. O

Lemma 3.2.11. H(X,iy, Z) = 0.
Proof. The same argument in Lemma 3.2.10 and the fact H'(k, Z) = 0 for any field
k imply :
R'iy, Z =0.
This and the Leray spectral sequence
HP(X,R%iy, Z) = HP(x(x),Z).

yield
HY(X,ix, Z) = H (x(x),Z) = 0.
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This completes the proof of Proposition 3.2.9. O

Secondly, we consider the exactness at Br(x(#)){£}. We begin with the follow-
ing lemma:

Lemma 3.2.12 (Mayer-Vietoris exact sequence). Let X be a scheme, {U;, Uz} be a
Zariski open covering of X and F be a étale sheaf on X. Put U;p = Uy NUa. Then
we have the following long exact sequence:

— HI(X, F) % (U, F) @ H(W, F) & B9 (U, 7) & HM(X, F) -,
where o maps s to (s|u,, —s|u,) and B9 maps (s, t) to sy, + t|u,, and 69 is defined below.
Proof. We have the following spectral sequence ([Mil80], III, Proposition 2.7.):

E} = HP({U;} /X, HI(F)) = HPH(X, F),

where H?({U;}/X, ) is the p-th Cech cohomology with respect to the covering
{U;} /X and HI(F) is the presheaf on X defined to be:

V ~» HY(V,F).

By explicit computation, we know:

Ker g1 p=0,
E}? = { H9(Uyp, F)/ImpBi p=1,
0 p=>2

Since EP1 = 0 for p > 2, we have the short exact sequence
2 p q
0— Ey7 — B — BT 0,

Put 67: H1(Uyp, F) — E;’q — E*1. The claim follows immediately these results.
O

Now we recall the following purity theorem due to O. Gabber.

Theorem 3.2.13 (Absolute purity theorem, ([Fuj02], Theorem 2.1.1)). Leti: ¥ — X
be a closed immersion of noetherian regular schemes of pure codimension c. Let n be an
integer which is invertible on X. Then

qu'(l’li?]) = {‘u@)f—c Z — 9
n = .

Theorem 3.2.14 (Semi-purity theorem ([Fuj02], Section 8)). Let X be a noetherian reg-
ular scheme and n be an integer which is invertible on X. Then for (not necessarily regular)
closed subscheme Y of pure codimension > c and for all g < 2c,

R4 (1) = 0.
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Lemma 3.2.15. For a discrete valuation ring R with quotient field k and residue field x
and for an integer n coprime to ch x, we have the following exact sequence:

i i\ 0 i
HA(R, 42y — H2(k,u®) B H (x, u2T ™).

Proof. Put X = SpecR and Y = Speck. Then ¢ = 1 and the complement U =
Speck. We have the following spectral sequence ([Mil80], VI, Section 5.):

ET = HP(Y, R (i) = HY (X, ). (3.2)
Applying Theorem 3.2.13 to this spectral sequence, we get
HP(Y, ) & HY (X, ).

On the other hand, we have the localization sequence ([Mil80], III Proposition
1.25.):

— Hy(X, i) = H(X,p) = H(U ') = B (X)) — . (33)
Combining these results, we have the following exact sequence, which is called
“Gysin sequence”:

— H=2(Y, w7 ™) - H (X, 1)) — H(U ) — HH (Y, 47 ™) —
If we put i = 2, then the claim is obtained. O

Proposition 3.2.16. For a noetherian regular integral scheme X and an integer n which is
invertible on X, we have the following exact sequence:

i 1 Oy i
BH2(X, u¥) = B2 (x(n), 15) &% @ H'(x(x), 15 ),
xeX)

where 0y = doy, in Lemma 3.2.15.

Proof. The above sequence is a complex since for each x € X(), we have the factor-
ization

H2 (X, ") = H(Oxo i) — HA (), i) — B (), 1)

and the composite of the middle and right maps is the zero map by Lemma 3.2.15.

Take & € Ker(H2(x (1), #2) = @ ,cxw H (k(x), u5' ). By the commutativity
of étale cohomology and filtered direct limit (Lemma 2.3.2), there exists an open
U C Xand ay € HX(U,u5) such that ay — a. PutY := X\ Uand Y; C Y to
be the union of irreducible components of ¥ with codimension 1 in X. Write Y3
as Y] = Ufil D;, where D; is a prime divisor. Since Y is noetherian, this union is
indeed finite. Let x; be the generic point of D;. Since dy,(#) = 0, there exists a
&y, € H(Oxx, ;I/L,? 7y such that ay, — & by Lemma 3.2.15. Moreover, we can take a
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open neighborhood V; of x; and ay, € H?(V3, e J ) such that ay, — ay,. we would
like to show a7 and ay; can be patched. Since g@xlev(u NV) = Speck(n), we

can assume that ay|uny, = av; |uny; by replacing V; with a smaller neighborhood
of x1. Hence we know there exists ayjuy; which is a extension of ay; and ay, by
Proposition 3.2.12.

Applying the same argument to V3, ..., Vy, we obtain an element

‘xUUVlUmUVN € HZ(U U V1 U---u VN, ;l/l,?])

whose image in H?(x(7), y,?j) is a. Replace UU V1 U --- U Vy with U. Then the
new Y = X \ U has codimension at least 2 in X. Now we make a similar argument
in Lemma 3.2.15. By the semi-purity theorem (Theorem 3.2.14) and the spectral
sequence (3.2), we have .

Hy (X, u¥) =0

for all p < 3. Therefore the localization sequence (3.3) yields the isomorphism
H2 (X, ) & HA(X\ Y, ),
which means that we can get an element ax € H2(X, e J ) such that ax +— «. This
complete the proof of the proposition. O
Proof of Theorem 3.2.8. In Proposition 3.2.16, put n = £™ and j = 1. Then we have:
H2 (X, ) — pBr(x(n)) &3 @ H(x(x),Z /" Z).
xeX®

On the other hand, by the Kummer sequence and Propositionv 3.2.9, the left map
above factors as follows:

H(X, pgn) = uBr(X) — mBr(x(n)).
Combining these sequence, we obtain the exact sequence:
0 — wBr(X) — wBr(x(n) &3 @ H(k(x),Z /0" Z).
xeX®
Taking the direct limit of this sequence with respect to m, we complete the proof of
Theorem 3.2.8. O
3.2.3 A fundamental exact sequence
We first recall the following:

Lemma 3.2.17 (Hilbert’s Theorem 90). Let X be a scheme. Then we have canonical
isomorphisms:
Pic(X) & Hp,,(X, 0%) = H'(X,Gn),

where H_is Zariski cohomology and O% is the Zariski sheaf of multiplicative units on X.
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Proof. See [Mil80], III, Proposition 4.9. O

By this isomorphism, we always identify H*(X, G,) with Pic(X).
Let X be a variety over a field k. By the Hochschild-Serre spectral sequence

HP(k/k,HY(X,Gy)) = H' (X, Gm),

we have the following exact sequence

0 — Bry(X)/Br(k) — H'\(k Pic(X)) = H3(k,K"), (3.4)
where

Br1(X) := Ker(Br(X) — Br(X)),
Br;(X)/ Br(k) := Br1(X) /7" Br(k).

Hence we know that Bry(X)/ Br(k) has an inclusion into H!(k, Pic(X)). It is not
clear whether this inclusion is an isomorphism or not. However, here are the fol-
lowing sufficient conditions:

Lemma 3.2.18. Let X be a variety over a field k. If cd (k) < 2 or X(k) # @, then
Bri(X)/ Br(k) = H!(k,Pic(X)).

Proof. Firstif cd(k) < 2, we have H3(k,k*) = 0 and the claim immediately follows
from the above exact sequence.

Next we assume X (k) # @. We can extend the above sequence to the following
complex

0 — Bry(X)/ Br(k) — H'(k,Pic(X)) — H3(k, k) — H3(X,Gn).
By the assumption X (k) # @, the map
H3(k, k") — H3(X,Gp)

is injective, which implies the surjectivity of Bri(X)/ Br(k) — H!(k, Pic(X)). This
completes the proof of this lemma. O

3.24 Another description of Brauer groups

We use the following result in Chapter 5. Let X be a variety over a field k. We
describe the following Brauer group

Br(Xy/X) := Ker(Br(X) — Br(Xy)),

where L/k is a Galois extension. The claim is:
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Proposition 3.2.19. Let X be a smooth, geometrically integral variety over a field k and
let L be a Galois extension of k. Put G := Gal(L/k). Then we have the following exact
sequernce
0 — Br(Xp/X) — H*(G,L(X)*) — H?*(G,Div(Xy)),
where the third map is naturally induced by
div: L(X)* — Div(Xr); f > div(f).

Proof. Letj: 5 = Speck(X) — X be the generic point of X. By taking cohomology
of the exact sequence (3.1), we have the following commutative diagram with exact
rOWS:

0 Br(X) H?(X,j« Gm) — H?*(X, Divy)
0—— Br(XL) —_> HZ(XL,j* Gm) D HZ(XL, DiVX).
Taking the kernel of each column, we obtain the exact sequence

0 — Br(Xy/X)
— Ker(H?(X, j« Gi) — H*(X1, jx Gm))
— Ker(H?(X,Divy) — H?(Xy,Divx)).

Hence it suffices to prove:

Lemma 3.2.20. we have the following commutative diagram:

H2(G, L(X)*) —— Ker(H2(X, j» Gp) — H2(XL, jx Gm))
H2(G, Div(X})) — Ker(H2(X, Divx) — H2(Xy, Divx)).
Proof. Applying the Hochschild-Serre spectral sequence
EM = HP(G,H(Xy,-)) = EF*1 = HPHM(X, )

to sheaves F1 — F> on X, we have the following commutative diagram with exact
rows:

EYY(F1) — E3°(F1) — Ker(E2 — E3%)(F1) — EY' (F1)
EYY(Fp) — E3%(F2) —=Ker(E? — E3*)(F2) — Ey' (F2).

