Discretization and ultradiscretization of
differential equations preserving c’haracters of
their solutions
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Chapter 1
Introduction

" Differential equations are often used to describe various phenomena. For ex-
ample, we use differential equation to describe the motion of the dynamics and
solve them to determine the orbits. To derive differential equations, we take
continnous limits, however it is not always necessary to uise differential equa-
tions. We can use difference equations instead of differential equations. Hence,
there are two ways to describe a phenomenon by differential equations and by
difference equations. The author believes that phenomena, which are described
by differential equations can also be described by difference equations. .
Discretization is a procedure to get difference equations from given differ-
ential equations. The difference equations change to the differential equations
with limits of some parameters. Discretization is often used when one computes
differential equations numerically. Properties of solutions for the difference equa-
tions might be different from those of solutions for the differential equations. If
we discretize differential equations properly, some properties of differential equa-
tions are preserved. One of the aims of this thesis is to obtain the difference
equations which have similar properties to those of given differential equations.
In this thesis, we study discretizations of the following partial differential
equations:

u . '
v

> where u := u(t, ), v = v(t, %) (t >0, F€ R?), Dy, D, >0, f(u),g(v) are
function of u,v and A is’'a d-dimensional Laplacian. '

Now we provide one of the ways of discretization of (1.1) and (1.2). First,

we consider discretizations of the following ordinary difference equations: ‘

du
@ =)
d2
‘th = g(v).



The following ordinary difference equations are discretizations of these ordinary
differential equations.

= fa(u®,0) (s € Zxo),
v 457 = g4(v°,6) (s € Zxo),
where § > 0 and A
fa(w,8) = u+8f(u) + 0(6%) (6 - 0),
9a(v,8) = 20 + 82g(v) + 0(6%) (6 — 0)
are held. If there exists the smooth functions w(t),v(t) (¢t > 0) that satisfies
u(ds) = u®, v(ds) = v°, since the difference equations are formulated to

u(t +9) — u(t)
]
v(t +98) — 20(t) + vt - §)
52

~ these difference equations are discretization of the differential equations above.
Then, consider the following partial difference equations:

utt = fa(m(ug),8) (s € Zxo, 7 € Z%), (1.3)
uf{"l + uf{l = ga(m(ug), 5) (s € Z>o, ML € z%, (1.4)

where u3 :=u(s, ), vg = v(s,7) and ' :

= F(u(t)) + o(8) (5 — 0),

=g(v(t)) +0(8) (6 — 0),

where &, € Z% is a unit vector whose k-th component is 1 and others are 0.
(1.3) and (1.4) are discretization of (1.1) and (1.2). -

Let &, := v/2dDyd, & = v/dD,6 and there exists a smooth function u(t, Z)
and v(t,Z) that satisfies uf = u(ds,&,R) and v = v(ds,&,7). Using the as-
sumptions, we obtain

u(t +8,8) — ult, )
5

Gl B+ 6,8 — 2u(t, ) + ult, E — £,8)
= Du; | e
+f(u(t, 7)) + o(6) (6 — 0),
v(t+6,%Z) —2v(t, %) +v(t — 6,%)
52
=D, Z v(t, T+ &) — 2’0(;2 s T) +u(t, — £0€r)
+9(u(t, &) + 0(8) (6 — 0)




from (1.3) and (1.4). Taking a limit 6 — 0, (1.1) and (1.2) are derived.
Ultradiscretization [20] is & limiting procedure transforming given difference -
equations into other difference equations which consists of addition, subtraction
and maximum including cellular automata. Many soliton cellular automatons
were constructed by this procedure. They preserve the essential properties of
the original soliton equations, such as the structure of exact solutions [10, 13].
In this procedure, a dependent variable u,, in a given equation is replaced by

-l 0

where ¢ is a positive parametér. Then, we apply ¢ log to both sides of (1.5) and
take the limit € — 4-0. Using identity

hrﬁo elog (eV/¢ + €V/¢) = max (U, V)
E—

‘and exponential laws, we find that multiplication, division and addition for the
original variables are replaced by addition, subtraction and maximum for the
‘new omnes, respectively. In this way, the original difference equation is approxi-
" mated by a piecewise linear equation.

Difference equations and ultradiscrete equations which is obtained from dif-
ferential equations are often studied in the case of integrable equations such as
soliton equations. Solutions for those equations inherit the similar properties of
the solution for the differential equations. There are few cases that discretization
and ultradiscretization whose solutions inherit similar properties of solutions for
differential equations which is not integrable equations. ‘

In this thesis, we investigate discretization of partial differential equations
which have blow-up solutions in chapter 2. In section 1 of chapter 2, Dirichlet
problem of the difference equation, which is a discretization of a semilinear heat
equation is investigated. The difference equation in this section is proposed in
[11]. In section 2 of chapter 2, we discretize a semilinear wave equation and
prove that solutions for the difference equation have the similar properties of
the solutions for the semilinear wave equation. In chapter 3, we investigate a
discretization and a ultradiscretization of partial differential equations whose
solutions reveal spatial patterns. In this chapter, we propose a discretization

-~ and a ultradiscretization of Gray-Scott model which is a two component reaction
diffusion system and investigate solutions of the. difference equation and the
ultradiscrete equation. This work is joint work with Dr. Mikio Murata.



