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Preface

From the fundamental work by Kermack and McKendrick [48] in 1927, the study of epidemic models as initial-
boundary-value problems of nonlinear partial differential equations has been developed focusing on various infec-
tious diseases such as influenza [73], avian influenza [47], measles [92], gonorrhea [58], leishmaniasis [5], SARS
[95], HIV [41] and so on. From the application point of view, we have no doubt that the attempt to construct
more realistic epidemic models is essentially important for controlling the spread of disease. In this thesis, adding
the heterogeneity (e.g., sex, age, position, seasonality and so on) into the usual epidemic models in which the
host population is homogeneously divided according to each infection status, we construct more realistic epldemlc
models with heterogeneity and study their mathematical properties.
One of the most important concepts in this field of mathematical epidemiology is the basic reproduction number
© %o which is epidemiologically defined as the expected number of secondary cases produced by a typical infectious
individual during its entire period of infectiousness in a completely susceptible population [18]. From this defini- .
_ tion, we can expect intuitively that the disease dies out if %y < 1, while it spreads if %y > 1. However, whether %
defined for each epidemic model keeps such threshold property in a mathematical sense, that is, whether the trivial
_equilibrium solution called the disease-free equilibrium is (globally) stable if % < 1 and a nontrivial positive
equilibrium called an endemic equilibrium is so if %y > 1, is not obvious. For the heterogeneous epidemic models
we shall study in this thesis, % is mathematically defied by the spectral radius of a positive linear operator called
the next generation operator. The main focus of this thesis is on the relation between the size of such %, and the
* (global) stability of each equilibrium of such epidemic models. '
The organization of this thesis is as follows. In Part I, which is composed of Chapters 1 and 2, we focus on
multi-group epidemic models, in which the heterogeneous host population is divided into several homogeneous
groups according to the heterogeneity of each individual. In Part II, which is composed of Chapters 3 and 4, we
-focus on epidemic models with time-heterogeneity. Under the assumption that parameters are time-periodic, they
can be regarded as realistic for seasonal diseases such as influenza and some vector-born diseases.
" The author has-collaborated with Dr.- Yukihiko Nakata (University of Szged) and Professor Hisashi Inaba
(University of Tokyo) to obtain results in Chapters 3 and 4, respectively. The author s work is supported by the
Japan Society for the Promotion of Science (JSPS) (222176)..
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Part I

Mﬁlti—Group Epidemic Models



Chapter 1
A multi-group SVIR epidemic model

Abstract In this chapter, we formulate a multi-group SVIR epidemic model that treats the heterogeneity of host
population and the effect of immunity induced by vaccination. The basic reproduction number % is defined by
the spectral radius of a nonnegative irreducible matrix called the next generation matrix. We show that % plays
the role of a perfect threshold in the sense of determining the global asymptotic stability of each equilibrium of

- the model, that is, the disease-free equilibrium of the model is globally asymptotically stable if Z; < 1, while an
endemic equilibrium is so if Zy > 1. In the proof, we use a classical method of Lyapunov, a recently developed
graph-theoretic approach and an approach of max functions.

Keywords Multi-group SVIR epidemic model; Vaccination; The basic reproduction number; Global asymptotic
stability; Lyapunov functional; Graph theory

1.1 Introduction

From the beginning of the 20th century, nonlinear mathematical models have played important roles in clarifying
the spread pattern of various infectious diseases (see, e.g., the fundamental work by McKendrick [72] and one of the
“most popular books by Diekmann and Heesterbeek [19]). Multi-group epidemic models, in which a heterogeneous
host population is divided into several homogeneous groups according to the heterogeneity (e.g., age, sex, position
etc.) of each individual, have gained much attention from many researchers because of their suitability for various
realistic situations and rich mathematical properties (see, e.g., [58, 94, 27]).. The model we shall consider in
this chapter is also a multi-group epidemic model. Dividing total host population into four subpopulations called
susceptible S, vaccinated 7, infectious / and recovered R, we formulate a multi-group SVIR epidemic model that
can consider the effect of immunity induced by vaccination (see, e.g., [53, 4, 1, 68, 65]). For the model, we assume
that the immunity i§ partial, that is, not only a susceptible individual but also a vaccinated individual can be infected
by an infectious individual (with weaken force of infection). Although single-group vaccination models similar
to the SVIR epidemic model have been studied by several authors (see [53, 4, 1, 68, 65]), to-our knowledge, this
is the first study that focuses on a multi-group SVIR epidemic model. Here, note that other kinds of multi-group
vaccination models have been studied (see, e.g., [15, 22]).

A graph-theoretic approach developed in [27] is known as one of the effective tools for the global stability
analysis for multi-group epidemic models. Many researchers have applied the approach to various multi-group
epidemic models (see, e.g., [27, 28, 63, 64, 84, 99, 100, 22, 54]). In this chapter, applying the graph-theoretic
approach and an approach of max functions, we prove that the model has a threshold value, which is called the basic .
reproduction number %y (see [18, 94]), such that if the value is less than (or equal to) unity, then the disease-free
equilibrium of the model is globally asymptotically stable (that is, the disease will eventually die out irrespective
of the initial number of infectious individuals), while if the value is greater than unity, then an endemic equilibrium
exists for the model and it is unique and globally asymptotically stable (that is, the disease will eventually remain
at a fixed size irrespective of the initial number of infectious individuals).



The subsequent sections of this chapter are organized as follows: In Section 1.2, we formulate the multi-group
SVIR epidemic model and show some basic facts. In Section 1.3, we prove the global asymptotic stability of the
disease-free equilibrium £ 0 for %, < 1. For the proof, we use a classical method of Lyapunov. In Section 1.4,
we turn our attention to the case %, > 1-and show the existence, uniqueness and global asymptotic stability of an
endemic equilibrium E*. For the proof, we use the graph-theoretic approach and an approach -of max functions.

1.2 Preliminaries

121 The model

Let n € N be the number of groups, that is, let us divid¢ a hetérogeneous host population into #» homogeneous
groups. Let S;(¢), Vi (1), I; (¢) and R; (¢) be the numbers of susceptible, vaccinated, infectious and recovered indi- -
viduals in group i € A :={1,2,--- ,n} at time ¢ > 0, respectively. Set parameters as

b; : influx of newborns into. group i;

wd, w’, pf, pf: per capita mortality rates for susceptible, vaccinated, infectious and recovered individuals in
group i, respectively;

p; : fraction at which newborns of group i have the passive immunity;

v; : per capitd Vaccination rate for susceptible individuals in group i;

Y: : per capita recovery rate for infectious individuals in group 7;

B;; : rate of disease transmission bétween a susceptible individual in group 7 and an infectious individual in group
i ‘ ‘ L

o; : multiplier to the force of infection to vaccinated 1nd1v1duals in group i (1 — o; is a measure of the vaccine
efficacy).

For the parameters, we make the following assﬁmption.
Assqmption 1.2.1. (i) b;, /,Lf, /,LiV, ut-] , u{é, v; and 7; are positive for all i € A",
(i) p; € (0,1) and 0; € (0,1) forall i € A"
(iii) fB;; is nonnegative for all 7, j € A~ a‘n(i n-square matrix (;;), <ij<n is irreducible ([Sj).

(i) and (ii) of Assumption 1.2.1 are made for biological justification. (iii) of Assumption 1.2.1 impliés that
every pair of groups is joined by an infectious path so that the presence of an infectious individual in the first
group can cause infection in the second group. Under the above settings, we construct the following nonlinear
mathematical model for the epidemic process.

;

%&': (1=pi) b= S:(t) iﬁzj[j(t)— (W +v) i),

%V—V,S (t) V t)zo.tﬁlj l ()7

) : (1.2.1)
a?ltz(s +O-t t Z,Blj (#l +Y) (t)y »

%Ri = pibi + %hi(t) — uRR:(t), ie N
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Figure 1.1: Transfer diagram for SVIR epidemic model (1.2.1)

Note that in model (1 2. 1) we assume that the vaccine does not wane and the disease confers permarnent im-
‘munity. This assumption makes the first three equations of (1.2.1) 1ndependent of R; (i € .#") and therefore, the
dynamics is governed by the following reduced system:

(

%Si =(1=p)bi— S5 (1) iﬁijlj'(t)-_ (7 +vi) i (1),

%V-_v,s,() ()ZG,BUI ORISAGE (12.2) -
. J=1 T .
d

' alizk{sz:(t)“‘o'iVi(t)};ﬁijlj(t)—(/’Lz'l'l'?’{)li(t)a- ie .

In what follows, we focus on the system (1.2.2).

1.2.2  Equilibria and state-space _
Equilibria (S}, V7, If, -+, S, Vi I¥) € R3" of system (1.2.2)‘;are obtained by solving

'4 n
0=(1-pi)b;i— S} Zﬁijzj () S
=ViS 2 il — ! V7, (1.2.3)

0= (S +o77) Zﬁijl;—‘ (W +m)E, ien:
Jj=1 ‘

\

In the situation where I} =0 for all i € 4/, the trivial equilibrium E := (S?, V1 ,0,--+,89,72,0) € R%" of system
(1.2.2) is obtained, where .

_A=pb o Vz(l —pi)bi

N ARES e N,
v, WSty 57

Epidemiologically, this trivial equilibrium E° is called the disease-firee equilibrium ([94]), in which the host popu-
lation remains in the absence of disease. It is easy to see that E? always exists for system (1.2.2).



In the situation where I} >0 for some i € A, (1 .2.3) gives a nontrivial equilibrium called an endemic equilib-
rium ([19]), in which the disease persists. In what follows, we denote it by E* := (S}, V', I}, -+, S5, Vi IF) € R3"
The existence of £* is not obvious and therefore shall be discussed in Sections 1.3 and 1.4. ‘

~ Integrating each equation of (1.2.2), we can easily verify that solutlons of system (1.2.2) remain nonnegative,
provided that the initial condition satisfies

(51(0),74.(0), 1 (0),~, 5 (0) 7 (0) . (0)) € R

Therefore, in what follows, we restrict our attention to solutions in Ra’f’ . Then, from the first and second equations
of (1.2.2), we have the following differential inequalities: ‘

%S@S (1 _Pi)bi; (ﬂis‘i‘vz‘) Si(1),

%Vi <viSi(t) — Vi), ie .

From the well-known comparlson principle (see, e.g., [81, Appendix B]), we see that lim SUP;—3-to0 Si(t) < S0 and
limsup,_, .. Vi(t) < V0 i € A hold. In addition, adding all equations of (1.2.2), we have

%(Si-l-Vi-l‘fi) = (1 —pi)bi—uS; (1) — Vi () — (.u'iI"'Y)]i(t)
(I=p)bi = {Si (O +V: (@) + L)}, i€,

IN

where 4 1= min (#,S T TS 7/,-), i € . Hence, again from the well-known cpmparisbn principle, we have

limsup {S,(r) + Vi(0) + £i(0)} < M

t—+oo ’ i
Based on these arguments, we define a closed set

o 1—pi)b;
Q:z{(SlaVly'[l)t"vSnaVnyln)€R3n' Sl<SO V< ‘S'l_l-V-l‘1<-(—l’)“l)l'7 16/}
i
as the state-space for system (1.2.2). The positive invariance of Q for system (1.2.2) is easily verified. In addltlon
we define

) ‘ 1—p)bi |
Q::{(SI,VI,A,---,Sn,n,ln)eQ: 0<S,-<5?, 0<V,~<V,-°, 0< S,-+V,-+I,-<%,~ie,/f/}

i

as an interior of Q.

‘1.2.3  The basic reproduction number %

Epidemiologically, the basic reproduction number %, implies the eXpected number of secondary cases produced
by a typical infectious individual during its entire period of infectiousness in a completely susceptible population
(see e.g., [18, 19, 94]). For multi-group epidemic models, it is calculated as the spectral radius of a nonnegative
matrix called the next generation matrix (see [94]). Therefore, we ﬁrst define the next generation matrix for system
(1.2.2).

Using components of E? := (.S‘l), VIO,O,- S0 VS ,0) we define an n X n matrix

S+ B - (5(1)";0'1 D) ﬁln
F = : S .
(S2+O-HV;?) ﬁnl (SO+GH )ﬁnn



whose (i, /) entry implies the rate at which an infectious individual in group j produces a new infectious. individual
in group i. Moreover, we define an n-dimensional diagonal matrix

Weno 0 0

0 + 0

¥=ding(Wlrp)=| . %
0 0 - w4y

Note that the i-th diagonal entry of the inverse ! implies the average length of time an infectious individual in
group i spend during its entire period of infectiousness. Therefore, following the definition in [94], we can define
the next generation matrix for system (1.2.2) by

S+ (S} o) B
/.L{+7'1 T
K=g71= . :
(So‘l‘cn )ﬁnl '(5?,-'-0';11/;?) Bnn
i +7 2t

Hence, the basic reproduction number % is obtained as
%o = p (K) =max{|A]; A € 0 (K)},

where p (+) denotes the spectral radius of a matrix and ¢ (-) denotes the set of eigenvalues of a matrix.
It is easily seen that system (1.2.2) satisfies the conditions (Al) -(A5) of Theorem 2 in [94], and hence, we have
the following proposition.

Proposition 1.2.1. (i) If Zo < 1, then the disease-free equilibrium E° of system (1.2.2) is locally asymptotically
- stable. ' .

(i) If By > 1, then the diseasefree equilibrium E 0 of system (1.2.2) is unstable.

1.3 Global asymptotic stability of the diseaSe-’-freé equilibrium

In this section, we prove the global asymptotic stability of the disease-free equilibrium E° for %y < 1. For the
proof, following the way in [27], we use a matrix whose spectral radius equals to that of the next generation matrix,
that is, the basic reproduction number ;. Let

(R By (o) B
u{+71 H+n
M=yl = : ) (13.1)
(SO + O'n )[3"1 .‘ . (52 + O',,Vno) Ban
IJ’n_'_YI’I “}{’l_’y"

i

Then the following lemma is proved.
Lemma 1.3.1. p (M) = p (K) = %.

Proof. Since the next generation matrix K is nonnegative and irreducible, it follows from the Perron—Frobemus
theorem (see, e.g., [8, Theorem2.1.4]) that K has a strictly positive elgenvector w = (w,wa, w,,) that corre-
sponds to the spectral radius p (K) = Ry, that is,

Kw=p(K)w

10



Multiplying by #~! from the left, we obtain
M%7 lw=p(K) ¥ 'w.

Since 7 ~!w is a strictly positive vector, it follows again from the Perron-Frobenius theorem that p (K) is equal to
the spectral radius p (M) of matrix M that corresponds to the eigenvector 7~ lw , : m]

Using Lemma 1.3.1, we prove the following theorem which is one of the main results of this chapter

Theorem 1.3.1. If %, < 1, then the disease-free equzlzbrzum EO of system (1.2.2) is globally asymptotically stable
in Q and there is no endemic equilibrium E*.

Proof. 1t follows from Lemma 1.3.1 that p (M) < 1. Let us define an n-dimensional matrix-valued function

S1+67)Bu (Sit+oi¥)Bin
; W+ u{+71
M(S,V) = :
(Sn+ V) B (S '[_Gn )ﬁnn
1+ Y Hn +

on R%", where S = (81,8, )T €ER} and V= (Vl,--‘- ,V,,)T € R. Here, note that M(SO,VO) = M°, where
80 = (S(l), “e ,Sg)T and V0 = (VIO, . VO) First we claim that there does not exist any endemic equilibrium
E* in Q. Suppose that S # S°. Then we have 0 < M(S,V) < M. Since nonnegative matrix M(S,V) +MPO is
irreducible, it follows from the Perron-Frobenius theorem (see [8, Corollary 2.1.5]) that p (M(S, V)) < p(M?) < 1.
This implies that equation M(S, V)I = I has only the trivial solution I =0, where I = (11, - - ,I,,)T - Hence the claim -
is true. ‘

Next we clalm that the disease- free equilibrium E? is globally asymptotically stable in Q. From the Perron-
Frobenius theorem (see [8, Theorem 2.1.4]) again, it follows that the nonnegative irreducible matrix M° has a
strictly positive left eigenvector £ := (£1, -+, £,) >> 0 associated with the eigenvalue p (MO). Let us define a
Lyapunov functional . ,

LI Z

onC! (]R_,.;RD , whose derivative along the trajectories of system (1.2:2) is

&, ((Si+0Vi) Eio Bl )
L'a@o = >4 /= iy
w 2 ( A+

(( V) - )I '
(M°—E,)I=¢ (p(M°)—1)I <O0. (13.2)

Here E,, denotes the 7 x » identity matrix and - denotes the inner product of vectors. If p(M?) < 1, then L'(I) =0
" is equivalent to I= 0. If p(M°) = 1, then from the second equality of (1.3.2) we see that L/ (I) = 0 implies

i=1

I

£
< ¢

£-M(S,V)I=¢-1. | (1.3.3)

Hence, if (8, V) # (S°, V), then £-M(S,V) < £-M° = p(MP)¢ = £ and thus I = 0 is the only solution of (1.3.3).
Summarizing these arguments, we conclude that L'(I) = 0 is equivalent to I=0 or (S, V) = (S, V°). This implies -
that the compact invariant subset of the set where L'(I) = 0 is only the singleton {E°} C Q. Therefore, from
the La Salle invariance principle [60], it follows that the disease free equilibrium E° of system (1.2.2) is globally
asymptotically stable in Q. : » O

11



1.4 Global asymptotic stability of an endemic equilibrium

Next we turn our attention to the case where %) > 1. In the case, it follows from Proposition 1.2.1 that the disease-
free equilibrium E° is unstable. From a uniform persistence result of [24] and an argument as in the proof of
Proposition 3.3 of [62], we can deduce that the instability of £ 0 implies the umform persistence of system (1 22)
in Q that is, there exists a positive constant ¢ > 0 such that

ltlr_>n1nfS (t) >, limian,-(t) >c, Iiminfli(t) >c, Vie /V,
provided (S (0), 71(0),71(0), - -,8,(0), 7,(0),1,(0)) € . The uniform persistence of system (1.2. 2) together with
the uniform boundedness of solutlons in Q, which follows from the positive invariance of €, implies the existence

of an endemic equilibrium E* 1n'£2 (see Theorem 2.8.6 of [9] or Theorem D. 3 of [81]). Summarizing these
statements, we obtain the following proposition.

Proposition 1.4.1. If %, > 1 then system (1.2.2) is umformly persistent and has at least one endemzc equilibrium
E*inQ.

Using Proposition 1.4.1, we prove the following theorem, which is one of the main results of this chapter.

Theorem 1.4.1. I[f %o > 1, then therendemic equiZibrium E* of system (1.2.2) is unique and globally asymptotically
stable in Q.

Proof For n = 1, system (1.2.2) is rewritten as
d ) .
5= (=p)b—BSOI) — (u® +v) 5(0),

~ %V:vS(t) — BV (I -1V (), (14.1)

SI=(S()+ 0V (1) BI) — (W +7) 10),
where we omit the subscript i = 1 for simplicity. The global asymptotic stability of an endemic equilibrium E* of
system (1.4.1) is shown by constructing a suitable Lyapunov function, although here we omit the proof since it is
a simple matter (see [68, Appendix B]).

