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Introduction

1. Asymptotic analysis of Bergman kernel

Bergman kernel is classically defined as the reproducing kernel for the Hilbert space
of square integrable holomorphic functions. More specifically, given a bounded domain
Q2 C C" the orthogonal projection to the space of L?-holomorphic functions P : L#(Q) —
A%(2) has the integral representation:

(Pf)(2) = / K (z,w) f(w)dw,

and we call K(z,w) Bergman kernel. Restriction to the diagonal B(z) := K(z,z2)
is called the Bergman kernel function. Bergman kernel plays a role to control the
space A%() and it has been widely studied in the area of several complex variables.
Asymptotic analysis of Bergman kernel in this classical setting focus on the boundary
behavior of this kernel function. The celebrated result of Fefferman shows that there is
the asymptotic expansion with respect to a boundary defining function R(z):

B(z) = F(2)R(2)™ ' + G(z)log R(z).

In this paper we investigate the corresponding phenomenon in the compact manifold
case. There is no holomorphic function over a compact complex manifold except con-
stants. The next natural object for the function theory is line bundles over X and
their global sections. In fact the famous Kodaira embedding theorem tells that if L ad-
mits a smooth Hermitian metric (with a local description e~¥) having strictly positive
curvature dd° then the section ring

o0
R(L) := P HO(X, L®)
k=0
recovers X. Given a Hermitian metric e % and a positive volume form dV', we may also
define the Bergman kernel with respect to the norm

sl s= [ 1sf*eea

Then the asymptotic analysis in this setting studies the behavior of Bergman kernels
as k — oo. The results of Tian, Catlin, and Zelditch assure that these Bergman kernel
functions admit the asymptotic expansion with respect to k:

B(2) = ap(2)k™ + a1 (2)k™" 1 +-- -,

provided the metric of the line bundie has strictly positive curvature (see [5] for detail,
especially on the relation with the domain case). More recently, the degenerated (in
the sense of curvature positivity and smoothness of the metric) case was intensively
studied by many authors.
In this paper we further aim to develop the above asymptotic analysis of Bergman
kernel to the family of subspaces Wy, C H°(X, L®) such that @,-, W} forms a subring
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3
of R(L). In other words, we consider the graded linear series Wy, satisfying Wy, - Wi, C
Wiy for any k, k' > 1. Our subspace-generalization is motivated by many geometric
applications. Let us show some examples.
Example 1. (Examples of graded linear series)
(1) Let a C Ox be an ideal sheaf. The family of subspaces

Wi == H%(X, L% ® o)

defines a graded linear series.
(2) Assume that X is a closed subvariety of a compact manifold Y and L is defined
over Y. Then the family of subspaces defined by

Wy, := Im[ HO(Y, L®*) — H(X, L®|x) ]

forms a graded linear series.

(3) Let (X, L) be a test configuration of a polarized manifold (X, L) and ¢ be a
parameter for the base C. For each s € H(X, L®) we denote the unique
meromorphic extension of s by 5. Then for each A € R

Wiy = { s € HY(X,L®) | + ™5 e HO(X, £®'°)}.

defines a graded linear series of (X, L).

In Part 1 (which corresponds to the paper [9]), we give an integral representation of
the volume function A
. m Wy
(W) :=1 —
vl = e T
specifying the leading term of the asymptotic expansion for general graded linear series.
This is given by the following equilibrium type metric whose definition is originated from
Siciak.
Definition 2. For a given graded linear series W C R(L) and a smooth metric e™% on
L, we define the equilibrium weight by

1 N .
Py := sup {Elog lo]? |k>1, o € W4, sup lo|? e < 1.}.

Then e fw¢ defines o singular Hermitian metric on L with the curvature current
dd° Py, semipositive.

Monge-Ampeére product (dd®Py )" is well-defined on the bounded locus of Py ¢ and
we denote the zero-extension to X by MA(Pw ).

Theorem 3. Let X be a smooth complex projective variety, L a holomorphic line bun-
dle, W C R(L) be a graded subring such that X --+ PW; defines a birational map onto
its image. Then we have

vol(W) = /X MA(Pi).



This completely generalizes the results of [4] and [2] where they treated with the case
W = R(L). Our proof is based on the Fujita type approximative Zariski decomposition
for graded linear series, which was exploited in [12], [13], and [7]. For the restricted case
(Example (2)), we may give a much detail study for the convergence of the Bergman
kernels thanks to the L?-extension theorems for subvarieties. This is the main part of
the author’s master thesis [8]. See Part 4.

2. Existense problem of constant scalar curvature Kihler metric

The main part of the present paper is Part 2, which corresponds to the preprint [11].
In this part we give a geometric application of the above study for subspace version of
Bergman kernel. We apply Theorem 3 to the family of graded linear series associated
to a test configuration of a polarized manifold (appeared in Example (3)).

Let (X, L) be a polarization of a smooth complex projective variety. As an analogue
of Kobayashi—Hitchin correspondence for vector bundles it has been conjectured that
the existence of a constant scalar curvature Kéhler metric (cscK metric in short) in the
first Chern class of L is equivalent to certain stability of (X, L) in the sense of geometric
invariant theory. The expected notion of stability was first explored by Tian and later
Donaldson gave the purely algebraic definition of K-stability. K-stability is detected by
the following datum of degeneration. We call it a test configuration and denote by 7.

(1) A Hat family of schemes with relatively ample Q-line bundle 7: (X,£) — C
such that (X1, £1) ~ (X, L) holds.

(2) A C*-action on (X, £) which makes m equivariant, with respect to the canonical
action of C* on the target space C.

For each k > 1 test configuration induces the C*-action p : C* — Aut(H%(Xp, LE¥))
which decomposes the vector space as HO(Xp, L§*) = @D, Vi such that p(1)v = ™0
holds for any v € V, and 7 € C*. By the equivariant Riemann—-Roch Theorem, the total
weight w(k) = Y, Adim V), is a polynomial of degree n + 1. The Donaldson—Futaki
invariant of given a test configuration is defined to be the subleading term of

w(k)

= Fy + Fik~t 4+ O(k™?).
hdim H0(%, £o9) — To T FikT + 0T

Definition 4. A polarization (X, L) is said to be K-stable (resp. K-semistable) if F; < 0
(resp. Fi < 0) holds for any non-trivial test configuration. We say (X, L) is K-polystable
if it is K-semistable and F; = 0 holds only for product test configurations.

Conjecture 5. (Yau-Tian—Donaldson) A polarized manifold (X,L) admits a cscK
metric if and only if it is K-polystable.

The stability part was recently proved by Donaldson, Stoppa, and Mabuchi. That
is, the existence of cscK metric implies K-polystability of the polarized manifold. This
is based on Donaldson’s lower bound estimate of the Calabi functional, which was first



proved in [6]:

w2 (ddP0)™ N\ _ R
S, —52(—) S
(/X( o =5 Tl

where dd°p is an arbitrary Kéhler metric and S, is its scalar curvature with mean value

8. The norm ||7]| is also introduced by Donaldson and defined as the leading term of
the asymptotic expansion:

Y (A =N?dimVa = || TP k™ + O(k™).
A
It is immediate from the inequality that the existence of cscK metric dd°p (such that
S, = S) implies K-semistability.

One of the guiding principle to solve the existence part is variational principle over
the space of Kéahler metrics. Let us identify a positive curvature metric e on L with
its curvature Kéhler metric w := dd°p on X. Then the space of Kéhler metrics H
consists of all positive curvature metric h = e¢™¥ on L, endowed with the canonical

Riemannian metric .
- 2 (dd°p)™\ 2
full = [ 228

which is defined for any tangent vector u at ¢. There is the canonical K-energy func-
tional M : H{ — R defined by its difference:

smip) = - [ (8- 880,

such that any cscK metric is characterized as a critical point of this energy. This
K-energy is known to be convex along any smooth geodesic ray in H hence it is impor-
tant to investigate the gradient of the energy at infinity along a given geodesic ray ¢
(t € [0,40)). On the other hand, Phong and Sturm ([14]) established that any test
configuration 7 with fixed metric ¢ canonically defines a weak geodesic ray ¢, emanat-
ing from . They further conjectured that the Donaldson-Futaki invariant should be
given by lim; ;o %M(cpt) if the latter one is properly defined for the weak geodesic ray.
Thus we obtain a picture to prove the existence of a cscK metric.

Notice that in the above picture the asymptotic moments of eigenvalues for C*-action
(Fo, F1,|IT,-..) played a central role. From this point of view, in the present paper
we further study asymptotic distribution of eigenvalues

A

Here 4, denote the Dirac delta function centered at A € R. The point is that given test
configuration one can relate the family of graded linear series

Wi = éw)\,k < éHO(X,L@c)

as in Example (3). Just as R(L) recovers X, W), recovers (X, L) and the parameter A
describe the degeneration to the central fiber. In fact one can show that the limit of



6
spectral measures is given by the Lebesgue-Stieltjes measure of vol(W)) as follows:

!
% Z d) dim V), = —d vol(W,).
A

This is still an algebraic formula, however, applying Theorem 3 we obtain an analytic
quantity on the right-hand side. Moreover, by [15] the Legendre transformation trans-
late the family of equilibrium metric Py, ¢ to the weak geodesic ray ¢, such that the
canonical Duistermatt—-Heckmann measure finally appears.

Theorem 6. Let us fix a test configuration T and a smooth metric e=% of L. Denote
the associated weak geodesic ray by ¢, and identify its tangent vector with the right
derivative ¢; : X — R. Then the sequence of spectral measure converges to the push-
forward measure ($:)« MA(:). That is,

! . .
% Y 6ndimVa — ($e). MA(ps) (K — o0)
A

holds in the sense of measure convergence. In particular the right-hand side is indepen-
dent of t and .

The theorem was first conjectured and proved for the product test configurations
by Witt Nystrom ([16]). It can be also regarded as a variant of equivariant Chern—
Weil theory ([1]) for the polarized family whose central fiber possibly be very singular.
Letting ¢ — oo corresponds to the degeneration of manifolds to the central fiber and
from this reason we may regard the right-hand side as the canonical Duistermatt—
Heckmann measure. Taking the second moment of the measures we immediately obtain
the analytic interpretation of the Donaldson’s norm.

171 = ([ (- roP AR

From this, we may give a natural energy theoretic explanation for the Donaldson’s
lower bound of the Calabi functional. Moreover, one can define any p norm ||77, by
the LP norm of the tangent vector and expect that the similar inequality also holds. In
fact in the Fano case combining Theorem 6 with [3] we obtain:

Theorem 7.

Theorem 8. Let X be a Fano manifold. For any Kdhler metric w € ¢1(—Kx), take
a function h such that Ric(w) — w = dd°h and [, (e" — 1)w™ = 0 hold. Then for any
conjugate exponent p,q with 1/p+1/q =1 we have

1
h qw“)“ F
et —1" — >
(/X' ") 2T

Our approach using Bergman kernels of graded linear series is itself new and should
be studied more in the future. Applications to another type of graded linear series
appearing in geometry are also expected. In Part 3 (corresponds to [10]), we treat with
the restricted case (Example (2)) and give some application to the extension problem
of semipositive curvature metric.
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Part 1

On the volume of graded linear series and Monge—-Ampere mass



ON THE VOLUME OF GRADED LINEAR SERIES AND
MONGE-AMPERE MASS

TOMOYUKI HISAMOTO

ABSTRACT. We give an analytic description of the volume of a graded linear series,
as the Monge—-Ampére mass of a certain equilibrium metric associated to any smooth
Hermitian metric on the line bundle. We also show the continuity of this equilibrium
metric on some Zariski open subset, under a geometric assumption.

1. INTRODUCTION

Let L be a holomorphic line bundle on a smooth projective variety X. A graded
linear series of L is a graded subalgebra W of the section ring R = @,,, H*(X, L®*).
In this paper we study the following invariant which plays a fundamental role in the
asymptotic analysis of graded linear series.

Definition 1.1. We denote the dimension of X by n. The volume of a graded linear
series W is the nonnegative real number defined by

. dim Wk
vol(W) : hgi* Sup - Tal

This is known to be finite. The limit of supremum is in fact limit for sufficiently
divisible k from the result of [KK09]. In case W is complete, i.e. W = R, vol(R) is
nothing but the volume of the line bundle vol(L) which is a birational invariant of L and
widely studied. We refer to Chapter 2 of [Laz04] for the basic facts. Analytic studies
of the volume of line bundles were initiated by [Bou02] and [Ber09]. For a general
graded linear series, [KK09] and [LM09] originally systematically studied properties
of the volume by relating it with the Okounkov body of W. Proper subalgebras of R
naturally arise in many interesting situations of algebraic geometry (see e.g. Example
3.3 or 3.4 below) and it is necessary to develop asymptotic analysis of graded linear
series.

In this paper we study the volume for a general graded linear series from the analytic
point of view, succeeding to the spirit of previous work of Boucksom, Berman and
many other authors. We work over the complex number field C. The main result is
an integral representation of the volume via the Monge—Ampere product of a certain
singular Hermitian metric on L, called the equilibrium metric, which is determined
by W with any fixed smooth Hermitian metric on L. In what follows we identify a
singular Hermitian metric A and its local weight function ¢. They are related by the
identity h = e~ which holds in each local trivialization patch of L. We also identify

2000 Mathematics Subject Classification. Primary 32J25, Secondary 32W20, 32A25, 14C20.
Key words and phrases. graded linear series, volume, Bergman kernel, Monge-Ampére operator.
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10 TOMOYUKI HISAMOTO

a holomorphic section ¢ € H°(X, L®*) with the corresponding function on each local
trivialization patch and denote by |o| the absolute value taken for the function. For
detail, see Section 2.

Definition 1.2. Let h = e™¥ be a smooth Hermitian metric on L. For each k > 1, we
define a singular Hermitian metric hy = e~%* by

1
P = sup {E loglo|® | 0 € Wi, sup|o]®e™ < 1.}.
b'e
The equilibrium metric of h with respect to W is the (possibly) singular Hermitian
metric defined by its weight:

Py = (Sl;p @)
Here we denote the upper-semicontinuous envelope of a function f by f*(x) := limsup,_,,, f(y).

The formulation of equilibrium metric here is originated from Siciak ([Sic62]) and
[Ber09] introduced the corresponding idea for line bundles to investigate the asymptotic
of related Bergman kernels. Roughly speaking, Py ¢’s epigraph is the W-polynomially
convex hull of ¢’s epigraph. Py ¢ is a plurisubharmonic function on each trivialization
patch provided W is non-trivial. That is, the curvature current dd®Py ¢ defines a closed
positive current on X. On the bounded locus of Py ¢ one can define the Monge-Ampére
product (dd°Py )" in the manner of Bedford—Taylor. Further, the trivial extension of
(dd°Pyw )™ defines a positive measure MA(Py-¢) which has no mass on any pluripolar
subset of X. This kind of measures is called non-pluripolar Monge—-Ampére product and
studied by [BEGZ10]. In particular, it was proved that MA(Py¢) has finite mass over
X. The following is our main theorem.

Theorem 1.3. Let X be a smooth projective variety and L a holomorphic line bundle
on X. Let W be a graded linear series of L such that the associated map X --»
PW}: is birational onto its image for any sufficiently divisible k. Then, for any smooth
Hermitian metric h = e™%® on L, the Monge—-Ampére mass of the equilibrium metric
Py gives the volume of W. That is,

vol(W) = / MA(Pwy)
b
holds.

This formula enables us to investigate the positivity of W locally in X and it might
be helpful for lower bound estimate of vol(W) in the future. Theorem 1.3 is a natural
generalization of the results in [Bou02], [Ber09], [BB10], [BEGZ10], and [His12]. Note
that the birationality assumption is necessary for general W # R (see Remark 4.3).
Moreover, thanks to the currently available technology, the proof in the present paper
get much simpler than the previous ones, even in the case of complete graded linear
series. On the other hand, our approach is rather algebraic relying on the result of
[KK09], [LM09], [Jow10], and [DBP12] and does not give much information about
Bergman kernel asymptotics as [Ber09] or [His12]. In particular, the following regularity
problem is open.
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Question 1.4. In the situation of Theorem 1.3, Py has Lipschitz continuous deriva-
tives on some non-empty Zariski open subset of X ?

In the complete case W = R this is proved by [Ber09]. It also holds for the restricted
linear series, by [His12]. See also [BD09]. Such a regularity is the key to analyze the
asymptotic of Bergman kernels. For a general graded linear series, we may show the
following at the present.

Theorem 1.5. In the situation of Theorem 1.3 let us further assume that W is finitely
generated and Proj W, which gives the image of the associated rational map X --» PW}}
for k sufficiently divisible, is normal. Then Py @ is continuous on some non-empty
Zariski open subset of X.

The organization of this paper is as follows. In Section 2 and 3 we will give some pre-
liminary materials, from the analytic and the algebraic viewpoints. We prove Theorem
1.3 in Section 4. Section 5 will be devoted to the proof of Theorem 1.5.

2. MONGE—-AMPERE OPERATOR

In this section, we briefly review the definition and basic properties of the Monge—
Ampere operator.

Let L be a holomorphic line bundle on a projective manifold X. We usually fix a
family of local trivialization patches U, which cover X. A singular Hermitian metric h
on L is by definition a family of functions h, = e™¥= which are defined on corresponding
U, and satisfy the transition rule: pg = @, — log |gag|* on U, N Us. Here g, are the
transition functions of I, with respect to the indices o and 8. The weight functions
©o are assumed to be locally integrable. If ¢, are smooth, {e~%=}, defines a smooth
Hermitian metric on L. We usually denote the family {¢,}, by ¢ and omit the indices
of local trivializations. Notice that each ¢ = ¢, is only a local function and not globally
defined, but the curvature current ©; = dd°p is globally defined and is semipositive if
and only if each ¢ is plurisubharmonic (psh for short). Here we denote by d° the real

differential operator -2=2-. We call such a weight a psh weight. The most important
4dmy/—1

example is those of the form k= log(|oy|® + - - - + |on|?), defined by some holomorphic
sections oy,--+ ,on € HO(X, L®). Here |o;| (1 < 7 < N) denotes the absolute value of
the corresponding function of each o; on U,. We call such weights algebraic singular.
More generally, a psh weight ¢ is said to have a small unbounded locus if it is locally
bounded outside a closed complete pluripolar subset S C X. A singular Hermitian
metric h = e™% is said to have strictly positive curvature if dd° > w holds for some
Kahler form w.
Let n be the dimension of X. The Monge-Ampeére operator is defined by

¢ = MA(p) := (dd°p)"

when ¢ is smooth. On the other hand it does not make sense for general ¢. The
celebrated result of Bedford-Taylor [BT76] tells us that the right hand side can be
defined as a current if ¢ is at least in the class L*NPSH(U,). Specifically, by induction
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on the exponent ¢ = 1, 2,...,n, it can be defined as:
/ (dd°p)? A= / @(dd°p)*™ A dd°n
Ug, Ua

for each test form 5. Here | denotes the canonical pairing of currents and test forms.
This is indeed well-defined and defines a closed positive current, because ¢ is a bounded
Borel function and (dd°p)?~! has measure coefficients by the induction hypothesis.
Notice the fact that any closed positive current has measure coefficients. Bedford—
Taylor’s Monge-Ampeére products have useful continuity properties:

Theorem 2.1 ([Ko05], Theorem 1.11, Proposition 1.12, Theorem 1.15.). For any se-
quence of bounded psh weights, the convergence of Monge—Ampére products

(dd%p)™ — (dd°p)™
holds in the sense of currents if it satisfies one of the following conditions.

(1) ¢x is non-increasing and converges to ¢ pointwise in X.
(2) @ is non-decreasing and converges to @ almost everywhere in X.
(3) ¢ converges to ¢ uniformly on any compact subset of X.

It is also necessary to consider unbounded psh weights. On the other hand, for our
purpose, it is enough to deal with weights with small unbounded loci.

Definition 2.2. Let ¢ be a psh weight of a singular metric on L. If ¢ has a small
unbounded locus contained in an algebraic subset S, we define a positive measure
MA(p) on X by

MA(¢p) := the zero extension of (dd°p)".
Note that the coefficient of (dd°p)” is well-defined as a measure on X \ S. O

Actually (dd°p)™ has a finite mass so that MA(¢y) defines a closed positive current
on X. For a proof, see [BEGZ10], Section 1.