Chapter 2

Blow-up of solutions for
difference equations

2.1 Discrete semilinear heat equation
2.1.1 Introductiokn

In this section, we consider the following partial difference equation with pre-
scribed initial and boundary conditions:.

g Lo
St = = ad(gzyayi/e (& € Z20 M€ D),
] 7

0 =az > 0,20 (7 € Op),

(21)

K

f£=0 (s € Z>p 7t € Op),

p is a bqunded subset of Z%, 8Qp is the boundary of Qp, {}p is the interior
of Qp, (namely Qf = Qp \ 0Qp), £ := f(s,/), s € Zxp, A€ Qp. Moreover,
we take o, 6 > 0 and g3 define as: .
d rs s .
s o fs
S . fit€Ex —€k
gn * ; 2d . b

where €, is the unit vector whose k-th component is 1 and the others are 0.
The difference equation in{2.1) is investigated [11] as a discretization of the
following semi-linear heat equation:
af-. '
—— =A Ita, , 2.2
N (2.2
where f := f(t,&), t >0, £ € Qc C R% and A is a d-dimensional Laplacian.
Solutions of (2.2) are not necessarily bounded forall ¢ > 0. In general, if there
exists a finite time T' > 0 for which the solution of (2.2) in (¢,%) € [0,T) x Q¢ -
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satisfies
limsup || f(t, ) ||z = o0,
t—1T-0

where

£tz = sup [7(2,3),
ZeQc

then we say that the solution of (2.2) blows up at time 7.

The Cauchy problem for (2.2) has been studied and a critical exponent
which characterises the blow-up of the solutions for (2.2) has been discovered
and studied by Fujita and et al.[1, 6, 9, 21]
In fact, the difference equation (2.1) has similar characteristics to the critical
exponent known from the continuous case.

Considering (2.2) on [0,T) x Q¢ with the following initial and boundary
conditions
‘ f(o :E') a’(f) = 07$é 0 (',f € QC)’ (2 3) '
f(t,%)=0(t>0, &€ 0Qc), '

where Q¢ is a bounded subset of RY, the following theorem can be shown to
hold.

Theorem 2.1.1 The solution of (2.2) with initial and boundary conditions (2.3)
does not blow up at any finite time for sufficiently small initial conditions a(Z).

In this section, we show that (2.1) has a property similar to theorem 1. In
subsection 2.1.2, we define the blow-up of solutions for (2.1) and state the main
theorem which is a discrete analogue of theorem 1. This theorem is proved in
subsection 2.1.3.

2.1.2 Main theorem

First, we define the blow-up of solutions for (2.1). Because of the term {1 —
ad(g2)}M®, when g& — (ad)~V* -0, then fs*! — 4oc. This behaviour may
be regarded as an analogue of the blow up of solutions for the semi-linear heat
equation. Thus we define a global solution of (2.1) as follows.

Definition 2.1.1 Let f2 be a solution to (2.1).

When there exists an sg € Z>q such that g < (aé)“l/"‘ for all s < sg and
i € QUp, and when there exists fig € (lp such that g3° > (ad)~ Y, then we say
that the solution f7 blows up at time sg.

The following theorem is the main theorem of this section.

Theorem212 For Qp = {ii = (n1,-++,nq) € Z0 < np < Ny (k =
,d)}, the solution of (2.1) does not blow up at any finite time with suf-
ﬁczently small initial condztwn as.



2.1.3 Proof of the theorem

To prove the theorem, we make use of a comparison theorem.
First, to simplify the equations, we take the scaling (ad)/® fz — f& which -
changes the difference equation in (2.1) to

e _ 9z
o {1 (g

Now, we construct a majorant solution. Let o

d .
. 1
m(ha) = 5= Y (hara +ha ). (249

k=1 ’ .

We denote by hj the solution to the initial and boundary condition problem of
‘the linear partial difference equation

(hgt =m(hg) (s € Zso, TEOP)
h%_ =az (7 € Op), : (2:5)
hs =0 (s € Zso, 7 € 9Qp).

The majorant solution is- f_g defined as follow:

- he
fa= ” | (2.6)

s e’
{1— 5 |mk1a}
k=0 ‘

where m; is defined in terms of (2.5) as

M = 7_1;1’61?2)]% hi. E (2.7)

Lemma 2.1.1 When f; exists at s, for all 7t € Z%, namely when

$
1- E Jmg|® >0
k=0
holds, the solution of (2.1) does not blow up at any time s and moreover satisfies

faz itz ‘ (2.8)

Proof We precede. by induction on s. When s = 0, by the deﬁnition of the
ingtial and boundary condition problem, f3 exists and (2.8) holds because

0
i 0 _ g0
= mofey7e = "= I

'f_—q =



Suppose that the statement is true up to s = so and that f—;""'l’ exists. When
footl =0, we have that '

f_;o+1' =0 h%o+1 =0
m(hy) =0 .
h%lék_ 0 (k=1,2,...,d)
fo . =0 (k=1,2,...,d)

0

ke,
(k=1,2,...,d)

1rertes

Hence (2.8) holds.
When f;;o“q >0, if g2 = 0, then f§°+1 = 0 and the statement is true.
Otherwise

so+1 ’ S0 .
. L= D0 ™ 1= 30 [mul® | a
0<(]r~so+‘1)—a _ k:=01 _ k:Ol _ mso+11
R F1y + +
" : (™) (R i
. .
o1 - Z ~I’I’)’Lk|a 1
k=0 — 1

= ey T o
< ()" -1

From (2.4), (g2)~% — 1 = (f™)~% and we find (f3+!)~ < (foothy=e, e
~ f§°+1 < foLOH. Thus, from the induction hypothesis, the statement is true for
any non-negative integer s. :

From this lemma, by proving that 1= > reo|mi|® > 0 for all s € Zxq with
sufficiently small initial condition in (2.1), one can complete the proof of the
main theorem.