Put F1 := j,Gp,y and F, := Divy. Noting that H'(L(X),Gn) = 0 by Hilbert’s
Theorem 90, and that H!(Xy, Divx) = 0 by Lemma 3.2.11, we obtain the desired
diagram. O

This completes the proof of Proposition 3.2.19. O
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3.2.5 Specialization of Brauer groups

In Chapter 5, we will see that the Brauer group of surfaces of the form x® + 3% +
cz® + dt? = 0 has a uniform symbolic generator, that is, if we put

d x+
eled) = {E’ xfyy}s’

where ¢ and d are considered as indeterminates and if we want a symbolic generator
of Br(Vp)/ Br(k), where Vp is the surface of the form x® + 43 + ¢oz3 + dot® = 0 with
co and dy € k¥, we can get it by specializing e(c, d) at (c,d) = (co, do)-

To make this notion of uniformity precise, we define specialization as follows.
Let k be a field, Of a polynomial ring over k with r variables, F its fractional field
and fi, ..., fm homogeneous polynomials in Or[xg, ..., ¥s]. Let & be the projective
scheme over O defined as:

X = Proj (Of[xo, ..., %a/ (f1,---, fm)) = Spec Of.

Let 7tp: X := Xr — SpecF be the base change of 77 to SpecF. Assume that X is
smooth over F. Let ¢ € Br(X) be an arbitrary element. If (S;);cs is the projective
system of the non-empty affine open subschemes in A} = Spec O, we have

Hm(X < p;5i) = X,
1
and there exists a non-empty affine open subscheme S and & € Br(X x pr5) satis-
tying that X' x p;S is smooth over S and that

resgpec F (a =¢e

where resgIDeC gt Br(X xarS) — Br(X). This follows from [Gro67] (Proposition
17.7.8) and Lemma 2.3.2. For a given P € S(k), we have the following diagram:

Xp —L> X XpS X

lm, 0 lns o lm

Speck —— > 5 SpecF

We define the specialization of e at P as
sp(e; P) := P*¢ € Br(Xp).

We now see that the above definition is independent of S and . We define a triple
(S,€, P) as the following data:

e S: anon-empty affine open in A} such that X' x A[Sis smooth over S,

e ¢: aliftof ein Br(X XAZS),
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e P: ak-valued point of S.

Given another triple (S',¢, P) with the same point P. Since A} is separated, S :=
SN S’ is also affine and P € S”(k). Therefore it suffices to consider the case S’ C S.
Then we have the following commutative diagram:

B].‘(X XAzsl)

sl
T

Br(X xa;5) Br(X).

S
es'Spec F

Since X x p;S, X x ;5" and X are regular, the restriction maps are all injective by
Proposition 3.2.9 and hence

resy € = ¢ € Br(X xarS'),

which implies the well-definedness of the specialization.

9.



4. Diagonal cubic surfaces

Chapter 4

Diagonal cubic surfaces

4.1 Generalities of cubic surfaces

In this section, let k be an algebraically closed field. We review some facts about
cubic surfaces. We mainly refer to [Har77], Chapter V and [Man86], Chapter IV.
For a smooth projective surface V, we have the intersection product:

Div(V) x Div(V) — Z; (C,D)+— C.D

We call C.D the intersection number of C and D. For details, see [Har77], Section
V.1.

We denote by Ky a canonical divisor of V. We look at basic properties of smooth
cubic surfaces:

Proposition 4.1.1 ([Man86], Theorem 24.1). Let V be a smooth projective cubic surface
over k in P2. Then:

(1) V is rational, that is, birational to P2,

(2) The anticanonical divisor —Ky is ample. Moreover, we have Oy (—Ky) = Oy(1),
under a natural embedding V — 5.

Definition 4.1.2. (1) A del Pezzo surface V over k is a smooth projective surface
with ample anticanonical divisor.

(2) the degree d of a del Pezzo surface V is the self-intersection number Ky.Ky

Remark 4.1.3. (1) In particular, smooth cubic surfaces are del Pezzo surfaces of
degree 3.

(2) In general, varieties with ample anticanonical divisor are called Fano varieties.

The fundamental result in this section is the following:

Theorem 4.1.4 ([Man86], Theorem 24.4). Let V be a del Pezzo surface of degree 3. Then
V is isomorphic to a blow-up of P? at six points P, . .., Ps such that:
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(1) There is no line in P? passing through three of P, ..., Ps;
(2) There is no conic in P2 passing throughall Py, . .., Pe.

Conwversely, any surface obtained by blowing-up such six points are a del Pezzo surface of
degree 3.

We fix our notation. Let V be a smooth cubic surface. Let P, . .., Ps be six points
in P? such that the blow-up of P? at these points is isomorphic to V, and 7: V —
P2 be the blow-down. Let Ej,...,Es be the exceptional curves corresponding to
Py, ..., P respectively. We denote by [E;] the class of E; in Pic(V),i=1,...,6.

As consequences of Theorem 4.1.4, we have the following:

Proposition 4.1.5 ([Har77], Chapter V, Proposition 4.8). Let V be the cubic surface as
above and | the class of the inverse image of a line in P2. Then:

(1) Pic(V) = Z7, generated by [E1],. . ., [Ee), 1.
(2) The intersection matrix with respect to bases in (1) is
diag(-1,-1,-1,-1,-1,-1,1),
‘where diag(ay, . ..,an) denotes the diagonal matrix with entries ay, ..., ay.
(8) The hyperplane section is 3] — i[Ei].
i=1
Proposition 4.1.6 ([Har77], Chapter V, Theorem 4.9). Let V be the cubic surface as
above. There are exactly 27 lines on V. They are:
(i) The exceptional curves E; (six of these);
(ii) The strict transform Fy of the line in P2 passing through P; and P; (fifteen of these);
(iil) The strict transform G; of the conic in P? passing through five P;, j # i (six of these).

Proposition 4.1.7 ([Har77], Chapter V, Proposition 4.10.). Let V be the cubic surfaces
as above. Let E1, ..., E{ be any subset of six mutually skew lines in 27 lines on V. Then
there exists a morphism 7' V' — P? such that

e V is isomorphic to the blow-up of P? with six point P|, .. ., P, (no 3 colinear and not
all 6 on a conic),

e Ei,..., Ef are the exceptional curves for ',

In the sequel of this Chapter, we are concerned with diagonal cubic surfaces,
in particular, their Picard groups and their Galois structures. We fix our notation.
Let k be a field satisfying (x) (for definition, see Section 2.1). Let V be the smooth
projective surface over k defined by a homogeneous equation

ax® + by +cz® +dP =0,
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where 4, b, ¢ and d are in k*. Let 71: V — Speck denote the structure morphism.
Now we put

b c ad
| A= E ; H= E and v = E P
and then we can write as the equation of V

B+ Ay + B + Auvt® = 0.

4.2 Group structure of Brauer groups

We first prove the following:

Proposition 4.2.1. We have Br(V) = 0.

By the geometrical rationality of V and the birational invariance of the Brauer
group of proper schemes of dimension two ([Gro68c], Corollaire 7.5), it suffices to

show Br(IP2) = 0. The triviality of the Brauer group of projective spaces is a well

known result, but we cannot find its published proof as far as we know. So we
include a proof of this fact. The proof given here is taught by T. Yamazaki [Yam12].
We now prove the Al-invariance of Brauer groups:

Proposition 4.2.2. Let X be a regular integral variety over a field K with ch(K) = 0.
Then we have
7*: Br(X) = Br(X x Al),

where 7t: X x A' — X is the first projection.

Proof. We first consider the case X = SpecK.

Lemma 4.2.3. Let t: A} — SpecK be the structure morphism. Then we have:

Gm q=0,

Rim, Gy =
" {0 g=1,2.

Proof. For a finite separable extension L/K, we have a functorial isomorphism

7« Gm(SpecL) = G (AL) = L* = Gy (SpecL),

which proves the case g = 0.
For g > 1, we have
(R7, G )x = HI(AL, Gp).

The case g = 1 follows from the fact Pic(Ali) = 0. Moreover the case g = 2 follows
from Proposition 3.2.9 and the fact that the Brauer group of a C;-field is trivial. [
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The claim Br(K) 2 Br(A}) follows from this lemma and the Hochschild-Serre
spectral sequence

E = HP(K, R, Gp) = HPYI(AL, Gp).
We next deal with general cases. Put
C(X) := Coker(r: Br(X) — Br(X x Al)).

By the existence of the zero-section spx: X — X x A of 7r, We have the direct
decomposition with respect to sg x:

Br(X x Al) = Br(X) @ C(X).

This decomposition is compatible with a natural inclusion Speck(X) x A! — X x
A and therefore we have an injection C(X) — C(k(X)). On the other hand, we
have already proved C(k(X)) = 0. Hence C(X) = 0 and we obtain the desired
isomorphism

Br(X) = Br(X x Al).

d

Proof of Proposition 4.2.1. Applying the result of Proposition 4.2.2 to A% — A% —
Speck, we have Br(A—%) =~ Br(k) = 0. Moreover, by Proposition 3.2.9, we have
Br(]P%) — Br (A%) These implies the statement of Proposition 4.2.1. O

Hence we rewrite the exact sequence in Section 3.2.3 as follows:

0 — Br(V)/ Br(k) — H'(k,Pic(V)) & H3(k,X") (exact). 4.1)

This sequence plays a fundamental role in the sequel of this dissertation.
The structure of the group H* (k, Pic(V)) is well-known:

Proposition 4.2.4 (([CTKS87], Proposition 1.).

0 ifoneof v,v/A,v/uis a cube in k¥,

(Z /3 Z)2 if exactly three of A, y, A/ u, Apv, Av, yv
are cubes in k*,

Z/3Z otherwise.

H'(k,Pic(V)) =

We do not deal with a complete proof of this proposition, but some tools used
in this proof are introduced in the sequel of this chapter.