Remark 2.3. In [BEGZ10], the non-pluripolar Monge—Ampeére product was defined in
fact for general psh weights on a compact Kéhler manifold. Note that this definition
of the Monge-Ampere operator makes the measure MA(p) to have no mass on any
pluripolar set. Roughly speaking, MA(yp) ignores the mass which comes from the sin-
gularities of ¢. For this reason, as a measure-valued function in ¢, MA(¢p) is no longer
continuous. This also applies to MA(Py¢) and one of the technical point for us to
prove Theorem 1.3. O

We recall the fundamental fact established in [BEGZ10] which states that the less
singular psh weight has the larger Monge-Ampeére mass. Recall that given two psh
weight ¢ and ¢’ on L, ¢ is said to be less singular than ¢’ if there exists a constant
C > 0 such that ¢’ < ¢+ C holds on X. We say that a psh weight is minimal singular
if it is minimal with respect to this partial order. When ¢ is less singular than ¢’ and ¢’
is less singular than ¢, we say that the two functions have the equivalent singularities.
This defines a equivalence relation.
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Theorem 2.4 ([BEGZ10], Theorem 1.16.). Let ¢ and ¢’ be psh weights with small
unbounded loci such that ¢ is less singular than ¢'. Then

/ MA(¢) < / MA(yp)

b's b's

holds.

Remark 2.5. It is unknown whether Theorem 2.4 holds for general psh weights. a

3. THE VOLUME OF A GRADED LINEAR SERIES

First we introduce the suitable class of graded linear series to handle with the volume.
Let W = @k>o W be a graded linear series. For each k, W, defines a rational map
fr: X ——» PW} unless W, = {0}. Here W}} denotes the dual vector space of Wj. Notice
that the image of a rational map is defined to be the projection of the graph.

Definition 3.1. We call a graded linear series W birational if the associated map
fe: X ——» PW is birational onto its image for any sufficiently divisible k.

This notion is introduced by [LMO09] (see Definition 2.5). If the line bundle L is
big, the graded linear series R = @,., H°(X, L®*) is complete and by definition is
birational. Thus the notion of birational graded linear series is a natural generalization
of the complete linear series of a big line bundle. A line bundle L is known to be big if
and only if its volume is positive, i.e. vol(L) > 0. This is why we concentrate on the
class of big line bundles in the study of the volume. It is also true that the volume of a
birational graded linear series is positive (see [LM09], Lemma 2.6 and Theorem 2.13),
but the converse does not hold.

Example 3.2. Let f: X — Y be a finite morphism to a projective variety and fix an
embedding Y < PN. Then W, := f*H°(Y, Oy (k)) defines a graded linear series with
positive volume. But this is not birational unless deg f = 1.

The difference seems subtle at first glance, however in fact the class of graded linear
series with positive volume is much harder to treat than the class of birational graded
linear series. See Remark 3.8. To emphasize the significance of the generalization to
non-complete linear series, let us describe some examples of birational graded linear
series.

Example 3.3. Let Y be a smooth projective variety and L a holomorphic line bundle
defined over Y. We assume that X is a closed subvariety of Y. The family of subspaces
defined by
Wy = Im[ H°(Y, L®*) — H(X, L®|x) ]

is called the restricted linear series. The volume voly x(L) := vol(W) is called the
restricted volume. If X is not contained in the augmented base locus B, (L) of Y
(for the definition, see [Laz04], Definition 10.3.2), W defines a birational graded linear
series. For restricted linear series, the author investigated the asymptotic of related
Bergman kernels in [His12] and obtained Theorem 1.3 as a corollary. The point is that
in this special case we can prove Question 1.4 thanks to an L?-extension theorem for
the subvariety X.
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Example 3.4. Let a C Ox be an ideal sheaf. The family of subspaces
Wi := HY(X, L% @ oF)

defines a graded linear series. Here a* denotes the integral closure of a*. There exist a
modification p: X’ — X and an effective divisor F on X’ such that a-Ox: = Ox:(—F)
and by definition @ = p,Ox/(—F) hold. Hence we have W;, = u, HY(X', p*L® @
Ox:(—kF)). In particular, W is birational if and only if y*L ® Ox/(—F) is big. If we
assume further p* L@ Ox+(—F) is ample, Theorem 1.3 follows from the results of [Ber07],
Section 4. It seems not so hard to extend these results to the case when y*L® Ox:(—F)
is big, along the same line as [Ber07].

Example 3.5. Let X := P? L := O(1), and W := C[X,Y,Y Z, YZ%,...,YZ, .. ]
(¢ > 1) be the graded subalgebra of the homogeneous coordinate ring C[X,Y, Z]. It is
then easy to see that Wj, is base point free and the natural map X — PW} is birational
onto its image for each k. However, W is not finitely generated C-algebra.

Study of the volume of birational graded linear series was first taken by [KKO09]
and [LMO09]. They used the theory of Okounkov bodies to derive the log-concavity of
the volume and the following type of Fujita’s approximate Zariski decomposition. It
motivates our study and will play the central role in the algebraic part of the proof of
Theorem 1.3. See also [DBP12] and [Jow10].

Theorem 3.6 ([KK09], Theorem 5. See also [LM09], Theorem 3.5 and [DBP12],
Theorem 3.14.). Let W be a graded linear series with vol(W) > 0. Then for any e > 0
there exists a number £y such that

lim
k—+00 krer /n!
holds for any £ > £,.

> vol(W) —¢

We will use the following consequence which is equivalent to Theorem C of [Jow10],
to prove Theorem 1.3.

Proposition 3.7. Let W be a birational graded linear series. For each k let puy: Xy —
X be a resolution of the base ideal b(Wy) such that u;'b(Wy) = O(—Fy) holds for some
effective divisor Fy, on Xy. Define the line bundle on X, by My, = u; L% @ O(—F,)
and denote the self-intersection number of the globally generated line bundle My by Mp.
Then it holds that M

vol(W) = lim —£

k—oo k7

Here k runs through sufficiently divisible numbers.

Proof. Let us first assume that W is finitely generated. In that case there exists some
£ such that for each k the natural map S*W, — Wy, is surjective. Then composing
with inverse of the Segre embedding to the image, the induced PW}, — PS*W; maps
the image of X --+ PW}, onto the image of X --+ PW} isomorphically. Let us fix
such ¢, and denote the image of the natural map f: X --» PW} by Y. Notice that
Y is isomorphic to Proj W, which is well-defined since W is finitely generated. We
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also denote the image of the natural map gi: X --+ PHO(X}, My)* by Z;. Then for
any k divided by ¢ the linear projection PH®(Xy, My)* --+ PW} composed with the
above isomorphism between the images induces the morphism 7: Zp — Y such that
the following diagram commutes.

Xk——%-*Zk
ukl lwk
X-->Y
f

Here 7y, o gx gives a resolution of f for Xj. By the definition of 7, we have ’R'ZOY(%) =
Oz, (1). Taking ¢ sufficiently divisible, we may further assume f is birational so that
7y is also birational. Therefore we obtain

k k
vol((’)y(z)) = VOl(’IT;:Oy(z)) = vol(Oz,(1)).
The left hand side gives k" vol(W) and vol(Og, (1)) = M} so we conclude vol(W) =
k=" M} in this case.
In general, Theorem 3.6 reduces the proof to the case where W is finitely generated.
Let us explain it. For each £ set W]ge) = Im[S %Wg — Wy if k is devided by £ and

otherwise set nge) := {0}. Then W defines a finitely generated graded linear series of
L. Applying the above argument in the finitely generated case, we obtain vol(W®)) =

k

¢~ Mp. Note that u, gives a resolution of b(W,g[) ) for any k so that be ¢ = 3 L% ®

0(—%}7[) corresponds to W,ge). Then for any ¢ > 0 sufficiently divisible ¢ assures
vol(W) > vol(W®) = £ M} > vol(W) —e.

This ends the proof. O

The reduction to the finitely generated case is the critical step to prove Theorem 1.3
and the idea comes down to the proof of Theorem 3.6. See also [Itol2] for a similar
argument.

Remark 3.8. In the above proof, the assumption W is birational is crucial. For general
W, m, possibly has degree greater than one and Proposiion 3.7 does not hold. In fact
in Example 3.2, the right hand side in the proposition gives deg f times of vol(W).

4. PrROOF OF THEOREM 1.3

Let us prove the main theorem of this paper. In the sequel we fix the notation as in
the statement of Theorem 1.3. Recall that ¢y is a singular metric on L defined by
1
oo S

o € Wy, sup|o?e ™ < 1.}.
X

By compactness of the unit ball in Wy, this defines a psh weight. We claim that
has algebraic singularities described by b(W},), the base ideal of Wj,. To see this we will
compare @y, with the corresponding Bergman kernel weight which is defined as follows.
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Fix a smooth volume form dV on X. Set the L2-norm by ||a||,2w = [ |o|*e*dV and
introduce the Bergman kernel weight vy as

1
ug(x) ;= sup {Elog lo(x)]® | 0 € Wy, and IIJIIiv < 1.},

for any x € X. It is then easy to see that

(lim sup ug)* = Pwe

k—o0

holds. In fact, we obviously have

lollz, < / dV - sup |of* e
X X
and by the mean value inequality

lo(@)|* < C; sup ||y,
B(x;r
holds for any sufficiently small ball B(xz;r) in a local coordinate.

If one fix any orthonormal basis of W with respect to the above L?norm, say
{01,...0x}, then it is easy to see that uy = k™ 'log(|o;|> + - - - + |on|?) holds. Thus ¢y,
also has algebraic singularities described by b(W}).

Now by the definition of F} there exists a smooth semipositive (1, 1)-form v € ¢; (M)
such that

dd°puy, = dd°pik ™ log(lou[* + - - + low|*)
=k (v + [F))

hold. Here [Fy] stands for the current defined by the divisor Fy. Since M is a globally
generated line bundle we have M} = [ 7" and the non-pluripolarity yields k™"9" =
MA (pjur) on X. Therefore by Theorem 2.4 we obtain

(1) enag = [ MAGiu) = [ MAGer).
X b's
On the other hand, we have Py @ = (sup; ¢x)*, and the sequence ¢y is essentially
increasing, in the sense that ¢ < g if k& divides . As a consequence, the sequence
of 1y 1= o is non-decreasing, and it converges in L!-topology to Py . We conclude
using;:

Proposition 4.2. Let 95, be an non-decreasing sequence of psh weights with small
unbounded loci on a big line bundle L, and assume that ¥ — 1 in the L' topology, i.e.

¥ = (sup, ¥r)*. Then

J Maw) — [ Ma)
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Proof. We have supy, [, MA(¢r) < [x MA(¢)) by Theorem 2.4. On the other hand, if S
is a proper algebraic subset of X outside which 1, is locally bounded, then (dd®)™ —
(dd“y)™ weakly on X \ S by Theorem 2.1, hence

[ MA®) <timint [ MAGH).
]
Theorem 1.3 is now concluded by Proposition 3.7 together with Proposition 4.2.

Remark 4.3. Theorem 1.3 does not hold for general W with vol(W) > 0. To be precise,
taking a resolution of the base ideal of Wy, the right hand side in Theorem 1.3 is given by
limy 00 k™™ M} just as (4.1). As it was explained in Remark 3.8, however, Proposition
3.7 is not true in general so that the equilibrium mass does not give vol(W).

5. ESTIMATE OF THE BERGMAN KERNELS

In this section we give a lower bound estimate of the Bergman kernels to prove
Theorem 1.5. Let us fix the notation as in Section 4. For simplicity, we denote Py ¢
by Pp. The following is the required one.

Proposition 5.1. Fiz a smooth volume form dV on X. Set Ha“i(p = [y o’ e*edV
and

() = sup {  og o (o)

for every x € X. Assume that W is finitely generated, birational, and further ProjW,
which is isomorphic to the image of the associated birational map fi,: X --+ PW] for
any sufficiently divisible k, is normal. Then there exist a proper algebraic subset S such
that a subsequence of uy, converges to Py uniformly on any compact set of X \ S. In
particular, Py is continuous on a non-empty Zariski open set of X.

o €Wy, and ”0“Z¢ < 1.}.

Proof. This has been already known in the complete case by [Ber09] and can be extended
to the present case by pushing the L?-estimate to the image of the map fi: X --» PW}.
We claim for any compact set K € X \ S there exist a constant Cx and a positive
integer ¢ such that

(5.2) Pw—%éukSPw—l—%‘rg

holds for any k divisible by £. The right hand side inequality is obvious. The proof
of the left hand side is essential and it needs some L?-estimate for the solution of a
O-equation.

Denote the image of the map f,: X --» PW; by Y;. By the finite generation, the
canonical map S*W, — Wy, is surjective for any k and sufficiently large £. The restric-
tion of PW}, < PS*W to Y, and the restriction of Segre embedding PW, — PS*W;
to Y, are isomorphic. Thus we have Yz, ~ Y for every k > 1. Let us fix £ and denote
Y, by Y. Denote by Oy (1) the restriction of Opw;(1) to Y. Note that by the Ko-
daira vanishing theorem there exists a number ko such that S*W, = H'(PW;,O(k)) —
HY(Y, Oy(k)) is surjective for any k > ko. We take a modification yu: X, — X such that
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X, is smooth and there exist a decomposition p* |[Wy| = |V|+ E with a free linear system
V and an effective divisor E. Then the map h: X, — Y defined by V equals to uo f.
Fix a standard section of £ and denote it by sg. Given a section s € H°(Y, Oy (k)),
one can push forward h*s ® s% by p, thanks to the normality of X. We denote it by
f*s. This defines a map f*: H(Y, Oy (k)) — Wye. Moreover, since Y is normal by the
assumption, given any o € Wy, one can push-forward p*oc ® s Ek by the birational map
h. We denote it by h.o. Thus we obtain an isomorphism Wy, ~ H(Y, Oy (k)) for any
k.

Taking a resolution 7: ¥ — Y we have a nef and big line bundle 7Oy (1) and an in-
duced birational map f: X --» ¥. The normality of Y deduces Wy, ~ H°(Y, Oy (k)) ~
H° (Y 7*Oy(k)). Here one can also pull-back or push-forward sections by the birational
map f, taking a modification of the source space as above. Further, we can pull-back
psh weights. That is, given a psh weight 9 of a singular metric on 7*Oy (1), we may
push-forward h*y +log Is EI by p thanks to the normality of X. It defines a psh weight
of a metric on L® and we denote it by f*i. Finally, given a smooth weight ¢ the
push-forward f,Py can be defined as follows:

(F-Pe)) = sup*{ g5 108 | o))

This actually defines a psh weight of a singular metric on the Q-line bundle £ 17*Oy (1)
and £f, Py is a psh weight for the genuine line bundle 7Oy (1).

Fix a Kahler form w on ¥ and a psh weight 9 of a metric on 7*Oy (1), such that 3
has algebraic singularity, o < Lo, and dd®y > w hold. Let S be a proper algebraic
subset such that f] x\s is isomorphic and 9 is smooth outside f F(S).

We claim that there exist sufficiently large ¢, C' and a section o, € Wy, foreach k > 1
such that

(1) |ow(@)?e™™P? > C~1 for any x € K, and
(2) llowliZ, < C.
In fact, this implies

k>1, 0 € Wi, and |o]? ™ < 1on X}.

Muke |0'k (x) I C_2€MPSD.
|l0k||kl¢
It then yields the inequality Py — ke < uge which is nothing but the left-hand side of
(5.2). 5
Let us fix ¢ € K and set y := f(z). Then applying the Ohsawa—Takegoshi L2-
extension theorem, for any a € C one can get a holomorphic function g on a small ball
B(y;r) such that ¢g(y) = a and

/ (g% e~ B-DEF-Po=b gy < (O |q|f e~k-DF-Po—w
B(yr)

hold. Let p be a cut-off function supported on B(y; ). Solving the equation dv = (pg)
by Hérmandar’s L2-method, we get a solution v with

/ |2 e~ (=D Po—t—ptnt2)lomlel g1 7 |g2 (k- 1EF-Po—Y,
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Here we take a local coordinate z = (zy, . . . 2,) around y and £ sufficiently large to ensure
the positivity of the curvature of the total weight. Set s:= pg —v € HO(Y,n*Oy(k)).
Then it yields s(y) = a and

'/” Is|2 e—(k—l)ff*ﬁp—"ﬁde <C |al2 e"(k—l)gf*Pso—zﬁ'
Y

We may choose suitable a so that the right hand side equals to C. Finally we set
o = f*s. Then it yields:

(1) low(a)P e~ -Depo-v 1,
g
(2) ||0.k”(k—1)€P¢+f*»¢, < C.
These inequalities respectively correspond to (1) and (2) of the claim. We indeed infer

”aklli&p < “s”%k—l)éPcp+f*1/) <G

On the other hand we may assume e(P*~*¥)®@ < C by the smoothness of 3 around y
so that .
R e T

holds. Here C depends on only ¢ and K. Therefore the claim has been shown to
conclude the theorem. d
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ON THE LIMIT OF SPECTRAL MEASURES ASSOCIATED TO A
TEST CONFIGURATION OF A POLARIZED KAHLER MANIFOLD

TOMOYUKI HISAMOTO

ABSTRACT. We apply the main result of [His12] to the family of graded linear series
constructed from any test configuration. This solves the conjecture raised by [WN10]
so that the sequence of spectral measures for the induced C*-action on the central fiber
converges to the canonical Duistermatt—Heckman measure defined by the associated
weak geodesic ray. As a consequence, we show that the algebraic p-norm of the test
configuration equals to the LP-porm of tangent vectors. Using this result, We may
give a natural energy theoretic explanation for the lower bound estimate on the Calabi
functional by [Don05], extending the statement to any p-norm (p > 1), and prove the
analogous result for the Kahler—Einstein metric.

1. INTRODUCTION

Let X be an n-dimensional smooth projective variety and L an ample line bundle
over X. In the sequel we also fix a smooth Hermitian metric » on L, which has strictly
positive curvature over X. The curvature form defines a Kéhler metric in the first
Chern class ¢;(L). Conversely, any Kahler metric w in ¢;(L) has a Kahler potential
@ in each local trivialization neighborhood such that the correction of e™% defines a
Hermitian metric with the curvature form w = dd®p, uniquely up to multiplication of
a constant. We identify A with the correction of weights ¢ and with w. The space of
Kahler metric H is the set of all h = e™%, endowed with the canonical Riemannian

metric .
—— 2 (dd°p)™\ 2
fulli= [ 2220)

which is defined for any tangent vector u at ¢. There is the canonical K-energy func-
tional M: H — R such that any constant scalar curvature Kahler metric is character-
ized as a critical point of this energy. This K-energy is known to be convex along any
smooth geodesic ray in H and it is important to investigate the gradient of the energy
at infinity along a given geodesic ray ¢; (t € [0, +00)).

A geodesic ray in #H corresponds to a special kind of degeneration of (X, L) in al-
gebraic geometry. A flat family of polarized schemes 7 : (X, £) — C with (X1, L) =
(X, L) and an equivariant C*-action on (X, £) is called a test configuration. We denote
the datum by 7. For each k > 1 let H%(X,, LE*) = @, Vi be the eigenspace decom-
position of the induced C*-action p : C* — Aut(H°(Xy, LE*)) on the central fiber such

2010 Mathematics Subject Classification. Primary 32Q26, Secondary 32W20, 32Q20.
Key words and phrases. stability, constant scalar curvature Kahler metric, graded linear series,
Monge—-Ampere operator.
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that p(T)v = 7*v holds for every 7 € C* and v € V). Then we have the asymptotic
expansion
doaAdim Vy
k Z A dim V)‘

We call the coefficient F; in the subleading term as the Donaldson—Futaki invariant of
T. It was first established by [PS07] that any test configuration 7" with fixed metric
¢ canonically defines a weak geodesic ray ¢; emanating from ¢, in the space of Kahler
metric. (Here for the proof of the main theorem we adopt the construction of [RWN11]
so that ¢, — Fp gives the geodesic ray in [PS07].) In this situation it is now conjectured
that the Donaldson—Futaki invariant corresponds to limy o, S M(p;) if the latter one
is properly defined for the weak geodesic ray. In this paper we further relate the
asymptotic distribution of eigenvalues to ; and give some application to the estimate
for F1. Our main theorem claims that the associated sequence of spectral measures
converges to the canonical Duistermatt-Heckman measure defined by ;. The Monge—
Ampere (or Liouville) measure MA(¢p;) is defined for each singular ¢; and equals to
(dd°p;)™ if @, is smooth (see subsection 2.1).