The solution of (2.5) is

. - d /
. g
hf—i = E {Bﬁ/(Cﬁ/)s I I sin (-—ﬁ,;nk> }, .
k=1

/€08,

where 7 = (nq,--- ,nd),\ i’ = (n],- - ,ny), car = Zi:l écos (nj,m/Ny) and
Bj. are constants that satisfy hoﬁ = az. The following proposition concerning
By can be proven.

Proposition 2.1.1 If the initial condition of (2.5) az 1s fized, By are deter-
mined uniquely.

Proof This property is proved by induction. on d.



When d = 1, put N := Ny. Solving N — 1 linear equations with N — 1 un-
knowns: ap =Y, — _1 B, sin ("" n') (W' =1,-+- ,N=1), the By are determined.
IfN-1 vectors (sin 2T e, sin M-N—l—)i) (n =1, ,Nf 1) are linearly indg-
pendent, then the B, are determined uniguely. On the other hand, these N — 1
vectors are eigenvectors of the following (N — 1) x (N — 1) matriz:

01 0 ... 0
10 o

0 . o
: . .0 1
0 ... 0 1 0O

All eigenwector are linearly independent so that the By, are determined uniquely.
Suppose that the statement is true up to d = dy — 1. Now we conszder the
case of d = dp.

e fle ()

agr =
AeENY I.,— )
Ndo n do—1 ’
= Zs’m( do™ )E B~Hsm< >
nd0;=1
do—1 . " L
If ni, -+ ,ng,—1 are fized, then each,ZBﬁ]—[k=1 sin (—T}—\%nk> is determined

uniquely from the case of d = 1. Because of the induction hypothesis, the By
are also determined uniquely. Thus, the statement is true for any d.

Now we estimate the infinite series 3 po, |mi|®. Take B := maxs |Bs|.
one lets maxy |az| be small, B also becomes small. We consider. three cases
a<l, a>1 '

When « < 1, we obtain

> lmif® B ) el
k=0

REQY

ZBa z |C-‘lka
k_

= AEQY

1
B* ) —— < 0.
deae 1T e

I/\ A
g T[~]8

[

We used the inequality (z +v)® < 2% + y* (z,y > 0) in the second line. The
inequality above implies that > 7o, |mx|® can take an arbitrarily small value,
if one lets the value of B small. Thus, 3 s, |mg|® < 1 with sufficiently small
initial condition in (2.5) and' the statement of theorem 2 holds by lemma 3.1.



When o > 1, since |ez| < 1 (7 € Q), |cq]® — 0 (s — oo) for all 7 € OF.
Thus, there exists sg € Z>o such that >~ reqs, leal® <1 (s = o). Now we get

<] sg—1 ) . oo
>l = D7 Imgl® 4 > fmel
k=0 ) k=0 k=s¢
Sp— 1 ) &
< Emiw}:m S fealt
: . k=so AE0g
so—1 ‘
< D Imul Z B* Y leal®
k=0 k=sp nEQo '
3=, el
= Z |mg]® + Z Ba ™ < oC.
REQY

Sp— 1
> |m]® can take an arbitrar 1ly small value, if one let the value of maxzeqp 07
E=0
‘be smiall so that the inequality above implies that Zk:o |mg|® can take an
“arbitrarily small value. (if B is sufficiently small.) Thus, > p [mx|* < 1 with
sufficiently small initial condition in-(2.5) and the statement of theorem 2.1.2
holds by lemma 2.1.1.- This completes the proof of the main theorem.

2.2 Discrete semilinear wave equation

2.2.1 Introductlon

Consider the Cauchy problem for the semilinear wave equation

82
- I
Tl = Au+ [ul? (p> 1)

u0.9) = /@) o 9)
50,9 = 9(a),

where u = u(%, f) (t>0, Z:=(z1, - ,74) € R?) and A is the d-dimensional
Laplacian A := Z 7 When the initial condltlons f(Z), g(Z) are continuous

and umfomly bounded there is a smooth solution for t > 0 whenever the solution
is bounded. However, it is well known that the solutions of this problem are
not necessarily bounded. For instance, this fact can be easily understood when
one considers the spatially uniform initial condition, f(Z) =0, g(F) =g > 0.



In this case, u(t, Z) = u(t) and (2.9) becomes an ordinary differential equation,

d*u

= |l

dt? [uf?

u(0) = 0, ‘ ] (2.10)

du

Because of the initial condition, the solution of (2.10) is non negative if it is
bounded so that u|P = uP is obtained. Multiplying both sides of the equatlon
- vby - and integrating from O to t, one obtains

du 2
kel — P+1
(dt) p+1- +o*

Since 4 dt2 >0 and 2(0) = g > 0, one has €% > 0 (¢ > 0) and the differential

inequality,
du
= (p+1)/2 , 2.11)
@~y p+1u (2.11)

follows. Since there exists a positive time & such that u(e) > 0, the solutlon of
(2.11) is
(aC)~ 1/

{0y uteye e -t}

where a = (p — 1)/2 and C = +/2/(p ¥ 1). As the right hand side diverges as-
t — o 107 u(e)™% + £ — 0, the solution of (2.10) is clearly not bounded for all
‘¢t > 0. In general, if there exists a finite time T' € Ry and if the solution of
(2.9) at (t,&) € [0,T) x R? satisfies

u(t) >

t>e)

hmsup Hu(t Mo = 00,
t—T—
where
lu(t, )z = sup |u(t, )|,
i ZeRd
then we say that the solution of (2.9) blows up at time 7. If such T does not
exist for a solution of (2.9) then we call it a global solution.