We proceed to the case where n > 2. Note that the components of £* = (1, V", I}, -+, S5, V,f 1) € R3" must
satisfy

n .
(1—pi)bi=5; 2 Biil; + (uf +vi) S, o 142)
v;S =V z 61[5;]1* -I-[llVV,*, i (1.4.3)
7=1
. v
W+ I = (S +077) Y, Byl (1.4.4)
& ,

where i € 4. Following [27], we define

6, = (ST + 0] )ﬁ,, L ijen (14.5)
~and . '
‘ Y10y —~0a - —0On
T G i (1.46)
“éln “éln Zj¢;16nj

12



which is a Laplacian matrix whose column sums are zero.. It follows from Assumption 1.2.1 that the matrix © is
irreducible. Therefore, it follows from Lemma 2.1 of [27] that the solution space of linear system

© et=0 (14.7)

has dimension 1 with a basis
‘C:=(§17C27"'7€n>T:(cl7c27"'>CH)T’ .
where ¢; (i € A") denotes the cofactor of the i-th diagonal entry of @. Note that from (1.4.6) and (1.4.7) we have

TR . n - .
> 655i=2 6 (1.48)
=1 .. j=
forallie .#. Usingsuch { = (&, -, &), we can define a Lyapunov function

W (S,V,I) _2¢,<S —SF— S*ln L - V* V*an—H I'—I'ln —>

i=1 l Vz It
on Q.- We easily see that W (S, V,I) > 0 for all (TS V I) >> 0 and the equahty W (S,V I) =0 holds if and only if
(8, V.I) = (8%, V*,I"), where 8* := (S7,---,8)", =W V) and I* = =(I, - ) The derivative of
W (S,V,I) along the trajectories of system (1 2.2)is

) ‘
w'(S,V,I) = 2&{(1 -p,-)bf—ufsi—vum— (1 +7%) 5
i=1

St
~(1—p)) b= 5 +5¢ Zﬁ,,l + (17 +vi) S; —viS; 1} +V*20,ﬁ,j1 +ulv
_(Si+0-t t z ylj]l (“z]+%)[;*} . (1.4.9)
Now we claim that
EQ (S*Jr'sz*)ZﬁuI = ZCz (W +%)1 (1.4.10)

i=1
In fact, from (1.4.4), (1.4.5) and (1.4.8), we have

igi(sf-l'GiVi*)iﬁij[j = ﬁ{iCz(S*"‘@ ﬁuI—Z{ZC;(S*H% F) Bjiki
i= j= =1 = , =1j=
= _E{ZI{(S}E"‘GJV}*WM*}CJ,—;
i=1j= ’ i
LIy A N AN no
= zeelej 21—*219;1‘@=21Ci(ﬂ{+7i)1i~
=] IJ= =

Il
-
T
Il
-

From (1.4.9) and (1.4.10), we have .

/ S _S s (1o S Vi
WS, V,1) 2;[(1 ~p)b (1 )+ul 1t S;)+vzs,- (-3 ) +u (1-72)

n

—(Si+o:V7) 2 + (W )1

(1.4.11)

13



Using (1.4.2) and (1.4.4), we can rewrite (1.4.11) as

n n S* S
w(S,V.I) = o{1-2L)yulsr(2-L -2
( A ) FZICZ[ lj;ﬁljj( Sl)—l_l'l'l i ( Sl Slx
AV 24 V;
il s e S Vpxl1 -1
\ +vlSt ( Sl S;k Vl>+ (R ( V;*
LA A L
—(Si'*‘O'iVi)Zﬁijljf+(S?+UiVi*)Zﬁij1; .
. j=1 L ‘ j=1~
Hence, from (1.4.3), we have
" . St OSVE W
w'(s, v, < - uSs* __t___.’__t___l
(”)—EC’{”"< 5] ) ( ARG |
St Syl St S VE VI
* * __l_ v * ol e et M It S il
+S Zﬁljl ( S S*[*[) +G’V zﬁlj] ( Si S;r v V;*I;[z>}
< W+ W, : (1.4.12)
where . i ) ‘
SES ST OSVE OV
= duSsr(o 2L 22 Vpslg_2i 2t 0i.  7F
;i{ul‘, ( S S?>+ul ; ( A 7
and ' ' -

* " St S S SV VLI
ZCZ(S +o;V; Zﬁ,jl max( E—ST’?‘Ii’:)’ E §_ V*IXI

(note that the reason why a max function is used in 77, is that we have to obtain coefficient (S7 4+ 6;/;*) B;; = 6;; in
order to apply the graph-theoretic approach as in [27]). It follows from the arithmetic-geometric mean ([10]) that
W <0 and the equality holds if and only if S = S8* and V = V*. Now we claim that ¥, < 0. From (1.4.5), we have

i

S, SIL TS SV VL

Zzgeljmax

i=1 j=1

( St _SLE 5 ST SV Vifjf,-*)

Following the graph-theoretic approach as in [27, 28, 63, 99, 100, 84, 64], we see from the Kirchhoff Matrix Tree
Theorem [74, 51] that W is wr1tten as

Wy = K p P 1
2 z W( ) 2 max S, S*I]*[l; S; S;( V; Vl*lj*ll

KeK (i,/))€E(CK)

( S _SLE oSSV Vi%*)

where, for a directed graph G(®) associated with n-square matrix © = (6;;) as'(1.4.6) (that is, G(©) contains »
vertices and arcs from vertex i to vertex j if 8;; # 0), K denotes the set of all spanning unicyclic graphs of G(©),
w(K) denotes the weight of unicyclic graph K, CK denotes the unique elementary cycle in unicyclic graph K and
E(CK) denotes the set of directed arcs in CK (see [64, Theorem 2.2]). Then, in order to prove W, < 0, it suffices
to show that :

. s SLI S S Vr VLI
Y max( - Ly 1 =L S ><0 (1.4.13)
(i,/)€E(CK) Sio Sk Si S Vi VL :

for all elementary cycles CK containing at most vertices. As an example, we first consider an elementary cycle
1 — 2 — 1 that contains two vertices 1 and 2. In this case, E{(CK) = {(1,2),(2,1)} and the left-hand side of
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(1.4.13) is

max( _ S Sibhy _S_T_S_IV_I*_M> tm X( % Shh o, S5 SV Vz’lfz*)
St SRS S ViBhL | S SL TS, iV VL
St Sibly 83 S:hLI 5’_ S; Sibl; S5 S VS Vbl
Si SBL S, SEL T S SLhL S SV VSTh’
5 Vl* nhly 85 Shily ST S Vl* V1121i’= S; Y Vz* . Vzlllf)

S SSwv ViBLC S, SEL S S, VBL S SV, ViLL)
Here, note that the elements of the max function in the right-hand side are obtained as the possible sum of an
element of the first max function and another element of the second max function in the lefi-hand side.” Since it
follows from the arithmetic-geometric mean that all of the elements of the max function in the right-hand side are
nonpositive, (1.4.13) holds in this case. L
We proceed to more general cases. Let N € .4 be an integer. We can describe an elementary cycle CK that .

contains N vertices by ny — np ~ -+ — ny —» n1, where n; € {1,2,--+,N} and n; # n; for i # j. For this CK, we
have E(CK) = {(n1,m2), (n2,n3),-- -, (ny,n1)} and hence the left-hand side of (1.4.13) is rewritten as

(1.4.14)

imax _S_Z_M 3;&_%E_ni1"i+11;f
i=1 S"i S;il* I’ S"i S;i Vni Vers I ’

i1 LS WL

where npy+)] = ny. Similar to the above case, in order to obtain (1.4.13), it suffices to show that all of the possible
sum of elements of each max function in (1.4.14) are nonpositive. Let p,q € {1,2,--- ,N} be arbitrary integers
satisfying p+¢ = N. Then, E(CK) can be divided into two subsets &2 and 2 that contain p and g elements,
respectively, and satisfy ’ ' o ’

max ( _,S_;:,» _ Snilni+11:i , 3 & _ §_r_r,__Vrll _ V"ilni+11:i‘>

Sni S;,-I;Hl[ni S"i S;I V"i I/}:;I;Ikprllni
RYOYAY S fod §
2— M (my,mi4) € P,
So Sidih (5, mi1)
- S S, ViVl L '
QL e L) N s o i) T YN
Sni S;';I an. V;ilniHIHi 1 (nnnz—}-l) ; 3

forallie {1,2,--- ,N} and & N.2 = 0. We write
g = {(p17p2)7"' 7(pp>pp+l)} and 2= {(quZ)f" 7(Qq;Qq+l)}'

Note that each of the elements in 2 U 2 is equal to either one of the elements in
E(CK) = {(m,n), (n2,m3),---, (v,n1) } .
Under these settings, (1.4.14) is calculated as

2p __5;11_ _ SP11P21;1 _ & _ SP21P31;2 o & N Spélpp+ll;p
' SPl S;)l];zlpl _sz S;zl;alpz SPp S;pl;p+11pp .
b s S Sla Valnl S SuVh Vol S SV Vulu
So Sq Ve Valply  Se Sy Ve Vo lgln Seg Sag Var  Vaglayiilag

IA

Ly Dy gy Ig Dps - Ir Ls -+,

1/(2p+3q)
Ipy dppsidey - Lggidpy - Ipplay Ay )
Po T g

2p+39—(2p+3q) (

. 1/(2p+3
1n1"'1n1v1nf"'1n;v> /(2p+3q) ‘
1,

FRRERY S

= 2p+3q—(2p+3fJ)(

= 0,
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and thus (1.4.13) holds. Consequently, we have W> < 0 and hence, it follows from (1;4.12) that W’ < W +
W, < 0. Recalling that W; = 0 if and only if (S,V) = (S*,V*), we see from the graph-theoretic approach as in
[27, 28, 63,99, 100, 84, 64] that W’ = 0 if and only if (S, V) = (S*,V*) and ‘

*

L I;
11*, that is, 1—; =#,
4

1

1= Vi, jeN.

This equation is equivalent to I = cI* where ¢ > 0 is an arbitrary constant. Substltutlng (S,I) = (S*,cI*) into the
first equation of system (1.2.2), we have

0=(1-p)bi—cS; Y Bisls — (5 +v) S} (1.4.15)
J=1 '

Since the right-hand side of (1.4.15) is monotone decreasing with respect to ¢, it follows from (1.4.2) that equality
(1.4.15) holds if and only if ¢ = 1. Summarizing the above arguments, we see that #’(S,V,I) = 0 holds if and
only if the solution (8, V,X) of system (1.2.2) is in the singleton {(S*,V*,I") }. Hence, from the La Salle invariance
principle [60], we see that £* is globally asymptotically stable in Q. O

1.5 Discussion

In this chapter, we have shown that the global asymptotic stablhty of each equ111br1um of the multi-group SVIR
model (1.2.2) is completely determined by the the basic reproduction number 2. This result differs from some
previous results obtained in [53, 4, 1] for single-group vaccination models, in which it is shown that the backward
bifurcation can occur and the disease can persist even if Zy < 1. The cause of this difference might be the existence
of a path from vaccinated class ¥ or recovered class R back to susceptible class S, that is, the loss of temporary
immunity, which we do not take into account in model (1.2.2). The study of multi- group vaccination models taking
into account such effect has been left as a future task.
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Chapter 2 *

A multl-group SIR epldemlc model with
age structure

Abstract - For the class of SIR epidemic models with age structure, the global asymptotic stability of an endemic
steady state in case where the basic reproduction number %, is greater than unity has not been investigated
enough. The purposes of this chapter is to construct a multi-group SIR epidemic model with age structure,
which is formulated as an initial-boundary value problem of partial differential equation system, and to clarify

- the relation between its solution dynamics and the basic reproduction number %, including the case %y > 1.
Under some parameter assumptions, discretization of the model with respect to the age variable induces an ODE

_ system, which is regarded as a generalization of the SVIR epidemic model studied in Chapter 1. As in Chapter
1, the methods of a Lyapunov functional, graph theory and a max function can be applied to the global stability
analysis for the discretized model. The basic reproduction number % is proved to be a perfect threshold value
in the sense of determining the global asymptotic stability of each equilibrium, that is, the global asymptotic
stability of the disease-free equilibrium for Z < 1 and that of an endemic equilibrium for %, > 1. We provide a
numerical example showing that a numerical value of % for the discretized system tends to that for the original
PDE system as the step size of the discretization is decreased.

Keywords Multi-group SIR epldemlc model; Age structure; The basic reproductlon number; Global asymptotlc
stablhty, Discretization; Lyapunov functlonal .

2.1 Introduction

The age structure is thought to be one of the most important concepts that affects the spread pattern of infectious
diseases. For example, for measles, the contact rate would be strongly age-dependent due to the increased infection
transmission within schools ([79]) and, for HIV, the time scale of the transmission would be so long that the age-
dependent demographic change of the host population should not be negligible ([41]). Therefore, many authors
have studied various age-structured epidemic models both from the mathematical and epidemiological point of
view (see e.g., [72, 2, 19,90, 79, 41, 26, 39, 12, 13, 11, 87, 3, 14, 31, 23, 21, 92, 33)).

The SIR epidemic model, in which the total host population is divided into susceptible, infectious and recovered
classes, is known as one of the most basic epidemic models in this field of mathematical epidemiology. The class of
SIR epidemic models with age structure has been studied by many authors for decades (see e.g., [26, 39, 87, 3, 14]).
Here, we introduce a typical example of such a SIR epidemic model, which is described by a nonlinear system of
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first-order partial differential equations: ‘
((24+2)s sta) [ 1(0)d0— 1 (@)S(.)
(F+5)s60=-50.0) ["Ba@o1t0)d0-1() ta),

(% + %)I(I,a):S(t,a) /Owﬁ (2,0)1(t,0)do — (u(a) +y(a))I (t.a), 2.1.1)

Jdt  da
S(t,0)=5b, I(t,0)=R(,0)=0, >0,

(i+i>R(t,a) —y@I(a) - (@R (a), >0, 0<a<a,

* Here, S(¢,a),1(t,a) and R (¢, a) denote the densities of susceptible, infectious and recovered individuals whose age
is @ € [0, ] (@ € (0,+o0) denotes the maximum attainable age) at time ¢ > 0, respectively. 3 (a, o) denotes the
coefficient of disease transmission between susceptible individuals aged a and infectious individuals aged . u (a)
denotes the age-specific mortality rate. ¥ (a) denotes the age-specific recovery rate and » > 0 denotes the fixed
birth rate, which is obtained under an assumption that the total host population P (¢,a) := S{t,a) +1(t,a) + R (t,q)
has attained its time- 1ndependent demographlc steady state P* (a) from ¢ = 0 (see, e.g., [39, Section 2] for more
_ details).

For the case of age—mdependent parameters, it is a classical fact that the global asymptotic stability of each
equilibrium of the system (2.1.1) is completely determined by the basic reproduction number %, that is, the
disease-free equilibrium of the model is globally asymptotically stable if Zy < 1, while an endemic equilibrium
of the model is so if %y > 1 ([18 94]). However, for the more general case of age-dependent parameters, such a
complete threshold property has not been proved for system (2.1:1). In[39], for the case of constant recovery rate
¥(a) = 7, a positive linear integral operator regarded as the next generation operator [19, 18] was obtained and for
a threshold valued obtained as the spectral radius of the operator (that is, the basic reproduction number %), the
global asymptotic stability of the disease-free equilibrium for the value less than unity and the local asymptotic
stability of an endemic equilibrium for the value greater than unity were studied. However, the global asymptotic
stability of an endemic equilibrium has not been proved. In fact, some authors have pointed out the possibilities of
a destabilized endemic equilibrium even for %, > 1 (see [87, 3, 14]). These results do not correspond to the case
of age-structured SIS epidemic models, for which a complete threshold value determining the global asymptotic
stability of each equilibrium is obtained (see, e.g., [12, 13, 11]). Since the methods used for the analysis of such
SIS epidemic models are typically relayed on the monotonicity property of solutions for infectious population that
is characteristic for such SIS epidemic models, they can not be directly applied to the analysis of SIR epldemlc
models.

The main purpose of this chapter is to show the possibility of a unique, globally asymptotically stable endemic
equilibrium of system (2.1.1) for % > 1. In particular, the analysis shall be carried out for a multi-group system
that is regarded as a generalization of system (2.1.1). In the analysis, the PDE system (2.1.1) is discretized with
respect to the age variable « into an ODE system, and the global stability of each equilibrium is investigated for the
discretized model. The discretized model can be regarded as a generalization of the SVIR epidemic model studied
in Chapter (1), and we can apply the classical method of Lyapunov, graph theoretical approach developed by Guo
et al. [27] and a method of max functions again as in Chapter (1).

-The model we shall study in this chapter is the following multi-group SIR epidemic model with age structure,

18



by | Sk (¢,a) 2;1:1 fowﬁkj (a>o-)1j (t,0)do L (t,a) % (a) Ry (t,a)

birth | susceptible infection infectious | recovery | recovered
i (a) Hi (a) lix (a)
death death ¢ death

Figlire 2.1: Transfer diagram for SIR epidemic model (2.1.2)

which is regarded as a genéralization of model-(2.1.1):

([0 .9 m o )

| Gr)sea=seal ["meontoto-unwsea,

9 9 ‘ L

=+t Ik(tva)zsk(t)a)Z/ ﬁkj(a76)1j(t>c)do-_,(“k(a)+yk(a))1k(t7a)7
J= : (2.1.2)

(%—l—%)Rk(t,g)=yk(a)lk(t,a)—},Lk(a)Rk(t,a), t>0, 0<a<o,

Se(t,0)=by, L(t,00=0, Ri(t,00=0, ¢>0, ke{l,2,---,m}.

\

Here, Si (¢,a), It (¢,a) and Ry (¢,a) denote the densities of susceptible, infectious and recovered individuals of
age a.in group k at time ¢, respectively. The meanings of parameters L (@), ¥ (a) and by are similar to those
in (2.1.1), except for the difference that they are defined for individuals in group k. The disease transmission
" coefficient is modified as By; (a,0) for the infection between susceptible individuals of age a in group & and
infectious individuals of age o in group ;. Thus, the infection is possible to occur beyond the difference of groups.

" A multi-group SIS epidemic model with age structure was studied by Feng et al. in [23], and the global
asymptotic stability of a unique endemic equilibrium was proved under an assumption of quasi-irreducibility.
However, similar to the case of single group SIS epidemic models, their proof also relied on the monotonicity
property of solutions, and therefore we can not apply their approach directly to the analysis for system (2.1. 2).
As mentioned above, we discretize (2.1.2) and use the methods of Lyapunov functionals, graph theory and max
functions to prove the global asymptotic stability of each equilibrium.

The subsequent sections of this chapter are organized as follows: In section 2.2, we discretize system 2.1.2)
into an ODE system, and prove some basic facts. In section 2.3, the global asymptotic stability of each equilibrium
of the discretized system is investigated. In section 2.4, providing some numerical examples, we verify the validity
of our main stability results. We also provide an example of numerical values of %, for the discretized system
which approaches to those for the original PDE system (2.1.2) as the step size of the discretization is decreased.

2.2 Preliminaries

2.2.1 Discretization

Let i (a) and y(a) be positive and essentially bounded on [0, ] for all &. Let By;(a,0) be nonnegatlve and
essentially bounded on [0, ] x [0, ®] for all k and j. We make the following assumptions:

Assumption 2.2.1. Forall k, j € {1,2,---,m}, the disease transmission coefficient f¢;(a, o) is independent of o,
that is, there exists a B¢; € LT (0, @) such that f;(a,0) = B, (a).

