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1. INTRODUCTION

Our object of study is branching laws of Zuckerman’s derived functor
modules Aq(A) with respect to symmetric pairs of real reductive Lie groups.

Let Gy be a real reductive Lie group with Lie algebra go. Fix a Cartan
involution 6 of Gy so that the fixed set Ky := (Go)? is a maximal compact
subgroup of Gg. Write K for the complexification of Ko, go = €0 @ bo
for the Cartan decomposition with respect to 6, and g := go ®g C for the.
complexification. Similar notation will be used for other Lie algebras. The
cohomologically induced module A4(A) is a (g, K)-module defined for a 6-
stable parabolic subalgebra q of g and a character A\. The (g, K)-module
Aq(X) is unitarizable under a certain condition on the parameter A and
therefore plays a large part in the study of the unitary dual of real reductive
Lie groups. ’

The definition of Aq4()) involves the derived functor of the Zuckerman
functor (or the Bernstein functor). This construction can be regarded as a
special case of the cohomological induction of (g, K)-modules. Let (g, K)
be a pair (Definition 2.1) and let C(g, K') be the category of (g, K )-modules.
Suppose that (b, L) is a subpair of (g, K) and that K and L are reduc-
tive. Following the book of Knapp and Vogan [KV], we define the func-
tors PP and IPf : C(9,L) — C(g,K) as V — R(g, K) ®p(y) V and
V — Hompg 1y(R(g, K), V), respectively. See Section 2 for the definition
-of the Hecke algebra R(g, K). Let V be a (§, L)-module. We define the co-
homologically induced module as the (g, K)-module (Pri’l{{) ;(V) for j €N,
where (P,ff)j is the j-th left derived functor of Pé’f. Similarly, we de-
fine (I2F)7(V), where (I )/ is the j-th right derived functor of IP7'. If §
is a f-stable parabolic subalgebra, which we denote by q, then these func-
tors produce (g, K )-modules called A4()). To be more precise, write g for
the complex conjugate of ¢ and put [ :=.q M ¢. Then we have the Levi
decomposition q = [+ u for the nilradical u of q. Suppose that Go has a
complexification G and write @ and L for the connected subgroups of G with
Lie algebras g and [, respectively. For a one-dimensional (g, L N K)-module
C,, Zuckerman’s derived functor module is defined by

top

4,0 = (PP s (Cre Ae/),
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where s = dim(un €).

One of the fundamental problems in the representation theory is to de-
compose a given representatioh into irreducible constituents. In particular,
branching problems ask how an irreducible representation decomposes when
restricted to a subgroup. To begin with, we consider the restriction of (g, X )-
modules to K, or equivalently, to the compact group Kjy. In this case, any
irreducible (g, K')-module decomposes as a direct sum of irreducible repre-
~ sentations of K and each K-type occurs with finite multiplicity. For Aq(}),
an explicit branching law of the restriction Aq(\)|x for weakly fair A is
known as generalized Blattner’s formula (see Fact 2.13, [Bie, §IL7], [KV,
5V.5)).

On the other hand, the restriction to a non—compact subgroup is more
complicated. Let o be an involution of Gy that commutes with 6 and let G,
be the identity component of {Gg)?. The pair (Go, Gy) is called a symmetric
pair. Write g’ for the complexified Lie algebra of G{) and write K’ for the
complexiﬁ(‘a‘rion of the maximal compact group K := (Gp)? of Gp. If

o is non-compact, the restriction Aq(\)|(y, x7) does not decompose into
irreducible (g', K')-modules in general. In fact, A, ()\)|(g, K" does not have
any irreducible submodule in many cases.

Nevertheless, there are classes of (g, K)-modules which decompose into
irreducible (g’, K’)-modules and explicit branching formulas were obtained
for some particular representations ([DV10], [GWO00], [Kob93], [Kob94],
[Kob96], [Kob07], [K@03], [Lok00], [#S08], [Sekil], [Spell]). In his se-
ries of papers [Kob93], [Kob94], [Kob98a], [Kob98b]|, Kobayashi introduced
the notion of discretely decomposable (¢, K’)-modules and gave criteria for
the discretely decomposable restrictions (see Fact 3.8). By virtue of this
result, we can single out Aq()\) that decompose into irreducible (g, K')-
modules. See [KO12] for a classification of the discretely decomposable re-
strictions Aq(\)]|(g,x7)- Recent developments on these subjects are discussed
in [Kobl11].

Our aim is to find a branching law of A4 ()\)|(gr’ &y when it is discretely
decomposable. The main results of this thesis are Theorem 5.1 and explicit
branching formulas in Sections 8 and 9. Theorem 5.1 gives a decomposition
of the restriction Aq(\)|y,k7) corresponding to the K'-orbit decomposition
of a flag variety of K. Let K/(Q N K) = | [;_, ¥; be the K'-orbit decom-
position and choose representatives k; € Ko such that ¥; = K'k (Q N K).
Put

0; = Ad(kj)a, Q= kiQk; ",
s; =dimK/(QNK) —dimYj, wu;:=dim(@Q;NK') —dimC},

where C? is a maximal reductive subgroup of Q; N K'. Taking conjugation
by k;, we regard the one-dimensional (g, L N K )-module Cy ® A*P(g/q) as
a (4; N g’, C})-module by restriction. We now state Theorem 5.1:
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Theorem. Let (Go,Gy) be a symmetric pair of connected real reductive
Lie groups and q a 0-stable parabolic subalgebra of g. Suppose that Aq()\)
is non-zero and discretely decomposable as a (g, K')-module with X in the
weakly fair range. Then we have an equation of virtual characters of (g', K')-
modules \

(1.1) -
[AqWN) g, k1]

—_ zn: Z (_1)d—|—5j+u]-

7=1 dEZZO

(p;;;{;’,c;,)d(@ ® M\ (o/3) ® S(g/(@; -+ g’)))l -

Loosely speaking, it describes the restriction of cohomologically induced
modules in terms of the cohomological induction of the restriction:

cochomological

(q, LA K) induction (g,K)

restriction l l restriction
g, Ng,C%) oo (¢, K’
(qJ g J)cohomological (g ! )
induction

Using this, we derive branching formulas of Aq()\)|(y k) in Sections 8 and
9. We will see in each case that the restriction Aq()\)|(y, &) is a direct sum
of derived functor (g’, K’)-modules so branching formulas take form of

Aq(>‘)|(g’,K’) = @ @m(q,’ X)Aq’ (X): m(qlv )‘I) eN.
a N

In [KO12], the classes of discretely decomposable restrictions Aq(\)|y,x7)
were divided into two types. One is what we call discrete series type. This
means that there exists a f-stable Borel subalgebra b contained in g such
that Ap(A)|(g,xv) is also discretely decomposable. We call the other classes
isolated type. We treat isolated type in Section 8 and discrete series type
in Section 9. In most cases of isolated type, the parabolic subgroup @ is
maximal and the K’-orbit decomposition of K/(Q N K) is rather simple.
We can thus obtain explicit branching formulas from Theorem 5.1. For
discrete series type, we use another expression (Theorems 9.1 and 9.2) in
addition to Theorem 5.1. If the Levi subgroup Ly = Ng,(q) is of Hermitian
type, we write a (g, K)-module A4()\) as an alternating sum of Ag(u) for
a Borel subalgebra b using a BGG type resolution of one-dimensional [p-
module. Then we describe the restriction Aq(\)|(y &) as an alternating sum
of cohomologically induced modules in Theorem 9.1. If q is “close” enough to
the Borel subalgebra b, then it turns out that A, (Mg, decomposes into a
direct sum of (limit of) discrete series representations for Gj (Theorem 9.2).

For the proof of Theorem 5.1, we realize (g, K)-modules Aq(\) as the
global sections of sheaves on complex partial flag varieties in Theorem 4.12,
using D-modules. The localization theory by Beilinson—Bernstein [BB81]
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provides a realization of (g, K)-modules as K-equivariant twisted D-modules
on the full flag variety of g. A relation between cohomologically induced
modules and twisted D-modules on the complete flag variety was established
by Hecht-Miligi¢-Schmid-Wolf [HMSW]. We now recall their theorem. Let
G be a connected real reductive Lie group and let (g, K) be the pair defined
in the above way. Suppose that § = b is a Borel subalgebra of g and L is
* a maximal reductive subgroup of the normalizer Ng(b). Let X be the full
flag variety of g, Y the K-orbit through b € X, and i : ¥ — X the inclusion
map. Suppose that V is a (b, L)-module and b acts as scalars given by
A € b* := Homg(b,C). Write Vy for the corresponding locally free Oy-
module on Y and view it as a twisted D-module. Let D x,» be the ring
of twisted differential operators on X corresponding to A and define the
Dx y-module direct image i;Vy. Then the following is called the duality
theorem: ' '

Theorem 1.1 ([HMSW]). There is an isomorphism of (g, K)-modules

top

(X, 50 V)" = (181" (V' ® A\(8/0)")
fors e N andu =dim K/L — dimY.

See [Bie], [Cha93], [Kit12], [MP98], [Sch91] for further developments on
this subject. Mili¢ié-Pandzi¢ [MP98] gave a miore conceptual proof of The-
orem 1.1 by using equivariant derived categories. In [Cha93] and [Kit12],
Theorem 1.1 was extended to the case of partial flag varieties. In this thesis
we will realize geometrically the cohomologically induced modules in the
following setting. Let i : K — G be a homomorphism between complex
linear algebraic groups. Suppose that K is reductive and the kernel of ¢
is finite so that the pair (g, K) is-defined. Let H be a closed subgroup of
G. Put M := i"'(H) and take a Levi decomposition M = L x U. We
write ¢ : Y = K/M — G/H = X for the natural immersion. Let V' be a
(h, M)-module. We see V as a (§), L)-module by restriction and define the
cohomologically induced module (P[f,’f) (V). In this generality, we can no
longer realize it as a (twisted) D-module on X = G/H. Instead we use the
- tensor product of an i~ 'Dx-module and an i~ x-module associated with
V. which is equipped with a (g, K)-action (see Definition 4.5). We will prove
that (Theorem 4.12)

Theorem. Suppose that V is an i 1§x-module associated with V (see Def-
inition 4.5). Then we have an isomorphism of (g, K)-modules

. : top
(Y, iYL ®im16y V) = (BEf u-s (V ® N\(s/ h))

for s€N andu=dimU.
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Here £ is the invertible sheaf on Y defined just before Theorem 4.12 and
the direct image i, £ in the categories of D-modules is defined as

i (£ ®oy Qy) ®py i*Dx) ®ox O
Hence its inverse image i ', L as a sheaf of abelian groups is given by
(£ ®oy Qy) XDy i"Dx Ri-10x ’L'_1Q§,

For a (B, L)-module V, an i~*Ox-module associated with V' is constructed
in. Proposition 4.14. Therefore, Theorem 4.12 and Proposition 4.14 yield
a geometric realization of cohomologically induced modules in the setting
above.

This thesis is organized as follows. In Section 2 we recall the definition
of cohomological induction and A4()) following [KV] and prove some basic
properties on them. In Section 3 we define the notion of discrete decompos-
ability and admissibility of (g, K )-modules. We recall Kobayashi’s criterion
for the discrete decomposability of the restriction Aq(M)|(y,x7) and prove
that the criterion is also equivalent to that a certain subspace of g’ is a
O-stable parabolic subalgebra (see Theorem 3.7). Section 4 is devoted to
a geometric realization of cohomologically induced modules. By using this

- realization, we prove Theorem 5.1 in Section 5. In Section 6, we give cer-

tain isomorphisms and exact sequences among Aq(A) for Go = U(m,n) and
Go = Sp(m,n) (Theorems 6.3 and 6.5). These will be applied in the subse-
quent sections to rewrite the right hand side of (1.1). We refer to [KO12],
the classification of discretely decomposable Aq()) in Section 7. We derive
branching laws of Aq(A)|¢ x7) in Sections 8 and 9.
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2. COHOMOLOGICAL INDUCTION

In this section, we fix notation concerning cohomological induction and
Aq(\) modules, following [KV].

Let Ky be a compact Lie group. The complexification K of Ko has a
structure of reductive linear algebraic group. Since any locally finite action
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of Ky is uniquely extended to an algebraic action of K, the locally finite
Ky-modules are identified with the algebraic K-modules.

Define the Hecke algebra R(Ky) as the space of Ko-finite distributions on
Ky. For S € R(Kjy), the pairing with a smooth function f € C'(Kp) on Ky
is written as

/ F(k)dS(R).
Ko

The product of S,T' € R(K)) is given by convolution

S«T:fm F(kk')dS (k)dT ().
Kox Ko ) :
The associative algebra R(Kj) does not have the identity, but has an ap-
proximate identity (see [KV, Chapter I]). The locally finite Kg-modules are
identified with the approximately unital left R(Kp)-modules. The action
map R(Kp) x V — V is given by

(S,v) — /K kv dS(k)

for a locally finite Kp-module V. Here, kv is regarded as a smooth function
on Ky that takes values in V. If dko denotes the Haar measure of Kp,
then R(Kp) is identified with the K-finite smooth functions C(Ko)x, by
fdko — f and hence with the regular functions O(K) on K. As a C-algebra,
we have a canonical isomorphism

R(Ko) ~ €D Endc(V;),

TEI?

where K is the set of equivalence classes of irreducible K-modules, and V-

is a representation space of 7 € K. Hence R(Kjp) depends only on the

complexification K, so in what follows, we also denote R(Ky) by R(K).
The Hecke algebra R(K) is generalized to R(g, K) for the following pairs

(9, K).

Definition 2.1. Let g be a finite-dimensional complex Lie algebra and let
K bea complex reductive linear algebraic group with Lie algebra €. Suppose
that ¢ is a Lie subalgebra of g and that an algebraic group homomorphism
¢ : K — Aut(g) is given. We say that (g, K) is a pair if the following two
assumptions hold. ‘ '
o The restriction ¢(k)|e is equal to the adjoint action Ad(k) for k € K.
‘o The differential of ¢ is equal to the adjoint action adg(®).

Remark 2.2. Let G be a complex algebraic group and K a reductive linear
algebraic subgroup. Then the Lie algebra g of G and K form a pair with
respect to the adjoint action ¢(k) := Ad(k) for k € K. »

Definition 2.3. For a pair (g, K), let V be a complex vector space with a
Lie algebra action of g and an algebraic action of K. We say that V is a
(g, K)-module if ’
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o the differential of the action of K coincides with the restriction of
the action of g to ¢ and
o (p(k)E)v =k(¢(k~(v))) forke K, €g,andv e V.

We write C(g, K) for the category of (g, K )-modules.
Let (g, K) be a pair in the sense of Definition 2.1. We extend the repre-

sentation ¢ : K — Aut(g) to a representation on the universal enveloping
algebra ¢ : K — Aut(U(g)). Define the Hecke algebra R(g, K) as

R(g, K) := R(K) ®y) U(g)-

The product is given by
(S®€) - (Ton) =) (5= ¢()7'OT) ® &n)
i
for S,T € R(K) and £,m € U(g). Heére & is a basis of the linear span of
$(K)¢& and €° is its dual basis. As in the group case, the (g, K)-modules are

identified with the approximately unital left R(g, K )—modules The action
map R(g, K) x V — V is given by

(S® & v) / k(ev) dS(k)

for a (g, K)-module V.

Let (g,K) and (h,L) be pairs in the sense of Definition 2.1. Let ¢ :
(h, L) — (g, K) be a map between pairs, namely, a Lie algebra homomor-
phism i, : § — g and an algebraic group homomorphism igp : L — K
satisfy the following two assumptions.

e The restriction of 4,15 to the Lie algebra I of L is equal to the differ-
ential of igp.

o ¢x(l)oialg = taig 0 #r(l) for I € L, where ¢ denotes ¢ for (g, K) in
Definition 2.1 and ¢, denotes ¢ for (h, L). '

We define the functors Pbg’L ,IE’K C(h, L) — C(g, K) by

PE[ -V = R(g, K) ®r,1) V-
IPF -V (Hompg, 1) (R(g, K), V))k,

where (-)k is the subspace of K-finite vectors. Then Ph””III{ is right exact and
I B’L is left exact. Write (P, f)J for the j-th left derived functor of Pg’K
and write (I,?’L Y for the j- th right derived functor of Ig’L We can see
that I H’L is the right adjoint functor of the forgetful functor For (V) =
R(g, K)®p(g,x)V =V and Pg”L is the left adjoint functor of Foth L V)=
Hom (g, x)(R(9, K), V)L

If ia1g and 4 igp are injective, we say (h, L) is a subpalr of (g, K) and identify
(b, L) with its image.

The following properties are straight-forward.
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Proposition 2.4. Let i : (h,L) — (g, K) be a map between pairs and V a
(9, L)-module.. ‘ "
(i) For k € K we have another map of pairs Ad(k)o : (h,L) — (g, K).
If we define the functors kPhg”g and ’“Ig’f with Tespect to Ad(k) o ¢,

they are canonically isomorphz’c to PE’L and I L , respectively.

(i) Let i : (g,K) — (§, K) be another map of pairs. Then

o 197 ~ IB’

E) 3 ~ 97
Pg, o P¥E ~ P oL =

5K
o ~ PBY, D%
Moreover, we have convergences of spectral sequences
) , ~7k ~7k ! )K j ~7IA{‘ 1 i’
(P K)J' o (PE); = (PE1 )jwgs (S o (g = Iy Y7
We also observe the following property concerning annihilator of (g, X)-
modules.

Proposition 2.5. Let (h, L) be a subpair of (g, K) and V a (b, L>-m0dule.
Suppose that u is a K-stable tdeal of g and u C h. IfV is annihilate by u,
then (Phg”i{ ); (V) is also annihilated by u.

Proof. We simply write P(V) for (P[i’f)j(V). For a u-module W, write
aw :u® W — W for the action map. We can see u as a (g, K)-module, or
a (h, L)-module. Then there is Mackey isomorphism [KV, Theorem 2.103]

®:Pu®V) S uP(V)

and the diagram

Pua V) —2-ug P(V)

Plav) l %

P(V)
commutes by [KV, Theorem Prop081t10n 3.77). Hence ay = 0 implies
apw) =0. ' a

In the context of unitary representations of real reductive Lie groups, we
are especially interested in the (g, K')-modules cohomologically induced from
one-dimensional representations of a certain type of parabolic subalgebras,
which are called Aq(\) modules.

We say Gy is a real linear reductive Lie group if Gy is a closed subgroup
of GL(n, R) and stable under transpose. We say Gy is a real reductive group
if Gy is a finite covering group of a real linear reductive Lie group.

Let Gy be a connected real reductive Lie group with Lie algebra go. Fix a
Cartan involution @ so the #-fixed point set Ko = G§ is a maximal compact
subgroup of Gg. Let go = +po be the corresponding Cartan decomposition.
We let 6 also denote the induced involution on gy and its complex linear
extension to g. ‘

Let q be a parabolic subalgebra of g that is stable under . The normalizer
Ng,(q) of q in Gy is denoted by Lg. The complexified Lie algebra [ of Lg is
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a Levi part of q. Let bar # — Z denote the complex conjugate with respect
to the real form gg. Then we have N § = [ and q = [+ u for the nilradical
uof q.

To describe #-stable parabolic subalgebras of g, it is convement to use the
following convention:

Definition 2.6. Let a €  be a vector such that ad(a) on g is semisimple
with real eigenvalues. We say that a parabolic subalgebra g of g is given by
a and write q = g(a) if q is the sum of non-negative eigenspaces of ad(a).

"~ Then q is a f-stable parabolic subalgebra and we get the Levi decompo-
sition g = [+ u, where [ and u are the sums of zero and positive eigenspaces
of ad(a), respectively. We write L(a), I(a), and u(a) for the corresponding
Levi subgroup, Levi subalgebra, and the nilradical. Note that any 0-stable
parabolic subalgebras are obtained in this way.

Let K, be the complexification of Ly N Ky. Since K7y, is connected, one-
dimensional (I, K1)-modules are determined by the action of the center
3(I) of . Let C, denote the one-dimensional (I, K1,)-module correspond-
ing to A € 3(I)* := Homg(3(f),C). With our normalization, the trivial

_répresentation corresponds to Cy. The top exterior product AP(g/q) re-
garded as an (I, K1 )-module by the adJomt action corresponds to Cy,y) for
2p(u) := Traceady(:).

Definition 2.7. Let Cy be a one-dimensional (I, K7)-module. We say A
is unitary if \ takes pure imaginary values on the center 3(lp) of Iy, or
equivalently, if C, is the underlying (I, Kz )-module of a unitary character
of L().

Let C, be a one-dimensional (I, K1)-module. We see C)\+2p(uj ~ C)®
Cap(u) as a (4, K1)-module (resp. a (4, K .)-module) by letting ii (resp. u) acts
as zero. Then, for inclusion maps of pairs (§, Kp) — (g, K) and (q,Kr) —
(g, K), define the cohomologically induced modules (P, i KL) (Cat2p(u)) and

(Ié"KL) (Crtapu))-
The functor P§’K is called the Bernstein functor and denoted: by H
Since P{’K ~ I o Pf’}{{LL and qu’KL is exact, it follows that (Pcf”KL )J ~

(TI%, )j © Pag’KLL for the j-th left derived functor (II 5. of I . Therefore,
we have

( a, KL)J (CA+2p(u)) - (HKL)J (U(g) ®U(q) (CA+2p(u))
Similarly, FﬁL =17 g’K is called the Zuckerman functor and we have

(I8 Y (Carap) = (T, ) (Homy ) (U(9), Corap) ) xe)

* for the j-th right derived functor (TE. ) of TE,. Put s = dim(ung). We
define

AqN) = (PP )s(Cogzpiy) = (TIK,)s(U(8) @) Crizp)-
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We also define
K
Ef—;,j (V) ::f(Pﬁ%KL )iV C2p(u))
for an (I, K1.)-module V in this situation so that
AgX) = £2,(C).

We now discuss the positivity of the parameter X. Let hp be a fundamental
Cartan subalgebra of Iy so that hg M ¥ is a Cartan subalgebra of Iy M &.
Choose a f-stable positive system A1 (g, h) of the root system A(g, h) such
that AT(g,) C A(q,h) and put

n= P gu
a€At(g)b)

We fix a non-degenerate invariant symmetric form (-,-) that is positive def-
inite on the real span of the roots. In the following definition, we extend
characters of 3(I) to b by zero on [[,[] N h.

Definition 2.8. For A € §* we say A is in the good range (resp. weakly good
range) if

Re () + p(u), @) > 0 (resp. > 0) for o € Ay, h)
and in the fair range (resp. weakly fair range) if
Re (A +p(u),a§3(())'> 0 (resp. > 0) for o € A(u,h).

Suppose that V is an ([, Ky )-module and has an infinitesimal character A.
We say V is good (resp. weakly good) if X is in the good range (resp. weakly
good range).

Definition 2.9. Let V be a (g, K )—Iriodule. We say V' is unitarizable if V'
admits a Hermitian inner product with respect to which go acts by skew-
Hermltlan operators on V.

The cohomologically induced modules and Aq(X) have the followmg prop—
erties.

Fact 2.10 ([KV]). Let V be an (I, K1)-module, which we regard as a (§, K1)-
module by letting u act as zero.
(i) If V is of finite length, Eg’j(V) is of finite length as a (g, K')-module
for any ;. .‘
(ii) If V has infinitesimal character X, then LZ (V) has infinitesimal
character A + p(u).
(iii) If V is weakly good, then E (V) =0 for j #s.
(iv) If V is irreducible and good (resp weakly good), then L3 (V) is ir-
reducible (resp. irreducible or zero).
(v) If V is unitarizable and weakly good, then [,t—],s(V) is unitarizable.

Fact 2.11 ([KV)). Let Cy be a one-dimensional (I, K1)-module.

(1) Aq(\) is of finite length as a (g, K)-module and has infinitesimal
character A + p(n).
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(il) If X is in the weakly fair range, then ,Cg’j (Cy) =0 forj #s. _

(iii) If C, is good (resp. weakly good), Aq(X) is irreducible (resp. irre-
ducible or zero). ‘

(iv) If X is unitary and in the weakly fair range, then Aq(A) is unitariz-
able. )

In the next proposition we suppose that Gg is compact so g = £. Then
it turns out that Aq()) is an irreducible finite-dimensional representation of
Gy or zero. To be more precise, let F¥ (1) denote the irreducible K-module
with highest weight p for a dominant integral weight p.

Proposition 2.12 ([KV, Corollary 4.160]). Suppose that Gg is compact so
g=t and let W be the Weyl group. Then
'C%,j (Cy) = F¥(u) .
if there ezists w € W such that w(X + p(n)) = p + p(n) and l(w) = s — j,
and
LE(C) =0
if otherwise.

The proposition can be viewed as an algebraic analog of the Bott-Borel—
Weil theorem.

For non-compact Gp, the K-type of A4()), namely, the branching of re-
striction of Aq(\) to K is known as generalized Blattner’s formula. "Put
t:= h N & which is a Cartan subalgebra of €. We set the positive system as
ATt =AnNgt).

Fact 2.13 ([KV, Theorem 5.64]). Let FE(u) be the irreducible K -module
with highest weight 1 € t*. Then it follows that

3 (~1)f dim Homg (P25 );(Cx), F¥ (1)
2 ;

= Zs:(—w' idimHomKL (SP(unp) ® Cy, W (N, F¥(n))).
=0 p=0

In particular, if X is in the weakly fair range,

dim Hompg (Aq(A), F¥ (1))

i - o .
=3 (1) 3 dim Homge, (S(u N p) ® Cyap(wy, BN FX (1),
j:O p:O s

We can rewrite this formula as follows. Comnsider the positive system of
A(INE, 1) induced from AT (8, t). For a dominant integral weight p € t* for
K1, let m(y) be the multiplicity of FX=(u) in S(unp) ® Crygpunp)- Then
for weakly fair A :

dim Homg (45(\), F¥ (1)) = > (-1 ®m(w(p + p(nn¥) - p(n N ¥)),
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where w runs over the element of the Weyl group of K such that w(u+p(nnN
) — p(nN€) is dominant for the positive system of A(INE,t).

3. DISCRETELY DECOMPOSABLE (g, K')-MODULES

Let G be a connected real reductive Lie group with Lie algebra go. Let
0 be a Cartan involution of Gy and write Ko := G§ for the corresponding
maximal compact subgroups of Gy. The Cartan decomposition is written as
go = Eg 4+ po. We denote by g, &, etc. the complexifications of go, o, etc. Let
6 also denote the induced actions on go and their complex linear extensions
to g.

Definition 3.1. Let V be a (g, K)-module. We say that V is discretely
decomposable if V admits a filtration {F,V }pen such that V = ey FpV
and F,V is of finite length as a (g, K)-module for any p € N.

If V is unitarizable and discretely decomposable, then V' is an algebraic
direct sum of irreducible (g, K )-modules (see [Kob98b, Lemma 1.3]).

—~ad
Let Go " be the set of isomorphism classes of irreducible (g, K )-modules.
. ad
If V is a (g, K)-module of finite-length and 7 € Go ", we write [V](r)

for the multiplicities of 7 appearing in the composition series of V. More
—~adm

generally, for a discretely decomposable (g, K)-module V, let [V]: Go  —
N U {co} be the function given as [V](r) := sup{[F,V](r) : p € N}, where
F,V is a filtration as in Definition 3.1. It is easy to see that [V] does not -

, —~ad
depend on the choice of filtration F,V. For two functions ¢y, c3 : Goa "
—~adm

NU {0}, we write 015 cg if ¢1(m) < ca(m) holds for any 7 € Go
Definition 3.2. Let V be a discretely decomposable (g, K')-module. We

~—~adm

say V is (g, K)-admissible if [V](m) < oo for any m € Go

Lemma 3.3. Let {V,}nen be an inductive system of (g, K)-admissible mod-
—~ad
ules. Then lim infy[Vy](7) > [lim V] () holds for any 7 € Go .

Proof. Suppose that [hﬂn Vpl(m) > m for m € N. This means that there
exists a submodule W of lim V4, which is of finite length and [W](r) > m.
Then we can find an integer ng such that the image of Vj,, in V contains W,
which implies [V;](7m) > [W](7w) > m for n > no. O

Definition 3.4. Let (h, L) be a pair (h is not necessarily reductive). Sup-
pose that a (§, L)-module V has a filtration of submodules {F,V },en such
that V = ey FpV and FpV/Fp_1V is an irreducible (%, L)-module for any
p € N. We write s(V) 1= grgV = @,y FpV/Fp-1V for the associated
graded module.

The (§, L)-module s(V) does not depend on the filtration (if at least one
such filtration exists).
- In the following two lemmas, we see admissibility of cohomologically in- '
duced modules under certain assumptions.
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Lemma 3.5. Let q be a 0-stable parabolic subalgebra of g and define [,‘u,
K7y, -as in Section 2. Suppose that V is a (q, K1)-module on which & acts
locally nilpotently. If For%fl{{"L (V) s (I, Kr)-admissible, then (P{}I(-(L)j (V) is
(9, K)-admissible for any j € N. :

Proof. Since the ti-action on V is locally nilpotent and For(ﬁ’lf{’zl (V)is (I, Kg.)-
\admissible, there exists a filtration {F,V }pen of V' such that the successive
quotients F,V/F,_1V are irreducible (q, K1)-modules. Then & acts as zero
~ on the associated graded module s(V) = grpV. Fact 2.10 (i) implies that
(P{}I((L)j(FpV/Fp_lV) and (Pc-f’,’II{{L)j(s(V)) are discretely decomposable as
(g9, K)-module. Using the exact sequence
)K ) 7K 1K :
(PP, )i (Fp1V) = (PP, )i(FpV) = (P, )i(FpV/ Fp—1V),

we conclude that (P{’?L );(F,V) is discretely decomposable and that .

P
7K IK g e
(PR, )3 (FoV )] < D_I(PRIG )i (FV/Fia V)] < (PR, ) (s(V))):
, =0 .

Therefore, the isomorphism liﬂp(P{’II({L )i(FpV) ~ (P{’II{{L) (V) and Lemma 3.3
give [(PEF);(V)] < [(PPR,)i(s(V))]. 1t follows from Fact 2.10 (i) and
(i) that (P{}I{(L)j(s(V)) is (g, K')-admissible and hence (P{fL)j(V) is also
(9, K')-admissible. ' O

Lemma 3.6. Let K be a reductive group and M an algebraic subgroup
with Levi decomposition M = L x U. Let V be an (m,L)-module and
a € | a semisimple element such that every eigenspaces of a in'V is finite-
dimensional. Then (P:{,II{,)J (V) is K-admissible for any j € N.

Proof. 1t is enough to show that dimHomK((P:;,Iz\j(V),'FK(“)) < oo for
any p, where F¥(u) is an irreducible K-module with highest weight u. By
[KV, Proposition 5.113],

Homg (PE5);(V), F¥ (1)) ~ Ext],  (V, Foryyd (F¥ (1))
~ Hij(m,L; V® For?}?(FK(u))*)
~ H;j( V® For’gj’fﬁ FEu)")~.

Using standard resolution, we see that I;(u; V ® For‘g"’fg (FX(w))*) is a sub-

m.

quotient of A7 u® V®Foré’}£' (FX(u))*. By our assumption, the 0-eigenspace
ofain Nug Ve For;“.’,? FX(u))* is finite-dimensional. We therefore con-
clude that H;(u; V ® For'g:’lg FX(u))*)F is finite-dimensional. O

Let o be an involution of Go and G} the identity component of the fixed
point set G§. We replace the Cartan involution ¢ by its Gg-conjugation if
necessary so that 9 and o commute. Then the restriction of § gives a Cartan
involution of Gh. We write K} = (Gg)° and gy = & + py for the maximal

_compact subgroup and the Cartan decomposition with respect to 0.
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We write Ny and Ny for the nilpotent cones of g and g/, respectively. Let.
pry_,y denote the projection from g onto g’ along g=¢.

Theorem 3.7. Let (Go, Gyy) be a symmetric pair of connected real reductive
Lie groups defined by an involution o. Let q be a 0-stable parabolic subalgebra
of g. Then the following three conditions are equivalent.

(i) Aq(N\) s non-zero and discretely decomposable as a (g, K')-module
for some X\ in the weakly fair range.
(ii) Aq()) is discretely decomposable as a (¢, K')-module for any X in
the weakly fair range. ‘
(ili) For any element k € K, the subspace

q' == Ny (Ad(k)gNp') + (Ad(k)g N ')

is a 0-stable parabolic subalgebra of g', where Nu(Ad(k)qNyp’) is the
normalizer of Ad(k)qNyp’ in ¥.

The proof is based on the following criterion for the discrete decompos-
ability ([Kob98b, § 4], see also [KO12, Theorem 2.8]).

In the following fact, we take a o-stable Cartan subalgebra ty of ¥y such
that t; is a maximal abelian subalgebra of £77. We choose a positive system
AT (&, t) that is compatible with some positive system of the restricted root

system L(€,/—1t57).

Fact 3.8. In the setting above, suppose that q is given by a A (&, t)-dominant
vector a € \/—1ty. Then the following conditions are equivalent.

(i) Aq(\) is non-zero and discretely decomposable as a (g, K')-module
for some A in the weakly fair range.
(i) Aq()) 4s discretely decomposable as a (g', K')-module for any X in
the weakly fair range. ,
(iif) pry_g(unNp) C Ny for the nilradical u of q.
(iv) pryy(Ad(K)unyp) C Ny for the nilradical u of q.
(v) oa(a) > 0 whenever o € A(p, 1) satisfies a(a) > 0.

We use the following lemma for the proof of Theorem 3.7.

Lemma 3.9. LetV be a finite-dimensional vector space with a non-degenerate
symmetric bilinear form. For subspaces Vi C Vo C V, we denote by Vlva
the set of all vectors in Vy that are orthogonal to Vi.

Suppose that X is a subspace of V such thatV = X & X1V, Letp be the
projection onto X along X LV Then for any subspace W C V, it follows
that

W nX)HX =pw").
Proof. We have
WXy X =wnxX)VnX =W +XV)nX =pW"),

so the assertion is verified. O
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By Fact 3.8, it is enough to prove that:

Lemma 3.10. Let (Go,Gy) be a symmetric pair and let q be a 6-stable
parabolic subalgebra of g. Then the following two conditions are equivalent.

(i) The subspace
g = Ne(@np) +(@ny)

is a 0-stable parabolic subalgebra of ¢'.
(i) pry_,g(uNp) C Ny for the nilradical u of q.

Proof. First of all, ¢’ defined above is a subalgebra of g because [gnp’, gnp’] C
qN¥ C Ne(gnyp').

Choose a non-degenerate invariant symmetric form (-,-) on g such that
the subspaces ¥/, £77,p’, and p~° are mutually orthogonal. We use the letter
+ for orthogonal spaces with respect to (-,-) as in Lemma 3.9.

Assume that (i) holds. The subspaces u = q*% and ' = ¢ 19" are the
nilradicals of g and ¢, respectively. Because q and ¢’ are f-stable, we have
(@Np)t? = unypand (¢ Np)Y¥ = Ny In view of Lemma 3.9 and
qnNp’ =g Ny, we get

v Pry,y (N p) = prg_((aN p)P) = (qN p,)J'pl =(g'N p,)—Lpl =uwny.
The right side is contained in Ny . This shows (ii).
Assume that (ii) holds. As we have seen above,
Py g (unyp) = Prg—m’((q N p)J_p) =(qN p/)_Lp"
Since the vector space (qNp’)¥ is contained in the nilpotent cone of g/, the
bilinear form (-, -} is zero on (qNp')*" and hence (qNp')** C gNyp’. Then
it follows that Ny(qNp’) = [(qNp’), (N p")1¥ Y. Indeed, for z € ¥,
z e [(@ny), @ne) e (@ [ane), (@ne) ) = {0}
& {fz, (@n "), (@np") ) = {0}
& [z, (@ny)] € qny’
&z € Ne(gny').
Put ¢’ := Np(qNp’) + (gNp’). Then
¢ = Ne(@n ) + (@np) = [@ne), (@anp) P+ @ne)

Since [(q N p"), (@ N )] C [(@N¥), (@Np)] € aN¥ C Ne(gNy'), we see
that ¢ ¢ /. We therefore have (z,y) = 0 for z,y € g% . Moreover,

g is a subalgebra of g’ because

<[q/_l_g’7q/J_g']7 ql> _ <q/J_g', [ql-LE', q/]> - < 1Ly I> {0}

As a consequence, ¢’ 1# is a solvable Lie algebra and hence contained in
some Borel subalgebra b’ of g/. Write v’ for the nilradical of b’ so n’ = Lo,
Let M := Ngs(q M p’) be the normalizer of q N p’, which is an algebraic
subgroup of K’. Then M has a Levi decomposition with reductive part Mg
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and unipotent part My (see [Hoc, §VIIL4] for the Levi decomposition). If
we denote by mpg and my the Lie algebras of Mg and My, respectively, then
the bilinear form (-,-) is non-degenerate on mp and zero on my. We then
conclude that the nilradical of Ny (qNp’) equals the radical of Ny (qNp’) with
respect to the bilinear form. As a result, [(qNp"), (qNp")¥'] = Ne(qNp’ )L
is the nilradical of Ny (q N p’) and hence [(g N p"), (g N /)] C . Since
(N ) C Ny Nb =, it follows that ¢~ = [(gN '), (g N p) ] +
(g p)¥ C n'. Hence we see that ¢’ O n'% = b’ and ¢ is a parabolic
subalgebra of g', showing (i). : O

Retain the notation and the assumption of Theorem 3.7 and suppose that
the equivalent conditions in Theorem 3.7 are satisfied. Let Q be the set of
all 6-stable parabolic subalgebras q of g" such that q; Ny’ = gNp’. Then
the parabolic subalgebra ¢’ = Ny (qNp’) + (g N p’) given in Theorem 3.7 is
a unique maximal element of Q.