At the end of the section, We define some extensions of k which are often used.
Leta, &’ and -y be solutions in k of equations X* —A = 0,X* —y = 0and X3 —v =0
respectively. Put § = ay and B/ = a’y. We define a field k' and k" as k(«, v) and
K'(a).
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4.3 Twenty seven lines and Picard groups

There are twenty seven lines on the surface Vjr:
LG): x+ oy =z+Bt =0,
(D) x+fay =2+ Bt =0,
(i): x4+ Jay =z + 72t =0,
(i): x+0a'z=y+ 1Bt =0,
M) x+{az=y+ 2Bt =0, (4.2)
(i): x+dz=y+pt=0,
(i): x+Jaft =y + 0oz =0,
(i): x4+ ap't = y+ Ca"la'z =0,
N"(i): x+ {af't =y + a2 = 0,
where i is either 0, 1 or 2. Since six lines L(0), L(1), L(2), M(0), M(1) and M(2) are
mutually skew, we can get a k-morphism 71: V — P2 by blowing down these six

lines by Proposition 4.1.7. We define I € Pic(V) as the inverse image of a line in P2,
which generates Pic(P2) 2 Z. Then we can obtain generators of Pic(V) & Z7:

(L), L] [L@)] MO [MQ1)], [M(2)], and], (4.3)

where [D] denotes the class of D € Div(V) in Pic(V). Let H be the hyperplane
section of V defined by the equation x = 0,

[L] = [L(O)] + [L(1)] + [L(2)], and [M] = [M(0)] + [M(1)] + [M(2)].
Note that we have the following relation by Proposition 4.1.5:
[H] =31 —[L] - [M]. (4.4)
We prepare the following lemma:

Lemma 4.3.1. Let X be a variety over K and L/K be any Galois extension. Assume
X(K) # @. Then we have
Pic(Xx) = Pic(Xp)M/X.

Proof. By the Hochschild-Serre spectral sequence
HP(L/K,HY(X1,Gn)) = H(Xk, Gn),
we get the following exact sequence
0 — HY(L/K,L*) — Pic(Xg) — Pic(Xy)LX — Br(K) — Br(X).

Now we have H'(L/K,L*) = 0 by Hilbert’s Theorem 90, and the map Br(K) —
Br(X) is injective by the assumption X(K) # @. The desired isomorphism is an
easy consequence of these facts. O
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Applying this lemma to Vi» and k/k”, we have
Pic(Vir) =2 Pic(V)Cv,

The class [L(i)] and [M(i)] (i = 0,1,2) are Gy-invariant. Moreover this fact, the
torsion-freeness of Pic(V) and the relation (4.4) yield that [ is also Gyr-invariant.
Therefore we have Pic(Vir) = Z7. As its generators, we take the classes corre-

sponding to [L(i)], [M(7)] and I € Pic(V). By abuse of notation, we use the same
symbols as in the case of Pic(V).

4.4 Galois cohomology of Picard groups

Here, we analyse the group H!(k, Pic(V)).

4.4.1 Reduction to finite extension

First, we represent this group as a cohomology of finite groups. We have the
inflation-restriction exact sequence:

0 — HY(K /k, Pic(V)¥/¥) = H(k, Pic(V)) — H(K', Pic(V))F /%,
Here we have the following

Proposition 4.4.1.
HY(K /k, (Pic(Vi))) = HY(k, Pic(V)).

Proof. To show the statement, it suffices to prove the following two claims:

(1) HY(¥,Pic(V)) =0

(2) Pic(Vi) & Pic(V)M/¥

First we show the claim (1). We have another inflation-restriction exact sequence

0 — H'(K' /K, Pic(V)F/¥) — H'(K, Pic(V)) — H' (K", Pic(V))F'/¥.
As we have seen in Section 4.3, Pic(V) is a trivial Gy»-module. Hence we have
HY(K",Pic(V)) = Hom(Gyr, Z7) = 0.

Moreover, since the action of Gal(k” /k’) on Pic(Vir) & Z’7 maps to one basis to
another,
HY (K" /K, Pic(Vi)) = 0

follows from Lemma 2.2.5. This completes the proof of (1).

Next we prove the claim (2). Since Vi has a k’-rational point, for example, (x :
y:z:t) = (—a:1:—ay:1),this claim is a consequence of Lemma 4.3.1.

This completes the proof of Proposition 4.4.1. O
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4.4.2 Representations of H! by using divisors

In this subsection, we describe the group H! (k' /k(«), Pic(Vy)) by using divisors on
V. In Chapter 5, we consider cubic surfaces over k defined by x° +y® + cz® + dt® =
0. If one of cd and d/c is in (k*)3, we have H!(k, Pic(V)) = 0 and Br(V)/ Br(k) = 0
by Theorem 4.2.4. Therefore we need not consider this case. If neither cd nor d/c is
in (k*)? and c is in (k*)3, such surfaces are isomorphic to surfaces defined by x* +
y® + 23 + d#* = 0 and Manin has already found the structure and the generators of
their Brauer groups. Hence we may assume ¢, d, cd and d/c ¢ (k*)3. '
In Chapter 6, we consider surfaces x% +by® + ¢z +dt® = O over k(b, ¢, d), where
b, ¢ and d are indeterminates. Hence k(«, y, ') /k is an extension of degree 27.
Therefore in this subsection, we always assume one of the following conditions:

(1) A =1, and neither u, v, pv nor v/u is cubic in k*;

(2) k(a,,a') is a field extension of k with degree 27.

Under the assumption (1), we have k(&) = k and hence
HY(K /k(&), Pic(Vy)) = HY(K' /k, Pic(Vy)),

which is isomorphic to H!(k, Pic(V)) by Proposition 4.4.1. Under the assumption
(2), these two groups H' (k' /k(a),Pic(Vy)) and H*(K'/k,Pic(Vy)) are apparently
different, but we will later see in Section 6.1 that these are isomorphic to each other.
Let s be the generator of G = Gal(k’ /k(a)) such that sy = {7y and w the gener-
ator of Gal(k” /k') such that wa’ = {a’. Note that G and Gal(k” /k’) are isomorphic
to Z /3 Z under one of the above assumptions and such elements s and w do exist.
By Lemma 4.3.1, we have Pic(Vy) & Pic(Vjr)¥'/¥; moreover using the explicit
defining equations of divisors (4.2) and the equation (4 4) in Section 4.3, we see that

Pic(Vp) =Z1e Z[L(0)]® Z[L(1)] @ Z[L(2)] & Z|M].
Let D be the following free abelian group of rank 10:
2
D=ZHoPZL(i @EBZL’ EBEBZL”
i=0

We see that D is a G-submodule of Div(Vy) by using (4.2). Let Dy be the G-
submodule generated by the following five divisors:

=div(f1) = (L(0) + L'(0) + L"(0)) — H,
Dz div(f) = (L(1)+ L'(1)+ L"(1)) - H,
=div(fs) = (L(0)+L'(2) + L"(1)) - H, 4.5)
=div(fs) = (L(1) + L'(0) + L"(2)) — H,
D5 div(fs) = (L(2) + L'(1) + L"(0)) — H,
where
fi= x—l;zxy, fr= %@y/ fo= ztﬁt, fu= z—|—§[3t f= z+g25t.
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Lemma 4.4.2. Let D and Dy be as above. Then we have the following exact sequence of
G-modules: ‘
0 — Dy — D — Pic(Wy) — 0.

Proof. For the exactness at Pic(Vy ), it suffices to show that we can write the classes
I and [M] as linear combinations of [H], [L()], [L'(i)] and [L"(i)]. By Proposition
4.1.5, the intersection matrix with respect to the basis in (4.3) is:

diag(-1,-1,-1,-1,-1,-1,1).
By using this matrix, (4.2) and (4.4), we can write [L'(0)] and [L”(0)] as follows:
[L'(0)] =21 = [L(0)] = [L()] = [M], [L"(0)] =1—[L(O)] - [L(2)],

which implies the sutjectivity of D — Pic( V).

By definition, the exactness at Dy is trivial.

Finally we consider the exactness at D. By the definition of Picard group, this is
a complex. Moreover, comparing the rank of Dy with that of Ker(D — Pic(Vy)), we
know that the sequence is exact at D. This completes the proof of this lemma. O

By this lemma, we have the following long exact sequence:
HY(G, D) — HYG,Pic(Vy)) — H*(G, Do) — H*(G, D).
Applying Lemma 2.2.5 to the G-module D, we have H!(G, D) = 0 and hence
HY(G, Pic(Vy)) = HY(G, D / Dy)
= Ker(H?*(G, Dy) — H*(G, D))

~ DoNNg D
~  NgDg

where the last isomorphism is a consequence of Proposition 2.2.3. Now we com-
pute the last group.

Lemma 4.4.3. (1)

NgD =Z-3H® ZNgL(0) ® Z NgL(1) & Z NgL(2).

(2
Do NNg D =Z Ng(L(1) — L(0)) ® Z Ng(L(1) — L(2))
® Z -3(NgL(1) — H).
) DoNNzD
0 G ~
NoD, | Z/3%

and we can take the image of Ng(L(1) — L(0)) as a generator of this group.
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Proof. The action of s on a divisor D € Pic(Vj ) is the following:
D|\H|L@G | L'(d) |L"(i) | D1 | Do | D3 | Da | Ds
sD H L/(i) L”(i) L(Z) D1 Dz D4 D5 D3

(1) This follows immediately from the above table.
(2) Since

Ng(L(1) = L(0)) = D2 — Dy,
NG(L(l) - L(Z)) =Dy +2Dy — D3 — Dy — Ds,
3(Ng(L(1)) — H) = 3Dy = Ng(D2),
we know that the right-hand side include in the left-hand side. We also see these

three elements are Z-basis of the right-hand side.
We assume that

D= a;D; € NgD.