Assumption 2.2.2. The m-dimensional square matrix (Bi;(a))1<x, j<m is irreducible ([8]) for all a € [0, a)]
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Assumption 2.2.3. For all k € {1,2,---,m}, the sum W (a) + ¥%(a) is age-independent, that is, there exists a
positive constant 7 > 0 such that uk(a) +%(a) =r.

Assumption 2.2.1 is regarded as a special case of the so-called proportionate mixing ass'umption [217 (or
separable mixing assumption [18]). Assumption 2.2.2 implies that every pair of groups of same age is joined by
an infectious path so that the presence of an infectious individual in the first group causes infection in the second
group. Here, note that f;; (a) is a strictly positive function if . = 1. Assumption 2.2.3 is needed only for the
discretization process stated bellow, and thus, it is technical. Biologically, it seems to be too restrictive. However,
if we assume that ¥ (a) = ¥% does not depend on a and is quite larger than t (a), then W (a) + %(a) ~ % =re
holds numerically. ' ‘

Under Assumptions 2.2.1-2.2.3, we can rewrite system (2.1.2) as

(5 3) 300 =50 3o [ hieo)ie - mi@nta,

(% ;a>lk’“ SkfaZﬁkJ / (t,0)do —rdi(t,a), t>0, 0<a<ew, (221

Si(2,0) = by, L(r,00=0, (>0, ke{l,2,---,m}.

L :

Here we omit the equations of R, £ = 1,2,-- - ,m since the solution dynamics of (2.2.1) does not depend on them.
Now we are in a position to discretize (2.2.1). Similar approaches are seen in [92] and [33]. Let us divide the

age interval [0, @] into » subintervals

[070)1]7 [(01,(02],"' ,[Cl)n_l,CO],
whichsatisﬁesO=a)0<'a)1<---<wn=w. Let ‘
O._p (;@ @ ._ 0 ; .. ;
B =8y (i2), w = (<), ie{12, by {12, m). (222)

. Note that ,u,Ei) > 0 and Bki > 0 for all &, j and i, and under Assumption 2.2.2, the m X m matrix ( (i)> ki
J<m

is irreducible for all i. Using constants (2.2. 2) we replace the parameters: of system (2.2.1) by the followmg step
functions:
ﬁkj(a)zﬁlg'): .u'k(a) z‘”lgi)7 Va e (wi—l7a)i)7 iE{l,Z,"',l’l}, k,je{1,2,--'-,m}. i
Moreover, let us introduce the following functions on R, ;
N @; ; @
Sl(cl)(t) ::/ Sk(t:a)da7 IIEZ)(I) :=/ Ik(t7a>da7 i€{1,2,-~-,n}, ke{l,72)"'7m}'
[ ] ;-1

Let o) be the rate at which an individual in the i-th age class moves toward (i+1)-th age class, and let it satisfy
Si(t, @) = a(i)S,(cl) (t) and L(t, ;) = a(i)llgl) (t), where a® > O foralli € {1,2,-- ,n— 1} and ¢ = 0. Under these
settings, integrating system (2.2.1) with respect to a from @;_1 to @; and adding the differential equations of I,El)
from i.=1 to n, we obtain the following system of ordinary differential equations:

d i— i— i L i i i fi
5319(0:“( D50 500 Y, 805 (u,ﬁ’+a”)S,E)(t),
j=1

¢

%Ik ©) =359 () 21 BIL(0) - redi(2), , 2.2.3)
! i= .

a(O)SIEO)(t)Zbka t>0> ie{1727"'an}7 k€{1,2;"',m},

where (1) =Y, 2 (t) In the subsequent sections of this chapter, we focus on this multi-group SIR epidemic
model (2.2.3) with age structure. It is easy to see-that, for case i = 2, (2.2.3) is equivalent to the multi-group SVIR
epidemic model (1.2.2) studied in Chapter 1.
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2.2.2 Equilibria, state-space and the basic reproduction number %
Let

by
0 ! +a®’ \ |
Sk,O = . a(i_l) s(i_l) _ by i a(l—l) : : ke {172) e 7m} .

r a—— = . 3 i€{2>"'7n}7
u,&’)+a(i) ko u,gl)—ka(l) 1=2 u,gl)ﬂ-a(’) :

Then it is easily seen that the trivial equilibrium, which is obtained by solving

- a(’ 1)S i—1)* )as z ﬁkj)F ([.ngl) +'a(,-)) S]Ei)*,

0 ) ‘ (22.4)
0=y st 2 BIR —nlt, i€{1,2,,n}, ke{l,2,-,m},
; i=1 j=1 .
inﬂt\he situation where [} = 0 for all £, is uniquely given by
1) o2 +1 -
E° .= (S§2,S§3 ,58.0,0,- ) e Rimm 2.2.5)

and E? is epidemiologically called the disease-free equilibrium [94] of system (2.2.3). A solution of (2.2.4) in the
situation where I} > 0 for some k is called an endemic equilibrium [19] of system (2.2.3), and we denote it by
B o= (SO0 SP o S g 1), | |

Let [ := mini ,u,gi) and dy := min{iy,r;}. Then, adding the equations of (2.2.3), we have

(25’ +Ik > <vbk_cllk <2 +Ik )7 k€{1,2,---,,m},

=

which implies that limsup,_, , ..(3; Ski +1Ii) < b/dy. In addition, (S, i))’ < alls; (i=1) (,u(i +a '))S ) is also

obtained from ((2.2.3)) and this implies that limsup,_, .., S,(c) < S,({)0 Hence, omega limit sets of system (2 2.3) are
contained in a bounded feasible region

Q.=
{(SS”,---,SEZ’,II,---,Im) eRYT [o<sf <sf), ZS +I <Z—, ie{l, o}, ke{1,~-~,m}},
| (2.2.6)

which is included in the nonnegative cone of R("“)’”. It is easy to verify that region Q is positively invariant for
system (2.2.3) (see, e.g., [92]). The existence and uniqueness of the disease-free equilibrium E°, which is given
by (2.2.5), in the boundary dQ of region Q is trivial. The existence and uniqueness of an endemlc equilibrium E£*
in QO shall be discussed in section 2.3, where

Q=

. by
{(S&”,---,S,(,,),Il,-- , )eQ ‘ s <Sk0, ZS’)—i-I <d >0, ie{l, - ,n}, ke{1,~~~,m}}
‘ (2.7)

is the interior of Q.
For multi-group system (2.2.3), the basic reproduction number %, which is epidemiologically defined as
the expected number of secondary cases produced by a typical infected individual during its entire period of
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infectiousness in a completely susceptible population (see [2,‘ 18, 19, 94]), is mathematically obtained as the
spectral radius of a matrix called the next generation matrix. Following [94], we set matrices

. o S%’?oﬁf?, TS
~(Bsnag) - L
i=1 ‘ISk,jSm n st oﬁ(t) o3 S’(’?Oﬁrg')n
for the new infections produced by infective individuals of each compartment in the linearized system for system
(2.2.3) around the disease-free equilibrium E 0 and ¥ := diag(r1,72, - ,7m) Whose inverse ¥ ! implies the av-

erage length of time each infectious md1v1dual spends in each compartment during its lifetime. Then, the next
~ generation matrix K is given by

- soshed s sel)
. ld Sl ﬁ 4 1 Fm
- =1 i
: J i .
1<k, j<m Z:Ll mOﬁm; . z:l S( O‘B’"”’

and the basic reproduction number %, for system (2.2.3) is obtained as
=p (K) =suwp{|A]; 2 € 0(K)}, » (2.2.9)

where p (-) denotes the spectral radius of a matris and & (:) denote the set of eigenvalues of a matrix. It is easy
to verify that system (2.2.3) satisfies conditions (A1)-(A5) of Theorem 2 of [94]. Hence, we have the following
lemma:

Lemma 2.2.1. Let the disease-free equilibrium E° and the basic reproduction number Ry be defined by (2.2.5)
and (2.2.9), respectively. For system (2.2.3), E® is locally asymptotically stable if Zy < 1, while it is unstable zf
.%0 > 1

2.3 Global asymptotic stability bf each equilibrium

In this section, we prove the following main theorem of this chapter:

Theorem 2.3.1. Let the disease-free equilibrium E°, regions Q, QO and the basic reproduction number %y be
defined by (2.2.5), (2:2.6), (2.2.7) and (2.2.9), respectively. For system (2.2.3), the following statements hold:

() If Zo < 1, then EC is globally asymptotically stable in Q, and there exists no endemic equilibrium E*inQ.

(i) If %0 > 1, then an endemic equilibrium E* exists unzquely and it is globally asymptotically stable in Q°, and
EO is unstable.

2.3.1 The disease-free equilibrium

Following [27], we define a matfix

Lshel s shed
- <n | ﬁ i .n i
— i=1 Yk 0Fk;
MO =Y l‘g' = L B .
"k : 1 @ n
1<k, j<m =] m Oﬁml o Zl—] | ()ﬂmm
Fm Fm

(see also (1.3.1) in Chapter 1). Then, under Assumption 2.2.2, both of the nonnegative matrices K and M? are
irreducible, and hence from the Perron-Frobenius theorem (see e.g., [8]) it follows that their spectral radii are
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‘gwen by each of their simple eigenvalues. Hence, as in Lemma 1.3.1 in Chapter 1, we obtain %0 p(K)=
p(FV ) =p (¥ 'F)=p M) .

. In what follows, for two nonnegative m-square matrices A = (a;;) and B = (b;j) , we write A < B if a;; < by;
foralliand j,and A <Bif A<Band A #B. '

Proof of (i) of Theorem 2.3.1. Let us define a matrix-valued ﬁmction M on R} by

s, 5080 s 500

n S(i)ﬁ(i)‘ 1'1 21

M(S) = Si=1% Phj = : - :
T T e
1<k, j<m 2 S(')B,,,') s sPs8,

where S := (SEI),SEZ), e ,S,(:)) € R, Then, we have M (S°) = M?, where §° := ( %,S& 0 st )) e R,

First we show that there exists no endemic equilibrium E* in Q. Suppose that S # 8%, Then, for solutions in
Q, we have 0 < M(S) < MP. Since nonnegative matrices M (S), M? and M(S) +M? are irreducible, it follows
from the Perron-Frobenius theorem (see [8, Corollary 2.1.5]) that p (M(S)) < p (M°) = %, < 1. This implies
that equation M (S)I” =17 has only the trivial solution I = 0, where I = (fy,--- ,1,,) and T denotes the transpose
of a vector. Thus, only the disease-free equilibrium £° exists in Q and £* does not exist.

Next we show that the disease-free equilibrium EC is globally asymptotically stable in €. Again from the
Perron-Frobenius theorem (see [8, Theorem 2.1.4]) we see that the nonnegative irreducible matrix MY has a positive
left eigenvector £ := (£1,--- ,4y) (that is, £ > 0 for all k) associated with the eigenvalue p (MO) . Let us
define a Lyapunov functional on C! (R,R’_ﬁ) as L(I) = ¥J_, &di/re whose derivative along the trajectories of
. system (2.2.3) is calculated as

n () ]
L " 1Sy L
L,(I) - sz i=1 lBk Ik
i=1 Tk
= £-(M(S)—E,)I” ‘
< LM -ENT =L (pM) - = (% -1)2-17 <0, ’ 23.1)

. where E, and - denote the n-dimensional identity matrix and the inner product of vectors, respectively. If %o < 1,
then L’ (X) = 0 is equivalent to I = 0. Suppose that %, = 1. Then from (2.3.1) we see that L' (I) = 0 implies

M) =217, : (2.3.2)

If S # 80, then we have £-M(S) < £-M° = p(M?)£ = £, and thus the solution of (2.3.2) is only the trivial one I = 0.
‘Summarizing the above, we see that L'(I) = 0 if and only if I = 0 or S = S, and this implies that the compact
invariant subset of the set where L'(I) = 0 is only the singleton {E°} in Q. Hence, from the La Salle invariance
principle [60] it follows that the disease free equilibrium E? is globally asymptotically stable in Q. O

2.3.2 An endemic equilibrium

* From a uniform persistence result obtained in [24] and an argument as in the proof of Proposition 3.3 in [62], we
can deduce that the instability of the disease-free equilibrium E9 implies the uniform persistence of system (2.2.3)
in Q. Uniform persistence of system (2.2.3) together with the uniform boundedness of solutions in Q°, which
follows from the positively invariance of Q°, implies the existence of an endemic equilibrium E* in QO (see [9,
Theorem 2.8.6] and [81, Theorem D.3]). Summarizing these arguments, from Lemma 2.2.1, we have the following
lemma:

Lemma 2.3.1. Let region QU and the basic reproduction number Ry be defined by (2.2.7) and (2.2.9), respectively.
If Ry > 1, then system (2.2.3) has at least one endemic equilibrium E* in Q.

The remainder of this section is devoted to the proof of (ii) of Theorem 2.3.1.

[
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Proof of (ii) of Theorem 2.3.1. Let E* = (SE”*F S ,1,;) = (S*,1*) € Q° be an endemic equilibrium
of system (2.2.3), whose existence is guaranteed by Lemma 2.3.1. Note that the components of E* must satisfy

be =" Y BT + (wf" +a(1>) s, (2.3.3)
J=1 . v
—I)Sl(ci_l)* = 2 ﬁk] (,u +a(’)) z)* i€{2,3,--,n}, ‘ (‘2_3.4)
nlf = ZS (0 2 [ | @35
fork=1,2,
First we con51der the case where m = 1. System (2.2.3) can be rewritten as
0. = a0 () 50 (9 B0T()— (40 +a) 801,
d ¢ o e \ : .
$/0= > s BOI() —ri(t), ; S (23.6)
R = .

(0)(t):ba t>07 i€{1,2,---,n},

where we omit the subscript k¥ = 1 for smlphcny Note that B is positive for all i under Assumpﬁon 2.2.2. Letus
now deﬁne a Lyapunov function U : Q% — R, as follows: '

nof 500
Uusn=Y <S(‘)—S() —S5W*n T) oy 1*—1*1ni
i=1

It is clear that U (S,I) > 0 for all (S,I) € Q° and U (8,1) = 0 if and only if (S,I) = (8",I*). The derivative of U
along the trajectories of system (2.3.6) is calculated as

NOL

U’(S,I)=b—l§u(i)S(")—rI+§{S~(i)*B(’I bm
—Z (-1 g-1)3 +2(u(’>+a(>)5’*—is(?>ﬁ(">1*+r1*.
i=2 i=1

From (2.3.5), we have rI* = Y2, SO*BO* and r1 = ¥7_; SO*BW]. Hence

' s\ A 500
e —p 1S el 1 _
U(S,I)-b(l S(1)>+i§;“ st (1 <

Sa ) SE=1) gl n O : '
(i-1) g{i=1)= gD A ‘ ‘
+i=22a S (1 ST S0 +12;S BYrI <o |- @3
In addition, it follows from (2.3.3) and (2.3.4) that ‘ '
b =s* ([3 Hp _HL(I)) +alss = gl (,3(1 I+l )) 4 5@ (ﬁ(2)1*+u z)) 1 @5
- Z ( 1*+u(’)) ‘ 23.8)
and : : )
gD =D = gl ([3(1)]* +u® ) EWAGING) ZS(‘Z (B(f)[* +#(€)) . 7 - (23.9)
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Substituting (2.3.8) and (2.3.9) into (2.3.7), we have

no . 4 =\ s0)
W (g0 o OY [ 15" Wgox 15
xS (BOr +p )(1 S(1)>+§“1S (1 S@*>
£33 s (ﬁ(z>j*+ ) (1- st (’)* £ s G
& # S P SO
o | ge-DgOr 5O
_ W (g0 yOY [ 577 89

Hence, from the arithmetic-geometric mean [10], it follows that U’ (S,1) < 0 and the equality U’ (S,1) = 0 holds
if and only if S = S*. Therefore, from the equations for SO in (2.3. 6), we immediately see that the compact
invariant subset of the set where U’ (S,I) = 0 is only the singleton (S*,I*) in Q°. Then, it follows from the La
Salle invariance principle [60] that the endemic equlhbrlum E* is globally asymptotically stable in Q° (which, of
course, implies the uniqueness of £*).

Next we consider the case where m > 2. Following [27], we set a Laplacian matrix ([64])

U'sn

216y =6 o =0y
=02 X0y 0 —Om
0= _ S . , 23.10)
“elm _92m T zlgém 6ml :
where ‘ .
O/ zS(’)*B,q kje{l,20,my. (23.11)

=
Since matrix © is irreducible under Assumption 2.2.2, it follows from Lemma 2.1 in [27] that the solution space
of linear system ~ : ‘ . :
Bv=0, (23.12)

has dimension 1, with a basis :
V.= (v17V27"'7vm)T:(c17c2)“'7cm)T~ 3 (2313)

Here ¢; denotes the cofactor of the k-th diagonal entry of ©. Now note that, from (2.3; 10) and (2.3.12), we have
‘ m M
Y O =Y, 6v;. ‘ (2.3.14)
= =1 , .

forall ke {1,2,---,m}. Let us now consider a Lyapunov function ¥ : Q% 5 R, such that

m " . N S(i) . . .
V(S,I) = ka{z (S]((t) _S]((t) () 1n_(T> +Ik~1;—1;1n%},

k=1 i=1

where v; (k€ {1,2,---,m}) is a component of the basis defined in-(2.3.13). It is obvious that ¥ (S,I) > 0 for
all (S,I) € Q° and the equality 7 (S,I) = 0 holds if and only if (S,I) = (S*,I*). The derivative of V' along the
trajectories of system (2.2.3) is given by

Ve s (1)*”"\ (1) (1) (1))
V'S =Y v bk—ZMk —rid = byt s® +5; Zﬁkj L+ (e +a)Sy
k=1 i=1

S(l)*

—za +ZS )*Zﬁ,ql +2(uk +a) s 230 2 ,E;J,Ik+rk1k}.(2.3.15)

i=2
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Now we are in a position to show that

2 25" 2 B = S viridi. (2.3.16)
=1 =1 j=1 k=1
In fact, from (2.3.5), (2.3.11) and (2.3.14), we have
L < i) < i LN BEFLU = X DEFU - i Ik
DI ICLD WU 3 3 Y LI 3 3 30 L U 3 (2s( : ) A
k=1 i=1 j=1 k=1j=1i=1 : k=1j=1i=1 k=1j=1 \i=
=3 [_]; PITEDY 1_]; Y Ovie =Y vireli
k=1"k j=1 k=1"k j=1 k=1
and hence, (2.3.16) holds. Substituting (2.3.16) into (2.3.15), we have
(x\ )
.om .S N e S
%44 S,I) = 2 v bp | 1 — k(]) +2.“L]£Z)S](€l) 1-—- (Ij)*
=1 . Sp i=1 Sy
\ - ' S(i_ ) S(’) 0
+2 S S(‘ e S@ ZS 2 ﬁ,q —|-rklk (2.3.17)
I .

