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Preface |

In this thesis, we study the mirror symmetry for smooth Calabi-Yau 3-folds of Picard
number one which degenérate toa general complete intersection in Hibi toric varieties.
Two new examples of such Calabi~Yau 3-folds X(1°) and (G(2, 5)?) are our main interest
because of its mirror symmetric property.

- In Chapter 1, we collect the basic notations and results on Hibi toric varieties.
Combinatorics of finite posets play an irreplaceable role for descriptions of the geometry
of Hibi toric varieties, ,

In Chapter 2, we give a brief summary of the theory of toric degenerations. Es-
pecially, we study the Gonciulea~Lakshmibai degenerahons [GL] from a viewpoint of |
our formulation of Hibi toric varieties.

In Chapter 3, we perform the conjectural mirror construction of smooth Calabi-Yau
3-folds of Picard number one which degenerate to complete intersections in Hibi toric
varieties, based on the conjecmral construction of [BCFKvS1] \}ia conifold transition.
We give an expression for the fundamental periods.

In Chapter 4, we study the examples of complete intersections in minuscule Schubert
varieties. Listing all these Calabi-Yau 3-folds up to deformation equivalences, we find
a new example X(1%), a smooth complete intersection in a locally factorial Schubert
variety Z of the Cayley plane OP2. We calculate topological invariants of this Calabi~
Yau 3-fold and conjecture that it has a non-trivial Fourier-Mukai partner. ‘

In Chapter 5, we give an idea of regarding a complete intersection of projective
varieties as a complete intersection of hyperplanes in the projective join of the varieties.
We focus on an example (G(2, 5)%), a complete intersection of two Grassmannians G(2, 5)
with general positions in IP?. We study the mirror symmetry for this Calabi-Yau 3-fold
and suggest the possibility of a generalization of quantum hyperplane section theorem
for subvarieties of high codimension.

In Append1x we put the tables of BPS numbers computed using mirror symmetry
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1

Hibi Toric Varieties

1.1 Order polytopes

Let P = (P, <) be a finite partially ordered set (or poset for short) and N = ZP, M =
Homz(N, Z) free abelian groups of rank |P| dual to each other. We denote by N, Mg
the real scalar extensions N ®z R, M ®z R, respectively. We define the order polytope
A(P) € Mg as follows (cf. [Sta]).

AP) = {x = (t)uer |0 <20 <%y < 1forallu <ve p}. (1.1.1)

It is easy to see that A(P) is an integral convex polytope of dimension |P|.

Definition 1.1.1. Let P be a finite poset and A(P) the order polytope for P. The projective

toric variety associated with A(P),
Py := Proj C[Cone(1 X A(P)) N (Z x M)] (1.1.2)
is called the Hibi toric variety for a finite poset P.

Example 1.1.2. If P is a finite totally ordered set, the order polytope A(P) is a regular
simplex of dimension |P|. Hence the corresponding Hibi toric variety IP(p) is a projective
space of dimension |P|.

Example 1.1.3. Assume that every pair of elements in a finite poset P is incomparable.
In this case, the order polytope A(P) is |P|-dimensional hypercube [0,1]7. Then the

corresponding Hibi toric variety Pyp) is a |P|-times direct product of 1.

Example 1.1.4. One of the simplest examples of order polytopes is the Gelfand-Tsetlin
polytopes for fundamental weights of special linear groups SL(n + 1, C). The Gelfand-
Tsetlin polytope for an integral dominant weight A = (Ao, ..., A,) € 77/(1,...,1))is
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defined by the following inequalities in R™"+1/2
A, <L Xir1,j41 S Xij S Xija1 S A; forall0<i< ] <n-=1 (1.1.3)

These inequalities can be represented in a diagram like as Figure 1.1.1 for n = 3.

Ao
X02
xn M
Xop  X12
x1 A2

X22
"e

Figure 1.1.1: the Gelfand-Tsetlin polytopes for SL(4, C)

The Gelfand-Tsetlin polytope for a fundamental weight A = (1,...,1,0,...,0) isin
fact the order polytope A(P) for a poset P, whose Hasse diagram has rectangle shape (cf.
§1.4). The corresponding Hibi toric variety Paep) is the toric variety P(k,n + 1) defined
by [BCFKvS1].

