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Abstract

The main goal of this thesis is to give a description of the abelian étale fundamental group
of a smooth (not necessarily proper) variety U over a p-adic field k in case U has a smooth
compactification that has a good reduction over k. The group SK; in the proper case is
replaced with the motivic homology. We first construct a map between motivic homology
and étale cohomolgy with compact supports where in certain degrees the latter one can be
idetified with abelian étale fundamental group using Poincare duality. Following Yamagzaki
we construct a reciprocity map and calculate the kernel and cokernel using known results on
the vanishing of Kato homology.
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Introduction

Let k be a finite extension of the p-adic numbers Q,. Local class field theory gives us the

reciprocity map
k' — Gy

where Gy denotes the absolute Galois group of k. Now let X be a variety over k and let
X(s) denote the set of points z € X such that dim{z} = a. For z € X(0) we have a map
T (x) — 7f*(X) since the abelian étale fundamental group 7%(—) is covariantly functorial.

Noting Gy(z) & 7%®(x) we get a map

@ k(z)* — n%(X).

.’IJEX(O)

Calculating the kernel and the cokernel of this map is one of the main problems of the higher
dimensional class field theory. In the case X is proper Bloch [1] and Saito [21] showed that
this map factors through

SK\(X) := coker| @) Ka(k(z)) & @B k(o)

J:EX(D IZJEX(O)

where O arises from the localization theory for Quillen’s K-theory cf. [32].
In the case X is not proper over k, this does not hold. Therefore we need to find a larger
quotient of ) k(x)* such that the map p'y factors through. In [35] Yamazaki defined

such a quotient C’l( ), which is recalled in Section 3, and defined a map

z€X(o

x 1 C1(X) = 72(X)

that is induced by p’. Let X be a smooth projective geometrically irreducible surface over

k such that X := X xy k is rational where & denotes an algebraic closure of k. Then for a



dense open subset U of X Yamazaki showed an isomorphism [35, Thm. 6.5]
pu/n: Ci(U)/n = 7(U)/n

for all n € Zso. The goal of this paper to generalize this result to a scheme U (possibly
non-proper) of any dimension that has a smooth compactification with good reduction over
k. Main result (cf. Thm. 2.3.3) of this paper is the following theorem which implies the

bijectivity of px/n in certain conditions.

Main Theorem. Let U be a smooth variety of dimension d over a finite extension k of Q.
Assume there exists X such that U is an open variety of X that is projective, smooth and
has good reduction over k. Then for alln > 0, we have a natural isomorphism
g HM(U,Z/n(-1)) = HEHY U, Z/n(d + 1)).

The left hand side denotes the motivic homology group which is defined as certain homo-
morphism group in Voevodsky’s triangulated category of motives [29] and it is shown to be
isomorphic to Cy(U)/n [35]. The right hand side is étale cohomology with compact supports
and the Poincare duality identifies this group with 7%(U)/n. The map c’UJn is defined in
Subsection 2.2 by using Ivorra’s £-adic realisation [8].

Main tool we use for the proof of the theorem is certain vanishing results on the Kato
homology which is recalled in Subsection 1.3. In Subsection 2.1, it is shown to control the
kernel and the cokernel of the maps c%},_nl in case U is projective for all ¢ € Z by using a
method due to Jannsen and Saito [12]. The proof of the main theorem is then follows by an
induction argument given in Subsection 2.3. Throughout the paper a scheme X is always
assumed to be smooth.



1 | Preliminaries

In this section we first review some facts about motivic (co)homology and Kato Homology.
We state some results which are used in the proof of The Main Theorem. Throughout the

section we assume & to be a perfect field.

1.1 Higher Chow Groups

Higher Chow groups are algebraic analogue of the singular homology groups in topology
defined by Bloch [2]. We briefly recall the definition and state some known facts.

Assume X is a quasi-projective scheme over k. Define

A? = Spec(klto, ..., ta] /)t —1)) X AL g>0.

Let 2°(X, g) denote the free abelian group generated by subvarities of X x & A? of codimension
i which meets all faces X xj A’ for m < ¢ properly. We have Bloch’s cycle complex:

AKX, = 2(X,2) D 24X, 1) S A(x,0)
where 0 = (—-1)"0, with
8 2(X,q) = 2(X,q— 1)

the restriction map to the r** codimension one face for 0 < r < q.
We define the higher Chow Group as

CH'(X,q) == Hy(#(X, %)).
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We also define the finite coefficient version as
CHYX,q;Z/n) := H(#(X,*)  Z/n).

If i > g+ dim(X) then we cannot have a subvariety of X x; A? which has codimension i, so

we have
CH'(X,q) =0 for i > q+ dim(X). (1.1)
One has the coefficient sequence for finite coefficients
0 — CH(X,q)/n — CHX,q; Z/nZ) — CH'(X,q — 1)[n] — 0.

Let Y C X be closed and have pure codimension ¢. Then we have a localization sequence [2]

... = CHY(X-Y,q+1) - CH" (Y, q) - CH(X,q) = CHY(X-Y,q) = CH"°(Y,q—1) — ...

We also have funtoriality for higher Chow groups. Namely, higher Chow groups are covariant

for proper morphisms and contravariant for flat morphisms.