=R+ Fk™ + O(k™2).

Theorem 1.1. Let T be a test configuration with normal X. Then the weak limit of
the normalized distribution of eigenvalues is given by the push-forward of the Monge—
Ampére measure MA(p;) to the real line by the tangent vector ¢,. That is, for any
t > 0 we have

klggo o Z& dim Vi = (p1)« MA(py).

Here o 3 denotes the delta function for 2 £ € R. In particular, the right hand side measure

is mdependent not only of t but also of ¢, and defines the canonical Duistermatt—
Heckman measure.

Theorem 1.1 was first conjectured by [WN10] and proved for product test configura-
tions in the same paper. The analogous result for geodesic segments was obtained by
[Bern09] in a different approach. Recall that the above definition of F; was motivated
by the equivariant Riemann—Roch formula of [AB84], which can be applied to the prod-
uct test configuration and in that case one has the Duistermatt—Heckman measure on
the central fiber in the usual way. In word of geodesic the central fiber corresponds
to t = oo and our canonical Duistermatt—Heckman measure which is independent of
t gives the right generalization to any test configuration. Then Theorem 1.1 can be
seen as a part of the ideal index theorem for an equivariant family which admits very
singular fiber over the fixed point 0 € C. Taking the p-th moment of the above measure,
we may extend the definition of algebraic norm in [Don05] to any p > 1 and relate it
to the LP-norm of tangent vectors on the weak geodesic ray.

Theorem 1.2. Let us define the trace-free part of each eigenvalue \ as

A=A— ZdlmV)‘
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and for each p > 1 define the p-norm ||T|, by

.1
”T”P = (klggo—k_" Z

A

A

P 7
P dimVA) .

Then the limit exists and

7= ( [ 16~ _M_i('ﬂ)
holds. ~ A

lower bound estimate on the Calabi functional, extending the result to any p-norm
(p 2 1). In particular in the Fano case we obtain the following. Note that when
L = —Kx any metric h = ™% can be identified with the positive measure which is
described as e™¢ /\;;1 @dzi A dZ; in each local coordinate. A metric e~ % is called a
Kéahler-Einstein metric if it satisfies the identity of the measures: (dd°p)" = nle™.

Theorem 1.3. Let X be a Fano manifold and T a test configuration of (X, —Kx),
whose total space X is normal. Then for any smooth Hermitian metric h = ™% on
—Kx and exponents 1 < p,q < +oo with 1/p+1/q =1 we have

nle % _ S F

(ddepyr T, 7 T,
In other word, the difference from Kdhler-FEinstein metric is bounded from below by the
Donaldson—Futaki invariant.

Let us briefly explain the outline of our proof of Theorem 1.1. The proof is based on
the analytic study for graded linear series, which was exploited in [His12]. We apply it
to [WN10)’s family of graded subalgebras

o0 o0
Wy = @WA,Ie c @Ho(x, LE*),
k=0 k=0
which is constructed from 7 and each A € R as follows. For a given section s €
HO(X, L®), let us denote its unique invariant extension which is at least meromorphic
over X by 5. We define W, ;, as the set of sections s whose invariant extensions 5 have
poles along the central fiber Ay = {t = 0} at most —[Ak] order. In other words,

Wi = { s € H°(X, L®)

t~ 15 e HO(X, £®’°)}.

Then it can be proved algebraically that the limit of spectral measures is given by the
Lebesgue—Stieltjes measure of the volume function vol(W)) in A. The main theorem of
[His12] interpret each volume into the Monge—Ampere measure of associated equilibrium
metric Py, . The Legendre transformation of this family of equilibrium metrics is
nothing but the weak geodesic ray ¢; so that we may complete the proof by the recent
developed techniques of pluripotential theory. This new approach via the family of
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graded linear series seems itself interesting and we hope it should be studied more in
the future.

2. ANALYTIC DESCRIPTION OF THE VOLUME

2.1. Monge—Ampeére operator. In this section, we briefly review the definition and
basic properties of the Monge-Ampere operator. Let L be a holomorphic line bundle
on a projective manifold X. We usually fix a family of local trivialization patches
U, which cover X. A singular Hermitian metric A on L is by definition a family of
functions h, = e~%= which are defined on corresponding U, and satisfy the transition
rule: 5 = @, — log| g(,‘ﬁl2 on U, NUg. Here g,p are the transition functions of L with
respect to the indices o and B. The weight functions ¢, are assumed to be locally
integrable. If ¢, are smooth, {e"%=}, defines a smooth Hermitian metric on L. We
usually denote the family {pa}a by ¢ and omit the indices of local trivializations.
Notice that each ¢ = ¢, is only a local function and not globally defined, but the
curvature current ©, = dd°p is globally defined and is semipositive if and only if
each ¢ is plurisubharmonic (psh for short). Here we denote by d° the real differential

operator ﬁ—f—l. We call such a weight a psh weight. The most important example

is those of the form k~1log(]s;|> + -+ - + |sn|?), defined by some holomorphic sections
81, - ,8ny € H°(X,L®%). Here |s;] (1 < i < N) denotes the absolute value of the
corresponding function of each s; on U,. We call such weights algebraic singular. More
generally, a psh weight ¢ is said to have a small unbounded locus if the pluripolar set
¢~ 1(—00) is contained in some closed complete pluripolar subset S C X (e.g. a proper
algebraic subset).

Let n be the dimension of X. The Monge-Ampére operator is defined by

p =+ (dd°p)"

when ¢ is smooth. On the other hand it does not make sense for general ¢. The
celebrated result of Bedford-Taylor [BT76] tells us that the right hand side can be
defined as a current if ¢ is at least in the class L°NPSH(U,,). Spec1ﬁca.11y, by induction
on the exponent ¢ = 1,2, ..., n, it can be defined as:

@@y nni= [ ooy ndiy
Ua

for each test form 7. Here [ denotes the canonical pairing of currents and test forms.
This is indeed well-defined and defines a closed positive current, because ¢ is a bounded
Borel function and (dd®p)?~! has measure coefficients by the induction hypothesis.
Notice the fact that any closed positive current has measure coefficients.

It is also necessary to consider unbounded psh weights. On the other hand, for our
purpose, it is enough to deal with weights with small unbounded loci.

Ua

Definition 2.1. Let ¢ be a psh weight of a singular metric on L. If ¢ has a small
unbounded locus contained in an algebraic subset S, we define a positive measure
MA(p) on X by

MA(p) := the zero extension of (dd°p)™.

Note that the coefficient of (dd°p)™ is well-defined as a measure on X \ S.
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Actually (dd°p)™ has a finite mass so that MA(p) defines a closed positive current
on X. For a proof, see [BEGZ10], Section 1.

Remark 2.2. In [BEGZ10|, the non-pluripolar Monge—Ampére product was defined in
fact for general psh weights on a compact Kahler manifold. Note that this definition
of the Monge-Ampére operator makes the measure MA(yp) to have no mass on any
pluripolar set. In other words, MA(y) ignores the mass which comes from the singu-
larities of 7. For this reason, as a measure-valued function in ¢, MA(¢) no longer has
the continuous property.

We recall the fundamental fact established in [BEGZ10] which states that the less
singular psh weight has the larger Monge-Ampeére mass. Recall that given two psh
weight ¢ and ¢’ on L, ¢ is said to be less singular than ¢’ if there exists a constant
C > 0 such that ¢’ < ¢+ C holds on X. We say that a psh weight is minimal singular
if it is minimal with respect to this partial order. When ¢ is less singular than ¢’ and ¢’
is less singular than ¢, we say that the two functions have the equivalent singularities.
This defines a equivalence relation.

Theorem 2.3 ([BEGZ10], Theorem 1.16.). Let ¢ and ¢’ be psh weights with small
unbounded loci such that ¢ is less singular than ¢'. Then

[ Mae) < [ Mag)
holds.

projective variety and L a holomorphic line bundle on X. Graded linear series is by
definition a graded C-subalgebra of the section ring

2.2. Analytic representation of volume. Let X be a n-dimensional smooth complex

W = ém - éHO(X, L®),

=0 k=0

They appear in many geometric situations. In fact in the present paper we give an
application of the analysis of such proper subalgebras to the problem of constant scalar
curvature Kahler metric. The volume of graded linear series is the nonnegative real
number which measures the size of the graded linear series as follows:

This is finite and in fact the limit of supremum is limit by the result of [KK09]. The main
result of [His12| gives an analytic description of the volume. The analytic counterpart

of the volume is the following generalized equilibrium metric, which is originated from
[Berm07].

Definition 2.4. Let W be a graded linear series of a line bundle L. Fix a smooth
Hermitian metric of L and denote it by h = e~%, where ¢ is the weight function defined
on a fixed local trivialization neighborhood. We define the equilibrium weight associated
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to W and ¢ by

1
Py = sup*{ Elog |s[? > 1, s € Wy, such that |s|®e ™ < 1.}.
Here * denotes taking the upper semicontinuous regularization of the function. The
equilibrium weight Py on each local trivialization neighborhood patches together and
define the singular Hermitian metric on L. We call it an equilibrium metric.

As in the subsection 2.1, we define the Monge-Ampére measure MA(Py ) on X.

Theorem 2.5 (The main theorem of [His12]). Let W be a graded linear series of a line
bundle L, such that the natural map X --» PW} is birational onto its image for any
sufficiently large k. Then for any fized smooth Hermitian metric h = e™% we have

vol(W) = /X MA(Py ).

Note that Theorem 2.5 is valid for general line bundle which is possibly not ample.
We will apply this general formula to the special graded linear series associated to a
test configuration of a polarized manifold.

Remark 2.6. With no change of the proof in [His12], Theorem 2.5 can also be proved
under the assumption Wy, is birational onto its image for any sufficiently divisible k. For
non complete linear series, the condition vol(W) > 0 does not imply that X --» PW}
is birational onto its image for sufficiently large k. For example, when W is defined as
the pull-back of H°(Y, O(k)) by a finite morphism X — Y C PV, vol(W) > 0 holds but
Wi, never defines birational map onto its image for any k. For this reason, neither does
Theorem 2.5 hold for general W with vol(W) > 0. To be precise, taking a resolution
px of the base ideal of W, and denoting the fixed component of uiWj, by Fj, the right
hand side in Theorem 2.5 is given by the limit of self-intersection number of line bundles
My, = L% @ O(—F,).

3. TEST CONFIGURATION AND ASSOCIATED FAMILY OF GRADED LINEAR SERIES

In this section we explain the construction of the family of graded linear series W)
(A € R) from fixed test configuration (X, L), following the recipe of Witt-Nystrém’s
paper [WN10]. First we introduce the notion of K-stability.

3.1. K-stability.

Definition 3.1 (The definition of test configuration by [Don02]). Let (X,L) be a
polarized manifold. We call the following datum a test configuration (resp. semi test
configuration) for (X, L).
(1) A flat family of schemes with relatively ample (resp. semiample and big) Q-line
bundle 7: (X, £) — C such that (X1, £;) ~ (X, L) holds.
(2) A C*-action on (X, £) which makes 7 equivariant, with respect to the canonical
action of C* on the target space C.
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Remark 3.2. As it was pointed out by [LX11], the above original definition by Donaldson
should be a bit modified. For example, if one further assume X is normal, then the
pathological example in [LX11] can be removed. On the other hand, recent paper [Sz11]
proposed to consider the class of test configurations whose norms || T|| are non-zero and
this condition seems more natural and appropriate for our viewpoint. In fact Theorem
1.2 gives one evidence. See also [RWN11]. We assume, however, the normality of X in
proving Theorem 1.1 and 1.2.

By the flatness of 7 Hilbert polynomials of (A}, £;) are independent of ¢ € C. The
C*-equivariance yields an isomorphism (X;, £;) ~ (X, L) for any ¢ € C\ {0}. Note that
the central fiber (Xp, £o) can be very singular. It is even not normal in general. A test
configuration is said to be product if X ~ X x C and trivial if further the action of C*
on X x C is trivial. A test configuration (X, £) induces the C*-action on HO(X,, LE¥)
for each k > 1. This action p : C* — Aut(H°(X,, £8*)) decomposes the vector space
as HO(Xo, L$*) = €D, V> such that p(T)v = 7*v holds for any v € V) and 7 € C*.
By the equivariant Riemann—Roch Theorem, the total weight w(k) = >, AdimV} is a
polynomial of degree n + 1. Let us denote the coefficients by

(3.3) w(k) = bok™ ™ + bik™ + O(k™1).
We also write the Hilbert polynomial of (X, L) by
Nk = dim HO(X, L®k) = aok" + alk"‘l + O(kn—z)

The Donaldson—Futaki invariant of given test configuration is defined to be the sub-
leading term of

k
(3.4) %5\/_: = Fy+ Fik™ + O(k72).
In other word,
by — a1b
(3.5) Fp = 2”0

ap

Definition 3.6. A polarization (X, L) is said to be K-stable (resp. K-semistable) if
Fy < 0 (resp. Fi < 0) holds for any non-trivial test configuration. We say (X, L) is
K-polystable if it is K-semistable and F; = 0 holds only for product test configuration.

This notion of K-stability was first introduced by [Tia97]. The above algebraic def-
inition was given by [Don02]. Note that K-stability is unchanged if one replaces L to
L® since F is so. The equivalence of certain GIT-stability and existence of special
metric originates from Kobayashi-Hitchin correspondence for vector bundles. In the
polarized manifolds case, we have the following conjecture.

Conjecture 3.7. (You-Tian-Donaldson) A polarized manifold (X, L) admits a cscK
metric if and only if it is K-polystable.

One direction of the above conjecture was proved by [Don05], [Sto09], [Mab08], and
[Mab09]. That is, the existence of cscK metric implies K-polystability of the polarized
manifold. See also [Berm12] for the detail study in the Kahler-Einstein case.
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The stability of vector bundle is defined by slope of subbundles and to pursue the
analogy to the vector bundle case, [RT06] studied the special type of test configurations
which are defined by subschemes of X, and introduced the slope of a subscheme.

Example 3.8. A pair of an ideal sheaf J C Ox and ¢ € Q defines a test configuration
as follows. We call such test configuration as deformation to the normal cone with
respect to (J,c): Let X be the blow-up of X x C along J and P be the exceptional
divisor. The action of C* on X x C fix V(J) so that it induces actions on X and P.
We denote the composition of the blow-down X — X x C and the projection to X by
p: X — X. Let us define the Q-line bundle £, on X by L, := p*L ® O(—cP). When
V = V(J) is smooth, P is a compactification of the normal bundle Ny, x. This is why
we call (X, L;) the deformation to the normal cone. Let us denote the blow-up along
J by p: X’ - X and the exceptional divisor by E. The Seshadri constant of L along
J is defined by

e(L, J) = sup{ c

Then we have the following lemma. so that (X, £.) actually defines a test configuration
for any sufficiently small c.

Lemma 3.9 ([RT06], Lemma 4.1). For any 0 < ¢ < &(L,J), L. is a 7-ample Q-line
bundle.

The slop theory of [RT06] was further developed by [Oda09]. We will use it in the
next subsection to compute the associated graded linear series of 7. Consider a flag of
ideal sheaves Jo C J1 C --- C JIn-1 € Ox and fix ¢ € Qs¢. Let us take the blow up
X of X x C along the C*-invariant ideal sheaf

T =Ro+th+ - +t" " Ina+ (1Y)
and denote the exceptional divisor by P and the projection map by p: X — X. Then
X naturally admits a line bundle £ := p*L @ O(—cP). In his paper [Oda09] Odaka
derived intersection number formula of the Donaldson—Futaki invariant for this type of

semi test configuration defined by flag ideals. The point is that any test configuration
can be dominated by the above type of semi test configuration.

p*L ® O(—cE) is a,mple}.‘

Proposition 3.10 (Proposition 3.10 of [Oda09]). For an arbitrary normal test config-
uration T, there exist a flag of ideal sheaves Jo C J1 C -+ C In-1 C Ox andc € Qo
such that T' = (X', L') defined by the flag is a semi test configuration which dominates
T by a morphism f: X' — X with L' = f*L. Moreover, F1(T") = Fi(T) holds.

3.2. The associated family of graded linear series. Let us denote the C*-action
on (X, L) by p: C* — Aut(X,L). For any s € H°(X, L®), it naturally defines an
invariant section 5 € H°(X;.0, L&) by 3(p(1)z) := p(7)s(z) (7 € C*,z € Xizo).
Lemma 3.11 ([WN10], Lemma 6.1.). Let t be the parameter of underlying space C.
For any \ € Z,t5 defines a meromorphic section of L®* over X.

We then introduce the following filtration to measure the order of these meromorphic
sections along the central fiber.
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Definition 3.12. Fix a test configuration (X, L). For each A € R, we define the
subspace of H°(X, L®) by

(3.13) FAH (X, L®) := { s€ H(X,L®) | t N3¢ HO(X,L‘)}.

By definition (p(7)s)(x) := p(7)s(p™'(7)(z)) so it holds (p()3)(z) = p(7)3(p~*(7))(z) =
3(z) i.e. §is invariant under the C*-action. On the other hand, regarding ¢ as the sec-
tion of O we have (p(7)t)(z) = p(T)t(p™ (7)) = p(7)(77 (x)) = 77't(x). Therefore
t~[M3 is an eigenvector of weight [A] with respect to the C*-action. Note that the
filtration is multiplicative, i.e.

FrHO(X, L®*) . FyHY(X, L¥) C Fapnw HO(X, LFHF)

holds for any A\, )’ € R and k,k’ > 0. The relation to the weight of the action on the
central fiber is given by the following proposition.

Proposition 3.14. Let us denotes the weight decomposition of the C*-action by H*( Xy, Lx,) =
@D, Vi. Then, for any A € R we have

(3.15) dim FyHO(X, L®) = " dim V.
A=A

Note that every weight is actually an integer so that each side of (3.15) is unchanged if
one replaces A to [A]. The fundamental fact established in [PS07] is that this filtration
is actually linearly bounded in the following sense.

Lemma 3.16 ([PS07], Lemma 4). For any test configuration (X, L) there exists a
constant C > 0 such that for any k > 1 and X with dim V), > 0,

Al < Ck
holds.
In other words, there exists a constant C > 0 such that
F_opH(X, L®%) = HO(X,L®*) and FerLH(X,L®) = {0}

hold for every k > 1.
Definition 3.17. We set

Ao :=sup {\ | FneH°(X, L¥) = H*(X, L®") for any k > 1} and

X = inf {X | FauH'(X, L®*) = {0} for any &k > 1}.

By Lemma 3.16, \¢ and ), are both finite. Lemma 3.16 indicate us to consider the
graded linear series

(3.18) Wy =@ Wik == P FarHO(X, L)

k=0 k=0
For each A € R. It was shown by [Sz11] that this family has a sufficient information of
original test configuration. A result of [WN10] in fact gives the explicit formula for b.
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Theorem 3.19 (A reformulation of [WN10], Corollary 6.6). Let (X, L) be a test con-
figuration. Then the quantity by is obtained by the Lebesgue—Stieltjes integral of A with
respect to vol(W,). That is,

nlby = — /_ ” Ad(vol(Wy)).

Theorem 3.19 actually follows from Corollary 6.6 of [WN10] by change of variables
in integration. Note that the concave function G[7] on the Okounkov body A(L) in
[WN10] is determined by the property: G[T]™*([\, 00)) = A(W)) where A(W,) C R
is the Okounkov body of W), in the sense of [LM09], Definition 1.15 and that n! times
the Euculidian volume vol(A(W,)) equals to vol(W,). Here however we give a self-
contained proof of the above theorem. Our proof is rather simple than that of [WN10]
which used the method of Okounkov body.