1.2 Homogeneous coordinate rings

To introduce another description of Hibi toric varieties which is standard in literatures,
we should prepare some further definitions. For a poset P, an order ideal is a subset
I ¢ P with the property that

u€landv<uimplyv €l (1.2.1)

A lattice L is a poset for which each pair of elements ¢, § € L has the least upper bound
a V B (called the join) and the greatest lower bound a A § (called the meet) in L. A
distributive lattice is a lattice on which the following identity holds for all triple elements

a, B,y €L,
aABVY)=(@AB)V(aAY). (1.2.2)

For a finite poset P, the order ideals of P form a distributive lattice J(P) with the partial
order given by set inclusions. The join and the meet on J(P) correspond to the set union
- and the set intersection, respectively. An example of a finite poset P and the distributive
lattice J(P) is depicted in Figure 1.2.1 using the Hasse diagram of posets (cf. §1.4).
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Figure 1.2.1: Hasse diagrams of P and J(P)

Let J(P) be the distributive lattice of order ideals of a finite poset P. Denote by C[](P)]
the polynomial ring over C in [[(P)| indeterminates p, (@ € J(P)). Let I(J(P)) c C[J(P)]
the homogeneous ideal generated by the following binomial relations:

P<Pé — PingPove (T * @), (1.2.3)

where T » ¢ denotes the pair of elements 7,¢ € J(P) incomparable. One can check
that the graded algebra Ayp) := C[J(P)] /I(J(P)) with the standard IN-grading inherited
from C [J(P)] coincides with the homogeneous coordinate ring of the Hibi toric variety
Py with the embedding defined by the very ample line bundle associated with the
order polytope A(P). The graded algebra Ajp) is usually called the Hibi algebra on the
distributive lattice J(P) (cf. [Hib]).

Remark 1.2.1. One may define the Hibi algebra A; for not only J(P) but also any finite
distributive lattice L. In fact, it does not make differences because of the Birkhoff
representation theorem in the following. Let L be a finite lattice. It is easy to see that
L has the unique maximal and minimal element with respect to the partial order on L.
An element a € L is said to be join irreducible if a is neither the minimal element nor the

join of a finite set of other elements.

Theorem 1.2.2 (cf. [Bir]). Let P be a finite poset and J(P) the distributive lattice of order ideals
of P. The full subposet of join irreducible elements of J(P) coincides with P as a poset. This

gives a one-to-one correspondence between finite posets and finite distributive lattices.

As an example of this correspondence, a circled vertex of J(P) in Figure 1.2.1 repre-
sents a join irreducible element of J(P), i.e., the vertex with exactly one edge below. We
can easily reconstruct the poset P as the set of circled vertices with the induced order
in J(P).

Example 1.2.3. Let P be a finite poset and P* = P U {i} the poset with extended partial

order on P with u < 1 for all u € P. The Hibi toric variety P is a projective cone over
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Pacp) in PV In fact, the variable p; in the homogeneous coordinate ring Ajyp+ does not

involve in any relation p.py — PragPrve (T * @)

1.3 Projective joins

We give a generalization of the projective cone given in Example 1.2.3. First, let us

recall the definition of projective joins of projective varieties.

Definition 1.3.1. Let V; < P} and V; C [P} be projective varieties in projective subspaces
P}, P} C P with general positions. The projective join J(V1, V) of V7 and V5 is the

unijon of all projective lines in P"*™*! passing through a point of V; and a point of V5.
It is natural to introduce the combinatorial analogue of this notion.

Definition 1.3.2. (1) Let A; and A, be integral convex polytopes in M1, and Mz,
respectively. The projective join J(A1, A2) of A; and A; is the convex hull of the sets
(0, A1,0) and (1,0, ;) in R & ML & M2, where 0 € M, is the origin for j = 1,2.