1.2 Motivic Homology and Cohomology

We recall some facts about triangulated category of motives and define motivic (co)homology
as certain homomorphism groups in this category.
Voevodsky [29] constructed DM,,,(k) triangulated tensor category of motives over k

which is equipped with a functor

My : Sm(k) = DM (k)
X = M(X)

where Sm(k) denotes the category of smooth schemes over k and M(X) is called the motive
of X.

The category DMym (k) has a tensor structure and a distinguished invertible object Z(1)
called the Tate object [29, cf. Sec. 2]. For any object M in DM, (k) we write M(n) :=
M ® Z(1)°"
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The motivic cohomology (respectively homology) is given as the following homomorphism
groups in DM, (k)

Hy (X, Z(5)) = Hompu,,, ) (M(X), Z(5) 1))
and
HM(X,Z(5)) = Homp,,, o (Z(5)i], M(X))

Note that Z(j) does not have a geometrical meaning if j < 0 and Hom s, ey (M (X), Z(5)[i])
(resp. Hompu,,,x)(Z(j)[i], M(X))) is a formal notation for Hompp,,, )y (M(X)(—7), Z[i))
(resp. HY(X, 2(7)) = Hom pyegs o (21, MOX) (7).
Analogously motivic (co)homology groups with finite coefficients are defined as homo-
morphism groups in DM,,(k,Z/n) as [20, cf. Lec. 14]
H} (X, Z/1(5)) = HOmpity(hzim) (M (X, Z/1), Z/n(5)[i])
and

HzM(Xa Z/’I’L(])) = HomDMgm(k,Z/n)(Z/n(j) [’L]a M(X7 Z/n))

where M(X,Z/n) = M(X) ®" Z/n and Z/n(1) = Z(1) ® Z/n. For a smooth variety X,
motivic cohomology and higher Chow groups agree [30] with the following indices:

H} (X, Z(j)) = CH (X, 2j — ). (1.2)
Moreover, if X is proper smooth variety of pure dimension d, we have
Hyy (X, Z(35)) = Hag (X, Z(d - j)). (1.3)

If we take X to be Spec(k) then motivic cohomology is also related with the Milnor K-group
of k£ by

Hi (X, 7()) = KM (k). (1.4)
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Let Z be a smooth closed subscheme of X everywhere of codimension ¢. There is a
distinguished triangle {29, Sec. 2.2]

M(X - Z) - M(X) = M(Z)(c)[2c] = M(X — Z)[1].
This gives rise to the following long exact sequence

HE(XGZ/G) = HY 5(Z,2/0( - 9) = BY(X - 2,Z/n(5))  (1.5)
= HM(X,Z/n(j)) = HY(Z,Z/n(j - ) - ...
Now, we give a proof of the following known facts.

Lemma 1.2.1. Let X be a smooth variety over k of pure dimension d.
(a) If j <0 ori>j+d ori>2j then Hi (X, Z(j)) = 0.
(b) If k has characteristic 0 and i < j then HM (X, Z(5)) = 0.

Proof. (a) Consider the isomorphism (1.2)
Hy (X, Z(j5)) = CHY(X,2j — ).

The right hand side vanishes if j < 0 or i > 2j by definition of higher Chow groups and it
vanishes for ¢ > j -+ d by (1.1).
(b) Let X be a smooth compactification of X. Write Z = X — X There is a stratification

XD L DLt D DLy

where Zp, = Z, Z;_1 = (Z;)sing for 0 > ¢ > m and Zj is non-singular. We do induction on
m and dimension of X. '

The case m = —1 meaning X is projective, follows from part (a) and the isomorphism
between motivic cohomology and homology (1.3). Also if the dimension of X is 0, X is again
proper and the result follows similarly.

Let X be of dimension d with a stratification of length m. Write X' := X — Z,,_;,
Z''=Z — Zpy_ 1 and ¢ = codimyx/Z'. Then Z' is smooth and we have the exact sequence
(1.5) for i < j

HY\ 5o(Z,2/0(5 — ) = HM(X,Z/n(j)) = HY (X', 2/n(j)).
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The left group vanishes by the induction assumption on dimension and the right group
vanishes on the induction assumption on m. Which implies HM (X, Z/n(j)) = 0 for i < j as
desired. O

We end this section by stating the Beilinson-Lichtenbaum conjecture which is shown
to hold by the works of Suslin-Voevodsky [28] and Geisser-Levine [6] assuming Bloch-Kato
conjecture. Thanks to the recent result of Rost and Voevodsky [26,30,33] proving the Bloch-

Kato conjecture, it now holds unconditionally.

Theorem 1.2.2. (Beilinson-Lichtenbaum Congjecture) [6,28] Let X be a smooth variety over
k, and let m: X4 — Xz, be the natural map of sites. Let j € Z>o and n € Zsg.

(1) There is a canonical isomorphism
TL(j)x @ Z/n = Z/n(5)a (1.6)

where Z/n(j)e is the étale motivic complex. In particular we get

Hi (X,Z/n(5)) — HY(X,Z/n(5))  for any non-negative integer 1. (1.7)
(2) The above map (1.6) induces an isomorphism

Z(j)x ®" Z/n = T<;RTZ/(j)a.