Now, note that it follows from (2.3.3) and (2.3.4) that

(Z Bk, +uk )-l—a(l)Sl(cl)* 1)* (Zﬁkl)ﬁﬂlk > (2)* (Z 131512-)1}-“4‘#;52)) +a(2)S]E2)*

j=1

i=1

= Y (Zlﬂ;g)IFJrﬂ;Ei)), (23.18)
\A

a(i——l)s( S(l (2 B(l 1*+’uk >+a S<l)* ZSZ)* <2ﬁ ]*+u ), (2.3.19)

respectively. Substituting (2.3.5) (2.3.18) and (2.3.19) into (2.3.17), we obtain

m (1)x &\
)% & 1 S 1 S

sy = m{zﬂ Zﬁ]muk)( o) )+2uk)s< (1—85,3*)
Sk Sk

1 J=1
(-1) i) s .
""e*mz* S¢S S o) ) B N () S (i)
3350 (a0 en?) (1- Sty ) - S S an S S sl
i=2f=i j=1 S Si =1 j=1 k=1 j=1
Rearranging gives ‘ i
m n (1)* () re n (1)* (1)
LA S S LT ) (i S S
VI(S,I) = Vk{ S(l* ﬁ(l)]* 2_k___]f._jl‘._ + /_L(I)S(’)* 2_ k _L.
g‘ 21 ¢ jgi W s s, Z{ ko s sl
S(i—l) Sl)*
(£)* (€ (€
535 (S aomen?) (- 320 ) |
i=2{=i . Sk . Sk
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and hence,

| m ' (1) (1) (D (1) o2 (2)
( * Sy Si 2)x S, ATAY S,
V’(S,I)=. E vk{u(l)S(l) (2——__> +u ) ( (3_ k. _ Tk Pk “k )
. =R s¢ st ‘ s s s

(=1 gl )
n) o) LSy syt s
4o s k )

ntl=3 S~ |
( i=1 Sx(c ) Sl(c) .Sl(c)
s S g0 {2 s _,S,E”IJ-J; Z B s ssP s
k p= kj *J S}El) Sl(cl)*lffk S(1) S](Cl)*Slgz) S(z)*l*l
- m n o oli—1) oli)* (m) y px
(n)* () px St S S ik .
4+... 45 B | nd1— —r " = H+H, (2.3.20)
k jgl kj *J ( Z{S]((l 1) S]({t) S]({n) I;]k . |
kwhere .
m 1)+ 1 . Co(1)# 1) o(2)% 2
= X {uk”s (2—£ 5 ) + s <3—S’(f) 808 S, )')
1)% 1 1)* (2 2)%
pomt s st s sms® g
(n)

n oli—1) o(D)* (n)
n) o{n)* St 'Sk Sk
oS, (”“‘.Zm*w !
=1 Vp k k

and H2 is defined by the remaining terms in the equation (2.3.20). From the arithmetic-geometric mean [10], we

easily see that H; < 0 and the equality holds if and only if § = $*. Now we claim that /, < 0. Let

| | ¢ gl O

B =0+1-Y ks — e, £e {1,200},
=18, 787 S Il

Then, using a max function, we can evaluate H, as

M=

mo= Sl S o e S s S

o
I

~
1l
=

IA
M=
~
——
.MS
@
¥

< nli ) @ "
$ 017 max (h,ﬁ}, W2, h}(q)) }

kaek, max (h,(c),h,(cj), . ,h,(c';.)) =: H3.

I
‘u Ms

Following the graph-theoretic approach as in [27, 28, 63, 99, 100, 84, 64] we can verify from the Kirchhoff Matrix
Tree Theorem [74, 51] that H3 can be rewritten as

Hy=Y wk) Y  max (h,(;),h,(j) ,h,(;.)),
KeK . (kj)EE(CK) -

where, for a directed graph G(@©) associated with m-square matrix @ = (6;) given by (2.3.10) (that is, G(®)
contains m vertices and an arc from vertex & to vertex j if 6;; # 0), K denotes the set of all spanning unicyclic graphs
of G(G)) w(K ) K) denotes the weight of unicyclic graph K, CK denotes the unique elementary cycle in unicyclic graph

K and E(CK) denotes the set of arcs in CK. Then, we see that in order to prove that H, < H; < 0, it suffices to
show that

max (h,g),h,(q), 1)) <0 | .3.21)
(k./)EE(CK) . o
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for all elementary cycles CK containing at most.m vertices.” As an example, we first consider an elementary cycle
1 — 2 — 1 as CK containing two vertices. In this case, E (CK) = {(1,2),(2,1)} and the left-hand side of inequality

(2.3. 21) 18
1 2 n ! #
max( 52),1152’, o 7h§2)> +max (hgl)’hZI)"” ’h21)) )

" In order to prove its nonpositivity, from the character of sum of max functions, we only have to show that all

(9)

possible sums of elements of each of the max functions are nonpositive, that is, it suffices to show that h(p) +hy £
0 forall p,g € {1,2,---,n}. In fact, we have

p = 1)s( SEP)IZIT q S(i_l)Sg)* qu)lllg

st
p+l1- % - g+1-3 F—2- - 2
Z{ gt 1) S(z Sgp)*l*[ Z{S(l '1)*S§l) qu) ]iklz

(p Sg’ 1)S() ) S("’)IZI* (q S(i—l)S(i)*> S(q)l I*}l/(p+q+2)>

AN

< ptg+2-(p+q+2) —
| 113 SIS ) 5@y \imr s§7sY) ) SS9
1/{p+4+2) '
LbLIRL -
= 2— 2) |22

= /07 Vp>q€{1727"'7n}7

from the arithmetic-geometric mean [10]. Hence (2.3.21) holds in this case. We next proceed to show (2.3.21) for
more general cases. Let N € {1,2,---,m} be an arbitrary natural number. An elementary cycle CK containing N
vertices can be described by ¢; — ¢z = -+ = cy — ¢1, where ¢; € {1,2,---,m} and ¢; # ¢; for i # j. In this case,
E(CK) ={(e1,¢2),(ca,¢3), (cN,cl)} and the left-hand side of inequality (2.3.21) is given by

Zmax (hgzlgmr g120);'+‘1 (A >hglc)i+1) )

where cy+1 =c1. As in the above example, in order to prove (2.3.21) in this case, it sufﬁces to show that hg’ ég
hgﬁg ++hg§,1‘¢’1) < 0forall p1,p2,--,pn € {1,2,--- ,n}. In fact, we have :

. §2) S(i—-l)S(i)* S(PI)IC 1* pZ S(i—l)S(i)* S(pz)lc [* .
R H = 13 S R R B Y s
=0 00 s Ik S0 ser

PN SEN—I) SEA), S(PN ) Icl 1:]\7
YU ) Vo =y o R o o
i=1 SCN SCN SCN I I

c1iCN

N
zpi+N
i=1

(&

IA

ﬁ ng’—l) SE?* S(Pl) LIz ﬁ ng;l) S() S(pz) LI,
i—1)% o(i) (i=1)*.o(7)

i=1 Sgl )Sgl S( Deper A\ A ng S(pZ)*I*I

€1 342

3 (PN ng—l)ng*) S(PN)ICII:N jl /(zg\J:lPi’i‘N)

=1 S s ) S8
N , 1/(ZX, pi+N)
X I Ic2 ICNIC* ..r =1
= pi+N— pi+N ! 1 *2 *N
Z{ l (g l ) 101102 [CNlcllcz ICN

= 0,

for all py,p2,-+-,pn € {1,2,--- ,n}. Hence (2.3.21) holds. Consequently, we obtam H, < Hy <0, and hence, it
. follows from (2.3.20) that V’ (S I) Hy +H; <0 and the equahty holds if and only if A1 = H, = 0. If (S,I) =
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(S%, I*) then it is obvious from (2.3.20) that H; = H, = 0. On the contrary, if H; = H, = 0, then S = $* follows
from H; —’0. Since we can rewrite H, as )

=S g S ( )% S e (1- 24

k=1 =1 k=1 j=1
it follows again from the graph-theoretic approach as in [27, 28, 63, 99, 100, 84, 64] that H, = 0 implies

I;Ik _ IjI;: Ik _ 1_j (23 22)
Ll LL I IY "

forallk,je{1,2, - ,m}. From (2 3.22), we have I = cI*, where ¢ > 0is a constant. Substituting (8,1} = (S*,cI*)
into the first equation of system (2.2.3), we have -

0=bi—es{" Y. BT — (u +a0) 5", (2.3.23)
| = |

Since the right-hand side of (2.3.23) is monotone decreasing with respect to c, it follows from (2.3.3) that (2.3.23)
holds if and only if ¢ = 1. Summarizing these statements, we see that V"’ (S,I) = 0 holds if and only if the solution
(S,I) of system (2.2.3) is in the singleton {(S8*,1%)}. Hence it follows from the La Salle invariance principle [60]
that £+ is globally asymptotically stable in QC. O

2.4 Numerical examples
In this section, proxéiding some numerical examples, we verify the validity of Theorem 2.3.1. In addition, we

provide an example for the comparison of numerical values of the basic reproduction number Z for the discretized
system (2.2.3) and the orlgmal PDE system (2.1.2).

241 A sexually transmitted disease

Assuming m = 2, we simulate the spread of a sexually transmitted disease. Let us relate subscripts 1 and 2 to
female and male groups, respectively. Then, the original PDE system (2.1.2) is written as

2 re
<%+%> S1(t,a) =‘ —S1<t?a)j§1/() Bij(a,0)1;(t,0)do — wi (a)S1(¢,a),
; 2 e

(531w =sica 2 [} Butaso)c,0)00 — @+ 1@ ),
<§z d )SZ(f a)=—5(t,a) Z / Ba(a,0)1;(t,0)d6 ~ o (a 11, a) 2.4.1)
3+

ot
S

1(2,0) = by, ’Sz(t,O) =by, L(1,0)=5L(0) =

$> % (t,a) %Sz(f,d)j;/o 52j(a,6)7j(f76)d0—(#2(a)+72(a))12(f7a)a

\

(note that the equations for Ry (k = 1,2) can be omitted). Set o = 100. Set the age-speciﬁc mortality rates

, 0.1000 (@ —5)* /254+0.0063, 0<a<5,
ti(a) =14 0.0058(a—5)/45+0.0063, 5<a<50, (2.4.2)
0.1622 (@~ 50)* /1156 +0.0121, 50 <a < 100,
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(é) Age-specific mortality rate yi; (a) for female individ- (b) Age-specific mortality rate i () for male individuals
uals :

Figure 2.2: Graphs of the age-spécific mortality fates set as (2.4.2) and (2.4.3) (curves) and observed in [25] (dots)

and ' . :
0.1168 (a—5)* /25+0.0065, 0<a<5,
tr(a) =<  0.0092(a—5)/45+0.0065, 5<a< 50, (2.4.3)
0.1772 (a — 50)2 /115640.0157, 50 <a <100,
50 that they can approximate the corresponding obsérved data obtained in [25] for the population of Zimbabwe
(see Figure 2.2). Set by = 1/46.6495 and by = 1/42.9635 so that the demographic steady states Py (a) = S1(¢,a) +
"I (t,a) + Ry (t,a) of female population and P (@) = S»(¢,a) + L(t,a) + Ry (¢,a) of male population satisfy

- 100 100
/ H@Mﬁ/ Pa)da~1
0 0

(see, e.g., [39, Section 2]). Set ¥ (a) = 0.4 — i (a) (k = 1,2) so that Assumption 2.2.3 is satisfied.

In what follows, we vary the value of the disease transmission coefficient fi;(a,0) = Bi;(a) (k,j € {1,2}),
which satisfies Assumption 2.2.1, in order to observe the stability change of each equilibrium of system (2.4.1).
Let us first set ' '

_ _ [ —0.1(a—30)2/225+0.11, 15<a<45,

Bii(a) _ﬁlz(@ =Pai(a) _{ 0.01, ' otherwise, _
[ —(@-30)2/225+1.1, 15<a<45, : :

ﬁzz(a)~{ 0.1, " otherwise, .

which satisfies Assumption 2.2.2. Under these settings, we can discretize the PDE system (2.4.1) into an ODE
system by using the discretization approach demonstrated.in Section 2.2.1. Let us divide the age interval [0, 100]
into 100 subintervals [0,1],[1,2],---,[99,100]. Let a) =1 (i€ {1,2,---,99}) and a(!%) = 0. Then, system
(2.4.1) can be discretized as '

d i G ; .z ; M o
=) =50 -5 0 (BY10) +BEB0) - (1 +49) sP),

100 . , -
Sh= RO (B1()+BRn(0)) - 0410,
S0 =50 -0 (B98O +8080) - () +a0) N0, @aa
100 . N -
Shl)= 3580 (B0 + BIR0)) - 0.450),
1

)¢y _ Oy L
5i7) 46.6495’ 5°0) 42.9635’

ie{1,2,---,100}.
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(a) Age-distribution of female infectious population Il(i) 1<i<® Agé-distrjbution of male infectious population Iz(i) 1<i <
100) - 100)

Lt)+L(t)
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 (¢) Total infectious population ; O +L() =39 11(") ) +'12(i) (#) versus time ¢ )

Figure 2.3: Solution behavior of each infectious population for %y ~ 1.05425 > 1

The basic reproduction number % for system (2.4.4) is calculated as the maximum real eigenvalue of the next
generation matrix K defined by (2.2.8), and now %, ~ 1.05425 > 1. For initial condition ‘

(ng) 0),89(0),19(0), 1 (0)) = (0.009,0.009,0.001,0.001), Vi€ {1,2,---,100}, (2.4.5)

(note that /; = %)% 11(’) and I, = 3.1% 12(’)), we obtain Figure 2.3 that illustrates the age-distributions of each infec-
tious population converging to each endemic steady state. This fits to the statement of (ii) of Theorem 2.3.1 for the
global asymptotic stability of an endemic eciuilibrium E* of system (2.4.4).

Next we set

B ala f —0.1(a—30)2/225+0.11, 15<a<45,
Bii(a) = Pra(a) = B (a) = { 0.01, otherwise,
[ —(a—30)2/2254+0.99, 15<a<45,
Poa(a) = { 0.09, ‘ otherwise.

In this case, we have %y ~ 0.95143 < 1 for system (2.4.4). For initial condition (2:4.5), we obtain Figure 2.4 that
illustrates the age-distribution of each infectious population converging to zero. This fits to the statement of (i) of
Theorem 2.3.1 for the global asymptotic stability of the disease-free equilibrium E° of system (2.4.4).

2.4.2 Comparison of %

Finally, we compare numerical values of the basic reproduction number 2, for two systems, that is, the discretized
ODE system (2.2.3) and the original PDE system (2.1.2). For simplicity, we assume that m = 1 (that is, we consider
system (2.1.1). Set @ = 100. For {2 (a), ¥2(a) and b, as in the above examples, we set [L(a) = tir(a), y(a) = 1 (a)
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(a) Age-distribution of female infectious individuals 7" (1 < (b) Age-distribution of male infectious individuals 5 (1 <7 <
i< 100) 100)
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Figure 2.4: Solution behavior of each infectious population for Zy ~ 0.95143 < 1

and b = b,. Here we fix

—(a—30)2/2254+1.1, 15<a <45,
B(a)= : . :
, 0.1, otherwise,

which is similar to B3(a) in the case of Figure 2.3. ‘

In this simple case, we can explicitly obtain the basic reproduction number % for the PDE system (2.1.1) as
the spectral radius of a positive linear integral operator called the next generation operator (see e.g., [18, 19]). We
have ‘

TP exp (- ¢ nlp)dpyda °F

Now, let Aa denote the step size of the discretization defined by @/r = 100/n, where n denotes the number of age
. subintervals. Then, from (2.2.2), parameters for the discretized ODE system (2.2.3) are obtained as

H(i)ZIJ(iAa), B(i)zﬁ(iAa)a i6{1,2,-~~,n}

~and r = 0.4, where we omit the subscript &£ = 1 for simplicity. Leta® =1 JAaforallie{1,2,---,n—1}.
Before comparing the numerical values of %y, we note the correspondence between the PDE and ODE systems.

%, =r /0 ° /G “B(o)- o (*f"éu(a)da) <_ /G : y@da) dfdo =0.8894171960411557.

Under the above settings, rearranging the differential equation for susceptible S,(ci) of (2.2.3), we have

SO(£) — §E=1(z)

S50()+ = —s0 @01 -pOSO(), ie{12, -1}, @46

Aa :

where we omit the subscript £ = 1 for simplicity. We see at once that the second term in the left-hand side of
equation (2.4.6), which is the backward divided difference with respect to age, corresponds to the partial derivative
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Figure 2.5: Graph of the numerical values of the basic reproduction number %, for the original PDE system (2.1.1)
.(line) and the discretized ODE system (2.2.3) (dots) versus the number 7 of age subintervals

Table 2.1: Relation between the number 1 of age subintervals and the numerical values of the basic reproductlon
number %

n ‘ Hy for the ODE system (2.2.3)
100 0.9384521601853512
1000 0.8948595686884071
10000 . . 0.8899887446988077
50000 0.8895511016452385
100000 0.8894963423122371

Z, for the PDE system (2.1.1)  0.8894171960411557

term 0S/da in (2.1.1). Hence, we can expect that, as Aa — 0, the numerical values of solutions of the discretized
ODE system (2.2.3) converge to those of the original PDE system (2.1.1). Therefore, in the following, we compare
the numerical values of %, for the two systems with decreasing step size Aa of the discretization.

We obtain Figure 2.5 and Table 2.1. As we expected, the numerical value of % for the discretized ODE system
(2.2.3) converges to that for the original PDE system (2.1.1) as the number » of age submtervals increases and the -
step size Aa = 100/n of the discretization decreases. -

2.5 Discussion

In this chapter, we have formulated a multi-group SIR epidemic model (2.1.2) and, after the discretization, we
have studied the global asymptotic stability of each equilibrium of the discretized model (2.2.3). Our main the-
orem, Theorem 2.3.1, have stated that the basic reproduction number %, defined by (2.2.9) plays the role of a
perfect threshold in the sense of determining the global asymptotic stability of each equilibrium, that is, the global
asymptotic stability of the disease-free equilibrium E° for %, < 1 and that of an endemic equlllbrlum E* for
Y > 1. )

For the class of age- structured SIR epldemlc models similar to (2.1.2), any global stability results for £* for
" Zo > 1 have not been obtained (see, e.8., [39, 14, 87] and the references therein). Obviously, our results are only
valid for the ODE system (2.2.3) and not for the PDE system (2.1.2), and therefore, the open problem has remained
unsolved. However, in the situation where we estimate the pattern of a disease by using numerical calculation, both
of the PDE and ODE systems must be discretized similarly, and therefore, we can expect that our results are as
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valuable as those for PDE systems for the experimental purpose. In Section 2.4, we have provided an example of
converging numerical values of % for the discretized ODE system (2.2.3) to the value for the PDE system (2.1.2)
with decreasing step size of the discretization. This suggests us that similar results might be obtained for numerical
solutions of both of the PDE and ODE systems, and therefore, the value of our results can be guaranteed again
from the numerical point of view.