(2) Let P, and P, be finite posets. The projective join J(P1, P,) of P, and P, is the poset
P, U P, U {0} with the partial order < extended from those on P; and P, by adding
u<o<vforallueP;andv € P,.

An example of the projective join J(P, P) of finite posets P is depicted in Figure 1.3.1,
again using the Hasse diagram of posets. The Hasse diagram of P is shaped like a
rectangle and the middle vertex corresponds to the additional element 0. Note that the

definition of the projective join J(P;, P») is not symmetric for P, and P,.

Figure 1.3.1: Projective join J(P, P)

Lemma 1.3.3. Under the notations in Definition 1.3.1, it holds that
(1) Pyaay = J(Pa, Pay),

(2) A(J(P1, P2)) = J(A(P1), A(P2)).



Proof. (1) It is easy to see that the homogeneous coordinate ring of J(IPa,,IPa,) is
isomorphic to that of Py, a,) by considering the polynomial relations in two
kinds of variables corresponding to the coordinates on projective subspaces P}
and IP}'.

(2) The claim follows from the fact that A(J(P;, P,)) is a convex hull of sets (0, A(P;), 0)
and (1,1, A(P,)), where 1 € M}, is the point with all x, = 1-and 0 € M, is the
origin. In fact, every point (x,, (x.), (xo)) € A(J(P1,P,)) is contained in a segment

“of the end points (0, (352),0) and (1,1, (32)) € A(J(P1, P2)).

1-x,

O

Remark 1.3.4. Although the definition of J(P1, P;) is not symmetric for P; and P,, the
order polytope A(J(P1, P>)) is defined in a symmetric way up to unimodular transfor-

mations as we see from Lemma 1.3.3 (2) or the proof of it.

Corollary 1.3.5. Let Py and P, be finite posets. The Hibi toric variety P, p,)) is isomorphic
to the projective join J(Paep,), Pacp,) of Hibi toric varieties IPap,), IPap,)-

1.4 Invariant subvarieties

A nice property of Hibi toric varieties is that torus invariant subvarieties in Hibi toric
varieties are also Hibi toric varieties. Before we see this, let us introduce some further
combinatorial definitions.

For a finite poset P and a pair of elements u, v € P, we say that u covers vif u > vand
there is no w € P with u > w > v. The Hasse diagram of a poset P is the oriented graph
with vertex set P, having an edge e = {u, v} going down from u to v whenever u covers
v in P. Denote that the source s(e) = u and the target f(e) = v for an edge e = {u, v} of the
Hasse diagram of P if u covers v. Let us define the poset P := P U {f), i} by extending
the partial order on P with 0 < u < 1.

The defining inequalities of an order polytope A(P) are generated by x,¢) > xy) for
alle € E, where E is the set of edges of the Hasse diagram of P = PU {0, i} and x; = O and
x; = 1. We can get a face of A(P) by replacing some of these inequalities with equalities
as we see below. Recall that a full subposet y C P is a subset of P whose poset structure
is that inherited from P. We call a full subposet y C P connected if all the elements in y
are connected by edges in the Hasse diagram of y, and convexif u,v € yand u < w <v

implyw € y.



Definition 1.4.1. Let P be a finite poset and P = P U {0, i}. A surjective map f from
P to a finite set P’ = P U {O, i} is called a contraction of P if every fiber f7\(i) (i € Py is
connected full subposet of P not containing both 0 and 1, and the following condition
holds for all u, v, € (k) and i # j € P":

a relation u; < u; implies v; ¥ v;.

Remark 1.4.2. A contraction f : P — P’ gives a natural partial order on the i 1mage set

P, i.e. the partial order generated by the following relations:
i < j © there exist u € f~1(i) and v € f7(j) such that u < v in P.

Further, P’ turns out to be a so-called bounded poset by setting 1 € f~!(1) and 0 € f~1(0).
Hence in fact, the above definition of contraction coincides with the more abstract

definition in [Wag]; the fiber-connected tight surjective morphism of bounded posets.