In particular, the map (1.7) is an isomorphism if i < j. Fori = j+ 1 it is an injection.
Remark 1.2.3. For n invertible in k& we have a quasi-isomorphism Z/n(a)s = u®* [20, Cor.
6.4]. For n = p" where p is the characteristics of the field k, we have a quasi-isomorphism

Z[n(a)e = WrSd 105l —a] [5, Sec. 1.3] where W,0%,,, denotes the logarithmic part of the
Hodge-Witt sheaf [7].
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1.3 Kato Homology

Let k be a global field and P(k) denotes the set of finite places of k. There is an exact

sequence

0— Br(k) = € Br(k,) = Q/Z — 0.

veP(k)

The injectivity of the first map is called the Hasse principle for central simple algebras over
k. In [15] Kato formulated conjectures to generalize this principle to function fields and
varieties over k.

Let k be any field, X be an excellent scheme over k and n > 1, i be integers. Let X(@)
denote the the set {z € X|dim{z} = a}. Assume for any prime divisors pofn,any z € X
such that characteristic of the field k(z) is p > 0, we have [k(z) : k(z)?] < p*. Kato defined

complexes [15]

KCOX,Z/n): ... 5 @ H®™*(k(z),Z/n(a+1) S (1.8)
ZBEX(Q)
5 P B k() 2/n(1+1) 5 P H k), Z/n(i))
:EEX(l) .’BEX(O)

where Z/n(a) = p®* if ch(k(z),n) = 1 and Z/n(a) = Wi jopl—a] if n = p™. Here
W% 1o, denotes the logarithmic part of the Hodge-Witt sheaf [7].
Now for a scheme X separated of finite type over a perfect field k (which is the main

case of interest in this paper) we consider the étale homology defined by
Ho(X,Z/n(e)) := H *(Xa, Rf'Z/n(—e)).

Here f : X — Spec(k) is the structure map and Rf' is the functor defined in [24, XVIII,
3.14]. If n = p™ then we only consider the case e = 0 since Z/n(—e) = WS 1 €]
vanishes if e < 0 and is not defined if e > 0. Therefore we consider the two cases either
char(k) = 0 and e arbitrary or char(k) = p > 0 and e = 0. Then it is shown in [14] that
the complex KC®¥(X,Z/n) agrees up to well-defined signs, to the complex E, _; , arising
from the niveau spectral sequence constructed by Bloch-Ogus [3], associated to the étale
homology H,(X,Z/n(—i)). The maps & in the above complex 1.8 in that case are just the

d; differentials of the spectral sequence. We return to this point in section 2.
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Definition 1.3.1. Kato homology of X with coefficients in Z/n is defined as
KHP(X,Z/n) = H,(KCY(X,Z/n)).

To see the analogy let X be a projective smooth connected curve over F, with func-
tion field & or X = Spec(O) where Oy is the integer ring of a number field k. Since
H?*(k,Z/n(1)) = Br(k)[n] the complex C°(X,Z/n) is then reduced to

Br(k)[n] — @ HY(k(z),Z/n).

(ltEX(O)

In case char(k) > 0 or k is totally imaginary the classical Hasse Principle for the global field
k is equivalent to K Hfo) (X,Z/n) = 0. Kato stated the following conjecture

Conjecture 1.3.2. [15] Let X be a connected proper smooth variety over a finite field Fy.
Then KH(X,Z/n) =0 for a > 1 and KH"(X,Z/n) = Z/n.

Kerz and Saito [17] proved the conjecture in case (n,p) = 1. Also Jannsen and Saito [12]
showed that the conjecture holds for a projective smooth variety of dimension less than or
equal to 4 for all n. '

Let A be an henselian discrete valuation ring with finite residue field k& and quotient field
K. Let Y be a scheme flat of finite type over S := Spec(A). Write Y;, := Y Xgpec(a) K and
Y :=Y Xgpee(a) k for generic and special fiber respectively. Assume the following diagram

commutes and the squares are cartesian

Y, Yy -« Y,
2 A P
n S s

Kato defined canonical residue maps
0% : KHM(Y,, Z/n) — KHO(Y,, Z/n)
Note that if Y = Spec(A) this map reduces to
H*(K,Z/n(1)) — HY(k,Z/n)

9
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which is known to be an isomorphism. Kato generalized this to the following conjecture and

proved it for Y of dimension 2 [15, Prop. 5.2].

Conjecture 1.3.3. [15] Let Y be reqular proper flat over A. Then 0% is an isomorphism
for all a > 0.

This allows one to calculate Kato homology of the generic fiber from the one of the
special fiber. It is an isomorphism for ¢ = 0 or 1 by Jannsen-Saito [12, Thm 1.5]. Also
Kerz-Saito [17, Thm. 1.8] proved that the conjecture holds when one restricts to n prime
to the residue field characteristics. The following theorem is a direct consequence of these
results combined with the results related to vanishing of the Kato homology of the special
fiber.

Theorem 1.3.4. Let X be a proper smooth variety over a finite extension K of Q, with
good reduction over K.