The future tasks are, for example: to investigate the global asymptotic stablhty of an endemlc steady state of
the original PDE system (2.1.2) for %y > 1 under assumptions similar to Assumptions 2.2.1-2.2.3; to investigate
the global asymptotic stability of an endemic equilibrium of the discretized system corresponding to (2.2.3) under
assumptions different from Assumptions 2.2.1-2.2.3; to verify not only the numerical values of % but also of
solutions of the discretized system (2.2.3) converge to those for the PDE system (2.1. 2) as the step size of the
discretization is decreased.
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Chapter 3
A nonaﬁtonbmous SEIRS epidemic model

Abstract In this chapter, the long-time behavior of a nonautonomous SEIRS epidemic model is studied. We
obtain sufficient conditions for the permanence (uniform persistence) and. the extinction of infectious population
of the model. Providing some numerical examples, we show that in some cases our results can improve the
previous results obtained in [T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull.
Math. Bio., (2007) 69, 2537-2559]. In addition, we discuss a relation between our results and open questions
proposed in the paper. This is a collaborative work with Dr. Yukihiko Nakata in the University of Szeged.

Keywords SEIRS epidemic model; Nonautonomous system; The basic reproduction number; Permanence; Ex-
tinction i

3.1 Introduction

The model we focus on in this chapter is thefollowing nonautonomous SEIRS epidemic model:

B _ A0 -BOSOI0) - 15O + 50)R0),

L _ 0s10) — (1) + () ),
YO 50— OO0, o
RO — yyr0) - (o) +5) RE)
with initial condition | ;
5(0) >0, E(0) >0, I(0)>0, R(0)>0. (3.1.2)

Here S(¢), E(t), I(¢) and R(¢) denote the density of susceptible, exposed (not infectious but infected), infectious and

recovered individuals at time ¢ > 0, respectively. A(¢) denotes the birth rate, B(¢) denotes the disease transmission

coefficient, [(¢) denotes the mortality, () denotes the rate of developing infectivity, ¥{¢) denotes the recovery
.rate and &(¢) denotes the rate of losing immunity at time 7.

As we saw in the previous chapters, one of the main interests of the field of mathematical epidemiology has
been the study of autonomous models (see also, for instance [61, 62, 94, 96, 82, 83] and references therein). In
particular, as-we saw, the role of the basic reproduction number % as a threshold for the solution behavior of each
epidemic model has been gained much attention. For instance, in case where system (3.1.1) is autonomous (that
is, all'parameters are given by time-independent functions A(z) = A, ﬁ( y=B,u(t)=u,e@t)=¢, y(t) =yand
8(¢) = 6), the basic reproduction number is obtained as

(3.1.3)

Ty = P A
m

(L+e)(u+7y)
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Figure 3.1: Transfer diagram for SEIRS epidemic model (3.1.1)

and a threshold result such that the infectious dlsease dies out if Z <1 and the disease persists if %y > 1 for
system (3.1.1) is well-known (see, e.g., [67, 83]).

On the other hand, in the real world, many infectious diseases spread seasonally (one of the reasons of such
a phenomenon is, for instance, the seasonal change of the number of infectious vectors [5]). In order to model
such diseases, many authors have formulated epidemic models with periodicity and studied them enthusiastically
(see e.g., [88, 89, 69, 5, 101, 6, 102, 7, 103, 97, 75] and references therein). For periodic epidemic models, the
definition of the basic reproduction number %, was firstly given by Bacaér and Guernaoui in [5]. For system (3.1.1)
in periodic case, Nakata and Kuniya [75] proved that the %, defined by Baca&r and Guernaoui plays the role of a
threshold for the global dynamics of solutions, that is, the disease-free periodic solution is globally asymptotically
stable if % < 1 and the system becomes uniformly persistent if %y > 1.

The nonautonomous case we focus on in this chapter is regarded as a generahzatlon of such a periodic case.
The definition of % for such general time-heterogeneous epidemic models has recently been given by Thieme
[91] and Inaba [46]. Global dynamics of a nonautonomous SEIRS epidemic model similar to (3.1.1) was studied
by Zhang and Teng [102]. In their paper, some sufficient conditions for the permanence (uniform persistence) and
the extinction of infectious population have been obtained. However, their conditions proposed in Theorems 4.1
and 5.1 in their paper did not correspond to any threshold values such as %, even in the autonomous case.

In this chapter, we obtain sufficient conditions different from those in [102] for the permanence and the extinc-
tion of infectious population of system (3.1.1). Our conditions correspond to the basic reproduction number %
given by (3.1.3) for the autonomous case. Thus, our results can be regarded as the extension of the threshold- -type
result for the autonomous case. We provide some numerical examples which 1llustrate that in some cases our
results can improve the previous results obtained in [102].

The subsequent sections of this chapter are organized as follows: In Section 3.2 we present preliminary setting

- and propositions, which we use to analyze the long-time behavior of system (3.1.1). In Sections 3.3 and 3.4 we
prove our main theorems on the extinction and permanence of infectious population of system (3.1.1). In Section
3.5, we derive explicit conditions for the existence and permanence of infectious population of system (3.1.1) for
some special cases. We prove also that when every parameter is given as a constant parameter our conditions for
the permanence and extinction becomes the threshold condition corresponding to the basic reproduction number -
Z,. n Section 3.6 we provide numerical examples to verify the validity of our results and to show that in some
cases our theoretical result can improve the previous results obtained in [102]. '

3.2 Preliminaries
As in [102] we put the following assumptions for system (3.1.1).

Assumption 3.2.1. (i) Functions A, 3, i, 8, € and ¥ are positive, bounded and continuous on [0, +e<) and B(0) >
0. : ‘
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(ii) There exist constants @; > 0 (i = 1,2,3) such that
N L L [T L [T
I}E}Jﬂf ) B(s)ds >0, l}ini‘lf/t U(s)ds >0, l}fﬂﬂf[ A(s)ds > 0.

- In what follows, we denote by N*(¢) the solution of

dN;(t) = A()— BN (0) , 32.1)

with initial value N*(0) = S(0) + £(0) +1(0) +R(0) > 0. By adding equations of (3.1.1), we easily see that
N*(¢) = S(t) + E(¢) + () + R(¢) means the density of total population at time ¢. From Lemma 2.1, Theorem 3.1
and Remark 3.2 in [102], we have the following results.

Proposition 3.2.1. (i) There exist positive constants m > 0 and M > 0, which are independent from the choice of
initial value N*(0) > 0, such that

0 < m < HminfN* (1) < EmsupN*() <M < 4eo. \ (3.2.2)
f=rteo t—rtos

(i) The solution (S(t),E(¢),1(¢),R(t)) of system (3.1.1) with initial value (3.1.2) exists, uniformly bounded and
S(#) >0, E@)>0, I(t)>0, R(#) >0
forallt > 0.

For p > 0 and ¢ > 0 we define

G(p,t) == BN (1) p+ 7(0) — (1 n ;7) et)

and :
W (pt) = pE (1)~ 1(z), | (3.2.3)
where E and 7 are solutions in system (3.1.1). '

In Sections 3.3 and 3.4, we use the following lemma in order to investigate the long-time behavior of system
(3.1.1).

Lemma 3.2.1. If there exist positive constants p > 0 and Ty > 0 such that G(p,t) <0 for all t > T, then there
exists Tp >.T1 such that either W(p,t) >0 forallt > T or W(p,t) <0 forallt > T.

" Proof. Suppose that there does not exist 75 > T} such that either W (p,7) > 0 for all 1 > T; or W(p,t) <0 for all
.t > T hold. Then, there necessarily exists an s > 7j such that W (p,s) = 0 and dW (p,s)/dt > 0. Hence we have

pE (S) = I(S) ‘(3.2.4)
and »
PLB)S()I(S) — (1(5) + £V EGs)} — {e(EE(S) — ((s) +¥(6)) 1))
= IBESEP+ (6 YN -PEO{ () +eG) + e} 0. (329)

Substituting (3.2.4) into (3.2.5) we have

0 < pEO{BESE+16) - (143 ) )} < PEOG().

From (ii) of Prdposition 3.2.1, we have G (p,s) > 0, which is a contradiction. ‘ d
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3.3 Extinction of infectious population

In this section, we obtain sufficient conditions for the extinction of infectious population of system (3.1.1). The
definition of the extinction is as follows:

Definition 3.3.1. We say that the infectious population of system (3.1.1) is extinct if .
t_l:r_{r_lwl (r)=0.
. We give one of the main results of this chapter.

Theorem 3.3.1. Ifthere exist positive constants A > 0, p > 0 and Ty > 0 such that

: ' f+A :
Ri(2,p) :zhﬁi‘ip t+ {B(s)N*(s)p— (u(s) +&(s))}ds <O, (33.1)
) , "
i (,p) = timsup | {s@% - (u(s)+7(s))}ds <0 (332)

and G(p,t) < 0 for all t > T}, then the infectious populqtion of system (3.1.1) is extinct.
Proof. From Lemma 3.2.1, we only have to consider the following two cases: »

() pE(t) >1(t) forallt > B, -

(i) pE(t) <I(t) forallt > B,

Wheré Tp > T is a constant as in Lemma 3.2.1.
First we consider the case (i). From the second equation of system (3.1.1), we have

LU~ B0~ E0 10~ RO - (0 +) EW)

< BN —E@) — 1) — RO PEE) — (1) + ) EQ)
< EQ{BON'()p— (1() +20)}.
Hence, we obtain _ ) o
£ <E@)ew ([ BON 6p- W) +e6)s) 633)

for all ¢ > T5. Now, from (3.3.1), we see that there exist constants & > 0 and 73 > T5 such that

[T BV ©p— () + (o) as < 5 634

for all £ > T5. From (3.3.3) and (3.3.4) we have lim,_, ;. £(¢) = 0. Then it follows from pE(z) > I(t) forallt > T
that lim,_, 1 I(¢) = 0. : '

Next we consider the case (ii). Since we have E(¢) < I(¢)/p for all t > B, it follows from the third equation of
system (3.1.1) that ‘

% <I() {e’(t)é- - (u(t)ﬂ(f))} :

Hence we have

1) <1@ex ([ {e6)2 - 06 +ro) f o) (335)
: p)
for allt > B». Now it follows from (3.3.2) that there exist constants & > 0 and 74 > T3 such that
1A (. 1 ’
[T ek -worenfas<-a (3.3.5)
for all ¢t > Ty. From (3.3.5) and (3.3.6) we have lim;, 1 [(f) =0. o ) |
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34 'Permanence of infectious population

In this section, we obtam sufficient conditions for the permanence of 1nfect10us populatlon of system (3.1. 1) The
~ definition of the permanence is as follows:

Definition 3.4.1. We say that the infectious population of system (3.1.1) is permanent if there exist positive con-
stants /; > 0 and /, > 0, which are independent from the choice of initial condition (3.1.2), such that

0 < I < liminfI(¢) < limsupl(t) < b < +eo.
t—>too t-4oo .

The following theorem is also one of the main results of this chapter:

Theorem 3.4.1. If there exist positive constants A >0, p > 0 and T} > 0 such that

Ro (2,p) 1= liminf / N*(s)p— (1(s) + ()} ds > 0, A
R (A,p) = I}E%f/t {E(S); —(u(s)+ y(s))} ds>0 (34.2)

and G(p,t) <0 for allt > Ty, then the inféctious popitlation of system (3.1.1) is permanent.
- Before the proof of Theorem (3.4.1), we prove the following lemma.

Lemma 3.4.1. If there exist positive constants A > 0, p > 0'and Ty > 0 such that (34.1), 34.2) and G(p,t) <0
hold for allt > T, then W (p,t) <0 for allt > Ty > Ty, where T is given as in Lemma 3.2.1.

Proof. From Lemma 3.2.1 we have only two cases such that W (p,¢) > 0 forall ¢ > T> or W (p,t) <0 forallt > .
Suppose that W (p,7) > 0 for all t > T5. Then, we have E (t) > I(t)/p for all t > T>. It follows from the third
equation of system (3 1.1) that

T > e 210) - (i) +10)16) = (){S(t)é-—(u(t)ﬂ(t))}

forall z > I>. Hence, we obtain

10> 1By e [ {s@)}% - )+ s ) (343)

forall ¢ > 73. From the inequality. (3.4.2), we see that there exist positive constants ) > 0 and T > 0 such that

t+A (1
[T et - wo+venfass (44
for all ¢ > T. Since the inequality (3.4.3) holds for all # > max (T3, T), it follows from (3.4.4) that lim,, 4+ [(¢) =
+oo. This contradicts with the boundedness of 7, stated in (i1) of Proposition 3.2.1. O
Using Lemma 3.4.1 we prove Theorem 3.4.1.

Proof of Theorem 3.4.1. For a constant € > 0, let mg := m — & and M; := M + &, where m and M are as in Propo-
sition 3.2.1. Then, from the 1nequa11ty (3.2.2) of (i) of Proposition 3.2.1, we see that for any € > 0, there exists a
T > 0 such that

me < N*(1) < Mg ’ (3.4.5)

forall¢ >T. - / )
The inequality (3.4.1) implies that for sufficiently small 1 > 0, there exists a 71 > T such that

[ BN G- @) e s> (346)
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forallt > 1.
Define

BT =supB(r), ' :=supu(s), 8+¢=Sup8(f), 7+:=sup7(t)~

t>0 t>0 t>0-

From (3.4.5) and (3. 4. 6) we see that for some positive constants m < n and 75 > 71, there exist sufficiently
small g; > 0 (i=1,2,3) such that

/;H {B(s)(N*(s) —&1 —ker — &) p— ((s) +&(s)) }ds > my, (3.4.7)
N (t)—& —key — 83 > mg . : (34.8)

hold for all ¢ > Tz, where k:= 1+ (BtM +vy* ) ;. From (ii) of Assumptlon 3.2.1, & can be chosen sufficiently
small so that

t+a, .
: /t {B(s)Mees — (u(s) +&(s)) &1} ds < —my, (3.4.9)
[ e~ () + 65y esyds < - G

hold for all ¢ > T.
First we claim that

limsup(¢) > &.
1=+

In fact, if it is not true, then there exists a T3 > T5 such that
It)<& (3.4.11)

forall z > T5. Sﬁppose that E(t) > g forall# > 73. Then, from (3.4.5) and (3.4.11), we have
EQ =E()+ [ B W) ~EE)—1(6) ~ROVE) = (1) + () E)} &
B+ [ ABGIMeer — (o) + 5(0)er}ds | (412)

for all ¢ > T5. From (3.4.9) and (3.4.12), we have lim,_, (.. E(f) = —eo, which contradicts with (ii) of Proposition
3.2.1. Therefore, we see that there exists an s; > T3 such that E(s;) < &. Suppose that there exists an s3 > 51 such -
that E(sp) > € + BT M @,&,. Then, we see that there necessarily exists an s3 € (s1,52) such that £(s3) = & and
E(t) > & for all ¢ € (s3,57]. Let n be an integer such that s, € [s3 +nw,,s3 +(n+ 1) ). Then, from (3.4. 9) we
have .

& + B Meane;
< E(s2)

= En)+ [ {BO) (N (5)~E () ~16) ~ RO)IE) ~ (0(s) + () E(9)} 8
ca+{ [T [0 HpOMe - w+ee) et

3 $3+nay

52
< &+ B(S)Mgez ds
RERRd]
<ea+p Mg,
‘which is a contradiction. Therefore, we have that

E(t) <& + BT Meang ‘ (3.4.13)
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for all £ > s1. In a similar way, from (3.4.10), we can show that there exists a §; > T such that

Rit) < +7tme . (3.4.14)
for all ¢ > §1. Now, from Lemma 3.4.1, there exists a 74 > max (s1,5)) such that W (p,) = pE(¢) —I(t) < 0 for all
t > T3. Then »
{B@) V() —E(1) —1(t) —R)I(t) — (1 (1) + e () E@)}

E@{B)W (1) —E(t) —1(t) = R(0)) p— (1 (1) +£ (1))}
EO{BE) V(1) —&1 —kez—&5)p— (1 () + (1))}

since it follows from (3.4.11)-(3.4.14) that E(t) + I(¢) +R(t) < & + key + & for all £ > T;. Hence, we have

4
EE(t-)

v v

502 B ([ B0 0 -e1—ker-e)p- (1) +eE)bs). (3415)

" From (3.4.7) and (3.4.15), we have lim,_, 1o E(t) = 40 and this contradicts with the boundedness of E, which is
stated in (ii) of Proposition 3.2.1. Therefore, our claim limsup,_, .. /(t) > & is true.
Next, we claim that
‘ liminf/{¢} > I,
t=3too

where /1 > 0 is a constant given later. From inequalities (3.4.7)-(3.4.9) and (ii) of Assumption 3.2.1, we see that
there exist some constants 73 (> ), A, > 0 and 7 > 0 such that

[T e - e rew)etas < - O
/ T e — () + 8(s))esds < M, | G
/;”3 {B(s) (V*(s) ~ &1 —kea — &5) p = ((s) + ()} ds >, (3418)
/tt+13 B(s)ds > 1ma | | (3.4.19)

forall A3 > A, and ¢ > T5. Let C> 0 be a constant satisfying
e_(”++€+)l2msvznzecﬁ2 > &1+ BT Mgy, - (3.4.20)

where vy = ge~ V" T#)2% | Since we proved limsup, ., I(t) > &, there are only two possibilities as follows:
() I(t) > g forallt > 3T, > 5.
(ii) I(?) oscillates about & for large t > 7.
In case (i), we have liminf;_, .. I{t) > & =:71. In case (ii), there necessarily exist two constants #1, £, > 73 (b =t)
such that

I(tl) = I(tz) =&,

I(t) <& forallte (t,n).
Suppose that &, —t; <C+221. Thén, from (3.1.1) we have

daI(s : ‘
T(z ) > — (T +yH) (). ‘ (3.4.21)
Hence, we obtain
t
I(t) > I(t)) exp < / — (u++y+)ds> > ge WHNCHAR) — p (3.4.22)
5] . B
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forall # € (#1,12). Suppose that &, —#; > C+24;. Then, from (3.4.21), we have
1(t) > Sze—(ﬂ++Y+)(C+2lz) =1
forall¢ € (1,6 +C +2&2). Now, we are in a position to show that I(t) > I for all t € [t; +C +22,1). Suppose
that E(¢) > & forall ¢ € [t;,1; + A2]. Then, from (3.4.16), we have
) 1+ ‘
El+k) < E@)+ [ {B6Meer—(n(s)+e(s)e}ds
‘ 1 \ ; .
< Mg —Mg = 07

which is a contradiction. Therefore, there exists an s4 € [f1,4] + A2] such that E(s4) < &;. Then, as in the proof of
limsup,_,, .. /(t) > &, we can show that E(¢t) < & + B+ Mgm,e, for all t > s4. Moreover, similarly, from (3.4.17),
we can show that there exists an §4 € [t1, 11+ A2] such that R(r) < &3+ yT m&; for all ¢ > §4. Thus, we have

E(f) <e1+B"Mcamne, R()<e&+7 mme (3.4.23)
for all ¢t > #; + A2 > max (s4,84 ). Now, from (3.4.21), we have '
L) > v = e WY A / (3.4.24)
for all ¢ € [1y,4 +222]. Hence, from (3.4.8) and (3.4.24), we have

en - - B(e) N (e) —E(1) = 1() = R() I(t) — (1 (1) + () E(¢)

dt
> BO)meva— (uTHET)E()
for all £ € [t + A2, 11 +2A;]. Hence, from (3.4.19),

\%

E(ll -I—le)
: 24
> e_(#++e+)(z1+zlz) {E(tl +)Lz)e(#++g+)(t1+}tz)+/t1+ Z‘ﬁ (s)mgvze(“++e+)sds}
. ' tith '
2
> e aam) [T g o gy
- H+h )
> e~ +eNd MamgVa. (3.4.25)

Now we suppose that there exists aty > 0suchthatty € (/| + C+222,0), I{tg) =1 and I(¢) > I for all ¢ € |ty 1)
Note that from Lemma 3.4.1, without loss of generality, we can assume that ¢ is so large that W (p,r) = pE(¢) —
I(t) <0 forallt >t +2A4,. Then, from (3.4.23), we have

%E(t) {BO) V() = E(6) = 1(e) = RO 1) = (1 () +e () E()}
E@{B@E) (N (1) —E@) —1(6) = R(®))p— (u (1) +€ (1))}
E@{BE)(N* (1)~ &1 —ker — &) p— (1 (1) +£ (1))} '
for all £ € (t; +2My,1). Hence, from (3.4.18) and (3.4.25), we have
E(t) .
2@ men( [0 (B OV -6 ke —en)p— () OV

o (ygtaet
> (uTte )Mﬂzms\)zeah.