5
i=1
Since D is expanded as follows:

D=- (iéai) H

+ ((Z] + ﬂg)L(O) + (a1 + 114)L,(0) + ({11 -+ ﬂs)L”(O)
+ (a2 +a4)L(1) + (a2 + a5)L'(1) + (a2 + a3)L"(1)
+asL(2) +asL’'(2) + asL”(2),
we have 5
Y a;=3NforsomeN € Z, a3=a4=14as
i=1
by (1). Then we can rewrite D as the following form:
D =a1D1+ (3(N —a3) —a1)Dy + a3(D3 + Dy + Ds)
= — (a1 +a3)Ng(L(1) — L(0))
—a3Ng(L(1) = L(2)) + N-3(NgL(1) — H),
which says the left-hand side also include the right-hand side.
(3) The following equations
NgD; = —3(Ng(L(1) — L(0))) + 3(NgL(1) — H),
NgD, = 3(NgL(1) — H),
NgDs; = NgDy = NgDs
= —(N6(L(1) — L(0))) — (Ne(L(1) — L(2))) + 3(NcL(1) — H),
yield

DoNNgD ‘ ~
“NoD, =Z/3Z-No(L(1) ~ L(0))-
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Next we compute the 1-cocycle in Z!(G, Pic(Vjr)) cotresponding to
Ng(L(1) — L(0)) by using the the following commutative diagram:

0 0 0
~ . ~ D /Dy
HY(G,D /Do) <~—H"YG,D/D No
( / 0) ( / 0) Ic (D / DO)
o N o DS 5> DgNNgD
H2(G,D HY(G,D 0
H?(G, D) <———— %G, D) ~——— DS /N D,
where vertical lines are exact. By Proposition 2.2.4, the element in M cor-
| prN D - 6(D /Do)
responding to Ng(L(1) — L(0)) € (;\?—DG is [L(1) — L(0)]. By Proposition2.2.2,
G ~0

the element of H'(G,Pic(Vy))) & H'(G, D / Do) corresponding to the above ele-
ment is the cocycle @ 1)_p (o) explicitly written as:

@ 1y-1(y) (1) =0,

@1 (1)-10y](s) = s[L(1) — L(0)]

= [L'(1)] - [L'(0)]

= [div(f5/f1)] — [L(2)] + [L(0)]
= [L(0)] — [L(2)],

@y1)-r(0)) (5%) = s[L(1) = L(0)] +*[L(1) — L(0)]
[L(0)] = [L(2)] + [L"(1)] - [L"(0)]
= [L(0)] — [L(2)] + [div(f2/ f5)] = [L(1)] + [L(2)]
= [L(0)] = [L(V)]

Therefore we get the following

Proposition 4.4.4. we have an isomorphism
HY(K /k(w),Pic(V)) = Z /3Z,
and as a generator of the left hand side, we can take the class of the following cocycle:

1—0, s—[LO)]-[LE@)] s~ [LO)]-[LD)]
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4.5 An explicit description of 4!

In Section 6.1, we shall show the nontriviality of images of elements in H* (k, Pic(V))
under the differential

' H'(k,Pic(V)) — H*(k, k")

appearing in (4.1). In Subsection 4.4.1, we see that H(k, Pic(V)) is described by a
cohomology of a finite group, and we have the following commutative diagram:

1,1

dy
H(K' /k, Pic(Vi)) — H3(K' /k, k'*)

4t

H(k, Pic(V)) —— H3(k, k"),

which enables us to reduce the computation of d%’l to that of the composite of d,lcjl
and the inflation i%’. We note that i%’ is not necessarily injective.

We now give one way of computing dy' explicitly. Let D C Div(Vi) be a
Gal(k' /k)-submodule which generates Pic(Vy ), and Dy the kernel of D — Pic(Vy).
Then we have the following two exact sequence of Gal(k’/k)-modules:

0— Do —D — PiC(VkI) — O,
0 — k™ — div™}(Dg) — Dy — 0.

Using these sequences, we obtain the following diagram:

HI(K' /k, Pic(Vi)) =— H2(K' /k, Dy)

6
d}l{;\ l

H3 (k//k, k/*),

where d and J are connecting homomorphisms induced by the above exact se-
quences. For this diagram, we have:

Proposition 4.5.1. The composite § o d is equal to d,l;l.

Proof. See [KT08], Proposition 6.1, (i). O
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Chapter 5

The case x> + 3 + cz° +dt3 = 0

5.1 A representability result

Let k be a field satisfying (). Let V be the cubic surface over k defined by a homo-
geneous equation x° 4 y® + ¢z + dt® = 0, where c and d € k*. Moreover, we may
assume the condition (1) in Subsection 4.4.2, that is, ¢, d, ¢cd and d/¢ are not in (k*)3.
Note that in this case A = a®> = 1, v = v® = d/c and hence k' = k(a,7) = k() isa
field extension of k with degree 3.

Our result in this section is:

Theorem 5.1.1. Let k be a field satisfying (x) and V the cubic surface over k defined by an
equation x> + y* + cz® + dt® = 0, where c and d € k*. Assume that c, d, cd and d/c are
not contained in (k*)3. Then we have the following:

(1) The group Br(V)/ Br(k) is isomorphic to Z. /3 Z;

(2) the element

d
e = {2,3;%}3 € Br(k(V))

is contained in Br(V);
(3) the image of e; in Br(V) / Br(k) is a generator of this group.

Proof. Let G = Gal(k'/k) and s € G a generator such that sy = {y. We start from
the exact sequence (4.1):

0 — Br(V)/ Br(k) — H(k,Pic(V)) — H3(k, k).
By Proposition 4.4.1 and Proposition 4.4.4, we have
HY(k,Pic(V)) = H*(G,Pic(Vy)) =X Z /3Z
and a generating cocycle ¢ of H'(G, Pic(Vir)) can be taken as:

¢(1) =0, ¢(s) =[L(0)] - [L2)]. ¢(s*) = [L(0)] - [L(D)].



5.1 A representability result - 5. The case x* +y° +cz® +d* =0

First we consider (1). This surface has a k-rational point P = (1: —=1:0: 0).
Therefore the claim of (1) follows from Lemma 3.2.18.
Next we consider (2). Let ¢ be as above. Computing the cocycle 0'¢, where

o': HY(G,Pic(Vy)) — H?(G, K (V)*/K'*)
is induced by the exact sequence of G-modules:
0 — K(V)*/k* — Div(Vy) — Pic(Vyy) — 0,
we can show

a(i,f)
d'p(s', ) = (%) ] e K(V)* /K",

a(i,f) = [%] B H B [ﬂ

is the map appearing in Proposition 2.2.2.
On the other hand, the symbol {v, f2/ f1}3 € Br(k(V)) is equal to

(X3 f2/ f1) € HA(K(V),K(V)"),

where x3, € Hom(Gyyy,Q / Z) is the cyclic character of order 3 associated to v
(see Subsection 3.1.2) and (-, -) is the symbol introduced in Definition 3.1.7. More-
over, by the following commutative diagram

where

H2(k(V),Z) ® H(k(V),k(V)") - H2(k(V),k(V)")
H2(K' (V) /k(V), Z) ® HO(K' (V) /k(V), K (V)*) = Hz(k’(V)/lj(V),k’(V)*)
H2(G,Z) ® H(G, K (V)*) S H2(G,¥ (V)*),

(X34, f2/ f1) can be considered as an element in H?(G,k'(V)*), and we see that the
corresponding cocycle is of the form

Finally, we have the following commutative diagram with all rows and columns
exact:

Br (k' /k) =———=Br(k' /k)

| |

0 ——>Br(V/V) H2(G, K (V)*) —2> H2(G, Div(Vi))

| |

0 — H(G, Pic(Vi)) — %> H2(G, K (V)*/k"*) 22> H2(G, Div(Vy)),
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where the middle column is induced by the exact sequence
0 - k/* —_ k/(V)* — kl(V)*/k/* — O,

the middle row is the result of Proposition 3.2.19, the bottom row is induced by the
exact sequence

0 — K(V)*/k* — Div(Vy) — Pic(Vy) — 0,
and the triviality of its leftmost term follows from Lemma 2.2.5. Then the map
Br(V{/V) — H(G,Pic(W))
is naturally induced by
H2(G,K'(V)*) — H2(G, K (V)*/K™*).
The fact that 9'¢ and {v, f2/ f1}, coincide in H?(G, k' (V)* /k'*) yields
div({v, fi/ fa}3) =divod'p = 0.
This means

{v, fa/ fi}s = {g,%:_iyy}a € Br(Vi/V) C Br(V),

which completes the proof of (2).
Finally we consider (3). By the above argument, [¢] and {v, f/ f1}, coincide in
H'(G, Pic(W)). Hence we can take

{é x+ Ty }
¢ x+y S,
as a generator of the group Br(V)/Br(k). This completes the proof of Theorem

5.1.1. |

Remark 5.1.2. By using the explicit description of d'! appearing in Section 4.5, we
can also prove (1) by computing the image of ¢ in H3(k, k") explicitly. Let D and Dy
be as in Subsection 4.4.2. By using the diagram in Proposition 4.5.1, we compute
the cocycle 89¢ in Z3(k' /k, k'*). If we take

0, L(i)eD

as lifts of classes 0, [L(i)], we have the following representation of d¢:

9¢(1,1) =0, 9¢(1,5) =0, ap(1,5%) =0,
. Zz+ oyt . +
op(s,1) =0, 9¢(s,s) = d1v%, op(s, %) = d1vzj_€2‘1{yt,
2 1y — 2\ _ g, XY 2 2y _ 4 2T 0Pt
9¢(s5,1) =0, 9¢(s%,s) = d1vz+€7t,8¢(s ,87) = div PR
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Again, if we take
z4 {vt
x+ 6%y

as lifts of divisors 0, div(z + {vt)/ (x + {%y) and so forth, we have:

4

e div™}(Dy)
69p(1,52,5%) =1, 60¢(s1,1,5%) =1, Sop(sh,s2,1) =1,
s%) = o

,5,8) = —p 1, 59¢(s%,5,5°)
60¢(s?,%,5) = —p, S0P(s?,s* ,s2) 1,

( (

(s/s, (s/s
59¢(s,s2,5) = 1, 584)(5 s2,8%) =

( (s?