(a) For all n prime to the residue field characteristic we have
KHY(X,Z/n) =0 for a0
and
KHY(X,Z/n) = Z/n.
(b) For alln > 0, we have
KHY(X,Z/n) = 0.
Furthermore if X is projective with dimension less than or equal to 2, we also have
KHM(X,Z/n) = 0.

Proof. Part (a) follows from Kerz-Saito [17, Thm. 1.8]. The first statement of part (b)
follows from [11, Thm.1.5] which shows the Conjecture 1.3.3 for the degree 1. Then the
result follows using [12, Thm. 0.4] which shows the vanishing of the Kato homology of the
special fiber.

10
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We now show the second statement. By [11, Cor. 6.9] KHZ(I)(X, Q¢/Zy) = 0 for a
projective smooth variety X. Here K Hi(l)(X ,Q¢/Zy) is defined taking the inductive limit
ligny K Hi(l)(X ,Z/£") by for a fixed prime £. Using Bloch-Kato conjecture we get an exact

sequence [11, Lemma 7.3]
0— KH (X, Qe/Ze) /0 — KHO(X,Z/0") - KHY (X, Q,/Z0)[¢] — 0.

This gives the desired result since for a surface HX(X,Q,/Z,) vanishes by definition. O

11



2 | Main Theorem

In this section we give a proof of main theorem. First we will obtain the necessary tools
which will be used in the proof. An important result is the comparison of higher Chow
groups and étale cohomology which is essential for the proof of the main theorem. The main
idea is to compare the niveau spectral sequence related to both theories. After establishing

this comparison we will prove our main theorem by an induction argument on the dimension.

2.1 Comparison Theorem

Following a method due to Jannsen-Saito [12] we prove the following comparison theorem
between higher Chow groups and étale cohomology. The idea is to compare the niveau
spectral sequence for higher Chow groups and étale cohomology using Beilinson-Lichtenbaum
conjecture 1.2.2. We see that in the case X is over Q,, Kato homology KH,El)(X, Z/n) comes
into play and it is shown to control the kernel and cokernel of the map CH'(X,4;Z/n) —
HZY(X,Z/n(d+ 1)) which is important for our main application to class field theory.

Before we state and prove the comparison theorem we make a small detour to étale
homology of a variety over a field of characteristic 0 and construct the spectral sequence we
use in the proof of the theorem. We follow similar steps as in [10, Section 4]. Let d denote
the dimension of X. We fix an integer ¢ and we consider the étale homology theory given
by [11, cf. Sec. 2]

Ho(X,Z/n(e)) := H™*(Xa, Rf'Z/n(—¢))

where f : X — Spec(k) is the structure map. Here Z/n(i) is the usual 7 fold Tate twist of
the constant sheaf Z/n. If f is smooth, then Poincare duality [24, XVIII, 3.2.5] gives us an

isomorphism of sheaves

Rf'Z/n(—e) =2 Z/n(d — e)[2d].

12
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Taking cohomology one gets the so called purity isomorphism
Ho(X,Z/n(e)) = H* (X, Z/n(d - ¢)).
There is a niveau spectral sequence associated to this homology theory [3] given by

E;,q(X: Z/n(e)) = @ Hpyo(z,Z/n(e)) = Hpio(X,Z/n(e)).
TEX ()

By definition H,(z,Z/n(e)) = i — Ho(U,Z/n(e)). The limit runs through all the dense
EUQ{:C}

open subsets U of {7} Since k is perfect m is generically smooth and we can run the limit

on smooth U. Combining this with the above purity isomorphism we get

Ho(z,Z/n(e)) := lim H,(U,Z/n(e)) = lig H* (U, Z/n(p - e))

vclzt Uc{z}
=~ H* *(k(z),Z/n(p — €)).

The last isomorphism follows since ling . O] U = Spec(k(z)) and étale cohomology commutes
with the limit. B

Using this we can rewrite the spectral sequence as

E, (X,Z[n(e)) = @ HP Uz, Z/n(p — €)) = H** P UX,Z/n(d — e)).
z€X(p)

In [14], it is shown that E} , ;(X,Z/n(—1)) is quasi-isomorphic to the complex KC'® (X, Z/n).
Now we prove the following lemma which allows us to compare two first quadrant spectral

sequences which only differ on the horizontal axis.

Lemma 2.1.1. Let E = QP E}, and E = @ E}, be two first quadrant spectral sequences
that strongly converge to H, and H, respectively. Assume E;,O = 0 for all a and we have a

map p: E — E of spectral sequences such that
Pap - By~ By
s an isomorphism for b > 1. Then we have a long exact sequence

o= Hypy > B2 g Hy— Hy—~ B2 Hy oy — ..

13
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Proof. Consider the following commutative diagram

r E" r
a+r,b—r+1 a,b ’ a—r,b+r—1
T T 7
pa—i—r,b—r—i—l J pa,b pa—r,b+r—l (*)
T T T
Ea+r,b—r+1 Ea,b a—r,b+r—1

Note that injectivity of pf,, and surjectivity of pf +rb—ry1 implies injectivity of pz,“zl. Also
surjectivity of pf , and injectivity of Pa—rp+r—1 implies surjectivity of pz’*,;l. Using this and
applying induction on r we see that Pap 18 surjective if b > 1 and injective if b > » — 1. This
implies pg5, : Egy — E’g‘;, is surjective if b > 1.