Set the counting function of weights as

(3.20) F) = £V := ) _ dimVy = dim FyH(X, L®).
A2

It is easy to show that fr()) is actually left-continuous and non-increasing function.
Hence the Lebesgue—Stieltjes integral makes sense and

w(k) ==Y AdimV = bok™ + bik™ + O(k™ ™)
A

- — / Z Mf(N) = ~ /_ : kAdf (k)

hold for any k. For any small £ > 0 Integration by part yields

o0 oo 00
— / kAdf (kX) = — [kA f(k)\)] + kf(kX)dA.
—00 Ao—€ Ao—¢€
By the definition of the volume we have
: fkA) _
hirisc}:p Yy vol(W).

If vol(W,) > 0, the limit of supremum is in fact limit for & sufficiently divisible, by
Theorem 4 of [KK09] (or by the proof of Theorem 3.10, Corollary 3.11, and Lemma 3.2
of [DBP12]). Therefore the dominate convergence theorem concludes

o0

’n'bo = ()\0 - €)Ln +/ VOl(W,\)d)\
Ao—€
Thus we obtain Theorem 3.19.

We remark that one of the advantage to consider such graded linear series is to avoid
the difficulty comes from the singularity of the central fiber Xy. On the other hand,
we have to treat with the difficulty comes from the non-completeness of linear series in
this setting.
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Example 3.21. Let (X, £) be the test configuration defined by an ideal sheaf J C Ox
and ¢ € Q as in Example 3.8. Then the associated W) are computed to be:

HO(X, L®) (A< —¢)
W)‘,k — HO(X, [®k ® j[)\k'|+ck) (—C <A< 0)
{0} (A > 0)

for any k. As a result, we have
0
nlbp = —cL™+ | (W*L®O(—(A+c)E))"dA.

In fact thanks to Proposition 3.10 one can compute W), for any test configuration.

Proposition 3.22. For any test configuration T, there exist a flag of ideals Jo C J1 C
-« C In-1 € Ox and c € Q5o such that Wy, can be computed for any A € Q5o and k
sufficiently divisible, as follows:

WA,k = HO(X, L®k) ‘Lf A < —NC,

N(N -1
Wie={0} i A> %c, and
[+ - 251 )k
W)\,k = HO(X> L®k ® '.71‘\:]"7_1;71(\:["7_2 T J]frki.j+1JN_j ! )

if —(N — 113_2—_12)6 <AL =(N - wzllz)c holds for some 1 < j < N.

Proof. Let us take f: X’ — X as Proposition 3.10. Note that f is isomorphic except on
the locus contained in A, whose codimension is greater than 2 in X. Then it is easy to
see that W), for X is naturally isomorphic to that for A”. Therefore we may assume
that X is defined by a flag Jo € J1 C -+ C JIn-1 € Ox, without loss of generality.
Then we have the decomposition

H(X, L%) = HY(X x C,p{L®* @ (Jo +tT + - -+t Tnor + (HY))%)
— ( @ ti1+2i2+...+NiNH0(X, L®k ® %oﬂ1 .. ‘721\7:11 )) ® tNCk(C[t]HO(X, L®k).
fo+iz+-+iy=ck
To compute [Ak]-component of H°(X,, L*), we should solve

i1+ 2ip + -+ - + Niy = —[ k]
o +i 4+ +iy=ck

¢>N20+(N—1)Zl+'+z]v_1 = I_Ak] +NCk

The above equation for (%,...,4y—1) has many solutions but if two solutions satisfy
(05- - -,tN-1) < (Jo, - - -,Jn—1) In the lexicographic order

HO(X, L®k®'joiu 1i1 J;;v_—ll) C HO(X, L®k®._75j°ﬂl J]{rN_—ll)

so that W = H(X, L2*Q@J° J;* - - - J¥=1) holds for the maximal solution (i, . . . ,in_1).
O
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If one take a resolution p: X’ — X of Jy, ..., In-1 and divisors E; (1 <i< N —1)
on X' such that JOx = Ox/(—E;) and E; > E; (¢ < j) hold, it holds that

Wiy =~ HY(X', u* L% @ O(—kE)))
where
A+ (N - 372;11)6
J

The above computation is not so practical but here we obtain the following observation
so that we may apply Theorem 2.5 to W,.

E)\ = CEN_1 +---+ CEN_j+1 +

Ey-j.

Corollary 3.23. If A < A, the natural map X --» PWY, is birational onto its image
for any k sufficiently divisible.

Proof. Note that A, < ]—V—U\;—_llc. Let us first see that p*L ® O(—E,) is big for any
A < X, It is enough to consider the case where there exists a j such that E) is big
for A < —(N - w;'—l))c but not so for A = —(N — w—zﬂz)c Since Ex_j_1 2 En—j
this actually implies E) is not pseudo-effective for A > —(N — wzill)c Let us now
fix a rational number ) such that A < X < A, holds. Then W, contains Wy, =~
HY(X', u*L® @ O(—kEy)) for sufficiently divisible k. Since p*L ® O(—Ey) is big, this
concludes the corollary. O

4. STUDY OF THE WEAK GEODESIC RAY

In this section we apply Theorem 2.5 to each W), constructed from the test configu-
ration to study the associated weak geodesic ray.

4.1. Construction of weak geodesic. One of the guiding principles to the existence
problem of constant scalar curvature Kéhler metric is to study the Riemannian geometry
on the space of Kihler metrics in the first Chern class of L. A result of Phong and Sturm
(in [PS07]) gives a milestone in this direction. They showed that a test configuration
canonically defines a weak geodesic ray emanating from any fixed point ¢ in the space
of Kahler metrics. This builds a bridge between the algebraic definition of K-stability
and the analytic stage where the cscK metric lives. Later it was shown by [RWN11]
that one can also define the same weak geodesic via the associated family of graded
linear series {W,}. Let us now recall their construction. Throughout this subsection
we fix a smooth strictly psh weight (. It will be shown that ¢ and the family of graded
linear series {W,} canonically define the weak geodesic emanating from ¢.

Recall that a family of psh weights v; (a < t < b) is called weak geodesic if U(z,T) :=
Y_10gr|(z) (T € C,e™® < |r| < €7®) is plurisubharmonic and satisfies the Monge—
Ampere equation

MA(¥) = 0.

Here we consider ¥(z,7) as the function of (n + 1)-variables and the Monge-Ampére
operator is defined in subsection 2.1. When each dd®p; is a smooth Kéahler metric, there
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is the canonical Riemannian metric which is defined for a tangent vector u at ¢; by

u? MA(‘Pt) _

2. _
= [ w0

By [Sem92], it is known that MA(¥) = 0 if and only if the geodesic curvature for this
metric is zero.

First note that given test configuration (X, £), the associated family {W5} defines
the family of equilibrium weight Py, . Let us from now write as

’d)A = PW)‘QD°

The first easy observation is that v, is decreasing with respect to A\. As a consequence
of the Bergman approximation argument by Demailly and Lemma 3.16, we have

a=p A< and A, =inf{ A|¢)=—0c0}

Further by the multiplicativity of FyH°(X, L®*) one can see that 1, is concave with
respect to A. The main result of [RWN11] states that the Legendre transformation of
1y defines a weak geodesic ray.

Theorem 4.1 ([RWN11], Theorem 1.1 and Theorem 1.2, Theorem 9.2.). Set the Le-
gendre transformation of ¥y by

(4.2) @ = sup*{¥ +tA [ AE R} for t €[0,+00).

Then ¢, defines a weak geodesic emanating from . Moreover, ¢, — Fy coincide with
the weak geodesic ray constructed in [PSO7].

It is immediate to show that ¢; is a bounded psh weight emanating from ¢ and that
it is convex with respect to t. The geodecity is derived from the maximality of Py, ¢,
that is,

(4.3) ¥y = ¢ a.e. with respect to MA(%,).

And one of the technical point in [RWN11] is to show (4.3). Such property is caused by
the fact that v, is defined as the upper envelopes of sufficiently many algebraic weights.
Note that the inverse Legendre transform maps ; to 1, by

(44) ¥ = inf {@r —tA}

which holds on almost every point on X. Therefore the two curves have the equivalent
information. Fix ¢ € [0,00). By the convexity of ¢; in ¢, the right derivative ¢;(z) is
defined for every x € X. We identify this right derivative with the tangent vector of
the weak geodesic. Moreover, the gradient map relation

(4.5) — (@) + i) = tA

holds almost everywhere if one set A := ¢(z).
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4.2. Proof of Theorem 1.1. Now we prove Theorem 1.1. It was shown in [WN10]
that the push-forward of the Lebesgue measure by the concave function G[7] on the
Okounkov body A(L) gives the weak limit. That is,
. nl :

(4.6) Jim 2; 8¢ dim V3 = nlG[T].(dNaw))-

Recall that G[T] is characterized by its property: G[T]71([\, 00)) = A(W)) where
A(W,) € R" is the Okounkov body of W) in the sense of [LMO09], Definition 1.15
and n! times the Euculidian volume vol(A(W))) gives vol(W,). Therefore it is easy to

observe that the right hand side of (4.6) equals to —d(vol(W))). Then, by Theorem 2.5
with Corollary 3.23, we may reduce the proof of Theorem 1.1 to show

(4.7) ~d [ MAG) = (@), MA(e).

Here we used the assumption X is normal, in order to apply Corollary 3.23. By the
main result of [PS10] ¢; has the C*-regularity so that we can apply Proposition 2.2
of [Bern09]. Then it can be seen that the right hand side of (4.7) is independent of ¢
and the proof is reduced to the case t = 0. Then by basic measure theory we conclude
Theorem 1.1 if for any A € R

(4.8) [ Maw= [ Ma)
X {Po=A}
holds. Or it is sufficient to show
(4.9) [ maw< [Mawy< [ Ma)
{po>A} X {@o=A}

for any A € R. The following lemma is directly deduced from the definition of (.
Lemma 4.10. For almost every point in X, ¢o 2 A holds if and only if ¥y = ¢. In

particular
[ vae= [ A
{po=A} {¥r=y}
holds.

Proof. Let x be a point of X. If ¥5(z) = ¢(x), then

oy (E) — (@) | dalz) + 1A — o(x)
Yo(x) := ugf ; > 2 r Z A

On the other hand, by the Legendre relation (4.4), go(z) > A yields
¥a(z) = inf {s(x) — A}
> inf {tgo(z) + ¢(z) — tA} > ¢(z)

for almost every z € X.
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In the case of Example 3.8, the result of [Berm07] yileds much stronger conclusion
that ) has C'!-regularity on the bounded locus and

MA(9) = liyy=¢} MA(p)

holds. Here, however, we give a proof of (4.9) without the regularity of ¥,. Note that
the set {¢p > A} is open (thanks to the regularity result of [PS10]) and contained in
{¥» = ¢}. It was shown by [BEGZ10] that the Monge-Ampére product is local in the
plurifine topology. Therefore we have

[ maw= [ maw).
{po>A} {po>A}

Then we obtain the one side inequality of (4.9),

R /{ L MAG)

Let us take any € > 0 to prove the converse inequality. Thanks to the maximality
(4.3) we have

IR /{WH} MAG) = [ MAGmax (e <)),

{¥r>p—c}
Note that the set {¢) > ¢ — ¢} is pluri-open. The right hand side equals to

- [ MAmax{ge-c})
{¥a<p—e}
by Theorem 2.3. Therefore we obtain

[Maey <= [ MA@max{ie-e)
X {¥a<p—c}

=L" - / MA(yp).
{¥r<p—e}

If € > 0 tends to 0 then the set {¢)y < ¢ — &} converges to {¥o < A} hence

[ A< [ MA@
X {po=2}
This ends the proof.

Remark 4.11. Note that our Duistermatt—Heckmann measure for singular settings has
continuous density in A < A.. That is, there is a continuous function f(\) such that
~dvol(W,) = f(A)dA holds for A < A.. In fact Proposition 3.22 yields vol(W)) =
vol(u*L @ O(—E,)) and by [LM09] or by [BFJ09], the left hand side has continuous
derivative which is expressed by certain restricted volumes.
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4.3. Norms on the weak geodesic ray. We conclude this paper by discussing some
consequences of Theorem 1.1, which are concerned with the p-norm of test configuration.

Definition 4.12. Fix any test configuration (X, L) of a polarized manifold L. Let
HO(Xo, LE*) = @, V> be the weight decomposition of the induced C*-action. Define
the trace-free part of each eigenvalue as

hy —)\———Z)\dlmv,\

and introduce the p-norms (p € Zyo) of the test configuration by

Qp:=li iz Y dim
p‘_k—?;lok“ > k A

N-—hmiz 5pdi 1%
p._k—mokn S k mVa

Especially in the case p = 2 we denote Q; and N; by Q and ||T|* = ||T]5>. Note
that the limits exist since the summations in the right-hand side can be thought as the
appropriate Hilbert polynomial.

It is easy to see that Q1 = by, N3 =0, Ny = Q2 — %’03, and

1 A bo
S = —
kak °7 a4

These norms are introduced by [Don05] and played the important role in their result
for the lower bound of the Calabi functional. We can obtain the geometric meanings
of these norms in word of weak geodesic ray.

Theorem 4.13. Let (X, L) be a test configuration and ¢, be the weak geodesic associ-
ated to (X, L). Then we have
/ ( )pMA(‘pt)

Proof. By the same argument in the proof of Theorem 3.19, we obtain

nlQp = —/ APdvol(W).

—x0

and

This can be also obtained from the result of [WN10] if one note the volume character-
ization of the concave function G[7] in [WN10]. Taking the p-th moment of the two
measures in Theorem 1.1, we deduce the claim. The formulas for NV, can be proved in
the same way. O
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Let us examine Theorem 4.13. in the case p = 0 it only states that nla, = [, MA(y;)
and this can be easily seen from the definition of the Bedford—Taylor’s Monge—Ampere
product. The case p = 1 yields

X

In other words, the Aubin—Mabuchi energy functional along the weak geodesic is given
by

1
E(es ) 3=/ dt/ ¢ MA (1) = nlbot.
0 X

(For the definition of the Aubin-Mabuchi energy of a singular Hermitian metric, see
[BEGZ10].) This is a well-known result to the experts. For example, the proof of
[Berm12] in the Fano case works exactly the same way to yield that along the weak
geodesic by gives the gradient of the Aubin—Mabuchi energy. We have reproved it in
the viewpoint of the associated family of graded linear series. It is conjectured that the
gradient of the K-energy at infinity corresponds to the (minus of) Donaldson-Futaki
invariant. This gives the variational approach to the existence problem.

The most interesting case is p = 2 which yields a part of Theorem 1.2 and this might
be a new result. In particular, we obtain the following.

Corollary 4.14. For any test configuration, the norm ||T|| is zero if and only if the
associated weak geodesic ray : is ¢ + Fot.

Only the case where the exponent p is even was treated in [Don05] to assure the
positivity of the norm but now we may define the positive norm for odd p integrating
the function |A|?, in place of AP, by each measure. In particular we can see that the
limit

1 AN
71 = Jim 3 (%) amv,

which can not necessarily be described by a Hilbert polynomial, exists and coincide with
the L? norm of the tangent vector. Thus Theorem 1.2 was proved. Letting p — +00,
we obtain

(4.15) 1T lloo = Tm |71, = Sup |p¢ — Fol.

In particular the right hand side is independent of ¢ and ¢.
Let us remark some relation with [Don05] and prove Theorem 1.3. Let us denote the

scalar curvature of the Kéhler metric dd°p by S, and denote its mean value by S. The
main result of [Don05] states that

(@p)7 1Sl e > b1

and

(4.16) 171, - ]]s¢ _ S“L > F,
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hold for any even p and the conjugate ¢ which satisfies 1/p + 1/¢ = 1. As a result
one can see that the existence of constant scalar curvature Kahler metric implies K-
semistability.In view of (4.16), [Sz11] suggested the stronger notion of K-stability which
implies

(4.17) F<—4|T|

for some uniform constant 6 > 0. One of the motivation of this condition is that one has
to consider some limit of test configurations to assure the existence of constant scalar
curvature Kéhler metric. The above condition also excludes the pathological example
raised in [LX11]. Corollary 4.14 supports the validity of [Sz11]’s suggestion since the
gradient of the K-energy along the trivial ray ¢ + Fyt is zero.

Let us give an energy theoretic explanation for (4.16). Thanks to Theorem 1.2, we
can apply the Hoélder inequality to obtain
(4.18)

(/}{I%—Fﬂp%ﬁ@)%(/ ‘s _Slq MA(90)> /(%_FO)(S _S)MA(@

for any pair (p,q) with 1/p+1/q = 1. Then the right hand side is minus of the gradient
of K-energy along the weak geodesic ray. The definition of the gradient for singular
@4 is not so clear but if it was well-defined, it should be increasing with respect to ¢.
Moreover the limit should be smaller just as much as the multiplicity of the central fiber
than minus of the Donaldson—Futaki invariant. (See also [PT06], [PT09] and [PRS08].)
Assuming these points we have

(4.19) [ (60— Fo)(Sp — 8)

Notice that (4.19) implies (4.16) for any 1 < p < +o00. One of the proof of (4.19)
following the above line will be given in our preparing note in collaboration with Robert
Berman and David Witt Nystrém. In fact in the Fano case, we may replace the K-
energy to the Ding functional to obtain the corresponding result. Convexity of the Ding
functional along any weak geodesic ray was established in [Bernll] and the relation
between the gradient of the Ding functional and F; was shown in [Berml12]. As a
corollary of these results we obtain

MA(w)

= .

(4.20) [@n-Fyer -2 > B
with some appropriate normalization for ¢. and then (4.18) yields
(421) 170, |~ 1| >R

MA( ) La

for any 1 < p < +oo. This can be seen as the analogue of the Donaldson’s result in the
Fano case.

Finally we remark that the strong K-stability condition (4.17) follows from the ana-
lytic condition:

(4.22) JICEOIC 5MAle)

< —6 |0 — Fol,
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in case S,, is well-defined. It is interesting to ask whether this condition implies the
properness of the K-energy.
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REMARKS ON L?-JET EXTENSION AND EXTENSION OF
SINGULAR HERMITIAN METRIC WITH SEMIPOSITIVE
CURVATURE

TOMOYUKI HISAMOTO

ABSTRACT. We give a new variant of L2-extension theorem for the jets of holomorphic
sections and discuss the relation between the extension problem of singular Hermitian
metrics with semipositive curvature.

1. INTRODUCTION

In this paper we first give the following new variant of L2-extension theorem for the
jets of holomorphic sections.

Theorem 1.1. Let X be a smooth projective variety with a fized Kéhler form w, and
S C X a smooth closed subvariety. Then there exist constants N = N(S, X,w) such that
the following holds; Let L — X be a holomorphic line bundle with a smooth Hermitian
metric h whose curvature current ©,, satisfies

@h } Nuw.
Then for any m > 1 and any section f € H°(S, L®™) with

/ lflhm de,S < 400,
S

there exists a section F € H%(X, L®™) such that F|s = f and the every other term in
(m—1)-jet along S vanishes. That is, J*'F|s = f holds if one denotes the (m—1)-jet
of F along S by J™'F|s. Moreover, there ezists a constant C = C(S,X,h) > 0 such
that the L?-estimate

/X P2, dV,x < C™ /S 12 dVis
holds.

Theorem 1.1 originates from [OT87]. Compact manifold case was first treated by
[Man93] and Ohsawa considered arbitrary closed submanifolds in [Ohs01]. For the
jet-extension, there is [Pop05] which generalizes Manivel’s result assuming that the
subvariety S is defined as a locus of some holomorphic section of a vector bundle.
Theorem 1.1 not only generalizes [Pop05] to general submanifolds but also specifies
how the coefficient in the L?-estimate varies when one twists the line bundle. This is
our new viewpoint. On the other hand, in the present paper we only treat with a very
special type of jet (every term of J™ ! F except the zeroth order term vanishes).