For a contraction f : P — P, the corresponding face of A(P) is given by

Of := {x € A(P) |x, =x, forallu,v e f*())andic 15’}. (14.1)
Conversely, we can reconstruct the contraction from each face 6, C A(P) by looking at
the coordinates of general point in 8;. Now we can rephrase the classical fact on the

~ face structure of order polytopes in our terminology (cf. [Wag, Theorem 1.2]).

Proposition 1.4.3. Let P be a finite poset, and A(P) the associated order polytope. The above
construction gives a one-to-one correspondence between the faces of A(P) and the contractions

of P. Moreover, an inclusion of the faces corresponds to a composition of contractions.

Remark 1.4.4. Itis obvious that the face 65_,5 C A(P) coincides with the [P’|-dimensional
order polytope A(P’) under a suitable choice of subspace of Mg and a unimodular
transformation. This means that the torus invariant subvarieties in Hibi toric varieties

are also Hibi toric varieties as noted before.

Finally, we note on divisors on a Hibi toric variety IPxp). Weil and Cartier divisors
are naturally described in terms of the poset P. In fact, prime invariant Weil divisors
correspond to the set of edges E of the Hasse diagram of P from Propbsition 143. It
is elementary to show that the divisor class group Cl(IP5(p)) is a free Z-module of rank
[E| — |P| and the Picard group Pic(IPa(p)) is a free Z-module whose rank coincides with

the number of connected components of the Hasse diagram of P.
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1.5 Singular loci

Let P be a finite poset. A chain of length k in P is a sequence of elements 1y < u; <--- <
ur € Pfor1 <i<k. A chain is called maximal if there is no v < ug or w > u; in P and
u; covers u;1 for all 1 < i < k. We call a finite poset P is pure if every maximal chain
has the same length. We have some known useful results on singularities of Hibi toric

varieties.

Proposition 1.5.1 ([HH, Remark 1.6 and Lemma 1.4]). Let P be a finite poset. The Hibi
algebra Ayp) is Gorenstein if and only if P is pure. In this case the Hibi toric variety Py is a

Gorenstein Fano variety with at worst terminal singularities.

Theorem 1.5.2 ([Wag, Theorem 2.3 and Proof of Corollary 2.4]). Let Py be a Hibi toric
variety for a finite poset P. A face 0y C A(P) corresponds to an irreducible component of the
singular loci of Pap) if and only if one of the fibers f(i) of the contraction f : P — P’ isa
minimal convex cycle in the Hasse diagram of P and all other fibers f=1(j) (j # i) consist of one

element.

1.6 Gorenstein Hibi toric varieties

We give some further preliminary results for Gorenstein Hibi toric varieties, which are
particularly important for our purpose. A finite poset P has a height function & by
defining h(u) to be the length of the longest chain bounded above byuinP =PU {0, i}.
We define the height hp of P as h(1). For example, hip = 9 for the pure poset P in Figure
1.2.1.

Suppose that P is pure and J(P) the associated distributive lattice of order ideals of
P. The associated Hibi toric variety IPxp) C Proj C[J(P)] is Gorenstein (Proposition 1.5.1)
with the anticanonical sheaf —Kp,,, = O(hp). In fact, for prime invariant Weil divisors

D,(e € E) on Ppp), a linear equivalence is generated by the relations

Z D, ~ Z D,, (1.6.1)

s(e)=u tHe)=u

for each u € P and O(Dg) coincides with O(1) for each E* := {e € E | h(s(e)) = k} and
DEk = ZEEEk De fork = 1, e ,hp.
Let us define A := Y, p h(u) X, — hpA(P), a polytope corresponding to the anticanon-

ical sheaf —~Kp,,, = O(Dg) = O(hp) containing the origin 0 € Mg as an internal integral



point. Since IP5(p) is Gorenstein, A turns out to be a reflexive polytope, i.e., it contains
the unique internal integral point 0 and every facet has integral distance one to 0 [Bat1,
Theorem 4.1.9]. We remark that the polar dual polytope A* C Ng of A also has a
good description [BCFKvS2] [HH]. The abelian groups ZP = N & Z{f), i} and ZE,
respectively, may be viewed as the groups of 0-chains and 1-chains of the natural chain
complex associated with the Hasse diagram of P. The boundary map in the chain
complex is

0:ZE — ZP, e t(e) - s(e). (1.6.2)

We also consider the projection pr; : ZP — N and the composed map
6:=pr,o0d: ZE — N. _ (1.6.3)

The dual polytope A* coincides with the convex hull of the image 6(E) C Ng. Further,

the linear map 0 gives a bijection between E and the set of vertices in A".