Now we look at the kernel of Pap for b > 1. Consider the following commutative diagram

b+1 b+1
0 — B —— ET 5
b1 b1
Pab Pa—b—1,2b
Fib+1 Fb+1 b1
Ea+b—|—1,0 Ea,b Ea—-b—l,Qb
b+1 b+1

From the above calculation we see that both p,}" and p*; , ,, are isomorphisms. This
implies the kernels of the right horizontal maps are isomorphic. Since Ez*f =K er(df:gl) and

EZ? = Ker(dyhh) /Im(d2t, . ) We have the following exact sequence
b+1 b+2 b2
E b0 Egpy = E."—0

and since the first map is the same as dz*jr%, +1,0 the kernel of it is Egig +10- Lhis gives the

following exact sequence

b+2 mb+1 b42 Fib+2
0— Ea+b+1,0_> ‘Ea,—',-b—i-l,o_> Ea,b - Ea,b —0

If we write the above diagram (x) for the r-th sheet where » > b + 2, the left hand side

vanishes for both spectral sequences. This implies for co terms:

b2 b+1 00 100
0— Ea+b+1,0 - Ea+b+1,0 - Ea,b — Ea,b =0

14
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Finally if we look at the case a = 0 we get
0= Eyo— Eyfio— Egy— Egy—0

na+b+2
Ea+b+1,0'

Let F,H,, F,H, denote the corresponding filtrations of H, and H, respectively. Conver-

. —w _
since Bgly, 10 =

gence gives us the following commutative diagram with exact rows

0 — F4H, — FH, — EX_ —~ g

D,q—p
,0;1,_1 lpg lp;?q—p
0 _— Fp_lﬁq _— Fpﬂq —_— Eoo —_ O

p.g—p

For p = 0, the left hand groups vanish. Therefore ker(pf) = Ker(pg?,) which is isomorphic

~

. fratl [100 : 0 e ra+1 [100 ~
to kero = Egi10/ Egg10- Also since pfY, is surjective, we have FyH,/(Ell o/ E2, ) =

FOFIq. Combining this with the above commutative diagram, we get

0 ——'-Fqu/kero — FlHq/k'e’f‘o — B® 11— 0

1:q_

q q oo
Po P P1g-1

0 — FOHq —_— FlHq —_— Ef,(()]—l_.- 0

The upper row is still exact. Also since kerg injects into ker(pf), we still have commutativity.
"The left hand map is an isomorphism which implies as before ker(p{) = Ker(p$°,_;) which is
isomorphic to ker; := EZ,; o/ Eg;l. Noting ker; 2 (ESH’O/E;"}J)/(E;ZE’O/E(‘;},), we see that

(FiH,/kero)/ker, = FlHq/(EgH,o/Egil,o) = Flﬁq-

Applying the same method gives ker(pg_, : Fy_1H, — Fy_1H,) = EZ,, o/ E%, o Finally we

look at the following commutative diagram with exact rows

0 — F—-lHq - Hq —_ 0
J pZ_1 l P 1

0 — FH,— H, — E% — 0

15
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By snake lemma we find ker(p%) = ker(p]_,) = EZ,,,/ EX, o and coker(pl) = EZ%. This

gives us exact sequences, for all ¢ > 0

0= ESio— EXo— Hy— Hy— E%— 0
Since EZj injects into Eg’o we can combine these short exact sequences to get the desired
long exact sequence. O

Theorem 2.1.2. Let X be a smooth variety of pure dimension d over a field k of charac-
teristic Q.
(a) The map

pi : CHY(X,42/n) — H (X, Z/n(5))

is an isomorphism for j > d + cd(k), where cd(k) denotes the cohomological dimension of k.
(b) Let j = d+ c where ¢ = cd(k) — 1. Then we have a long exact sequence

= KHE, (X, Z/n) = CH™*(X, ¢;Z/n) — HZ (X, Z/n(d + o))
= KHE (X, Z/n) » CH®*(X,q— 1;Z/n) — B2 (X, 2/n(d + o)) — ...

g—c+1

In particular if k is a finite extension of Q, we have an exact sequence

.= KHY

(X, 2/n) = CH™ (X, ¢ Z/n) = HX (X, Z/n(d+ 1)) > KHD(X,Z/n) - ...

Proof. We follow essentially the same steps as Jannsen-Saito [11, Pf. of Lemma 6.2] with a
shift because of the change in cohomological dimension.
Using the localization sequence for higher Chow groups [2,19] we get a niveau spectral

sequence

“HELG—d)= @ CH*"WUz,a+b;Z/n) = CH)(X,a+ b;Z/n).

TEX(4)

Also for étale cohomology using purity we get

“Eay(i—d)= @ H " (@, Zinla+ j — d) = HY (X, Z/n(5)).
IEX(a)

We note that this is the same as the above spectral sequence E, (X, Z/n(—c)) with a shift

16



2.2. THE MAP C¥y CHAPTER 2. MAIN THEOREM

given by b = g + 2c. We have cycle class maps
patizdatt . OFeti=d(y o+ b, Z/n) — Hgt_b”j_Qd(x,Z/n(a +j —d)).