On the other hand, a minimal element q" of @ is constructed as follows.
For the parabolic subalgebra ¢’ defined above, put ' = ¢’ N ¢/, which is a
Levi component of ¢’. The §-stable reductive subalgebra I’ decomposes as

= Presn),
i€l
where [. are simple Lie algebras and 3(I') is the center of I'. Put . := {i €
I:1C ¥} and define
(3.1) L=PlLeir)ne), L :=LeGr)ny)
icl il
Then we have .
o U=geb, L=[ny),Enp)+rny, LcCt
Take a Borel subalgebra b(I) of I/ and define
(3.2) ¢ =b() oL e
We claim that q” is a minimal element of Q and every minimal element
is obtained in this way. Indeed, since any element ¢ of Q is contained in
q', the parabolic subalgebra q; decomposes as (q; N I') ® u'. The condition
Ny’ = qNyp implies that ¢} > ¥ Np’ and hence g; D [,. As a consequence,
 the set Q consists of the Lie algebras q(l.) © I, ®u’ for parabolic subalgebras
(L) of /. Our claim follows from this. In particular, a minimal element of

Q is unique up to inner automorphisms of [’C.
- There is another easy way to get an element of Q.

Proposition 3.11. Suppose that o is a o-stable Cartan subalgebra of ¢y and
q is given by a vector a € /—1ty. Then the parabolic subalgebra q'(a+o(a))
of g given by a + o(a) belongs to Q. ‘

Proof. The condition Fact 3.8 (iii) implies Fact 3.8 (v) although we do
not impose the assumption just before Fact 3.8. In fact, the argument in
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[Kob98b, § 4] to prove that implication is still valid without the assumption.
Therefore, o € A(p, t) satisfies a(a + o(a)) > 0 if and only if a(a) > 0 and
. a(o(a)) > 0. We have

qny = > (patpea)Ny’
a(a)>0, af(o(a))>0
and hence qNp’ = ¢'(a +o(a)) Ny’ O

Remark 3.12. In the proposition above, the parabolic subalgebra ¢'(a +
o(a)) depends on the choice of a.

We note here some observations on Lie algebras for later use.
Lemma 3.13. Retain the notation and the assumption above. Then
gng =@ni) ol ov.

Proof. From qN¥ C Ne(qNyp’) and qNp’ = ¢ Np’, we have qNng’ C ¢’
From the proof of Theorem 3.7, we have

W =gt =[(qnp’), (@N )]+ (anp)
Cllane), @)+ @ny’)cang.

Moreover, I, = [('Np"), VNp")]+ (¥ ﬂbp') and 'Np’ C ¢ Ny’ =qNyp’ imply
that I/, € N g’. Hence qN g’ decomposes as qNg' = (qN)e L ow. O

Lemma 3.14. Retain the notation and the assumption above. We assume
moreover that qN¥ is a parabolic subalgebra of €. Then qNg' is a parabolic
subalgebra of g'.

Proof. By Lemma 3.13, gNg' = (N L) ) [, ®w. Our assumption implies
that qN I is a parabolic subalgebra of I. Therefore, N g’ is a parabolic
subalgebra of ¢’ : O

4. LOCALIZATION OF COHOMOLOGICAL INDUCTION

In this section, we give a geometric realization of cohomologically induced
modules in a general setting, which will be applied in the next section for
the study of branching laws.

Let G be a complex linear algebraic group acting on a variety (or more
generally a scheme) X. Let a : G x X = X be the action map and py :
G x X — X the second projection. Write Ox for the structure sheaf of
X and a*, p§ for the inverse image functors as O-modules. We say that an
Ox-module M is G-equivariant if there is an isomorphism a*M ~ pj
satisfying the cocycle condition. For a G-equivariant Ox-module M, the
G-action on M differentiates to a g-action on M.

If G acts on a smooth variety. X, then the infinitesimal action is defined
as a Lie algebra homomorphism from the Lie algebra g of G to the space of
vector fields 7(X) on X. Denote the image of £ € g by {x € T(X). Then
£x gives a first order differential operator on the structure sheaf Ox. Let
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ox =0 X ®c g. This module becomes a Lie algebroid in a natural way (see
[BB93, §1.2]): the Lie bracket is defined by

[f @& g@n = fog®[6,n]+ féx(9) ®n - gnx(f) ® €

for f,g € Ox and &, € g. Here f € Ox means that f is a local section
of Ox. Similar notation will be used for other sheaves. Write U(gx)(~
Ox®U (g)) for the universal enveloping algebra of gx. Then a U(gx )-module
is identified with an Ox-module M with a g-action satisfying £(fm) =
Ex(fym+ f(ém)for £ € g, f € Ox,and m e M.

‘Let Tx be the sheaf of vector fields on X and let p : gx (= Ox®cg) = Tx
be the map given by f® & — f€x. Then the kernel H := kerp is isomorphic
to the G-equivariant locally free O x-module with typical fiber §. Let Dx be
the ring of differential operators on X. The map p extends to p: U(gx) —
Dx and descends to an isomorphism of algebras

(41) - U@Ex)/U@x)H = Dx.
Suppose that X = G and the action of G on X is the product from left:
G — Aut(G), g~ (9"~ 99,

where Aut(G) is the automorphism group of G as a complex variety. In this
case we write the vector field £x a,sfé, which is a right invariant vector field
on G. Similarly, if the action of G on X = G is the product from right:

G Aut(G), g (g = g,

we write the vector field {x as fg, which is a left invariant vector field on G.
Let &1, ,én be a basis of g and write £L,... €™ € g* for the dual basis.
Define regular functions aé, ﬂg on G for1<i4,57<nby

(42) ak(g) = (€, Ad(g7V)g),  Bllg) = (&7, Ad(g)&).
Then it follows that

ENG=-Y b (@& @&=-D_8 &6 D o =0
i=1 j=1 : j=1

We see (£;)L as a differential operator on G. Then the function OACH
on G is written as

()5 (B0) = —(€9, |65, Ad()E).

Hencé

(4.3) ‘
> (€GB = - > (¢, 16, Ad()&]) = Tracead(Ad()€&;) = Tracead(&).
j=1 j=1 :

Let H be a complex algebraic subgroup of G. The quotient X := G/H is
defined as a smooth algebraic variety (see [Bor, §IL6]). Denoteby 7 : G — X
the quotient map. Let V' be a complex vector space with an algebraic action
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of H ‘. We define the G-equivariant quasi-coherent sheaf Vx as the subsheaf
of 1,0g ® V given by '

(4.4) Vx(U)={f€ O U) @V : flgh) =h™'f(g)}

for an open set U C X. Here, we identify sections of O(x~1(U)) ® V with
regular V-valued functions on 7 ~1(U). Analogous identification will be used
for other varieties. The Ox-module Vx corresponds to the G-equivariant
vector bundle with typical fiber V. The category of G-equivariant quasi-
coherent O x-modules is equivalent to the category of algebraic H-modules,
and Vyx is the Ox-module which corresponds to V' via this equivalence.
It also corresponds to the associated bundle G xg V — G/H. The local
sections of Vx can be identified with the V-valued regular functions f on
open subsets of G satisfying f(gh) = h~!- f(g) for h € H. We often
use this identification in the following. Note that Vx is locally free if V
is finite-dimensional. Indeed, let v1,...,v, be a basis of V and take local
sections 71, . . ., U, such that 7;(e) = v; for the identity element e € G. Then
the map O$" — Vx given by (fi)i — Y .i—; fivi is defined near the base
point eH € G/H and is an isomorphism on some open neighborhood of
¢H. The G-equivariant structure on Og by the left translation induces a
G-equivariant structure on Vx. By differentiating it, the infinitesimal action
of £ € g is given by f — &4 f.

We write Ind$ (V) for the space of global sections I'(X, Vx) regarded as
an algebraic G-module. Then by the Frobenius reciprocity,

Homeg(W, Ind%(V)) ~ Hompy (W, V)
for any algebraic G-module W.
Lemma 4.1. If G and H are reductive, then

R(G) ®p() V ~ IndF (V)

as G-modules.
Proof. We give the H-action on O(G) ®c¢ V by h(f ® v) = f(-h) ® hv.
The H-module O(G)®cV decomposes as a direct sum of irreducible factors
because H is reductive. From the definition of Vx, the space of global
sections Ind$, (V') is equal to the set of H-invariant elements (O(G) ®c V)H.
With the identification O(G) ~ R(G), we see that the canonical surjective

map R(G) ®@c V — R(G) ®pg() V is the projection onto the H-invariants.
Hence we have ‘

R(G) ®pun V =~ (0(G) &c V)H ~ Ind§(V)
as G-modules. . O

_ Suppose that H' is another algebraic subgroup of G such that H C H ‘.
Let X' := G/H' and § := H'/H be the quotient varieties and w : X — X'
the canonical map. Write Vg for the Og-module associated with V. -Let
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W = Indg'(V) and let Wx+ be the Ox/-module associated with the H'-
“module W.
The following lemma is immediate from the definition, which indicates
‘induction by stages’ in our setting. '

Lemma 4.2. In the setting above, ‘there is a canonical G-equivariant iso-
morphism w,Vx — Wx.

In the rest of this section we will work in the following setting.

Setting 4.3. Let ¢ : K — G be a homomorphism of complex linear algebraic
groups with finite kernel. Let H be a closed algebraic subgroup of G. Write
M = i~1(H), which is an algebraic subgroup of K, and write X := G/H
and Y := K/M for the quotient varieties. The map 7 : K — G induces
an injective morphism between the quotient varieties i : Y — X and an
injective homomorphism between Lie algebras di : € — g. We identify &
with its image di(€) and regard t as a subalgebra of g.

In particular, (g, K) and (), M) become pairs in the sense of Definition 2.1,
where § is the Lie algebra of H. '

Let e € K be the identity element and let 0 := eM € Y be the base point
of Y. Write

Iy ={f€Ox: f(yy=0forye Y},

"I, :={f € Ox : f(0) =0},
so Zy is the defining ideal of the closure Y of Y. It follows that i~ 1O0x /Ty ~
Oy . Here i~! denotes the inverse image functor for the sheaves of abelian
groups. For an i~ *Ox-module M, the support of the sheaf M /(i "1Z,)M is
contained in {0} so it is regarded as a vector space.

Let Z¥ the p-th power of Zy and let Y}, be the scheme (Y, i10x/(Zy)P)
for p > 1. If'locally we have X = SpecA, Y = Spec/, and Y is closed in
X, then Y, = Spec(A/IP). The scheme Y is identified with the algebraic
“variety Y. If M is an i~ 1O x-module, then the sheaf M /(i "*Zy )P M can be
viewed as an Oy,-module.

We can easily see that i~1(Z5/ZE1") is isomorphic to the K-equivariant
Oy-module associated with the dual of the p-th symmetric tensor product
5P(g/(h + €))* with the coadjoint action of M. Let Tx,/y be the sheaf of
vector fields in X tangent to Y, namely '

Txyy =16 € Tx :§(Iy) C Iy}
Then € € Tx operates on Ox and induces an (’)y—homomorphism
£:i YTy /TE) — i (Ox/Ty) ~ Oy.
This gives an isomorphism of locally free Oy—modules
i (Tx [ Txyy) = Homoy (i Ty /13), Oy),

which correspond to the normal bundle of ¥ in X.



BRANCHING LAWS OF DERIVED FUNCTOR MODULES 21

The ring of differential operators Dx has the filtration given by
F,Dx :={D € Dx : D@&") ¢ Zy},

which is called the filtration by normal degree with respect to 7. A section of

F,Dx is locally written as 3 n1---neé1 ... &, where ¢ <p, &1,...,& € Tx,.

and n1,...,nr € Tx/y- Let GyDx(C Dx) be the sheaf of differential oper-

ators on X with rank equal or less than p. For D € G,Dx, the differential
operator D : Ox — Ox induces an Oy-homomorphism '

i (Zy/Ty) i (Ox/Ty) = Oy,
which we denote by (D). Write
ifl(l?f'/zxpjl)v = Homoy (i_l(I}’;/Igf—H)v OY)

for the dual of i~}(Z8/ZE™). The map D v (D) gives an isomorphism of
Oy-modules

(4.5) i1GyDx /i” (GpDx N Fp_1Dx) = i Y (T8 /T,

They are also isomorphic to the p-th symmetric tensor of the locally free
Oy-module i~ }(Zy /Z2)V.

Let M be a left Dy-module. The Lie algebra ¢ acts on M byny forn e &
Write Qx and Qy for the canonical sheaves of X and Y, respectively. The
push-forward by 7 is defined by

i M = i, (M ®0, Qy) ®p, 1"Dx) Qo 0Y%.

Here, we write i, for the push-forward of O-modules or C-modules and iy
for the push-forward of D-modules. i* denotes the pull-back of O-modules.
It follows from the definition that

i LM = (M oy Q) @1y (Oy ®it10, i 'Dx) Bi-10, 1 k-
By us1ng the filtration by normal degree, we define the (:71Ox)-module

(4.6)
Fyitiy M= (M ®0y, Qy) ®py (Oy ®-10, 4 “1F,Dx) ®i-10, 1 0%

for p > 0. This is well-defined because Oy ®;-10, %~ 1F,Dx is stable un-
der the left Dy action.  We see that i F,Dx is a flat (i ~10x)-module,
Oy ®i-104 1~ g »Dx is a left flat Dy- module, and ¢ 1Q is a flat (4 1(9X)
module. Hence the (i10x)-modules Fpi~1i; M form a ﬁltratlon of i~ 1iz M.

Consider the restriction of the g-action on ;M to £ For n € &, the vec-
tor field nx is tangent to Y. Hence the ¢-action stabilizes each Fpi_1i+M
and it induces an action on the quotient Fpi™! i+M /Fp_1i~Yi M. More-
over, F,Dx - Iy C Fp_1Dx implies that i *Ty - Fpi 'iy M C Fp_1i™lip M.
Therefore Fpi' it M/ Fp_li“1i+./\/l carries an Oy-module structure. Write
Qxy = Y ®i-1041 —1Q x for the relative canonical sheaf. The K-equivariant
structures on the Oy-modules Q% Jy and i ~1(zp/IP*1) give t-actions on
them.
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Lemma 4.4. There is an isomorphism of Oy -modules
Fyi i M/ Fp1i Vi M = M 80, 0%y ®0y i (T5 /T4

that commutes with the actions of €. Here, the t-action on the right side is
given by the tensor product of the action on each factors defined above.

Proof. The inverse image i*Dx = Oy ®;-104 i~1Dx of Dx in the category
-of O-modules has a left ’Dy—module structure. The action map :

Dy ®0y (Oy ®i-105 ¢ Dx) — Oy ®;-10, i Dx
induces a morphism of left Dy-modules

(4.7) Dy ®oy (Oy ®i-105 i (GpDPx/(GpDx N Fp_1Dx)))
— Oy ®i-104 ’iul(FpD)('/F _1Dx).
We give the inverse map of (4.7). Any section of FDx /Fp—1Dx is repre-
sented by a sum of section of the form ny---n&1---&p for &1,...,& € Tx
and 71, ...,n € Txyy. The inverse map
Oy ®4-10, i (FDx/Fp-1Dx)
— Dy ®0y (Oy ®i-104 i_l(GpDX/(GpDX N _F;u—IDX)))

is given by

Fom-méi & fmly - ()ly @ A® & &p).

Hence (4.7) is an isomorphism.
By using (4.5) and (4.7), we obtain isomorphisms of Oy-modules:

(4.8)
Fim iy M/Fp_qi 14 M
~ (M ®0y Or) @y (O 105 i (FDx/Fp1Dx)) @105 i Ok
=~ (M 8oy Qr)®py (Dy®oy (Oy ®i-10,1 (GpDx/(CpPx N Fp-1Dx))))
®;-10x i_lﬂ}/{
~ (M S0y Qy) ®oy i“l(GpDX/(GpDX N Fp—lpx)) ®i-10, i—lg\)/(
~ M ®oy Qx/y ®oy iY(ZB J TV,
We now show that this map commutes with the -actions. Take a section
(meow)®(1oD)ew € (Mo Qy) D (Oy ®-10i ' FpDx) @101 1%

form € M, w € Qy, D € GpDx, and o’ € Q¥%. ‘Since any section of
Fpi_1i+M /F,_1i~1i, M is represented by a sum of sections of this form, it
is enough to see the commutativity for this section. Under the isomorphisms
(4.8), the section (mM®w)® (1® D)®w' corresponds to m® (wew')®y(D) €
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M®o Q}/\Y ®e i~ 1(ZP/ZPT1)V. For n € E, the t-action on i 7154 M is given
by .
(mew)® (1®D)w' »
= (mew)® (1@ D(-nx))®w + (Mm@ w)® (1® D) @ nxw’
=mew)® (18 (-nx)D)®w +(mew)® (1® Inx, D)) ®w'
’ +(m®w)® (l® D) ®nxw'.
- Since nx|y = ny, it follows that ‘
(mew)® (18 (-1x)D)@w =mow)(-mn) e (1e D) e’
=(nymew)®(1®D)ew +(mew(-ny))® (1® D).
As a result, the action of n is given by.
n-(mMew)® (1’ D)®w')
=(ymow)®(1eD)®w +(Mmew(-ny))® (1®D)®w
+ (mew)® (1® hx, D) @w +(mew)® (1@ D) nxw'
Since [nx, D] € GpDx, the section 77 (M ® w) ® (1® D) ®w’) corresponds
to . :
ym® wew)®y(D)+menywew)ey(D)
+m® (w®w)®v(hx, D))-
Thus, the commutativity follows from ~v([nx, D]) =n-v(D). : O
The inverse image i~ U (gx) of U(gx) is a sheaf of algebras on Y and an
i~ 1@ x-bimodule. We will call iU (§x)-modules simply i 'gx-modules.
The K-action on i gy is given by f ® £ — (k- f) ® Ad(i(k))(§) for f €
i~10x, ¢ € g, k € K. Suppose that M is an i~ 1gx-module and let s 1gx ®
M — M be the action map. Then the inclusion g- (Zy)P C (Zy)P~" induces
a map i 1gx ® M/(i"1Zy)PM — M/ 1Zy)P"'M. The K-actions on
X and Y induce a K-action on Y,. Since Y is K-stable in X, we have
- (Iy)? C (Zy)P. Therefore, we can define a -action on M/ (i~ 1Zy )P M.

Similarly, we have h:Z, C Z, and we can equip M/ (171Z,)M with a b-
module structure. ‘ .

Definition 4.5. Let V be a (§, M)-module. We say an i~1gx-module V
is associated with V if V/(i~1Zy )PV is a K-equivariant quasi-coherent Oy, -
module for all p > 1 and the following five assumptions hold.

(1) The canonical map

VI Ty )PV — V/(rliy)f"lv

commutes with K-actions for p > 2.

(2) V/(71Zy)PV is a flat Oy,-module for p > 1.

(3) The action map i " 1gx @ V/(i 1Ty )PV — V/ (i Iy)P~1V commutes
with K-actions for p > 2. Here K acts on i 'gx ® V/(i 1Zy)PV by
diagonal.
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(4) The t-action on V/(i~'Zy )PV induced from the g-action on V coin-
cides with the differential of the K-action on V/(i~1Zy )PV for p > 1.

(5) There is an isomorphism ¢ : V/(i7Z,)V =+ V which commutes with
b actions and M-actions.

Remark 4.6. The g-action and the K-action on V induce a h-action and an
M-action on V/(i~1Z,)V. The conditions (3) and (4) imply that V/(i~'Z,)V
becomes a (§, M)-module.

Example 4.7. Suppose that V' is an H-module and define the G-equivariant
quasi-coherent O x-module Vx as (4.4). The G-action on Vx induces a g-
action and a K-action on Vx. Then by regarding V as a (h, M)-module,
i~1Vx is associated with V. :

- We will construct an 3~ 1gx-module associated with an arbitrary (§, M)-
module in the end of this section.

Example 4.8. Let V and W be i~ !gx-modules associated with (f, M)-
modules V' and W, respectively. Then the tensor product V ®;-10, W is
associated with the (§, M)-module V ® W.

We can define the pull-back of i~1gx-modules associated with V' in the
following way. Let K, G', H' be another triple of algebraic groups satisfying
the assumptions in Setting 4.3. In particular, the map ¢’ : K’ — G’ induces
a morphism of the quotient varieties i/ : K'/M' — G'/H', where M' :=
(4')~1(H'). Suppose that g : K’ — K and ¢ : G’ = G are homomorphisms
such that the diagram

KI_L)GI

T

2

K——G

commutes and that ¢(H') C H. Then px(M') C M. The maps ¢, ¢k
induce morphisms ¢ : X' := G'/H' = X, pg : Y' = K'/M' - Y and
= (Y',()"10x:/(Zy')F) = Yp. We get the commutative diagram:

YI L> XI
W{l | lso
Yy —=X.
Suppose that V is an i ~1§x-module associated with a (f, M )-module V. Let
V= (i) 10x ®(poif)-10x PK 1Y, We define a g'-action on V' by E(fov) =

Ex(fl®@v+f ®Lp(§)v foréeg, fe (i) 1O0x, and v € p'V so that V'
becomes an (i) !¢’ x,-module. Since

V'/((i')—lly,)pl)' ~ (i')—lOX//(Iyr)p®(¢oi1)—1ox cpf{lv ~ @Z(V/(z—lly)pl)),
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the sheaf V'/((i')~1Zy/)PV' is a K’-equivariant quasi-coherent Oyz-module.
We can easily show the following proposition by checking the five assump-
tions in Definition 4.5.

Proposition 4.9. Let V be a (fl, M)—Module and V an i~ 'gx-module as-
sociated with V.. Then the (i') "¢’ x,-module (i') ' Ox' ® (poiy-104 RV is
associated with the (4§, M'")-module Forgl}y’(V).

In the next lemma, we assume that K and M are complex reductive
linear algebraic groups. In particular, Y := K/M is an affine variety by
Matsushima’s criterion. We endow Oy ®p, i*Dx with a left i_lﬁx—niodule
structure by £(f ® D) = f @ D(—{x) for £ € g. ’

Let V be a (h, M)-module and ¥ an i 1Ox-module associated with V.
Define the (g, K)-module R(g, K) ®p@,m) V as in Section 2.

The lemma relates these two modules.

Lemma 4.10. Under the assumptions above, there is an iso’morphism. of
(g, K)-modules ‘

I'(Y,Oy ®p, ©"Dx ®i-104 V) ~ R(g, K) ® R(y,M) V.
(See the remark below for the definition of the (g, K)-action on the left side.)

Remark 4.11. Since Oy ®p, i*Dx and V have i~1gx-module structures,
the tensor product Oy ®p, i*Dx ®;-10, V becomes an i 1gx-module. This
gives a g-action on the space of global sections I'(Y, Oy ®py, i*Dx ®;-10, V)-
In order to define a K-action, we use the filtration F,Dx defined above.
By definition, Oy ®p, i*FpDx is annihilated by (¢7'Zy)P*! and hence is
regarded as a quasi-coherent Oy, ;-module. We therefore have

(49) Oy ®p, i*F,Dx ®-10, V = Oy @py, i*FDx ®oy, V/ (i *Ty)?V

for p < q. Since V/(i"1Zy)9V is a flat Oy,-module by Definition 4.5 (2), the
map

Oy &py ’i*Fp_l'DX ®i—1o;( V — Oy RDy i*FpDX Ri-10x 1%

is injective. We let K act on the right side of (4.9) by diagonal. Then it gives
a K-action on I'(Y, Oy ®p, i*FpDx ®;-10, V). Using the isomorphisms

(Y, Oy ®p, i"Dx ®i-10, V) = I(Y, (im Oy @p, " FpDx) ®i-10x V)
P
~ (Y, lig(Oy ®p, i" F,Dx ®s-10, V)
-
~ li_rgF(Y, Oy ®py i*FpDX Ri-104 V),
. I3
we define a K-action on I'(Y, Oy ®p, ©*Dx ®i_1@% V). With these acfions,

T(Y, Oy ®p, i*Dx ®;-104 V) becomes a (g, K')-module because of Definition
4.5 (3) and (4).
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Proof. Using the right i~ Dx-module structure of :*Dx, we define a g-action
p on the sheaf i*Dx ®;-10, V by

pE)(D®v) :=D(-€x)®v+D®Lv
for ¢ € g, D € i*Dx, and v € V. Moreover, the sheaf i*Dx ®;-10, V is

K-equivariant. We denote this K-action and also its infinitesimal €-action
by v. By Definition 4.5 (4), the €-action v is.given by
v(n)(D®v)=nyDQv—Dnx Qu+Dnu

for n € t. Here nyD and Dnx are defined by the (Dy,i 'Dx)-bimodule
structure on ¢*Dx. Then I'(Y,#*Dx ®;-10, V) is a weak Harish-Chandra
module in the sense of [BL95], namely,
(4.10) v(k)p()r (k™) = p(Ad(K)E)
for k € K and € € g. Put w(n) :=v(n) — p(n) for n € £. Then w(n) is given
by .
wm(D®v) =nyDQv.
Since Y is an affine variety, I'(Y, Dy) is generated by U(€) and O(Y) as an
algebra. Therefore, ' ‘ '
F(Y, Oy ®py *Dx ®i-10x V)

~ O(Y) ®pvpy) T(Y,i"Dx ®i-105 V)

~T(Y,i"Dx Qi-10, V) [w®T(Y,i"Dx ®i-104 V).

Let e € K be the identity element. Write o :=eM €Y for the base point
and i,y : {0} = Y for the inclusion map. Let Z, be the maximal ideal of
Oy corresponding to 0. The geometric fiber of ¥*Dx ®;-10, V at o is given
by

W .= (io,y)*(i*DX ®i—1(')x V)
~ T(Y, *Dx Ri-10x V) /IO(Y)F(Y, i*Dx ®i-10x V)
The actions p and v on i*Dx ®;-10, V induce a g-action p, and an M-action
v, on W. With these actions, W becomes a (g, M )-module. To show this,
it is enough to see that p, and v, agree on m. This follows from

wmT(Y, " Dx @;-104 V) C L(Y)L'(Y, i"Dx Ri-105 V)

for n € m.
We claim that W ~ U(g) ®Ru) V as a (g, M)-module. Put 4, x :=i0ioy.
Then

~ (i0,x) Dx @i, x)-10x (lo,x)” v
~ (lo X) ((7’0 X)+0{o} ®ox QX) ®(1o x)"10x (’LO X) V.

Let {F;,DX} be the filtration by normal degree with respect to i, x. Define
the filtration

E,W = (iO,X)*FzIJDX O (i0,x)"10x (i"»X)_lv
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of W. Then F,W is (B, M)-stable and there is an isomorphism of (5, M)-
modules

FyW/Fy W e (i, x) " HIP/TETY @ V/
by Lemma 4.4. The isomorphism FoW =~ V induces a (g, M )-homomorphism
¢ : U(g) ®ugy) V — W. Let Up(g) be the standard filtration of U(g). Then
(Up(8)U(h)) ®u(y) V is a filtration of the (h, M)-module U(g) ®y() V and
there is an isomorphism of (§, M )-modules:

Up(8)U (1) ®ur) V / Up-1(@)U (h)) ®uqy) V = SP(g/h) @ V.

In view of the proof of Lemma 4.4, we see that the map on the successive '
quotient

op : (Up(@U ) ®u) V / (Up-1(8)U (H) Sug) V = EpW/Ep-1 W

induced by ¢ is an isomorphism. Hence ¢ is an isomorphism.

As a K-equivariant Oy-module, i*Dy ®;-1¢,, V is isomorphic to the Oy~
module Wy associated with the M-module W. Hence we can see global
sections I'(Y, *Dy ®;-10, V) as W-valued regular functions on K. Let f be
a W-valued regular function on K such that f(kh) = vo(h™1)f (k) for k € K
and h € M. The g-action p at e is given by (p(€)f)(e) = po(€)(f(€)). Hence
(4.10) implies that ’

(PN (k) = (w(k)p(Ad(k™ 1)) (k™) (k) = po(Ad(k™E)(f(K)).
Let £1,...,&, be a basis of g and write £L,... 6" € g* for its dual basis.
Under the isomorphism I'(Y, Wy) ~ R(K) ®g() W given in Lemma 4.1,
the g-action p on R(K) ®@g(n) W is given by

n

(4.11) HE)S ®w) =3 (¢ Ad() S ® pol€iw

i=1
for § € R(K) and w € W. If we define p on R(K) ®c W by this equation,
then p commutes with the canonical surjective map
p: R(K)®cW = R(K) ®pun W-
The K-action v is given by the left translation of R(K )
| v(k)(S @ w) = (kS) @w.

Hence v also lifts to the action on R(K) ®c W and commutes with p. Let
m,- -+ ,Mm be a basis of £ and write nY, -+ ,n™ € € for its dual basis. Define
the regular functions aé and 3] on K with respect to 7; as in (4.2). Then
the t-action w is given by

) (8 ©w) = v{1y)(5 © ) — ()5 ©)

= ((m)ES) @ w— ZO‘;’S ® polmi)w.
i=1

Here, we identify R(K) with O(K), and give actions of differenfial operators
on K.
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We have
(Y, Oy ®py 1"Dx ®i-104 V)
~ T(Y,9*Dx Q104 V)/w®T(Y,i"Dx ®;-105 V)
~ (R(K) Qru) W)/w(®) (R(K) Q) W).
We note that the t-actions p and v agree on the quotient (R(K) ® R(M)
W) /w(®)(R(K) &g W) and hence it becomes a (g, K')-module.
The equation 7, o ,Bk = 6% implies that w(£)(R(K)®c W) is generated
by the elements of the form ) 7%, w(nj)(,BkS(X)w) for S € R(K)andw e W.

We observe from (4.3) that 377, (n; %(,Bi) = 0 because Tracead(-) = 0 for
the reductive Lie algebra £. Therefore,

m - m
() == Blmik = — > () kBi
=1 j=1
as differential operators on K. Then

Zw(m)(ﬂis ®w) = Z(m)xﬂ;’cs ®w+ Z (4BLS ® po(mi)w)

Jj=1 i,j=1
= —(nk)KS Qw4+ S ® po(nr)w.
Consequently, the kernel of the map
R(K)®c W — (R(K) ®pray W)/w(®)(R(K) ®ran W)
is generated by Ker p and —(ng)ES@w+S5® po(mk)w. Hence
(R(K) ®ry W)/w(®) (R(K) ®rary W)
~ R(K) ®gem W
~ R(g, K) ®p(g,m W.

From (4.11), we see that the isomorphism

(R(K) @rary W)/w(®) (R(K) ®rany W) = R(g, K) ®r(g,m) W
commutes with the (g, K )-actions. Therefore,
I'(Y,0y ®py i"Dx @105 V) = R(g, K) Or(g,m) W
~ R(g, K) ®rm,m) V
and the lemma, is proved. (]

In the rest of this section we assume that K is reductive but M is not
necessarily reductive. Let M = L x U be a Levi decomposition of M, where
L is a maximal reductive subgroup of M and U is the unipotent radical of
M. The corresponding decomposition of the Lie algebra is m =1 u.

Let V be a (h, M)-module. We can see V' as a (b, L)- module by restric-
tion and then define the cohomologlcally induced module (P, ’L )J (V) asin
Section 2.
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In order to state the main theorem, we need a shift of modules by a
character (or an invertible sheaf) that we will define in the following. Write
AP (/1) for the top exterior product of ¢/[ and view it as a one-dimensional
L-module by the adjoint action. Since K and L are reductive, the identity
* component of L acts trivially on A*P(£/[). We extend the L-action on
AP(E/I) to an M-action by letting U act trivially. Define £ as the K-
equivariant locally free Oy-module on Y := K/M whose typical fiber is
isomorphic to the M-module A*P(¢/l). The K-action on £ differentiates
to a E-action. Then £ becomes a U(Ey)-module and the kernel of the map
A?jy — Ty acts by zero because the identity component of M acts trivially on
AP(8/1). Therefore, £ has a structure of left Dy-module via the isomor-
phism (4.1) for Y.

Recall that the direct image i,.L of £ by 4 in the category of left D-modules
is defined as

irL = i.((£L ®oy Q) ®py i"Dx) ®ox VX,

where i, is the direct image functor for sheaves of abelian groups, 2y is the .
canonical sheaf of Y, and Q} is the dual of the canonical sheaf of X. Via
the map p : U(gx) — Dx, we can see i,.L as a gx-module. The inverse
image i~1i, L as a sheaf of abelian groups is

iYL = (L ®oy Qy) @py *Dx Q104 110X,

which has an i '§x-module structure. We note that the functor i~y is
exach. : A _

Let {F,Dx} be the filtration by normal degree with respect to i. It
induces a filtration of i 714, L: ‘

Fpi Vi £ := (£ ®oy Q) ®py i"FDx ®i-104 i Q-

Then we can define a (g, K )-action on the cohomology space H*(Y, i~ i L&;-10,
V) in a way similar to Remark 4.11.
The following is the main theoreém in this section.

Theorem 4.12. In Setting 4.3, we assume that K is reductive. Let M =
L x U be a Levi decomposition. Suppose that V is a (), M)-module and that
V is an i~ g x-module associated with V (Definition 4.5). Then we have an
isomorphism of (g, K')-modules

top

H (Y, i Vi L @105 V) = (PET Ju-s (‘V ® Ao/ b))

for s e N andu=dimU.
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Proof. Let X := G /L and V=K /L be the quotient varieties. We have the
commutative diagram:

~ Z
Y%

X
TK lw
> X

Y ——

where the maps are defined canonically.

Let iy : D?(Dy) — DP(Dx) denote the direct image functor between
the bounded derived categories of left D-modules. Similarly for 7, 74, and
(mx)+- We have m1 074 > iy o (k). Since mx is a smooth morphism and
the fiber is isomorphic to the affine space C¥, it follows that (m K)+Q;/, ~ Lu]
(see [HIMSW]). Here L[u] € D?(Dy) is the complex (--+ =+ 0 = £ —
0 — ---), concentrated in degree —u. Therefore, i+(7rK)+Q;’~/ ~ iy L]u] in
D"(Dx).

Since L is reductive, the varieties X and Y are affine by Matsushima’s
criterion. Hence the functor 7 is exact for quasi-coherent D-modules and
7y 18 exact for quasi-coherent O-modules. k
~ Denote by TX x the sheaf of local vector fields on X tangent to the fiber

of 7, and denote by Q5 /X the top exterior product of its dual TV /% . We

note that there is a natural isomorphism {3 /x = ~ Qg R0y m*0Y%. Recall
that for M € D®(D ) the direct image 7. M is defined as

M= W*((M ®055 Q)?) ®][r55€ W*Dx) ROy Q\)/(

The left D-module 7*Dx has the resolution (see [HMSW, Appendix A.3.3]):

(4.12) : D)? ®o)~< /\TX’/X — 1 Dx,

~ where the boundary map 0 on D o N Tz /X is given as

D@E ANy
d ~

Y (CDFDERE A AEA A
i=1

+ 2:(—W”D@@@ﬂAéAmAgAnw@Anwﬁ;

1<i<j<d

The right 71D s-module structure is not canonically defined on the com-
plex, but the g-action can be described as

ED@EN - NEg)=—DEg®E N Ng+DEE A N Ey)

for ¢ ¢ g. Here we use the g-action on A\7Tx /X induced from the G-
equivariant structure.
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By using the resolution (4.12), the direct image 7T+Z+Q¥ is given as the
complex

m.(3:0% &0, 05 ®oy /\TX x) Box 0%
As a result, we have
iLlu] = (LFQ% ®0z /\ T%/x ®og Q)?/X)

and hence
(4.13)

iy Ll = i (1008 @0y \ Tz x ©og U/x )

~ i~ L, (5_154-9% ®i-104 5_1 /\T)?/X ®i‘10~ i_lﬂf/x) '

<o (55 110, ().