The critical exponent p.(d) := ‘—iil—%— V(:ii_“Ll)W (d > 2) which characterises
the blow up of the solutions for (2.9) was studied by many researchers. [2, 3,
' 4,7, 18, 19, 23]. F. John|7] proved small data blow up for 1 < p < p.(3) and
small data global existence when p.(3) < p. R.T. Glassey[3, 4] proved small
data blow up for 1 < p < p.(2) and small data global existence when p.(2) < p.
J. Schaeffer[18] proved small data blow up at p = p.(d) where d = 2,3. T.
Sideris[19] proved small data blow up when 1 < p < ps(d) where d > 4. V.
Georgiev, H. Lindblad and C. Sogge|[2] proved small data global existence when
De(ay < p where d > 4. B. Yordanov and Q.S. Zhang[23] proved small data

‘blow up for p = peq) where d > 4. Furthelmow, Kato [8] proved the following
theorem ~

10



Theorem 2.2.1 Let u be a generalized solution of

82_u_i' 0 (¢, Z ta:u f(txu)
57 " 2 B, acc,y Bz -

k=

(t>0, Ze Rd)
on a time interval 0 < t < T < oo, which is supported on a forward cone
Kr={(t,2);t>0, |Z| <t+ R} (R>0).

Assume that [ satisfies

 fblsl (sl < 1),
Jt:3.) > {blslp(lsl>1)

where b >0 and 1 <p <po = (d+1)/(d-1).

(If d = 1, pg may be any number greater than or equal to p. )

Moreover, assume that, for w(t) = [pa u(t, x)dm, either (a) $2(0) > 0, or (b)
2 (0) =0 and w(0) = 0.

“Then one must have T < co.

From this theorem, we obtain

Corollary 2.2.1 Let u be the solution of (2.9). Assume that f and g in (2.9)
satisfy supp(f)Usupp(g) C {& € R%|E < K} (K > 0) and f]Rd gdZ > 0.
Moreover, assume 1 <p < (d+1)/(d-1) (d > 2).

(If d = 1, any assumption on p besides p > 1 is unnecessary.)

Then u blows up at some finite time.

In numerical computation of (2.9), one has to discretize it and consider a
partial difference equation. A naive discretization would be to replace the t-
differential and the Laplacian with central differences such that (2.9) turns into,

‘ s+1
Upn

d s
zu_.-|-ui 1 Uz, —2u + u
z : -4 — ck | f‘i|p,

where u(s, ) (=: u3) * Zxo x Z% = R, for positive constants § and £, and
where &, € Z% is the unit vector whose kth component is 1 and whose other
components are 0. Putting A= 62/€2, we obtain

uitt = 2dm(ug) + (2 = Qd)\)us,—i —uS 4 RuglP (p>1). (2.12)
Here . :
1 d
=0 > (Vare, + Va-z,). (2.13)
k=1" . g



For a spatially uniform initial condition, (2.12) becomes an ordinary difference
equation
wSth = 2uf — T 4 S|P,

The above equation is a discretization of (2.10), but the features of its solutions
are quite different. In fact, u® will never blow up at finite time steps. Hence,
(2.12) does not preserve the global nature of the original semilinear wave equa-
tion (2.9).

In this section, we propose and investigate a discrete analogue of (2.9} which
does keep the characteristics of corollary 2.2.1.
In subsection 2.2.2, we present a partial difference equation with a parameter p
" whose continuous limit equals (2.9), and state the main theorem which shows
that this difference equation has exactly the same properties as (2.9) with respect
to p. This theorem is proved in subsection 2.2.3.

2.2.2 Discretization of the semilinear wave equation
‘We consider the following initial value problem for the partial difference equation

403
s+1 s—1 7 - d
s T B . EZ~g, TEZ 2.14
uz' "+ ug 70 js (s N ) (2.14)

where p > 1 and ¢ > 0 are parameters and v} is defined by means of m (2.13)
as :
Cvg = m{u).

If there exists a smooth function u(t,%) (¢t € Rso, ¥ € R?) that satisfies
u(s6,éR) = vy with £ := V/d§, we find
u(t +6,%) +ut — 6,7) = v(t, £)(2 + 8v(t, &) (¢, Z)[P~2) + o(6%),
with
L&
u(t, %) 1= o] ,; (u(t, @+ &&x) + ult, T — £€k)),
or

u(t + 6, %) — 2u(t, %) + u(t — 4, E)
42 N :
d u(t, T + £€) — 2uf(t, m)-l—u( — £€x)
%" ¢

+ lu(t, TP + o(6?).

Taking the limit § — 40, we obtain the semilinear wave equation (2.9)

%u

W=AU+|U|IJ.

Thus (2.14) can be regarded as a discrete analogue of (2.9).

12



Because of the term 2—82vg v P2, if vg — (2672)Y/ =Y then ui™ — +o0.
This behaviour may be regarded as an analogue of th blow up of solutions for
the semilinear wave equation. Tlius we define a blow up of solution for (2.14)
as follow.

Definition 2.2.1 Let u% be a solution of (2.14).

When there exists sg € Z»o such that vy < (25‘2)1/(1’_1) for all s < s and
it € Z%, and there exists iy € Z* such that vy > (26=2)Y/ 1) | then we say
that the solution vz blows up at time sg.

An example of blow-up solutions for (2. 14) is easily obtained. If one considers
the spatially uniform initial condition vl =0, uy =¢ > 0, u§ = u® and (2.14)

becomes an ordinary difference equatlon

: 4u®
’U,S+1 + us—l — )
2 — 52us|us’p~2

140 =0 (2.15)

ul =g > 0.