These maps give us a map of spectral sequences. This follows from the construction of
niveau spectral sequence and the fact that cycle class maps are functorial with respect to
the localization sequence.

By theorem 1.2.2 the above map is an isomorphism if a + 5 —d > a — b+ 2§ — 2d i.e. for
b>j—d. Ifb < j—dthen “¥E!, = 0 by (1.1). Also for b < 2(j—d) —cd(k), “Ery(j—d)=0
since cd(k(x)) = a + cd(k). So if (j — d) > cd(k), the two spectral sequences are isomorphic
and we get the desired isomorphism.

Now we show the second statement. Let j = d+ ¢, where ¢ = cd(k) — 1. In that case the
only difference occurs on the line b = ¢ — 1 where “7E} ;(c) = 0 but #E} ;(c) might not be

0. We can apply Lemma 2.1.1 after a shift of indexes to get

= B2 p01(0) = CHY (X, q;Z/n) — HZT2(X,Z/n(d + ¢))
= “E2 1..(0 o CH™ (X, q — 1;Z/n) — HX Y X Z/n(d+ ) — . ..

2. 1(0=K Héc) (X,7Z/n). Next statement follows
directly from the fact that cd(k) = 2 for a finite extension k of Q,. O

This implies the desired sequence since ¢ F2

]
2.2 The map Cxn
In this section we give a construction of the following map

Kot B (X, Z/0(5)) — HET(X,2/n(d - 7))

ét,c

for.a smooth and irreducible variety X of dimension d over k and for any i, j and positive n
prime to characteristic of k.
Let m : X — Spec(k) be the structure map. Fix n such that (n,ch(k)) = 1. We have a

canonical functor

Sm(k)* — Dbk, Z/n)
X — R (Z/n)x

where D}(k,Z/n) denotes the derived category of complexes of étale sheaves of Z/n modules

17



2.2. THE MAP C¥’, CHAPTER 2. MAIN THEOREM

with bounded constructible cohomology sheaves and (Z/n)x is the constant sheaf on X.
Ivorra showed that [8, cf. Theorem 4.3] this extends to a canonical tensor triangulated

functor

DMy (k,Z/n)? — Dbk, Z/n)
M(X) — Rmn(Z/n)x

This functor sends Z/n(j)[4] to Z/n(—j)[—i] [8, cf. Lemma 4.7]. This induces the following
map

HomDMgm(kZ/n) (Z/TL(]) [2]7 M(X)) — Hong(k,Z/n)(RW* (Z/n)X; Z/Tl/(—]) [—Z])

Left hand side is isomorphic to motivic homology HM(X,Z/n(j)) by definition. By the

following lemma we get the desired maps c/,,.

Lemma 2.2.1. There is a canonical isomorphism
Hom py (/) (Rmu(Z/n) x, Z/n(~3)[~1]) = HEL (X, Z/n(d - 7))

ét,c

Proof. Z/n is a dualizing complex on Spec(k)s by [25, Expose I, Thm. 3.4.1], i.e. writing
D(F') = Hompy(xz/m)(F, Z/n) for any F € Di(k,Z/n) we have a functorial isomorphism

Hompy(z/m) (G ®" F,Z/n) 2 Hompy,z/n)(G, D(F)) ‘ (2.1)

Noting Rr'Z/n = (Z/n)x(d)[2d] [24, cf. 3.2.5 XVIII| where R is the right adjoint of R,
we get an isomorphism by [25, Expose I, Prop. 1.12]

D(Bm(Z/n)x) & Rm(Z/n)x(d)[2d]
Since D o D is the identity we get

D(Br(Z/n)x) & Rmy(Z/n)x(d)[2d] (2.2)

18
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This gives us the desired isomorphism since

Homm py(uzmy (B (Z/1) x, Z/n(=)[=4)) = Hompyz/m)(Z/n, D(Rmy(Z/n)x)(—5)[~))
= Hompyz/m)(Z/n, Rm(Z/n(d — 5)[2d — 1))
>~ H2-(X,7/n(d — §)).

ét,c

Here the first isomorphism follows from 2.1 and the second one follows from 2.2.
It X is projective then we have an isomorphism HM(X,Z/n(j)) = CHY3(X,i—24; Z/n).
In that case from [9, Prop. 3.5] cfXJn agrees with the cycle class map [1, 6]

CH™I(X,i - 2j;2/n) — H (X, Z/n(d - ).
Remark 2.2.2. This map is first constructed by Schmidt and Spiess in a different way

in [27].

2.3 Proof of The Main Theorem

_Using Thm. 2.1.2 we prove the following proposition which gives us isomorphism between

motivic homology and étale cohomology with compact supports in certain degrees.

Proposition 2.3.1. Let U be a smooth variety of pure dimension d over a field k of char-

acteristic 0. Then we have isomorphisms
czx_rf : HM (U, Z/n(—a)) — Hgt‘fc_i(U, Z/n(d+ a)) for any a > cd(k).

is an isomorphism where cd(k) denotes the cohomological dimension of the field k.