( (

where indices 73, i, and i3 take on any values in {0,1,2}. Now if we define the
2-cochain 1 in C2(K' /k, k'*) as follows:

1 otherwise.

We can show that d = 59¢, which means that [§0¢] is zero in H>(K'/k,k'*), es-

pecially in H3(k, k). Therefore we have Br(V)/ Br(k) = Z /3 Z and complete the
proof of (1). A similar calculation appears in the next section.

By using the specialization of Brauer groups, we can formulate Theorem 5.1.1
as follows:

Corollary 5.1.3. Let k be a field satisfying (%), Of = k{c, d], F its fractional field and

V = Proj(F[x,y,z,t]/ (x* + y° + cz® + dt®)).

_[dx+ly

Then

is a uniform generator, that is, for all P = (co,do) € k* x k* such that co, dy, codp and
do/co & (k*)3, the specialization sp(ey; P) is a generator of Br(Vp)/ Br(k).

Proof. We confirm that sp(e;; P) is in fact the desired symbol, that is,
{ do x+ 0y }
CO ! X + y 3 )

S = G X Gy = Speck[cE,d*],
V = Proj Orlx,y,2,t]/ (* + ¥° + ¢z + dF).

We define S ¢ AZ and V to be:

where the symbol c* is the abbreviation of ¢ and ¢~1. Put V xS 1= V x azS.
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Lemma 5.1.4. V xS is smooth over S.

Proof. Tt suffices to show the flatness of V — AZ and the smoothness of the geomet-
ric fiber of each point P € S. First, we consider the flatness. V; is the affine open
subscheme of V defined by t # 0. Its global section is:

Or[x,y,2)/ (x* + y* + cz° + d).
This is a free Or-module. In fact, we have

Orlx,y,2]/ (® +y* +cz* + d)
= Ofly, 2][x]/ (* + (y° + c2° + d))
= Ofly, 2] ® Okly, 2]x ® Okly, 2]2*.

This is a free Of[y, z]-module, in particular, a free Or-module. Hence V; is flat over
A2. Since we can prove the flatness of other affine open subschemes defined by
x # 0,y # 0and z # 0 over A% in a similar way, we complete the proof of the
flatness.

Moreover, noting that ¢ and d is units in k[c*, d*] and using the Jacobian crite-
rion for regularity, we can easily prove the smoothness of V7 — Spec x(P) for
each P € 5. O

Lemma 5.1.5. the element ey can lift to €1 € Br(V xS).

Proof. We have the following exact sequence (see Theorem 3.2.8):
0 — Br(V xS) — Br(F(V)) &% P H (x(x),Q/ Z),

where the sum is taken over all points x of codimension one in V xS, and x(x) is
the residue field of x.

By [CTSD94], Section 1.1, the kernel of this residue map dy is equal to that of
the residue map rese, , defined in Subsection 3.1.3. Therefore we can compute the

image of
{d x+§y}
e1=N"r- .
¢’ x+y [,

in each H!(x(x),Q / Z) explicitly by using Proposition 3.1.18.
In order to prove the lemma, it suffices to consider the following two equation:

x+y=0, x+fy=0

since the divisors {c = 0} and {d = 0} in A} are already removed by the definition
of S. Fori = 0, 1, the closed subscheme in V xS defined by x + {'yis

C; := Proj k[ci, di] [x,y,2t/(x+ giy, cz® + dt3).
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C; is integral and we denote its generic point by #;. We now prove the residue of ¢;
at #; is zero. We have

k() = Frac(klc®, ¢*][x,y,2)/ (x + 'y, o2 + d)).
The local ring
OV,T],‘ = (k[ci/di] [x/ Y, Z] / (x3 + y3 + CZ3 -+ d))(x+§fy,cz3+d)

is a discrete valuation ring with uniformizer x + ¢'y. By Proposition 3.1.18, we

have:
d —€;
. x+y
-(3)
= (—z)~%i
=1¢€ x(n:)*/ (x(n:)*)°,
where

-1 i=0,
& = .
1 1i=1.

Hence the residue of e; along C; is zero. This completes the proof of the lemma. [

Hence we can use the above S and €; to construct the specializations of e;.
Now we define the subscheme U of V x§ as follows:

U=VxS\ (Dy(x+y)UDy(x+y)),

where D, (f) is the non-vanishing locus of a homogeneous polynomial f. Explic-
itly, if we put

k[ci,di][x, y__z_ t,x—i-y]

Xty x+y x+y x+y x+3y
x3+ 3 +cz® +de ’
(=)

R :=

then U = Spec R. We have

d x+3y *
ot P EF(U,Ou)

{élﬂ} EBr(u)’
C x+y);

and hence
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where

{,-}a: T(U,Ou)" ®T'(U,Oy)*
— HY(U, u3) ® H'(U, pa)
= HA(U, 4§°)
> H(U, p3)
— Br(U)
is a norm residue symbol defined similarly as in the field case. Take any P =

(co,do) € k* x k* and put Rp := R/(c — ¢, d — dy). We have the canonical mor-
phism P: Up := Spec Rp — U and the following commutative diagram:

Ry @Ry <R @R
l{'l'}3 l{'/'}?’
Br(Up) < Br(U Br(F(V))

VT resup J res¥(V)

Br(Vp) <—Br (V xS) ——Br(V).
Therefore we get

resu (sp(ey; P)) = resu (P*(e1))
= P*(res);*(61))

-~ ({¢555))
¢’ x+y J,
_{@ Hé’}/}
a C()’ x—l—y 3

and complete the proof of Corollary 5.1.3. O
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Chapter 6

The case x> + by’ + ¢z +dt> =0

6.1 A non-representability result

Before stating the main result of this dissertation, we introduce a condition on a
field k, called C(k). Let k be a field, O = k[A, i, v] and

V = Proj(Of[x,y,z,t]/ (6 + Ay + uz® + Apvt®).

Put (G )? := Gy X Gy X Gy Fora given P € (G )®(k), Vp = V X o, Speck is the
fiber of V / O at P. For all P € (Gy,x)(k), Vp is smooth over k. We define the set
P to be

{P € (Gpy)*(k) | Br(Vp)/Br(k) X Z /3Z.}.
The condition C(k) is defined to be the Zariski density of Py in (Gpx)3. To prove
the theorem below, we need to assume that C(k) holds for k. However, we will
show that the following conditions are equivalent:

Proposition 6.1.1 (Proposition 6.2.1). Let k be a field satisfying (x). Then the following
conditions are equivalent:

(1) C(K), that is, Py is Zariski dense in (G )%
(2) Py is non-empty;
(3) dimg, k*/(k*)° > 2.

We easily see that the condition (3) holds for various fields, for example, all
finitely generated fields over Q() and Q,({) for any prime number p, and hence
this condition C(k) is mild and reasonable. We prove Proposition 6.1.1 in Section
6.2.

The main result of this chapter is:

Theorem 6.1.2. Let k be a field satisfying (x) and C(k), F = k(A,u,v) and V be the
projective surface over F defined by the homogeneous equation x® + Ay® + uz3 + Auvt® =
0. Then there is no element e € Br(V) satisfying the following property:
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there exists a dense open subset W C (G, x)° such that sp(e; -) is defined on
W (k) NPy and forall P € W(k) NPy, sp(e; P) is a generator of Br(Vp) / Br(k).

This theorem is a consequence of the following theorem:

Theorem 6.1.3. Let k be a field satisfying (*), F and V be as in Theorem 6.1.2. Then
Br(V)/Br(F) = 0.

Remark 6.1.4. Let V be a smooth cubic surface over k of the form x3 + by + cz® +
dt® = 0. Assume H!(k,Pic(V)) = Z /3Z and V (k) = @. We note some known
results of the structure and the representability of Br(V')/ Br(k).

1. By a theorem of Merkurjev-Suslin [MS82], we always write a generator of
Br(V)/ Br(k) as a sum of norm residue symbols.

2. If ed(k) < 2, Br(V)/Br(k) is isomorphic to Z /3Z by Lemma 3.2.18. Its
symbolic generator is not “uniform” by Theorem 6.1.2 and we do not know
this can be written by one symbol {f,g}s for some f, g € k(V)*. However,
here is a partial result.

Proposition 6.1.5. Let k and V as above. Assume that:

the restriction Br(k) — Br(k(vy)) is surjective, where v = d/bc and
v=v
Then we have a generator of Br(V') / Br(k) of the form {v, f}3 for some f € k(V)*.

Proof. We have the following commutative diagram with exact rows

0 — 7t* Br(k) Br(V) Br(V)/Br(k) —0

l | |

0 — 70* Br(k(7)) — Br(Vi(y)) — Br(Vi(y)) / Br(k(7)) —o0.

By Proposition 4.2.4, we have Br(Vy(,))/ Br(k(y)) = 0. By usual diagram
chasing and the surjectivity of the left vertical map, we can construct an el-
ement & € Br(V) whose image in Br(V)/ Br(k) is its generator and whose
image in Br(Vy,) is zero. We consider « as an element in Br(k(V) () /k(V)).
Then the claim is a consequence of the surjectivity of the following map:

{v, -}a: k(V)" —= Br(k(V)(7)/k(V)).

Some examples of k which satisfy the above condition for any V are:

e afield k withed(k) < 1.
e a p-adic field k.
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In the former case, Br(k) and Br(k(7)) are zero and the condition holds triv-
ially. In the latter case, we have the following commutative diagram

Br(k) —— Br(k(7y))

gl gl

Q/Z——Q/Z
and the bottom map is surjective.

3. Ifcd(k) > 3, itis difficult to determine whether Br(V')/ Br(k) is isomorphic 0
orZ /3Z.OurV/Fhascd(F) > 3and V(F) = @ and H!(F,Pic(V)) # 0. As
far as we know, Our result would be the first example of computation of the
Brauer group of such varieties.