There is a natural morphism of complexes of i 1O x-modules
(4.14)

¥ (7K« ("lv ’I_|_Q~ ®z—10 (/\TX/X Rog QX/X)) Ri-10x V

— (7K )« (7, 7,_|_Q Ri-104 (/\TX'/X R0y QX/X) 10y 771—{11}).

We claim that v is an isomorphism. Indeed, if Fpi_lLLQ;i, denotes the
filtration of i_1€+Q¥ defined in a way similar to Fpif1i+£, then we get a
map

Pp (TR )« ( pz_17,+Q ®1,—1(9 (/\T)?/X(X)O QX/X)) i-10x ¥

— (WK)*< p'L_lz+Q~ ®~_1o (/\ TX/X ®og QX/X) rRli10x 71'1_{1])).

It is enough to show that 1p is an 1som0rphlsm for all p > 0 because
lim Fpi~ QL > T '7,QY. Since the ideal TR (7 Zy )P of mEi T Ox

annihilates Fpi“lLLQY, we have
(WK) ( plﬂlz-!-Q* ®z‘10 (/\Tx/x ®OX Qx/x)) ®i-10x 1%

(7TK) < p’l 7,+Q &5 104 (/\TX/X ®o QX/X)) ®0Yp+1 (V/(i_lly)P-HV).

By Definition 4.5 (2), V/ (iﬁlly)pHV is a flat Oy, ,-module. Hence the
projection formula shows that 1, is an isomorphism and the claim is now
verified.
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The successive quotient of the filtration

FpM 1= By 5,0Y @510, (/\ TX/X ®0x V%/x) @rti-10x TV

is

(Fpi 174 Q% / Fp11 114 Q5)®0, 7 (/\TX/X®OXQX/X> 0y i (V/ (T TNV,

which is a quasi-coherent Ogp-module. Since Y is afline, it follows that
H (Y, F,M/F,_1M) =0 for s > 0. Hence H*(Y, F;, M) =0 and
J :
v i1z -1
HS(Y 7 Q~ Q5104 (/\T)?/X Rog Q)?/X) ®, -1-10, Tk V)
for s > 0. By (4.13) and (4.14), we conclude that
He(Y,i Y L ®-10, V)

~ HSUT ()7 7”,_17+Q~ ®i-104 (/\TX/X Roy QX/X) 1104 7rI_{1V>'

Since 7~ z+Q~‘®— 104 _1Q~ ~ Og ®py "Dy, we have

. 'L+Q ®z“1(’) (/\TX/X®OXQX/X) 1_1OX7TKV

~ (9 (X)']_)~ 7 D ®r10 /\TX/X &= 10k T (V ®i-10x lmlﬂ&)'
If we put .

y-d =71 /\T)?/X ®Trl‘r—{1i‘_1ox 71'1_{10} ®i-10x i_lﬂ}/(),
then we obtain
(4.15) HY(Y,i Ny L @10, V) 2 B TUT(Y, Op ®p, "Dg @110, V).
The boundary map
| 9:058p, T"Dx @10, V¢ = O @, T"Dg @510, V7
~is given by
f®D®El/\---/\é;®v

-~

)—)Z( 11+1f®D5®§1/\ AEN N
i=1

+ > (- ’*Jf@D@[a,fJ]A&A NEAAE N N ® Y,
1<i<j<d
where f € Og, D € E*’DX, £~1,.. §~ X/X’ and v E ’IFI—;-l(V ®i-104
._1QV).

Let us compute the cohomological induction (Pg )s(V ® A¥P(g/h)) by
using the standard resolution ([KV, §IL7]). The standard resolution is a
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projective resolution of the (h, L)-module V ® A*P(g/h) given by the com-
plex

. top

U®) 2o (AG/H Ve A\s/),
where the boundary map
d top ‘ d—1 top
& U)o (Ab/MeVe /) - Ubeum( \B/HeVe /)
DRE ANV

d ) -~ —~
= Y (CDTHDEREG A AGA ARV —DREG A AGA-- N ® &)
i=1 B

+ }: GJYHD@HQ@HAEA-~A§A~gAgA~-Aa®v
o 1Ki<g<d

for DeU(h), &, -, éa€h,andv eV AP (g/h). Therefore, -
(4.16)

(B s (Ve \a/0)) = BPE (U ®) v (\O/H@V e _/\<g/b>))
 =ETRE K e (A6/He Ve Ae/),
where the boundary map
d ) top d—1 top
o R(g, K)eney ( \O/D&Ve @) + B K)eru ( \6/927e \s/9)
| is given by

DQE A NE Qv

T

d o~ ~
s (—1)H(DEREN - AEA ANERUV—DRE A AGA-ANEg® &)
=1 s

+ 2:(—WﬂD®KmﬂﬂaAmAéAmAgAmAE®v
1<i<i<d

for D € R(g,K), &1, ,€4 € b, and v € V ® A¥P(g/h).
Put :
top

d
vai=Abo/meve Ae/h)
for simplicity. We identify the fiber of T /X with b/l in the following way:
if a vector field E €Tk /X equals —€¢ at the base point eL € X for £eh,

then ¢ takes the value £ c b/l at e € G. Similarly, the fiber of QVX_ /x is
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identified with A*P(g/5). Then V~¢ is associated with V¢ by Example 4.7
and Example 4.8. By Lemma 4.10, we have
F(Y, 0}7 ®D17 Z*D)? ®5—1Q)_(_ V_d) ~ R(Q;K).@)R(L) v—d

From (4.15) and (4.16) it is enough to show that the isomorphisms ¢ given
in the proof of Lemma 4.10 for V = V=4, 0 < d < dim(f/l) commute with
the boundary maps. This is reduced to the commutativity of the following
diagram:

!

- 8
(4.17) U(s) @y V¢ ———U(g) ®u V4

| =
0

i (Z*D~ Bs-104 V_d) — i*(i'*'D~ ®i-104 V_d+1)

Here, ¢® is the map ¢ given in the proof of Lemma 4.10 for V! = v 4,
Let us prove that the diagram (4.17) commutes. A section f € ©*D Q104

V4 defines a section of iy(@*Dg ®i-105 V" 4) and hence defines an element
of U(g) @y V—¢ via the isomorphism god We write z*f € U(g)®U(() V4 for

this element. Put Z := H/L and write iz : Z — X for the inclusion map.
Then iz(Z) = #~1({o}) and there is a canonical isomorphism i} 7% /x = Tz.
For &1, €2 € hand v € V@ A" (g/), put

’ m;:ﬁ—l/\.../\a(g)vev—d..‘
We will choose sections g et %/x and v € ﬂl}l(V ®l—'1ox i~1QY%) on a
neighborhood of the base point o € Y in the following way. Take £z Tx /X
such that le z €157 /X corresponds to —(&;)z. Then it gives a section

of z‘lTX /X0 which we denote by the same letter & We take a section

TE T (V®i-10,1720%) on a nelghborhood of o such that v corresponds
to v. Define a section m € V™% in a neighborhood of o as

Mi=G A AT € VO
Then the element ?(1 ® m) is represented by the section
l@me i*'D)’Z ®§—1@)~( V_d,

in other words, i5(1® m) =1®m.
We have

a(1®m)
Z( 1)’“(5@51/\ RGN NE1®T)

+ > (=T ( 1®[€za£j]/\€1/\ ANEGAANEGN- NEGRTD)
1<i<i<d .
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and

0'(1®m)
d

=Y ()t Ee & A /\g/\---/\ﬁ_d@_)v—1®§—1/\---/\§~/\---/\£_d®£iv)
1

=

+ ) DA EGIAG A AGAAGA A& ).
1<i<j<d

Since &z corresponds to —(&;)z, the vector fields & and (&) 5 have the

relation & = —(&) 5 at 0. Recall that the g-action on T5 /x Is defined as the
differential of the G-equivariant structure on it. Hence our choice implies

that & &z = —([&,&])z- As a Tesult,

iﬁ(@@é/\---/\é/\-'--/\_é,}®ﬂ)‘
=N ARE N AE A NEOT) —iBABE A AGA - NG ED)
=Y (UREA - AGA ARG A E) A A AE®T)

1<i<j<d

= Y BeE A AGAACG ) AT A AN AGST)

1<j<i<d
=LERE A AGA /\éd@v—l@ém NG NE®Ew

+ ) ek GIAG A /\gi/\---Ag_j/\---/\'g_d@v)
1<i<j<d :

o~

+ Y (AT GIAG A AGA - AGA AT BY).

1<j<i<d

Moreover, [@,g]]z corresponds to [—(&)z, —(€5)z] = ([€i,€;1) z- Hence

7:2(1@)[gi,gj]/\5/\-&/\&/\---/\5;/\---/\51@77)
= 1@ GIAG A AGA-AGA NGB .
We thus conclude that

(P 0 oL@ m)
= i2(0(1 ® )

d = ~
= (LD EsE A B nEeD
i=1 )
3 oM EEnbia- NG AEA -Ag}@m)
1<i<ji<d )
d - = —
:Z(_l)iﬂ(&@a/\.../\g/\.../\»@@u—1®§/\.../\§i/\.../\§d®£w
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+ Z 1)J+11®[§1,§]]/\§1/\ /\g/\---/\?j/\---)\ﬁ@v)
1<7,<g<d ’

+ ) ()R GIAG A /\?j/\-ﬁ-/\g/\---/\agw))

1<j<i<d

+ Z (— 1)’+J+1(1®[.£z,53]/\§1/\ /\E/\---/\E/\---/\E;@v)

1<i<ji<d

= Z(—l)”l(&i@E/\---A@A---/\g_d@v—1®5_1A---A§A---A'§_d®£iv)
i=1 .

+ Z (— 1)”J 1®[&,£]]/\§1/\ /\@/\---/\?j/\-.-‘/\§®v)'
1<i<j<d ;
=8 (1®m).

Since 8, &' and ¢® commute with g-actions, »
0(*(D ®m)) = DA(p*(1 ® m)) = Dp* (&' (1 ® m)) = *~(8'(D ® m))

for D € U(g). Cohsequently, the diagram (4.17) commutes and the proof of
the theorem is complete. O

- Corollary 4.13. In Setting 4.3, suppose thati:Y — X is an open immer-
~ sion, or equivalently, g = §+t. Then we have an isomorphism of K-modules

tK K K
Forg,K(Pbg,L )i (V) =~ (P:x,L i(V)
for any (h, M)-module V and j € N.

We now construet an i ~1gx-module V associated with a (h, M)-module V.
Let Vy be the K-equivariant quasi-coherent Oy-module with typical fiber
the M-module V. Let p : Ox ®c g — Tx be the map given by f® & — f€x
and put H := ker p. The Ox-module H is G-equivariant with typical fiber
h. Hence a section £ € H is identified with a h-valued regular function on a
subset of G satisfying £(gh) = Ad(h™1)(¢(g)) for h € H. Let £, € H. By
regarding gx = Ox ®c g as a submodule of U(gx) = Ox ®c U(g), we have
[€,€] = &8 — ¢'¢ € H and [€,&'](9) = [€(g),£'(g)] with the identification
above. If we write £ = Y., fi ® & for f; € Ox and & € g, then £(g) =
> filg) Ad(g™) (&)

Let A be the subalgebra of i"1U(gx) = i 'Ox®U(g) generated by i ' H,
1@t and i 1Ox ® 1. We view i "1U(gx) as an i"'Ox-module and consider
the inverse image Oy ®i-105 1 U(8x)(x Oy ® U(g)) of U@x). Let A
be the image of the map Oy ®;-10, 4 = Oy ®;-10, i i~1U(gx) so that
A~ A/(AN(i7Zy ® U(g))). Since A- (i7'Zy ® U(g)) C i 'Zy & U(g)
in the algebra iU (gx), the algebra structure of A induces that of A and
Oy ®i-105 U (gx) becomes a left A-module.

We give a left A-module structure on Vy in the following way. We view
a local section of Vy as a V-valued regular function on a subset of K and
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define a (1 ® i~1H)-action and an (Oy ® 1)-action by

(1 ® &)v)(k) = &(i(k))v(k),
(f & 1)y = fo |
for ¢ € i'H, v € Vy, f € Oy, and k € K; define a (1 ® #)-action on Vy

by differentiating the K-action on Vy. These actions are compatible in the
following sense: if f; € i 1Ox, 7; € € and £ € i~H satisfy

d(fiwom)-tci 'y oy,

K2

then we have

(4.18) > (filr 8 (A8 m)) = (1 @Ew

for v € Vy. In the proposition below, we will see that these actions give a
well-defined .A-module structure.
Let V := Hom7(Oy ®;-10, i_lU(ﬁx), Vy), namely, V consists of the
“sections v € Home(Oy ®;-10, i U(8x), Vy) satisfying
(1 &)(f® D)) =188/ ® D)),
v(len)(fe D))= (1en(f® D)), and
o(f'feD)=(f & )(v(f&D))

for f} f’ S OY, D € U(g), n < E’ and é’ c 'L'_IH. We endOW V with an
i_lﬁx—module structure by giving (f ® D) - v as

(f@D)-v)(f'®D)=v(f'® (1 D) (feD)
forv e V; feilO0x, f' € Oy, and D, D' € U(g).

Proposition 4.14. Let V be a (§, M)-module. Then the left A-action o
Vy given above is well-defined, and the i~ 1gx-module :

V= ’Homz(OY ®i-10x U(sx), Vv)
is associated with V in the sense of Definition 4.5.

Proof. Let kg € K and yo := koM € Y. We fix a trivialization near yo in
the following way. Take sections £1,...,6n € i~1% on a neighborhood U of _
yo in Y such that the map ,

0x)®" |y = M)y, (fioeeofa) = D i

=1

is an isomorphism. Take elements 71,...,7ns € € such that they form a
basis of the quotient space £/ Ad(ko)(m) and take (1,...,{ € g such that
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My vy Nmy (1, - -, ¢ form a basis of the quotient space g/ Ad( (ko))h. Re-
placmg U if necessary, we get an isomorphism

(4.19) @to )®”+m+ll — (i7'Ox ®c 9,

(fl’"~'1fnagla"'agm’h1"" hl) — Zf1£1+2(91®n1)+2(h ®C’L

i=1

For integers s,t > 0, let
) [e]
o= {i = (@), .. ,i(s) 1 <iA) < - <i(s) <}, L= [ [ Lape
s=0 )

If s = 0, the set Iy consists of one element (). For 2 = (i(1),...,4(s)) €
Iy, we put ¢; := 1® (1) Cis) € ¢ 10y ® U(g) Ifs=0and 7= ()
then put ¢; := 1® 1. In the same way, for ' = (¢'(1),...,i(s)) € Lsn
and ¢ = (i"(1),...,i"(s)) € Lsm, Put & = Ey1y - o) and M == 1Q®
Nir(1) " " TMin(s)- From the isomorphism (4.19) and the Poincaré-Birkhoff—
Witt theorem, we see that a section of 4 1U(g x)|u is uniquely written as

> it i &irmir o

icl,i'€ln, " €lm

where f; 4 4 € i ~10x, and f; o = 0 except for finitely many (z,'l, ).
Hence a, section of (Oy ®;-10, 1 U (8x))|v is uniquely written as a finite
sum Y, o o fiq0 a0 €amin G for fi 0 30 € Oy

Lemma 4.15. The subsheaf Ay of Oy ®;-10, i U(§x) consists of the
sections written as a finite sum

> Fit i ® &g
i'el,, i eln
for f,,;l,.,;ﬂ € Oy.

Proof. 1t is enough to prove that for any section a € Ay there exist functions ‘
fir 4 € i71Ox such that

(4.20) a-— Z farin€amn € 1Ty @ U(g).

1’ 'L”

For this we observe relations in the algebra i~'U(§x). By our choice of
£1,...,¢pand 1, .. ,nm, we can find f;, g; € i71Ox for each n € ¢ such that

(1®77 <Zfz£z+zgz®m) €1 1IY®U(9)

i=1 i=1

We also have

[ f®1=0, lonlen]=10h7], [1enfel=mOx())e1
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for f €7 10x, n,n € & Further &, 851511 ® 3, &5 € i~1% and hence there
exist fi,j,k, 9i gk € ’L'_IOX such that '

n n

&1 = figrler 1®M&1 = Gijklh
k=1 k=1

Since A is generated by i"1H, 1 ® £ and i'Ox ® 1, we can prove (4.20)

by using these relations iteratively and using A(i~'Zy @ U(g)) C i Ty ®

U(g). 0

From the lemma above and its proof, we see that the algebra A is gener-
atedby Oy ® 1, 1®¢&y,...,1®&,, and 1 ® & with the relations:

n m
1en=> fi®&+ Y gi®mn

i=1 i=1

I®& =0, 1onler =107, [lenfel]l=vf)e]l,

n n
106104 = fijp®& [10010&6]= gik® &,
: k=1 k=1

where fi, gi, fi jk» 9,5,k 8re the restrictions to Y of the corresponding func-
tions in the proof of Lemma 4.15 and f € Oy, n,7’ € &. We can check that
these relations are compatible with the action on Vy (see (4.18)) and hence
the A-action on Vy is well-defined.

By Lemma 4.15, (Oy ®;-10, 4 *U(@x))|v is a free Aly-algebra with basis
1 ® ¢;. Therefore, the map ~

(,b : V|U — H Vy|U
iel;

given by ¢(v) = (v(1® (;)); is bijective.

Our choice of (1,...,(; implies that they form a basis of the normal tan-
gent space of U in X. Since ¢ is bijective, we see that

oo

(i TrViv) = [ ] wlv,

§=p ieIs,l

and hence

p—1
W/ Tl = [ [T wlo-

s=0 iely;
If we endow the right side of the last isomorphism with Oy, -module structure
via the isomorphism, it is written as follows. Let f € i 1O0x and v = (v;);.
For a subset A C {1,...,s} with A = {a(1),...,a(t)}, a(1) <--- < a(t) and
for i = (i(1),...,i(s)) € Iy, let {b(1),...,b(s — )} ={1,...,s} \ 4 with
b(1) < --- < b(s — t) and put &’ = (i(b(1)),...,i(b(s = t))) € Ls_4;. Then
the i-term of f - v is given as

(4.21) Fvi= Y, (Gaap)x - Gia)xHlo v

Ac{l,...,s}
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On the right side here, we use the Oy-action on Vy. This i 1Ox-action on
IT%=5 Tlicr,, V¥lu induces an Oy, -action.

We now show that V/(i~1Zy)PV is a quasi-coherent and flat Oy, -module.
Suppose first that Vy |y is a free Oy-module on U so there exist sections
vj € T(U,Vy), § € J such that the map OF7 — Vy|u, (f;)jes = jey fivi
is bijective. We define the map

¥ : (Oy,|)® —->H I1 wiv

s=0 ‘LEIS[

by giving the i-term of 1 (f) for i = (i(1), ..., i(s)) € Loy and f = (f;)jes 85
Y(f)i = Z((Ci(l))x o (Cisy)) x Fi)lu - v

jeJ
Then 1) is an isomorphism of Oy, |y-modules and hence (V/ G ITy)PV) |y is
a free Oy, |y-module.

For general case, we write V' as a union of ﬁnlte dimensional M- submodules
V =,V° Then the K- -equivariant quasi-coherent Oy-module Vg with
fiber V* islocally free. If we define the Oy, -module structure on H’s’;é ILc I, Ve|u
as in (4.21), then the preceding argument proves that it is a locally free
Oy, |y-module. Since Vy is the union of V§, we see that (V/(i 1Ty )*V)|v is
isomorphic to the union of Hg;é [Licr,, V¥lu as an Oy, |y-module. Hence
V/(i~1Zy)PV is a quasi-coherent and flat Oy,-module.

We define a K-action on V by

(k-v)(f @ D)=k (o((k™" - f) ® Ad(i(k) ") D))

for k € K,v eV, f e Oy, and D € U(g). This action descends to
a K-action on V/(i71Zy )PV and makes it a K-equivariant Oy,-module.
From this definition, it immediately follows that the maps V/(Ei 1Zy )PV —
V/(@ Iy P~V and i~ 1gx @ V/ (i1 Zy )PV — V/ (i Ty )P~V commute with
K-actions for all p > 0.

We have checked conditions (1), (2) and (3) of Definition 4.5. We can
verify the condition (4) by computing the £-action as :

- (n-v)(f®D)=v(f®Dn)
= —v(f®[n,D]) +v((len)(f® D)) - v((ny(f)) ® D)
=—u(f®n, D)+ (1 ®n)(f®D))—v(nr(f)® D)

fornect,veV, feOy,and D e U(g).
For the condition (5), we get an isomorphism of vector spaces ¢ : V/ (GIT)V ~
V by taking fiber of the isomorphism ¢ : V/(i *Zy)V =~ Vy at 0. The map.
v is written as t(v) = (v(1 ® 1))(e) for v € V. For £ € b, there exists a
section & € i~ H near the base point o such that 1® €& — ¢ €i7'Z,® g, or
" equivalently, £'(e) = €. Then

WEw) = ()1 @ D)) (e) = (v(l ® 5))(6) wEN)(e) =& ®'1)(e)) = £u(v).
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Moreover, we have

v(mv) = ((m)(1 & 1)(e) = (m(v(1 & 1)))(e) =m(v(l @ 1)(e)) = mu(v)
for m € M and hence ¢ commutes with (§, M )-actions. O

Remark 4.16. The z"lﬁx-modul_e V constructed above in this section has
the following universal property. If V' is another i~ 1gx-module associated
‘with V, then there exists a canonical map V' — V such that the induced
map :

Ve VGV = VT )Y~V
is the identity map. Moreover, it also induces an isomorphism

VG Ty PV = V(T Ty )PV

for any p € N. Therefore, the tensor prodﬁct il L ®;-10, V' is unique up
to canonical isomorphism.

Let V be a (h, M)-module and V an i~ 1gx-module associated with V.
Since V/(i~1Zy)V is a K-equivariant quasi-coherent Oy-module with typical
fiber V, there is a canonical isomorphism V/(i~1Zy)V ~ Vy. We view H :=
ker (p: Ox ® g = Tx) as a subsheaf of U(gx). Since H(Zy ® U(g)) C Iy ®
U(g), the i~'#-action on V induces one on V/(i~'Zy)V. By regarding local
sections of these equivariant modules as vector-valued regular functions, this
action is written as

(4.22) (€v) (k) = £(i(k))v (k)

for ¢ € i7'H, v € V and k € K. Indeed, since the action map iTIH ®
V/(i Ty)V = V/(i'Zy)V commutes with K-actions by Definition 4.5 (3),
it is enough to prove (4.22) for k = e. This follows from H(Z, ® U(g)) C
T, ® U(g) and Definition 4.5 (5).

The Oy-modules £, Vy, Qy, and i*QY% are K-equivariant with typical
fiber AP(8/1), V, A™P(t/m)*, and A*P(g/h), respectively. Hence the ten-
sor product L&o, Vy ®0, y ®o, i*QY is also K-equivariant and has typical
fiber A"P(E/1) ® V & APP(e/m)* ® A™P(g/h). We give a right i "' H-module
structure, a right £-module structure, and a right Oy-module structure on
the sheaf £ ®o, Vy R0, Oy Qo Z*Q§ by

((f @ v@wew)E) (k) = —f(k) & EEE)v(E) @ wk) @ w'(k)
— f(k) @ v(k) ® w(k) ® ad(£(i(k)))w'(k),
(fovewewn=—nflevewdw — f® (M) owew
~f®ve(w)®w - fevewe (),
forewew)f =Ffforewew

for fe L, Eeci M, netveVy,weQy,uw e i*QY, f/ € Oy, and
k € K. These actions are compatible: if fz‘.E i10x, m; € tand € € iT1H
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satisfy
d(fiem)—Eei Ty ©Uly),

K
then we have

Z((f@v@w ®uw)fily)ni = (f ®wv ®w‘®w')§.

2

Therefore, we can prove by the same argument as above that these actions
define a right A-module structure on £ ®oy Vy @0y Qy ®OY z*Q\)’(
By using this right A-module structure, we consider the sheaf

(f, ®oy‘ Vy ®o, Qy ®0Y Z*Q}/(—) &3 (Oy ®i-10x ’i_lU(ax)),

which has a right i~ 'gx-module structure. We view it as a left i g x-module
via the anti-isomorphism

S:UGx) > UGx), folefol, 1otm -18¢
for f € Ox, €€ g. | '

Proposition 4.17. Let £ be as in Section 4. Let V be an i~ 'gx-module
associated with a (§, M)-module V. Then there exists a K -equivariant iso-
morphism of 1~ 1§ x -modules

i L @10, V= (L ®0y Vy B0y Dy ®oy Q%) @7 (Oy ®i-10, iU (6x))-

Proof. Let Fpi~YiyL be the filtration of i~%,L as in Section 4. Then
Foi~li L ®;-10, V is regarded as a subsheaf of i™1iy £ ®;-10, V (see Re-
mark 4.11). We have

Foi iy £ ®imio0,, V ~ Foi~Yiy L @0y, V/ (i Ty)V
‘ ~ L ®0, Oy Qoy " Q% ®o, V/(E  Ty)V.
Therefore, we get an isomorphism of K-equivariant Oy-modules
(4.23) o : L ®oy Vy ®0y Uy ®0y Q% = Foi it L @104 V,
fRIWweW = (fowew)®wv. |

Here v € Vy and we choose a section of V that is sent to v € Vy =~
V/(i~1Zy)V by the quotient map, which we denote by the same letter v € V.
Write Vi := L Qoy Vy R0y Qv ®0y Z*Q} for simplicity. The isomorphism
(4.23) extends to the homomorphism of i~'§x-modules

) Vi ®c (Oy ®im10, iU (Gx)) = i 1i1L @105 Vs
2@ (18 (f ® D)) = S(f ® D) - %o (w).
We can check that the map ¢/ descends to
¥ Vi 07 (Oy ®i-10y i U (Gx)) = i 14L ®i-105 V.
Let
7 Vi ®c (Oy ®;-10, iU (8x)) = Vi ©7 (Oy ®i-105 1 U (Fx))
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be the quotient map and put
Vp =7 (Vy ®¢ (Oy &c Up(9))) ,
where {U,(g) }pen is the standard filtration of U(g)i. We have
-"/j(vp) =¥ (Vy ®c (Or &c Up(g)) C Fpi_1i+£ ®i-10x V-

Let us take an open set U C Y and elements (1,...,({; € g as in the proof of
Proposition 4.14 and use the same notation. Then by an argument similar
to the proof of Proposition 4.14, we obtain a bijective map of sheaves

P

H H V{"U i VP|U)

s=0 'l'.EIs’l
(Wi)i > Y (i ® (10 G))
i
and hence we have

I V¥l = Vo/Vp-ilu.

i€l
"~ We also see that
(Fyi YL @510, V) (Fpo1i Vit £ @100, V) = (Fyi ™Yy L] Fp1i V14 L) ®0y Vy
and
Fpi Yy L/ Fy 1i7 Y L~ L ®oy Qv ®oy i*Q% ®oy i ((Zy)?/(Ty)+)
" by Lemma 4.4. Since (; foré € I,; give a tr1v1ahzat10n of 31 ((Iy)p /(Zy)PH1),
we conclude that the map

p/Vp—l — (Fpi i L@ V) (Fp1i it LB V)

induced by 9 on the successive quotient is an isomorphism. Therefore the
map 1 is also an isomorphism. We can also see that 1 commutes with
K-action. Hence the proposition follows. (]

Let A € h* such that Ad*(h)A = A for h € H. For a section { € H, we
define a function fe x € Ox as

fea(gH) = A(E(9))-

Let Z) be the two-sided ideal of the sheaf U(gx) = Ox ® U(g) generated
by € — (fea ® 1) for all € € H. We define the ring of twisted dlfferen’mal
operators as

‘DX,)\ = U(ﬁx)/.’[)\.
Let i := A| and define Dy, similarly. Then we can define the direct image
of a left Dy,,,-module M by

i M =1, ((M ®oy Q) @Dy _, i*'Dx,_)\) ®0x QY.
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Suppose that V is a (h, M)-module and b acts on V by A € h*. The
K-equivariant Oy-module £ ®@, Vy has a natural structure of left Dy,,-
module. Therefore, we can define the direct image i4+(£ ®p, Vy) as a left
Dx,A—module. ' -

Proposition 4.18. Suppose that V' is a (h, M)-module and h acts on V
by A € b* such that Ad*(h)A = X for h € H. Let V be an i~ gx-module
associated with V. Then we have o K -equivariant isomorphism of i~ gx-
modules ‘ ’

il L ®i 10, Vil (L ®0y Vr).

Proof. We define a filtration Fpi~1iy (£ ®0, Vy) of i Yt (£ ®0y Vy) in the
same way as F,i~1i;. L. Then

Fo'i_li+(E ®oy Vy) > L ®oy Vy Q0 v 0y 'L'*Q\)/(.

By using the same argument as in Proposition 4.17, we define a map of
i~ g x-modules ‘

V{z ®c (Oy ®i-104 i_lU(ﬁx)) — i_1i+(ﬁ ®0y Vy)
and we see that it induces an isomorphism
Vi @7 (Oy ®i-10, iU (8x)) = i i (£ ®0y V).
Hence
' i L @10, V =i (L ®0y Vy)
by Proposition 4.17. O

Recall that £ is the K-equivariant invertible sheaf on Y = K/M with
typical fiber A'™P(2/[). We view a one-dimensional vector space A"°®(/[)*
as a (h, M)-module in the following way: b acts as zero; the Levi component
L of M acts as the coadjoint action A Ad*; the unipotent radical U of M
acts trivially. Let £’ be an i~ '§x-module associated with A\"P(¢/[)*. Then
L'](i71Zy)L" is isomorphic to the dual of £. Therefore, by Proposition 4.18
we have ‘

YL L ®i10, V @10y L2 i Vy
Example 4.8 shows that the i~ 1gx-module V ®;-10, L' is associated with
Ve /\top(e/[)*‘
Theorem 4.19. In Setting 4.3, we assume that K is reductive. Suppose
that V is a (, M)-module and b acts on V by X € b* such that Ad*(h)A = X
forhe H. Let M = L x U be a Levi decomposition. Then
’ top ’ top

B, i Vy) = (PO (V@ A®) @ Ao/))
: top
~ (@Fprerer (Ve N\e/)

forseN, u=dimU, and y =dimY'.
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Proof. The first isomorphism follows from Theorem 4.12 and the argument
above. Since the functor Pfi,f is exact, (Phg”f)u_s ~ (P;}f{)u,‘soP,i’}:‘. Hence
the duality ([KV, Theorem 3.5])

. top .
’K * 5
(P aimrsny-s (- @ A®/D*) = (12F)()
and dim K/L = dimU + dimY give the second isomorphism. O

~ By Theorem 4.19 we obtain the convergence of spectral sequence
top top
(420)  EB(X,RiVy) = (B e (Ve \®/) ® A(9/0)
top

~ (I PEL (Ve A(s/h)).

Here R%i, is the higher direct image functor for a twisted left D-module.
We now see that this spectral sequence implies results of [HMSW] and
[Kit12]. '

Example 4.20. Let Go be a connected real semisimple Lie group with a
maximal compact subgroup Ky and the complexified Lie algebra g. Let K
be the complexification of Ky and G the inner automorphism group of g.
There is a canonical homomorphism ¢ : K — G, which has finite kernel.
Suppose that H is a Borel subgroup of G. Let us apply Setting 4.3. Then
X = G/H is the full flag variety of g. Since L is abelian and K is connected,
L acts trivially on AP(£/1)*. Moreover in this case it is known that ¥ is
affinely embedded in X. Therefore, R%; ~ 0 for ¢ > 0 and the spectral
sequence (4.24) collapses. We thus get the duality theorem [HMSW].

Example 4.21. Let Gy be a connected real semisimple Lie group with a
maximal compact subgroup Kog. We define K, G, and i : K — G as in
the previous example. Suppose that H is a parabolic subgroup of G and
apply Setting 4.3. Then X = G/H is a partial flag variety of g. In this
case Y is not necessarily affinely embedded in X. Let X be the full flag
variety of g and let p : X — X be the natural surjective map. Then we have
an isomorphism H*(X,p*M) ~ H*(X, M) for any Ox-module M. Hence
(4.24) becomes

' ’ top )
HS (X, p*Rt’&_l..VY) = (Igg:f)y-i's-l-tPhE’f (V ® /\(g/b)) ,

which is [Kit12, Theorem 5.4 (12)].

Let V be any (), M)-module and V an i~}§x-module associated with V.
Since Vi L ®-10, L~ i_1i+0y, we have

i_li_;_;c ®i—1(r)x E, ®i_10x Vo~ i-1i+OY ®i‘1(’)x V.

We can thus rewrite Theorem ‘4.12.,as
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Theorem 4.22. In Setting 4.3, we assume that K is reductive. Let M =
L x U be a Levi decomposition. Suppose that V is a (), M)-module and that
V is an i\ x-module associated with V (Definition 4.5). Then

: top top
IE(Y,i7%, Oy @110, V) = (P )us (V@ A®/0" ® (/)
' ' top k
= (18 ret (Vo \a/b)
forseN,u=dimU, y =dimY. '

5. DECOMPOSITION OF Aq(A)

In this section we decompose a restriction Aq(A)|y xv) in terms of the
orbit decomposition of a flag variety, which will be the starting point of the
more detailed study: of branching laws in the subsequent sections.

We retain the setting of Section 3. We assume that Gg is linear for
simplicity so we can take a connected complex reductive algebraic group G
with Lie algebra g which contains Gy as a subgroup. Let K be the connected
subgroup of G with Lie algebra €. Let q be a ¢-stable parabolic‘subalgebra
of g. Write q for its complex conjugate and put [ := qNg. Then we have
the Levi decomposition q = [+ u for the nilradical u of q. Write Q and L for
the connected subgroups of G with Lie algebras g and [, respectively. For a
one-dimensional (g, LN K )-module Cy, Zuckerman’s derived functor module
is defined by '

Aq() = (PEI5)s (Cagapiw),
where s = dim{u N ¥).

Let o be an involution of Gg and let Gj be the identity component of the
fixed subgroup of . Write G’ and K’ for the connected subgroups of G with
" Lie algebras g’ and ¥. In the following theorem we give a decomposition of
- the restriction Aq(A)|(y, k) corresponding to the K '-orbit decomposition of

a flag variety of K. The quotient varieties G/Q and K/ (Q N K) are partial

flag varieties of G and K, respectively. Then K/(Q N K) ~ Ko/(Lo N Ko)

has only finitely many K’-orbits. Let K/(Q N K) = ||7_,Y; be the orbit
decomposition and choose representatives k; € Ky such that Y; = K 'k; (@ﬂ

K). Put

qj == Ad(k;)g, Q= kiQk; ",
s;i=dimK/(@QNK) —dimYj, u;:=dim(Q;NK’)— dimC},
where C’;- is a maximal reductive subgroup of Q—j N K'. Taking conjugation

by k;, we regard the one-dimensional (g, L N K')-module C) 15, as & (@; N
g, C;-)—modulé, which we denote also by Cy1950)- .

Theorem 5.1. Let (Go, G) be a symmetric pair of connected real reductive
Lie groups and q a 0-stable parabolic subalgebra of g. Suppose that Aq(N)
is non-zero and discretely decomposable as a (g', K')-module with \ in the
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weakly fair range. Let K/(Q N K) = [;_ 1'Y be the K'-orbit decomj)osz'tion
and define §;, C}, s; as above. Then (P(f e c/)d(CA+2p(u) ® S(g/(d; +g')))
is (g ,K’)—admzsszble for any j,d and we have

(5.1)  [Ag(Nleg.xn)]

= 3 3 (D# [(PEAS )a(Crsap ® S8/ +1))

§=1 d€Z>q

Proof. We first prove that (P;’ e, cf)d(CA+2p(u) ® S(g/(d; —I—g’))) is (g/, K')-
admissible. Put W := Cyjgpq) ® ‘s (9/(@; + ¢')). It is known that there
exists a o-stable Cartan subalgebra t of £ which is contained in §;. We can
find @ € t such that §; is given by —a. Then a 4+ o(a) € §; N ¢’ and all the
eigenvalues of ad(a + o(a)) in g/(g; + g') are positive. Indeed, [a,0(a)] =0
and the eigenvalues of ad(a) (resp. ad(c(a))) in g/q; (resp. g/o(d;)) are
positive. So our claim follows from the inclusion §; + o (3 ]) C g;j+g'. Define
q; := Np(q;Np") +(q;Np’) as in Theorem 3.7. Put 7 := q;Ng; and write L]
for the connected subgroup of G’ with Lie algebra [’ By replacing C’ and
~ a+0o(a) with their (Q; N K’)-conjugates, we may assume that C} C L’ and
a+o(a) € ¢;. Let s(W) be the semisimpliﬁcation of W asin Deﬁnition 3.4.