2000 Mathematics Subject Classification. Primary 32U05, Secondary 32C25, 32110, 32A25.
Key words and phrases. singular Hermitian metric, extension theorem, Bergman kernel.
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The formulation of Theorem 1.1 is strongly motivated by the extension problem for
singular Hermitian metrics with semipositive curvature. Let L be a holomorphic line
bundle over a smooth complex projective variety X. We fix a closed subvariety S of
X and a singular Hermitian metric hs on L|s. We will suggest a new approach to
generalize the following result due to Coman, Guedj, and Zeriahi.

Theorem 1.2 (smooth subvariety case of Theorem B in [CGZ10]). Let X be a smooth
complex projective variety, L an ample line bundle over X, and S C X a smooth closed
subvariety. Then for any singular Hermitian metric hg with semipositive curvature on
L|s there exists a singular Hermitian metric h on L over X such that h|s = hg holds.

Note that [CGZ10] treated arbitrary singular subvariety. A finite family of global
sections {F;}; C H°(X, L) naturally defines a singular Hermitian metric 1/ 3, |Fi|?
on L so that Proposition 1.4 can be seen as an analytic generalization of the Serre
vanishing theorem for ample line bundles. In the local setting there were previous works
by [Ric68], [Sad82] and [Col91]. Following the approach of [Col91], [CGZ10] obtained
the above result as a consequence of the growth-control extension of plurisubharmonic
functions from a closed subvariety in the complex Euclidian space. Their proof is hence
rather pluripotential-theoritic. In this paper we study a new approach via L2-extension
theorem for holomorphic sections of the line bundle, to give a direct relation between
the extendability of sections and that of metrics. Moreover, it enables us to expect a
consistent proof in the general big line bundle case. We suggest the following problem.

Problem 1.3. Let X be a smooth complex projective variety, L a big line bundle over
X, and S C X a smooth closed subvariety. Let us toke a singular Hermitian metric hg
with semipositive curvature on L|s, and a singular Hermitian metric ho with strictly
positive curvature on L, so that hg = hols holds. Then does there ezist a singular
Hermitian metric h on L over X such that h|g = hg holds?.

When hg is smooth the above problem is obviously reduced to Theorem 1.2. For the
non-ample line bundle, is not always possible to extend arbitrary singular metrics from
S. We will discuss this point in subsection 4.3. We show that Problem 1.3 comes down
to the further refinement of Theorem 1.1.

Proposition 1.4. If one can replace the L?-coefficient C™ in Theorem 1.1 to C™
(m > 1), then we obtain the L2-theoritic proof of Theorem 1.2. If further h in Theorem
1.1 can be taken singular, the same line solves Problem 1.3 affirmatively.

We remark that in the proof of Theorem 1.1 the constant C in fact depends on the
modulus of continuity of h so that the smoothness assumption of & can not be removed
so far.

Let us briefly explain the proof of Proposition 1.4. First of all, one can approximate
the metric hg on S by a sequence of singular metric hg,, defined by holomorphic
sections of L®™(m > 1). Then we can apply L2-extension theorem to extend each
section to X so that they produce a sequence of algebraic singular metric h,, on L over
X, which approximates hg on S. Further, one can get a convergent subsequence thanks
to the L?-estimate. The limit h is naively to be desired extension of hg. However,
we unfortunately have hlg # hg in general. To make hg dominate hg,, around S,
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one have to control the jet of the extended holomorphic sections and here we need the
formulation of Theorem 1.1.

2. JET EXTENSION

Let us first fix notations. Let E be a holomorphic Hermitian line bundle on a smooth
projective variety X. If a Kéhler metric w is fixed, the Chern curvature ©(F) defines
a Hermitian form on (A"!T% ) ® E, as follows:

b(cr, B) = ([O(E), AlelB) for o, € (N ' Ts,)®E, (z€X),

where A denotes the formal adjoint operator of the multiplication by w. It is known
that if p = n and ©O(E) is semipositive, 6 defines a semipositive Hermitian form. We
will use the following norm:

la| = inf {M> 0

(@B < M- 0(8, )
for any § € (A T%,,) ®Ez} & [0, +ec)

for o € (N™T% ) ® E.
We will obtain Theorem 1.1 as a corollary of the following result.

Theorem 2.1. Let S be a p-codimensional closed submanifold of a n-dimensional pro-
jective manifold X with Kéhler form w. Then there exists a constant N = N(S, X,w) >
0 such that the following holds.

Fiz a positive integer m =1, 0 < j < m — 1 and a holomorphic line bundle L — X
with a smooth Hermitian metric h whose Chern curvature satisfies

O, > Nw on X,

and f € H°(S,L®™). Then there ezist a constant C = C(S,X,h) and a section F; €
HO(X, L®™) such that J'F; = f and

/ By, dViox < COH / | Vs
X S
hold.

Proof. The proof is based on an induction on 5. When 7 = 0, Theorem 2.1 is the
known result (see [Ohs01]). We assume that F;_; was obtained and will construct Fj
from Fj_; by solving O-equations. The constants N and C will be specified in the
induction procedure below.

Let us first fix a finite system of local coordinates

{Sa,1s- -1 Sam—ps Zals- -1 Zapta
so that

SNUs = {20, =+ = 24p =0}
hold. There exists some f € C°(X, L®™) such that

F(s,2) = f(s) + O(l=I™).
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This is easily seen gluing local C'*°-extension by a partition of unity. Fix a smooth
cut-off function p : R — [0, 1] satisfying

p(t) = { 0 (¢ i % 'l < 3.

_ . P AN - AN
g 1= 8647 = (14 L) (£ )00 A (- Fr)+o( £ )07 - B

b VT
o 9&

where

{7 Pe
Y. := log(e + e¥) ((:)1+e?=e )

€
S 2
P = loginZ[za,iI , €>0.
[+ =1

Here we choose a smooth function x, so that the following hold.

p

SuppXxa CUs, Y Xa>0, and Y xa > |z’ <e™ inX.
« o

i=1
This 1 satisfies the following condition (see [Dem82], Proposition 1.4).
(1) ¥ € C=(X\ 8) N Lio(X)
¥ < —1in X, ¥ — —o0 around S.
(2) e is not integrable around any point of S
(3) There exists a smooth real (1,1)-form + in X such that
V=108 > v holds in X \ S.

If the equation

luc|? e~U*P?¥ is locally integrable around S

{5u€ = 5G§j_1) in Q

has been solved, u. = O(]z|9*") along $ holds by the above condition hence the
sequence {GgJ oy + Fj_1}c is expected to converge to desired F;. This is our
strategy.

To solve d-equations, we quote the following from [Dem00].

Theorem 2.2 (Ohsawa’s modified L?-estimate. [Dem00], Proposition 3.1). Let X be a
complete Kdhler manifold with a Kdhler metric w (w may not be necessarily complete),
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E a holomorphic Hermitian line bundle on X. Assume that there exist some smooth
functions a,b > 0 and if we set

©'(E) :=a-O(E) — V/—19da — /=1b"'8a A Da
#(c, 8) = (['(E), Alel) for o,8€ (N 'Ti,)®E: (ze€X),

it holds that
>0 on (/\ ’qTX,w)@)Eac for any x € X.

Then we have the following. B
For any g € L*(X, (A" T%) ® E) with dg =0 and

/ 912 dV,, x < 400,
X

there exists a section u € LA(X, (N T%) ® E) with Ou = g such that
[ @0l Vi <2 [ 1oy v
X X

We will apply Theorem 2.2 to E := K5' ® L®™ and ¢ = 1. Let us go back to the
proof of Theorem 2.1. First, we are going to compute

(2.3) 6. := [a.(O(Kx' ® L®™) + (j +p)v/—100¢) — vV—188a. — b;*v/—10a. A Da., A].
(ae,b. will be defined in the following.) If we set
e := Xe(¥e) >0
for some smooth function x., it can be computed as:
Oae = x((Ye) O,
V=108a, = X.(%)V=188¢%. + X" (he)V— 1. A 3P,

— X, (v T00y. + ;f((j)) V=18a, A e

so comparing with (2.3), it is natural to set

_ Xe(¥e)®

e = )

(> 0).
And we finally define
Xe(t) :==¢ —t +1og(1 —¢).
Then for sufficiently small £ > 0, we have
a. > e—logle+e™) = 1
V=108a, + b;'V—18a. A Ba. = X.(Y:)V—180¢. < —v/—100¢.

hence

0. > [6(Kx' ® L®™) + (j + p)v—180¢ + v —180v, A].
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On the other hand, simple computations show:

e?
B = = 3,
V—108¢. = T ¢)2\/— O A B
- = ,,,\/—aaw = /=109 A By
Therefore, by the compactness of X, there exists a constant N (S, X,w) > 0 such that
(2.4) O,>Nw onX
implies
(2.5) 20 on (N T%,) ® (K@ LS™),  forallz e X

and eigenvalues of #. are bounded from below by a positive constant (uniformly with
respect to €) near S.

Next we will estimate 9. by |lg,- Fix arbitrary o, 8 € (A™ Ty .) @ (Kx' ® L®™),.
By definition,

3 =
|a¢€ A algl ln'f {M O fOI‘ any ,8 € (/\n, TXa:) & E

(5 A alB)]” < ([d(E)Amw)}

s0 it is enough to estimate |(0¢. A o ,8)] . This can be done as follows:

|3 A alB)|* = |(l(Bve)'B)|”
< ol - [(3ve)*8]” = lof® ((8v)(8%:)'B1B) = laf* ([V—10%. A By, AlB|5)

by Shwartz’ inequality (§f denotes taking the formal adjoint of the multiplication oper-
ator), and the last term is bounded by

Ial ([V—189y.
< 2-‘ |a|2 (6% ® L®m) + (j + p)V—188¢ + vV=108%., A|5|B)

AJBIB)

e"l’ 2 ’ -1 m
< = loff ((B4(Kx* ® L), AlI6).
Thus we may get a desired estimate
P
- e
(2.6) [0 Ay, < —laf.

This time we estimate g. = g + ¢¢? . By (2.6) and Supp ge M < {e¥ < €}, gV
be estimated. Namely,

, 2
/ G| e G+P¥ay, y < 4 /
X\

E | - By

e?\2 .
- pl (?) 6_(J+p)¢de’X
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holds. Notice € ~ S |2q4]* on U, and g/(t) = 0 for t < 1/2. By the definition
of F;_; we may assume that U, admits a holomorphic local coordinate zi,... 2, in the
normal direction along S such that the Taylor expansion of F;_; along S can be written
as

(2.7) Fi_1(z) = Fj_1(s,2) = f(s) + Z Z iy, (8)2 -+ - 2%

k:] i1+..-+ip=k

for any z = (s,2) € U,. The functions a,,. ,(s) are holomorphic on s € SN U,.
Therefore by changing variable z to ew we get

|ai1,...,z’,, (S) ]im

dV, s < +00.
2 W,
SNUq i14tip=j |/\P le

e—0

lim sup / |9, eGPV, x < Am
Ua\S e

Here the constant A,, is determined by

/ p,(l'wl2)2 /\f=1 v —1dwz A d’lﬁz
weCrP

|w|2(j+in)

The point is to estimate the L?norm of Qiy,...ip (s). This is done by Cauchy’s estimate
but here we have to involve the metric A™ so that the constant in the L2-estimate must
depends on h. The idea here originates from [Pop05] and in our situation we want to
see how the coefficients depend on j. First we have

Iail,...,ip(3)12 < (2m)7? R—20+p) /| won | Fj-1(s, z)|2 dzi---dzp
FARS

for any small R > 0. See also subsection 4.2. From this the L2-norm is bounded as
follows:

2 —p p—2(j h™(s,0)
i, i (8)].. dV, g < (27)PR20+P) gy d
/sma I iy )Ih ws < (2m) |2¢|<2RgeUa h™(s, z)

J VBl Vi,
X
Now by the continuity of h, There exists a constant Ry = Ro(X, S, h) such that

lim sup / \ |g§1)|z, e~UtPVay, x < R720P) / |Fj—1|im dVix
Ua\S € X

&—0

holds for any R < Ry. Note that R, is determined by the modulus of continuity of A

and independent of m or j.

We can also estimate géz). Note that eigenvalues of . are bounded below. Then we

get
/ |98
Q\s

because we can see that |g§2)|2, = O(]2|™) holds in Supp ¢? c {e¥ < €}, by 8f =
O(|2|™) (using the Taylor expansion).

Now we can apply the modified L2-estimate for each € in X \ S. Note that X \ S
is a complete Kahler manifold (see [Dem82], Theorem 1.5). There exists a sequence

2

o e~ UtPgY, x < O(e) < 400
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{ue} C L?(X, L®™) such that

/ (ac + b))t |'u,€|2 e‘(j"”’)'pde,X < 2/ ]gelz, e_(j'”’)"pde,X < 400
Xx\8 x\s

holds.
Let us estimate the left hand side of the inequality. It can be easily seen that

Y. < log(e+e™) < —1 +O0(e)

a: < (1+0(e))y?

be = (2—%:)® < (9+0(e))y?

a:+b. < (10+0(e)¥? < (104 O(e))(—log(e + e¥))?

It

'G’gj_l) |2 M
: dVyx < +—
o (e +e?)P(—log(e +e¥))2 ™" = (loge)?

hold for some constant M. Therefore, if we set F := 9 R ue + Fj_;, it follows:

. |Fe|”
li av,,
I?—?(l)lp /X\S (e + e¥)P(—log(e + e¥))? X

< 22lim Sup/ |gelﬁé e~ 0PNy, +/ l‘Fj—llim Vi, x
X\S X

0
< (14 R+ / |Fji1|2m AV, x-
X

By construction, F. = 0 holds on X \ S and in fact also in X, thanks to the Riemann
extension theorem.

Finally, Let € \( 0. Then after taking a weakly convergent subsequence, we get a
F; € L*(X, L®™) such that 8F; = 0 in X and

[ 1B Vo < 4 B9 [ (B Vo
X X

Note that the jet condition J'F. = f is preserved under the weak convergence by
Lemma 2.8 and Cauchy’s integral formula. By induction we obtain

J
/ |P}2|hm dv:u’X < (H(l + R_z(k+1’))) / |f|im de,S.
x k=0 S

g

Lemma 2.8. Let fi, f be holomorphic functions defined in a domain 2 C C*. Assume
that the sequence {fi} weakly L*-converges to f. Then {f.} converges to f pointwise
in Q.

Proof. Fix any point z € ). Taking x € C$°(Q2) with x = 1 near z, we have:
50 = [ KBR@OATO N > [ Ko, ABKO A 1O = £
¢eq Ceq
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by the Koppelman formula. Here K&y, denotes the (p, g)-part of the Bochner-Martinelli
kernel. 0

3. PRELIMINARY TO SECTION 4

3.1. Psh weight. Let us briefly review the notion of psh weights. Let L be a holomor-
phic line bundle over a smooth complex projective variety X. We usually fix a family
of local trivialization patches U, which cover X. A singular Hermitian metric A on L is
a family of functions h, = e~¥* which are defined on corresponding U, and satisfy the
transition rule: g = @o — log |gas|’ on U, N Us. Here gop are transition functions of
L. The weight functions ¢, are assumed to be L. If ¢, are smooth, {e %=}, actually
defines a smooth Hermitian metric on L. We usual denote the family {¢,} as ¢ and
omit the index of local trivializations. Notice that each ¢ = ¢, is only a local function
and not globally defined. But the curvature current O, = dd°p is globally defined and
is semipositive if and only if each ¢ is plurisubharmonic. Here we denote by d° the
real differential operator 4;’\_/?—1. We call such a weight psh weight for short. The most

important example is the type of weight Llog(|Fi|* + --- + |Fy|?), defined by some
holomorphic sections F} --- Fy € HO(X,L®™). Here |F;> (1 < ¢ < N) denotes the
absolute value taken for the local trivialization of each F; on U,. We call such weights
algebraic. More generally, a psh weight ¢ said to have a small unbounded locus if the
pluripolar set ¢~1(—00) is contained in some closed proper algebraic subset S C X. A
singular Hermitian metric h = e~¥ is said to have strictly positive curvature if dd°p > w
holds for some Kéhler form w.

By the following theorem due to Demailly, one can approximate a psh weight by a
sequence of algebraic weights.

Proposition 3.1. Let S be a smooth projective variety, L a holomorphic line bundle on
S, hs = e™%5 q singular Hermitian metric with semipotitive curvature, and hy = e™¥

a singular Hermitian metric with strictly positive curvature. Then there exist mo =
mo(S,%) > 1 and C > 0 such that the following holds: Fiz {fm;}im C HO(S, L®™),
an orthonormal basis with respect to an L?-norm

/ |f|i(m_m0)hmo dVys = / |f|2 e—(m—mo)¢s—mo¢d‘/“ms.
s 8 ° s

Then psh weights Qgm = = log(zl.i"; | fm,j|2) satisfies

9 ¢ (P (o) + ()

m

log C,

< psm(s0) < + sup (m — 0 0s(s) + —’%w(s))

s€B(so;r) m
for any sp € S, small r > 0, and m = my. In particular, pg,, converge to pg.

Proof of the proposition is on the same line as Proposition 3.1 in [Dem92]. We omit
it here. See also section 12 of [Dem96] for the related topics.
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3.2. Positivity of line bundle. We recall the basic concepts of positivity for line
bundles. For a recent account of the theory we refer [Laz04] in the algebraic course
and [Dem96] for the analytic treatments. A line bundle L is said to be ample (resp.
semiample, big) if the associated rational map

B, : X --» P(H(X, LB™))

is a closed embedding (resp. a holomorphic map, a birational map to the image) for
any sufficiently large m. The classical result of Kodaira states that L is ample if
and only if it admits a smooth strictly positive curvature Hermitian metric hg = e~ Y.
Line bundles satisfy the latter condition usually called positive. This gives an analytic
characterization of ample line bundles and indicates a general principle that positivity
of a metric produces holomorphic sections of a line bundle. There also exists an analytic
characterization of big line bundle due to Demailly.

Proposition 3.2 (Demailly). A line bundle L is big if and only if it admits a singular
Hermitian metric with strictly positive curvature.

The proposition allows us to expect some analytic analogue between ample line bun-
dle and big line bundle, and motivates our study for a generalization of a result of
[CGZ10] to the big line bundle case.

4. EXTENSION OF SINGULAR METRIC WITH SEMIPOSITIVE CURVATURE

In this section, we prove Proposition 1.4.

4.1. Construction. Fix a p-dimensional closed submanifold S C X and a singular
metric hg = e7¥5 on L|s. Moreover, we fix hy = e~¥, a singular Hermitian metric on L
such that hgy has the strictly positive curvature on X and the inequality

(4.1) vs < Pls

holds on S. Such hy actually exists by the bigness of L. Denote a positive integer
satisfying the condition in Proposition 3.1 by my and the norm of each vector space
HO(S, L®™) (m > mo) by

/ |f|2 e—(m—mo)ws—mwde’s_
s

First of all, by Proposition 3.1, we have a sequence of orthonormal basis {f,; }jv;’; -
H(S, L®™) such that

N,

1 = 2

;L-log 'Ellfm’jl — ¢g on S
‘7=

Note that ¢g is not a priori defined on the ambient space X. For this reason, we will
apply the L?-extension theorem for 1) and then compare the two norm each of which
is defined by s and 9. At this stage, the assumption g < |5 will be crucially used.
At any rate, we have

/ |Fmil? €™ dVs,, < 400
S
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by s < ¢|s. If a constant N = N(S,X,w) (which appears in the assumption in
Theorem 1.1) is given, we may assume dd® > Nw because we can replace L and g
by L®N and N¢g to prove Proposition 1.4. So applying the jet-extension, there exists
F,; € H (X, L®™) such that F,, j|s = fm,; holds and every other term in (m — 1)-jet
along S vanishes. That is, for any point sy € S there exists a neighborhood U on X and
a holomorphic local coordinate 2;, . .. 2, in the normal direction along S, which centers
at s, such that the Taylor expansion of F,, ; along S can be written as

(4.2) Froj(@) = Frj(8,2) = fmg(s) + > Y. Giy.i)(s)2™ 2"

k=m iy +-+ip=k

for any « = (s, z) € U. Note that the functions a;,,..;,(s) are holomorphicon s € UNS.
Moreover, if the coefficient of L?-estimate is refined,

(43) [ Vsl eV < CF [ gl eV
X S

hold for each m and j. Here the constant C; = C;(S, X, ) does not depend on m. Let
us define

N,
1. =
(4.4) Om o= Elogj; |Fr |2 -

This ¢,, actually defines an algebraic singular metric on L over X. As a consequence
of the above L?-estimates one can derive an upper boundedness of ¢,,,. Actually by the
mean value property of plurisubharmonic function one has

n! B
Fns@F < e [ Vgl < i sup ™ [ (Bt e v,
B(z,r) X

ﬂ-nrzn ﬂ-n,an B(z,r)

for any small ball B(z,r) C X. Then (4.3) yields

| P (@) < G /g gl e ™ dVs,.