2_

Toric Degenerations

2.1 Generalities on toric degenerations

We follows the formulation by [CHV] and [And] [Kav]. Let A be a C-algebra and (2", <)
a totally ordered group, i.e., < is a total order on a free abelian group Z" such thata < b
impliesa+c <b+cforalla,b,c € Z". A Z"-filtration F on A is a family of C-subspaces
F.A C A (a € Z") satisfying the following four conditions:

(1) F2A C FA (for all a < b),

2) Usezn Fad = A,

(3) (FLANFLA) C FapA (for alla,b € Z") and
4) 1€ FoA\ FoA.

Suppose that A = EB;:;O Ay is a graded C-algebra with Ag = C and dim Ax < oo for
all k € IN. A graded Z"-filtration on A is a Z-filtration compatible with the grading,
ie, FLANA # @ = A € F,A for all I < k. Denote by the same symbol ¥ the
(Z x Z")filtration on A defined as F A := F.A N & P, A with the total order < on
Z. x Z" lexicographically extended from that on Z". For any nonzero f € A, thereis the
smallesta € Z" (called the order of f and denoted by ords f) such that f € 7,A. Itholds
that0 < ordg f e NXZ" forall 0 # f € A. We may define the associated (IN X Z")-graded
algebra of A as

gtrA= P Fuod/Fanh (2.1.1)

(ka)eNxzZ"

As[Cal, § 3.2] [AB, Proposition 2.2] [And, Proposition 5.1}, one can prove the following.



Proposition 2.1.1. Let (Z", <) be a totally ordered group, A a graded C-algebra with Ay = C
and dim Ay < oo for all k € N and F a graded Z"filtration on A. Assume that gro A is
finitely generated. Then there is a finitely generated flat graded C[t]-algebra A C A[t] such
that

(1) A/tA ~gr. A, and
(2) Alt71] = Alt, t71] as Clt, t*]-algebras.

Geometrically, Proposition 2.1.1 says there is a projective flat family Proj A — C
with general fiber isomorphic to Proj A and special fiber Proj(gr A).

Corollary 2.1.2 (Toric degeneration). Let (Z",<) be a totally ordered group and A a
graded C-algebra with a graded Z"-filtration & with one-dimensional leaves, i.e., for all
(k,a) € NxZ", dimFynA/F<aA < 1. Assume that grp A is a finitely generated in-
tegral domain. Then gre A is a semigroup ring C[I'] associated with the semigroup T :=
{(k, a) | dim FpnA/F«gxa)A = 1} C IN X Z" and the projective variety Proj A degenerates to
the projective toric variety Proj(gr A).

2.2 Standard monomial basis

Let A be a graded C-algebra and C [p] be a polynomial ring in # indeterminates p; (j =
1,...,n) with standard grading. Assume that there exists a surjective homomorphism
¢ : C[p] — A as graded C-algebras, i.e., A = C[p] /I where I := ker ¢ a homogeneous
ideal. A C-basis of A represented as a certain set of monomials in C[p] is called a

standard monomial basis of A if it exists.

Example 2.2.1. Let < be a term order on C[p] and denote by in.f the initial term of
f € C[p] with respect to <. The initial ideal in.I of an ideal I C C[p] is defined as a
C-space in] := C{in<f | f € I}. Then the set {p" ¢ in.I} is called a standard monomial
basis of A = C[p]/I with respect to <. In fact, it is a C-basis of A because every nonzero

polynomial r(p) € I includes a term in in.I and the reduction algorithm works.