By Proposition 2.4, it suffices to prove that (P2 7 L, mK')d(P:Jriwg' o )dl( (W)
is (g, K')-admissible for all d,d’ € N. Lemma 3.13 implies that q; =d; N
g+, N¥. Then by Corollary 4 13,

I’né’ L’nK’ g’ L nK' vne,LiNK'
Fo 1: L’mK' (P, ]ng’ c Jar(s(W)) =~ (P]n['me/ c; Jar (s(W))-

Slnce all the eigenspaces of a + o (a) in s(W) are ﬁm‘re—dlmenelonal the as-

[' ne L nK'
sumptlon of Lemma, 3.6 is satisfied. As a consequence, (P By e, o Yar (s(W))

q ,L ﬂK i

P \a(s(W) 55
(%, L; N K')-admissible. Slnce it annihilates S(W) Prop031t10n 2.5 implies
N

LN
is (LN K ’}-admissible. In particular, For oL mK,(

~ that it also annihilates (P

ﬂg’ C”
that (P17 e a( jﬁf; fo )ar(s(W)) is (¢, K')-admissible.

For a smooth algebralc variety X, let Mqc(Dx) be the category of quasi-
coherent left Dx-modules. It has enough injectives and any injective object _
is a flabby sheaf (see [HT'T] and [Har]). Hence cohomology groups of quasi-
coherent Dx-modules are calculated by injective resolutions in Mg (Dx).
Let DE.(Dx) be the bounded derived category of Mqc(D X)-

Write X := G/Q and Y := K/(Q N K) for the partial flag varieties of G
and K, respectively. Let i : Y — X be the natural inclusion map. Then the
situation here agrees with Setting 4.3 by putting H = Q. Take an i 10x-
module Vy, associated with the one-dimensional (g, L N K)-module C,. For -
example we can take V. as in Proposition 4.14. If we define £ as we did
before Theorem 4.12, we have £ ~ Oy because LN K is connected. We also

) #{s(W)). Using Lemma 3.5, we conclude
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have A\'™P(g/ b)‘:: (Cép(u) as a (g, L N K)-module. Then Theorem 4.12 gives
~ a realization of A4(\) on Y

(5.2) I(Y,i iy Oy ®-10, Va) = 4g(N).
In addition we have

HYY,i Yy Oy ®;-10, V2) =0

N

for d # 0 because of Fact 2.11 (ii).

We now decompose the structure sheaf Oy using the K’-orbit decompo-
sition ¥ = |_|;.L:1 Y;. We may assume that the index j is chosen to satisfy:
if the closure of Y; contains Yy, then j < j'. In particular, Y; is the unique
open dense orbit in Y and hence s; = 0. Put Y<, := U?:l Y;. Then Y, is
an open K'-stable subvariety of Y. We write

p:Yp =Y, igp:Yp =Y, ip<piVp = Yep JpiY¥<p1— Yo
for the natural inclusion maps. For each 2 < p < n, there are inclusion maps
ip,< J
Yy =5 Yep ¢ Yep1.

The map i, <p is-closed and j, is open. Therefore, we have a distinguished
triangle in Dgc (Dy,):

(ip,Sp)ik(ip,Sp)TOng = Oy, = (jp)-l—(jp)—lOng - (ip,Sp)Jr(ip,Sp)TOng[l]:

where (ip,<p)T := (ip,<p)*[sp—1 — Sp] and (ip,<p)+ is the direct image functor
between the derived categories. Since (ip<p)*Oy,, ~ Oy, and j, 1OYSp ~
OySp_l, it becomes

(ip,Sp)JrOYp [Sp—l —8p] — OYSP - (jp)+Ong_1 — (ip,Sp)+OYp [sp-1 —5p+1]-

By applying the functor (ip)+ : Dgc(DYS;,) — Dgc('Dy), we get a distin-
guished triangle in D2, (Dy): '

(5.3)

(ip)+ Oy, [sp-1 — sp] = (i<p)+Ove, = (i<p-1)4Ove,y = (ip)+Ox[5p-1 — 8p +1]-

We decompose I'(Y,i71i. Oy ®;-10, Va) using (5.3). In order to do this
we need the following lemma.

Lemma 5.2. The functor from D, (Dy) to the category of left U(g)-modules
defined by

M = HY Y, i M ®;-10, Va), dEN
is a cohomological functor.

Proof. Since the functor M — i~ M ®;-10x Vi is exact, it is enough
to show that H(Y,i 14 M ®;-10, VA) = 0 if M is injective and d > 0.
Let M € Mg (Dy) be an injective object. Then M is a flabby sheaf. Let
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F,pi~li. M be the filtration of M defined in (4.6). By Lemma 4.4, it follows
that

(Fpi My M ®i-10, VA)/ (Fp-1i 14 M @10, V2)
o (i tip M/ Fpo1i i M) @0y (/@71 Zr) V)
~ M ®oy Qyyy ®oy i (TH/IF)Y ®0, (Va/ (7 Iy)V)).
Since Y%,y ®oy i (T} JIEYY @0, (VA/(i71Zy)Vy) is locally free and

the flabbiness is a local property, we conclude that (Fpi~tiiM ®r10x
W)/ (Fp1i71i4 M ®;-10, V3) is also a flabby sheaf. Therefore,

HE(Y, (Fpi Vi M ®i-10, V2)/ (Fp—1i" 14 M ®i-10, V2)) =0

for allp € N and d > 0, which proves HY(Y,i i, M ®;-10, Va) = 0 for
d>0. . O

We put
M2 :=H4Y,i iy (ip)1+-0y, ®—10, V1), and
M, = B (Y17 Vit (i<p)+ Ove, ®i-10x V2)-

Lemma 5.2 and (5.3) yield the following long exact sequence of (g', K')-
modules.

d+sp_1—s d d »
— My " P Mg, = MS, 4
dtsp_1—sp+1
(5.4) — My g M2
e

_ We now describe the (¢, K')-module Mg in terms of cohomological induc-
tion. Let R(i,)« be the right derived functor of (ip).. The isomorphisms

iliy (ip)+ Oy, ®i-10x Y
~ R(ip)*(i;li—li%(ip)myp) ®i-105 Vi
~ R(ip)«(ip i i1 (ip)+ Oy, ®p 110 p V)
give
HAUY, 744 (ip) +: Oy, ®i-10 Va) = HAYy, 1,17 1i+(ip)+(9Yp ~1i10x Bp V/\)-

Let Xp be the G’-orbit in X that contains Y. Write iy,;x : ¥, — X, and
: Xp — X for the natural inclusion maps. Taking ka € G/Q as base
pomt we get isomorphisms:

iy, X J

Y, : X, X

; ; ;

K (lp@hky 1 K') — G (k@ 1 G') — G (@)
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The filtration Fi,j 'Dx by normal degree with respect to j induces the
filtration iy Frrj i+ (iv,x)+ O, ®;-14-10y i>1V5. By Lemma 4.4, there is
an isomorphism ~
Fonj54+(iv,%) 4O, [ Fn-15 ™ i+ (i, x)1 O,
~ (iv,x)+0y, ®ox, I (TR/T% )Y ®ox, Ux/x,»
which respects g’-actions. Hence the successive quotient of the filtration
iy 5 Fmi i+ (iv,x)+ 0¥, ®;=1,-10, 1 ' Va I8 isomorphic to
S 1 =1 1 -
v, x (iy,x)+O, ®i§,1x(’)xp by.x ¥ (I?,,/ I;?: _)V‘X’(’)xp Q}/c/xp)®i;}xoxp p Wi
. =1 . - . L N—
Since 1y, (j 1(15(”?/@:1)\/ ®0x, Q}/(/Xp) Bzt 0x, in 1y, is an (i04,) "1Ox-
module associated with the (g, C)-module S™(g/ (G, +¢')) ® AP (g/ @p +
g')) ® C,, Theorem 4.12 implies ‘
d 1 . N P | .

H(Yp, iy x (iv,x)+ Oy, Bt 0x, iy x (7 (IX,/ I;?: HY ®0x, x/x,) B L ox, 'p W)

gt . top top
~ (PER% 0 )up—d(S™(8/ @ +6) ® A0/ @+ ) @ Cr @ A6/ (@ N 9)

top V

,,K’ —_ =
>~ (qupng/’oé)up—d(ck ® /\(g/qp) ® Sm(g/(qp + gl)))

/,K’ —
= (qupmgl,cé)u,,—d((cx—ﬂp(u) ® Sm(g/(qp + gl)))'

By using long exact sequences associated with the filtration ’L;/:lXFm i Y+ (v, x)+ Oy,
we get

’,K’ -
» [Mg] < [(Pﬁgpng',czf,)up—d (C)\+2p(u) ® S(g/(qp -+ 9,)))]
and hence M¢ is (g, K')-admissible. We also conclude that

S DM = S DH (P 0)a(Crvanty ® S(8/ @ +9)) -
d d
Since M2, =~ Aq(A)(y,x7) and Mgn = 0 for d # s, the long exact sequence
(5.4) gives
[Aq(/\)l(g’,K’)]
= 30 ST (ayEert (RIS ) )alCaszo ® S0/ (@5 +80))
j=1 d€Zo ! ~

S0 the theorem is prox}ed. ' O

Remark 5.3. We can see from our proof that the theorem remains true if
we replace W = Cy 12,0 ® S(g/(d; + 9')) by s(W) (see Definition 3.4).

Remark 5.4. Even if the group Gy is not linear, we can find a reductive
algebraic group G with Lie algebra g and the map i : K — G with finite
kernel. Then we can realize Aq(\) on the flag variety as in the last section
and prove Theorem 5.1 by the same argument.

From the proof of Theorem 5.1, we can prove the following inequality.
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Theorem 5.5. Under the notation and the assumptions in Theorem 5.1,
suppose that Y1 is the open K'-orbit in K/(Q N K). Then we have

(5.5) [AdW)g.xn] < [( D g Ci)ul (Cat2o) ® S(9/ (@1 + gf)))].

In [Oshll], we observed that the right side of (5.5) can be written as
a direct sum of derived functor modules Ay (\'), where ¢” is a minimal
element of Q defined in (3.2).

Our proof of Theorem 5.1 consists of the first part which we proved the
admissibility of cohomologically induced modules and the second part which
we proved the equation (5.1). Therefore, if we assume the admissibility, we
get an equation like (5.1) in a more general setting.

. Theorem 5.6. Using the notation in Theorem 5.1, let V' be an (I, L N K)-

module. We assume (P;J e, c/)d(V|(qJng',C’) ® S(g/@; + ¢))) is (¢, K')-

admissible for any j andd. Then (PgLnK)d( (a7 15 also (¢, K')-admissible
and

Z (—D*[(P ’LﬂK)d(V)‘(g’ o)

dEZZO ‘
= 303 uEe [P )a(Vinon © S(0/ @ +8) |

If n = 1, namely K’ acts transitively on K/(Q N K), then @ N K’ is a
parabolic subgroup of K’. Then s; = 0, u; = s, and Lemma 3.14 shows
that Q N G’ is a parabolic subgroup of G'.

Corollary 5.7. In the setting of Theorem 5.1, we assume e that K ! acts tran-

sitively on K/(QNK). LetV be an (I, LNK)-module such that ‘Cﬁﬁg’ 1(Vgng®

AP (g/@@+¢))® S(g/(@+9))) is (¢, K')-admissible for any d. Then
Z (_1)d[ﬁg,d(v)|(g',1{')]

d€Z>o
= > - 1)d[ oV © \0/@+9) 8 S(a/G+50)].
dEZZO

Prbof. We put ¢ := qN g, which is a f-stable parabolic subalgebra of g'.
Write o' for the the nilradical of q'. The corollary follows from Co/ () _2,(w) =

At°p(9/ @-+9)) 0

Corollary 5.8. In the setting of Theorem 5.1, we assume that K’ acts

transitively on K/(Q N K). Suppose that Aq(\) is non-zero and discretely

decomposable as a (g, K "Y-module with A in the weakly fair range. Then
top

AWlgaen] = 3 0 [ey 4(Cre Aw/@+8)) © S/ @ +1))) |-

dGZzo
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6. SMALL REPRESENTATIONS OF U(m,n)

In subsequent sections, we derive branching formulas of Aq()) |y k) based
on Theorem 5.1. For that process, we need certain isomorphisms between
cohomologically induced modules, which we show in this section.

Let m and n be positive integers and let

Go = U(m,n) = {g € GL(m +n,C) : *glmng = Imn}, and

Ko :=U(m)xU(n) = {(g g) :AeU(m),Be U(n)},

where I,,, , is the diagonal matrix diag(1,...,1,—1,...,—1). Their complex-
m,n g &( p

ifications are G = GL(m +n,C) and K Z GL(m,&) x GL(n,C) with Lie
algebras g = M(m +n,C) and £ = M(m,C) & M(n,C). We write e; ;(€ g)
for the (m +n) by (m +n) matrix with 1 in the (4, j)-entry and 0 elsewhere.
Choose a Cartan subalgebra t of £ (or of g) as diagonal matrices. Write
€ (1 < i < m+n) for the element of £* which sends t = diag(t1,...,tmin) € t
to t; € C. The roots of ¢ in £ and g are given as '

AL, 1) = {£(ei — €j) h<icicm U {Z(emti — €m+j) }1<icj<n and
Afg, t) = {£ (& — ) higi<j<min:

Choose their positive systems as

AT, 1) = {e ~ €5 }1<icj<m U {€mti — €mrjti<icj<n and
At (g, ) = {ei — €} 1gicj<min. '

Let V; = C™+n with standard coordinate 21, ..., Zmin, on which G acts
naturally. In other words, V; is a representation space of FG(ey), the irre-
ducible representation of G with highest weight €;. The infinitesimal action
of g on Vi is given as

0
93 e (e = %
(1

Let Wy ::{veVl:zi(v)=Of0r1§i§m}=©”andi1:W1—>V1
the natural inclusion map. Consider (i1)+Ow,, the direct image by i1 of
the structure sheaf as a D-module. Since W is K-stable, T'(V1, (i1)+Ow,) is
equipped with a (g, K )-module structure. We note that H4(V1,i1,0w,) =0
for d > 0 because i is closed immersion and V; is affine. It is easy to see that
Vi decomposes into two G-orbits V? = {0} and V{ = V1 \ {0}. Similarly,
W, decomposes into two K-orbits W = {0} and W] = W1 \ {0}. Write
i9 : W? — Vi and ¢ : W{ — V] for natural inclusions. As in the proof of
Theorem 5.1, we get a long exact sequence

(6.1) = HE(VA, (194 Owp) — HAVA, ()4 Ows) = BV, (01)+Owy)

— den+1 (Vl, ('L'({)_|_OW{7) — e
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Choose v =*(0,...,0,1) € V4 as a base point. Then the stabilizer of v in G
is :

= 40 : | — m+n—1
S_{<b 1>.AEGL(m+n 1,C), be C }

Hence V{ ~ G/S and W{ ~ K/(S N K). The group

A0 0 : |
KS:{ 0 B 0 :AEGL(m,C),BeGL(n—l,(C)}

0 0 1

is a maximal reductive subgroup of S N K. By Theorem 4.12,
‘ ' ) top
. K Q)
Hd(V_f, (4)+Owy) 2 (PE¢ In-a-1(/\(9/5))-

We define the parabolic subgroup

\ A -
Q1 ::{(O Z) :AEG’L(m—I—n—l,C),bEC}

so that q1 is given by —emin,m+n and then

_ A0 '
qlz{(* b> :AeM(m—i—n—l,C),beC},

le{(gl 2) :AeGL(m+n¥1,C),b€C*},

(L1)o := Nygmmy(a1) = U(m,n — 1) x U(1).

Since A*P(g/s) ~ A™(g/§1) as a (1, L1NK )-module, Mackey isomorphism

gives
top top

(PR 4 (N(o/5)) = (PR)a(©) © A(o/m),
where C is the trivial (s, K s)-module. In light of Proposition 2.5 and Q/S ~
(LiNK)/Kg ~ C*, we get -
) P Crenin ifd=0,
(PER) () ~ | 3
0 ifd > 0.

Consequently, ,
. K - .
Hd(vl/’ ('Lll)_'_OW{) :'@(Pﬁgl,LlﬂK)n_d_l((C)‘GM+11+2P(U1)) - @ ‘Cgl,n—d—l(CAEm+n)'
AEZ o AEZ
We can also see that
/\top e @ S’\(Vl) ~ @FG()\Q -+ E) ifd=0,
(v, (11)+Owp) = A>0 A>0
0 if d >0,
where
e=€1+ + €min.
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We decompose the long exact sequence (6.1) into eigenspaces of the center
of g. Let Ipin = diag(l,...,1) € g. For A € Z, write I'(V1, (41)+Ow, ) a for

m-+n
the A-eigenspace of I ip, in T'(V1, (41)+Ow, ). Then we obtain:

Lemma 6.1. We have
i E%hd(CAEmM) =0
ifd#0,n—1. For n > 1 we have isomorphisms
Agy Qeman) = L3, 121 (Cremin) = T(V1, (11)4: 0w,
P {FG((A—m—n)el+e) ifA>m+n,
qu,o (Chemin) = . g’
0 if A <m+n.
Forn =1 we have a short é:mct sequence
0 — T(V1, (i1)+ Owy)a — Ags(Aeman) = FE(A —m —n)er +¢) > 0
if A> m -+ n and an isomorphism
- AgQemen) 2 T(V2, (12)+: 0w
fA<m+n.
Let us describe F(Vl, (i1)+Ow, ) using coordinates on V1. Put
=2z (1<i<m) and y;:=2zmys (1<0<0).
Via identifications
Ow, ~ Oy, 1+ ‘(dyl Ao Adyg) L
Ov; ~Qy,, 1=dzi A+ Ndzmyn,

we have

(11)+Ow, ~ (1)« (Owy ®Dy, i1Dwy)-
There is an element 1 = 1® 1 € I'(V4, (i1)«(Ow, ®py,, 11Dv;)), which gen-
erates ['(V1, (11)«(Ow, ®py, 11Dv;)) as a D(V1)-module and its annihilator

is the left ideal of D(V1) generated by z1,...,Zs, and Biyl’ R %. Hence if
we write I for this ideal
' o) o)
(v, (4 ~ D(V; ~ yores ,—,,..,—].
(V2 (2)+0my) = DOYV/T = Clyts- o smy =0

Define V, := V§*, namely, let V5 be the representation space of FG(—emin).
Let 2§,..., 25, 1n € Vo be the dual basis of z1,..., Zm+n € V1. The infinites-
imal action of g on V> is given as

g2 eij (ij)ve = 7 &J: + 0i (z Ej;%)
Let Wy :={v € Vg:z;‘n+i(v)=0for1§i§n}=Cm and ig : Wa — Va the

natural. inclusion map. We define the parabolic subgroup

Q2 ::{(g *> taeC', Be G—'L(m—l—n—l,(C)}
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Therefore, we get

L'(Va, (i2)+Ow,) = D(V2)/2(1).

55

so that qg is given by e;,1 and then

G = {(a 0) ta€C,BeM(m+n-— 1,<C)},

x B
Lo _ {(“ O) ca€C*, BeGL(m+n— 1,<C)},
0 B ‘

(L2)0 = Nymm(d2) = U(1) x U(m — 1,n).
Then in the same way as before, we can see the following lemma.
Lemma 6.2. We have

£gg,d((c)\ﬁl) =0
" ifd#0,m — 1. Forn > 1 we have isomorphisms
A1) = £3, 101 (€rr) = T(Va, (12)+ O,
ﬁgz,o((c)\el) o {FG((A +m +n)emin — €) zif/\ < —m - n,
0 ifA>—-m—n.
Forn =1 we have a short exact sequence
0 = T(Va, (i) Ows)x — Agy(Ae1) = FE((A +m + n)empn —c) = 0
if A < —m —n and an isomorphism
Aq,(Aer) = IT'(Va, (12) + Ows )a
if A>—m—n.
Define the algebra isomorphism @ : D(Vi) — D(Vs) as
zp—)%, %H—zf for 1 <i<m-+n.
Putting
Cxf=2 (1<i<m) and yf =2z, (1<i<n),

we see that ®(I) is the left ideal generated by a—%, . 5%: and y{, Y

Let det be the one-dimensional representation of G' given by G > g —
det(g) € C*. Its differential is given by g > £ +— Trace(§) € C. In the

diagram

8 — D) D)/,

Nk

- D(Vz) —= D(12)/2(])
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the right square is commutative and the left triangle is commutative up to
Trace, namely, ®(£y,) = £y, + Trace(§) for € € g. As a result, ® induces an
isomorphism of (g, K')-modules

F(Vl, (i1)+OW1) ~ F(VQ, (i2)+(9W2) ® det

and hence

T'(Vi, (41)+Owr )a ~ T'(Va, (12)+ Ow, )a—m—n ® det
for A € Z. We conclude from Lemmas 6.1 and 6.2 that:

Theorem 6.3. In the setting above, we have

Agy (Aemqn) ifd=n—1,
Egl,d((CAEWJrn) ~FG(A—m—n)e+e€) ifn>1,d=0,andA>m+n,
0 otherwise,
and A
Ag,(Xer) ifd=m—1,
L3 4(Core) = FE((A+m+n)emtn —€) zfm >1,d=0,and A< —-m—n, -
0 - otherwise.

For A > ™42 we have an injective map
@ Ay (0 —m = n)er +€) = A (Nemin)
and
Coker ¢ ~ {FG(O‘ —m-—mn)e+e) ifn=1and A >m+n,

otherwise.
For A\ < 4% we have an injective map
¢ 1 Agy(Nemgn) = Ago (A —m —n)er +¢) |
and - |

Coker ¢ ~ {FG(AE"’H’") ifm=1and A <0,

otherwise.

Remark 6.4. For the parabolic subalgebra ql, the parametef Aéman IS In
the weakly fair range if and only if A < m% For gz, the parameter Ae; (or
- Ae1 +€) is in the weakly fair range if and only if A > —mdn,

Suppose that m and n are even and put m’ = % and n' = §. In what
follows, we consider the restriction of the representations of U(m,n) given

above to the symmetric subgroup Sp(m/,n’). We set

6 M= Sp(mlyrnl) = {g E U(m7n) :thm1ng = Jm’n},
K} = Gy N Ko = Sp(m/) x Sp(n'),
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O I

Iy O

where Jp,n = . Their complexifications are G' =

o I
Iy O ‘
Sp(m/+n/,C) and K’ = Sp(m’, C) x Sp(n’/, C). Choose a Cartan subalgebra
' of ¥ (or of g') as diagonal matrices in ¥, namely,

= {t = dia’g(tla b, _tlu vy _tm’atm’+11 AR tm’+n’a _tm’+17 vy "tm’—i—h’)}

Write €/ (1 < ¢ < m' + n’ ) for the element of (¢)* which sends above t to
t; € C. The roots of ¢’ in ¥ and g’ are given as

A, ) = {6} £ € hcicjom U {eh s & ey cici<n U {26 <icm 1
and ’ ‘
A(g,¢) = {*€; £ € hcicj<m+n U {£2€ 1 <icmtn -

We see that G/Q; ~ G'/(@; N G") and K/(Q; N K) ~ K'/(Q; N K').
The intersection q} := q1 N g’ is the parabolic subalgebra of g’ given by
€mtn! mtn’ — Em+4nmtn. Lherefore, Corollary 5.8 gives (we also see this in
Section 8)

ACII ()\6m+n)|(gl,Kl) ~ Aqll(—>\€,,m/+n1).

Similarly, ¢, := g1 N g is the parabolic subalgebra of g’ given by ey1 —
em/+1,m'+1- Then it follows that

qu ()\61 + E)I(gI’KI) ~ Aq12 ()\6’1).
We can see that

(Lll)o = NSp(m’,n’)(qll) = S’p(m’,n' - 1) X U(1)1
(L,2)0 = NSp(mlml) (ql2) ~ U(l) X Sp(m' — 1,’0’).
We now conclude from Theorem 6.3 that

Theorem 6.5. In the setting above, we have

Ag (Nl ) fd=n—1,
Lgﬁl,d(ck, " )2 FG(~(A+m+n)e) ifd=0, and A< —m—n,
0 otherwise,
and
/ Ag (Aé)) ifd=m—1,
£y /(Coy) ~ FE(—(A\+m+n)) ifd=0,and A< -m—n,
0 otherwise.

Moreover, there is an isomorphism of (¢', K')-modules.

Ag, (—Aeppnr) = Ag (A —m — n)ey).
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Remark 6.6. For the parabolic subalgebra q}, the parameter )\em tge 181D
the weakly fair range if and only if A > —m/ —n/. For ¢}, the parameter \e}
is in the weakly fair range if and only if A > —m/ —n’.

7. CLASSIFICATION

We retain the setting of Section 3. In particular, (go, g;) is a symmetric
pair. We say that a triple (go, g, q) satisfies the discrete decomposability
condition if one of (hence any of) the conditions in Fact 3.8 holds. In [KO12],
we got a classification of all the triples satisfying discrete decomposability
condition by checking Fact 3.8 (v). We recall the classification and present
a list of such triples in this section.

In order to do this, we prepare some terminology and setups.

Definition 7.1. We say the pair (go, gy) is an irreducible symmetric pair if
one of the following holds. : '
(1) go is simple.
(2) ‘go is simple and go =~ ‘go @ ‘go; o acts by switching the factors.

Proposition 7.2. Let q1 and qz be 0-stable parabolic subalgebras of g such
that g1 C qz2- If (go, 90, 91) satisfies the discrete decomposability condition,
then so does (go, 9, 92)-

Definition 7.3. Let go = £+ po be a real non-compact simple Lie algebra.
We say go is of Hermitian type and the symmetric pair (go, to) is a Hermitian
symmetric pair if the center 3x of ¥ is one-dimensional.

If go is of Hermitian type, then p decomposes into the direct sum of two
irreducible submodules p = p4 + p_ as a K-module. The the Riemannian
symmetric space Go/ Ko becomes a Hermitian symmetric space by choosing
p_ as a holomorphic tangent space at the base point. ’

Definition 7.4. Suppose that gg is a simple Lie algebra of Hermitian type.
A 6-stable parabolic subalgebra q of g is said to be holomorphic (resp. anti-
holomorphic) if ¢ D p4 (resp. g D p_).

We fix a positive system AT (E t) with respect to a Cartan subalgebra ‘c
of £ and present the set of weights A(p, t) for each simple Lie algebra g. We
will set vectors ¢; € t* and e; € t. If g is not equal to su(m,n), sl(2n,C),
e6(2), OF e7(—25), then {¢;} is a basis of t* and {e;} is a dual basis of {¢;}.
We also write down the conditions for a € v/— 1ty to be A* (¥, t)-dominant
in terms of the coordinates a;, which are used in Tables 1, 3, and 4.

Setting 7.5. Let go = su(m,n). Choose €1, ..., €min € t* such that
A+({" t) = {Ei — ejhicicj<m U {emi — €mi H1<i<i<n
(p t) = {:l:(ez - E'm-l—g)}1<1,<m, 1<j<n.

Define eq, .. ., €msn € t such that (e; —¢;)(ex) = (511c — 0,1, and then ey +- -+
emsn = 0. The dominant condition on a = a1e1 + -+ Gminemin € vV —1tp
amounts to that a1 > a2 > -+ > amy and am41 > AGm42 = * ' 2 G-
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Setting 7.6. Let go = s0(2m, 2n). Choose €1,. .., €mtn € t* such that
AT (8, 1) = {& £ €5 1<icjem U {emti + €maj hi<icicn,
A(p, t) = {Fei £ emtjti<i<m, 1<i<n-

Denote by e1, ...,emin € t the dual basis of €1,...,en4n. The dominant
condition on a = aje; + - + Aminemin € V—1fy amounts to that a1 >
2 Ame1 2 ’am‘ and am41 > - = Gmtn-1 2> ’am—}-n’-

Setting 7.7. Let go = s0(2m, 2n + 1). Choose €1, ..., €mtn € t* such that
AT (8, t) = {e; £ €5 1<icicm U {emri £ €mpjti<ici<n U {emtiti<i<n,
A(p,t) = {F€ £ emajhr<icm, 1<j<n U {E€it1<icm.

Denote by e1,...,emin € the dual basis of €1y, €min. Lhe dominant

condition on @ = aie; + -+ + Gmanemin € vV —1ty amounts to that a; >
2 g1 2 |a/m’ and ami1 2> -0 > aman > 0.

Setting 7.8. Let go = s0(2m + 1,2n). Choose €1, ..., €min € t* such that
AT 1) = {& £ €5 1<icicm U {emts & €maj i<ici<n U {eih1<icm,
A(p,t) = {£e; + emyjli<icm, 1<i<n Y {Temtit1<i<n

Denote by e1,...,emin € t the dual basis of €;,...,entn. The dominant
condition on a = aje1 + -+ + Gminbmtn € vV —1tp amounts to that a; >
2 am>0and a1 > > Amin-1 2 Iam+n|~

Setting 7.9. Let go = s0(2m + 1,2n +1). Choose €1,...,¢m4n € t* such
that

AT (1) = {e; + €5 1<iciom U {emti £ emijticicicn U {ei}1<i<m U {emtiti<icn,
Ap,t) = {+e; £ emiglicicm, 1<5<n U {F€i 1<i<m U {£emtiti<i<n U {0}

Denote by e1,...,emin € t the dual basis of €1,...,€min. The dominant
condition on ¢ = aje1 + -+ + Gminem+n € vV —1ty amounts to that a1 >
o> am > 0and amy1 >0 > g = 0.

Setting 7.10. Let go = sp(m,n). Choose €1, . . . , émyn € t* such that
AT ) ={ei & €} 1<icjemU{emi T €majli<ici<nU{26i 1<icmU{ 2€m i} 1<icn,
A(p,t) = {Le & emyjlicicm, 1<5<n-

Denote by e1,...,em+n € t the dual basis of €1,...,€min- The ‘dominant
condition on a = aie1 + -+ + Gman€min € vV —1lfp amounts to that a; >
o> > 0and Gpg1 >0 2 Gmgn > 0.

Setting 7.11. Let go = s0*(2n). Choose €y, ...,€, € t* such that
AY (1) = {e — e5h1<ici<n,
Alp,t) = {£(e + 6j)}1§i<j§n-

Denote by e1, .. ., en € tthe dual basis of €1, . . . , €. The dominant condition
ona=ae; + - -+ aney € vV—1tg amounts to that a; > --- > an.
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Setting 7.12. Let go = sp(n,R). Choose €1, ..., €, € t* such that
A*(e,1) = {& — g h1<icjzns
Alp, t) = {£2€:}1<icn U {£(& + €5) hi<icj<n-

Denote by ey, ..., e, € tthe dual basis of €1, .. ., €,. The dominant condition
ona=aije1+ -+ apen € vV—1ty amounts to that a1 > -+ > ay."

Setting 7.13. Let gy = sl(2n,C). Choose €1, ..., €2, € t* such that
AT, 1) = {e — e h1<i<i<om,
Alp,t) = {£(e — €5) h<ici<an U {0}

Define ey, ..., ez, € t such that (e; — €;)(ex) = dix — ;% and then er+--- +‘ ,
eon, = 0. The dominant condition on a = aie1 + - - + agpez, € vV—1ig
amounts to that a1 > -+ > ag,.

Setting 7.14. Let go = so(2n,C). Choose €1,. .., €, € t* éﬁch that
AT ) = {e £ €5 <ici<n,
A(p, t) = {Fe £ ejh<ici<n U {0}

Denote by e1, . . ., ey € t the dual basis of €3, . .., €,. The dominant condition
on a =ajer + -+ anen € vV—1ty amounts to that a; > -+ > an—1 > |an|.

For real exceptional Lie algebras, we follow the notation of [Hel, Chapter
X].

Setting 7.15. Let go = faa)(= f1) s0 that t= 5p(3 C) @ s1(2,C). Choose
€1, €9, €3, €4 € t* such that

A*(, 1) = {& £ ¢jh<icjss U {26 h1<ics U {2ea},

A(p, f) = {:|:€1 + €2 ezt 64} U {:I:ei + 64}151'33,
Denote by ej,ez,e3,e4 € t the dual basis of €, €2,¢€3,64. The dominant

condition on ¢ = aje1 + azes + azes +ageq € /=1ty amounts to. that
a1 > ag > az > 0and ag > 0.

Settmg 7.16. Let go = fy(— 20)( %) so that £ = 50(9,C). Chooseeq,€,€3,€4 €
* such that

AT (1) = {e £ €5 1<ici<a U {ei1<iza,
1
Ap,t) = {§(i€1 feptezt 64)}.

Denote by e1,es,es,eq € t the dual basis of €1,¢e2,€3,€64. The dominant
condition on @ = a1e1 +- - - +aqgeq € vV —1tp amounts to that a; > az > az >
aq > 0.
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Setting 7.17. Let go = eg2)(= ¢§) so that ¢ = sl(6,C) @ sI(2,C). Choose
€1, ..., 67 € t* such that

AT () = {e;— €j h<i<j<e U {2€e7}, '

Ap,t) = { (Z( 1)k0)¢ ) +e7: k(3) Ve' {0,1}, k(1) +--- + k(6) = 3}_

o1
Define ey,...,er € t such that (e; — €;)(ex) = Ok — Ojk, €7(er) = 1, and
(ei —€5)(er) = er(ex) =0for 1 < 4,5,k < 6. Then ey +---+es = 0. The
dominant condition on @ = aje; + -+ + arey € v/—1ty amounts to that
ay > --->ag and a7 > 0. '

Setting 7.18. Let go = eg(—14)(= ¢3) so that & = 50(10,C) ® C. Choose
€1,...,€g € t¥ such that

AT 1) = {e; £ ¢} 1<icj<s

6
1 :
£) = {5(2 (_1)'“%) D k(1) 4+ K(6) odd}.
i=1
Denote by eq, ..., es € t the dual basis of €1, ..., ¢5. The dominant condition
on a =aie; + -+ ageg € v/— 1ty amounts to that a; > --- > ag > |as)-

Setting 7.19. Let go = ¢7(_s5)(= ¢2) so that ¢ = s0(12, C)@sl(2, C). Choose
., €7 € * such that

AT, ) = {e; £ €5 h1<ici<e U {2€7],

{ (Z( 1)¥Ve )i67 ()+---—I—k(6)odd},

Denote by ey, ...,e7 € t the dual basis of €1, . . ., e7. The dominant condition
on a = aiey +- + arer € v/—1tg amounts to that a1 > -+ > as > |ag| and
a7 > 0.

Setting 7.20. Let go = e7(—25)(= ¢3) so that & = ¢§@C. Choose ey, ..., € €
t* such that :

AT, 1) = {a £ e hi<<izs
5 .
U {% (eg — €7 — €+ Z (_1)k(i)€i> . k(l) EEE k(5) even},
i=1
A(pa t) = {:,:66 =+ Ei}1§i§5 U {ﬂ:(Gs - 67)}

. 5 ’
1 ;
U {:l:§ (68 —er+ep+ Z (—1)k(’)ei> 2 k(1) 4+ k(5) odd}.
i=1
Define e1,...,eg € t such that ¢(ej) = g for 1 <7 <6, 1 <j <38
and that‘(eg — 67)(65) = 0;8 — 0y for 1 < i < 8. Then eg+e7 = 0. The
dominant condition on ¢ = aje; + - + ageg € V—1fp amounts to that
as>--->ag > ja1| and ag — a7 —ag — a5 —aqg —az —az +a1 2 0.
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Setting 7.21. Let go = eg(_24)(= ¢2) so that € = e% @ s((2,C). Choose
€1,...,€8 € t* such that

A-I_(E t) - {61 + 6‘1}1<.7<1,<6 U {68 + 67}

U {5 (68 — et Z (—l)k(i)ei) L k(1) + - + k(6) odd},
i=1
Ap,t) = {Fer £ es}1<ice U {teg L €i}i<ics

U {:t% <68 +er+ 26: (~1)k(i)ei> D k(1) 4+ k(6) even}.
paet . ‘

Denote by ey, ..., es € t the dual basis of €3, .. ., €s. The dominant condition
ona=aie; +--- -+ ageg € v—1ty amounts to that ag > -+ > ag > |a;| and
ag—ar—ag — a5 — a4 —ag — az+a3 > 0.