The constant C; here depends not only S but also 9. Let us exchange 9 for ¢g by the
inequality

S S S

Note that ¢g — 9 is well-defined as a global function on S and the integral on the
right-hand side equals to 1 by the normality. So the assumption ¢g < 9|5 shows that
the right-hand side is not greater than 1. Summarizing up, we have

(45) [P s @) < C™

Then, by the fact N, = O(m"™P) derived from the Riemann-Roch formula, there exists
a constant C3 only depends on S and 1 such that

(4.6) om < O3
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holds. This constant Cj is independent of m and therefore we get a subsequence of
©m , Which converges to a psh weight . From a general theory of plurisubharmonic
function, one may assume

(%) = lim sup” () := lim sup im sup or, (y).

m-—»o0 Y=z

Here the symbol * denotes the upper-semicontinuous envelop. This ends the construc-
tion of ¢. By the definition, ¢|s > s is clear. Our remained task is to show the
converse inequality.

4.2. Upper bound estimate. At this time we need the control of (m — 1)-jet of each
F,, ;. For a general convergence of plurisubharmonic functions, a value of the upper-
semicontinuous envelop happens to jump at some point. But we may expect that if
every ZJ. F,,; sufficiently tangents to S, this is not the case. Let us check it in our
situation. We fix sp € S and its neighborhood U to have (4.2). Note that we may
concentrate on each point’s neighborhood to get requiring upper bound estimate of ¢,
thanks to the compactness of S. Take R > 0 so that for any 1 < 7 < p, |2;] < 3R holds
on U.
We first estimate a,,.. ;,in (4.2). This is done by Cauchy’s integral formula:

Md veodz
a"lfla /"p(s) (27r /[ ) /I;pl_r /l;ll_r Z11+1 ’Lp+1 21 P

In fact by Cauchy-Schwarz’ inequality one can extract the L?-norm as:

2 2 o | Fy (s, z)l 2
la'zlr ,zp(s | X (%) (/ / ’I‘“]+ “ip dap)
% o o 27 27
. doy ---db,
<(z) ([ [ 1o dede)(/ [
— 1 p_.._____l__..____. 27r.” 2W]F (s z)|2d0 ---df
27T r2(’l«1+"7:p) 0 0 m,7 b 1

Integrating the both side from r; = R to r; = 2R (1 < ¢ < p), we get

2R 2R )
/ o / Iail,-..,ip (S)l dry---dr
R R

1\’ o
< (—2—7;) R_2(“+""P)—p/ |Fr (5, 2)? dzy + - - dzp.

Thus it holds that

4 1
1\?2 2 liitei )
|ai,...in (8)] < (%) ( /l |<21;:|1!"’m,j(87 Z)lzdzr“dzp) R(ati)p,
Zi|%
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Take 0 < &€ < 1/2. Then in the ball {|z| < p~'eR} C CP (here we fix s and move
only z) we have the following estimates:

1P (8, 2) = fms(3)] < Z I“il,...ip(-s)l gttt

irbip>m

2 1
1)\:2 / ) __seRN#tip
S Fri(s,2)|"dz ---dz R (+-ip)-p
(27T> ( [zi[<2RI il )I . Z ( p )

$1 4+ dp2m
1

1 3 2 2
<(3) ([ 1t dansedzy) 2rem
|z:|<2R

From (4.5), the integral in the last term is bounded by a constant C5*. Thus we obtain:
(4.7) |Fim,j(8,2) — fm,j(s)| < Cg"e™.

Here the constant C5 depends only on S and 1. This is what we need.
Now let us estimate (,,. By the triangle inequality

2. 2\ 3
onl5:2) = og (3 1Fins 2 )

——log [(Zlfm,](s)l ) (I.‘V:Wm,j(s, 2) —fm,j(3)|2)%]

hold. Thanks to (4.7), the second term in the logarithm is bounded from above by the
square root of N,C3'c™. The first term can be bounded from above by Proposition
3.1. Thus for any s € B(sp;r) we have

2 , 2
onls2) < Zlog [( sup  Cremmestim )ty (v, e
m 8'€B(s0;2r)

By the concavity of the logarithmic function
b
log(a +b) < loga + -

holds for any a,b > 0 so it yields

om(s,2) < %log C-+ sup ((ﬁ%ﬂ—)—gpg(s’) + %’d)(s'))

8'€B(sp;2r)

2 (N Ce™)z

m ( SUPgt e B(sp52r) elm=mo)es (s’)+mm/;(s'))

T
2

Note that the denominator of the third term on the right-hand side

Sup e(m_mo)ﬁas (8’)+m0¢(‘9,)) %
8 €B(s0;2r)
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is positive but may go to 0 when r — 0. However, taking ¢ sufficiently small for r, we
can make the third term smaller than 1/m. Hence letting m — oo we get
lim sup lim sup ¢, (s, 2) < @s(so)-

(8,2)—=0 m—rc0

This completes the proof of Proposition 1.4.

4.3. Remarks on restricted volumes. Before concluding the paper, we discuss the
assumption which is necessary for generalizing Theorem 1.2 to big line bundles. For
the proof of Proposition 1.4, especially on the ample line bundle case, one can skip this
subsection. First we briefly review an analytic representation of the volume of a line
bundle along a subvariety.

Definition 4.8. Let S be a p-codimensional subvariety on a n-dimensional smooth
projective variety X. Denote by H°(X|S,L®™) the image of the restriction map
HO(X,L®™) — H(S,L®™). The restricted volume of a line bundle L along S is
defined to be

dim H°(X|S, L®™)
lxis(L) := limsu : .
VO X|S( ) m—?oop mn__p/(n — p)!
When S = X, we simply write it as volx(L).

It is easy to show that if L is ample (more generally semiample), volx;s(L) =
volg(L|s) = (S.L™P) holds, i.e. the restricted volume equals to the intersection num-
ber. In general restricted volumes are invariant under birational transformations and
a line bundle L is big if and only if volx(L) > 0. In some sense they measure the
positivity of line bundles along subvarieties. An analytic description of volumes was
first given in [Hisll]. For a singular Hermitian metric A = e on X, let us denote
by ((dd°p|s)"P) the non-pluripolar Monge-Ampére product of ¢|g, a positive measure
which coincides with usual Monge-Ampére product (dd°p|s)”® when ¢ is smooth. For
the precise definition, see [BEGZ10].

Theorem 4.9 (Theorem 1.3 in [Hisll]). Assume there ezists a singular Hermitian
metric hg = e~% with strictly positive curvature on L, and S C ¢~1(—o0) hold. Then
it holds that

(4.10) volxs(L) = max / ((dd®p|s)™F),
s
where €% runs through all the singular Hermitian metric on L over X.

We can relate the analytic study of volumes to the problem of metric extension.

Corollary 4.11. In general volxjs(L) < volg(L|s) and if every semipositive curvature
singular metric on L|g is extendable volxs(L) = vols(L|s) holds.

Example 4.12. Let u : X — P2 be the one point blow up and E an exceptional divisor.
We take L = p*O(1) @ O(E) and S to be the strict transform of a line which through
the blown up point. Then it is easy to see that this example satisfies the assumption
of Theorem 4.9 but volx|s(L) = 1 and vols(L|s) = 2.
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The next example shows that there exists a non-extendable metric even if we assume
L is semiample and big.

Example 4.13. Let p : X — P2 be the one point blow up and E an exceptional divisor
as the above. Take L = p*O(1) and S to be the smooth strict transform of a nodal
curve. Then L has a singular metric with semipositive curvature, which can not be
extended to X. In fact one can construct a semipositive curvature metric hg = €75
weight on the ample line bundle L|g, which is +00 on a point in £ N.S and smooth on
another. If a psh extension g exists, it is constant along F since L|g is trivial. This
contradicts the definition of hg.

These examples naturally indicate to us the assumption in Problem1.3.
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RESTRICTED BERGMAN KERNEL ASYMPTOTICS

TOMOYUKI HISAMOTO

ABSTRACT. In this paper, we investigate a restricted version of Bergman kernels for
high powers of a big line bundle over a smooth projective variety. The geometric
meaning of the leading term is specified. As a byproduct, we derive some integral
representations for the restricted volume.

1. INTRODUCTION

The subjects discussed in this paper originate from the extension problem. Let L be
a big line bundle on a smooth complex projective variety X and Z C X a subvariety.
Denote by ¢ : Z < X the inclusion map. We always use this notation unless specifically
noted. It is important to know how many sections of L|z are extended to the ambient
space X. We can expect to get more such sections taking high tensor powers of L, thus
we are led to consider the spaces of sections

HY(X|Z,0(mL)) := Im[¢* : H(X,O(mL)) — H(Z,0(mL))].

The restricted volume

dim H%(X|Z,O(mL))
Volxz(L) := limsu
XlZ( ) m—)oop 7np/ p!
measures the asymptotic growth of these spaces. Here p denotes the complex dimension
of Z. The notion of the restricted volume first appeared in Tsuji’s paper [Tsu06] (see
also [HMO06), [Tak06], [ELMNP09)). In this paper, we investigate a local version of the
restricted volume.

Definition 1.1. Let hz be a smooth Hermitian metric on L, ¢ € C°(X;R) a smooth
weight, and du a volume form on Z. Then for any positive integer m, the restricted
Bergman kernel of (Z, mL, hi'e™™%, du) is defined as follows:

2
BX[Z('I’TLQD) = |sm,1l72n<p +...+ IsmvN(m)|mgo ’

Here {Sm,1, .., Sm,N(m)} is & complete orthonormal system of H(X|Z,O(mL)) with

respect to the norm
2 2
sl = [ Isp i

|s|fmp = *h7(s, 8)eT™ Y,

2000 Mathematics Subject Classification. Primary 32A25, Secondary 32L10, 32W20.
Key words and phrases. Bergman kernel, extension theorem, Monge-Ampére operator.
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By definition, Bx|z(m¢) is a smooth function on Z and
/ Byx|z(my)dp = dim H*(X|Z, O(mL)).
z

In fact Bx|z(me) tells not only the dimension but rather deeper information of the space
of sections. The study of the asymptotic behavior of Bx|z(m) is itself an important
problem in complex geometry.

In this paper we closely examine the leading term of Bx|z(my). If L is ample and
the metric hre™¥ has the positive curvature, then by the Serre vanishing theorem the
problem is reduced to the case Z = X. In this case, Tian’s classical result ([Tian90])
gives the complete answer. For general L and hy, Berman first treated the case Z = X
in [Ber09]. And in that paper, he also mentioned the restricted case without proof.
Without the assumption of curvature positivity, the effect of the subvariety can not
be ignored. We give a complete picture in the restricted case and specify the limit of
m™PBxjz(mep). Our study can be seen as a local version of the restricted Fujita-type
approximation (Theorem 3.19). As a result, a localization of Volxz(L) is given.

To state our results, we need some notion which arises in non-positive curvature
case. First denote by B, (L) C X the augmented base locus (see [Laz04], Definition
10.3.2). This is actually an algebraic subset of X and L is ample precisely if B, (L) = 0.
Secondly, we denote by Pxz¢ the equilibrium weight associated to ¢ (see Definition
3.1). Let 6 = —dd°loghz, be the Chern curvature of Az, then 6 4 dd°Px|zy defines a
positive current on Z, and Px z¢ = ¢ holds if 8 + dd°p is positive. Roughly speaking,
Pxz¢ is the best §-plurisubharmonic function on Z approximating ¢. Further, one can
measure the rest of the positivity of 6 + dd®p by MA(Pxz¢) := ((0 + dd°Px|z¢)?), the
non-pluripolar Monge-Ampeére product of Px|z¢ (see Definition 2.4).

Theorem 1.2. Assume Z is smooth and Z € B, (L). Then the convergence

Bx|z(mep)

holds in the sense of currents.

As byproducts of our investigation of restricted Bergman kernel asymptotics, we can
get several integral representations of restricted volumes (discussed in section 4). For
instance, we have the following.

Theorem 1.3. In the situation of Theorem 1.2, the following holds.
Vle|Z(L) = / MA(P)qz(p) = / MA(L*PXgO)
z z

=s1111p/Z<(L*T)p>=/;<(L* mia)”);

where T runs through all the closed positive currents in c1(L), with small unbounded loci
not contained in 1(Z). We denote by Tmin @ minimum singular closed positive current

n Cl(L) .
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These formulas can be seen as generalizations of the main result of [Bou02). If L is
ample, Volx|z(L) equals to the intersection number (L?.Z) which plays an important
role in many geometric questions. But for general line bundles, these intersection
numbers do not work well to describe function-theoretic properties of L. Our results
indicate that Voly|z(L) is the natural generalization of (L?.Z) for general line bundles.

Let us explain the point of our proof of Theorem 1.2. We basically follows Berman’s
approach but there are two difficulties in the restricted case. First, to deal with general
subvarieties, we need a variant of L?-extension theorems. The desired extension theorem
is the following. '

Theorem 1.4. Let X be a smooth projective variety, Z C X a smooth subvariety, w a
fixed Kdhler form, and E — X a holomorphic vector bundle with a smooth Hermitian
metric hg. Then there exist constants N = N(Z, X, hg,w) and C = C(Z, X) > 0 such
that the following holds.

Let L — X be a holomorphic line bundle with a singular Hermitian metric hpe™%
such that its Chern curvature satisfies

0+ dd°p > Nw.
Then for any section s € H*(Z, O(E ® L)) with

/ s €7dV,,,z < +o0,
zZ
there exists a section § € H*(X, O(E ® L)) such that 5|z = s and

/ 1512 e %dV,, x < C’/ s> e%dV, »
x z
holds.

Remark 1.5. It is natural to expect that Theorem 1.4 holds even if Z has some mild
singularities. But it seems to be unknown. O

Theorem 1.4 can be derived from Theorem 4 of [Ohs01] by a standard approximation
technique. See also [Kim10]. It seems most likely that a slight change of the proof of
Theorem 4.2 of [Kim10] can yield Theorem 1.4. At any rate we give a self-contained
proof in section 5, as a courtesy to the reader. Theorem 5.1 in the present paper
corresponds to Theorem 4 in [Ohs01] (but the situations in the two theorems are slight
different). Theorem 1.4 is used in the two critical steps. One step is to show the
regularity of the restricted equilibrium weight (Theorem 3.5) and the other is to show
a lower bound of restricted Bergman kernels (Theorem 3.15). Second, we only have a
weak lower bound in the restricted case since it becomes harder to estimate the lower
bound of the Bergman kernels precisely as [Ber09]. We avoid this difficulty by using a
proof of the restricted version of the Fujita-type approximation theorem. Note that a
part of this strategy already appeared in [BB10]. We elaborate this strategy using a
weak lower bound and the comparison theorem for the Monge-Ampére operator. From
this, one can first get an integral representation of the restricted volume and then
deduce Theorem 1.2. Compared with [Ber09] in the case Z = X, our proof of Theorem
1.2 is rather geometric thanks to the Fujita-type approximation. On the other hand,
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the convergence result obtained in this paper is weaker than that of [Ber09]. It seems
to be unknown whether convergence in a strict sense holds in the restricted case.

2. MONGE-AMPERE OPERATOR

We briefly review the definition of the Monge-Ampere operator in this section. Fix
a closed real smooth (1,1)-form 6 defined on X. An L; -function ¢ in X is called
6-plurisubharmonic (0-psh for short) when the associated current 6 + dd°y is posi-
tive (in the sense of currents). A function which is #-psh for some 6 is called quasi-
plurisubharmonic (quasi-psh for short). It is known that ¢ automatically becomes
upper-semicontinuous by this condition. We denote the set of all §-psh functions by
PSH(X, 6). In this paper we are mainly interested in 8 defined as § = —dd®log hy, but
this notion is in fact valid for an arbitrary 6.

Let n be the dimension of X. The Monge-Ampere operator should be defined as:

% > MA@Y) := (0 + ddy)",
but for general 1, this is nonsense. The celebrated result of Bedford-Taylor ([BT76])
tells us that the right hand side can be defined as a current for ¢ at least in the class
L. NPSH(X, 6). That is, by induction on the exponent ¢ = 1,2, ..., n, it can be defined
as:

/ (0 + ddew)T Am = / (0 + dd°)T A (r + )dden
X X

for each test form n € CP(X, \""*""?T%). Here [, denotes the canonical pairing
of currents and test forms, and 7 denotes a local dd°-potential of 6. This is indeed
well-defined and defines a closed positive current, because 7 + % is a bounded Borel
function and (6 + dd°)?! has measure coeflicients by the induction hypothesis and
by the fact that any closed positive current has measure coefficients. Bedford-Taylor’s
Monge-Ampere products have useful continuity properties:

Proposition 2.1.
(0 + ddr)™ — (0 + ddY) in the sense of currents

for any sequence of 0-psh functions which satisfies one of the following conditions.
(1) ¥ \( ¥ pointwise in X.
(2) Y S for almost every point in X.
(3) Y — o uniformly in any compact subset of X.

It is still necessary to consider unbounded #-psh functions. On the other hand, for
our purpose to investigate asymptotic behaviors of Bergman kernels, it is sufficient to
deal with some special class of unbounded #-psh functions and we can omit a part of
the contribution of unbounded loci.

Definition 2.2. A #-psh function v is said to have a small unbounded locus if the
pluripolar set ¢~(—o0) is contained in some closed proper algebraic subset S C X. O

A quasi-psh function ¥ on X is said to have algebraic singularities, if it can be locally
written as

(2.3) ¥ = c-log(ful* + ... + | fr) +u
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for some ¢ € Qs9, non-zero regular functions f; (1 < 7 < N), and a smooth function wu.
Every 0-psh function with algebraic singularities has a small unbounded locus. If we
assume the subvariety Z is smooth, t*¢ +m™!log B x|z(mep) gives the typical example
of +*0-psh function with algebraic singularities.

Definition 2.4. For a 6-psh function ¢ on X with a small unbounded locus, MA(%))
is defined to be

(8 + ddy)"™) == the zero extension of (6 + dd“y)".
Note that the coeflicient of (8 + dd°y)™ is well-defined as a measure on X \ S. O

MA(%)) actually defines a closed positive current on X by famous Skoda’s extension
theorem. In particular, it has a finite mass on X. For a proof, see [BEGZ08], section 1.

Remark 2.5. In that paper, the non-pluripolar Monge-Ampere product was defined in
fact for general f-psh functions on a compact Kéhler manifold. Note that this choice
of ways to define the Monge-Ampére operator makes MA(%) to have no mass on any
pluripolar set so ignores some of the singularities of 4. For this reason, ((§ + dd°%)™)
no longer has continuity property with respect to . ’ (]

We recall the fundamental fact established in [BEGZ08] which states that the less
singular 6-psh function has the larger Monge-Ampere mass. Recall that given two 6-psh
¥ and v/, 1 is said to be less singular than ¢’ if there exists a constant C' > 0 such that
P <Y+ Cin X. We say that a 6-psh function is minimal singular if it is minimal with
respect to this partial order. When 1) is less singular than ¢/ and v’ is less singular
than 7, we say that the two functions are equivalent with respect to singularities. This
defines a equivalence relation in PSH(X,6). When 6 € ¢;(L), any minimal singular
6-psh function 7 has a small unbounded locus. In fact, ¥~1(—o0) C B, (L) holds.

Theorem 2.6 ([BEGZ08], Theorem 1.16). If 4,4 are 0-psh functions with small un-
bounded loci such that v is less singular than v/, then

[ maw) < [ vaw)

b's X

holds.