This is the discrete analogue of (2.10). One can see that the solution of (2.15)
blows up in the following way:
If the solution of (2.15) does not blow up at any s,

fe., us < (2672)Y/(P-1) (Y5 € Zsy), then it follows that

262|us P

— 2w 2= 52us|u5|1’ 2

>0
and here the difference inequality u®*' — 2u® + us! > 0 holds. Solving this
inequality for the above initial values, one obtains u® > gs. This inequality
means that u® is arbitrarily large for large s € Z~. This statement contradicts
< (26=2)Y/(=1) (Y5 € Zs() and hence one concludes that the solution of

(2 15) blows up at some finite time.

Furthermore, (2.14) inherits quite similar properties to those of (2.9). The
following theorem is the main result in this section.

Theorem 2.2.2 Let uf, be the solution for (2.14). Assume that
(A1) {7 € Z%; ] #O}C{nEZd ||n|| <K} (j=0,1 K>0)
(A2) Fqug > Yosug

where |7 = |n1| + - + |ng| (7= (n1,--- ,nq) € Z9).
Moreover assume 1 <p < (d+1)/(d—1) (d > 2).

(If d = 1, any assumption on p besides p > 1 is unnecessary.)
Then u3 blows up at some finite time.

Remark The summations in (A2) may seem to be infinite sertes, but because
of condition (A1) both summations are actually finite series.

The author believes that (2.14) preserves the characteristics of the critical expo-
nent peqy known from the continuous case.

13



2.2.3 'Prooif of the theorem

The idea of the proof is similar to that adopted by Kato [8].
First, to simplify the equations, one takes the scaling (62/2)Y/®~Dyg — ug
_ which changes (2.14) to
i 2% | k
s+1 s—1 __ 7
ui o fuy = T oies o2 e (2.16)
One can deduce a contradiction bﬁr assuming that u3 does not blow up at any

finite time, i.e., v <1 ((s,7) € Zxg X z%). ,
Put. : ' '
U? .= Zu% / - (217
7 ‘ .

Because of (Al), {7 € Zd;u%éé 0} c {ii € z%;||7i|| < K+s— 1} such that the
summation of (2.17) is well-defined. Moreover, from {fi € Z% v # 0} C {7 € -
Z% |7 < K + s}, U* = Yz v and v < 1, it follows that

CUT<TY, (2.18)
where T° := #{f € Z% ||7i|| < K + s}. From (2.16), one has

2Jvzl

—r (2.19)
—< 1 —vlvglp 2 ,

D (ugtt - 205 +ugt) =

n

The left hand side of (2:19) is nothing but Us*t! —2U°+U*"! and since the right
hand side is clearly nonnegative, one has Us*! — 2U® + U~ > 0. From this.
"inequality, it follows that there exists some.positive number Cy which satisfies
the inequality . \ ' R

U® > Cys ‘ S (2.20)

© for sufficiently large s € Zq.

‘Note that U* > 0 for sufficiently large s € Zq.
The next lemma yields another inequality for U®.

Lemma \2.2.1 Put
- ﬁ(x) __ 2aP (z < 1)
1= z|z|P—2 ’

LetOSmo <1, zj_1 <z (F=1,---,9) and/\j‘ZO (j=0,-,5), Ao+ -
As =1, ‘ .
If Moxo + - - + Aszs > 0 then the inequality

)\oh(mo) + -4 )\sh(l‘s) > h()\oxo + -+ Asa:s)

18 satisfied.

N

14



Proof

o .
_6.’Ii (th(wo) +---+ /\sh(ws) - h()\ofllo + e+ /\sxs))
0 .
= )\o(hl(mo) - h()\o.’L‘o +ee )\st)), v ~(2.21)

where h'(z) := %(x) i
Since h(z) is conver on [0,1), I/ (z) increases monotonically on the interval
[0,1). On the other hand, 0 < Aozg+ <+ + Aszs < 2o < 1 from the definitions.
Hence (2.21) is nonnegative and
Aoh(zo) + -+ Ash(@s) — (om0 + - - - + Aews)
> /\oh‘(—()\lxl + )\S.’ES)/)\()) + )\1h($1) T+t )\sh(xs) - ]’L(O) \
' >0

is obtained. B
Since {7 € Z%;vg # 0} C {7 € Z%||7i|| < K+s} and U® = 3", v§ is nonnegative

for sufficiently large s € Zx¢, this lemma can be adopted to the right hand side
of (2.19) in the following way:

e N 1.5 e,
1—wglvglp—2 .~ 1"%273'”%!% 2onvalP?
2(Te) P (US)P
11— (To)i-p(Us)r—1’

for \j =1/T¢ (j=1,---,T%). , ,
Note that there always exists a positive number Cr which satisfies T < Cps?
for sufficiently large s € Z»o. Thus, from U® < T* it follows that

Us+1 —US + Us—i > ZC’;—PS—d(p—l)(Us)p

for sufficiently large s € Zq. :
Since 1 <p < (d+1)/(d—1),ie, —dlp—1)>~(p+1),

Ust — U + U™ > Cys~ PHI (2P, (2,22)

where Cy := 20%._7” ,
Moreover, using (2.11), it also follows that

Ust —2Us + UL > o0y P57t

for sufficiently large s € Z~g. ‘ ‘
Solving this difference inequality one finds that U* increases monotonically and
" that there exists some positive number C] which satisfies the inequality

U® > Cislogs, . (2.23)

15



for sufficiently large s € Zso.
Next, consider:

C

s . s+1 _ prsy2 _ Y2 —(p+1)(77s\p+1
E°:=(U U), p_+18 (Ue)pre,
As U* is monotonically increasing, (2.22) yields'
Es—l—l — E$ )
— {(Us+1 _ Us)2 _ (Us _ Us,—l)z}
_’]%{S—(erl)(US)pH —(s— ’1)—(p+1)(Us—1)p+1‘}

Cy
p+1

: Ul 1 1 (Us\PH
> —(p+1) (775 \p+1 _ L )
2.Cos™ 7T {1 Us p+1+p+1< Us )

> 28—(p+1)(Us)p(Us+1 _ Us—l) _ S—(;u+1){(U's)p+1 _ (Us—l)p+1}

Obn'viously, for0 <A<, ﬁ)&”’l —A+1- 5’1+_1 > 0 and hence E5T1— Es >0
for sufficiently large s € Z~q.