Theorem 7.22 ([KO12, Theorem 4.1]). Let (go,gp) be an irreducible sym-
metric pair defined by an involution o such that o commutes with 0 and
let q be a O-stable parabolic subalgebra of g, not equal to g. Suppose that A
is in the weakly fair range and that Aq()\) is non-zero. Then Aq()) is dis-
cretely decomposable as a (¢, K')-module if and only if one of the following
conditions on the triple (go, 9, q) holds.

(1) go is compact.

(2) 0 =6.

(3) g0 ="'g0D'g0 and q = ‘q1®'qa. Further, ‘go is of Hermitian type and
both of the parabolic subalgebras ‘q1 -and ‘q5 of ‘g are holomorphic,
or they are anti-holomorphic (see Table 1 for holomorphic and anti-
holomorphic parabolic subalgebras).

(4) The symmetric pair (go, 8g) is of holomorphic type (see Table 2 for
the classification) and the parabolic subalgebra q is either holomor-
phic or anti-holomorphic.

(5) The triple (go, 85, q) is isomorphic to one of those listed in Table 3 or
in Table 4, where the parabolic subalgebra q is given by the conditions
on a.

In Tables 1, 3, and 4, we have assumed that the defining element a of q
is dominant with respect to AT(8,t) (see Settings 7.5 to 7.21 for concrete
conditions on the coordinates of a) and list only additional conditions for
the discrete decomposability.

Remark 7.23. The triples (go, g5, q) in Table 3 have the following property:
there exists a 0-stable Borel subalgebra b contained in q such that (go, g, b)
also satisfies the discrete decomposability condition. This is also the case
for (1), (2), (3), and (4) in Theorem 7.22. Then Proposition 7.2 implies
that every f-stable parabolic subalgebra containing b satisfies the discrete
decomposability condition. We call such triples (go, go,q) discrete series
type. The triples in Table 3 together with (1), (2), (3), and (4) in Theorem
7.22 give all triples of discrete series type. |
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Remark 7.24. The remaining case is (5) in Theorem 7.22 for Table 4. We
call triples (go, gg, 9) in Table 4 isolated type. For generic m,n and k, discrete
series type and isolated type are exclusive. However, for particular m,n or
k there may be overlaps.

" Remark 7.25. Let g5 = 50(2m,2n). For m = 2 and n # 2, we write in
Table 3 as ‘

go =u(2,n)1 if o(e1) = —ey,
gy = u(2,n)2 if o(e1) = es.
For m = n = 2, we write in Table 3 as
gp =w(2,2)11 if o(e1) = —eq and o(es) = —exy,
go =u(2,2)12 if o(e1) = —ep and o(e3) = eq,
g0 =u(2,2)21 if o(e1) = e and o(e3) = —eq,

g0 =u(2,2)22 if o(e1) = ez and o(e3) = es.
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See Settings 7.5 to 7.21.

%o a=aier +agez+---
holomorphic anti-holomorphic
su(m,n) Om 2 Gmy1 Cmtn = 01
50(2,2n) a1 > ag —a1 > a2
50(2,2n+ 1) a1 > as —a1 > ap

s0*(2n) Gn_1+an >0 a1 +az <0

sp(n,R) an >0 a1 <0

26(—14) 6> a1+as+az+as+as- —ag > a1 +ag +az +as— as

e7(—25) ag > 05 ag < ay

TABLE 1. holomorphic parabolic subalgebras

go

/

9o

su(m,n) m#n

su(k,l) @ su(m — k,n — 1) @ u(l)

su(n,n) su(k,l) @ su{n — k,n — 1) @ u(l)
50*(2n)
_ sp(n,R)
50(2,2n) 50(2, k)®so(2n — k)
u(l,n)
50(2,2n + 1) s50(2,k)@so(2n —k+1)
50*(2n) u(m,n —m)
50*(2m) @ s0*(2n — 2m)
sp(n, R) u{m,n —m)
sp(m, R) & sp(n —m, R)
26(—14) 50(10) @ s0(2)
50(2,8) @ s0(2)
su(4,2) @ su(2)
50" (10) @ s0(2)
su(5,1) @ s1(2,R)
e7(—25) eg(—78) P 50(2)

e6(—14) D 50(2)
$0(2,10) ® sl(2, R)
su(6, 2)
s0*(12) @ su(2)

TABLE 2. symmetric pairs of holomorphic type
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!

go : %o

a=aie; +agex + -+
See Settings 7.5 to 7.21.

su(m,n) su(m, k) @ su(n — k) & u(l)

Gmtn = A1,

a1 > A1 and Gpan > 01 (1 <3 <m = 1),

OT Uy 2 Gl

s;u(2, 2n) sp(1,n)

a1 > az and aznio > az

n#1 v
5u(2, 2) ﬁp(l, 1) a1 > a3 > a4 > ag
orag >a1 > az > a4
s0(2m, 2n) s0(2m, k) @ so(2n — k) || = |Gmt1]
s0(2m,2n+1) so(2m,k)®so(2n — k+1) |am| > Gmt1
s50(4,2n) “u(2,m)1 —ag > |as|
n # 2 u(2,n)a ag > |as|
50(4, 4) u(2, 2)11 —ay Z ag or —ay4 > a1
u(2,2)12 —a2 > a3 Or G4 > a1
(2, 2)21 @y > a3 OT —Qy > a1
u(2,2)22 Gz > a3 Or 44 2> 01
sp(m,n) sp(m, k) & sp(n — k) Um > Gmy1
f4(4) 5p(2, 1) © ‘5u(2) ay -+as +as < a4
_ , s0(5,4) a;+az+az <ag
¢6(2) . 50(6? 4) @ 50(2) ay + as +az —aqg— as — g < 2a7
su(4,2) & su(2) a; +az2 + a3 —ag — as — ag < 2a7
sp(3,1) a1 +as+az—as—as—ag < 2ar
faca) a1 +az+a3—as—as—ag < 2a7
e7(-5) 50(8,4) ® su(2) a1 +as+az+as+as—ag < 2a7
5u(6, 2) a; +az +az+astas —ag < 207

eg(2) ® 50(2)

a1+ a2 +ag+as+as —ag < 2a7

eg(_24) © s0(12,4)

er(—5) B 5u(2)

a7 > ag
ar 2 ag

TABLE 3. (go, g, q) of discrete series type
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!

%o % - a=aje; +azez + -
* See Settings 7.5 to 7.21.
su(2m, 2n) sp(m,n) (@1, - 1Q2m; A2m+1, - - > G2m+2n)

=(s,0,...,0;t,0,...,0), (0,...,0,—5;0,...,0,—1),
(s,0,...,0,—t; 0,...,0) or (0,...,0; 5,0,...,0,—t)
mod I[2m+2n (S,t > 0)

s0(2m +1,2n) s0(2m + 1, k) @ s0(2n — k) il = """ = Qman =0

so(2m+1,2n+1) so(2m+1,k) Dso(2n —k+ 1) COmel = = G, =0
s0(2m, 2n) u(m,n) , (@1, .. 1 @m] Gmt1s- - Gmtn)

=(s,0,...,0;0,...,0)
or (0,...,0; 8,0,...,0)

50*(2n) s0*(2n — 2) ®50(2) ' (a1,...,an)=(5,...,8,—8,...,—5)
k

(1<3k<n—1)

u(n—-1,1 1y v sQn) =(8y...,8,—8,...,—8

( ) , (a1 )» ( )

k
(1<Ik<n—1)

sp(m,n) splk, D)@ sp(m — k,n—1) (@1, s @m; Tmels -+ s Cmsgn)
kim-kn=-12>1 v =(s,0,...,0;0,...,0)
or (0,...,0; 5,0,...,0)

sp(m, k) @ sp(n — k) (a1, .3 0m; Gmtts - - Gmgn)
‘ =(0,...,0; 5,0,...,0),
Q=1 > Gmy1 80d G = Gmy2 =0 (2 <3 <m)

s{(2n,C) sp(n, C) (a1, a20) = (5,0,...,0) or (0,...,0,5)
i mod Ty,

su*(2n) (a1,...,a2,) =(s,0,...,0) or (0,...,0,5)

' mod I,

50(2n, C) so(2n —1,C) (@1, 0n) =(5,...,5)
s0(2n—1,1) (a1, ran)=1{5...,8)

fa(-20) s0(8,1) (a1,as,as,04) = (s,8,8,5) or (s,5,0,0)
¢6(2) 50*(10) @ s0(2) (ai,...,a7) = (s,8,8,5,,1,0),
or (s,s,t,1,t,1,0)

e6(—14) 50(27 8)6950(2) (ala ' "70'6) = (S,S,‘S,S,S,S),
or (s,5,8,8 —S,—8)

€6(—-14) » f4(—20) (a17 T a’ﬁ) = (Sa 5,0,0,0, 0)7

' ‘ or (a1,...,a8) = (5,8,5,8,1,t)

e7(—5) eg(—14) P 50(2) ' (a1,...,a7) = (s,5,5,85,5,5, 0)
StER, T,=(1,...,1)

N —

TABLE 4. (go,g(,q) of isolated type



BRANCHING LAWS OF DERIVED FUNCTOR MODULES : 67

8. BRANCHING LAWS FOR ISOLATED TYPE

In what follows, we give branching formulas of A4(X)|(y, ) for symmetric
pairs (Go, Gy) in a case-by-case way using the classification (Theorem 7.22
and Tables 1 to 4). It is easy to see that the branching law of Aq(A)(y,x7) is
reduced to the case where (go, gg) is an irreducible symmetric pair (Defini-
tion 7.1). Suppose that (go, g5) is an irreducible symmetric pair. According
to Theorem 7.22 and following remarks, the triples (go, g, q) with the dis-
crete decomposability condition are divided into two classes: discrete series
type and isolated type. We treat the latter case in this section and the
former case in the next section.

We derive branching formulas of A, (Mlg,x7) from Theorem 5.1. We
will see that the right side of equation (5.1) equals (on the level of virtual
(¢/, K')-modules). a sum of derived functor modules for Gj. This will be
done according to the following procedure in each case.

(1) Find the K’-orbit decomposition K/(QNK) =Yy Ll LY.

(2) For each orbit Y; find the corresponding subgroups @j and Q; Here
—Q; is the parabolic subgroup of G’ with Lie algebra §; = Ny (q; N
p') + (G; Ny’). See Section 3.

(3) Compute the (4, L; N K’)-module ( plikinK

d;Ng’,C} )a(s(W)), where

W := Cyyap) ® S(8/ (35 +¢))-

See Remark 5.3. _
(4) Show that the right side of (5.1) can be written as a sum of derived
functor modules.

For each K'-orbit Y; we replace t by Ad(k;)t so that g; is given by —a € t.
We therefore choose n different Cartan subalgebras of € and we write down
the o-actions on these Cartan subalgebras.

We describe step (3) here in more detail. We may temporarily assume that
L’ has a decomposition L. x L', which corresponds to the decomposition

of the Lie algebra I; =17 @1}, as (3.1).

Lemma 8.1. Under the assumption above, suppose that S is a closed re-
ductive subgroup of L} . and that L. CK '. Let V. be an S-module and V,
an (4, L}, N K')-module. Then ‘

. o
v,LiNK' o ) Ind(Ve) RV, ifd=0,
(Pl sy iy JalVe B V) = {0 if d #0.

The lemma will be applied to §' x L}, = QNG

We write q'(a) for the parabolic subalgebra given by a € ¥. Also write
L'(a), ¥(a), and 1/ (a) for the corresponding Levi subgroup, Levi subalgebra,
and the nilradical. 8
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8.1. su(2m,2n) | sp(m,n).

Let m and n be positive integers. Set go := w(2m, 2n) and gg = sp(m, n).
For a Cartan subalgebra t of £ we choose a standard basis ¢y, . . ., €242, € t*
so that

AT (8, t) = {e — ¢} 1<ici<am U {eam+i — camtj H<i<i<on,
A(p,t) = {£(& — €2m+j) F1<i<om, 1<j<2n

and let e, . .., eomian € t be the dua_l basis of €1,. .., €9m1on. Also we choose
a Cartan subalgebra ¥ of ¥ and €],...,€,,, € (¥)* such that

A, €)={xe; € hgicjcmU{Een s + emyj hisicjenU{E26 h<icm U{260 i hicicn,
AW, ) = {Z€; ey ti<i<m, 1<j<n-

Denote by ef,... e, € t the dual basis of €},...,¢,,,,. Suppose that
g is given by a = a1e1 + -+ + G2mi2nCom+yan. For every q in Table 4 the
representation Aq(A) is defined for U(2m,2n) up to central character so
we let Go := U(2m,2n), G := Sp(m,n) and then G = GL(2m + 2n,C),
K = GL(2m,C)xGL(2n,C), G' = Sp(m+n,C), K' = Sp(m, C) x Sp(n, C).
Let a = e; and q := ¢(a). Then lh(a) = u(l) @ u(2m — 1,2n). Let V be
the dual representation of the natural representation of GL(2m, C), namely,
V = FGLEmC)(_ey). Then K/(QNK) ~P(V) = {V4 CV : dimV; =
1}. Since Sp(m,C) acts transitively on IP(V'), there is only one K'-orbit in
K/(Q N K), which implies that § N is a parabolic subalgebra of . Hence
- by Lemma 3.14, §N g’ is a parabolic subalgebra of g'. Similarly let W be
the dual representation of the natural representation of GL(2n,C). Then
G/Q ~P(VeW)and G'/(QNG') ~ G/Q. We give a o-action on t and a
relation with ¢ as
(8.1)
oe; = —egm—i+1 (1 <4< 2m), o€amii = —€amion—it1 (1 <i<2n),

! . ! .
;i — eam—it1 = €; (1 < i <m), and eami — €2ma2n—it1 = €y (1<i<n)

so that e1|l¢ = €}. Therefore, we see that § := g ¢’ is the parabolic
subalgebra of g’ given by —e}j. We have 2p(u) = (2m + 2n)e; — ¢ and

2p(w) = (2m + 2n)e}, where ¢ 1= €1 + -+ -+ €any2n. Hence Aey is weakly
* fair if -and only if A > —m — n and that \e| is weakly fair if and only if
A > —m —n. Since g = q+ ¢, Corollary 5.8 yields

L Ayen Qe = Agen(Aer)
for A € Z, A > —m — n. We note that I(e}) = u(1) ® sp(m —1,n).

Let a = e1+eam1 and q := q(a) so that [p(a) = u(1,1)du(2m—1,2n—1).
Then K/(Q N K) ~ P(V) x P(W) in the previous notation. We see that K’
acts transitively on K/(Q N K). The o-action on t is given as (8.1). Then
g :=gng is given by — (¢} +¢€l,,1). The quotient g/(q+ g’) is the one-
dimensional I-module corresponding to €} -+ €], ;. We have 2p(u) = (2m +
2n)(e1 + €amr1) — 2e and 2p(w') = (2m+2n — 1)(e] +¢€;, ). The parameter
A(e1 + €am+1) is weakly fair for q(e1 + eam-+1) if and only if A > —m —n and
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(el + €m+1) is weakly fair for ¢'(ef + em+1) if and only if A > —m —n+ 1.
By Corollary 5.8, we obtain

Aq(el¥ezm+1)(A(€1 + 6'In-l-l))l(g’,}’(") =~ @ Aq’(e'1+e;_,z+1)((’\ +k+ 1)(6,1 =+ €;n.—l-l))
kEZso
for X € Z, A > —m—n. We note that [j(e}+el,, 1) = u(l, )@sp(m—1,n—1).
Let a = 2e1+eam1 and q := q(a) so that lp(a) = u(1)?0u(2m—1,2n—1).
Then K/(Q N K) ~ P(V) x P(W), on which K’ acts transitively. The o-
action on t is given as (8.1). Then q' := g N g’ is given by —(2e] +e7,,1)-
The quotient g/(q + g’) is the one-dimensional I'-module corresponding to
€l +el, - Wehave 2p(u) = (2m +2n+1)er + (2m +2n — L)egm+1 — 2¢ and
20(w) = (2m+2n)el + (2m+2n — 2)el,, . ;. The parameter A1e; + )\262m+1 is
weakly fair for q(2e1 + eamy1) ifand only if Ay > Ag —1>—m —n — 5 and
A1€l + Agel, 4 is weakly fair for q'(2e] +e;, 1) if and only if Ay > Ap— 12>
~m —n. By Corollary 5.8, we have

Ag(2e1+ezmr1) (ME1 + A2€amt1)|(¢r, 57

~ P Ag@epre, (1 +E+ 1)) + Qe +k+1)em )
k€Zso
for \; > A2 — 1 > —m — n. We note that 1)(2¢} + e}, 1) = u(1)? @ sp(m —
1,n—1).
Let o = e;—egm, m > 1 and q := q(a) so that Ip(a) = u(1)?@u(2m—2, 2n).
Consider the restriction Aq(Are1+Aaeam)|(g,x7)- The generahzed flag variety
K/(Q N K) is identified with

{V1 C VZ'm—l cV.:dimV; =1, dim V-1 = 2m — 1}.

Write v(a) € V- ® W for an a-weight vector. Then @ is the stabilizer
group of Cu(—¢y) and Cv(—e1) + -+ -+ Cv(—€am—1) + Cvo(—€zms1) +- -+ +
Cv(—¢a2m+2n) in G. Each K'-orbit corresponds to a symplectic structure
(-,-) on V. Therefore, K/(Q N K) decomposes into two K’-orbits ¥1 and Y
according to

< (V1, Vam-1) #0, Y2 < (V1,Vam-1) = 0.
If (V1, Vam—1) # 0, the space V- _; orthogonal to Vam—1 does not equal V7.

Then V3 + V5,4 is a two-dimensional isotropic subspace of V. For a Cartan
subalgebra t corresponding to the orbit Y7, we give a o-action and a relation
with ¢ as
gegi—1 = —€g; (1 <i<m —I—n), €] — ey = 63, and egy—1 — €om = 6’2.
so that e1ly = €} and eam|v = —€5. Let §) be the parabolic subalgebra of g’
given by — (e + €}) so that
G'/Q) ~{Va C V :dim Va =2, V is isotropic}..

The corresponding Levi subgroup is L} ~ GL(2,C) x Sp(m +n —2,C) and
then L , ~ GL(2,C), L, ~ Sp(m +n — 2,C). Then Q] is the stabilizer
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subgroup of the two-dimensional isotropic subspace Cv(—¢}) + Cv(—€h) in
G', and Q; N G’ is identified with the stabilizer subgroup of the two one-
dimensional subspaces Cv(—¢}) and Cv(—¢}) in'G’. Therefore, Uy Cc@n
G' c Qy.and Q;NLY ~ GL(1,C) x GL(1,C) x Sp(m+n—2,C). We see that
g =101+¢ and 2p(u) = (2m+2n—1)(e1 —€2m). The parameter A1e1+Aaeam
is weakly fair for q if and only if A, —Ag > —m —n + % Hence the term in
the right side of (5.1) for j =1 is ' '

Z( 1)d+1 [(P‘flr{;/ c )d(C()\1+2m+2n—1)6’1+(—/\2+2m+2n—1)e'2)] .
d

If we write b for the parabolic subalgebra of 1. given by —ef, then

lc
IndeL’ (C()\1+2m+2n—1)61+( A2+2m+-2n— 1)62)

o EB FOLRO) (g +2m + o +k — 1)} + (,LL2 +2m+2n —k — 1)ey)
kEZZO

1R

L .
1,001,
EB (Pch nLc/ )1(C(,ul+2m+2n+k)e’1—|-(/.Lz+2m+2n—k—2)e’2)7
k‘EZzO '

where

( )= (A, =X2)  if A > =Xy,
K1 pH2) s (—)\2,)\1) if Ay < —Aa.

Then Lemma 8.1 and Proposition 2.4 imply that

Z(_l)d+1 (Pélglhg/ Cl)d(C(A1+2m+2n 1)ef +(Aa+2m+2n— 1)62)]

IKI )
= Z( Z [(Pg (—2¢}—ef) L'(2el+e2)nKl)d(C(ul+2m+2n+k)e’1+(u2+2m—|—2n—k—2)e'2)]
keZ>g ‘
= Z(_l)d Z [ﬁﬁ’(—26’1—e'z),d(C(M1+k)e’1+(uz—k)e'2)]-
d kE€Z>g

The orbit Y3 is closed and §2Ng’ is the parabolic subalgebra of g given by
—e}. For a Cartan subalgebra t corresponding to the orbit Y5, we give a o-
action and a relation with ¢ as (8.1). We see that g/(g2+g') is 2m+2n—2)-
dimensional and isomorphic to FZ'(1)(¢} + €5) as an L'(e})-module. Hence
the term in the right side of (5.1) for j =2 is

PCED [cg'( o )d(FL €D ((A; — Ag +2m -+ 2n + k- 2)eh + keh))].
d kEZZO
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By Theorem 6.5,

()
Lo Caep—epyrey)a(Coret+vach)

FUE (e + (—va —2m —2n + 2)¢h)  ifd=0and vy < —2m — 2n +2,

~<0 v ifd=0and vs > —2m — 2n + 2,
0 if d #2m — 3,0,
L"(e’l)

q'(—~2¢}, —¢!,, +1)nxl(e'1),d(CV1e’1+m;n+1)

FUE) (el + (—vg — 2m — 2n + 2)eh)  ifd=0and v < —2m — 2n +2,
~<0 ifd=0and vy > —2m — 2n + 2,

0 - ifd#2n—1,0,

and
U(er)
Lo et —eprer) 2m-3Crrcivacy)
I'(e})
- Eq'(—29/1—“3;;14—1)”['(6'1),2”—1 (CV15’1+(_”2_2m_2_n+2)54n+1 )-

We see that 2p(1' (2¢] +e5)) = (2m+2n)e} + (2m +2n — 2)e5 and 2p(w'(2¢] +
eli1)) = (2m+2n)el + (2m+2n—2)e;, ;. Hence vie] +vaey is weakly fair -
for ¢'(2¢} +eb) if and only if v1 > vy —1 > —m —n and vi€] +Vmi1€y,1 18
weakly fair for o' (2¢} +e],,1) if and only if 1 > V11— 1> —m —n. Asa
result,

2(41)d[ﬁﬂ:(_gerl_efz),d((c(u1+k)eg+(p2—k)e'2)] = [Ag e, +ep) (11 + E)er + (p2 — k)e3)]
d

forOSkSuz—l-m—I—n—l',

: g(_l)d[Lg:(—%g—eg),d((c(u1+k)e’1+(uz—k)e’2)]
= [Ag 2, ) (01 +R)eL + (—p = 2m — 2n + k + 2)em+1)]
forpst+tm4n—~1<k<pus+2m+2n -2, and
zd:(~l)d[‘Cg:(—2e'1—e’z),vd(C(M1+k)€l1+(ﬂ2—k)flz)] ’
- Z(—1)d[£ﬁi<—eg>,d(FL’<ei>((m +E)el + (—pa — 2m — 20+ k + 2)e}))]
d
= [Ag e rer,, ) (11 +K)el + (—p2 —2m —2n + k + 2)er11)]

for uo +2m+2n—2 < k.
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Therefore, Theorem 5.1 yields

Aq(e1—ezm)()‘1€1 -+ /\262m)|(g',K’)

po+m+tn—1 . R
~ P Aveere((m +E)er + (u2 — k)eh)

k=0 ‘
& D Aveere,, (B +E)e + (—p2 — 2m = 20+ k + 2)ep 1)
pgtmin—1<k )
for A1, —Ag > —m — n+ 1. We note that (2} + e5) = u(1)? @ sp(m — 2,n)
and [j(2¢} +el, 1) =u(l)2 ®sp(m — 1,n - 1).

Let m =1, a = e; — ey and q := q(a) so that lp(a) = u(1)? & u(2n).
Consider the restriction Aq(Aie1 + )\262)[(5_/’ k7). Then K " acts transitively
on K/(QN K) ~P'. The o-action on t is given as (8.1). Then g’ :=gNg’
is given by —e}. The quotient g/(q + g') is 2n-dimension and isomorphic to
FL(e)(eh 4+ ) as an L/(e})-module. We see that 2p(u) = (2n + 1)(e1 — €2)
and hence the parameter Aie; + Ageo is weakly fair for q(e; — eg) if and only
if A1, ~A2 > —n — . Then Corollary 5.8 yields '

Aq(el—ez)()‘lel + )\262)‘(91,1(1) >~ @ Aq’(2ea+e;)(()‘1 — A2+ 2n 4+ k)e'l + ke'z)
‘ keZZO

for Ay, —Ag2 > —n. We note Ij(2¢] + e5) = u(1)? @ sp(n).

8.2. s50(2m +1,2n) | s0(2m + 1,k) @ so(2n — k).

Let m, n and k be positive integers. Set go := s0(2m + 1,2n) and
gy :=50(2m + 1,k) @ so(2n — k). For a Cartan subalgebra t of £ we choose
€1, Emin € tand €1,...,emin € t* as in Setting 7.8. We may assume
that e1,...,emen € ¢ if kiseven and e1,...,emin—1 € ¢ if k is odd. They
form a basis of a Cartan subalgebra ¢ of ¥. Put k' = |%] and I =n — [&7.
We restrict ¢; to ¢ and use the same notation. Then

AW ¥)={=%e £ 5 i<icjgmU{Temyi T emtjti<ici<w
U{Eem i +i & Emtii+i hr<icj<rU{Ee<icm(U{Eemtihi i< U{Femiw +ihi<i<t),
AW, V) = {=6 £ emij b1<ism, 1<5<k U {Femtih<icw (U{Feiti<icm U {0}),

where the terms in the brackets appear if & is odd. For every q in Table 4 the
representation Aq(A) is defined for SO(2m+1, 2n)o, the identity component
of SO(2m+1,2n), so we let Go := SO(2m--1,2n)o, Gy := SO(2m+1, k)o X
SO(2n — k) and then G = SO(2m + 2n + 1,C), K = SO(2m + 1,C) x
S0(2n,C), G' = SO(@2m+k+1,C) x SO(2n—k,C), K’ = SO(2m +1,C) x
SO(k,C) x SO(2n—k,C). Suppose that q is given by a = aie1+- - +amem
with ag > -+ > am > 0. Then K’ acts transitively on K/(QOK) and gNg’
is given by —a € t'. Put ag = min{a; : a; > 0}, p = min{i : a; = ap} — 1, and
q = max{i : a; = ag} —p. Then l is a direct sum of s0(2m —2p—2g+1,2n)
and a compact Lie algebra. Consider the restriction Aq(M\)|(gy 57, Where ‘
A = Aie1 + -+ -+ Apiq€ptq- It is easy toshow that Aq(A) = 0 if there exist
1<4i<j<p+qsuch that A\; < A; (see Lemma 9.6), so we assume that -
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A1 > -+ > Apyq. Under this assumption, the weakly fair condition amounts
to Apy1 > —m—n+p+4. Put b:=e1+- - +epiq and then ¢'(b) = q(b)Ng'.
The corresponding Levi subgroups are L(b) = GL(p+g¢, C) x SO(2m +2n—
2p —2¢+1,C) and L'(b) = GL(p + ¢,C) x SO(2m + k — 2p — 2¢ +1,C) x
SO(2n — k, C). If we put s(b) := dim(u'(b) N ), we have

Aq(N) = L3y oy FFOR)).

The quotient g/(q(—b) + g') is isomorphic to FLO) (€1 + €mtkr+1)- Hence
Corollary 5.7 gives

(L3 (F LOW)) | (&)
=[£8 iyt E* OO0 8 S(FY O (ertemiw11) 8Cian—ryet-+ehy )]

ptq
For p = ;’SIS'H pi€;, let m(u) be the multiplicity of £X'®) (1) in the irre-
ducible decomposition of FE®)(\)| ) @S (F L'(b) (e1+€mti+1))@Can—k) (e1 4

namely,
82)  F'ON)|pe® SEYO (e +eminr1) © Clank)ettepra)
~ P mFY O ).
m

“+eptq)?

Put r = min{g — 1,2n — k} and
! ! ! ! !
o =a1e1 4+ 0piglpiqt Ay p1Emik+1 T Oy 1 Bmek

: / ! _ _ / . !
with a) > >ap 1= =apa>0andag o> >0y, >0
Then ‘

L'(d') ~ GL(1,C)P*" x GL(g - r,C) x SO(2m +k — 2p — 20 +1,C),
(') ~ w(1)P" M @ u(g—r) ®@s0(2m — 2p — 2¢ + 1,k),

and it turns out that m(u) # 0 only if ‘/,Lp+7-.|_1 = = lpig > fpigtl =
-+ = pia g = 0. Consequently, we obtain

AN 5y = EPm) Ay @),
S

where m/(u) is given by (8.2).

8.3. s0(2m +1,2n 4 1) | s0(2m + 1,k) @ s0(2n — k + 1).
This is similar to the previous case. Let m, n and k be positive integers.
Set go := 50(2m 4 1,2n + 1) and gj := s0(2m + 1,k) @ s0(2n — k + 1). For

a Cartan subalgebra t of £ we choose e1,...,emin € tand €,. .., Emtn €
as in Setting 7.9. Denote by ey, ..., emin € t the dual basis of €3, ..., €mtn.
We may assume that ei,...,emin € g. They form a basis of a Cartan

subalgebra ¥ of ¥. Put ¥’ = |£| and { =n — [£;1]. Then -
AW, ) ={Fe £ e hicicjemU{Eemyi T emijhicici<w

U {emiwti £ emibtiti<ici<e U {Feihiciom U {Fempiticicw,
AW, ) = {£e; + empjt<i<m, 1<j<k U {Eet1<icm U {Femtitr<i<w U {0}



74 . : YOSHIKI OSHIMA

if & is odd and
AW ) ={%e; + ¢ h1cicjemU{Eemri & emajbi<ici<k
U {emtr+i & emiwtjhicici<i U {£eiticiom U {tempwviticis,

AW, €)= {£e + emrjhicicm, 1<j<w U {Eemriti<i<w
if k is even. For every q in Table 4 the representation Aq()) is defined for
SO(2m +1,2n + 1)g so we let Gp := SO(2m +1,2n + 1)g, G := SO(2m +
1,k)o X SO(2n — k + 1) and then G =SO(2m +2n +2,C), K = SO(2m +
1,C) x S0(2n +1,C), G’ = SO(2m + k+1,C) x SO@2n — k+1,C), K’ =
S§O(2m +1,C) x SO(k,C) x SO(2n — k+1,C). Suppose that q is given by
a = aie1 + -+ + amem with a1 > -+ > ap. Put ap = min{a; : a; > 0},

= min{¢ : a; = ap} — 1, and ¢ = max{i : a; = ap} —p. Then [y is
a direct sum of s0(2m — 2p — 2¢ + 1,2n + 1) and a compact Lie algebra.
Consider the restriction A4(\)|(y,x7), where A = Ajeq + -+ + Apigeptq. Put
b:=e1 - +epiq and then ¢'(b) = q(b) N g'. Then L(b) = GL(p+q,C) x
SO(2m+2n—2p—2¢+2,C) and L'(b) = GL(p+¢,C) x SO@2m+k —2p—
2¢+1,C) x SO(2n -k +1,C). For p = Z?:Ik i€, we give m(u) by the
irreducible decomposition

83)  FHOW)|pe ® SFYO(e1 + emir11)) ® Cankit)(ert-tepra)
~ @ m(u)FY® ). '
7

Put 7 = min{g -~ 1,2n — k + 1} and
B / ! ! !
a = aq1€1 +- ap_!_q?p-l-q + Qo k! +-1Emk/+1 R Atk H1EMA-K

. / ' _ ! 1o ’
w1tha1>--->ap+,,+1—---—ap+q>Oandam+k,+1>---v> am+k’+l>0'
Then

L'(a") ~ GL(1,C)P*"* x GL(g — r,C) x SO(2m +k — 2p — 2¢ + 1,C),
(0 (a') ~ w()P M @ u(g - r) ®s0(2m — 2p — 2¢ + 1,k),

and it turns out that m(u) # 0 only if ppiri1 = - = lpiq > Hpigtl =
oo+ = Uy = 0. Consequently, we obtain

Aq(a) ()‘);(g',K’) o~ @m(M)Aq’(a’) (N’)v
i

- where m(u) is given by (8.3).

8.4. s0(2m,2n) | u(m,n). :

Let m and n be positive integers. Set go := s0(2m,2n) and gy =
u(m,n). For a Cartan subalgebra t of ¢ we choose ey,...,em+n € t and
€1, -2 Emqn € € as in Setting 7.6. Also we choose a Cartan subalgebra t
of  and €],...,€e, ., € (')* such that

AF, €)= {£(e] — &) 1<icjem U {E(empi — Emps) Hsi<i<ns

A, ) = {£(€] — €mpj) Fi<icm, 1<i<n
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and (€1, .. ., €m+n) is K-conjugate to (¢],..., €, ,). Denotebyel,... e, ., €
' the dual basis of €,...,€,,,. Suppose that q is given by a = e; so
that lp = u(1) ® so(2m = 2,2n). Then the representation Aq(\) is defined
for SO(2m,2n)g so we let Gy = SO(2m,2n), Gy = U(m,n), and then
G = S0(2m + 2n,C), K = SO(2m,C) x SO(2n,C), G’ = GL{m +n,C),

= GL(m,C) x GL(n,C). Consider the restriction Aq(Ae1)|(y x7)-

Suppose that m > 1. Let V be the the natural representation of SO(2m, C),
- namely, V = FSO@mC)(¢)). Similarly, let W = F592"C)(e,,11). Then V
has a natural symmetric bilinear form and

K/@QNK)~{Vi CV:dimVj =1, V; is isotropic}.

Write v(a) € V@W for an a-weight vector. Then @) is the stabilizer group of
Cv(—¢1) in G. The subgroup GL(m,C) C SO(2m,C) is characterized as an
m-dimensional isotropic subspace of V. Hence each K’-orbit corresponds
to an m-dimensional isotropic subspace Vi, of V. Therefore, K/(Q N K)
decomposes into three K'-orbits Y7, Y3, and Y3 according to

VioWVeVm Vil Yoo WicV, YseVicVi

For a Cartan subalgebra ¢ corresponding to the orbit Y7, we glve a o-action
and a relation with t as

m B
0€; = —Cm—i+1; €i — em_i_(_l = 6;; — B,I,n_i+1 (]. S S LEJ), and

oem =em (if m is even).
2 2

Let ) be the parabolic subalgebra of g’ given by —(ej —e7,,). The correspond-
ing Levi subgroup is L} ~ GL(1,C)x GL(m+n—2,C) x GL(1,C). and then
L}, ~GL(Q,C)% L, ~ GL(m+n—2,C). We see that @, is the stabilizer
subgroup of the two one-dimensional subspaces Cv(—¢}) and Cu(e},) in G’
and Q;NG" is identified with the stabilizer subgroup of C(v(—¢])+v(ey,)) in
G'. Therefore, U} C Q;NG' C Q7 and Q;NL} ~ GL(1, C)xGL(m-+n—2,C).
Here, the Lie algebra of GL(1,C)-component of @ N L} is spanned by the
vector €] — el.. We see that g-= 1 + ¢’ and 2p(u) = (2m +2n — 2)e1. The
parameter ey is weakly fair for q if and only if A > —m —n + 1. Hence the
term in the right side of (5.1) for j = 1 is ‘

d )
E(—l) +1[(qu1ﬂg’ c, )d(C)\+2m+2n—2)]-
d
Here, Cy 2mi2n_2 denotes the one-dimensional representation of @1 nL

such that ¢} — e/, acts by A + 2m + 2n — 2 and the GL(m +n — 2,C)-
component acts trivially. Then Lemma 8.1 implies that

z(_ 1)d+1 [(qulr{; o )d((c)\+2m+2n—2)]

) K
= Z( 1)d+1£ Pf e e L (¢ e ynr)d(Consomaonth—2)e; +ker, )]
S .
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- Z 1)d+lz a4’ (—e, +¢! )d(C()\+m+n+k—1)e'l+(m+'ri+k—1)e’m)]'
keZ

The orbit Y5 is closed and gz N g’ is the parabolic subalgebra of g’ given
by —e’. We see that g/(q2 + ¢) is (m +n — 1)-dimensional and isomorphic
to FL'(€) (e + ¢}) as an L'(e})-module. Hence the term in the right side of.
(5.1) for j =2 is ’

Z( Y ﬁg (e, JEVE (ANt mtn+k—2)e +key -+ €))],
k€Zxg » , -
where € := ¢} + -+ + ¢}, . Similarly, the term in the right side of (5.1) for
j=3is
Z( D) 3 (L8 d(FYCm (— (A m Atk — D), — kel — )]
k€Z>0 :
By Theorem 6.3,

Aqery(Ae1) g, 57
= . @ Ay q'(—2e! —em+n)((k+1)€'lm+(>‘+m+n+k_1)6"m+n—€,)

k<_/\_m—|—n 1
2

keZ
o P Ager—ery (A + k)€l + kely,)
_)\_%n—lgkg%n—l ;
keZ
o P Ageeie,, (A +k=1e+(-m—n+k+ 1)em+1 +¢€).
m+n 1<k:
keZ

We note that ;
I(—2eh, — el ) ~u(1)> @ u(m — 1,n — 1),
(el — em) =~ u(1)? ® u(m — 2,n),
(h(2e] + e;n+1) ~u(l)?ou(m—1n—1). .
If m = 1, then K’ acts transitively on K/(Q N K). We set ¢) = e; and

then g := gNg’ is given by —e]. We can see that g/(q+g) ~ FLE) (&) +éb).
Therefore, ‘

Agen ey = D Ay eiray (A +n+k— 1) +key +¢).
k€Z>o '
We note I(2€} —|— eh) ~u(1)? @ u(n —1).