Proof. Consider a smooth compactification X of U and write Z := X — U. There is a

stratification
XDZuDZp1D...D 7.

where Zp, = Z, Z;_1 = (Z;)sing for 0 > 1 > m and Z; is non-singular. We do induction on

m and dimension d of U.
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The cases m = —1 or d = 0 implies U is projective so we have an isomorphism

HM(U,Z/n(—a)) = CH™(U,2a + 1;Z/n) = HEZHU,Z/n(d + a))
where the first isomorphism follows from 1.2 and 1.3) and the second isomorphism follows
from Thm. 2.1.2 since a > cd(k).
To show it holds in general let U be of dimension d with a stratification of length m.
Write X' :=X -2, 1,7 := Z—Z,,_, and c:= codimx-Z'. Then consider the commutative

diagram

i+1,—a
cX’,n .
HYL (X, Z/n(~a)) ——  HYHX,Z/n(d+ a))
\ i+1—2¢c,—a—c J .
Z'n .
HY, 5(Z",2/7(~a — ) —— HZ"NZ',Z/n(d + a))
| l
cl}’,n .
HM(U,Z/n(~a)) ——  HY(U,Z/n(d + a))
S .
HM(X',Z/n(-a)) —  H7(X',Z/n(d+ a))

| |

i—2c,—a—c

C
Z'n .
M l ’ 2d—i [ 71
H%(Z', L/n(—a —¢)) —— Hg (Z',Z/n(d+ a))
i+1l,—a d i,—a . hi by the inducti £ i+1—2¢,—a d i—2¢,—a
cX’,n an CX’,n are 1somorpnisms by € Indauction assumption on m, cZ’,n an CZ’,n

are isomorphisms by the induction assumption on the dimension. Therefore by five lemma

i,—a : . .
Cin y, 18 8lso an isomorphism. O

- The following proposition gives the desired isomorphism in the compact case.
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Proposition 2.3.2. Let k be a finite extension of Q,. Let X be a proper smooth variety of

dimension d with good reduction over k.

(a) cfx_nl is an isomorphism if 1 # —2 and injective if i = —2 for all n such that (n, p) = 1.
(b) If X is projective, then for alln > 0, cfx_nl 18 an isomorphism if i = —1 and surjective
ifi = 0.

Proof. (a) This is a direct consequence of Thm. 2.1.2, the isomorphism (1.2) combined with
Thm. 1.3.4(a).

(b) The surjectivity of the map c;(’l;,b_l follows from the vanishing of the Kato homology of
X in degree 1, 1.3.4(b). Injectivity is shown in [13, Thm. 6] by using the vanishing of
K Hz(l)(X ,Z/n) for a projective variety X of dimension less than or equal to 2 and doing

induction on the dimension using Lefschetz pencils. Now we show the surjectivity of

n

cgé’—l : CH"N(X,2,Z/n) — H24(X,Z/n(d + 1)).

Thm. 2.1.2(b) and Thm. 1.3.4(b) implies the surjectivity in case dimX < 2. We will do
induction on the dimension of X. Assume dimX > 2. By [13, Cor. 0] there exist a
projective smooth hyperplane section Y C X which has good reduction. Now consider the

following commutative diagram which arises from the corresponding localization sequences.

CHYY,2,Z/n) — H272(Y,Z/n(d))

CH™NX,2Z/n) — HZ (X, Z/n(d+1))

Upper horizontal map is surjective by the induction assumption. Therefore in order to show
the surjectivity of the lower horizontal map it is enough to show the surjectivity of the right

vertical map. Consider the localization sequence
o= HYPA(Y,Z/n(d) — HZN(X,Z/n(d+ 1)) — HHX - Y,Z/n(d+ 1)) — ...

We note that X — Y is affine and 2d > d + 2 since d > 2. This implies the vanishing of
HZ(X —Y,Z/n(d+ 1)). Therefore the desired surjectivity follows completing the proof of
the proposition. O

Now we are ready to prove our main theorem.
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Theorem 2.3.3. Let U be a smooth variety of dimension d over a finite extension k of Qy.
Assume there exists X such that U is an open variety of X that is proper smooth and has
good reduction over k. Then
(a) For (n,p) = 1 where p is the residue field characteristic of k, the map
ot HY(U,Z/n(-1)) — HEA(U, Z/n(d +1))

ét,c
18 an wsomorphism for oll 1 > —1.
(b) If also X is projective, the map

L HM(U,Z/n(-1)) = H2HU, Z/n(d + 1))

1,—
cU,n ét,c
is an isomorphism if i = —1 and surjective if ¢ = 0.