We first prove Theorem 6.1.3. The implication from Theorem 6.1.2 to Theorem
6.1.3 is given after the proof of Theorem 6.1.3.

Proof of Theorem 6.1.3. We recall some notations in Section 4.2. We define
a=vA y=%, o«=Yi B=uay
Moreover we put
F'=F(a,7v), F'=F(a)=F(a ).

We have the following exact sequence:

0 — Br(V)/ Br(F) — H(F,Pic(V)) & H3(F,T).

Therefore, to prove the theorem, it suffices to show the image of all nonzero ele-
ments in H'(F, Pic(V)) does not vanish in H3(F,F").
Before proving this claim, we sketch the outline of its proof. In Step 1, we show

HY(F,Pic(V)) = HY(F'/F,Pic(Vp)) X Z /3Z

and find a generating cocycle ¢ € H'(F'/F,Pic(Vp)). In Step 2, we compute the
image of ¢ under the differential

dvt: HY(F'/F,Pic(Vp)) — H3(F'/F, (F')*)

explicitly. Since the inflation i : H3(F'/F,F*) — H*(F, F") does not necessarily
injective, if we prove that dj;' () # 0, this is insufficient to prove the theorem. In
Step 3, we consider d}',l (¢) as an element of H3(F"/F, y3). In Step 4, by computing
the residue of d};' (¢) along a certain prime divisor D in A} and replacing the base
field k with the field adding all roots of unity, we reduce the proof to showing
that a certain cocycle induced by ¢ is nontrivial in H?(k(D), u3), where k(D) is the
function field of D. Finally, in Step 5, we again compute the residue of a cocycle
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given in Step 4 along a certain prime divisor D’ in A2 and check this is nonzero.
These steps complete the proof of the theorem.

Step 1. Lett € Gal(F'/F(vy)) be the element satisfying ta = {awand s € Gal(F'/F(x))
the element satisfying sy = . These generate the group Gal(F’/F). By Proposi-
tion 4.2.4 and Proposition 4.4.1, we have

HY(F'/F,Pic(Vr)) = H (F,Pic(V)) = Z /3Z.
We define a cochain ¢ € C1(F'/F,Pic(Vr)) as follows:

#(() =0,
$(s(st))
(s*(st)") = [L(0)] = [L(V)],
where i = 0, 1, 2. We show ¢ is a cocycle and generates H'(F'/F,Pic(Vp/)). First,
the class [L(1)] — [L(0)] is st-invariant since

st([L(0)] = [L(D)]) = [L'(1)] = [L'(2)]
= [Da] = [Ds] + [L(0)] — [L(1)]
= [L(0)] = [L(V)]-

Using this and (4.5), we can check this is a cocycle. Moreover, since the image of ¢
under the restriction

Il
—
—

[ew]
=
—
l
]
—~
—
N
~—
.
<

Z /37 = H(F'/F,Pic(Vp)) — HY((s),Pic(Vp)) X Z /3Z

is the generating cocycle appearing in Proposition 4.4.4, ¢ is also a non-zero ele-
ment, in fact, a generator of H!(F'/F, Pic(Vp')).

Step 2. In the following argument, by using Proposition 4.5.1, we compute the
cocycle 69¢ in Z3(F'/F, F'*), where ¢ is the cocycle defined above and

9: HY(F'/F,Pic(Vy)) — H?(F'/F, Do),
§: H*(F'/F,Dy) — H3(F'/E, F'*)

are connecting homomorphisms appearing in Section 4.5. First we compute the
cocycle 3¢ € Z2(F'/F,Dy). Let D and Dy be as in Subsection 4.4.2. We take

0, L(0)—L(2), L(O)—L(1)eD

as lifts of 0, [L(0)] — [L(2)] and [L(0)] — [L(1)] € Pic(V) respectively. We have

x+ Py . ( Efafufs
div p —-d1V< _fl 7 >6 Do

and the following table of the action of Gal(F'/F) on two divisors L(0) — L(2) and
L(0) — L(1):
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D || L2)—L(0) | L(0)—L(1)
sD | T(2)=L'(0) | L'(0)—L'(1)
D | L7(2)—L7(0) | 7(0) = L"(1)
tD | LO)=LQ) | L(1)-L{2)
stD | I(0)—L'(Q) | I'(D-L'(2)

D | L7(0) = L"(1) | L"(1) — L7 (2)
D | L(1)—L(2) | L(2)—L(0)
s2D || (1) =L'(2) | L'(2) —=L'(0)

2D | L") = L"(2) | L"(2) — L (0)

From the construction of the map 0, we get the following equations

99(1,1) =0, 9¢(1l,s) =0,

. + (Bt
a¢(s,1) = 0, aﬁaﬂzdwz+g3,

29(s%1) =0, ap(s?s) = div

z+ Bt
x+ay’

dp(s2t,1) = 0, dp(st,s) = divT Y
9p(t2,1) =0, ap(t?,s) =0,
op(st?,1) = 0, 3p(st?,s) = div z+ pt

ap(st,1) =0, o¢(st,s) =div

z+ 2Bt

x+Cay’

op(1,5%) =0,

x +ay
(s, %) = div— 2 PwTTY
2 2y _ 4. 2T GBt
o¢p(s*,s°) = div Py ol
op(t,s?) =0,
N 3 o 4.
op(st,s7) = div T
. + pt
op(st,s?) = lexZ+ gftxy'
op(#2,s%) =0,
x + (Pay

2 _ .
o¢(st?,s?) = div 2T Bt

20(281) = 0, 39(s%2, ) = div LY (s gﬁgzdiz+§w

z+ Bt

X+ ay

dP (st s2412) = dp(s"1th, 527 12),

where the indices i1, i, j1 and j, can take on any values in {0,1,2}.
Sending this cocycle under 6, we get 60¢ in Z3(F'/F, F'*). If we take

x+Jlay  z+ Bt
z+JBt" x4+ lay

7

€ diV_1 (Do)

i
as lifts of 0, divJZc * C.Dcy and divZT opt € Dy respectively, this cocycle is deter-

+ Bt x+ Clay
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mined by the following equations:
5 (th, 52472, s3th) = 1,
59¢ s 1, s’3t73) =1,
5o (s th, 5212, 1) 1,

50p(sth, s, s) = 50¢ sth,s, N =—u,
sap(sth,s%,5) =1,  63g(sth, %, s%) = —u7l,
53p(sth, t,5) =1, 50 (sth, t,s ) —u7l,

(

(

(s

( (

( (

( (

(Sagb(sth st,s) = 1 50¢(sth, st,s?) = —p,

50¢(sth,s%t,8) = —u, 63¢(sth,s%t,s?) =1,
(sth,82,8) = —pu,  89¢(sth,1?,s%) =1,

59¢(sth,st?,8) = —u~', 69¢p(sth, st?,5?) = 1,
(sth,s?t?,5) = 1, so¢(sth, s%t%,s2) =1,
(s’th,s,5) = 1 so¢(s*th,s,s?) =1,

59 (s’th,5%,5) = —p,  09p(s’t,s%,5%) =1,

50¢(s°th,t,5) =1, 8o (s%t1, t,5%) = —u,

50¢(s°th, st,8) = 1, 59¢(s2th, st,s%) = 1,

op(s2th,s%,8) =1,  S9¢(sth,s%,8%) = —u~2,

(
(s
(

>

(
8o (s*th, 12,5) = —pu~1, Sag(s*H1, 12,57) =1,
Sop(sPth,st2,8) =1,  83¢(s*th,st%,52) = —p,
69 (s2th, %12, 5) = —u, 63¢p(s2th, %2, 52) = —u~?,
5op(sh i, S22, s5BH3) = §8¢(5i1 th,sl2th 35,

where the indices 71, iy, i3, j1, j2 and j3 can take on any values in {0, 1, 2}.
Step 3. Let iE be the following inflation

if': H3(F'/F,F*) — H3(F,F).

The class ig’(sa [¢] in H3(F,F") is a 3-torsion element, hence by the Kummer se-

quence, comes from H?(F, y3). Now we want to find a finite extension K over F
such that ik 63[¢] comes from H*(K/F, i3). In fact, we can take K = F”:

Proposition 6.1.6. The class it 53[¢] € H*(F,T") comes from H*(F" /F, y3).

Proof. We have the following exact sequence of Gal(F" /F)-modules

1 — s — ' i) (P//*)B -1,
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and hence the following commutative diagram

H3(F’/F, Pl*)

'F/
llpl/

H3(F'//F, 7"3) : Hs(F”/F,F"*) 3, HB(F”/P, (F"*)B)

k]

H3(F, u3) H3(F,F") H3(F,FY),

where /£, and if’ are inflations and each row is exact. The class ifl 63[¢] is the image
of i£,69[¢] € H3(F” /F, F'™*) under z— Therefore to prove the clalm, it suffices to

show iF,89[¢] vanishes in H3(F"/F, (P”*) ). Let w be the generator of Gal(F"/F’)
defined as in Subsection 4.4.2. The image of i£,69[¢] under 3: H3(F"/F,F"*) —
H3(F"/F, (F"*)3) is the class of the following cocycle:

(sh ik, syl sB R s 53 (sl 522, 533,

and what we have to prove is that this cocycle is in B3(F”/F, (F"*)?). Define ¢ €
C2(F"/F, (F"*)?) to be:

4;(15]1 wh Slztjzwkz) =1, 1/](Siltjlwk1,wk2) =1,

1,b(st]1 ki sqpk 2) = -y}, 1p(stf1wk1,szwk2) = -y,

Pt su) =~ p(RHhu, 2uw) = o,
l/)(siltjlwkl Siztjzwkz) — IP(Sil tjlwkl Siz—fzwkz)

where indices i,, ]* and k. can take on any values in {0,1,2}. Then we can easily
see dy = (i£,00¢)° in C*(F" /F, (F"*)?) and hence the class of (i£,60¢)? vanishes in
H3(F"/F, (F""*)3). This completes the proof of Proposition 6.1.6. |