8.5. 50*(2n) | s0*(2n — 2) @ s50(2).
Let n > 2. Set go := 50*(2n) and gj := 50" (2n — 2) @ 50(2). For a Cartan

subalgebra £ of £ we choose ej,...,en € t and €1,..., €6, € t* as in Setting
7.11. Also we choose a Cartan subalgebra t of ¥ and ..., e, € (¥)* such
that

A, ) = {£(e, — e hcicjcn-1, AW’ ¥) = {E(e + €)) hci<j<n-1
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and (e1,...,€n) is K- Conjugate to (€}, ...,€,). Denote by €},..., e, € ' the
dual basis of €], ...,¢e,. Let1 <k <n—landputa:=e;+-:- +ek—(ek+1+
-4ep) and @ := e+ +ep— (€g1+- - - +€n). Suppose that q is given by
a so that [y = u(k,n — k). Then the representation Aq(A) is defined for the
double covering group @’L) of SO*(2n) so we let Gg = 35*\(570 and
Gf = (S0*(2n — 2) x SO(2))/Z2. Cousider the restriction Aq(Ac)|(y,x7)-
The parameter Ao is weakly fair for g if and only if A > %l Let V be the
dual of the natural representation of GL(n,C), namely, V = FELMO) (—¢.).
Then V
K/(QNK)~{V,CV :dimV,=k}.

Each K’-orbit corresponds to a decomposition V = V1 @ Vi, where V;,_1
is (n — 1)-dimensional and V; is one-dimensional. Therefore, K/(Q N K)
decomposes into three K'-orbits Y7, Y2, and Y3 according to

VieWVNEVEg Vant, Y2 V1CVE, Y3 VipCVia

Put b:=(e\+ - +ef_1)—(ehyy+ - +en_)and fi= (e ++e )=
(€py1 + - +en_1). Let g be the parabolic subalgebra of g given by —b.
The corresponding Levi subgroup L is a covering group of GL(n — 2,C) x
GL(1,C)%. ThenU; € @, NG’ C Q, and Q; N L’ is a covering group of
GL(n ~ 2,C) x GL(1,C). Here, the Lie algebra of GL(1,C)-component of
@, N L} is spanned by the vector €, + e},. Hence the term in the right side
of (5.1) for j =11s

; o K
Z(_l)d-i—k(n k) 1[(Pc?1r19’ C’)d((c()\+n—1)a)]'
d
Then Lemma 8.1 implies that

2(—1>d+’“<"—'° (PSS o)a(Cortna)]

= Z( 1)d+k(n k)= 12[(139( b), Ll(b)nK/)d(C()\—i—n—l)ﬁ-i-l(e;c—e’n))]
leZ

= Z( 1)d+k(n k)= 12[5‘1( —b),d C/\6+l(ek—6h))]'
leZ

The orbit Yz is closed and §aNg' is the parabolic subalgebra of g’ given by
—b+e.,. We see that g/ (G2+9") ~ FL (=€) (¢l 1€ ) as an L' (b— e}, )-module.
Hence the term in the right side of (5.1) for j =2 is

E( DR 3 [ - brel)d J(FECR (A +1)(B — ) + 1t + (A +n+1—1)eg)) ],
l€Z>0 )

Similarly, the term in the right side of (5.1) for j =3 is

Z DHFOR S L o f(FEECR (DB + ) e — At n 1= Den)) .

l€Z>0
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By Theorem 6.3, if 2< k <n—2,

Ag(a) (Al (g ,x7)
~ D Avegrr-p(CA-n—l+Da+ A+ 1B -e) - le)

l<—a-21
lezZ ‘

&) @ Aq’(b) ()\,8 + le;c - lE;,L)
—a-relgiapnt
I€Z.

& P Avpre—e J(AFDB+e)+O+n—1—1)en g —ler).
Aot
i€

Ifk=n-1,

Ag(a) (M)l (g, K1)
~ P Agerbe_y(A—n—1+1)e + A+ 1)(B - 1) —len)

l<—a-2zL
leZ

D @ Aq’(b) ()\,B -+ l€;l_1 — lE,ln)
=2zl
I€Z

We note that

o(en +b—ep) = u(l) ®u(k — 2,n — k) ® 50(2),
o) ~u(l)yduk —1,n—k—1) ® 50(2),
(b +ef, —en_1) ~u(l) ®ulk,n— k — 2) @ s0(2).

8.6. s0*(2n) L u(n — 1,1). '

Let n > 2. Set go := s0*(2n) and g := u(n — 1,1). For a Cartan
subalgebra t of € we choose e1,...,e, € t and €1,...,6, € t* as in Setting
7.11. Also we choose a Cartan subalgebra t’ of ¥ and €},...,¢, € (t')* such
that

A, Y) = {x(e; — €)) h<icicn—1, AW, ) = {£(e; — en)}1<i<n—1

and (e, . . ., €,) is K-conjugate to (e}, ..., €, _q, —€,). Denote by ef,..., e}, €

t' the dual basis of €],...,¢), 1. Let 1<k<n—landputa:=e;+---+
ex—(epr1+++en)and a =€+ +ep— (ep41+- - +en). Suppose that g
is given by a so that Iy = u(k,n — k). Consider the restriction Aq(Ac)|(g,x7)-
As in the previous case, K/(Q N K) decomposes into three K'-orbits Y7, Y2,
and Ys. Putb:=¢€j+- - +e}_j, ci=epq+ e, Br=e+Fep g,
and v := €}, + - +¢,_;. Let §) be the parabolic subalgebra of g’ given
by —(b — c). The corresponding Levi subgroup Lj is a covering group of
GL(k - 1,C) x GL(n— k —1,C) x GL(2,C). Then U; C @; NG’ C.Q} and
QN L} is a covering group of GL(k — 1,C) x GL(n — k — 1,C) x SL(2,C).
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We see that g/(§1 +g') =~ FELELO) (] 1) RFCLO—k-1O (¢ ¢ ).
Hence the term in the right side of (5.1) for j =11is

SRR PE )a(Con1e ® S8/ (@ +¢)].
d .

Then Lemma 8.1 implies that ;
n—k)— ',K' _
Z(_l)d+k( k)1 [(qulngl,c{)d((c(k+n—l)a ® S(g/ (91 + 9/)))]

d
= 2(—1)d+k(n_k)_1Z[ﬁﬁf(_b+c),d((c(/\+k—2)ﬁ—(A+n—k—z)y+z(e;€+eg) ® S(g/(@ +9)))-
d IeZ

Suppose that k =2p+ 1 and n — k = 2g + 1 are odd. Then
Ay M)l (g x)
~ @ Agay (A +k—=2)B+71(e +e3) + -+ +rplefp_g + €_1) + 1(ef +€p)

— (A Hn—k—2)y~s1(h4a + 6;1:—]—2) ~ = sq(epg t 6;—1)),
where
P g
=) (p—i+1)(ep g +eb) ~ D il€haiot T+ Ehrai)
i=1 =1

and the sum is taken over integers satisfying
P>y >0, 0<s1< <8, —(Adn—k-1)<I<A+Ek-L

We note that I{(a’) ~ u(1,1) ® u(2)P*.
Suppose that k = 2p + 2 is even and n.— k = 2¢ + 1 is odd. Then

Ag(a) M) (g x7) |
~ P Ay (A 4k = 2)B+ri(ey + ) + -+ rp(ch_g + €hg) + (e +€n)

- (A tn—k— 20y — s1(eh 1 + €hia) = — Sglena+ €n-1))
& D Aq e (A +E—2)(B — 1) +71(eh +e3) + -+ rpleh 3 +ex0) |
+(1 = D) (eh_yt ) — (A tn—k—2)y—s1(hyr+€hia) = - Sqlen_gten_1)+(A +k)er),
where ‘
p g _
a = Z(P —i+2)(eg1 +eb;) Fepg - Zi(6;9+2i—1 + €ktai);
i=1 =1 :

and the sum is taken over integers satisfying

> >rp>0, 0<s1<--<sq, —~(A+n—k-1)<I<A+k-1

for the first term and ‘
o2 >0, 0S5 < <sg AFESI<A+k+rp-1

for the second term. We note that

Bh(a) = u(l, ) ou@PTeu(l), I +e) = u@P o u(l).
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Suppose that k= 2p + 2 and n — k = 2¢ + 2 are even. Then _

Aq(a)(A) (g, k1) ,
~P Ag) (A +E—2)B+r1(el +eb) + - +rpleh_g +ehn) + ek +er)

=~ A +n—k—2)y—si(ehpo + €hta) — Sq(eﬁ—g +éen_1))
O Ay ey (A +5—2)(B—€h_1) +r1(el +€b) + - + rplehg + €4_2)
(= D (eh_1Fek) — An—k—2)y — s1(epyotehya) — - — sqlen_aten_1) + (A+k)en)
D Ay —ey) (A +k = 2)B+71(él +eh) + - +rp(chg +ehp) + (1 +1)(ek + €hpr)
—(A+n—k=2)(y = €hy1) = 51(hpa +€hys) — - — sqlep_a T 1) — (A0 —k)er),
where
p v , q v
a' = ;(P — i+ 2)(eg51 +€b;) +ehy — €1 — Zl(i + 1) (Chpai + Ehrair1);
i= =

and the sum is taken over integers satisfying
rlz-'-prZO, 0<s1< < sq —(A+n—k—1)§l§/\+k—1‘
for the first term,

rp>e>rp>0 0<s1< - <sg, A+k<SI<A+k+r,—1
for the second term and

741>...>r

> >rp , 0<s51<+<sq, —-A+n—k+si-1)<I<-(A+n~-k-1)

for the third term. We note that

h(a) = u(l, 1) @u@Poul)?, Khia +e) =~ w(2)Pr g u(1)?,

[0(a — ef) >~ u(2)P 7 g u(1)2

These formulas can be verified by calculating K'-types of the both sides.

8.7. sp(m,n) | sp(k,l) ® sp(m — k,n —1).

Let k, [, m, and n be integers such that k, [, m —k, and n—1 are positive.
Set go := sp(m,n) and gy := sp(k,l) ® sp(m — k,n —[). For a Cartan
subalgebra t of € we choose e1,...,emin € t and €1,...,6min € t* as in
Setting 7.10. We can choose t such that t C ¥ and

A1) = {Fe + e 1<ici<n U {Eekpi £ hpjticicicm—k U {Femti T emajhi<ici<i
U {demepiti £ Emitg higici<n—t Y {26 1<i<k '
U {+2e51i  <i<m—k U {F26mas h1<i<i U {F2€maiti b 1<i<n—ts

AP, 8) = {6 £ emrg h<i<h, 1<i<t U {E€kti T €mpitj H1<i<m—k, 1<j<n—1-
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Then

Agley)(Aer) g, k) = B Ayeren(re+ (A —r)eta)
—k—I<r<A+m+n—k-1

@ @ Aq'(e1+em+l+1)(7’€1 +(r—A—-2(m+n—k—1))emtit1)
AMmin—k—Il<r-

& @ Aq/(em+1+ek+1)((——7‘ - 2(k + l))€m+1 + ()\ - T')Ek+1)-
r<—k-l

We note that
lo(er) =~ u(l) ® sp(m — 1,n),
(e +eprr) 2u(l)2@sp(k—1L,1) @sp(m —k—1,n—1),
[(e1 +empir1) 2 uw(1)? ©sp(k — 1,1) @ sp(m — k,n — 1 — 1),
0 (emi1 +err1) 2 u(D)? @sp(k,l — 1) @sp(m —k—1,n—1).
If [ = n, then

AgeyOe)l@xn = D Agertersn)(rer+ (A = r)ers1)

—k—n<r<
& P Avempronn(7 20 +m)ems + (A= Dersa):
r<—k—n
We note '

fh(ex -+ ex1) =~ w(1)? © sp(k — 1,n) © sp(m — k — 1),
[ (emi1 + exr1) =~ u(1)? @ sp(k,n — 1) @ sp(m — k — 1).

We treat the remaining case, namely the case where k = m and there"
exists 1 < p < m — 1 such that ap > a1 > 0 and apr1 = ami2 = 0, in the
next section.

8.8. sl(2n,C) | sp(n,C).
~ Let n be a positive integer. Set go := gl(2n, C) and g := sp(n,C). For a

Cartan subalgebra t of £ we choose a standard basis €1,. .., €2, € t* so that
AT t) = {e; — ¢} 1<i<i<ons Ap, t) = {Z(e — ¢5) hi<icj<on U {0}
and let e1,...,e,m € t be the dual basis of €1,...,e2,. We take a Cartan

subalgebra § of g such that t C h. Choose a standard basis (1,...,(m €
(h Np)* so that

A(g,h) = {£((ei + ) = (& +¢) hgicisan U {E((6 = G) — (&5 — () higicysan
and let f1,..., fon € hNp be the dual basis of (1, ..., (2. We let o act on b
by oegi—1 = —eni, 0 fai—1 = —f2i and put €} == eai—1 — e, Ji = fai1 — Jai-
Then ¢} and f! form a basis of h” and b’ := §° is a Cartan subalgebra of ¢.

Let €),...,¢h,Ch,. .., (, be the dual basis of e}, ... ,ers f1s-- s frn. Suppose
that q is given by e;. Then G’ acts transitively on G/Q. Therefore

Aq(el)(>‘€1 + uCl)'(gl’Kl) ~ Aq’(e’l)(Aell + ,U,C{)
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for A € Z and p € vV—IR. We note that lp(e1) ~ C @ gl(2n — 1,C) and
h(el) ~Cosp(n—1,C).

8.9. sl(2n,C) | su*(2n).

Set go = gl(2n,C) and g, := su*(2n) ®R. We use the same notation as in
the previous case for t, b, €1, . .., €2n,C1,---,Con € ¥, and ey, ..., e0n; f1,.. - fon €
h. We let o act on ) by oeg;—1 = —eai, 0 foi—1 = fo; and put e; = egi_1— €,
f! = f2ie1 + foir Then €} and f{ form a basis of §” and b’ := h7 is
a Cartan subalgebra of g'. Let €),...,€,,{{,...,¢, be the dual basis of
€l,... e, fly. .., fh. Suppose that q is given by e;. Then K’ acts transi-
tively on K/(Q NK), §N g’ is given by ¢}, and g/(q + ¢’) is isomorphic to
C, . We have

Ageny e + )l = D Agey (A +m+1)el +udh)
mEZZO
for A € Z and p € vV—1IR. We note that lp(e1) ~ C @ g{(2n — 1,C) and
b)) 2 Cosu(2n —2) OR.

8.10. f4(_20) \L 50(8, 1). ) )

Set go == fa(_o0) and gy = s0(8,1). For a Cartan subalgebra t of & we
choose eq,...,e4 € tand eq,...,€4 € t* as in Setting 7.16. We can choose t
such that t C ¥ and

A, t) = {£e + €j}1<icica,

A, t) = {% (i(—l)k(i)ei) : ik(z) is éven}.
L i=1

=1
Put
;o1 ;1
el = 5(61 +egtesteq), €y:= 5(61 +eg — e3 — €4),
1 .
eg = 5(61 —egte3—eq), €)= 5(—61 +eztes— eq)
and let €},...,¢j be the dual basis of €},...,ej so that they agree with
. Setting 7.7.

Let q be given by e1+eg so that [y = sp(2, l)eau(l) Then 2p(u) = 8(e1+-€2)
and hence the parameter A(e1 + €2) is weakly fair for q(e: + e2) if and only
if A > —4. We can see that Ag(e;e,)(A(e1 +€2)) =0 for A < —2. We have

Aq(e1+ez) ()\(61 4 62))‘(9171('/)

@ Aq’(2e1+e2) (Ae1 + nea)
0<n<A+2

@ @ A (2e142es+e—ea) (()‘ + g + 1) (€1 +€2) + (g - 1) (ég - e4))

n€Z>0

A4+n )\ n
@ Aq (2€1+2€2+63—e4)( (51 + 2) + (Eg — eﬁl))
0<n< A2
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@ @ Aq (261+262+83+e4) ((A + 5+ 1) (61 + 62) + ( 1) (Eé + 62))
nel>o
We note that
[o(2€] + 2¢h, + € — €}) = u(2)? (=~ u(2) ® u(1) ® sp(1)),
1(26] + 26 + €+ €) = u(2)2(= u(2) & u() @ sp(L)).
Let q be given by e1 + ez + e3 + e4 so that lp = s0(6,1) © u(1). Then
2p(u) (€1 + €2 + €3 + €4) and hence the parameter A(e1 + €2 + €3+ €4),

AE 2 is weakly fair for q(e; + ez + es + eq) if and only if A > . We can
see that Ag(e, eztesteq)(A(€1 + €2 + €3 +€4)) =0 for A < — We have

Ag(es +estestes) A(e1 + €2 + €3+ €a)) (g x7)

~ P P A e1+e2+es)((>\+m+ )(€1+€2+€3~64)+n€4)

mEZLyg 0<n<2A+3

~ D D A (P + L”“) (T e+ ).

MEL>p 0<n<2A+3

We note [[(2e] + e + 5 + €}) ~ u(3) ® u(l).

8.11. eg(g) 4 50" (10) 6950(2)

Set go := eg(2) and gy := 50 (10) ® 50(2). For a Cartan subalgebra t of £
we choose ey, ...,e7 € tand €1, ...,¢e7 € t* as in Setting 7.17. We can choose
t such that t C ¢ and

A(¥, 1) = {£(e — €j)}1<i<i<s,

A, 6) = {%(i(—l)k(i)ei n 66) Fer: k(i) € {0,1}, ik(i); 3}

{ ( ( 1)k, —66> —e7: k(1) € {0,1}, Zk(z) _2}

We put
1 1 , ' 1
e; == ei+§ee+ze7 (1<i<5), eg = €6 = 5er-
Then ¢}, -- , e form a basis of t. Denote by €, ..., €g € t* the dual basis of

el,... e so0 that €], - , ¢ satisfy Setting 7.11 for ¢ and p’. We note that

e—€j=¢—¢ (1<4,5<5),

1 ! ] ) ! / /
61—€6=5(61—62—63—64“65)'%
__1 ’ / ’ ’ ’ /

e7—1‘1(61‘Ffz“*‘€3“‘€4+€5)—‘66

Let q be given by e; +eg so that [p = s0(6,4) ®u(1). Then 2p(u) = 4(2e1+
269 — €3 — €4 — €5 — €g) and hence the parameter A\(2e; +2e3—e3— €4 —€5— €6)
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with A € % is weakly fair for g(e; + e2) if and only if A > —2. We have

Aq(el+ez)(>‘(2€1 + 2e9 — €3 — €4 — €5 — 66))“‘9/)[{/)

- A 3AA+m4n—1y ,

c D D AP
MEZL>o 0<N<3A+E

3A , — 3
+ (%L) (ey—€e3—ep—e5)+(=A+m+n— 1)6%)

/3Nt m4n 42
o @ v (BTE ) g

m,n€Lx>o

—3\-—m+n-6 ,
—I—( 77; e )eé—l—(—)\—}-m—n—Z)eg).
We note that

0(2e1 +eh — e — eg — e5) ~ u(l) ® u(1, 3) ® 50(2),
(e} + ey — e —e) ~u(l) ®u(2,2) & s0(2).
8.12. eg(_14) | 50(2,8) @ s50(2).
Set go := eg(_14) and gy = $0(2,8) @ s0(2). For a Cartan subalgebra t

of & we choose e1,...,er € tand €1,...,e7 € t* as in Setting 7.18. We can
choose t such that t C ¢ and

A(¥,t) = {Le; €5} o<icj<s,
) A
A(p',t) = {% (Z (—1)k(i)ei> . k() € {0,1}, k(1) +--- +k(6) 0dd, k(1) = k(6)}.
=1

Put

1 . 1 1
6,1 = 5(61 + 366), 6,2 = 5(62 +e3+eq — 65), eé = 5(62 +ez—eq+ 65),

1 1
ey = 5(62 —e3+eq +e5), ef:= 5(—62 +e3testes), e€gi=e1—eq

Then ¢/, -+ ,ej form a basis of t. Denote by €], ..., €5 € t* the dual basis of
e),..., e so that €}, , 5 satisfy Setting 7.6 for ¥ and p'.

Let q be given by e1 + - - - + eg so that lp = s0*(10) ® u(1). Then 2p(u) =
6(e1 + - - +€5) +2¢6 and hence the parameter A(el +egtegteqgtes5+ %56)
with A € Z is weakly fair for q(e1 +- - +¢g) if and only if A > —3. We have

1
Aq(e1+~--+es) ()\ (61 +e9+ €3+ eq4+€5+ 566)); (@K

m+n—1
= @ @ Aq’(e'1v+26’2+eg+ef;—|-e’5) ((/\ + __2—_) 6I2

TTLEZZQ 0<n<2245

m_n+3
5
‘ m+n R
® @ Aq'(€'2+e;’3+eﬁ}+e’5) (()\ + 5 + 1) (eh + €5+ ey + ek)

m,neZZQ ’

oy |
+(r+ )&+ eyt ch+e) + (G2 —m—n+1)ch)
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+ <A+¥+3)e’1+ (g)\—m+n+2>eg).
We note that
lo(el + 265 + €3 + ey + ef) ~ u(1) ® u(1, 3) ® 50(2),

Ih(eh +ef + el +ek) ~ u(l) & u(4) & s0(2).

8.13. eg(—14)  fa(—20)-
Set go := eg(—14) and gy := fa(—20).- For a Cartan subalgebra t of ¢ we

choose e1,...,e7 € tand €1,...,e7 € t* as in Setting 7.18. We let o act on
tby oe; = e; fori =1,2,3,4 and ve; = —e; for ¢ = 5,6. Then e,...,eq
form a basis of {° and ' := t° is a Cartan subalgebra of g’. Denote by

€1,.-.,€4 € (Y)* the dual basis of ey, .. ., e4 so that they satisfy Setting 7.16
for ¢ and p'.

Let q be given by e1 + ez so that lj = su(2,4) ® u(1). Then 2p(u) =
11(e1 +€3) and hence the parameter A(e; -+ €3) with A € Z is weakly fair for
q(e1 + e2) if and only if A > —L. We have

Aq(€1+62)(>\(€1 + 62))I(BIyKI)

@ Aq'(2e1+ez)(/\€1 + nez)
0<n<A+3

o @ Aq'(2‘61+262+63+e4) ((A tn )(61 + 62) + (_A;_ L 3) <63 + 64)).
0,\+4<n

We note that

[(2e; +e2) ~ u(1)? @ sp(2), 1(2e1+2e2 +e3 +eq) ~ u(1)? @ sp(1, 1).

Let g be given by e14e2+e3-+e4 so that [y = 50(6,2)@u(1)?. Then 2p(u) =
8(61+62+€3+€4) and hence the parameter A1 (e1-+ea+es+eq)+Aa(es+eg) with
A € 2, Ao € A1 +Z is weakly fair for q(e1+eg-+es+eq) if and only if A1 +4 >
|A2|. We can see that Ag(e, egtegtes) Ai(€1 + €2+ €3 +€4) + Aales + €6)) =0
if A1 +4 = |A2]. We have

Ag(er-tertestes)(A1(e1 + ez + €3+ 1) + Aales + €6)) (g ,x7)
‘201+6

~ P P Ay (2@1+262—!—263+e4)m(n k)((Al tgt 1) (e1+e2+e3+ea) — (b —2)ea

nGZZO k=0
where
m(n, k) = max{0, min{\; — [Aa| +4, b+ 1, —k+2A1 47,
n4+1,n—k+A —|Xa|+4,n—2k+2X1 +T7}}

We note that I(2e1 + 2es + 2e3 + e4) ~ u(3) ® u(1).
Let q be given by e; + eg + e3 + e4 + e5 + eg so that [p = s0 (10) @ u(l).
Then 2p(1) = 6(e1 + €2 + €3 + €4 + €5) + 2¢6 and hence the parameter

)
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AMer+eatest+eqgtes +%66) with A € % islweakly fair for q(e; +e2-+ez+eq)
if and only if A > —3. We have

. , 1
Aq(e1+e2+e3+e4+e5+e6)_(/\ (61 +e2testestes+ 56‘?))

(¢'.K")

' n+1 :
= @ Aq((el+ez+63+e4) (()‘ + T) (e1+e2tes+ 64)> :

nEZZO

We note that I(e1 + ez + e3 + eq) =~ 50(6,1) ® u(1).

8.14. e7(_5) I ¢g(—14) ® 50(2).

Set go := e7(_5) and gy := eg(—14) D 50(2). For a Cartan subalgebra t of ¢
we choose e1,...,er € tand €1,...,€e7.€ t* as in Setting 7.19. We can choose
t such that t C ¥ and

A(¥,1) = {xe * g5 1<icis<ss

aw,y={3 (i (-1 ;) + (-1 Per

pa
: k(i) € {0,1}, k(1) +--- +Kk(6)odd, k(6) = k.(7)}.
Put
/ : B 1 / ’ 1
e;=¢e; (1<i<5), eg:= 5(66 +er), epi=eg— €T
Denote by €}, ..., e, € t* the dual basis of e, ..., e} so that €], - - - , g satisfy
Setting 7.18 for ¢ and p'.

Let q be given by e1 +--- + eg s0 that Iy = egrz) ® u(1). Then 2p(u) =
9(ey + - - - + €5) and hence the parameter A(e; + €2 + €3 + €4 + €5 + €5) with
A€ % is weakly fair for q(e1 + - - - + eg) if and only if A > ——g. We can see
that Agee, . teq) (M1 +e2+e3 +ea+e5+ €6)) = 0 if A < —4. We have

Aq(61+-~~+ee)()‘(€1 +exte3-+€4tes5+ 66))|('917K/)
k-1
~ P P Aot ((/\ +——+ 1) (€h +ey+ez+ey)

k€T 50 —A—4<n<A+4
- A—neEZ

—I—(n—l—k—;—l) (eé—l—%eg) +(n—k+l)e'7>.

We note that I5(e} + b -+ e + e}) ~ 50(6,2) ® u(1)? @ s0(2).

9. BRANCHING LAWS FOR DISCRETE SERIES TYPE

Let (go,gp) be an irreducible symmetric pair. In this section we sup-
pose that (go,gf,q) satisfies discrete decomposability condition and that
(g0, 85, q) is of discrete series type. Then there exists a Borel subalgebra b
of g such that (go, g5, b) also satisfies the discrete decomposability condition.

If go is compact, Aq(X) is an irreducible finite-dimensional representation
of Gg. Then the branching law is obtained by Kostant’s branching formula
([Kna, Theorem 9.20]). If o = 6, the branching law is known as generalized
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Blattner’s formula (Fact 2.13). So we consider the case where go is non-
compact. Take a Cartan subalgebra t of ¢ (and hence of g) such that t C b.
We write n for the nilradical of b. We choose A™* (g, t) := A(b, t) as a positive
system and let IT be the corresponding simple roots in A*(g,t). We define
a grading on g by :

tC g(0),
910 Cg(0)if o € Il and g, C &,
910 Cg(£1) ifaeland g, Cp

and makes g a graded Lie algebra. By our classification (Theorem 7.22 and
Table 3), it turns out that g(n) = 0 if |n| > 2. It follows that

t=g(-2)»g0)®g(2), p=g(-1)@g(),
bog(l)®e(2), bDg(-2)@g(-1).

We note that g(+2) = 0 if and only if b is holomorphic. We write g<¢ :=
9(—2) ® g(—1) @ g(0). Similar notation will be used for Lie subalgebras of g
with respect to induced grading.

We assume [ C g(—1) @ g(0) ® g(1). Then [N&=[(0) is a Levi subalgebra
of [ and [y is of Hermitian type. Let Wi and Wrngx be the Weyl group
of A(Lf) and A(IN¢,¢t), respectively. Let WFME(C W) be the set of
minimal representatives of Wrng\Wr. Then it follows that wA(INn,t)
A(1(0) N, ) for w € WENK,

There exists the following exact sequence of (I, L N K)-modules (analog
of the BGG resolution, see [Hum, §9.16])

0—My— My — - = Mg — - = Mgimyy > C—0,

where
Mm@ U0 80 P op0m) - 08) +24000)
wvenK
l(w)=k

Put s(L) == dim([(0) Nn). Since

Lir,4(Coptiom)—p(irm))

_Jum ey FEE (wp(tnn) — p(tnn) +2o(I(1)))  if d = s(L),

o : if d # s(L),
we get

‘[C]: Z '(—1)l(w)+dimx(l)[ﬁinﬁ,s(L)(pr(fﬁﬁ)—p(lﬂn))]

weWLnK

= Z ('— 1)l(w)—|—dim ‘@ Z(_ 1)d+s(é) [L{mﬁ,d (pr(lﬂn)—p(lﬂn) )] .
. d ’

weWENK
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Suppose that A € t* is weakly fair for q. ' Then
[Aq(M)]
— Z(_l)d-I-dim(unE) [‘C!ﬁg,d((c)\)]l

d

Z; (— 1)l(w)—|—dim 1) Z Z(_l)d+d/+dim(unt)+s(L) [ /3%37(1, ( ['{nﬁ,d(CA wp(inm)—p(i m)))]
dl

wewLﬂK d

Z ( 1)l(w )-+dim (1) Z( 1)d+d1m(nﬁé)[ﬁ d(C/\+wp(Iﬂn)—p(lﬁn))]

wewLﬂK

w)4-dim ’ L dim 0 »
_ Z (—1)lw)+d r(1)z( 1)+ (nné)[ﬁgq, (ﬁﬁﬁoina,df(Cpr(rm)—p(mn)))]-
weWENK ©dd

Let G(0) be the connected subgroup of K with Lie algebra g(0). We have
the following description

im d+-dim 0
So (Fp)frrdmi@) e <“”9<°”[c9§0§ﬂbd(cmm)_p(m>1=Zm(u>[FG<°>(u)],
i

weWENK

where m(u) € Z and the sum is taken over integral dominant weight p € t*.
Notice that m(u) = 0 but finitely many p € t*.

We may assume that t is o-stable, ¢ := t° is a Cartan subalgebra of
¢, and b’ := bN g is a Borel subalgebra of g’. Write n’ for the nilradical
of b'. Choose At(g/,t) = A(F,t) as a positive system and let II' be the
* corresponding simple roots. We can observe from the classification that

2
g’ = P ¢(i), where ¢'(i) := ¢/ Ng(), ¢'(F2)=9(+2)
i=—2
and g is generated by g'(0) & ¢'(£1) if gf is non-compact. By Corollary 5.7,
we obtain

Z( 198 J(FCO ))1@, &)

top

= Z( 1)‘1[5g (FOO (,“)|G’(0) ® A\ (8/(8<0 +9)) ® 5(g/(8<0 +9)))]

top

=3 18, dFOOWlerm © A L) © SE @)

Let
top

Zm(u FCO (Wl ® Ao~ D)@ S ()] =D n@)[FFOw)

14

be a decomposition into irreducible G'(0)-modules. Here n(v) € Z and the
sum is taken over integral dominant weight v € (')*. Then we conclude the
following. - ' ' '
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Theorem 9.1. Suppose that (go, gy, q) satisfies discrete decomposability con-
dition and is of discrete series type. We use the notation above and assume
that 1 C g(—1) @ g(0) ® g(1). Then

'

A (g ren] = S (~D)HEmIC) S ) [

<0’d
d v -

(FEOQ))

for weakly fair \.

If C, is good, then Cg’so,dimg'(z) (FG'O) (1)) ~ Ay (v) and Eﬁ’go,d(FGI(O)(V)) -
-0 for d # dim g'(2). We therefore have ‘

‘Theorem 9.2. In the above assumptions and notation, we assume moreover
that X is unitary and that v + p(v') is dominant whenever n(v) # 0. Then

AWy = D) Ay ().

v

In particular, Aq(\)|y k) decomposes into (limit of) discrete series repre-
sentations.

We now consider when the assumption of Theorem 9.2 holds, namely
(v + p(),a) > 0 if o € I' and if n(v) # 0. We assume that the bilinear.
- form on (¥)* is induced from that on t*. Since (v,«) > 0 always holds for
a e I'NAT(g'(0),t) and since g'(2) = [g/'(1), ¢'(1)], it suffices to see whether
(v +p),B) >0 for B e II'NA(g(),t). If B € II'NA(g'(1),¥), we can
find 81 € A(g(1),t) such that S1]e = B. For v € t*, Define

C()\;’Y) = min{(vw(A + P(t‘l)),")’> BURS WG'(O)?'LU S WII,IHK}

" Lemma 9.3. In the setting above, let vi,y2 € t be g(O)—antidominant
weights such that v1 and By are in the same Wg(g)-orbit and v2 and of1
are in the same Wg(q-orbit. Then

(v,8) > (20(@7(1)),8) + 3 (s m) +¢(N573) — (o), 71 +))

if n(v) # 0.

Proof. Suppose that n(v) # 0. Then there exists a dominant integral weight
p € t such that m(u) # 0 and that FFO (1) occurs in the irreducible
decomposition of FEO) (1)|g/0) ® AP(g=?(1))® S(g°(1)). Hence v can be
written as v = v +va+2p(g~? (1)), where F&©) (1) occurs in FEO (1) |g(o)
and v is a sum of weights in S(g=?(1)). Since [¢/(1),977(1)] = 977(2) =
0, we have (o, 8) > 0 for @ € A(g™9(1),t), which implies (v2,8) > 0.
Therefore, the lemma is reduced to the inequality '

(01,8 > () +e(3i2) = o), +12)).
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B); m(p) # 0, there existw € WEnK and v € We(o) such that
pu+p(g(0) Nn) =v(A +wp(INn) = p(INn) + p(g(0) N 1))
= v(A +wp(n) — p(n) + p(g(0) N n))
=v(A+wp() — p(g>0)) = vw(A + p(n)) — p(g>0)-

Hence 1 = vw(X + p(n)) — p(n). From this, we see that if x € t* is a weight
in FG©) (,u) then

(k, B1) > (,m) = c(A71) — (p(n), 11)-
Similarly (k, 081) > c();v2)—(p(n),v2). Since F& (1) occurs in FEO) (1)|gr(o)
there exists a weight x € t* such that x|¢ = v1. Therefore,
1 1 '
(v1,B) = 5 (8, B+ 0 1) 2 5(e(hm) +e(As72) = {p(n); 71 +720),
which gives the lemma. O

Remark 9.4. If y; = 77, or equivalently 51 and o1 lie in the same Wg(g)-
orbit, then the lemma becomes

(9.1) (v, 8) > (2p(877 (1)), B) + c(A;711) — (p(n), 11)-
We give a lower bound of ¢(A;y), which is useful for our purpose.
Lemma 9.5. Suppose that \ is weakly fair and v € A(g(1),t). Then

c(A;7) = min{(p(INn),7) : 9" € Aa, 1), [v] = I¥']}-
If moreover | C g(0), then
() = min{(p(INn),7') : 7" € Ag(1), 1), Iyl = 1y}
Proof. We have
() = mln{(vw(A +p()),7) 1 v € Weroy,w € WL}

— min{ (A + p(n), w* pOKY,

vy v e Wero),w € Wi

Since vy c A(g(1),£) C A(qg,t), we see that w™ o1y € A(q,t). If we put -
v = w~ v~ 1y, the first assertion follows from (7', A+ p(n)) > (v, p(INw)).
If [ C g(0), then v € A(g(1), t), which implies the second assertion. O

There is a one-to-one correspondence between the parabolic subalgebras
containing b and the subsets of II. We write q(S) for the parabolic subalge-
bra corresponding to § C II. Also write [(S) and u(S) for the corresponding
Levi subalgebra and nilradical. A subset S C II is regarded as a graph via
Dynkin diagram. Let S, be the union of the connécted components of §
that intersect IT N A(g(1),t). Then it follows that (Sp) + (I(S) N¥) = I(S)
and we get an isomorphism Agg)(A) = Aqs,)(A). However, A may not be
weakly fair for (Sy,) even if it is for q(5).