Remark 2.7. Tt is unknown that Theorem 2.6 holds for general §-psh functions. O

The notion of types of #-psh functions with respect to singularities, explained in
this subsection, are in fact determined by the closed positive currents T' := 6 + dd®.
Namely, a closed positive (1, 1)-current T' € « is said to have a small unbounded locus if
it can be written: T = 8 + dd°y with some ¥ which has a small bounded locus. Closed
positive (1, 1)-currents with algebraic singularities and those with minimal singularities
can be defined in the same manner.

3. RESTRICTED BERGMAN KERNEL ASYMPTOTICS

3.1. Restricted equilibrium weight. In this subsection, we introduce the notion of
the restricted equilibrium weight and discuss its properties, which we will use later
to study asymptotics of restricted Bergman kernels. Unless otherwise stated, we fix
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a big line bundle L on a smooth projective variety X and a smooth metric h;. Let
0 := —dd®log hy, be the Chen curvature form. Given a subvariety Z of X, there exists
a canonical way to associate any smooth function to the #-psh function on Z.

Definition 3.1. For a smooth weight ¢ € C*(X;R) and a subvariety Z C X, the
restricted equilibrium weight Px|z¢ is a function on Z defined as follows:

¥ € PSH(X, §) }

(3.2) Px|z¢(2) := sup {L ¥(2) with :*9 < t*¢ on Z

for z € Z. Here + : Z — X denotes the inclusion map. If there is no ¥ as above,
Px|z¢ = —oo by definition. O

In the special case when Z = X, we use the notation Px instead of Py x asin [BB10].
The symbol sup* appeared in the above definition means

5up* fo(2) = limsup (sgp fa(w))

which is called the regularized upper envelope for a family of functions {f,},. It is easily
seen that t*Pxp < Pxjz¢ < Pzt*p holds. By a classical result of Choquet (see e.g.
[K1i91], Lemma 2.3.4.) and by the definition of Px|z¢, we get the following.

Lemma 3.3. Assume that Px|zy is not identically infinity on Z. Then there ezists
a countable non-decreasing family of 0-psh functions {Yp}r (kK = 1,2,...) such that
i/ Pxizp a.e., otherwise Pxjzp = —oo. In particular, Pxiz¢ € PSH(Z,.*0)
unless Px|zp = —o0.

Now assume that Z is smooth and that «(Z) € B.(L). Then Px|z¢ has a small
unbounded locus contained in ¢~}(B,(L)). Then it follows that the Monge-Ampere
mass of Px|z¢ can be defined as:

/ MA(Pyz¢) = / (1% + dd° Pyyzo)?) = (1% + dd* Pyi70)".
z z Z\¢e~1(B+(L))

The following is a consequence of Theorem 2.6, and it enables us to substitute MA(¢* Px )
for MA(PX, z¢) to estimate the lower bound of the restricted Bergman kernels. This is
a starting point of our strategy to prove Theorem 1.2.

Theorem 3.4. Assume that Z is smooth and that «(Z) € B.(L). Then It holds that

/z MA(Px|z¢) = /z MA(¢*Pxp).

Proof. By Theorem 2.6, we only have to show the first equality. The one side inequality
> is also an immediate consequence of Theorem 2.6. Since we may take 1, minimal
singular in Lemma 3.3 (by exchanging ¥y by max{¢x, Px¢}),

[ MACPxo) = [ MA@
z z
holds by Theorem 2.6. On the other hand, since
(4*60 + dd°*yx)P — (¢*0 + dd°Pxizp)? on Z\ (B4 (L))
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by the continuity property of the Monge-Ampeére operator, we have
k—o0 z z

Therefore

[ MAWPx) > [ MA(Pze).
A VA
(]

The next theorem is a key ingredient to represent MA(Px|z¢) explicitly by ¢. It
states that the gradient of Px|z¢ is locally Lipschitz on Z \ B (L).

Theorem 3.5. Assume that Z is smooth and «(Z) € B.(L). Then Px z¢ has Lipschitz
continuous first derivatives outside of ™ (By(L)). Namely,

Pxiz0 € C*(Z \ v 1(B4(L))).
Moreover,
(4*0 + dd°Px|z¢)? = (1*0 + dd°u*¢)?  in the set {Pxjzo = ¢*¢} \ ¢ (B4(L))
a.e. with respect to du.

Proof. The proof is almost the same as Z = X case in [Ber09] except that in the re-
stricted case we need the Ohsawa-Takegoshi-type L2-extension theorem for an arbitrary
smooth subvariety (Theorem 1.4). We sketch the proof and omit the detail.

Let Y be the total space of the dual line bundle L*, identifying the base X with its
embedding as the zero-section in Y, and 7 : ¥ — X be the projection map. Given
¥ € PSH(X, 6), one can associate a psh function x,; defined on Y, as follows:

Xo(z, w) == log |w|iz1 +Y(x) (reX,welL,).

Berman’s original argument is modeled on the proof of Bedford-Taylor for CV!-
regularity of the solution of the Dirichlet problem for the complex Monge-Ampere equa-
tion in the unit-ball in C". As opposed to the unit ball, X has no global holomorphic
vector fields. But one can reduce the regularity problem of Px¢ on X to a problem of
XpPxe 0N Y, where enough many vector fields exist. This argument is still valid in the
restricted case once one can construct the suitable vector fields on 7=1(Z) extended to
Y.

For a proof, it is enough to show the regularity of xp,, at any given point y, €
7 YZ \ By(L)) \ Z. By Kodaira’s lemma, there exists an effective divisor E on X
such that yo ¢ 7 '(Supp E) and mL = A + E hold with some positive integer m
and ample Z-divisor A. We may assume m = 1 for the proof of the Theorem 3.5
since mPxjz¢ = Pxjz(my) holds. By this decomposition, we can construct some
o = Pa + Vg, 0 = 04 + 0 such that 84 + dd®p4 > 0 is smooth and 0g + dd°yYr = 0
has singularities only on E. Indeed, it is enough to set g := —dd°loghgq, Y5 =
log]| fa|2 +log hg 4 for some smooth metric g and system of local equations { fo}.

Lemma 3.6. There exist holomorphic vector fields Vi, ..., Vpy1 on w7 1(Z) satisfying the
following properties.
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(1) V4, ..., Vpya is linearly independent at yo.

(2) There exist holomorphic vector fields 171, cey 17;.,_1 on'Y such that V}[,,-z(z) =V
(1<i<p+1).

(3) For any fized k €N, V; (1 <i < p+1) can be chosen to have zeros of order at
least k along X and n~(Supp E). To be precise,

Vil < Ck) - lwl*,

~

Vil < Ck) - | ful2)|F

hold locally in the set {xy, < 1} for some constant C(k) depending on k.

Proof. Let Y := P(O(~L) & ©)) be the Zariski closure of Y. Consider the line bundle
7*L* @ Hpo(-1)p0) on Y and its metric
hikoo = TH2, +log(1 + €X¢)
with weight
Py =" (Ro($a + (1 + k5 *)g)).
Here Hp(o(-1)e0) denotes the fiberwise hyperplane bundle. For w-direction, log(1+eX¢)

has the strictly positive curvature and for z-direction, ¥4 + (1 + kg 1/ 2)1/) g is Op-strictly
positive if we take ko sufficiently large. Thus hz,e %% has strictly positive curvature in

Y. From this, taking sufficiently large k;, we can use Theorem 1.4 to get holomorphic
sections

Viy o Vpus € BT H(Z), 0Ty ® (L ® Hro-py00)™))

which correspond to some basis V1 g, ..., Vpy10 of T) (Z)4o- 1 We use Theorem 1.4 once
more and take further large ki, it can be seen that Vi, ..., V,1; are restrictions of some

Vi, oo Vo1 € HY(Y, O(T% @ (7" L% @ Hpo(—1y00))™))

which are integrable with respect to (hr,e ¥ )*. Note that Hpo(-r)eo)ly is trivial
and that 7*L = —[X] (the dual of the line bundle defined by the divisor X C Y).
Therefore 171, ..., Vp41 can be identified with holomorphic vector fields over Y having
zeros of order at least kok; along X. Further, by the integrability condition, we get

5 ko ko(1+kg /2 &
'W%wﬂgC'O%Jﬂh@N“+°)*%0
hence
~ (ko+1)k1 .
Fiaua)] <00 (ol @) - Ifalo)l®
The boundedness of |w,| - | fo(z)| in {Xy, < 1} implies the conclusion. O

Actually, Lemma 3.6 assures the existence of desired vector fields V; (1 € ¢ < p) and
one can repeat the proof of Theorem 3.4 in [Ber09]. (]

On the other hand, the repeating the proof of the Z = X case in Proposition 3.1 of
[Ber09] gives the following.

Lemma 3.7. In the situation of Theorem 3.5,
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(1)
(2)

Pxizp = t"¢ a.e. with respect to MA(Pxz¢p).

Px1zp(20) = *p(20) = (£*0 + dd°*p)(z0) = 0.

As a consequence of Theorem 3.5 and Lemma 3.7 (1), we obtained the desired rep-
resentation formula for MA(Px|z¢) as in the case Z = X.

Theorem 3.8. Assume that Z is smooth and «(Z) € B.(L). Then the identity
(39) MA(lezw) = 1{PX|Z‘P=L*<P} . (L*O + dch*(p)p

holds. Here 1{p, ,p=.+y} denotes the characteristic function of the set {Px|z¢ = t*¢}.
In particular, the measure MA(Px|zp) has L*-density with respect to du.

3.2. Restricted Bergman kernel asymptotics. From now on, we compare Px|z¢
with Bxjz(me) in detail. Fix notations as in the previous subsections. In this sub-
section we always assume that Z is a smooth subvariety of X and that «(Z) € B, (L)
holds. First we specify the upper bound of restricted Bergman kernels and show the
half of our main result.

Proposition 3.10.
y Bx)z(me)
im sup ————~
m—»o0 Tn/p/ p!
Proof. This is deduced from the two estimates about the upper bound of Bergman
kernels. First, we show the so-called “Berman’s local holomorphic Morse inequality”
(see [Ber04], Theorem 1.1) in the restricted case. The proof in the case Z = X is

applicable with no change.
Claim (1):

dp < MA(Px)z¢p).

: Bxz(mp)
3.11 lim sup ————~

Proof of the claim (1). Fix any 2o € Z. If we take an appropriate trivialization patch
U around z with hzy(z)e () = 1 and denote the eigenvalues of ¢*6 + dd°.*¢ with

respect to the form 3@ > L dzi A dZ; at z by Mg, ..., Ap, then for an arbitrary section
s € H(X|Z,0(mL)) with ||s||72n¢ = 1, we have

dp < Li(orddorg)z0} - (¢°0 + dd° )P

|5(20) 2y, _ lsu(z0)/®
m?/p! m? [p!

-1
< (/ |$U|2 e—mZAilzz'Pd)\(z)) (/ e-mEAi(zfilzd)\(z) ) mp/p!>
lo|< i |z|< i

by the mean value inequality for subharmonic functions. Here d) denotes the Lebesgue
measure with respect to z;. The lim sup,,, ., of the numerator in the last side is bounded
by detg, dA(20), and the denominator behaves as follows if we let m — oo:

. e"z}‘ilwil2d/\(w) — {7rp/(p!)‘1)‘2 e Ap) i N ? 0
oo otherwise.

p ! jwilog m
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(Here we use w = /mz as a new variable.) From this, one can deduce the claim.

The second claim is a direct consequence of the definition of Px|z¢, and motivates
the definition as well.

Claim (2):
(3.12) Bxi2(m9)  -mo—Prize) - sup Bxz(my)

mp/p! z mpP/pl

Proof of the claim (2). Note that the supremum in the right hand side is finite by

claim (1). Fix any zp € Z and take any s € H*(X|Z, O(mL)) satisfying Is(zo)liw =

Bxz(mp)(z) and ||s||fmp = 1. Since Is(z)lfmp < supy Bxz(me) for any z € Z, we have

1 .
—(log|s(2)|4m — logsup Bxjz(me)) < ¢*¢ in Z.
m L z

Since the left hand side is the pull-back of a #-psh function on X the above inequality
implies
1 .
—(log|s(2) 5, —logsup Bxiz(me)) < Pxiz¢ in Z.
Thus the claim (2) is obtained.
Proposition 3.10 is now easily proved. Actually, claim (1) and Lemma 3.7 (2) imply

. Bx\z(my) .
limsup ———~du < (¢*0 + dd°*p)? in {P ="
m_mp ey p < ( ©) {Pxiz¢ o}
and claim (2) implies the pointwise convergence
Bxiz(me) . .
(3.13) —ym =0 (m— o0) in {Pxjzp # "¢}
so one can conclude Proposition 3.10 by Theorem 3.8. a

Corollary 3.14.
Volxiz(L) < / MA(Px2¢0)
Z

Proof. Since MA(Px|z¢) has L*-density by Theorem 3.8, we can apply Fatou’s lemma
to (3.10). O

We can now derive the fundamental relation between Pxz¢ and Bx|z(myp).

Theorem 3.15. For every compact set K € Z \ «~}(B..(L)), there exist an integer mg
and a positive constant C = 0 such that the inequality

(3.16) C'- ™ Pxiz¢) L By z(me) < C - mPe ™9 Fxiz®)
holds.

Proof. The right hand side inequality is a direct consequence of Proposition 3.10 and
Theorem 3.8. We will show the left hand side. By the extremal property of the Bergman
kernel, it is enough to show the following claim.

Claim: There exist some mg , C' and section s,, € H*(X|Z, O(mL)) for each m > my
such that
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(1) |3m(z)|fmpk >C™! foranyz€ K, k€N,
2) llsmlly, < C-

Here 4, € PSH(X,0) are taken to satisfy *¢yy ,* Pxjz¢ a.e. with respect to dp.
Actually, this implies

2
Stz X .
BXIZ(m(P) ; 'l—"‘l:‘('—)il,’_n"g > C_26_m(l’ p—t*YPy)
[t

so letting k — oo we get the inequality.

Proof of the claim. Fix z € K. By Kodaira’s lemma, we may take some ample
Q-divisor A and some effective Q-divisor F on X satisfying L = A + E. From this
decomposition, we may construct a #-psh function % with 15 (—00) C Supp E, v <
. Then using Theorem 1.4 twice, we may find suitable mgy,C and sections s,, €
H%(X|Z,O(mL)) for each m > mq such that

2
(1) |sm(z2)v|¢m,k =1
@) lsmll,, < C,
where ¥, = (m — mg)Yx + motPo. Then we infer

2 2
sl < llsml,, < C
and since we may assume e™(#~%0)(z)  C by the smoothness of 1 around z,

1=|sm(2)ly,,, < Clsm(2)lmp, -

Here C depends on my and K. O

As a consequence of the above results, the sequence of the Monge-Ampére mass of the
following Fubini-Study like potential functions converges to the Monge-Ampére mass of
the restricted equilibrium weight. This fact corresponds to the description of restricted

volumes via moving intersection numbers (see Theorem 4.6), and has a key role for us

to prove the local version of the restricted Fujita approximation in the next subsection.
Let us define:

1
(3.17) U, = L7 + p log Bx|z(m).
Theorem 3.18.
Um — Pxjzp  uniformly in any compact subset of Z \ . (B(L)),

and
MA(up,) = MA(Px|zp) (m — 00)

in the sense of currents.

Proof. The inequality (3.16) is equivalent to

_logC’ log C + plogm

" 1
+ Pxizp < Lo+ oo log Bx|z(mep) < = + Px|z¢.
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This estimate implies that, on any compact subset of Z \ ¢ 1(B,(L)), u,, converges
uniformly to Px z¢. By the continuity property of the Monge-Ampere operator, we
deduce

(¢*0 + dd°up,)? — (¢*0 + dd°Pxz¢)? in Z \ . 1(BL(L)).
In particular,

lim inf (¢*0 + dd°up, )P > / (¢*0 + dd°Pxz0)?
m=0 JZ2\-1(B4(L)) Z\e~1(B+(L))

holds. Therefore we only have to show

lim sup / (¢70 + dd°un)? < / (¢"0 + dd°Pxz0)?,
m—o0 J Z\~1(B(L)) 2\ B4 (L)

because we already have the current convergence in Z \ t~1(B,.(L)), but this is directly
seen by Theorem 2.6 and Theorem 3.4. (]

3.3. Restricted Fujita-type approximation. In this subsection, we first give a proof
of the restricted Fujita approximation theorem and then finish the poof of Theorem 1.2.

Theorem 3.19 ([Tak06], Theorem 3.1, [ELMNPO09]|, Theorem 2.13). Let X be a smooth
projective variety, ¢ : Z — X a subvariety, and L a big line bundle on X. Then for an
arbitrary € > 0, the following diagram is commutative, where Tz, Tx are modifications
and Z,X are smooth such that

(1) in the sense of linear equivalence between Q-divisors, nxL = A+ E holds for
some semiample and big divisor A and effective divisor E, and
(2) VOI)'E|§(A) < V01X|Z(L) < VOI)?lZ(A) +e
hold.

—~

7-X
Wzl

lwx

Z—T>X

Remark 3.20. By the continuity of the restricted volume (see Theorem A in [ELMNP09]
or (3.27)), the divisor A in Theorem 3.19 can be taken ample. This is shown as follows.
First we get a decomposition of Q-divisor: A = A¢+ Fy = ((1—6)A+dAo) + (0Eg) by
Kodaira’s lemma. Then As := (1 — §)A + 6 A, is ample and letting 6 — 0, Volxz(Aj5)
approximates Volx|z(A). From this, it follows that

. dim H°(X|Z,O(mL))
lim
m—00 mP /p!
holds. Indeed one can reduce this to the case when L is ample. Since the Serre vanishing

theorem forces H®(X|Z, O(mL)) = H°(Z,O(mL)) in this case, we may assume Z = X.
Then (3.21) is obtained from the Riemann-Roch theorem. g

Although a proof of Theorem 3.19 is already obtained in [Tak06] or [ELMNPO09], we
have to reprove this to show the local version (Theorem 1.2) at the same time. Our
proof of Theorem 3.19 is essentially the same as the proof in [Tak06] or [ELMNP09],

(321) Vle|Z(L) =
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but we need a more direct proof and do not use a characterization of restricted volumes
via multiplier ideal sheaves. We need the following “The uniformly globally generation
theorem”, which was first proved in [Siu98]. It can also be obtained as a corollary of
Theorem 1.4.

Proposition 3.22 ([Siu98], Proposition 1). Given a smooth projective variety X, there
exists a line bundle G such that for any pseudo-effective line bundle F on X with a
singular Hermitian metric hpe™¥ whose Chern curvature current is positive, the sheaf
O(F + G) @ I(%) is globally generated.

We also need the following lemma which can be shown by simple algebraic compu-
tations. For a proof, see e.g. 2.2.C of [Laz04].

Lemma 3.23. For an arbitrary line bundle G on X and a positive number € > 0, there
ezist a subsequence {€x}(k = 1,2,...) and an integer mg such that

dim H(X|Z, O(bx(mL — G)))
o2 [p! g

mp( VOlXiz(L) — 6)

for any m = my.

Proof of Theorem 3.19. Throughout this proof, we fix some G which appeared in the
Theorem 3.22, and a smooth metric hg on G. For any fixed integer m, we define the
weight of hPhg! as follows:

1 2 2
U = @+ EIOg(lsm’llm¢ +.t |3m,N(7n)|m¢>’

where {Sp,1, ..., Sm,N(m)} i8 & complete orthonormal system of H(X, O(mL — G)) with
respect to the norm

2 2
5|2, = /X 5P, dp

s, = (KPhgY)(s, s)e~™.

This is essentially the same as u,, in Theorem 3.18 (+ = id case). In fact, as in
subsection 3.2, we can get

(3.24) ("Tm)?) = (T,

where T, := 6 + dd°uy,, T := 6 + dd°Px assuming that ¢ is a closed embedding and
that Z is smooth, ¢(Z) € B, (L). Here the difference caused by G does not matter, for
G has no contribution to the asymptotic behavior of H*(X, O(mL — G)) thanks to the
bigness of L.