I

vV v

. Hence, from (3.4.23), we have

gttt
Lo+ BT Mgy > e T D ey O
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which contradicts with (3.4.20). Therefore, I{¢) > I for all ¢ € [t; +C+2A;,1), which implies liminf, , ;.. I(¢) >

5. ) " ,
Since limsup,_, ., /(¢) < limsup,_, ., N*(f) <M < +e, the infectious population of system (3.1.1) is perma-

nent. \ O

3.5 Applications

In this section, we focus on some special cases of system (3.1.1). Applying Theorems 3.3.1 and 3.4.1, we derive
some explicit conditions for the extinction and permanence of infectious population of system (3.1.1).

First, we consider the case where all coefficients of system (3.1.1) are given by identically constant functions, -
that is, the case where (3.1.1) is an autonomous system. We show that, in this case, our results obtained in Sections
3.3 and 3.4 become a well-known threshold-type result corresponding to the basic reproduction number % given
by (3:1.3). ' ‘

For p > 0 we define

RG)=Ppp=(H+e), RG)=ez—(+n)
and A N |
G(p):zﬁﬁp-l-’}’—(l—l-;)e.

Then, one can see that R; (A, p) = R(p), R} (A,p) = R*(p) (i =1,2) and G(p,t) = G(p) in the antonomous case.
We prove the following proposition: ‘ ‘

Proposition 3.5.1. Suppose that functions A, B, U, & Y and & of system (3.1.1) are identically positive constant
functions. Then we have ‘ '

(i) There exists a p > 0 such that R(p) < 0, R*(p) < 0 and G(p) <0 if and only if %y < 1.
(i) There exists a p > 0 such that R(p) > 0, R*(p) > 0 and G(p) < 0 if and only if %o > 1.
Here &, is the basic reproduction number defined by (3.1.3). k

Proof. ‘We only prove (i) because (ii) can be proved in a similar manner. Suppose that there exists p > 0 such that
R(p) <0, R*(p) <0 and G(p) < 0hold. Then, it follows from R(p) < 0 and R*(p) < O that

€ (L+e)u
< p< .
PER AT

Hence we obtain %, < 1. On the contrary, suppose that %, < 1. Then, it is obvious thth there exists a p > 0 such
that (3.5.1) holds. Since we have

G( £ ) .(eﬁA +y— <+#—+Y)8:(u+£)(Ro—1)<0,

35.1)

Lty p+NR
there exists a p > 0 close enough to €/ (1 + ¥) such that both (3.5.1) and G(p) < 0 bold. For such p we have
R(p) <0, R*(p) < 0 and G(p) <0. ( : ‘ O

Proposition 3.5.1 implies that our conditions for the extinction and permanence for the nonautonomous system
(3.1.1) cover the threshold-type result in the autonomous case. :

Next we focus on the case where i, € and ¥ are constant functions. In this case, we have the following
threshold-type result.

Corollary 3.5.1. Suppose that H. € and ¥ of system (3.1.1) are identically positive constant functions. Then, the
following statements hold.
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(i) The infectious population of system (3.1.1) is extinct if there exists a 77 > 0 such that

eB{ON" ()
—_— 352
wte) @t ¢33
forallt > 17.
(if) The infectious population of system (3.1.1) is permanent if there exists a 7] > 0 such that
_EBON() (353)
(h+e)(H+7) ,

forall¢ > 1.

Proof. We only prove (i) because (ii) can be proVed in a similar manner. To prove (i), it suffices to show that there
exist constants p > 0 and 4 > 0 such that (3.3.1) and (3.3.2) hold and G (p,#) < 0 for allz > 7;. From (3.5.2), we

have
£ . u+e

< - t+1 * )
H+Y  limsup, ... [, B(s)N*(s)ds

We choose p > 0 such that
nL+e

— < p< . :
ntyF limsup, , .. [/ B(s)N*(s)ds -

Then one can see that (3.3.1) and (3.3.2) with A = 1 hold. Next we show that for such p, we have G(p,t) <0 for
‘ all ¢ > 7. In fact, from (3.5.2), we have

(3.5.4)

BON O ~(a+e) = BN () +7- (1455 ) e <o

for all # > 73. Hence, one can find small enough £ > 0 such that G (p,?) < 0 holds for

pE(————S —+§)C £ pe
\L+7 p+y “\K+Y limsup, ... [ B(s)N*(s)ds
and # > Tj, because of the continuity of G with respect to p. : . a

It is easily seen that the existence of 77 > 0 such that (3.5.2) or (3.5.3) hold for all ¢ > Ti-is a sufficient condition
for '

t4+A .
limiup | i {eBEN*(s)—(u+e)(+7)}ds <0 (3.5.5)
or t+A : |
lim nf | {eBEN*(s) — (U +€)(L+7)}ds>0 (35.6)

with A = 1, respectively, where (3.5.5) and (3.5.6) are conditions proposed in Questions 1 and 2 in [102] for the
* extinction and permanence of infectious population of system (3.1.1), respectively. However, one can see that
those conditions do not imply the conditions given in Corollary 3.5.1. In fact, conditions (3.5.5) and (3.5.6) are
not suitable as a threshold condition for the global dynamics of system (3.1.1) because they can overestimate the
value of the basic reproduction number %, even in the situation where only function B(¢) is periodic and other
coefficients are constant functions (see Section 5.1.2 of [6]). In periodic case, it was shown in [75] that whether
the infectious population of system (3.1.1) is extinct or permanent is perfectly determined by %Z,.
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Figure 3.2: Solution behavior of I(t) and E(f) of system (3.1.1) with E(0) = I(0) = 0.0005, B(t) =
6.49 (14 0.5cos(2mt)) and p = 0.20011 ‘

3.6 Numerical examples

In this section we perform numerical simulations in order to verify the validity of Theorems 3.3.1 and 3.4.1. We
show also that in some special cases, our results can improve the previous results for the permanence and extinction
of system (3.1.1) obtained by Zhang and Teng [102].
Fix :
Ay=1, pu@)=1, e)=03(140.5c0s(27z)), y(t) =0.5(1+0.5cos(27¢))

and 8(7) =0.1. Then, from (3.2.1), we have lim,_, ;.. N*(r) = 1. Here we assume N*(0) = 1 and hence N*(¢) = =1.
Let B(t) = 6.49(1+0.5cos(2nt)). Then, system (3.1.1) becomes t1me-per10d1c with period 1. We choose
A =1and p=0.20011. Then we have

"Ri(Asp) = /0{6.49(1+o.5cos(2ns))><0.20011—(1+0.3(1+0.5cos(2ns)))}ds
~ =0.0012861 - <0,

S

ol '

Ri(%p) = | 0.3 (1+0.5c08(275)) X ———— — (1-40.5 (1 0.5 cos(2t))) b ds
0 : 0.20011

«  —0.000824546--- <0

S

and

G(p,t) = 6.49(1+0.5c0s(27t)) x 0.20011+0.5(1+0.5cos(27z))

1
- (1 + 020011) x0.3 (1‘-|- 0.5cos(27t))

—0.000461554 (1 4 0.5 cos(27z)) < 0

15

for all £ > 0. From (i) of Theorem 3.3.1, we see that the infectious population of system (3.1.1) is extinct. See
- Figure 3.2 for a numerical simulation of the solution behavior. In this example we have

f[” B(s)N*(s)ds fo1 6.49(1 +0.5(cos(2ns))) ds
F u(sas !
This implies that a sufficient condition proposed in Theorem 5.1 in [102] for the extinction of infectious population

does not hold. Thus, their suggested criterion can not determine the extinction of infectious population in this
example.

=649 > 1.
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Figure 3.3: Solution behavior of I(¢) and E(¢) of system (3.1.1) with E(0) = I(0) = 0.0005, B(t) =
6.51(1+0.5cos(2xt)) and p =0.1997

Next we set B{¢) = 6.51 (1+0.5cos(2nr)). We choose A =1 and p = 0.1997. Then,

Ry(A,p) = /1 {6.51 (1k-l—0.500s(27ts)) x 0.1997 — (1'40.3 (1 +0.5cos(27ms))) } ds
“ 0?000047--- >0, ’
R5(A,p) = /01 {03 (140.5cos(2xs)) x 0_11997 - (1 +0;5 (1 +O.500s(27rt)))} ds
= 0.00225338... >0
and | ’ |
’ G(p,t)‘ = 6.51(140.5cos(27)) x 0.1997 4 0.5(1 + 0.5 cos(27z))

1
-1+ . .
( + 0'1997) x0.3(140 500;(27::))
w  —0.00220638(1+0.5cos(27mz)) <0 .

S

for all ¢ > 0. Hence, from (ii) of Theorem 3.4.1, we see that the infectious population of system (3.1,1) is perma-
nent. See Figure 3.3 for a numerical simulation of the solution behavior. On the other hand, one can compute

[ 2/ BE)EEN (s)du
J (o) +£() + 11(s) +¥(s)) du
Ja24/6.5T (1 +0.5c0s(27s)) x 0.3 (1 + 0.5 cos(27s))ds
Jo (2+0.8(1+0.5cos(2ms))) ds

«0.99821 < 1. °

This implies, similar to the previous example, that a sufficient condition proposed in Theorem 4.1 in [102] for the
permanence of infectious population fails in this example. ’

o

3.7 Discussion

In this chapter, we have investigated the global dynamics of a nonautonomous SEIRS epidemic model (3.1.1). We
have obtained sufficient conditions for the extinction and permanence of infectious population of system (3.1.1) in
Theorems 3.3.1 and 3.4.1, respectively. In the proofs, we make use of a sign property of a function ¥ (p,t) defined
by (3.2.3), see Lemmas 3.2.1 and 3.4.1. ‘

In Section 3.5, we have proved that when every parameter of system (3.1.1) is given as a constant parameter, our
conditions in Theorems 3.3.1 and 3.4.1 become the threshold condition corresponding to the basic reproduction
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number %,. Here, we remark that conditions given in Theorems 4.1 and 5.1 in [102] for the permanence and
extinction do not give a threshold-type condition even in the autonomous case. In the same section we discussed
also a relation between our results and open problems proposed in [102]. For some special cases, we have shown
that our conditions are sufficient, but not necessary for (3.5.5) and (3.5.6), which were ‘conjectured as conditions
for the permanence and extinction of infectious population in [102]. For the case where every parameter is given
as a periodic function, in [75], it was proved that the basic reproduction number %2y works as a threshold parameter
for determining the global stability of the disease-free equilibrium and the permanence of infectious population of
the system. An approximation method for the basic reproduction number %, in [5] has shown that the conjectured
condition in [102] does not determine the permanence and extinction completely, see Section 5 in [75] for the
detail. ) ;

In Section 3.6 we provided numerical examples to illustrate the validity of our results. In those examples
we show also that conditions in Theorems 4.1 and 5.1 in [102] for the permanence and extinction of infectious
population of system (3.1.1) are not satisfied.

One may argue that our conditions for the permanence and extinction may not sharp. It is still an open problem
that if the basic reproduction number %o for (3.1.1) works as a threshold parameter to determine the permanence
and extinction of infectious population, similar to the autonomous case. ' »
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Chapter 4

A time-periodic SIS epidemic model with
age structure

Abstract The main contribution of this chapter is to obtain a threshold value for the existence and uniqueness of
a nontrivial endemic periodic solution of an age-structured SIS epidemic model with periodic parameters. Under
the assumption of the weak ergodicity of non-autonomous Lotka-McKendrick system; we formulate a normalized
system for infected population as an initial boundary value problem of a partial differential equation. Existence
problem for endemic periodic solutions is reduced to a fixed point problem of a nonlinear integral operator acting
on a Banach space of locally integrable periodic L!-valued functions. We prove that the spectra1 radius of the
Fréchet derivative of the integral operator at zero plays the role of a threshold for the existence and uniqueness of
a nontrivial fixed point of the operator corresponding to a nontrivial periodic solution of the original differential
equation in a weak sense. If the Malthusian parameter of the host population is equal to zero, our threshold value
is equal to the well-known epidemiological threshold value, the basic reproduction number %,. However, if it is
not the case, then two threshold values are different from each other and we have to pay attention on their actual
biclogical implications. This is a collaborative work with Professor Hisashi Inaba in the University of Tokyo.

Keywords SIS epidemic model; Age structure; Periodic system;: The basic reproduction number; Malthusian
parameter

4.1 Introduction

The seasonality of infectious diseases is one of most important research interests in mathematical epidemiology,
since the transmission parameters and host population behavior usually depend on season. Therefore many authors
have examined differential equations systems with periodic parameters in order to model the seasonal spread of
infectious diseases ([29], [32], [59], [5], [61, [97], [75D).

One of the most important concepts in this field is the basic reproduction number %j. It is epidemiologically
defined as the expected number of secondary cases produced by a typical infectious individual during its entire
infectious period in a completely susceptible host population, and usually, it is mathematically obtained as the
spectral radius of a linear operator, which is called the next generation operator ([18], [19], [94], [20]).

Intuitively speaking, we can expect that the disease can invade into a completely susceptible host population
if %o > 1, while it cannot if %, < 1 in a local sense. This is a principle of invasion threshold based on .
Moreover, usually we can also expect that there exists at least one endemic steady state if %y > 1, although it
may not be a necessary condition for existence of endemic steady states. In fact, endemic steady states can exists
under the subcritical condition %, < 1 (for instance, see [40], [41]). This endemic threshold result has been widely
established among autonomous epidemic systems for age-structured populations ([39], [40], [41], [42], [43]).

On the other hand, the general definition of the basic reproduction number in periodic environments was first
successfully established by Bacaér and Guernaoui in 2006 [5], and then it has been extended to the case of more
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general time-heterogeneous environments by Thieme [91] and Inaba [46]. As is shown in Inaba [45], the invasion
‘threshold principle for periodic structured epidemic models has been well-established based on the definition of
Bacaér and Guernaoui. However, the endemic threshold result for periodic epidemic systems based on %, of the
definition of Baca&r and Guernaoui has not yet been fully examined for structured population models, although for
non-structured population models, Nakata and Kuniya ([75]) have shown existence of periodic endemic solution
when % > 1, where %, is given by the definition of Bacaér and Guernaoui.

Introduction of age-structure into epidemic models is a crucial point so that we deal with realistic situations.
'For example, any disease prevention policy depends on age structure of the host population. Due to their relatively

- complex form, the analysis is difficult and there are not a few open problems on the relation between % and
mathematical properties such as the existence, uniqueness, local and global stability of steady states. However,
we strongly conjecture that the endemic threshold result for structured population in perlodlc environments will be
properly formulated by % defined by Bacaér and Guernaoui.

The main purpose of this chapter is to obtain threshold results for an age-structured epidemic model with
periodic parameters and study the relation between % and the solution behavior of the model. -

The model we study in this chapter is an age-structured SIS epidemic model, in which total population is
divided into two epidemiological classes, susceptibles and infectives, and individuals recovered from infection
do not obtain immunity and directly go back to the susceptlble class. The age-structured SIS epidemic models

_ with time-independent parameters have been studied in [11], [34], [13], [36] and [23]. A generalization of such
models to a periodic system was given in [59], in which the periodic age-space-structured SIS epidemic model
with reaction-diffusion terms is considered, so it has quite a general form. They showed the global asymptotic
stability of a nontrivial endemic periodic solution, however, they relied on the assumption of the existence of such
a periodic solution (for the case where there is no fecruitment from other environments). Thus, the existence of
a threshold value like %, for the existence of a nontrivial endemic periodic solution has not been investigated for
any age-structured SIS periodic epidémic models, and this is the point we focus on in this chapter.

Under the assumption of the weak ergodicity of a nonautonomous Lotka-McKendrick population system, the
age-structured SIS periodic epidemic model we shall consider can be normalized to a single equation of fraction
of infected population. Integrating it along the characteristic lines, we obtain an expression of the fraction of the:
infecteds by the force of infection. Substituting the expression into the definition of the force of infection, we obtain
an integral equation, which can be a fixed point equation in a Banach space of locally integrable, time-periodic
L'-valued functions. We show that the spectral radius of the Fréchet derivative of the fixed point operator at zero
is the desired threshold value, that is, if it is less than one, the trivial disease-free steady state of the normalized
system is globally asymptotically stable, while if it is greater than one, there exists a unique non‘mwal endemic
periodic solution.

In case that the Malthusian parameter of the host population is equal to zero, it is shown that the threshold
value is equal to the basic reproduction number %, obtained by following to the definition in [5, 91, 45]. However,

-if it is not equal to zero, they can be different and therefore we have to pay attention to possible cases such as the
relatively decreasing but absolutely increasing (or, vice versa) infected population.

The organization of this chapter is as follows: In section 4.2, we formulate the main model of this chapter )
and normalize it to a single equation as mentioned above. In section 4.3, we show the well-posedriess of the time
evolution problem. In section 4.4, we obtain the threshold value as mentioned above, and prove the existence of a
nontrivial endemic periodic solution of the system in case the threshold value is greater than one. In section 4.5, we
prove the uniqueness of such a nontrivial solution in case the threshold value is greater than one. In section 4.6, we

prove the global asymptotic stability of the trivial disease-free steady state of the system in case the threshold value
1s less than one. In section 4.7, we investigate the relation between the threshold value and the basic reproduction
number . Finally, in section 4.8, numerical illustration is given.

4.2 The basic model

Let S(¢,a) and I(¢,a) be the age-densities at time ¢ and age a € [0, ®] of susceptible and infective population
respectively, where @ < oo denotes the maximum attainable age. Let P (¢,a) be the age-density of host population -
at time ¢ and thus we have P (¢,a) = S(¢,a) +1(t,a). Let N (¢) be the total size of population at time ¢ and thus we
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Figure 4.1: Transfer diagram for SIS epidemic model (4.2.1)

have , ®
N(t) = /0 P(¢,a)da.