By using this cochain 1, we can construct the class in H*(F" /F, y3) whose image
in H3(F,F") is 1— '59[¢]. We have the following diagram with exact rows

2 2
0 5 Cz(F”/F/VS) f Cz(P"/F,F”*) g; C2(P///F, (F”*)3) >0

I

0 S CB(P///P,]lg) f; C3(P”/F,F”*) 5 C3(F”/F,(F”*)3) >0

|,

0 N C4(FII/P,“L13) f S C4(P”/P,FH*) gE C4(P///F, (F"*)3) > (.
If ¢ € C2(F"/F, F"™*) is a lift of 1, we see that

i§§,58¢ —~d% € Kerg® = Imf3,
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that is, there exists a cochain @ € C3(F"/F, u3) such that

oo = ik,60¢ — d*3.
By abuse of notation, the symbol —d? means the multiplicative inverse of d%¢.
Moreover, by construction, @ is a cocycle and f3[®] = [ik,d0¢ — d?*¢] = iL,60[¢].
Therefore the class [®] is what we need. As a lift ¢ of i, we can take the following
cochain:

&(thwkllsiztjzwkz) =1, lﬁ(sil tjlwkl,wkz) =1,
P(sthwh, sw) = =/, (sl sPuf?) = —o,
J(s2tj1wk1,swk2) = —a, {/)”(Sthlwk1’52wk2) _ _“/_1,

P(shthuf, s2thyl) = (shphwh, sz k),
Hence we can write ® explicitly as follows:
P(s2thwk, sBthwks)
wkl @(Siz tjz wk2, Si3 th wks )

(Sil th wkll s tfzwkzl S tfswk3) — € us.

Step 4. First, we prepare the following lemma:

Lemma 6.1.7. Let K be a field of characteristic 0. For i > 1, we have:
H(K,Q/Z(1)) = H(K,X"),

where Q / Z(1) = lim p,, be the group of all roots of unity.

n

Proof. Consider the following exact sequence
1—-Q/Z(1) 5K — Cokeri— 1,
we have the long exact sequence
Hi~(K,Coker:) — H{(K,Q/Z(1)) — H!(K,K") — H'(K,Coker1).

Since Coker : is uniquely divisible, the group H'(K, Coker 1) = 0 forall i > 0. There-
fore we get the isomorphism which we have to show. O

By this lemma, for any prime divisor D C A3} = Speck[A, 4, v], we have the
following commutative diagram: .

H3(F”/F, ‘u3)

I
iE

F

H3(F, u3)

resp

H?(k(D),Z /3Z)

H3(F,Q/Z(1)) =2 H*(k(D),Q/ Z)

o

*

H3(F,F),
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6.1 A non-representability result 6. The case x>+ by® + ¢z° + df* = 0

where F = k(A, 1, v) is considered as the function field of A2, k(D) is the function
field of D, and resp are residue maps associated to D. The definition of resp is
described just below.

Recall that our goal is to prove the nontriviality of iZ60[¢] € H3(F,F"). To
prove this, by the above diagram, it suffices to show:

There exists D C A} such that resp(if [@]) # 0 € H*(k(D),Q/Z).  (6.1)
Now we look at the definition of
resp: H3(F, u3) — H*(k(D),Z /3Z).

The lower resp for Q / Z is defined in the same way. In the sequel, D always
denotes the divisor {y = 0} C A}. Let Op be the completion of the local ring
k[A, u, v](y) at its maximal ideal and Fp its fractional field. Note that y is a uni-
formizer of Op and the residue field of Op is isomorphic to k(D) = k(A,v).

There is the canonical isomorphism

1: Hom(Grw, ua) = H' (F3, us) = Fp™/(Fy™)? = Z /32,

where the middle isomorphism is induced by Kummer sequence and the right one
is given by normalized valuation on Fji’. Then resp is given by

H(F, p3) = H*(Fp, ps)
L H2(k(D), Hom(Gry, p3))

B
=" H2(k(D),Z /3Z),

where c is the restriction and  is the map defined in Proposition 2.2.7.
Now we describe the class rc[ig'CI)] € H2(k(D),Hom(Gry, y3)) explicitly. By
the definition of r and the fact ig'd) originally comes from the cocycle ® of Gal(F" /F),

we would naturally expect that rcif @ also comes from a cocycle of the Galois
group of “the residue field of F” along to D” over k(D). In fact, we find that it
is true.

Before stating the claim, we introduce some field extensions. Let k(D)’, Fj},
I—ﬂ]’J be the same notation as in Section 4.2. Moreover, by abuse of notation, we
denote the elements in Gal(F}}/Fp) corresponding to s, t and w € Gal(F"/F) by
the same symbols. To make our situation clear, we give the following diagram of
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field extensions:

/ 3 | ramified H
=4 PID ......................... > k
3 / 9 | unramified 9 ‘
r o R > k(D) .
9
completion
F
We have the following:

Lemma 6.1.8. If we define the cochain
r® € C?(k(D)' /k(D),Hom(Gal(F};/FL), us))

as
r® (51, 5202) (wh) := d(wh, s i1, 5282),
where s and t are the images of s and t under the natural map

Gal(F}/Fp) — Gal(k(D)'/k(D))

and the above @ is naturally considered as an element in C3(F}/Fp, 3).
Then r® is a cocycle and its image under the map

igg—il: H2(k(D)' /k(D), Hom(Gal(Ff; /Fp), u3)) — H*(k(D), Hom(Gry, p3))

is rc[if' ®].
Proof. First we prove the cocycle condition of r®. We have
(drd®) (st 52412, 5P ) (wF)
=5 th®(wk, 5242, s01h) — @ (wk, s Hi2thTh gh1)3)
+ D(wf, s, s2HisthtB) — d(wk, s th, s242)
—(f(shth, 5°9) — wH(sheR, 51))
(shtizghtiz, sty — wk{b'(siﬁiz thtiz, s343))
(s il glatisgtis) wkig(sil tjl,si2+i3tj2+j3))
(s th,s242) — wk{p“(sil tjl,siztjz))
=(d*P) (s"th, 52472, 5548) — wF (d2g) (s, 5212, 5B 12)
=1.

-
+ (P
-
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The last equality follows from the fact that
(PF) (1, 5282, 5511) = (iE,59¢ — £3D) (s, 5242, 54)

is in F* and hence w-invariant.
Since @ is normalized and satisfies that the values

& (Sil gk [ si2th2 wkz, g piagyks )

are independent of k; and k3, we know that cif' & is normalized and satisfies the
condition (2.1). Hence we can apply Proposition 2.2.7 to this cocycle and we have

reif (31,32) (h) = ©(wh,s10wh, s thuk),

where wk, st 1wk and s2#2w*2 is the restriction of h € Gry and g1,82 € G, to F”
respectively. Therefore we obtain

k(DY j—= N
z% [r®] = rc[if @).

Applying the following isomorphisms of Gal(k(D)' /k(D))-modules
Hom(Gal(F}/Fh),u3) 2 Z /3Z; (w+— %) —k mod 3

and of Gy(p)-modules

~

HOII‘I(GFBI, }43) Z. /3Z

| |

o

Hom(Gry,Q/Z(1)) 2>Q/ 2,

to the following diagram

H2(k(D)'/k(D), Hom(Gal(F5/ Fp), 3)) H?(k(D), Hom(Grg, #3))

|

H?(k(D), Hom(Gry, Q / Z(1))),

we obtain:
H*(k(D)'/k(D),Z /3Z) — H*(k(D),Z /3Z)

l

H?(k(D),Q/ Z).
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For a field K of characteristic 0, we denote K by U,q K(Z»), where {, is a prim-
itive n-th root of unity. Noting that k(D) = k(D)(«,y) and that  and v are tran-

o

scendental over k, we have k(D) Nk(D) = k(D) and therefore

T — ~

Gal(k(D)'/k(D)) = Gal(k(D)' /k(DY Nk(D))
= Gal(k(D)'/k(D)).

——

We fix an isomorphism Q / Z = Q / Z(1) as trivial k(D)-modules. Then we have
the following commutative diagram:

H2(k(D)' /k(D), Z /3Z) — H2(k(D),Q / Z)

o

——

H2(k(D) /k(D), Z /32) —> H2(k(D),Q/ Z)

P N ———

H?(k(D)'/k(D), ps) H*(k(D),Q/ Z(1))

o

e ——

H2(k(D), pa) H2(k(D),k(D) ).

Since the bottom map in the above diagram is injective by Hilbert’s Theorem 90, in
order to prove the claim (6.1), it suffices to show:

—

[r®] € H?(k(D)'/k(D),Z /3 Z) does not vanish in H*(k(D), i3).

Step 5. For simplicity, we put E = l;(—f)/) =k v)and E' = k/(By = E(a, 7). we
define the cocycle ¥ € Z?(E'/E, u3) as follows:

Y(th,s22) = 1 Y(sth, (st)2) = 1

W(sth,s(st)2) =7  ¥(sth,s2(st)2) =

Y (s2H1,s(st)2) = % W(s2th,s%(st)2) = (.
We can easily see that ¥ is the image of

r® € H2(k(D)' /k(D), Hom(Gal(F}/Fp), us)) = H*(k(D)' /k(D),Z /3 Z)

under the isomorphism H2(k(D)'/k(D),Z /3Z) = H2(E'/E, u3) in the above di-
agram.
To prove Theorem 6.1.3, it suffices to show that the image of [¥] € H2(E'/E, u3)
under ’ :
if': H*(E'/E, us) — H*(E, u3)
is nonzero. Now we consider the residue of i%' [¥] along to the divisor D’ = {v =
0} C AZ. The claim is:
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Proposition 6.1.9. The image of i%’ [¥] under the residue map
resp: H2(E, u3) — H (k(D'),Z /3 Z)
is nonzero.