Lemma 9.6. Let q = q(S) with S C II. If there exists a € II such that
(A + p(1), &) < 0 and o is not adjacent to S, then Aq(A) =0.
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Proof. Since « is not adjacent to S, we have I({a} U Sp) = [({a})‘—k [(Sn)
and ‘

[({a}USR) (({a})
Lﬁ(;‘n)ﬂl({a}usn) 1(€) |I({a}) - [’q(Sn)n[ ({a}), 1(@) =0.

Hence Ay(s,)(A) = 0. O

We thus assume that the parameter A does not admit a root & € A(g(0),t)
as in the lemma above. ‘

In the following calculations, we normalize the bilinear form on t*. If g is
simply laced, we suppose (o, o) = 2 for & € A(g, t). If g is not simply laced,
we suppose (o, o) = 2 for a long root o € A(g, t) so that (o, ) = 1 for a
short root o (notice that type G does not appear in our list).

9.1. faeq) 4 5p(2,1) © s5u(2).
Let go := f4(a) and gh = 5p(1,2) @ su(2). We write the Dynkin diagram
" of g and label the simple roots:
a1 oy az a4
. O===>0 o
Here, the painted root oy corresponds to a root in g(1). Other roots as, a3

and a4 are roots in g(0).

In this case;, we can take t C ¥ and hence ¢ =t. Welet 0 =1 on gq, if
i=23and o = —1on g, if i =1,4. Then II' = {ag, 3,01 + 02 + a3 +
oy, 09 + 203 + 204}, Hence I N A(g(1),4) = {a1 + a2 + az + cg}. Put
B := o1 + g + az + ayg. Then B is a short root and (2p(g~?(1)),8) = 5.
We see that v := oq + a2 + a3 is g(0)-antidominant and lies in the same
Wgo)-orbit with 8. By a direct calculation, we can verify that

5
{{p(tNn),v") : v € A(q, %), is short} > -3

if q # g. Hence Lemma 9.5 gives c(A;y) > —5. As a consequence of (9.1),

(0400, 6) = (0 B) 4 5 2 5-+057) — (0 5 255~ 5 4520

if n(v) # 0 and the assumption in Theorem 9.2 is fulfilled.

9.2. f4(4) J, 50 (5, 4).

Let go := fa(a) and gp := s0(4,5). We label the simple roots as in the
previous case. We let ¢ = 1 on gy, if ¢ = 1,2,3 and 0 = —1 on go,-
Then I = {a1, a9, a3, 02 + 203 + 204} Hence H' NA(g(1),t) = {o1}. Put
B := 1. Then 3 is a g(0)-antidominant long root and (2p(g~7(1)), 8) = 2.
The assumption of Theorem 9.2 is fulfilled if c(X; 8) > —2.

Suppose that q = q(8) with S C II. Put §¢:=1II\ S. If 5¢ # {a;1} or
{4}, then it turns out that ¢(X; ) > —2. To analyze the remaining cases,
we choose a basis ¢; € t* such that

o1 = —€1 — €2 — €3+ €4, g =2€3, G3=¢€2— €3, O4=E€] —E€g,
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and let e; € t be the dual basis. Then theyr satisfy Setting 7.15. Let
1 1 1 1
el = 5(61 +eq), €= 5(—61 +eq), e§i= —2-(62 +e3), ep:= 5(62 — e3)

and €, € t* the dual basis. Then they satisfy Setting 7.7 for ' and p'.
Suppose that S¢ = {a1}. Then q is given by e4 and Iy ~ sp(3) @ u(1) is
compact. We have

A q(ea) (>‘€4)|(g’ K') - @ Aq (261+262+63+e4)<

n€Z>0

Ad+n+4
S (G )+ (G + ).

We note [[(2e] + 2¢b + e +ely) ~ u(2)2.
Suppose that S¢ = {a4}. Then q is given by e; +¢4 so that [y ~ 50(2,5)®
u(1). By using Theorem 5.1, we conclude that ‘

. Aﬂ(e1+e4) ()‘(61 + 64))'(9',K')
@ @ Ag (2¢] e +el+el) (()\ + T_Z__” + 2) e + (m ;r n_ 1) (fé +eh+ 651))

mEZLyg 0<n<A+5

A—f—m—i—n ‘ Am—n
S @ @ Ay (2¢, +2e)+2¢, +el) (( + 1) (€ +ey+eh) + (__2_ + 2) 621)-
MEZ>0 0<n<A+4

We note that _
(2 +eh+eh+e)) 2ul)@ou(l,2), (2] + 2eh + 2e5 +€}) ~u(2,1) d u(l).

9.3. eg2) | 50(6,4) ® 50(2)
Let go := eg(2) and g := 50(4, 6) @ 50(2). We write the Dynkin diagram
of g and label the simple roots:
(875 -
o

a1 a3 a5 - Qg
O O O o]
(671

Here, the painted root ay corresponds to a root in g(1). Other roots are in
9(0).

In this case, we can take t C ¥ and hence t' =t. Welet ¢ =1on g, ifi =
2,3,4,5and 0 = —1 on gy, if 1 =1,6. Then II' = {an, @3, a4, a5, 01 + 03 +
ougtas+ag}. Hence I'MA(g(1),t) = {aa}. The only g(0)-antidominant root
in g(1) is a2 and (2p(g~° (1)), 2) = 4. Hence the assumption of Theorem 9.2
is fulfilled if c(\; ag) > —4.
~ Suppose that q = q(S) for S C II. We can verify c¢(\;an) > 4 unless

I\ S = {1}, {es}, {2}, {e1, a6}. Choose ¢; € t* such that
1
=€ —ez ap= g
g = €2 —€3, Q4 =¢€3 €4, O5=¢€4—6€5 Q=€ —~¢C6

—€1 — € — €3+ €4+ €5+ €6) + €7,
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and e; € t so that they satisfy Setting 7.17. Let

1 ; 1
el = 5(61 —egt+er), eh:= 5(—-61 +es+er), ehi= 5(62 +e3—eq — e5),

1 1 ,
ey = 5(62 —e3+eq—es5), €= 5(62 —eg—esg+tep), egi=e1+ep

and € € t* the dual basis. Then €},..., ¢} satisfy Setting 7.6 for & and p’.
Suppose that S = {ay}. Then q is given by ez and [y ~ su(6) @ u(1). We
have

Aqleny(Aer)(g,xc7)
min{m,n}
Ad+m+n+8 )
s DD Mg
™m nEZ>0 ; ‘
+n—2% = -
%(eg +ey) + —Tzz—nefr, + (m — n)e%).
We note I4(2¢] + 2e5 + e§ + e}) =~ u(2)? ® u(1) @ s0(2).
Suppose that S¢ = {a1}. Then q is given by 2e; + e7 and [y ~ 50*(10) &
" u(1). By using Theorem 5.1, we conclude that '

A
s+~ 2

@ @ Aq (231+52+33+e4+65) ((A

MEZL>g 0<nA+5

2
+(H —1)(6’2+e’3+e£1+e£—,)+(§

; At+m-+n .
® @ @ Aq’(e'1+e’2+e§+eﬁl) (( —“2 + 1) (6’1 + 6’2 + 63 + 62) )

mEZZO TLEZZQ

)a

>\+m—~n+4>eg)

(A+1;L'—n

where € = €1 + - - - + ¢g. We note that

+ 3)6’5 + (—%)\ +m—n-— 2)6%)",

[(2e) +eh +ef + €y + e5) ~ u(1) ® u(1, 3) d s0(2),
Ih(eh + eh +eh +ely) ~ u(2,2) du(l) & so(2).

Suppose that S¢ = {a1,a6}. Then g is given by e; — eg + er and
lo ~ 50*(8) ® u(1)?. It follows that Aq()\)|(y,x) is isomorphic to a direct
sum of (g', K)-modules Ag(set 12¢+ef+e5)(A), Agi(ae +2e,+2¢5+ey) (A), and
Aq (3¢ 43¢, +2¢, ;) (A'). We note that

(1(3¢] + 2¢5 + €5 + ) ~ u(1)® & u(2) @ s0(2),
(3¢, + 2¢h + 2¢5 + €}) ~ u(1)2 ® u(1, 1) @ s0(2),
[ (3¢, + 3¢l 4 2 -+ ¢4) ~ u(1) & u(2) & s0(2).
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9.4. eg(2) 4 su(4,2) @ su(2). ‘ _

Let go := eg(2) and gy := s5u(2,4) @ su(2). We label the simple roots as
in the previous case. We let 0 =1 on go; if¢ =1,2,3,4,6 and 0 = —1
on goy. Then II' = {a1, g, a3, a4, 0, 2 + a3 + 2014 + 205 + 06}. Hence
I'NA(g(1),t) = {2, as +az+204+2a5+as}. We have (2p(g79 (1)), az) =
(2p(g7°(1)), a2 + g + 204 + 205 + a6) = 6 and hence the assumption of
Theorem 9.2 is fulfilled if c¢(\; o) > —6.

Suppose that q = q(S) with § C II. Put S¢:=1I\ S. If §¢ # {a1} or
{ag}, it turns out that c(; ag) > —6.

Choose ¢; € t* and e; as in the previous case. Let

/

1 1 , 1

e1:= —5(es +eo) +ger,  €a = e+ (es +eo),
1 1

ey = 62+§(65+66)7 ey = 63+§(65+66);

1 1 1
ey i=cq+ =(es +eg), egi=—=(es+eg) —se7, ey:=e5—ep
2 2 2
and define €],...,e; € t* such that (¢ — €;)(e}) = dik — djx, er(er) =1, and
(€; — €5)(er) = e7(ef) =0 for 1 < 4,5,k < 6.
Suppose that S¢ = {a1}. Then q is given by 2e; + ey and Iy ~ s0*(10) ©
u(1). By using Theorem 5.1, we conclude that

: A
s+~ 2

~ B D Aveerrgid-ere ((’\ = 4)(e + ) +me
’InEZZO 0_<_’n§)\+5

. :
+ (=7 + 1)eg + (m+n+1)ef = =(2A+3m —3n+ 9)5’)
m
@ @ @ Aq'(2e’1+e’2+eg'—eg+ei,) ((m - 2)6,1 + (m - n) (612 + E‘{i)
MmEZyq n=1
1
—A+n+deg+ (A +m+n+6)eh — 6(—)\+3m—3n— 6)6')
m .
& P D Aveit2eprey—ey—eyiel) ((A +m+n+5)(€] + ) +meg
mEZZQ n=0
1
+nely 4 ek +eg + (m —n)ey — 6(2>\ +3m+3n+ 12)6’),
where e = €1 + -+ +¢g and € = €| -+ -+ + 5. We note that
[y(2€] 4265 +e3 — e +ef) = u(l, 1) O u(l) du(2) © u(1),
0(2€h + ¢ + e — e +er) = u(1) ®u(2)” & u(l),
[ (3¢} -+ 3¢l + 2¢h +eh) ~ u(1,1)? & u(1) @ u(l).

9.5. 26(2) 4 5p(3, ].).



BRANCHING LAWS OF DERIVED FUNCTOR MODULES 95

Let go := ¢g(2) and gp := sp(1,3). We label the simple roots as in the
previous case. We let

ool =, Ooag=qa5, O=10Dgy, 0=-—1o0ngny,.

Then ¢ := 17 is a Cartan subalgebra of ¥ and II' = {a1|y, asly, culy, (a2 +
astag)|y}. Hence I'NA(g(1),t) = {(ag+as+as)|v}. Wehave (2p(g77 (1)), (ca+
as +ag)|e) = 7. If q # g, then c(A\;a2) > —7 and the assumption of Theo-

rem 9.2 is fulfilled. '

9.6. eg(2) 4 fa(e)-
Let go := ¢g(2) and gy = fa(4)- We label the simple roots as in the previous
case. We let

ool =0, ocaz=a5 o=1o0ngy,, o=1o0ng,,.

Then t' := t° is a Cartan subalgebra of ¥ and II' = {aa ]y, asle, a4ly, aale }-
Hence II' N A(g(1), t) = {aa|r}. We have (2p(g~7(1)), a2l¢) = 3 and hence
the assumption of Theorem 9.2 is fulfilled if c¢(A; ) > —3.

Suppose that q = q(S) with § ¢ II. Put S¢:= II\ S. The inequality
c(\;ag) < —3 may hold only if |5¢| = 1, ¢ = {a1, a6}, {oa, 03}, {as, as}-
Choose ¢; € t* and e; € t as above. Let

! : I ! L
€1 =¢€1 — €, €Cg:i=€2— €5 €E3:=€3 €64, €4:=E€7,

and €} € (¥)* the dual basis. Then ¢€},...,€} Satisfy Setting 7.15 for ¢ and
pl. .
Suppose that §¢ = {ag}. Then q is given by e7 and Iy ~ su(6) ®u(1). We
have
Ag(eny(Per)l (g k1) = @ Aq (e, (net + (A +n +6)ey).
TLEZZO

We note [(e} + 2¢}) ~ u(1)? @ sp(2). _

Suppose that S¢ = {a1}. Then q is given by 2e; + e7 and lp ~ 50*(10) ®
u(1). Since K’ acts transitively on K/(Q N K) in this case, Corollary 5.8
yields ' '

A .
Aq(2e1+e7) ()‘(61 +er) — 66> ) = @ Aq’(e’1+efi)(()‘ +n+1) (Ell + 651))
_ n€Zyo

(',K’
where e = €1 + - -- + ¢6. We note [j(e] + €}) ~ u(1) @ s0(2,5).

Suppose that §¢ = {a1,a6}. Then q is given by e; — e + e7 and fp ~
50% (8) &, 11(].)2. We can see that Aq(el—ee+e7) (/\161 4+ Xotgg + ()\1 — )\2)67 —
Mtdae) = 0 if Ay < —4 or —Ag < —4 For Ay > =Xy > -3,

A+ A e)
6

Aq(er—ester) (A1€1 + Xoeg + (A1 — Ag)er —

A1—A2+6 .
~ @B P m(n, k) Ag e, +ey+3e) (A1 = Ao +n—k+4)el +(k—2)ez+(A — Aa+n+2)ey),
n€lso k=0

(¢',K")
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where

m(n, k) = max{0, min{—-Aa +4, k+1, —~k+ X1 — A2 +7,
n+l,n—k—X+4,n—2k+A — X+ 7}

We note I (2] + €}, + 3e}) ~ u(1) @ u(1,2).

Suppose that S¢ = {a1,a3}. Then q is given by 3e; + e2 + 2e7 and Iy ~
u(1,4)@u(1). It follows that Aq(\)|(y,xv) is isomorphic to a direct sum (with
multiplicity) of (¢, K ")-modules Aq (2! 1-¢}+4ef) (') and Ay 3¢/ 126, +ef+6¢)) (\).
We note that

0(2€] + e +dej) = u(2) ® u(1)?,
1 (3e] + 2eh + e + 6e}) ~u(1,1) @ u(1)%

9.7. e7(_s5) 4 50(8,4) ® su(2).
Let go := er(_5) and gj := s0(4, 8) @ su(2). We write the Dynkin diagram
of g and label the simple roots:

a9
0]
o1 a3 as o o7
[ O O
7]

Here, the painted root o corresponds to a root in g(1). Other roots are in

9(0). ‘ ~ |
In this case, we can take t C & and hence ¥ = t. We let 0 = 1 on
0o, if i # 6 and 0 = —1 on gog. Then II' = {1, a0, 03, 014, 5, 07, 2 +

ag + 204 + 2a5 4+ 206 + o7} Hence II' N A(g(1),t) = {a1}. The only
g(0)-antidominant root in g(1) is oy and (2p(g™?(1)), 1) = 8. Hence the
assumption of Theorem 9.2 is fulfilled if ¢(A; 1) > —8.

Suppose that g = q(5) for § C II. Then the inequality c(A; o) > —8 fails
only if IT\ § = {ar}. Choose ¢; € such that '

1
O¢1=5(_61—62_63_64_65+66)+67a g = €5 +€6, (3 = €5 — €6,

Qg = €4 — €5, Qp =¢€3 —€4, Q=€ €3, OQ7=¢€ €2

and e; € t 50 that they satisfy Setting 7.19. Let

1 1 1,
ey = 5(61 +exter), ehi= 5(—-61 —eg+er), €5:= -2—(63 +eq+e5— eq),

1 1 '
ey = 5(63 +eqs—esteg), e5i= 5(63 — €4+ e5 + eg),

I, 1 [
€g = 5(63 — €4 — €5 — 66), €7 = €1 — €3

and ¢, € £ the dual basis. Then ¢}, ..., s satisfy Setting 7.6.
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Let IT\ S = {ca7}. Then q is given by 2e; +e7 and lp = eg(_14) ©u(1). We
have , '

' Aq(2el+e7)()‘(€1 -+ 67))|(9',K')

A4

Ny A Adm, A—m,

=~ @ @ q’(3e] +2eh+ef e +ef+Hef+ef) 9 o1 + 5 2
m=0 0<n<A—m+4
m-n+A€2Z

n ;
+ 5(6'3 + €} + €5+ €g) —I—mef,)

A+m
’
D @ @ Aq'(2e’1+e’2+e:’3_+ef1+e’5+e’7) ( 9 €1

MEZ>g A—m+6<n<i+m—+6
N 0,—A+m—10<n
m—+n+A€2Z

n A —
4(§—Q@+é+q+¢ﬂ(—3m+@%+m®
A4m
oD D Avsarsgiggigoare(Tg 4
meZyg 0<n<-A+m—12
m4n+A€2Z -

a4
—|—( ;_m—8>e§+%(eg+eﬁl+eg—eg)+me'7>

n / / / /
&) @ @ Ag(2¢] +2¢,+2e}+2¢] el +eb) ((5 - 2) (€1 +eg+e3+ey)
mELso 0,A+m+8<n
m+n+Ac27Z

+@%ﬁ+@%+@%ﬁ+gé+mg.
We note that
0(3€} + 2eh + e + € + e + g+ e7) ~ u(1)? @ u(4) ® u(l),
(0(2€} + b + e + € + et +e) = u(1)’ ® u(l,3)  u(l),
[p(3€} + 25 + €5 + €} + e — e + €7) = u(1)? D u(4) d u(1),
15 (2¢] -F-Ze'z +2¢h +2¢) +ef +er) ~u(1)? ou2,2) du(l).

9.8. er(_s5) 1 s5u(6,2). ‘

Let go := er(s)-and g := 5u(2,6). We label the simple roots as in
the previous case. We let 0 = 1 on go; if ¢ # 2 and 0 = ~1 on ga,.
Then IT' = {1, a3, 04, a5, a6, o7, 01 + 202 + 2003 + 3 + 205 + s} Hence
I N A(g(1), t) = {1, a1 + 202 + 203 + 304 + 205 + o6} We can compute
that (20(g™° (1)), 8) = 10 for any 8 € A(g?(1),t). Hence the assumption of
Theorem 9.2 is fulfilled if ¢(A; 3) > —10.

Suppose that q = q(S) for S C II. Then the inequality c(A\;a1) > —10
fails only if IT\ S = {ar}. Choose ¢; € t* and e; € t as above. Let

L1 1
e == Z(_el —eg—e3—e4—e€5—ep)+ €7

(e1 +e2 +es +es — 3es -+ eg),

-

1
en 1= Z(el +estestestes—3es), e:=



98 YOSHIKI OSHIMA
/’ 1 P 1
ey = Z(el +es+es—3es+es+ep), epi= L_L(el +eg — 3eg +eq4 +e5 + ep),
1 1
6,6 = 1(61 —3eg +ez-teste5+ 66), 6{7 = Z(—361 + eq —|-763 +eq+e5+ 66),
L1 o 1
38::Z(_el_e2_63“e4_€5_e6)—567 |
and define €] € t* such that (¢ — ¢})(e},) = ik — 01 for 1 < 4,5,k < 8.

Let 11\ S = {ar}. Then q is given by 2e1 + ey and Iy = eg(—14) ® u(1).
Using Theorem 5.1, we conclude that

Aqerteny(Mer + 7))@, x7)
A8 '
~ D D DAvaurrgrgreigea(ttm—ktDE+d)
MELso 0<n< L k=0
neZ

1
+(m — n)(e3 + ) +n(es + c) + (= + 1)(e7 + ) — 7(A +2m — 2k + 8)6’),

where ¢ = €| + -+ + ¢5. We note that [[(2¢] + 2ef +e5 + e} — ef — eg) ~
u(1,1)? @ su(2)? @ u(1).

9.9. er(_5) I eg(2) ® 50(2).

Let go := ey(_5) and gg := eg(2) ® 50(2). We label the simple roots as
in the previous case. We let 0 = 1 on go, if i # 1,2 and 0 = —1 on
0oy and go,. Then II' = {03, 04,05, 06, a7, 01 + 02 +oas + as}. Hence
I'NA(g(1), §) = {@1+as+as+as}. We can compute that (20(g™7 (1)), B) =
6 for any 8 € A(g°(1),t). Hence the assumption of Theorem 9.2 is fulfilled
if e(A;a1) > —6.

Suppose that q = q(S) for S C IL. If §¢ # {1}, {as}, {a7}, or {as, a7},
then c¢(X; 1) > —6 holds. Choose ¢; € t* and e; € t as above. Let

1 1
el = 5(61 +eg+e3teqtes—Deg), €= 6(6-1 +eztestes— 5es -+ eg),
ey 1= 6(61 +eg+es3— Beg+est+eg), €)= 6(61 +eq — Bes +e4 +e5 + eg),

1 1
ey = E(el — Beg+e3+eqtesteg), €gi= 6(—561 +eg+e3+eq+es+ep),
1

eni=er, €gi= 5(61 +eg+es+eqtes+eg)

and define ¢, € t* such that (¢} — €;)(e}) = dik — djk for 1 < i,j,k < 6 and
that €j(e}) = d;j fori =7,8and 1 <j <8. ‘

Let IT\ S = {a;} and then q is given by e. Since lp ~ 50(12) ® u(1) is
compact, we get

Aq(e7) ()‘67)’(9’,K’)

min{m,n}

=~ @ @ Aq’(e’l—eg+2e’7) ((m "" k)ell - (’I’L - k))e%

mn€lyg - k=0
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+ (A m+n+12)és + (m —n)es — mg'”’e'),

where € = €] +- -+ +¢j. We note that [j(e — e +2e%) ~ u(4) du(1)? dso(2).
Let IT\ S = {ar}. Then q is given by 2e; + e7 and I =~ eg(—14) © u(1).
Using Theorem 5.1, we conclude that

Aq(2el+e7) ()‘(61 + 67))](9’,1(')
A8
n+k n—=k,,
~ @ @ Aq’(e'l—eg+e.’7) (()\ —m+ T +5)€Il + T(Eé + Eé +€£1 +€’5)
m=0 n,kEZZO ’
n+k

+ (-m- +3) e+ (A+ntk+2)er

A p 1 '
+<§—m—n+k+4)e8~8(A—2m+2n—2k+8)e),

where ¢/ = €| +- - --+¢f. We note that [j(e] —es+eb) ~ 50(6,2) Bu(1)?®so(2).

~ Suppose that S¢ = {ag, ar}. Then q is given by 3e; + e2 + 2e7 and [p =~
50(2,8) ®u(1)?. It follows that Ag(A)|(y, &) is isomorphic to a direct sum of

(g, KI)'mOdU1eS Aq’(26’1+e’2—e'5—2eg+4é’7) ()‘,)a and Aq’(3e’1+2é’2+eg—ea—26’5—3eg+6e’7) (/\,)'
We note that :

(26, + ¢y — el — 2ef 1 deh) ~ u(2) @ w(1)* @ s0(2),
" (3e] -+ 2¢h + e — e — 2ef — e + 6eh) =~ u(1, 1) ® u(1)* @ s0(2).

9.10. €8(—24) K 50(12,4).
Let go := eg(_p4) and gj := 50(4,12). We write the Dynkin diagram of g
and label the simple roots:
x2
?

1 [07: 2N (671 g (8%4 ag

[o} 0O o) o o

Gq

Here, the painted root ag corresponds to a root in g(1). Other roots are in
g(0)-

In this case, we can take t C ¥ and hence ¥ =t. We let 0 = 1 on gq,
ifi #1and 0 = —1 on gy, Then II' = {2, a3, a4, a5, ag, a7, g, 201 +
209 + 3arg + 4o + 3as + 20 + ar }. Hence I N A(g(1),t) = {as}. The only
g(0)-antidominant root in g(1) is ag and (2p(g~7 (1)), as) = 16. If q # g,
then c(\; ag) > —16 and the assumption of Theorem 9.2 is fulfilled.

9.11. eg_24) { e7(—5) B 5u(2).

Let go := eg(_o4) and gp := ey(_5) © 5u(2). We label the simple roots as
in the previous case. We let 0 =1 on gy, if ¢ # 1,8 and 0 = —1 on g4, and
Oog- Then II' = {an, as, a4, as, ae,; a7, 01 + a2 + g + g + a5 + o + a7 +
og, 201 4 209 + 3ag + 4oy + 3o + 206 + 7). Hence I'NA(g(1),¢) = {a1 +
g +a3+oas+os+ag+ar+ag}. We can compute that (20(g=7(1)), 8) = 12
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for any 8 € A(g?(1),t). Hence the assumption of Theorem 9.2 is fulfilled if
c(A;ag) > —12.

Suppose that q = q(S) for § C II. Then the inequality c(A;ag) > —12
fails only if IT \ S = {as}. Choose ¢; € t* such that '

1 |
ar=g(s—er—ce—es—ea—ez—eate), m=eatea, o=,

Qyg = €3 — €, Q5 =¢€4 —€3, &g =F€;— €4, Q7 =E¢€g— €5 &g =C€7— Eg,
and e; € t so that they satisfy Setting 7.21. Let

[ o A L /. /.
€] 1 =e€g, €9i=e5, E3:=E€4, €4:=€3, €5i=¢€y Egi= —€1,

! !
ey =eg-tey, eg:=eg—ey

“and €; € t* the dual basis. Then €],..., ¢} satisfy Setting 7.19.

Let IT\ S = {ag} and then g is given by es+er. Since Ty > e7(_133) S u(1)
is compact, Corollary 5.8 implies that Ag(eqe;)(A(€s+€7))|(g7,x7) decomposes
into a direct sum of Zuckerman’s modules of the form Ay (2ef 1ef+2¢! +el) (mel+
nely + kel + leg). We note [(2¢} + eh + 2¢ +ef) ~ s0(8) @ u(1)*.

9.12. su(2,2n) | sp(1,n).
Let go := u(2,2n) and gf) := sp(1,n). We write the Dynkin diagram of g
and label the simple roots:

o1 (s} 02n X2nt1
. o) ) ®

Here, the painted roots a; and agni1 correspond to roots in g(1). Other
roots are in g(0).

We let 0oy = aonite and ¢ = 1 on gq,,,- Then t' := 7 is a Car-
tan subalgebra of ¥ and I = {ailv}1<i<nt1. Hence I N A(g(1),t) =
{o1]¢}. The g(0)-antidominant roots in g(1) are o and agny1. We have
(2p(g=7 (1)), &1]¢) = n. Hence the assumption of Theorem 9.2 is fulfilled if
c(N; 1) +e(X; agne1) > —(2n —1).

Suppose that q = q(S) for S C II. Then the inequality c()\ ai) +
c(A;agni1) > —(2n — 1) fails only if |IT'\ §| = 1. Take a standard basis
€; € t* such that o; = €; — €j41 for 1 <i < 2n+1 and let e; € t be the dual
basis. Let 0¢; = €an_iy2. Put e} :=e; —eam_pz €' for L <i<n+1and
¢ € (¥)* the dual basis. Then ¢] satisfy Setting 7.10. We denote St aiel
by (al, ag, .. an+1)

Let T\ S = {01} and then q is given by e;. By Corollary 5. 8

Aq(e1) (A1) @K~ Aq’(e’l) (Aé)).

We note [p(e1) ~ u(1) ® u(2n, 1) and [(e]) ~ u(1) © sp(n).
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Let I\ S = {am} for 2 <m < n-1. Then q is given by e; + -+ + e,
and Ip ~ u(l,m — 1) ®u(2n — m+1,1). Put k== [ ]. If m is odd,

Agterttem) AL+ + )l (g, 57)
~ @Aqf(a:)(()\;rl,rl,m,m, A TR T 0, Ve ,0))
D @Aq’(a’-ﬂa’z)((rl — 1;’)‘1 — 1, A -+ 2, 72,72, .-+ Tk Tk, 0, e ,0)),

where a/ := (k+ 1)} + > (k—i+1)(eh; +e5;,1) and the sum is taken over
AM1>r; > >rp>0forthefirsttermandry > A4+2>r9 > - > 1 >0
for the second term. We note '

(a") ~ u(1) © w(2)F @ sp(n — 2k),
[0(a' +eb) ~u(l,1) ®u(l) ®u(2 )’“ L@ sp(n — 2k),

If m is even,

Aq(e1+-~+em)(>‘(€1 +eeet 6m))|(s;’,K’)
2@Aq/(a/)((/\+l+l;A+l+1a7'17'r'17 . Tk:"'ka ). 0))a

where o := S ¥ (k—4 +2)(eh; 1 +€h;.p) and the sum is taken over A+2 >
Ty > .ZrkZOandleZzg We note 1(a’) ~ u(1,1) @ u(2)* ® sp(n —
% — 1). '

9.13. s0(4,2n) | u(2,n).
Let go := 50(4,2n) and gj := u(2,n). We write the Dynkin diagram of g
and label the simple roots:
0 %n+1

o, a9 o3 an/
S o O
\an+2 .

Here, the painted root as corresponds to a root in g(1). Other roots are in
9(0).
In this case, we can take t C ¥ and hence ¥ = t. We let ¢ = 1 on
go; f3<i<n+lando=—-1ongy ifi=12mn+2 Thenll'=
{az, - ,omi1, 01 + 2,00 + -+ + an -+ apt2}. Hence 'n Ag(l),t) =
{01 + ag,a2 + -+ + an + any2}. The only ¢(0)-antidominant root in g(1)
is cg. We have (Zp(g 7(1)),B) = n for any 8 € A(g'(1),t). Hence the
assumption of Theorem 9.2 is fulfilled if ¢(A; a2) > —n.
Suppose that q = q(S) for S C II. Then the inequality c()\;a2) > —-n
fails only if IT\ S = {a;} for i =1, n+ 1, or n + 2. Take ¢; € t* such that

a1 =¢c1+€, a=—e—¢€, o=c—¢cr1 3<i<n+1), opi2=€nt1+ent2

and e; € t the dual basis so that they satisfy Setting 7.6. We denote
Z:“Lf a;e; by (a1;as, ... ,ant2;a2)-
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Let I\ .S = {a1}. Then q is given by e; and Iy ~ u(1) @ s0(2,2n). By
Theorem 5.1, ‘
Aq(el)(()‘; O, . ,O;i 0))I(E',K')
~ @ Agrer—eg) (A =m;0,...,0;—m))

_nJZr1 SmSH_n;rl .
© mEZ

& @ Aq'(—éez—en_l_z)((“l;—l,...,—1,)\_m_|_n; _m))

)\—I-nT+1 <m
meEZ

S @ Ay @erten)((A—m;—m —n,1,...,1;1)).

me— 241
mEZ

We note that
el — e2) ~ w1 ®u(n), Ih(—2e2 — ent2) ~u(1)? @ u(l,n— 1),
[0(2e1 +e3) ~u(1)? @ u(n - 1,1).

Let I\ S = {an+2}. Then q' is given by él —egtezteqs+--+entg and
lp~u(2,n). Puta:=e; —eg+eg+es+---+epqa.
If n = 2m is even, then

Ag@y (A 5 =), x7)

~ EDAq/(a/)((/\;rl,rl, T2y T2, " s Tms Tmi —A))

@ @Aq’(a’—l—eg)((rl —1L;7r1 — LA+ 2,79,72,73,78, ..., T,y Tmj —A)) |
@-@Aq'(a'-en+2)((>\§T17717T2a7"2> Pl Tme1y —A — 2,7 + 17 4+ 1))

& P Ay(@+es—ens) (1= Lr1=1,A42,72, 72, i1, Tmo1, =A= 2, P+ 7 +1)),
where o := me; —ea+ Y ieq(m—1)(e2it1 +e2i42) and the sum is taken over

A+1>rm > >rp>-A-—1
for the first term,
PEAF2> e > >y > A 1
for the second term, »
AFLI2m > 2> —A=2> 1,

for the third term, and |

' PIEAF2D > >y > A= 2>y

for the fourth term. We note that k

b(a) ~u(1? @ u@™, @ +es) ~u(l,1) ©u(l)’ @ u@)™,

(@ — env2) 2 w12 @u@™ @ u(l, 1), Iha'+es) 2 u(l,1)? @ u(1)? o u(2)™%
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If n =2m 41 is odd, then
Ay (52 A =)l g ,x7)
~ @Aq/(a:)(()\ FE+LA+E+L7TL,7 0 Py Ty —A))
< @Aq/(a/_en+2)(()\ +E+LA+k+1L1,m T Ty —A — 2,7 + L + 1)),

where a’ :=m(e1 +e3) —ea+ D> vy (m — 1) (e2s42 + €2:43), the sum is taken
over

A+2>2r > 2rpm2-2-1, kel
for the first term and
A+2>rm > 21> -A=22>ry, k€Zs
for the second term. We note that
0(a) ~u(1, ) ou@™au(l), §a —ent) =u(l, )20 u@)™  @u(l).

Let IT\ S = {an+1}- Then q is given by ey —ea+ez+es+-++ent1—en2
and lp ~ w(2,n). Put a:=e1 —ea+ez+es+ - +eni1 — enia. '
If n =2m + 2 is even, then

A (A A =X =) 5
~ @Aq/(a/)((A+k+l;/\+k F 1,771y Ty Ty —A — L — 1, =X =1 — 1)),

where a' 1= m(e1 + e3) — (e2 + ent2) + D jey (M — i) (e2:42 + €2:+3) and the
sum is taken over '

A2>rm > >rp>—-A—2, kl€Z>o.

We note I(a’) ~ u(1,1)? ® u(2)™.
If n =2m + 1 is odd, then

Agia) (5 A X, =X =2 g, 57)
~ (P Ag@y(X71571 -5 Py Ty —A =k = L =A =k — 1))
& P Ag(@ren) (11— L1 = LA+ 272,70, Ty Ty A — k= L =A =k = 1)),

where o’ := me; — (ez +ent2) + D imq (m—i)(egi41 +e€2442), the sum is taken
over

for the first term and
r12A+2Zr22---2rm2—A—2, k€ Z>o
for the second term. We note

t@) ~u)@ou@)"oul,1), ke + e3) ~u(1,1)2 @ u(l) ® u@™ L.
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9.14. u(m,n) | u(m, k) ® u(n — k).

First, we consider the restriction from u(m,n) to u(m,n — 1). Let go :=
u(m, n) and gj := u(m, n—1). This is not a symmetric pair but we use similar
notation for the subalgebra g;. We take a standard basis €1,...,€min € t*
and its dual basis e1, . . ., em4n € t. We suppose that ej,. .., emin-1 € ¥ 50
they form a basis of a Cartan subalgebra t' of €.