"Since U®/s > C!logs by (2.23), there exists some positive number Cj3 which
satisfies :
(Us+1 _ Us)2 > 038_(p+1) (Us)p—!—l

for sufficiently large s € Zw.
Because of (2.23), one has

]
Us+1 —Us > 03 (U_>

8

(p—1)/2 Us

8

' s
> GO log 5) P2

for sufficiently large s € Z~. v
Since (logs)P~1/2 is arbitrarily large for large s € Zsq, the following linear
difference inequality holds

Us+1 —yUs 2 ng_
8

for any positive number C and s > 3sg, where sp depends on C.
y p

Solving this difference inequality, one has

s—1

> I1

8§=80

s-l_C’US0 (s>s+1) -

and if C > d+ i, then

K d
e US> U H
’ k=0

s+k
so+k

(s> s80+1).

16



This inequality means that there exists some positive number C’ which satisfies
the inequality US > C’s%+! for sufficiently large s € Zsg but this statement
contradicts the assumption US < T°. '

This concludes the proof of the theorem.

\
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Chapter 3

Spatial patterns of i_solution's
for difference and
ultradiscrete equations

3.1 Introduction

Gray-Scott model[5] is a variant of the autocatalytlc model. Basically it con-
siders the reactions

U+2V -3V,

V-P,

in an open flow reactor where U. is continuously supplied, and the product P
removed. _

A mathematical model of the reactions bellow is the following system of
partial differential equations: ‘

g = Au—uw? +a(l —u),
85 (3.1)
En = DyAv + uv? - b,

where u := u(t, &), v := v(t,Z), t > 0, & € R? and D,, a and b are positive
constants. A is d-dimensional Laplacian. The solutions of this system represent
spatial patterns. Changing not only an initial condition but also parameters,
various patterns are observed[12; 16, 17].

Considering (3.1) with a spatially uniform initial COlldlthl’l, we get

Z—u = —uv? +a(l —u)

¢ (3.2)
il = uv? = bv

dt



Solving simultaneous equations, we get equilibrium points of (3.2) as follow:

PC,O . (uc,07UC,0) = (1) 0))

1 4b2 a / 4p2
Pc,:‘r_:(uc,:l:avc,:i:). = (5 (1:F 1”7),%( 1—-;—)) .

P. . and P, _ emerge when a — 4b% > 0 is held. P, is asymptotically stable.
P, _ is unstable. P, is asymptotically stable if the following inequality

a? / 4b? . -
b—éﬁ(l+ 1—-—a—><0 » . (3.3)
is held.

In numerical computation of (3.1), we have to discretize it and consider a
system of partial difference equations. A naive discretization would be to replace
t-differentials with forward differences and Laplacians with central differences
such that (3.1) turns into

Sty Gug . —2ug tul g ,
T =y R — w0l + a1 — ),
e k=1 d s ;2U - o . (3.4)
7 = ﬁzDvZ‘ N+-Ex & A—E&y +u_‘( n)z—bv%,
’ k=1 3 ‘
where u(s, 7)(=: u%), v(s,7)(=: vg) : Zxo x Z¢ — R, for poéitive constants §

and ¢, and where &, € Z% is a unit vector whose kth component is1 and whose
other components are 0.

Considering (3.4) with a spatial uniform 1n1t1al condition, we get a system of
difference equations. We get similar equilibrium points of (3.2) but the stability
of the equilibrium point (1,0) is different. If the parameter § is sufficiently large,
(1,0) is unstable. This case is different from the case of (3.1).

Since there are subtl actions in (3. 4), we cannot ulfradiscretize (3.4). Indeed,
following limit ” v
M £ €
ggrzgoelog(e —e’/%).
does not always exist. We can transform (3.4) without subtractions and ultra-
discretize the equations, but the obtained equations are not evolution equations.
This situation is inconvenient to investigate if solutions represent spatial pat-

terns. :

In this chapter, we propose discretization of (3.1) which can be ultradis-
cretized and investigate solutions of discretization and ultradiscretization of
(3 1) .
In section 2, we present a system of partial difference equations whose con-
tinuous limit equals (3.1), and consider the solutions of the discretization. In
section 3, we present the ultradiscretization of the system of partial difference
equations treated in section 2 and consider the solutions of the ultradlscretlza-
- tion. Finally concludmg remarks are given in Section 4.
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3.2 Disérete ‘Gray—S‘cott model

In this‘section; we. discretize (3.1) and investigate solutions.

3.2.1 Discretization of Gray-Scott model

Since it is more convenient to consider the ultradiscretization, we take the scaling
w = v + 1 which changes (3.1) to
du
ot
0
arf—D Aw +u(w —1)2 b(w—l).