Proof. We fix notations. Let Opy be the completion of the local ring k[A, v],) at its
maximal ideal and Epy its fractional field. Note that v is a uniformizer of Op/ and
the residue field of Oy is isomorphic to k(D') = k(A). Let E},, be the same notation
as in Section 4.2. By abuse of notation, we denote the elements in Gal(E}, /Ep)
corresponding to s and t € Gal(E'/E) as the same symbols. To make our situation
clear, we give the following diagram of field extensions:

Ep, "8 88 (DY ()

/ 3 | ramified | ‘
E O R — >~ k(D') (&)

/ 3
E (LK) E D!
|
Completion
E

Now respy is given by

3 unramified 3

................................. > k(D/).

HZ(E/ ;113) HZ(ED’/]’{EB)
Hl

(K(D'), Hom(Ges, )

c

—
r

—

LR

HY(k(D'),Z /3Z).

To describe resp (i£ [¥]) explicitly, the problem is that ciE'¥ does not satisfy the
condition (2.1) in Proposition 2.2.7. So we have to replace ¥ with an appropriate
cocycle satisfying (2.1).

Lemma 6.1.10. Let ® € C*(E'/E, u3) be the following cochain:

1 i=0
7 i=1,2

Q(s't) = {

Put¥' := ¥ —d® € Z*(E'/E,ua). Then ciEY' € H2(Epr,pis) is normalized and
satisfies the condition (2.1) in Proposition 2.2.7.
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Proof. By straightforward calculation, we see that

Y (th,s2t2) =1

1 =0
Y (sth,s?t2) =% ja=1
& hR=2
1 p=
¥(s2h,s22) =7 jp=1
=2
from which the claim easily follows. O

We also have a similar result to Lemma 6.1.8:
Lemma 6.1.11. If we define the cochain
7Y € CH(k(D")(«)/k(D"), Hom(Gal(Ep, /Ep(a)), i)
as ,
T (F)(s) := (s, #),
where 1 is the image of t under the natural map
Gal(Ep/ /Ep) — Gal(k(D')(«)/k(D")),
then r¥" is a cocycle and its image under the map

i%(“): H'(k(D') () /k(D"), Hom(Gal(E}y / Epy (), p3)) — H!(k(D"), Hom(Gpuz , 3))

is rcif [¥].

Proof. The claim follows from similar calculations in Lemma 6.1.8. O

We now go back to the proof of Proposition 6.1.9. Applying the following
commutative diagram of trivial Gal(k(D’)(«)/k(D’))-modules and trivial Gy(p)-
modules

Hom(Gal(E}, /Epy (&), ) — Hom(Gguw,, y3)

gl lg

Z/3Z Z/3Z

: o k(D) () :
to the inflation 17(-(7),—) , We obtain

Hom(Gal(k(D")(«)/k(D")),Z /3 Z) — Hom(Gypy, Z /3 Z),
which is injective. Moreover, we have
7Y’ # 0 € Hom(k(D')(«)/k(D"),Hom(Gal(Ep, /Epr (), 13))

by the definition in Lemma 6.1.11. Therefore respy (ig [¥]) # 0, which completes
the proof of Proposition 6.1.9. a
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Theorem 6.1.3 is a consequence of Proposition 6.1.9. O

Proof of Theorem 6.1.2. Suppose we have an element e € Br(V) satisfying the prop-
erty stated in Theorem 6.1.2:

there exists a dense open subset W C (G, x)® such that sp(e; ) is de-
fined on W(k) NPy and for all P € W(k) NPy, sp(e; P) is a generator of
Br(Vp)/ Br(k).
By Theorem 6.1.3, we have
Br(V)/Br(F) =0
and hence there exists an element ¢’ € Br(F) such that 7rj¢’ = e. Since we have the
isomorphism
l_i_rll}Br(Si) = Br(F),
2

where (S;) is the projective system of all non-empty open affine subschemes in A2,
there exists a non-empty affine open subscheme S and ¢’ € Br(S) such that ¢/ is a lift
of e’ and V x a5 is smooth over S. Since 5 and W is not empty, S M W is also a non-

empty Zariski open set in (Gy, ;). Moreover, Py is a Zariski dense set in (G, )® by
the condition C(k). These facts imply that there exists a point P € (SNW) (k) N Py.
For this point P, we have the following commutative diagram:

Br(Vp) ~ Br(V xAis)g Br(V)

Tn;s & Tn;
Br(k) ~ Br(S)——— Br(F)
and hence we can take 7rie’ as a lift of e. Then we get

sp(e; P) = P*(tée') = mpP*e’ € tp Br(k).

This means that sp(e; P) is zero in the group Br(Vp)/ Br(k), which contradicts the
assumption sp(e; P) is a generator of Br(Vp)/ Br(k) = Z /3Z. Therefore we see
that there is no such element ¢, and complete the proof of Theorem 6.1.2. O

6.2 The condition C(k)

At the end of this chapter, we now concentrate on the condition C(k). Itis an
important problem to clarify when C(k) holds. Recall

{P € (Gmy)*(k) | Br(Vp)/Br(k) 2 Z /3Z.}.
Here we give some equivalent conditions:

Proposition 6.2.1 (Proposition 6.1.1). Let k be a field satisfying (x). Then the following
are equivalent:
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(1) C(k), that is, Py is Zariski dense in (G x)%;
(2) Py is non-empty;
(3) dimg, k*/(k*)3 > 2.
To prove this proposition, we have to prepare the following lemma.
Lel(nma )63.2.2. Let S, S' and S" be infinite subsets of k*. Then S x S’ x S" is Zariski dense
in (Gui)®

Proof. Put P = S x S’ x S". Suppose P would not be a Zariski dense set in (G, x)3.
Then there exists a non-empty open U C (Gy, ;) such that P NU = @. Since this
condition holds for any smaller open subscheme than U, we may take as U an affine
open subscheme of the form:

U= Speck[)ft, ‘u:I:,Vi]f, 0+# f € k[/\, V/V]/

where the symbol AT is the abbreviation of A and A~! and so forth. Write f as

[o o T e o]

f= Z Z”m,n(/\)ﬂmVnr

m=0n=0

where a,,,(A) € k[A], and 4y, ,(A) = 0 for sufficiently large m and n. Then there
exists Ag € S such that f(Ag,u,v) # 0 € k[u,v]. Otherwise, we would have
f(Ao, ¢, v) = 0ink[p,v] for all Ay € S, which is equivalent to

Amn(Ao) = 0forallm,n € N and for all Ag € S.

However, since S is infinite, this means that 4, , (A1) = 0in k[A] forallm and n € IN.
Therefore f = 0, which contradicts the definition of f.

Now we write f(Ag, 1, v) = Yo bm(p)v", where by, () = 0 for sufficiently
large m. By the same argument, there exist 49 € S’ such that f(Ag, po, v) # 0ink[v].
Moreover, by the same one again, we can choose vy € §” such that f{Ao, po, vo) # 0.
If we put P := (Ag, jio, ), then we find that P € P NU, which contradicts the
assumption P NU # @. This completes the proof of this lemma. O

Proof of Proposition 6.2.1. (1) = (2). This is a trivial implication.
(2) = (3). We prove the contrapositive statement.
If we assume dimp, k* / (k*)® = 1, we can take v € k* \ (k*)3. Then the equation
of diagonal cubic surfaces is essentially equal to one of the following:
B+ +2=0, L+ +2+0 =0,
x3+y3+z3+v2t3 =0, x° —|—y3 +ovB o2 =0,
x3 —I—y3 + 028 4+ 0% = 0,
all of which have a k-rational point. Moreover, we can easily see by Proposition
4.2.4 that H(k, Pic(Vp)) 2 0 or (Z /3Z)* for all P € (G, %), and therefore

VP € (Gpx)®, Br(Vp)/ Br(k) = 0or (Z /3Z)*
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6.2 The condition C(k) 6. The case x> + by® + cz® +dt® =0

by Lemma 3.2.18.
If we assume dimg, k*/(k*)® = 0, the equation of diagonal cubic surfaces is
essentially equal to:
B+ +2+£2 =0

Hence the same result holds by the same reason. Hence we have Py = @.
(3) = (1). We first construct a subset P of A% satisfying the following three condi-
tions:

(i) P is Zariski dense in A;
(i) Pe P = Vp(k) # ;
(i) P e P = H!(k Pic(Vp)) X Z /3Z.

Since dimp, k*/ (k*)3 > 2, we can take two linearly independent elements v; and
2. Now we define P as

P=5Sx8x8" S§=(k)3 S =0v(k)> 5" =u0v(k*)>

We show that P satisfies the above three conditions. First, by Lemma 6.2.2 and
the assumption that (k*)® is infinite, the condition (i) holds. Secondly, for P =
(Ao, po,v0) € P, we can take A) € k* such that (A})® = Aq, and have a rational
point (A} : —=1:0:0) € Vp(k). Hence the condition (ii) holds. Finally, by the choice
of v1 and v, € k* and Proposition 4.2.4, we can see that the condition (iii) holds.

The conditions (ii), (iii) and Lemma 3.2.18 imply Br(Vp)/ Br(k) = Z /3 Z for all
P € P, thatis P C Py. Hence the condition (i) yields the condition (3).

This completes the proof of Proposition 6.2.1. O

Using this proposition, we obtain:

Corollary 6.2.3. Let k be a field satisfying (x) and dimg, k* / (k*)® > 2.Let F = k(A, p,v)
and V the projective surface over F defined by the homogeneous equation x° + Ay + uz° +
Auvtd = 0. Then there is no element e € Br(V) satisfying the following property:

there exists a dense open subset W C (G, x)° such that sp(e; -) is defined on
W (k) "Pyandforall P € W(k) NPy, sp(e; P) is a generator of Br(Vp) / Br(k).

At the end of this subsection, we give some examples of k satisfying the as-
sumption of Corollary 6.2.3:

(1) afield finitely generated over Q() or Q,(7)-

(2) afunction field of an integral variety over C or R of dimension > 1.
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