Proof. The proof follows similar steps as the proof of Prop. 2.3.1. Let the notation be the

same as in the Prop. 2.3.1. Consider the following commutative diagram

i+1,—1
cX’,n .
HYL (X!, Z/n(-1)) ——  HiTNXLZ/n(d+ 1))

‘ l

i+1—2¢,~1—c

HM (2 T jn(=1 — o)) =2 HELTNZ',Z/n(d + 1))

J

i,—1

CU)’,n .
HM(U,Z/n(-1)) ——  HZ'(U,Z/n(d+1))
Serm . |
HM(X',Z/n(-1)) —  HG (X' Z/n(d+ 1))
i—2¢c,—~1—c l
Z'n ,
HY,(Z2',2/n(~1 - 0)) —— H(Z,Z/n(d+1))
If m = —1,ie. U is smooth proper and has good reduction over &, the result follows from
Prop. 2.3.2. The maps ciZ“zln"Qc’_l_c and ciZ_,if’_l_c are isomorphisms by Prop. 2.3.1. In case

i+1,—1 i—1 . . . . . .
(n,p) = 1, &7 and ¢y, ] are isomorphisms by induction assumption on m which proves

part (a) by five lemma. Similarly, if i = —1, then for all n, cgg,_’rll is surjective and c;{}; is
an isomorphism by induction assumption on m which proves (b).
|
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3 | Class Field Theory

3.1 Wiesend’s Tame Ideal Class Group

In this subsection we define Wiesend’s tame ideal class group as defined in [35, Def. 1.1]
based on an earlier work of Wiesend [33].

Let X be a variety over a field k. Take y € X(;y and C(y) be the closure of y in X.
Denote by C(y) the normalization of C(y) and C(y) smooth completion of C(y). Write
Coo(y) = C(y)\C(y). Define:

UK (y) = ker[KM (k(y) = D (K 1(k(2) & KM (k()))).

2€Ceo(y)

where the z-component of the map is defined by a — (9.(a),8,(7, U a)) where 7, is a
uniformizer at z and §;(a) is the tame symbol at z. The kernel of the map, therefore the
group UK, (y) does not depend on the choice of m,. When r = 1, it is the group of rational
functions on C(y) which takes value 1 at all points of Cao(y).

Definition 3.1.1. [35, Def. 1.1] Wiesend’s tame ideal class group in degree 7 is defined as:

Cr(X) = coker| €D UKoa(y) 2 @ KM(k(2))).

yEX(l) (EEX(O)

where O is given by the composition of the natural injection UK, 11(y) — KM, (k(y)) followed
by the boundary map of the Gersten complex of the Milnor K-sheaf.

Note that if X is proper C1(X) = SK1(X) as desired. In [23, ¢f. Thm. 5.1] Schmidt
showed that Cy(X) is isomorphic to ho(X) where h denotes the Suslin’s algebraic singular
homology. Yamazaki [35, Thm. 1.3] extended this to higher degrees and proved the following

theorem which allows us to use the tools from motivic homology and is central for this section.
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Theorem 3.1.2. [85, Thm. 1.3] Let X be a variety over a perfect field and let v > 0. Then

we have a canonical isomorphism
¢r : Co(X) = HM (X, Z(-7)).
Here the map ¢ is defined as the composition

C(X) = P KV (k)= @ HM(z,Z(-r)) - HY(X,Z(-r)).

z€X(0) =€X(0)

The middle isomorphism follows from 1.3 and 1.4. The right hand map is given by the

covariant functoriality of the motivic homology.

3.2 The reciprocity map

In this subsection we define the reciprocity map px. First we note the following, there is an

exact sequence
0= HM(X,Z(5))/n — HM(X,Z/n(5)) = HZ (X, Z/(5))[n] = 0

Since H}(X,Z(j)) venishes for i < j (cf. 1.2.1), we have HM (X, Z(:))/n = HM(X, Z/n(3)).
Using this and Thm. 3.1.2 we identify C,(X)/n with H*(X,Z/n(—r)) in what follows.
The map c}};l_l now reads as

c;{,l,,’fl 1 C1(X)/n — HZX*H(X,Z/n(d+ 1))

ét,c

The reciprocity map is defined as

—11

x 1 Co(X) = lim C1(X) /n X2 FEE(X, 2 /n(d + 1)) 2 ¥(X)

ét,c

where the right isomorphism is given by the Poincare duality. To see that this map is
compatible with the map p’ which is recalled in the introduction, it is enough to show the

following diagram is commutative [35, Sec. 4.2].
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@zeX(o) Ci(z) —— Cy(X)

~

l @pw Px

() OPs ab )
®I€X(0) (I) —_— JIEX(()) 7T1 (l’)—’- Wf (X)

Here the composition of the two horizontal maps gives p’y. The left triangle is commutative
since the maps p, and p, are the same. This follows since the reciprocity map and cycle
class map agrees for a point z and the map ¢; : C1(z) — HY(z,Z(-1)) is the identity. The
commutativity of the right square follows since the maps C;(Jn are functorial with respect
to scheme morphisms. Similarly we see that ker(px/n) = ker(c}}{l) and coker(px/n) =
coker(c}’l{l) [35, Thm. 4.2]. Using this we get the following theorem as a direct consequence

of the Thm. 2.3.3(b).

Theorem 3.2.1. Let U be smooth variety of dimension d over a finite estension k of Qy.
Assume there exists a projective smooth variety X with good reduction over k such that U is

an open variety of X. Then the map
pu/n: CL(U)/n — 788(U) /n.
18 an tsomorphism for all n > 0.
O

Remark 3.2.2. Without the good reduction assumption theorem does not hold. Sato [22]
constructed a smooth projective surface X over a p-adic field where the above map is not

injective.
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