Let i (¢,a) be the age-specific mortality rate at time ¢, y(¢,a) be the age-specific recovery rate, k(¢,a, ) be

the transmission coefficient between susceptible individuals aged a and infective individuals aged o, f(¢,a) be

. the age-specific fertility rate and A (¢,a) be the force of infection to susceptible individuals aged a, at time ¢,
respectively. We make the following technical assumption on vital parameters:

Assumption 4.2.1. The basic vital parameters f, 7, i and k are periodic in time ¢ with period 7 > 0, and we assume
that £(¢,-),7(t,") € LT =(0, o), k(t,-,-) € L? T ([0, w] x [0, 0)]) and 1(¢,a) is locally integrable along the characteristic
line £ — a = const. and

L]
| nie+o,0)do ==,
for all # € R, which implies that the cohort survival rate is zero at age ®.

Then the age-structuréd SIS epidemic model with time-periodic parameters is formulated as follows:

(% +%> S(t,a) = —=A(t,a)S(t,a)—pu(t,a)S(t,a)+v(t,a)1(t,a),

(% +%>I(t7a) = (t,a)S(t,a)— (1 (t,8) + Y (t,0)) 1 (1,a),

Alt,a) = ﬁ /0 “k(t,0,0)1(t,0)do, . @21y
S(t,0) = /wa(t,a)P(t,a) da,
1(1,0) =0,

S(0,a) = Sp(a), 1(0,a) =>10(a),

where the force of infection is given by the standard type of mmdence and the initial data are given by nonnegative
- integrable functions.
Since we neglect an additional death rate for infecteds, the host populatlon dynamics is described by the Lotka-
McKendrick system with periodic coefficients:

(%f %) P(t,a)=—4 (t,a)P(t,a),

o
Pe0)= [ )P
0 .
P(0,a) = Py(a) := So{a) + I{a),
To simplify the basic model, we introduce the age distribution of ratio for each epidemiological class as follows:

_S@a) . 1a)
s(t,a) = Pla)’ i(tya) = Pla)

(4.2.2)

(4.2.3)
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Now we can rewrite model (4.2.1) as
_8 s(t, ) —A(t,a)s(t,a)+y(t,a)i (t )
3 +=— 32 a a)s(t,a)+ a)i(t,a),

(% + %) i(t,a) =A(t,a)s(t,a) — (¢, a)i(t a),

Alt,a) = /0 kt,a,0 )P]ff(‘)’) (t,0)do,

s(t,0)=1, i(t,0)=0,
s{0,a)=s¢(a), i(0,a)=1ip(a).

Here we assume that the Lotka—McKendrick system (4.2.2) has a positive persistent solution as

(4.2.4)

P* (t, a) = el‘(t—a)b(t - a) e f(f'll(t—a—ko',c)do-’

where the Malthusian parameter r and a positive periodic function b(¢).satisfy the characteristic relation:
/ f(t a e~ Ta— o u(t—a+o, G)dcb(t——a)da

Let 6(¢,a) be the periodic age profile:

P*(t,a)
ot B
(ta) = o8P (t,x)dx
In this chapter we assume that the age profile of the host population has already attained a perlodlc stable age
profile 0, that is,
P(t,a) = N(z)e(t,a),

holds for all # > 0. We adopt a technical, but biologically reasonable, assumption as follows:
We remark that if we assume that the non-autonomous system (4.2.2) is weakly ergodic, the age profile of the
host populatlon converges to a periodic age profile 6 in a L!-sense, that is,

P(t, )_e(t )

N () =0.

!

lim
3o

where we use the notation 6 neglcting the phase difference. :

The stable population model with periodic parameters was first studied by A. J. Coale ([16], [17]) based on the
renewal integral equation. The reader may refer to [85], [38], [78], [77] and [45] for the proof of the above state-
ments. Note that our analysis covers a spcial case that only epidemic parameters are periodic and all demographic
parameters are time independent, hence the Lotka—McKendrick system (4.2.2) becomes an autonomous system
and there exists -a disease-free steady state (see Section 4.8). '

Since it follows from (4.2. 3) that s (¢,a) = 1 —i(¢,a), system (4.2.4) can be reduced to a s1ng1e equation for

(1) s
(5+ 5 ) 6.0 =20 (1= 1(6.0) - Mt

26.0)= [ B(t.a,0)ilt,0)do,
i(t,0)=0, (0,a) =io(a),

4.2:5)

where
B (t,a,0) —k(t a,0)0(t, o)

is a given time-periodic transmission kernel. i
It is obvious that system (4.2.5) always has the trivial disease-free steady state i = 0. The main interest of this
chapter is to investigate the existence and uniqueness of a nontrivial endemic periodic solution of system (4.2.5).
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4.3 Abstract formulation

Although the mathematical well-posedness of the initial-boundary value problem (4.2.5) is well known ([11], [36]),-
here we sketch a method to show it for the readers® convenience. Note that we can reformulate system (4.2.5) as
 an abstract Cauchy problem in Banach space E := L! (0, ).
Let us define a linear operator 4 : D(4) CE — E as

(40) (@) == —0(),

\ 4.3.1)
DA)={p€cE: pcW"(0,0), ¢(0)=0},

where W11(0, @) denotes the set of absolutely continuous functions on (0, ). Let C be a closed convex set defined
by '
Ci={pecE.:0<p(a)<lac}, (4.3.2)

where £, denotes the positive cone of E. Let us define family {F (¢,")},5¢ : C C E — E of nonlinear bounded
operators as ’

Ft, <p) (@) :=2[,al ol(1-9(a))—v(,a) @ (a), - (433)
where ’
rial oli= [ B0,0)0(0)do.
Then system (4.2.5) is reformulated as a semilinear nonautonomous Cauchy problem
d

Ei(t) =Ai(()+F (t,i(t)), i(0)=ig (4.3.4)

inE. Itis easy to see that operator A4 is the infinitesimal generator of a Cy-semigroup {etA } /> defined by

(€“9) (a) = {q,(a_t), izz | (43.5)

on E. Here note that although (4.3.5) is not defined for ¢ = a, it does not matter since ¢ (0) = 0 always holds for
o €D(4).

From (4.3.5) we immediately have e‘A (C)cc.

Using the fact that y and 8 are bounded above and the same kmd of argument as in [11], it is easy to show that
the following holds:

Proposition 4.3.1. F(¢,-) : C — E is Lipschitz continuous for any fixedt € R... There exists a constant o € (0,1)
such thatif ¢ € C, then ¢ +0F (t,¢) € C.

Using o appeared in Proposition 4.3.1, we can rewrite problem (4.3.4) as :
d . 1y, 1, Ny oy
i (j) = (A - a) it)+ = (@) +aF (i), i(0)=ip. (4.3.6)

Now we are in position to look for a mild solution i € C of (4.3.6), which is given by the solution of integral
equation

i) = e SteMig + — / RN [ (5) 4 aF (s,1(s))} ds. 43.7)
Equation (4.3.7) provides the following scheme for the standard iterative procedure for obtammg mild solution
ieC: p 0=, | :
(1) = e e ig + — / Bl (7 (5) 4 ooF (5,1 (s))}ds, n=0,1,2,--

Since it is easy to see that C is invariant with respect to the iteration process, that is, "t! € Cif i € C, accordmg
to the argument in [11, 36], we can prove the followmg theorem ([36]): '
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Theorem 4.3.1. Let iy € C. Then, abstract Cauchy problem (4.3.4) has a unique mild solution i(t) = U (¢,0)io in
C, where U (t,5) ,t > s > 0 defines an evolutionary systems with the following property:

Uls,s) =1, U(@t,0)U(o,s)=Ul(t,s), U(t,s)(C)CC,

Ut,s)u<Uft,s)v, if u<w

4.4 Existence of an endemic periodic solution

In this section, we investigate the existence of an endemic 7-periodic solution of system (4.2.5). Let X7 be the set
of locally integrable T-periodic E-valued functions with norm"

T T (o
lolle = [ Hloiledt = [ [“lo(t,0)ldaar,
and X7 1 beits positive cone. Let Qr be the state space given by
Qr={peXr;: 0<o(,a)<1 ae.}. 4.4.1)

If an endemic T-periodic solution i* € Q7 \ {0} of system (4.2.5) exists, it satisfies

(5+35) " 0.0 =2 (@)1~ (.a) = V60 (),

2 ()= [ *B(t,4,0)1" (1,0)do, (44.2)
#(2,0) = .
Integrating the first equation of (4.4.2) along the characteristic lines, we have k
| #(t,d) = / A (t—a+0,0)e SN tmatpp)rH-atopp g (44.3)
0 ;

Note that if a time-periodic E-valued function A* {z,-) is glven i*(t,a) calculated from (4.4. 3) is differentiable
along the characteristic line ¢ — a = const., that is, it follows that

Di*(t,a) = A* (t,0) (1 —i* (6,@) — ¥, )" (1,a), (4.4.4)
where operator D is a directional derivative defined by

(Df)(t,a) 1=%i_r)r(1) f(t-l-h,a—l—hh) —f(t,a)'

In the following, we look for a time-periodic solution of (4.4.2) in a weak sense such that the differential
operator J; + d, is interpreted as the directional derivative D. If we assume differentiability of parameter ﬁ the
weak solution becomes a classical solution.

Substituting (4.4.3) into the second equation of (4.4.2), we have

{1 o G % ‘
A*(1,a) :/ B (1, 0-)/ A*(t—c+p,p)e Bl (t—c+n,n)+7(t—c+n,n)]dndpdo.
—/ / B (t a,6) A% (t — 7,0 — 1) e~ Jo-A* =otnm+yi-o+nmlin 4o
_/ / B (t,a,0)A* (t —7,6 —T)e” 5 @~g,0- C)+yt—§cr O]dCdeG

:/ / B (t,a,0)e Rl _§’0‘5)+}”*(‘_C’“”§)]dck*(Z—T,O'—'c)dddr.
0 Je &
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Define a nonlinear positive eperator
@ () (2,a) :=/ / B (t,a,0)e o Mt=60-E)re(-C.0-0)dl o, (; _ 7 6 —1)dodT (4.4.5)
0 Jr

on Xr. Then if ® has a nontrivial fixed point 1* = ® (1*) in X7 \ {0}, there exists an endemic T-periodic solution
*in Qr \ {0} in a weak sense. In fact, if there exists such a fixed point A* = ® (A*) € X71. \ {0}, then from (4.4.3)
we easily see that i* >0, 1" # 0 and

i (t,a) = / (A (t —a+0,0)+y(t —a+0,0))e ot t-atpp)T1li-atp.p)ip 4
- J0
_ / Y —a+0,0)e S t-atpp)tHatp pldp s
0

= 1 — e~ J§A* (t—atp.p)+rli—atp.p)ldp _ /a y(t—a+06,0) e‘fg[l*(t—a+P,P)+7(t—a+P:P)]dpdg <1.
0

Hence i* € Qr \ {0} and it satisfies (4.4.2) in the weak sense. Therefore in what follows, we 1nvest1gate the
existence of a nontrivial fixed point A* of operator ® in Xr + \ {0}
Let us define a positive bounded linear operator

a 10} T - .
(o) (1,a) := / / B(t,0,0)e i 1t-80-08 o _ 1 6 _c)dodr, ¢ e X, (4.4.6)
0 T

which is the Fréchet derivative of operator @ at ¢ = 0 and it is a majorant of @, that is ® < K. Without loss of

generality, we can assume that § is uniformly bounded above, so ® and K define maps from the positive cone of

X7 into itself, . :
Let p (K) be the spectral radius of operator K. Our main purpose here is to show the following proposition.

Proposition 4.4.1. Suppose that p (K) > 1. Then operator ® has at least one nontrivial fixed point )L* d(A*) e
- Xra \{0}.

For the proof of this proposition, we prepére two lemmas. The first one is as follows.
Lemma 4.4.1. The operator ® is monotone nondecreasing on Xt and ® (@), ¢ € Xr . is uniformly bounded.

Proof. From (4.4.5), we have

. ] c ' k .
2)00) = [ B6a,0) [ {9(-T0-1) 47,0 -n)e HolLo-DHLo0NE drg
) 0

/ ﬁ(l a O')/ (t._»r c— T)e fo oit-{,0- C)+’Y( -¢,0— C)dngdO'

/wﬁ(fya,o') (I—e s ( —{.o-0)+y(t— Ca C)dC)
0

(4] (e ’ T .
—/ B (t,a,d)/o Y(t—1,0 —1)e o P60 EHN—C0-0dl 4rge. (4.4.7)
0, T ‘
Then @ is monotone nondecreasing. Moreover, from (4.4.7), we have
ra
o(9)(60) < | B(1,0,0)d0 <k,
—Jo

where kt :=supk < +oo, which is well defined by Assumption 4.2.1. O

Now we make the following techinical assumption, which is needed to ensure compactness of the fixed point
operator and its derivative:
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Assumption 4.4.1. For the transmission coefficient k, it holds that

T ro :
, ;in(l)/ / k(z —I—h a+h,6)—k(t,a,0)|dadt =0 uniformly for o € [0, 0] " (44.8)
— _ . -

Lemma 4.4.2. Under the Assumption 4.4.1, zf p (K) >0, it is a positive eigenvalue of K associated with a positive
eigenvector vg € Xr 4 \ {0}.

Proof. First we show that K is regarded as a compact operator on L' ([0, 7] x [0, ®])). Observe that X is a linear
map from Xr into itself leaving the cone invariant, and we have '

® o .
(Ko) (t,a) / / B(t,a,6) e~ B1-Eo-08 o, _ 5. 6 — 7)dodr
0 Jr .

o o1 T
/ / B (t,a,7+x)eJo =700l o (4 _ 7 x)dxdr
o Jo

I

—t+s 5 ' ' ’ .
- / / B (t,a,t — s +x) e~ B H=Cimst=0 o (¢ ) duds. (4.4.9)
, o ‘
If we extend the domain of parameter as B {¢,a,6) = 0 for (a,0) ¢ [0, ®] x [0, @], we can rewrite (4.4.9) as

Ke)(t,0) = [ ["Blesar—saye B He-bimstr 0L g (5,2 dxds,
—e0 JO
—nT
/ / = 0/ n+1

—nT ) ‘ s .
[ [ Bleaims e i S i g g

Note that
and -

—(n+1
f(;—s+(11+l)T 7

T rw ) _
- /O/OB(t,a,t—s+(n+1)T+X)e

T ro
= //‘I’(t,a,i‘—s-l—(n—l—1)T,x)(p(s,x)dxds,
0 Jo .
where ¥ is defined by ’

t=C=strt )T 4x-0048 o (s (n+1) T,x) dwds

» ¥ (t,a,z,%) := B (t,a,z+x) e Jo Ve tx=0)dl ' (4.4.10)
According to [6], we define '

Y W(t,a,t—s+nT,x) for t>s,
¥ (1,a,5,x):=¢ "0 (4.4.11)
Z‘I’(t,a,t—s-l-nT,x) for ¢ <s.

n=1

Then W is well defined, because the right hand 51de is a finite sum due to the fact that ‘Y(t a,z) =0forz > .
Then it follows from (4.4.9) that

(Ko) (ca) = /0 ! /0 “ 9 (1,2,5,%) @ (5,%) dxds.

Hence, we can regard K as an operator on L! ([0, 7] x [0, ®]). From (4.4.8) and the well-known compactness
criteria in.L! (see, for instance, [98], p.275), we see that K is compact. Since X is positive, linear and compact, it
follows from the Krein-Rutman theorem ([52]) thatif p (K) > 0, itisa pos1t1ve eigenvalue of K a55001ated with a
positive eigenvector % € L} ([0, T] x [0, w]) \ {0}. That is

(KTo) (t,a) = p (K) Vo (t,a).

Hence it is easy to see that there exists a periodic elgenvector vo in X7 4\ {0} of K, which is associated with
eigenvalue p (K) and is the periodization of . O
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Using the above two lemmas, we prove Proposition 4.4.1.

Proof of Proposition 4.4.1. 1t follows from Lemma 4.4.2 that for vector vy € X7+ \ {0} we have

(Kvg) (t,a) = p (K)vo (¢, ) / / (t,a,5,%) vo (s,x) dxds. (4.4.12)

Hence, we have - ‘ . , ,
' p (K)o (1,a) S‘I’+Ilvo||XT, (4.4.13)

where ¥t := sup ¥ (£,a,5,x) < oo. Let

K)1 :
2= P4 2}2“2’)’ & )”v:r'XT € Xr \ {0}, | Ga

whose positivity follows from p (K) > 1. Then, from (4.4.12)-(4.4.14), we have

(I)Ubo) (tl,a) — /0“’ /[wﬁ (t)a,O_)e—fJY(f—€,a—C)+M(t—C,G—C)d;AO(t_T’G_T)deT
> /Ow /we_fé"lo(t—C,G—C)dCB (t,a,0) e~ R W=50-04 4 (1 5 —1)dodr
- T
- /m/w _E'J:Tgﬁ)v(ffﬁfo P QU—C)dCﬁ(t a G) ~Ji 60030 (1~ 1,0 - ’L’)dod'r
> egl"g;(K)'(Klo)(t,a) .

2o (t,a).
Hence, from the monotonicity of operator ® proved in Lemma 4.4.1, we can define a monotone sequence as
A =@ A1), <M< <A<

From Lemma 4.4.1 we see that A, is bounded above. Therefore, it follows from B. Levi’s theorem that there exists
A* € X1, \ {0} such that limy—. A, = A* and A* = ®(1*). O

From Proposition 4.4.1 and the arguments stated in the above, we immediately have the following proposition: v

Proposition 4.4.2. Suppose that p (K) > 1. Then, system (4.2.5) has at least one endemic T-periodic weak solu-
tion.

4.5 Uniqueness of an endemic periodic solution

Next we investigate the uniqueness of endemic T -perlodlc solution. For our purpose we add the following as-
sumptions: .

Assumption 4.5.1. There exists a positive number € > 0 such that k(¢,a,0) > € for all (¢,4,0) € Rx Ry xR;.

Biologically speaking, we assume that transmission can occur between every susceptibles and infecteds. In
order to prove the uniqueness result, we prepare a following lemma:

Lemma 4.5.1. If an endemic T-periodic solution i* € Qr \ {0} satisfying (4.4.2) exists, there exist numbers 0 <
o1 = o (%) < 0 = 0p(i*) such that on < A* < 0y for the force of infection A* corresponding to i*.

Proof. Leti* bea periodic solution of (4.4.2). Observe that

eV () <A*(t,a) KTV (2).
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where

= /w 0(t,a)i*(t,a)da
0

Then ¥ (¢) is the prevalence (proportion of infecteds) at time 7, and it is clear 0 < ¥ < 1. To complete our proof, it
is sufficient to show inf,cg V' (¢) > 0. Without loss of generality, we can assume that V(t) 1S a positive, continuous

periodic function, since
=—— | I'(t,a)da
N(t)/o (.4)

where I*(t,a) = P*(¢,a)i*(¢,a) is a periodic solution of the original system. Then its global minimum is nonneg-
ative. If there exists a time # such that ¥ () = 0, then /*(f,a) = 0 for almost all a € [0, @], which implies that
i*(t,a) = 0 for all ¢ > #, by the uniqueness of solution. This is a contradiction, so the global minimum of ¥ (¢) is
positive. v ' a

Lemma 4.5.2. Let A* be the force of infection corvesponding to a periodic endemic classzcal solution i*. For a -
number x € (0, 1) there exists a positive number n( *) > 0 such that

®(<2Y) (La) > KB (M) (1, a)—l—n ; 5.1)

PI‘OOf From equation (4.4.5), we have

w0 rw T : T % .
& (KA*) (¢,a) — k@ () (1,a) = / / B(t,a,0)e S 10-60-04 4+ (¢ g 5 — 1)~ ST A" t=Gi0-0)4¢
0 T )

% (e(l—x)fJ A (e=C,0-0)dl _ 1) dodt

w o]
>exoy (i*)/ dce(t,o)/ e (r o)t (e(l“")“” - 1) dr,
0 o
where y* :=supy < . Then if we define

n —sxal(z*)/ doolt, 0')/ (vt +on)r < (-xjen _ 1) dr,

thenn = n(z*) is positive. This completes our proof. , U
" Proposition 4.5.1. The basic system (4.2.1) has at most one endemic T -periodic classical solution.