First we consider the discretization of followmg system of 01d111a1y differential
equations:

= Au — u(w - 1)* + a(l —u), .
| (3,5)

d .
g ~u(w - 1)% +a(l — u), :
dat -
dw (3.6)
W w —1)2 — ~1). ,
o ulw —1)* —b(w —1)
We consider the following system of difference equations:
ep1 U+ 0(2uw ! +a)
- s+132 ; ’
1+8{(wst1)2 +d+1} (3.7)

et = Wt Ot (w)? 4+ 13 + ]
14 6§(2u® +b) ’
_where s € Z>»q, 6 > 0. The method of discretization is same to that used in
"[14, 15
If there exists smooth functions u(t), w(t) (¢t > 0) that satisfy u(ds) =
s, w(ds) = w®, we find

u(t + 8) — u(t)
5

wit + 5; it _ u(t)w(t)® = b(w(t) - 1) + O().

Taking the limit § — +0, -we obtain the system of differential equations (3.6).
Thus, (3.7) can be regarded as a discretization of (3.6). Using (3. 6) we can
consm uct a system of partial difference equations: ‘

= —u(t)w(t +6)* +a(l - u(t)’) +0(6),

s+1 _ Mpluz) + 5(2mp(ug)ws + a)

T 1 o{(wi) +a+ 1}

e+t = Ma(Wi) + §{myp(ug) (mg(wg)® +1) + b}
7 11 6(2my (u2) + b) ’

(73

k)

(3.8)

where s € Zxo, 7 € Z% and

, |
“ #psr + Jr—pe
() = Y Lem i 7
. k=1 :
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Since (3.8) is equivalent to

s+1 s d ,s — Ul s
Uy Uy _ Usitpe, — 2U5 T Ui_pa, $Y(0 5+112
5 - ; (pg)Q - mp(u'ﬁ,)(w" )
+ a(l — myp(u3)) + 0(9),
wit —wy ¢ L w gz ~ 2Wi T Wige,
= _ 4 fi+g€ 7 i—q€ +m u% ma(ws 2
(5 P ; (q€)2 P( ) q( n)
— blmg(w$) — 1) +o(6),

where € := +/2d6/p, if there exists smooth functions (¢, ), w(t,Z) t=0, e
R?) that satisfy u(ds,£7) = ug and w(ds,£A) = w$, we obtain (3.5) where
D, = (g/p)? with the limit § — 0. Solving simultaneous equations, we get
equilibrium points of (3.7):

Pyo: (ug0,wao) = (L,1),

)

I

Pyt (ug+;Wa,+)

P4 is asymptotically stable. Py _ is unstable. Py is asymptoﬁcally stable if

the following inequality
a® [ 4b? a [ 4b?
b_ﬁ<1+ 1——&—>.+(5 (2b—a){1+—2-5<1+ 1—7 —a| <0

is held. The coefficient of d° in left hand side is same to the left hand side
of (3.3). These equilibrium points are same as those of continuous case (3.2)
regardless of the value of §.

3.2.2 Solutions for the discrete Gray-Scott model
Now,letd=1, p=3, ¢g=1, § =0.1 and
: ™
—0. g <
0 _ 1 O3co‘s(50) |n| < 25,
1 [n} > 25,
: n
. — <
0 1+05cos(50) |n| < 25,
1- |n| > 25.

If one plots the solutions of (3.8) with a periodic boundary condition, following
patterns are observed. The horizontal axis is for space variable n. The vertical
axis is for time variable s. The height means the value of w;.
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Figure 3.1: ¢ =0.03, b=0.10

In Figure 3.1, a peak split into two peaks and two peaks move opposite side.
We took a periodic boundary condition so that it is observed that two peaks
pass each other.
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Figure 3.2: a =0.04; b= 0.06
In Figure 3.2, a similar situation of Figure 3.1 is observed. Between two

peaks, values of (u,w) converge to the stable equilibrium point Py ;. Moreover,
two peaks vanish, when they collide.
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0.04, b=10.11

In Figure 3.3 and 3.4,
self-replicating pattern is observed.

a peak split into a two peaks several times and a
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Figure 3.5: a = 0.02, b = 0.09
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Figure 3.6: a = 0.08, b= 0.17

In Figure 3.5 and Figure 3.6, two types of steady state is observed.
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Figure 3.7: ¢ =0.05, b =0.15

In Figure 3.7, values of (u, w) converge to the stable equilibrium point Pyp.
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Figure 3.8 reveals that which patterns are seen with the parameters (a, b).
The horizontal axis is for ¢ and the vertical axis for . The upper curve is
a = 4b? and the lower line is b = a. A: Figure 3.1; +: Figure 3.2; x: Figure
3.3;0: Figure 3.4; M: Figure 3.5; [I: Figure 3.6; V: Figure 3.7.

- 3.3 Ultradiscrete Gray-Scott model

In this section, we ultradiscretize (3.8) and investigate the solutions.

Let
Uz Ws
uy = exp'(—s’l), w§ = exp ( E“),

| D A B
d =exp — ) e=exp| = , b=exp ’

and take the limit € — 0, then we have

Ut = max [M,(Ug), D + max [M,(Ug) + Wi, A
' — max [0, D + max 2W35T!, 4, 0],

‘ 3.9
WEH = max [My(W§), D 4+ max [M,(U3) + max [2M,(W£), 0], B]] (8.9)
— max [0, D 4+ max [M,(Ug), B]],
where .
My(Fr) = max [Fripz, Fa-pa,]-
Taking a limit D — oo and assuming W3Z > 0, then we get
Ut = max [M,(Ug) + W5t!, A] — max 2W5T, 4], (3.10)
Wt = max [M,(U3) + 2My(W), B] — max [My(U3), B]. |

Let d = 1 and initial data of (3.10) —U2 € {0,1}, W2 € {0,1}. Taking some
conditions to parameters A and B, the solution of (3.10) becomes to a cellular
automaton. There are several types of conditions for A and B as follow:

Typel | TypeII | Typelll | Type IV | Type V
Ag—l’OgAgl‘ A>2 ‘Ag—l‘ A>0

B=1 B=1 B=1 B>2 B>2
Typeé I: The rule for A < —-1,B=1: ’
_Mp(Ursz)an(W';:) | 131 l 130 | 071 | 070
=Ust ws+t |1,0|1,0|1,1|0,0

n n

In this case, moving pulses are observed. If two pulses collide, each pulse is
disappeared. ,
Values of W is represent as follow: 0 (white) and 1 (black).
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T

Figure 3.9: WS with A=-1, B=1andp= q =1.