If we set J as the ideal sheaf generated locally by sm,1, ..., Sm,n(m), then J C Z(mun,)
holds. Therefore, by taking a log resolution we have the following commutative diagram,
where 7, and 7% are modifications from smooth projective varieties such that

(3.25) xZ(mum) = Ox(—E"), 7xJ = Ox(—F'), and E'< F'
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Moreover, since T, has algebraic singularities, we may assume
(3.26) TxTm =7+ [F],
where 7 is a smooth semipositive form and F' := F’/m. [F] denotes the closed positive
(1, 1)-current defined by F. We claim that this diagram actually satisfies the condition
in Theorem 3.19 for a sufficiently large m.

By Proposition 3.22, O(mL) ® Z(mu,,) is globally generated. Therefore its pull-back
O(mn% L — E') is also globally generated. For this reason, we may have a semiample
divisor A’ satisfying mn% L = A’ + E’. Then the subadditivity property of multiplier
ideal sheaves (see [Laz04] 9.5.B) implies

HO(X|Z,0(4")) = H(X|Z,O(t(mr* L — E"))

= HY(X|Z, 7% (O(¢mL) ® I(mun)t)) 2 H(X|Z, w%(O(¢mL) ® I(fmu,y,)))
and we get

HY(X|Z,m%(0O(fmL) ® I(¢¥muy,))) 2 HY(X|Z, O(mL) ® mx L (fmuy,))

= H°(X|Z,0(¢mL) @ I(fmu,,))
by the integral closedness of Z(¢mu,,). Further,
H°(X|Z,0(¢fmL) @ Z(fmuy,)) 2 H*(X|Z,0((mL — G)) @ Z(fmuy,))
= H%(X|Z,0¢(mL - G)))

by the definition of u,,. Consequently, with Lemma 3.23, it can be seen that there
exists a subsequence {{;} and a sufficiently large m such that

dim H(X|Z, O(£A"))
4P [p!

Setting A := A’/m, E := E’/m, By homogeneity of restricted volume ([ELMNP09]
Lemma 2.2),

= mP(Volx|z(L) — ).

VOl_gag(A) > V01X|Z(L) —&

and 7% L = A+ E hold. From this estimate it is also possible to deduce that A is big
for a sufficiently large m, because the above diagram for ¢ is also valid for the identity
map. The proof of the reversed inequality is not hard. W

With the proof of Theorem 3.19, we finally get to our goal of this subsection. Observe
that one can approximate MA(Px)zp) and Volxz(L) at the same time taking takes
suitable modifications.

Proof of Theorem 1.2. Since ¢ is a closed embedding and «(Z) € B, (L), we may

assume 7 is also an embedding and 7(Z) ¢ B.(A"). By the semiampleness and the
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bigness of A, there exists a smooth semipositive form 64 in ¢;(A) such that

Volg 5(4) = Volz(7"4) = /z 04

- [(@es+E)p)

The last equality is a consequence of the non-pluripolarity of the Monge-Ampere prod-
uct. 7*(64 + [E]) and T*(-y + [F]) are in the same class so that one can apply Theorem
2.6 to (3.25), to deduce the following:

[(@ea+iEDr) > [(@e+1mDy)
- [t = [ (@

Z z

For an arbitrary € > 0, the proof of Theorem 3.18 shows
[awnapy> [y e

z z
if we take m sufficiently large. This implies
Volxiz(L) > Volgz(4) > / MA(c* Px )
z

so combining this inequality with Theorem 3.4 and Corollary 3.14, we finally get the
identity

(3:27) Volxz(L) = / MA(Pxz¢)-

z
With this identity and Proposition 3.10, Theorem 1.2 is now concluded from Lemma
2.2 in [Ber06] which is shown by basic measure theory. O

4. INTEGRAL REPRESENTATIONS FOR THE RESTRICTED VOLUME
In this section, we discuss several integral representation of the restricted volume.

Theorem 4.1. Let Z C X be a (possibly singular) subvariety of X and assume «(Z) €
B, (L). Then the following holds.

Volxz(L) = / MA(Px|7...) = / MA((tlz.,)* Px)
reg reg

—swp [ (((z)TP) = [ (o) Teia?) = [ (TaP AL2),
T J Zreg Zreg X\B(L)
where T' runs through all the closed positive currents in c1(L), with small unbounded
loci not contained in «(Z). We denote by T a minimum singular current in c,(L)
and denote by Z.e; the regular locus of Z. The last integrand is defined as a closed
positive current on X \ B.(L) in the manner of Bedford-Taylor, and [Z] denotes the
closed positive current defined by Z.
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Proof. First assume Z is smooth. The first two identities are nothing but (3.27) and
Theorem 3.4. The second two are consequences of Theorem 2.6. Let us prove the last
identity. Note that the trivial extension of the current (Tpmin)? A [Z] to X is a closed
positive current and has finite mass by Skoda’s extension theorem. Fix a Borel function
1 such that Ti, = 6 + dd®). By induction on p, we are going to prove that

(4.2) / o(0+ ddYP A 2] = / (10 + ddo)P

X\B+(L) Z\¢e (B4 (L))
for any Borel function p on X. The case p = 0 is trivial. Assume this is true for p — 1.
First fix a smooth function p on Z. Take some x; € C(X \B.(L)) (k=1,2,3,...)
such that xx = 1 outside of the 1/k-neighborhood of B, (L). Then

/ xxp(8 + dde) A (0 + dd°¢)P~ A [Z]
X\B4(L) |
= / Xk00 A (0 + dd oY~ A [Z] + wdd®(xep) A (8 + dd°p)P~* A [Z]
X\B4(L)

= / ) A (0% 4 ddo* )Pt + rpdde* (xp) A (00 + ddeurp)Pt
2\ (B4(L))
by the induction hypothesis. This equals to
/ C(xepd) A (170 + ddC PP + S (xep)ddo Y A (0 + ddec )P
Z\e~ (B4 (L))

Letting k — oo, we get (4.2) by the Lebesgue convergence theorem. The general case
follows from the density.

The assumption Z is smooth can be dropped if we consider a resolution of singular-
ities, because the Monge-Ampére measure has no mass on any closed proper algebraic
subset. For instance, let us prove the first identity. Definition of Px|z,,¢ is the same
as (3.17). If we take a resolution of singularities, Volx|z(L) = Volgz(n%L) holds.
It is enough to show Pg zn;¢ = 73 Px|z,, in the regular locus of mz. Pgznye <
Ty Px|z,., is trivial and the converse inequality follows by the Riemann-type extension
theorem for psh functions. Other identities above are shown in the same manner. [J

Remark 4.3. The assumption that 7" has a small unbounded locus can be dropped since
we may define the non-pluripolar Monge-Ampere product for any §-psh function and
approximate it by the sequence of minimal singular 6-psh (As in the proof of Proposition
1.20 in [BEGZ08]). O

The last representation shows that Volx|z(L) is independent of L in the same first
Chern class. This result was already proved in [ELMNPQ9)] algebraically.

Corollary 4.4. Volx|z(L) is determined only by Z C X and ¢;(L).

Further, these representations of the restricted volume do not need sections of L
hence we can extend the definition of restricted volumes to any class.
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Definition 4.5. For any big class @ € H(X;R) and subvariety Z C X, we define
the restricted volume as follows.

VOlez(a/) :=/ MA(PXlzregSO) =/ MA((LIZreg)*PX‘P)
Zreg Zreg

= [ e T} =5 [ (TP = [ Ty 12,

+(e)
where T runs through all the closed positive currents in @, with small unbounded loci
not contained in ¢(Z2). O

For the definitions of the bigness and the augmented base locus for an arbitrary class,
see [BEGZ08]. Note that the regularity of Px¢ for a general class « is already shown in
[BD09]. We will prove the regularity of Px|z¢ for the class c;(L) in section 5. But for
a general a, the corresponding regularity result seems unknown. The second identity
in the above definition is true since it is easily seen that Px|z¢ has a small unbounded
locus even in this case and the proof of Theorem 3.4 is still valid. The another identities
can be proved totally the same as in the case a = ¢;(L).

In the end of this subsection, we give the representation of restricted volumes via
so-called moving intersection number. By definition, the moving intersection number
counts the number of points where Z and a general divisor D € |mL| intersects outside
of the base locus. We denote it by ((mL)?,Z). It is already known that Volx|z(L) =
lim, 00 m™P{(mL)?, Z) (see [ELMNPO09], Theorem 2.13). The refinement of this result
is now obtained.

Theorem 4.6. In the situation of Theorem 4.1,
Volxiz(L) = lim / MA (1)
z

m—ro0
LY, Z
_ g (IZ) I1L7.2]].
m—~00 mP
Proof. The first identity is a direct consequence of Theorem 3.18. The second is easily

seen by taking a log resolution of |mL|. In fact the second identity holds before taking
limit. Notation in the third identity follows [ELMNP09]. O

5. L?-EXTENSION THEOREM FROM A SUBVARIETY

In this section, we state the desired L?-extension theorem for our purpose and give
a proof.

Let us first fix notations. Given a holomorphic Hermitian vector bundle E with a
metric hg on a Kahler manifold X, we denote its Chern curvature tensor by ¢(E). That
is, c(E) := +/—1D? where D denotes the exterior covariant derivative associated to the
Chern connection of (E, hg). ¢(E) is an E* ® E-valued real (1,1)-form and defines a
Hermitian form on Tk, ® E, (z € X) as follows:

H(t; Qe ta ®eg) = (c(E)(tl, \/—1t2)61[62) for ti,t € Txy, €1,62 € Ey.

Here ( | ) is defined by hg. Recall that ¢(E) is said to be semipositive in the sense
of Nakano if H is semipositive everywhere in X. And we denote it by ¢(E) Znax 0. If
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a Kahler metric w is fixed, ¢(E) also defines a Hermitian form on (A*?T% ) ® E, as
follows:

(e, B) == ([c(E), Ala|B) for o,B € (/\p’q T3.)®E, (z€X),

where A denotes the formal adjoint operator of the multiplication by w. It is known
that if p = n and ¢(F) is semipositive in the sense of Nakano, 6 defines a semipositive
Hermitian form. We will use the following norm:

(@IB)* < M-0(8, 9) } € (0,400

2 .
Ialo = lnf{M =0 for any 8 € (/\nqu;{,w) Q E,

for a € (N"T%,) ® E.

Theorem 5.1. Let Z be a p-dimensional submanifold of a n-dimensional Kéhler man-
ifold X with its Kdhler form w, K a compact subset of X. Then there exist constants
N =N(Z,K) >0 and C = C(Z,K) > 0 such that the following holds.

Fiz any complete Kdhler open set @ C X contained in K, a holomorphic vector
bundle E — X with a smooth Hermitian metric hg whose Chern curvature satisfying

¢(E) Znax N -idg on Q,
and f € H'(ZNQ,O(Kx®E)). Then we have a section F' € H*(Q, O(Kx Q E)) which

satisfies F|zna = f and

/ |Fl; dV.x <C / |13, dVi,z-
Q ZnD

Although the following proof of this theorem is almost the same as the proof of
“the Ohsawa- Takegoshi-Manivel L?-extension theorem” in [Dem00], we describe it for
account of the proof of Theorem 1.4. The difference from [Demo00] is that we deal with
arbitrary submanifolds and general vector bundles while we give up sharp estimates.

Proof. There exists some G € C®(Q, Kx ® E) such that

Glzna=1Ff,  (0G)|zna =0.
Fix a smooth cut-off function p : R — [0, 1] satisfying

p(t) = { %) ((fé % Pl < 8.

Then we set as follows:
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where

b e
Ye = log(e + €¥) (<=>1+f€—=6€>

n
pi=log» X% Y lzail’, €>0.
o

i=p+1

Here we choose a locally finite system of local coordinates {241, --., Zan }o SO that
ZNUy = {Za,p+1 = =za,n=0}

hold and choose a smooth function x, so that the following hold.

SuppXa € Uss Y _x2>0, and Y a2 lzagl’ <™ inX.
[+ @ i=p+1
This 1 satisfies the following condition (see [Dem82], Proposition 1.4).
(1) ¥ € C2°(X\ Z) N Lipo(X)
¥ < —1in X, ¥ — —o0 around Z.
(2) e=®P¥ is not integrable around any point of Z
(3) There exists a smooth real (1, 1)-form  in X such that
v—180¢ > v holds in X \ Z.

If the equation
Ou. = 0G, in Q
luc|? e=*P¥ js locally integrable around Z

has been solved, u. = 0 on Z holds by the above condition hence the sequence {G:—u.}.

is expected to converge to what we want. This is our strategy.
To solve O-equations, we quote the following from [Dem00].

Theorem 5.2 (Ohsawa’s modified L*-estimate. [Dem00], Proposition 3.1). Let X be a
complete Kdhler manifold with a Kdhler metric w (w may not be necessarily complete),
E — X a holomorphic Hermitian vector bundle. Assume that there exist some smooth

functions a,b > 0 and if we set
d(E) :=a-c¢(E) — vV—188a — v—1b"'0a A Da
#(a,B) == ([(E), Nalf) for a,B€(\ "Tia)®E: (z€X),

it holds that
¢ >0 on (/\ ’qTX,m)@)Egc for any z € X.

Then we have the following. ~
For any g € L3(X,(A™T3) ® E) with 8g = 0 and

/ lglg, dV, x < +00,
X
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there exists a section u € L*(X, (N ' T%) ® E) with du = g such that
/ (@+5) 7 jul2dVix <2 / l9I2 dV,,x.
X X

Let us go back to the proof of Theorem 5.1. First, we are going to compute
(5.3) 0. .= [a.(c(E) + (n — p)vV—180¢) — vV/—100a. — b;*/~18a. A Bac, A].
(@e, be Will be defined in the following. ) If we set

Gg = X&:('ﬁbe) >0
for some smooth function Y., it can be computed as:

= X;(we)a"»bea
\/—_135% Xe($e) V=180, + X2 (e)V—10%: A Oy,

= x.(%e)V—100%. + Xe (¥e) vV—18a. A da.

Xz (¥e)?
so comparing with (5.3), it is natural to set
XY
b, 1= — ”((st) (> 0).

And we finally define
Xe(t) :=¢€ —t+1og(1l — ).
Then for sufficiently small £ > 0, we have
a. > e—logle+e™) =1

v—188a, + b71v/=18a. A Ba. = X.(¥e)V—100%. < —V/—180¢,
hence ~ _
' > [e(E) + (n — p)v/—188%y + v—188¢, A].

On the other hand, simple computations show:

e¥
a’lps € + e¢ Qp)
\/—183¢5=8+e¢ e 1/))2\/ 10 A Oy
A Oe.
Therefore, by the compactness of K, there exists a constant N(Z, K) > 0 such that
implies
n,1
(5.5) 0.20 on (/\ Tx,)®E, forallze®

and eigenvalues of ¢, are bounded from below by a positive constant (uniformly with
respect to €) near Z U Q.
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Next we will estimate 9. by |*|g, - Fix arbitrary o, 8 € ( A % z)®FE;. By definition,

|@4e i) < M - (e, (E)A]ﬁlﬂ)}

— 2
=inf{ M >
|09 A ], = in { ° for any g€ (/\n’ Txz) ®E

so it is enough to estimate |(8¢. A o ﬁ)l . This can be done as follows:
3% nalB)|” = |(al BB

< lof® - [(3%)*8]" = laf® ((99:)(3%:)'818) = laf® ([V=T8¢. A Bt, A1BIB)

by Shwartz’ inequality (§f denotes taking the formal adjoint of the multiplication oper-
ator), and the last term is bounded by

2 Jaf? ((V=T0Bs -
< % lof? ([e(E) + (n — p)v/=108% + +/=108¢., A||6)

AJB1B)

e¥ 2 (1
< < lof? (14(E), AJBI).
The last inequality is a consequence of (5.4). Thus we may get a desired estimate
_ P
(5.6) |9 Aaf, < % laf?.

This time we estimate g. = gél) + g§2) .
By (5.6) and Supp gél) C {e¥ < ¢}, ggl) can be estimated. Namely,

W\ 2
/ z, e ™ PGV, x < 4/ |G? p'(f_._) e PgY,
O\Z € o0NZ £

holds. Since e¥ ~ Z?=p+1 |za,i|2 on U,, thanks to the compactness of K we get:

lim sup / | N
£—0 oA\Z

We can also estimate g§ ). Note that eigenvalues of ¢ are bounded below. Then we get

L1

because we can see that l g? | o = O(e?) holds in Supp g= @ ¢ {e¥ < e}, by G|zna =0
(using the Taylor expansion).
Now we can apply the modified L2-estimate for each ¢ in 2\ Z. Note that Q\ Z

is a complete Kéhler manifold (see [Dem82|, Theorem 1.5). There exists a sequence
{us} C L*(Q, Kx ® FE) such that

/ (ac +b:)™t luel2 e_("_p)'/’de,X < 2/ |g€|z, e”("‘p)'/’de,X < 400
o\Z Q\Z €

z, e PV, x < C / ik dV, z < 400.
€ ZnQ

e~ " PV, x < O() < +o0

holds.



RESTRICTED BERGMAN KERNEL ASYMPTOTICS 81

Let us estimate the left hand side of the inequality. It can be easily seen that
Y < logle+e™) < -1 +0(e)
a. < (1+0(e)y?
be = (2—¢.)° < (9+0(e))y?
g +b. < (10+0(e)¥? < (10+ O(e))(—log(e + €¥))?

and

|G.|? M
AVox € 77—
/Q et )P (- logle + N S Tloge?
hold. Therefore, if we set F; := G, — u,, it follows:

| |
| dv,
e /n\z (e + )P (—log(e +e?))2 7

(loge zZn0

By construction, 8F; = 0 holds on © \ Z and in fact also in {2, thanks to the Riemann
extension theorem.

Finally, Let € N\, 0. Then after taking a weakly convergent subsequence, we get a
F € I*(Q,Kx ® E) such that OF =0 in  and

e—0

2M
< lim sup ( 22 _/g;\z Igslzé e"(n—p)’/’de,x + '———5'2-) <C Ifl2 de,Z < 400.

I‘l lz 2
——=dV,x < C dV, z.
| smetox <€ [, 1P i

By the compactness of K, we get the conclusion. |

Proof of Theorem 1.4. Since X is projective, we may take a global meromorphic
section o of L and may assume Supp(div(e))NZ C Z. Fix a hypersurface H C X such
that X \ H is Stein, Supp(div(c)) C H, and HNZ C Z hold. Then L|x\g is trivial so
that we may identify ¢ as a psh function on X \ H.

Let v be a smooth exhaustive strictly-psh function in X \ H and set Q := {¢ < k}.
Since X \ H is Stein, there exists a sequence ¢, € PSH(;) satisfying ¢, \ ¢ (pointwise
convergence in €2). Note that ¢ does not loss positivity.

We apply Theorem 5.1 to ' := Q and E' := K5' ® E ® L for each k. Then by
assumption there are sections 3 € H°(Q, O(Kx ® E')) such that 3i|znq, = s and

15k e #*dV, x < C |s|? e~#*dV,, »
(5.7) Qe ZNSY,
<C / |s|>e=*dV, 7
Z

for a constant C. If we fix | € N, there exists some constant ¢(l) < e™# in ; hence we
have

c)- | [BfdVox<C / s e~2dV, 7.
o z
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Using the diagonal process, we may find a subsequence: 5j;) — 5 (weakly L2-convergent
on X). By Lemma 5.8, 05,y = 0 implies that this is actually the pointwise convergence
so that 5|zn(x\a) = s holds. We can deduce

/ 5°e™¢dV, x < C / s> e~?dV,, 2
X\H z

by (5.7) and by the lower-semicontinuity of L?>-norm. 3 can be extended to X by the
Riemann extension theorem and thus we conclude the theorem. O

Lemma 5.8. Let fi, f be holomorphic functions defined in a domain Q@ C C"*. Assume

that the sequence {fi} weakly L?-converges to f. Then {fi} converges to f pointwise
in ).

Proof. Fix any point z € 2. Taking x € C$°(2) with x = 1 near z, we have:
£e) = [ K@ OABO NGO~ [ K@, ABO A SO = £
¢en ¢eN

by the Koppelman formula. Here K5y, denotes the (p, g)-part of the Bochner-Martinelli
kernel. 0
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