Proof. Suppose that there exist two endemic periodic classical solution. Let A" and A be corresponding force of
infections. From the above lemma, there exist positive numbers a;x = a(i7), (J,k = 1,2) such that

O<aj <Af(ta)<ap, j=1,2. ~ 4.5.2)

From inequality (4.5.2) we have ‘ .
. Al > oq1 = 1105, 00 > 00105, A5 (4.5.3)

Let «:=inf{n : A} = nA;}. Then x > 0 follows from inequality (4.5.3). Suppose that k& < 1. Then it follows
from the above lemma that there exist positive numbers 17 and 1, such that

D(xA}) > k@ (A]) (t,a)+nj, j=1,2.
Therefore, from Lemma 4.4.1 and the fact that A= CID(M‘) (j = 1,2), we have
AT =@ Af) > @ (kA3) 2 k@ (A3) + 12 = KA; + 1205, 02 > KA +1200, 43 = (K+ 1m0y ) A5,

which contradicts the deﬁmtlon of k. Thus, we have x > 1 and Af > KkAS > A, Exchangmg the role of A and
A3, we can prove Ay > A" Therefore, A = A and hence i} = 7}. O
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4.6 Global stability of the disease-free steady state

- In this section, we investigate the case where p (K) < 1. First it is easy to see that under the subcritical condition
p (K) < 1, system (4.2.5) does not have any endemic T-periodic solutions. In fact, if we assume that there exists an
endemic 7-periodic solution * € Qr \ {0}. Then we see that operator & has a nontrivial fixed point 2* = ®(1*) €
X, \ {0}. Then we have 1* = ®(1*) < KA*, which implies p (K) > 1.

As is shown in Theorem 5.6 of [59], we can expect that if system (4.2.5) does not have any endemic T-periodic
solutions in Q7 \ {0}, then the disease-free steady state i* = 0 of system (4.2.5) is globally asymptotlcally stable
in region Q7. In fact, we have the following proposition.

Proposition 4.6.1. Suppose that p (K) < 1. Then, the dzsease free state i* = 0 of system (4.2.5) is globally asymp-
totically stable.

Proof. Instead of (4.2.5), let us consider a linear system as

‘9 0 @
5+ 50 )t = ~tapea) + [ Bla,00)do,
dt  da 0
¥, 0) 0, »(0,a) = io(a).
Then it is easy to see that 0 < i(z,a) < y(¢, a) Integrating along the characteristic line, we obtain an expressmn

(t a) _ fO fo"y( —a+z.z)dzB( a+0 G)do’ . fas 0,
e~ firoa—tto)doj (g 1)y 4 | e‘faY(” ‘+Z)dZB(cr a—t+6)dd a—t>0.

where ®
B(t,a) := /0 B(t,a,0)y(t,0)do,

is the density of newly. 1nfecteds in the linear phase of the normahzed system. Inserting the above expression of y
1nto the definition of B and changing the oreder of integrals, we have a renewal equation:

B(t,a) = G(t,a) + / an / B(t,a,0)e~ H—xo-Adip(, _p n)dc

where ° '
G(t,a) = / B(,a,0)e b 1E0— 4 (5 _Nds, 0<t< o,
St ‘

and G = 0 for ¢ > @. Define a time-periodic operator ¥ acting on L! (0, w) as
(FemAN@ = [ Blea)e BT f(o n)do,
we arrive at an abstract renéwal equa_’tion for Zl -valued functions: | , |
B =6(0)+ [ ¥,mB¢—m)an,
where B(t) = B(t,-) € L!, etc. Then we note that the operator K on X7 is expressed as

Ko)ta) = [ (¥ Mot —m,)@dn, o Xr,

which is a kind of next generation operator introduced by Bacaér and Guemaom ([5D). Let us introduse a Laplace
transform of ¥ by

(&E)o)(t,0) = / (W m)p(t—n, ) (@dn.

Using the periodic renewal theorem ([85] [45], [46]), we can conclude that there exists a perlodlc (vector-valued)
function @g(¢) such that B(r) ~ € @o(t) as t — oo, where @q is a positive eigenfunction of K(ry) associated
with eigenvalue p(K(ro)) = 1. Therefore if p(K) = p(K(0)) < 1, the Malthusian parameter rq is negative, we
have lim;_. B(f) = 0. Therefore we have 11m,_>r,° y(t,a) = llmt_mz(t a) = 0, which shows the global asymptotic
stability of the disease-free state. ; . O
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4.7 The basic reprodﬁction number %,

Here let us introduce the basic reproduction number %y for the periodic SIS epidemic system (4.2.1) to discuss
the relation between % and the threshold parameter p(K). Originally, the basic reproduction number is defined
as the average number of secondary cases produced by a typical infected individual, introduced into a completely
susceptible host population, during its entire period of infectiousness. In this definition, the host population is
assumed to be in a demographic steady state ([18], [19]).

Recently, the definition of the basic reproduction number has been extended so that it can be applied to the
case of time periodic environments ([5], [6], [45], [46]). However, even in this extended definition for periodic
environments, the Malthusian parameter of the host susceptible population is assumed to be zero. ’

If the Malthusian parameter of host susceptible population is not zero, we have to distinguish two cases of
the growth of infected population, absolute growth and relative growth. Based on the general theory of % in
a time-heterogeneous environment ([46]), we can calculate the basic reproduction number for a small group of
infecteds invading into a growing susceptible population. However, the ratio of infecteds to the total population
can go to zero if the growth rate of infecteds is less than the Malthusian parameter of the total population (relative
eradication). Therefore we can define another threshold parameter which determines whether the ratio of infecteds
can increase or not.

First let us introduce the basic reproduction number % as a threshold value for absolute growth of infected

-population. Let y(¢,a) be a perturbation from the disease-free per51stent solution (P*(¢,a),0) of (4.2.1). Then the
linearized system around the persistent solution is written as

(% * ai> Y(t,0) =2(0,0) — (1(1,0) H(z,a)»(t,a),

© 4.7.1)
Wt.a) = [ 6(,a)k(t,a,0)(t,0)do,
0 \
where v(¢,a) denotes the density of newly infected individuals in the linear invasion phase.
Integrating the first equation of the linearized system (4.7.1) along the characteristic lines, we have
y(t,a) = / “y (t—a+0,0) o~ I8lu(-asn )4 r(e—atnmling s - (47.2)
; 0 . ;
Substituting (4.7.2) into the second equation of (4.7.1), we have
® c . \ d
v(t,a) :/ 9(t,a)k(t,a,c7)/ V(t—0'+P>P)e_fp le=otnmytre=oinn) Tdpdo
0 0 .
0 o : . .
= / / 0(t,a)k (1,a,0)v(t — 7,0 — 7)e~ Jo HE=4.0=O)+r(e-C.0-0l 4547 (4.7.3)
0o Jr ' ,

= /Ow /Tm 0(t,a)k (t,a,0) e B IBE-40-O+1-L0-0dy (1 5 rydodr.
Let us define linear operator 4 (¢,7) from E = L! (0, ) into itself as
(A(t,7)0) (a) := /Tm e(t,é)k(t,a, o) e‘.fOT[“("C’“_C)+7("C*°"¢)dc(p (6—1)do.
Then (4.7.3) can be written as an abstract homogeneous renewal equatlon
e = [ Al mve-1) @ e
From the periodic renewal theorem ([85], [45)), v(¢, ) is asymptotically propomonal toan exponent1a1 solution

e'w(¢). The Malthusian parameter ry is a real root of the characterlstxc equation p (4 (z)) =1, where A(z),z€ C
is a linear operator on Xr defined by )

AR = [ e De( -,

0
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and w € Xy is a positive eigenfunction of A(ro) associated with the positive eigenvalue unity. Therefore the sign
relation sign(ry) = sign(p (4 (0)) — 1) holds.
Based on the above observation, % in a periodic environment is defined by the spectral radius of the next
generation operator, denoted by K7, on the space of periodic vector-valued functions X7 ([5, 45]):

(Kr0) () 1= AO)9)O) = [ 46D p(-7dr, pet.

We know that 'KT is a positive operator from Xr . into itself: .
| 0] @
(&Ko) (6,a) = 6(1,a) / / k(t,a,0)e~ FWE-Lo-0e-Lo-O1 o (1 & t)dedr. (4.7.4)
- 0 Jr .
© As is shown in [46], %y = p (K1) gives the asymptotic per generation growth factor of infected population. Now

we can establish a following relation between %y = p(Kr) and p( ):

Proposition 4.7.1. Suppose that Ky and K are compact positive operators. Then it holds that Zo > p(K) if r > 0,
RZo=pK)ifr=0and %y <p(K) ifr <0. S

Proof. Define a formal multiplication operator L: v — qy on Xr, where ¢ € X7 is given by
q(t,a) =€ P*(t,a) = e "b(t — a)e” S Hlt=Ea=E)dE

Then we have - , ’
((BrL)w)(t,a) = il (t z / / (t,a,0)e I RE—E0-E)+ri=C.o-0)ldg (t—T o— r)w(t—r o —1)dodr,

where we can observe that
g(t — 1,6 — 1) = e "D P, o)elo H=Eo=0)dL

Therefore we obtain a formal relation that

(D0 =gt [ [ Ko ) FHe-to-D i 209 y(i—1,0- riaoa.

Therefore we have L™Ky L > Kifr >0, LKL =K if r =0 and L7IKpL < K if r < 0. Since p(L~ 1KTL)
p(Kr) = %y, we arrive at the conclusion. . O

Note that_ if K and K7 are semi-nonsupporting compact operators, we can apply the comparison theorem by
Marek ([71]) to obtain a more sharpe sign relation as

sign(r) = sign(%o — p(K)).

If 7 = 0, that is, the Malthusian parameter of the host susceptible population is zero, the threshold value p (K)
coincides with the basic reproduction number %, so we do not need to distinguish absolute growth and relative
growth (in the normalized system) of infected population, and we obtain an endemic threshold result that there
exists a unique periodic endemic state if %, > 1, while the disease-free periodic state is globally stable if % < 1.
As is mentioned above, if r > 0, there is a possibility that p(K7) > 1 > p(X). In this case, the size of infected
population increases, but the proportion of infected population to the total population decrease. On the other hand,
ifr <0and p(Kr) <1< p(K), the proportion of infected population can increase, although the size of infecteds
decreases. :

4.8 Numerical examples
In this section, ‘providing some numerical examples, we verify the validity of our results obtained in the previous

sections. To simplify, we consider the case where parameters f(¢,a) = f (a) and U (t a) = (a) are only age-
dependent, y(¢,a) = y1s constant and & (¢,a) = k(¢) is only time-periodic.
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4.8.1 Calculation of threshold values

In the case of time-independent and age-dependent vital rates /' (a) and u (a), from the strong ergodicity theorem
“(see, e.g., [35, 37]), we have
e~ e~ fO ulp)dp

6 (t,a) fow o—rag— félﬂ(p)dpda

=:6(a),

where r denotes the Malthusian parameter as in the previous sections. Hence, operators K and Kr are given by

(K@) (t,a) // e"” (t—7,0—1)dodr ‘ 4.8.1)

and . o 0 0
(Kro) (t,a) = k(t) 68 (a) / / e—foﬂ(“—QdC—YT(p(z—r,o—r)dadr, (4.8.2)

respectively, where @ € Xr. Since the right-hand side of (4.8.1) is independent of a, the spectral radius p (K) is
obtained by solving the eigenvalue problem

p (K) v / o (v(t—t)de, veXy, 4.8.3)

where :
¢ (1) :=/ 0 (o)do eV . (4.8.4)

Moreover, since

(0]

(K7v8) (¢,a) = k()6 (a) /0 ? ( L e(o_f)e.—f(fuw-odcdc) ey (1 - 1) dr,

we see that the basic reproduction number %, = p (Kr) is obtained by solving the eigenvalue problem
Bov () = k(1) / 0> (D)v(i—7)dt, veXr, , (4.8.5)
0
where

. a) - . i )
¢ (1) = /9(0 T)e—fou(c—C)dche—yr

O'—T d
/ Hp)de o= I culp)p 45 o~ 7F
fo e~—Tag— fo u(p)dpda

/ 0 (c)do 17 ~ B 48.6)

In what follows we consider the transmission coefﬁcient with form k(¢) = p{1+gcos(2nt/T)}, where p > 0,
0 <g<landT >0. Thus, using the method of [7], we can compute p (K) as the largest real root of

2/4
p¢(K) Ti=Rem - /4
b0 LT o) _ U4

where ®
1= p/ $1 (1) e_i277£"1d’r, n=0,1,2,--,
0 X

and % as the largest real root of

Zo q*/4
P T/ N
’ 2,1 Gy _1_d*4
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(a) Total infected population j (¢) = 100 i(t,a)da versus time ¢ for (b) Total infected population j(z 100;‘ t.a)da versus time ¢ for
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Ty = p (K) = 1.07921 > 1 Ry = p (K) = 0.949708 < 1

Flgure 4.2: Solution behavior of] @) = [{%i(t,a)da for Zy = p (K) ~1.07921 > 1 (left) and Zo ~ p (K) =~
0.949708 < 1 (right)

where g
@ —i%Epg
¢2,,,:=p/0 ;p(t)e'T"dr, n=0,1,2,---.

~ Asin[7], both of them-are easily obtained by ﬁsing the backward iteratii}e algorithm

Xi X

Zypi=——1, zp:= ’il——, i=12, k=nn-1,--,2,

Ot Zk

where x; = p (K) and x; = %o. From (4.8.4) ahd (4.8.6), we see that if » = 0, then ¢; {7) = ¢, (1) and hence
p (K) = Z,. This coincides with the statement of Proposition 4.7.1.

4.8.2 Caser=0 ,

In what follows, we fix 1 (a) = (a—30)? x 104, y= 0.2, @ = 100 and vary f(a) and k(¢). First we set

1 ) a—15

15,4

fla)= 6.09923“’( 30 n>, a € [15,43],
O’ otherwise

and k(#) = 0.25(1+0.8cos?). In thlS case we have r ~ 0 and Pro~pro~1. 07885 and Z ~ p (K) ~1.07921 >
1. From Propositions 4.4.2 and 4.5.1, we can expect that system (4.2.5) has a unique periodic solution with period-
27. In fact, (a) of Figure 4.2 exhlblts a solution j (t,a) = fo % (¢,a) da converging to a periodic solution.

Next we change & (¢) to 0.22 (14 0.8cost). In this case, we have @19 ~ ¢ ~ 0.949388 and %y ~ p (K) ~
0.949708 < 1. Hence, from Proposition 4.6.1 we can expect that the discase-free steady state of system (4.2.5) is
globally asymptotically stable. In fact, (b) of F1gure 42 exhlblts a solution j (¢,a) = fo z(t a)da convergmg to
the disease-free steady state 0. ;

483 Caser>0
Next we change k (¢) to 0.25 (1 +0.8cos¢) and f(a) to

1.2 a—15
' - € [15,45
Fla)= 3 sin ( 30 TC>, a€[15,45],
0 otherwise.
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0, Zp ~ 0.973365 < 1 and p (K) ~ 1.04627 > 1

1In this case, we have 7~ 0.0239891 > 0. Hence, from Proposition 4.7.1, we can expect that Zy > p (K). In fact, in
this case, we have ¢1 9 ~ 1.0865 > 0.981739 ~ ¢ o and % ~ 1.08716 > 1 > 0.982352 ~ p (K). This inequality
particularly implies the absolutely increasing but relatively decreasing infected population (see Figure 4.3).

4.8.4 Caser<0
Finally we change k (¢} to 0.23 (1 +0.8 cos?) and f'(a) to

1 -1
@)= Esiﬁ(%n), a e [15,45],

0, otherw15e

In this case, we have r~ —0.016387 < 0. Hence, from Proposmon 4.7.1, we can expect that %y < p (K). In
fact, in this case, we have ¢ 9 ~0.973187 < 1.04609 =~ ¢ 9 and Z; ~ 0.973365 <1 < 1. 04627 ~ p (K). This
inequality particularly implies the absolutely decreasing but relatively increasing infected population (see Figure
4.4). :
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4.9 Discussion

In this chapter, we have formulated an age-structured SIS epidemic model with periodic parameters, and studied
the existence of a threshold value which can determine the asymptotic behavior of the model. We have proven that
for normalized system (4.2.5), the spectral radius p (K) of the linear operator K plays the role of a threshold for the
global asymptotic stability of the disease-free steady state and the existence of a unique endemic periodic solution,
that is, if p (K) < 1, then the discase-free steady state of system (4.2.5) is globally asymptotically stable, while if
p (K) > 1, then system (4.2.5) has a unique endemic T-periodic solution i* # 0. This is the first endemic threshold
result for age-structured periodic epidemic models based on % defined by Bacaér and Guernaoui.

We strongly believe that not only for SIS epidemic models but also for SIR and SEIR age-structured periodic
epidemic models, our method might be applied and so the endemic threshold principle will be established under
most general conditions by using %, defined by Bacaér and Guernaoui.

On the other hand, the reader should note that Hethcote ([29]) studied the non-structured SIS model ‘with
periodic coefficients and showed that the disease-free steady state is globally asymptotically stable in the subcritical
case, while there is a unique positive periodic solution in the supercritical case, which is globally asymptotically
stable. Howevet, this simple dichotomy is only partially true for periodic SIR models. The global stability may be
lost when %, > 1 because there may exist subharmonic solutions ([80]). In such a case, the main problem is to
understand for which class of models the global stability holds. - :

For our age-dependent case, the global stability of the endemic periodic solution * for p (K) > 1 has been left
as an open problem. The corresponding global stability result obtained in [59] is limited to the case of vertically
transmitted diseases (the proportion € of newborn offspring of infective parents who are themselves infective is
positive). This implies that their stability result can not be directly applied to our case. However, on the contrary,
if our result can be extended to the case of vertically transmitted diseases, their result may be apphed to show the
global stability result. This is also a future task.

In section 4.7, we have shown that if the Malthusian parameter » equals to zero, then our threshold value p(K)
equals to the basic reproduction number %y, while if it is not, then p (K) # %o and this causes possibilities of the
relative growth in the sense of percentage of infecteds, but absolute decay (or, vice versa) of infected population. -
This fact suggests us that in the situation where we estimate the long-time behavior of infected population using
a threshold value, we have to pay attention on the host population growth. For age-dependent, autonomous en-
demic models, the effect of the host population growth on %, was considered in [42], [43] and [44], although %,
introduced in [42] and [43] was not the basic reproduction number, but the threshold value p(K) of the normalized
system .
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