We let o; = €; — €;41 and write Dynkin diagrams of g and ¢

o1 09 T Om—1 Qup Qndl Omtn—1

fo) Ol o @O . o)

a1 &) Om—1 Om Om+l « Qmtn—2

fo) O s o) Y o) s o) .
Here, the painted root o, corresponds to a root in g(1). Other roots are
in g(0). We denote Zl’:{" a;e; € t by (a1,...,0m;8m+1,- -, Gmtn) and

m+n—1 ’ .

i=1 ;€ © (‘t )* by (al’ s Omy Amedl, -0 - am+n—1)~

Let S:={a;:m—p+1<i< m+gq— 1}. Then the parabolic subalgebra
q(S) is holomorphic and [H(S) ~ u(p, ¢) ® u(1)™ P~ We have

Aq(S)((/\17 s ,Am—p;,uy ceey My ey 1y /\m—|—q+1a LN} >‘m+n))|(g’,K’)
P g
r—vf @Aq’(SD((Tla vy Tm—ps by - ey 5 51, e 7Sn—-q))
P g-1
< @Aql(sé)((rl, o Tmeptr, L p L L L s Sn—q—1))
ey 7

where §1 :={a; :m—p+1<i<m+q-2}and Sh:={a;:m—-p+2<
i < m +q — 1}, the sum is taken over

TI‘ZA1+1ZT2Z>\2+1Z"'Zrm—pZAm—p“‘la
_|_
u+p—2—q > 51> Amagil = 52> Amigia = 0 > Sng > Aman

for the first term and

| +
MEM AL 2T 2 Amop H 12 Topin > pm P 4

)\m+q+1 > 812 )\m+q+2 >89 2> 2 Apdn—1 = Sn—g-1 2 Amtn

for the second term. We note [5(S}) ~ u(p, g—1)@u(1)™ " P~9 and [;(S3) ~
u(p - 1,¢) ® w(1)™re
Let | be an integer such that 0 <! < m. We let simple roots for g be

=€ — 61 (1<i<l—1), o=e—emti,
Qi = €m+i — Cm+itl (1 <i<n-— 1), Ql4n = €m+4n — €41,
Qinti = €l4i — €tir1 1<i<m—1-1)
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and let simple roots for g’ be

Bi=e—eip1 (1<i<l—1), B=e —€my1,
Biti = €mti — €m+it1 1 <i<n—2), Bipn-1 = €min-1 — €141,
Bipnti-1 = €4 — €qir1 1 <i<m—1—1).

Then the Dynkin diagrams of g and g’ are:

a1 o1 o Q41 - O4n—1Cl4n ltn+l Om4n—1
[ MU NUUUUIN Y ¢ WYY U LI o WOURIN Y o PRI — 0
and .
f1 Bi-i B Biy1 Bisn—2 Bitn-1 Bisn Brmn—2
[0 NTOUSIOTPPPNI o VN Y o UUUYYOSIPIOI VR ¢, S Y S o MYV —0
Here, the painted roots o; and a;,, correspond to roots in g(1). Other roots
: + . .
are in g(0). We denote Y ;1" aze; € by (a1,...,050mt1, - - Cmtn; G4y - - - Cm)
d m+n—1 .. t, * 'b - ) .
an Zi:l a€; € ( ) Y (ala"'aa'laa'm—]—la"'7a'm—-|—n—1aa‘l+1’-'-aam)'

Let S = {a;: l—p+1 < i <l+q—1}U{e; : I4n—r+1 <i < l4nts—1}
for non-negative integers p, q,7, s such that

p<l, s<m-1Il, p+q=>1, r+s>1, andg+r < n.

Then [h(S) ~ u(p,q) ®u(r,s) ® u(1)™*+n—P—2-7=5 We have

(9.2)
Aq(S)((Ala v 7>\l—pa/"’a RN YRR a,u‘a)\m-qu—l-l’ R /\m-l-'n.—'r?
p q
Ve o Ul o0y, U,y Al+s+1, e ’Am))‘(g’,K’)
r s
= @Aq’(so((tlj v bimpy ey Sy e [ UL e Un g,
P g-1
V:"')y;ya'"7V)U1a---7vm-—l—s))
A,l_.zg,_/
r— s

@ @Aq’(SQ)((tla s atl—p-l—lvy'_"lv v y /‘L+117H'+1’ s 7/4L+]J-7 ULy - - -5 Un—g—r;

p—1 q
Uyoo  ViVy ey VUL, oo Umn—i—s)
S—_—— N

r—1 s
@ @Aq'(S§)((t17- --vtl—pa.u‘a'"au;u""aﬂ’aula-- -y Un—g—r)
p g-1
\V_]-v' . ay_l;y—lva" 'aV—':Eavla"' 7vm—l—s—|—1))
"I‘r s‘—rl

& @Aq’(s‘;)((tla s 7tl—p+1’y‘+17 g ,u'+1lay’+1a L ,,Ll,—l-]J., ULy -y Un—g—r—1, ‘
" p-1 q
v—1,...,v=Lv-1,...,v=Lu,... s Umnel—s+1))s

~

Vv '
[d —

s—1
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where

S = {Biil-p+l<i<itq-2U{Bi:ltn—r+l<i<ltnts—2},
Shi={Bi:l-p+2<i<l4+q-1U{Bi:l+n—r+1<i<l4+n+s—2},
Shi={Bi:l-p+1<i<li+q—2bU{Bi:l+n—r<i<l+n+s—3},
Sﬁ:z{ﬁi:vl—p—l—ZSigl—i—q—1}U{ﬁi:l+n—r§i§l+n¥s—3},
and the sum is taken over |
MLl > A +1> 2l > N+,

ptgq : r+s
VH« +=—F—2>u > )\m+q+1 Z o 2 Upagar 2 Amdn—r = Upeg—r4l 2 V — 2' )

Agst1 — 1201 2 Ageq2 — 12022 2 A — 12 vy
for the first term, ,
p+g

M AI> >, >N+ 1>t > - +1,
r+35
)\m+q+1ZulZ)\m+q+22u22"‘2)\m+n—r2un—q—r2V— 9
Masti— 12012 Agep2— 12022 2 A —1 2 Vs
for the second term,
t1>M+12t>2A+12> -2t 52> N p+1,
p+q> :
U+T_ulz/\m+q+12u2_>_)\m+q+22"‘Z'Uln—q—'rZAm—l—n—ry
T+ s
V- — — 1> 2 Npsh1— 12022 2 A — 12 v -5t
for the third term, and
_|_
B AL 2t > Nt 12 g > p— P
)\m+q+1 >up 2 >\m+q+2 > ug > )\m+q+3 Z 2 un—q—'r—i > Amin—r
r-4s ,
V- —1>v 2 Ager1— 12022 - 2 A — 1 2 Uppi—st1

for the fourth term. We note that
0(S)) ~u(p, g — 1) @ulr — 1,s) & u(1)™" P97,
(S5 ~u(p— 1,q) ®u(r — 1,s) ® u(1)™" P72,
[6(8{,3) = U(p, q-— 1) & U(T‘, 8§ 1) @ u(1)'fﬂ+n-—p—q—’r‘—s’
LSy ~ulp—1,q)@u(r,s —1)O y(1)mHPmeTes,

We remark that the second and the fourth terms do not appear if p =0
and the first term does-not appear if ¢ + r = n. Similarly for the case g, 7,
or s =0.

We now consider the general case. Let go := u(m,n) and gy == u(m, k) ®
u(n—k) for positive integers m, n, k such that n—k > 0. We take a standard
basis €1, ..., €min € t* and e1, ..., emin € t as before. We may assume that
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t C ¥. Let simple roots o; for g be as in the previous case and let simple
roots for the u(m, k)-component of g’ be

Bi=e—e41 (1<i<l—1), Bi=¢€—€emt1,
Biri = €mti — €myir1 (1 <8<k —1), Biik = €mtk — €it1,
Bitkti = €14i — €l4iq1 (1 <P <m—1-1).

Then the Dynkin diagrams for g and u(m, k) are:

(051 al—1 o o4 Alpn—1 Cln Xi4ntl Cmtn—1

[ PR UOTOTPR S YU o SISO MY ¢ S W  JEPY PSP —0
and

b1 Bi-1 B B Birk—1 Birk Bik+1  Bmk—1

O—.,......4....._O—.——.O_.A..,“u.“,._o____.—_o_ .............. _—O

m+
We denote S 1t " aze; € £ by (a1, .., 01 Gmi1, - - - Gmobni Glgls - - -5 Om)- When
we regard Y 7" ™ aze; € t* as a weight for g’, we denote it by :
!
(ala ey AL AmAL, - - Omtk; Bl4-15 - -+ Omy Gt k1 - - - 7am+n) .

Let S be as in the previous case, namely, S := {o; : { —p+1 <7 <
l+qg—1}U{ai:l+n—r+1<i<l+n+s— 1} for non-negative integers
P, q,T,s such that

p<l, s<m-—1I, and g+7r<n.

Then the formula (9.2) implies that the restriction of

Aq(S)(()‘la v 7>‘l—p7/'l’, RNy Y R ,,U'a/\m—f—q+1a v 7>\m+n—7'a
p q
Voo s UiV g Vs Alpstly - -+ Am))
T s

decomposes into a direct sum (with multiplicity) of

! A / ’
Agrsny (1, s timpr, pAp—D' oo b p=P S PPy o, PP ULy - Uk—g/
v v |
! ’, ’ e : . ’
v—s+s',. . v—s+siv—s+s,.. . V545,01, Uni-s WL - - yWn—k) ),

' " g
‘T'l Sl

where p/, ¢/, 7', s’ are non-negative integers such that

pISPa qISqJ"’nlgra SIS'Sa
P +qd=p+tg-(n—k)ifptg>n—k, p =¢d=0ifp+tg<n-—k,
r4+s=r+s—(m—k)ifr+s>n—k 1 =¢=0ifr+s<n—k,

S =B l—p+1<i<l+gd-VU{Bi:l+k-r+1<i<
| +k-+ s — 1}, and the parameters are in the weakly fair range. We note
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o8 =ul@,d)ou(r, s o u(l)¢+n_pl"q'”7'_s'. Put

A= ()‘1,--'aAl—ﬁaMa"'):u';:u'v--'nu‘a)‘m+q+1a"'7)‘m+7?—1"a

p q
I/,..'.,V;I/,...,l/,/\l+s_|_1,...,)\m),
SN—— N——~ .

T s

M= (t1, s tigs =0y, pbp—p s ptp—p', .. utp~p Ut U,

v

v v
o q
’ . ’ ’ . . /
v—s+s ..., v—s+siv—s+s,. .., v—5+8 01, Un i g W1, Wnk)
. — -
M M

and write _

m(k) l’ m7 n7.p’ q7 ’r7 S?p’7 q” T’) SI? ’5’7"5',7 A’ AI)
for the multiplicity of Ag(gn(A) in Agsy(A)|g k7). We now reduce the
computation of multiplicity to lower rank cases. Let p”,¢”,7",s",c,d be
non-negative integers such that

pll S pl’ qII S ql7 T'" < 'l",., 5” S SI,

p"—l—q”:2c,' 7‘”—|—S”=2d.

We use similar notation for the restriction u(m — p" — s",n—¢" — ") |
u(m —p”" — " k— ¢’ —r") @ u(n — k). Then if we put

k= (M+2c,..., \i—p+2c,utc,... bt pte, L Ambgtls -+ - s Amtn—rs

p—p” q:;l” :
v—d,...,v—div—d,...,v—d, Arsi1—2d, .. Am—2d),
r—r st
K= (t142¢, ..ty +2¢, ptp—p'+c, ... ,u+p—p'+j;y+p—p'+c, o ptp—p e,
p’rp” ' q’rq”
U, .- - ,uk_q/_rl,y—s+3'—d, . ,V—s—{—s'—'cz;‘u—s—l—s"——d, ey Z/—S—{—SI-—CE,
it ' o~ stt

v1—2d, ... Vs — 2d; w1 +c—d, . , Wy +c—d)',
(9.2) implies that ‘
m(k,l,m,n,p,q,78,0,¢,7,8, 8,8 \X)
:m(k—q"—r”,l——p”,m—p”—s",n—q”-—r"k,
p—pq—q . r—1"s—5"p —p"d — "7 =" s =" T, T k&),
" where

T:={o:l—-p+1<i<i—p"+qg—-¢" -1}

U{ai:l4+n—p" —¢" —r+1<i<i+n—p"—¢"—r" —s"+s -1},
T = {pi:l—p +1<i<l—p'+d —q' -1}

U{ﬁi:l+k—p"—q"—r'+1§iSl+k—p"—q"—r"—s"+s'—1}.
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Therefore, the determination of the multiplicity m(-) is reduced to the case
where p'+¢' < 1 and r'+s’ < 1. This is equivalent to p+g—1,r+s—1 < n—k,
which implies the assumption of Theorem 9.2. Hence we can compute the
multiplicity by using Theorem 9.2.

We remark that the (¢', K')-modules Ay (gy(A) can be isomorphic to each
other among different S’. So we need to avoid overlap for the branching
formula. This occurs when the parameter is on the boundary of weakly fair
range. We can see this phenomenon from Theorem 6.3.

Let §:={a;:l=p+1<i<Il+n+q— 1} for non-negative integers
p,q so that [p(S) ~ u(p+¢q,n) ®u(1)™P9. Then Corollary 5.8 implies that
Aq(5y(M (g7, k7) decomposes into a direct sum (with multiplicity) of (¢’, K')-
modules Ay (gry(X), where §" := {;: 1 —p+1<i<1+k+g—1} Note
0(S") ~ u(p + ¢, k) ® u(1)™+*~P~¢k_ The multiplicity is obtained in a way
similar to the case so(2m + 1,n) | s0(2m + 1,k) @ so(n — k) treated in
Section 8. .

9.15. s0(2m,n) | s0(2m, k) @ so(n — k).
Let go := 50(2m,n) and g} = s0(2m, k) @ so(n — k). We assume k > 2 to
_simplify the notation. The case of k < 2 is similar. Put n/ := [ 5], k' := %],
and [ := ["5*]. We write the Dynkin diagram of g and label the simple
roots:

0 Cmtn!

o Om—1 Om O‘7'1:1\.+1 Ov’m—|—'n.'—2/

\3 Cm+n/—1

Cmin/—1 Om+n'
o} o

if n is even and

a1 Om—1 CQm Omtl
G o e o

if n is odd. Similarly, the Dynkin diagram of the s0(2m, k)-component of ¢’
is: :

° Bm+k!
501 Pm—1. ,Bem Bmt1 Bmak'—2 /

N

if k is even and

b

if k is odd.

Let p and ¢ be non-negative integers such that p < m and ¢ < n'. Put
S:={oy:m—-p+1<i<m+qg=-1}and q:=q(S). The Levi subalgebra
lo(S) is isomorphic to u(p,q) @ w(1)™+*'~P=4, As in the case u(m,n) |
u(m, k) @ u(n — k), the restriction Ags)(A)|(g,x) is isomorphic to a direct
sum (with multiplicity) of (g’, K')-modules Aq/(s)(A'). The possible subsets
S’ c Il are given as follows: '

S =0, 0(S) 2 u()ymkH

ﬁ@—l ,@;n /8n}‘+1
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ifp4+g<n—k;

S ={B; :m—p'+1 <i <m+qg -1}, () ~u(p, ¢ )@u(1)mtF Hi-prain—k

for integers p’ and ¢’ such that |
0<p<p, 0<q<qk, and p+q =p+q—(n—k);

if p+ g > n — k; in addition if k is even and if (p/,¢’) = (p', k') satisfies the
conditions above, then

s’ Z{ﬁi:m—p’—l-l Si§m+kl—2}U{,@m+kl},
o(8") = u(p!,q) @ u() Pt

is also possible. The determination of the multiplicity can be reduced to
lower rank cases as well. » ) '
Let p be a non-negative integer such that p <m. Put S := {oy :m —p+
1<i<m-+n'} and q:= q(S). The Levi subalgebra [y(.S) is isomorphic to
50(2p,n) ®u(1)™P. This case is similar to the case s6(2m+1,n) | s0(2m +
1, k)®so(n—k) in Section 8. By applying Corollary 5.8, Aq(s)(A) decomposes
into a direct sum (with multiplicity) of (g, K')-modules Ay (s)(\'), where
={Bi:m—p+1<i<m+k} and [j(S') ~ s0(2p, k) & u(1)™ P

9.16. sp(m,n) | sp(m, k) @sp(n - k).

Let go := sp(m,n) and gg == sp(m, k) @ 5p(n — k). We write the Dynkin
diagram of g and label the simple roots:
C\fl a’m—l Olm X4l am+n 1 am+n

Smularly, the Dynkin dlagram of the sp(m, k)-component of g’ is:
;Bol ﬂ'n}\—l ﬁ;rn ﬂm+1 /Bm-gk—l ﬁ'rré—l—k

Let p and ¢ be non-negative integers such that p < m and ¢ < n. Put
S = {a; : m—p+1 < i < m+q—1} and g := q(S). The Levi subalgebra lo(S5)
is isomorphic to u(p,q) @ u(l)””‘”‘p_q " As in the case u(m,n) | u(m,k) ®
u(n — k), the restriction Ay(sy(A)|(y, k) is isomorphic to a direct sum (with
multiplicity) of (g', K’)-modules Ay sy(X'). The possible subsets S" C II'
are given as follows:

S =0, [6(S") ~ u(1)™"
ifp+q<2(n—k), and
S = {B;i:m—p'+1 <i<mtqg'—1}, [{(S) ~u@, q')@u(1)m+n—?—q+2<n—’“)
for integers p’ and ¢ such that /
0<p' <p, 0<q¢<q, p+d=p+tqg-2n—k)

if p+ ¢ > 2(n — k). The determination of the multiplicity can be reduced to
lower rank cases.

Let p be a non—negatlve integer such that p < m. Put § := {ozz m—p+
1<i<m+mn}and q:=q(5). The Levi subalgebra lp(S) is isomorphic to
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sp(p,n) ®u(1)™P. This case is similar to the case so(2m -+ 1,n) | so(2m +
1, k)®so(n—k) in Section 8. By applying Corollary 5.8, Ay(s)(A) decomposes
into a direct sum (with multiplicity) of (g, K)-modules Ay (sy(\'), where
S ={Bi:m—-p+1<i<m+k}and [,(S") ~sp(p, k) ® u(1)m Pk,

Let us consider the case where ¢ is of isolated type, which was postponed
in the last section. We- take a basis €1, 1 Emin € £ and its dual basis
€1y .-+, Emaen € tasin Setting 7.10. We let o = ¢;~¢;41 for1 <i <m-+n—1
and qumin = 2€m1n. Similarly, let §; =€¢; — €1 for 1 <i<m+k—1and
Bmak = 2€mik. Then they agree with the previous notation. Suppose that-

q is given by a = S ™ a4e; such that

al>...>ap>am+1>ap+1:...:am:am+2=...:a,m+n:0

for some 1 < p < m—1. We denote S e € £ by (a1, -+, G Gm1s - - - 5 Gman)-
When we regard lel aie; € t* as a weight for g/, then we denote it by

(@1, -+ Qo Gt 1y - - - » Gtk Gmebk+-1 - - - » Gmetn)- Although the triple (go, g0, 9)

is not of discrete series type, we can prove analogs of Theorems 9.1 and

9.2 in this case. First, we assume that ap > am41 so that lp(a) is a di-

rect sum of sp(m — p,n — 1) and a compact Lie algebra. The parameter

A for q := q(a) can be written as A = (A1,...,25,0,...,0;Ap41,0,...,0).

We put b := e + -+ + epr1. Then L(b) is isomorphic to GL(p + 1,C) x

Sp(m —p+n —1,C) up to covering. We put s(b) := dim(u(b) N ). If

AL > > Ay > —Apy1 — 2(m — p +n), Theorem 6.5 gives

Aq(a)(()\l,...,)\p,O,...,0;Am+1,0,...,0))’
:Aq(a+am+1(eﬂl —emi1)) (()\1,...,/\p,—)\m+1—2(m—p+n),0,...,0;0,..i,0))
q( b).s (F ()\1,...,./\p,——)\m+1—2(m—p—|—n),0,...,0;0,...,0)).

Since K’ acts transitively on K/(Q(—b) N K), the restriction
[Aq(a)(()‘la S a>‘p7 0, ey O, )\m+1, 0, . ’O))|(g’,K')]

can be written as a sum of [Ag sy (N)], where ¢’ = S p — i+ 2)e; +
P F(n—k—i+1)empprs and hence () ~ sp(m p—1,n)@u(l)PHL If
there exists 0 < ¢ < p — 1 such that ag > ag41 = = Gp = Gm+1, then the
Levi subalgebra ly(a) is a direct sum of u(p—g, 1)695p (m—p,n—1) and a com-
pact Lie algebra. By using BGG type resolution of one-dimensional represen-
tation of lo(a) for the u(p—g, 1)-component, we can describe [Aqeq)(\)| (g, 7]
as an alternating sum of [Ay()(A\)], which is analogous to Theorem 9.1.

On the other hand, by considering the case n ~ &k =1, it turns out that
the restriction Ag(q)(M)|(g,x7) can be written as

Aq(a)((Aly ey )\q,,Ll,, e ,/,(,,O, ey 0;»/14,0, N 70))|(g’,K’)
p—q m—p n—1

~ @ ma(r,s,t)Ag e ((r1; - rq+2(n_k)_1,y+2(n—k)— 1,... ,u+2(n—k)—£,
' ' p—q—2(n—k)+1
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0 0,...,0;8,0,...,0;t1,...,tn—k))
m—p k-1
S5 @mZ(Tv S, t)Aq’(a’—l-ep+1—em+1)((’r1a s Tgr2(n—k)—1s :
p+2n—k)—1,...,u+2(n—k)—1,5,0,...,0;0,...,0;t1,...,tn_g))
L ) e N

p—g—2(n—k)+1 m—p—1 k

D @m;;(r, S, t)Aq’(a’+eq+2(n7k)+em+1)((Tl’ Ve ,T'q+2(n_k)_1, S,
pA2n—k), ..., p+2(n=k),0,...,0; 4+ 2(n — k),0, ..., 0;£1, .. -, tn_s))
K JN 0 D

p—q—2(n—k) m—p k-1

ifp—qg+1>2(n-k)and

Ag@) (s Ago g - 18,0,00, 05,0, s O, 57
p—gq m-—p n=1
~ P malr, s, ) Age) (s 79,05, 055,0, ., 05ty Eng))
m—p k—1
® P mar, 5,8) Agprreprs—emsn) (179,80, 0,0, Oty bni))
' m—p—1 k

ifp—qg+1<2(n—k). Here,

. g+2(n—k)-1- P n—k
a = Z (g+2(n—k)—i+3)e; + Z 2e; + emy1 + Z(n —k — i+ Demtrti
i=1 i=g+2(n—k) i=1
b4 n—k .
V= Z(p —i+2)e; +emp1 + Z(n —k—i+ Demikti
=1 i=1

and hence

(@)~ u(p— g —2(n— k) + 1) @ sp(m — p, k — 1) @ u(1)7H30=k),

((a + epp1 — emr1) ~ u(p — g — 2(n — k) + 1) @ sp(m — p — 1, k) @ u(1)7+3R),
000 + equanor) + emi1) = 1D — g — 2(n — k), 1) @ sp(m — p,k — 1) ® w(1)773CH),
H(b") = sp(m p k= 1) @ u(LPHE |

0+ epr1 — emy1) = sp(m—p—1,k)© u(1ypHnkHL

As in the case u(m,n) | u(m, k) @u(n—k), the determination of multiplicity
m(r, s,t) can be reduced to lower rank cases.

The remaining cases are Theorem 7.22 (3) and (4). We can write Aq(g)(A)i(g,x)
as a direct sum of derived functor modules Ay (gy(X') in these cases as well.
In what follows, we only write down S’ C II' for each S C II such that
Ag(s)(X') can appear in the branching law of Ay (Mlg,k)- As in the
previous cases, painted roots denote roots in g(1).
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9.17. u(m,n) | u(k,!) ® u(m — k,n —1).
Let go := u(m,n) and gf := u(k,l) @ u(m — k,n — ). We label the simple
roots of g as ’ -

a1 ] Qm—1 QG Qml Om+n—1

o) O e 0 'Y O s o)
and those of g’ as

b1 Br-1 Br Bkt Br+i-1

O.___—.O——.—_.—O— .............. —.O

71 Tm—k—1 Tm—k Ym—k+1 TYm—k+n—1-1

O_ .............. _—c = Y @ TEDPRDN I o

Suppose that S = {a; : m —p+1 < i < m+ ¢ — 1} so that [p(S) ~
w(p, q) ® u(1)™" P4 Let S’ C II be a subset such that Ag (g (A') occurs
in the branching law of Aq(S) (A)I(QI,KI). Put Si =8N {ﬁi}1§i§k+l—1 and
Sy := 8" N {vi}i<icm—k+n—1-1. Then ‘

Si={Bi:k—-p+1<i<k+q -1}

for integers p’ and ¢’ such that

0<p' <pk, 0<q¢<ql andp+qd=p+q—(m—k+n-1)
ifp+g>m—k+n—1,and S =0if p+q <m—k+n— [ Sinmilarly,

S§={fyi:m—k—r'—i—l_gigm—k—l—s'—l}

for integers r' and s’ such that

0<r <pm-—k, 0<s<qgn-1I, andr +s =p+q—(k-+1)
ifp+g>k+land S5=0ifp+qg<k+I.

9.18. u(n,n) | s0*(2n).
Let go := u(n,n) and gf, := s0*(2n). We label the simple roots of g as in
the previous case and those of ¢’ as

*fn

5 e/
\]ﬂn~l

Suppose that S = {o; : n —p+1 < i < n+¢— 1} so that lp(S) =~
u(p, q) ®u(1)’*?79. Then

S ={fi:n-p—q+1<i<n}, () =s02p+q-n) Ou1)? >

fptg>n+2and & =0ifp+g<n+2.

9.19. u(n,n) | sp(n,R).
Let go := u(n,n) and g := sp(n, R). We label the simple roots of g as in
the previous case and those of ¢’ as

' ﬁcl ﬂfg—l ﬁn

<———0
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Suppose that S = {aj : n —p+1 < i < n+q— 1} so that [p(S) ~
u(p, ¢) ®u(1)>»~P~9, Then

S ={Bi:2m—p—q+1<i<n}, (S)~sp(p+q—nR)@u(l)* 7?1
ifp+g>n+land S'=0ifp+g<ntl

9.20. so(2,n) | s0(2,k) ® so(n — k). ‘ ;
This is a special case of s0(2m,n) | s0(2m, k) & so(n — k) above.

9.21. s0(2,2n) J u(1,n).
Let go :=50(2,2n) and g := u(1,n). We label the simple roots of g as

.

We may assume that t C ¥ and simple roots of g’ are

o1 w9 Un—1 Cn
PY o e —— 0 o)

Suppose that S = {o; : 1 < i <n} so that Ip(S) ~ u(1,n). Then
§={am:1<i<m), H(S)~u@™eu(l),
S ={o1}U{ag:2<i<m}, §(S)~ul,)euw2™ aud)
if n = 2m is even, and
S ={az-1:1<i<m}, (S ~u(l,1)eu@™ "

if n =2m — 1is odd.
- Suppose that § = {a; : 1 <4 < n— 1} U{ant1} so that Io(S) = u(1,n).
Then

§ = fama:l<i<m), () ~u(l,1)eu@™ " oud)
if n = 2m is even, and '
S ={ay:1<i<m—1}, (S ~u@)™ ' ®u(l)?
S ={am}U{og:2<i<m—1}, §(S) ~u(l,1)eu@)™ ?ou(l)’
if n=2m — 1is odd.

9.22. 50*(2n) | u(m,n —m).
Let go := 50*(2n) and g := u(m,n — m). We label the simple roots of g

as
o0y,

o1 C‘~’n—2/
o SRR
\an—l

and those of g’ as
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ﬂl ﬁ'm—l /Bm ﬁm—l—l vﬂn—l

o T o

Suppose that S = {a; : p+1 <4 < n} for p < n— 2 so that [p(5) ~
50(2n — 2p)* @ u(1)P. Then .

S ={Bi:m-p +1<i<m+q —1}, [(S) =u@,q¢)ou1)?
for integers p’ and ¢ such that |
0<p'<m, 0<¢d<n-m, and p'+¢ =n—-2p
if n > 2p, and §" = 0 if n < 2p.

Suppose that § = {a; : 1 <i <n—2}U{a,} so that [p(S) = u(n - 1,1).
Then

S'={Bai-1: 1<<k} U {Bm} U {Bmairs : 1<i<I}, B(S) ~u(l,1) & u(2)* @ u(1)?,
S'={Bai-1:1<i <k} U{Bm-1}U{Bmizit1:1<i <1}, K(S) > u(@H ou(1)?,
S ={B2i-1:1<i <k} U {Bmi1} U{Bmizir1 : 1< <1}, () ~u(2) o u(1)?
if m=2k+2and n—m=2l+2 are even;
S ={Bai_1: 1<i<k} U {Bm} U {Bmrairs : 1<i<1}, 15(S)) = u(1, 1) © u(2)* @ u(),
S ={B2i 1:1<i<k}U{Bms1}U{Bmaait1:1<i <1}, (S =~ w(2)*1 g u(1)
ifm=2k+1is odd and n — m = 2l 4 2 is even;
§'={Bai-1: 1<i<k} U{Bm} U {Bmazi : 1<i<I}, () = u(1,1) @ u(2)* & u(D),
' ={Bai1:1<i<k}U{Bmoa}U{Bmini:1<i <1}, (S ~u@)f ou(l)
if m =2k + 2 is even and n —m = 2] + 1 is odd;
S'={Bai 1 : 1<i<k} U {Bm} U {Brmszi : 1<i <1}, () ~ u(1,1) @ u(2)**
ifm =2k +1and n—m=2[+1 are odd. |
9.23. s0(2n)* | s0(2m)* @ s0(2n — 2m)*.

Let go := s0(2n)* and g := 50(2m)* @ so(2n — 2m)*. We label the simple

roots of g as in the previous case and those of g’ as

® Bm ®n—m

b1 Pm—2 / ’)(;1 ‘ Yn—m-—2 o/

\?ﬂm—l N \Wn—m—l\

For §'  II', we put S} := 8" N {Bi}1<i<m and S5 := 5" N {yi}1<i<n—m.
Suppose that § = {a; : p+1 < i < n} for p < n — 2 so that [h(S) =~
Cso(2n —2p)* @ u(1)P. Then S; ={Bi:p+1<i<m}ifp<m-—1and
S{ =0 if p > m — 1. Similarly for S5. '
Suppose that § = {og : p+1 < i < n =2} U {an} so that [h(S) ~
u(n —p—1,1) ®u(1)?. Then

Si={Bi:p+tn—-—m<i<m=2} {Bi : ptn—m+1<i<m—2}U{Bm}
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ifp<2m-—n-—2and S} =0if p > 2m — n — 2. Similarly for S5,
9.24. sp(n,R) | u(m,n —m).

Let go := sp(n,R) and g) := u(m,n —m). We label the simple roots of g
as :

ay Qn—1 Qn
o RV o.

and those of g’ as
p1 Bm-1 Bm Bm+1 Bn—1
O .............. e @ | - O

Suppose that S = {q; : p-+1 < i < n} so that Ip(S) ~ sp(n—p, R) Ou(1)P.
Then

S'={Bi:m-p +1<i<m+q -1}, [(S) =u@,q¢)ou1)”
for integers p’ and ¢’ such that
0<p'<m, 0<¢<n-m, and p'+q¢ =n-2p

ifn > 2p,and &' =0 if n < 2p.

9.25. sp(n,R) | sp(m; R) @ sp(n — m, R).
Let go := sp(n,R) and g := sp(m, R) @ sp(n—m,R). We label the simple
roots of g as in the previous case and those of g’ as

b1 Bm-1 Bm 7 Tn—m—1 Tn—m
@] OL——0 o o —— " ]

For 8’ c II'; we put S} := SN {,Bi}lg.,;gm and Sé =8N {’Yi}lSiSn—m-

‘Suppose that § = {a; : p+1 < i < n} so that [H(S) ~ sp(n—p, R)@u(1)P.
ThenS{:{ﬂi:p+1SiSm}ifpSm—landSiz(Z]ifp>m—1.
Similarly for S5. '

9.26. ¢g(_14) | 50(2,8) ® 50(2).
Let go := eg(—14) and gp = 50(2, 8) @ 50(2). We label the simple roots of
g as » ' :

a2

o}
(23] 3 J (871 87
[} lo} le} ®

Q4

and those of g’ as

o Bs

5.1. ,302 ﬂ3/’
| \ﬂ4
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Suppose S¢ = {a1} so that [p(S) =~ s50(2,8) ® u(1). Then
= {/62a ﬂ3a 134}a [:)(SI) = U(4) @ 11(1) S 50(2)7

§' = {1, Pa, B3}, Tp(5") = u(L,3) Du(l) & 50(2),

§'={B2,8s,85}, To(S') =~ u(4) & u(l) ® 50(2).
Suppose S€ = {as} so that {p(S) ~ u(1,5). Then

S' = {81, Bs}, () ~u(l,1) ®u(2) & u(1) ®s0(2).
9.27. eg(—14) + 5u(4,2) @ su(2).

Let go := eg(_14) and gj := s5u(4,2) @ su(2). We label the simple roots of

g as in the previous case and those of g’ as

ﬂc1 ﬂez Bz~ Pa ﬂos ,606

Suppose S¢ = {1} so that [(S) ~ s0(2, 8) ® u(1). Then
S = {83, B}, (S) ~u(2)’ @u(1)?,
S ={Ba,Bs}, (S ~u(1,1) ®u(2) ®u(l)?
={B1,8s}, %(S") ~u(@)?eul)%

9.28. eg(—14) 4 50*(10) ® 50(2).
Let go := eg(_14) and gg := 50" (10) @ 50(2). We label the simple roots of

g as in the previous case and those of g’ as

* 05

(LI
\54

Suppose 5¢ = {a1} so that Ip(S) ~ s0(2,8) ® u(1). Then
= {B2, 83,05}, (') ~u(3,1) ®u(1) ® s0(2),
5' = {81, 82,83}, (') = u(4) ® u(1) © 50(2).
Suppose S¢ = {as} so that lp(S) ~ u(1,5). Then
S = {B1,B3}, %(S") ~u(2)®®u(l)®so(2),
S = {15}, 1(S) ~ u(1,1) & u(2) & u(l) @ s0(2)

9.29. eg(-14) 4 5u(5,1) @5[(2 R).
Let go := ¢g(_14) and gg = su(5,1) @s[(2 R). We label the snnple roots

of g as in the previous case and those of g’ as

,801 Ba ﬁs Ba PBs ﬁ.s

Suppose 5S¢ = {al} so that [o(S) =~ s0(2,8) ® u(1). Then
= {Bs: 85}, To(S") = u(1,1) @ u(2) @ u(1).



118 YOSHIKI OSHIMA

9.30. €7(-25) 4 €6(—14) S 50(2).
‘Let go := e7(_g5) and gp := eg(—14) © 50(2). We label the simple roots of
g as

o2
o

24} o3 a5 g ar

07}
and those of g’ as
B2
o)
Br PBs [ Bs DB

o o o
Ba
Suppose 5S¢ = {a} so that lp(S) ~ s0(2,10) ® u(1). Then

§'= {ﬂ3aﬂ4aﬁ5}) [O(Sl) = U(4) S u( )2 = ’50(2)7
§' = {Ba, B5: Bs},  1o(8") ~ u(3,1) @ u(1)’ @ 50(2),
= {B2,84,B5},  To(5") = u(4) ®u(1)* @ 50(2).

9.31. er(_gs) I 50(2,10) @ s1(2, R).

Let go := e7(_25) and gp := 50(2, 10) © s[(2,R). We label the simple roots
of g as in the previous case. We let 1 = ar, B2 = as, B3 = a5, fa = Oy,
Bs = az, fe = as, fr = 2&1 + 209 + 3003 + 40[4 + 3as + 206 - 7 and then
the Dynkin diagram of g’ is

oBs
Br B2 Bs ﬂ4/ Br

‘\ﬁs

Suppose S¢ = {a1} so that [p(S) ~ s0(2,10) ® u(l) Then
S = {8183, Bs}, (") =u(l,1) © u(2)’ ®u(l).

9.32. er(_25) 4 su(6, 2).

Let go := ey(_g5) and gg = su(6, 2). In this case, for any holomorphic q(#
g) and a weakly fair parameter A, the restriction Aq(})|(y k) decomposes
into holomorphic discrete series representations.

9.33. er(_25) 4 507(12) @ su(2).
Let go := ey(_q5) and gg = 50"(12) ® su(2). We label the simple roots of
g as in the previous case and those of g’ as
* Bs
B B2 Ps B / Br
O O O (o]

s
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Suppose 5S¢ = {ay} so that [(S) ~ s0(2,10) & u(1). Then
§'={B1,B3,6s}, 1o(8) = u(1,1) & u(2)’ Du(1).

Let q; and g2 be holomorphic parabolic subalgebras of g. For the branch-
ing law of tensor product of highest Welght modules Ag, (A1) ® Ag,(A2) we
can use the isomorphism

Aql ()\1) ® ACIz (A2) = ql S(CAI) ® qu (AZ) Cl1 S(C)\l ® qu (>\2)|[1)

where s = dim(u; N ¢). By taking a sequence g =g1 D g2 D D g =101
such that (gi, gi+1) are symumetric pairs, the restriction Ag,(A2) |[1 is reduced
to the previous cases.
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