- Type Il Therule for 0 < A< 1,B=1:

'—Mp(Ug),Mq(Wg) [1,1]1,0]0,1]0,0
~UsFLwWETt 10,0(0,0]1,1{0,0

In this case, Ust! = —W:stL. Since this relation is held, W] satisfies a single
equation. Moreover, taking p = ¢ = 1, the equation is same as ECA rule 90,
whichr is. well known for fractal design:

W,  WeWs_y | 111|110 | 101 | 100 | 011 | 010 | 001 | 000
Wit o1 [o]T|T]0o]1]0O

Figure 3.10: W with A=0, B=1landp=g=1.

Type III: The rule for A > 2,5 =1:

~M,(U2), My(W2) | 1,1]1,0
—Us, Wt 10,0]0,0




Figure 3.11: W with A=0, B=1,p=2and g=1

In this case, Ut =/0 so that WS satisfies W2t = J\@(W’;).
Type IV: Therule of A < -1,B > 2: '

~M,(Us), My(W2) | 1,1|1,0]0
—USHL, W [ 1,0[1,0]0

In this case, W31 = 0 so that US satisfies US™ = M, (U3).
Type V: The rule of A > 0,B > 2:

—M,(UZ), My(W2) | 1,1]1,0]0,1]0,0
UL Wt 0,0[0,0]0,0]0,0

1In this case, UST! = W2t = 0 so that U and W vanish immediately.

If one take B > L, ~U:S € {0,1,...,L} and W? € {0,1,..., L}, the solution
of (3.10) becomes to a cellular automaton whose dependent variable can have
L +1 values. The more L is large, the more the number of rule for evolution
increases. In this case, the spatial pattern is also classified five types as follow:

Type I | Type 11 | Type III | Type IV | Type V
AL<-1|0<A<2L-1| A>2L A<L=1 A>0
B=L B=1L B=L |B>L+1|B>L+1

In the case of type II, taking L = 2 and p = ¢ = 1, a following Sierpinski gasket
with shadow can be seen. ) )
_ Values of W is represent as follow: 0 (white), 1 (gray) and 2 (black).

Moreover, taking p = 2, ¢ = 1, we can see the following patterns.

Now, let d = 2. We also take similar condition to the initial condition of
(3.10) in the case of d = 1:W2 € {0,1},-U2 € {0,1}. We can separate spatial
patterns to five types as similar to the case of d = 1. If A < —1, B =1 then the
rule of the evolution is as follow: ’

_MP(UE)’MQ(WE) l.171 | 1701 0’1 l 0’0 ‘
U Wit 11,0]1,0(1,1{0,0

n
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Figure 3.13: W2 € {0,1,2} with A=3,B=2,p=2andg=1
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n=10

Figure 3.14: ‘A ring pattern is spreading.
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In this case, the following pattern is observed. Values of W; is répresent as
follow: 0.(white) and 1 (black):
If 0 < A< 1,B =1, the rule of evolution is as follow:

~M,(U2), My(W2) [ 1,1]1,0]0,1]0,0
-UgFLwitt ]0,0[0,0[1,1]0,0

In this case, we can see the following patterns: '

n=28 n=9 T n=10

Figure 3.15: Chaotic pattern. Wi withp=g¢=1.
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n =48

Figure 3.16: Self-replicating 'patterri. WE withp=1and ¢g=2.
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3.4 Concluding remarks |

In this chapter we proposed and investigated discrete and ultradiscrete Gray-
Scott model, which is a two component reaction diffusion system. We found
that solutions of each equation reveal various spatial patterns. Moreover, there
are solutions of the discrete equation and the ultradiscrete equation which cor-
respond to each. other.  Indeed, the parameters (a,b) with which the spatial
pattern Figure 3.3 is observed correspond to the parameters (A, B) with which
the spatial pattern Figure 3.11 or Figure 3.13. The ultradiscrete equation we in-
vestigated has a solution which is an elementary cellular automaton and which
_reveals Sierpinski gasket. This is answer of the questionn “What is the corre- .
spondence between cellular automata and continuous systems?” in [22]. Dis-
crete equations and ultradiscrete equations whose solutions inherit properties
of differential equations are studied in case of integrable equations. We expect
that more discretizations and ultradiscretizations which inherit properties of
differential equations are studied and the various phenomena are made clear.

33



Chapter 4

Concluding remarks

In this thesis, we investigated discretizations and ultradiscretizations of differ-
ential equations preserving properties of solutions. Blow-up of the solutions
and their spatial patterns are investigated. The author believes that discretiza-
tions and ultradiscretizations which preserves essential properties of differential
equations do exist. In the future, the author would like to establish the general
correspondence of differential equations, difference equations and ultradiscrete
equations. It is expected that investigating one of the differential, difference
and ultradiscrete equations may give information of other two equations.
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