Example 2.2.2. Let P be a finite poset, J(P) the distributive lattice of order ideals of
P and A a graded C-algebra. Assume that there exists a surjective homomorphism
¢ : C[J(P)] — A as graded C-algebras, where C[J(P)] is a polynomial ring in |J(P)]
indeterminates p, (& € J(P)). Then the set {pr,pr, - pr, + 1171 272 <--- < 7,} is called
standard monomial basis of A with respect to J(P) if it is a C-basis of A.
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2.3 Gonciulea-Lakshmibai degenerations

We recall the result of Gonciulea and Lakshmibai [GL] as an important example of toric

degenerations. We give a simple proof of this theorem in our terminology.

Theorem 2.3.1 ([GL]). Let P be a finite poset and A =~ C[J(P)]/I a graded C-algebra which
has a standard monomial basis with respect to J(P) in the sense of Example 2.2.2. Assume that

the homogeneous ideal I is generated by the following relations:

PzP¢ — PeagPrve + Z CopPablp (2.3.1)
a<TAPp

TVG<B

forall T + ¢. Then the variety Proj A degenerates to the Hibi toric variety Pap).

Proof. We construct a M =~ ZP-filtration # on A by setting:
0ty (pepey+ pe, +1) = ¥ x(r) (forall Ty ST <+ 27, € J(P)), (2.32)
=1

where x(7) := Y e (Ouo)uer and we take a reverse lexicographic order on M for a linear
extension of the partial order < on P. We verify the four axioms of filtration and that it
becomes a graded M-filtration. The value of ordg are all different for distinct standard
monomials because we can always recover all 7; = {d € P| ordg(pr,pr, - - - pr, + )(d) < i}
from that value. In addition we can check ord#(p,pg) < orde(pra¢peove) foralla < T AP
and 7 V ¢ < B directly from the definition of the order on M. Then we conclude
gre A = Ajp) and the claim from Corollary 2.1.2. m]

Many studies on the standard monomial theory for flag varieties and Schubert
varieties often give examples which can be applied Theorem 2.3.1. For instance, the
standard monomial theory for the so-called minuscule Schubert varieties [LMS] gives

an examples. The terminology in the following theorem will be introduced in § 4.

Theorem 2.3.2 ([GL]). A minuscule Schubert variety X(w) degenerates to the Hibi toric

variety Pacp,), where Py, is the minuscule poset for X(w).
We give a corollary in another direction.

Corollary 2.3.3. Let Py, P, be finite posets and A' ~ C[J(P1)]/5,A? =~ C[J(P,)]/L, be C-
graded algebras satisfying the assumptions in Theorem 2.3.1, respectively. Then the projective
join J(Proj A1, Proj A,) degenerates to the Hibi toric variety Pagep,py) = J(Pa@y), Pawy)) (cf.
Corollary 1.3.5).
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Proof. It is easy to check that the homogeneous coordinate ring A = C[J(Py,P,)]/I
of J(ProjA;,ProjA,) satisfies all assumptions in Theorem 2.3.1 because the ideal I C

C[J(P1,P»)] is generated by generators of the ideals I; ¢ C[J(P1)] and I, C C[]J(P>)]

regarded as elements in C[J(P;, P)]. O
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3___

Mirror Symmetry

3.1 Batyrev-Borisov construction

First we apply the Batyrev-Borisov mirror construction [Batl] [Bor] to Calabi-Yau
complete intersections in Gorenstein Hibi toric varieties. Let P be a finite pure poset
and N = ZP and M = Hom(N, Z) dual free abelian groups asbefore. The order polytope
A(P) € Mg is a |P|-dimensional integral polytope associated with the hyperplane class
on the Gorenstein Hibi toric variety Pap). We use the same notations as in §1.6,
a reflexive polytope A = Y, .ph(u)xy — hpA(P) C Mg, the polar dual polytope A* =
Conv 8(E) C Ng, Weil divisors Dg: = ), D, (E’ € E) and so on.

Let Xy C Py be a general Calabi-Yau complete intersection of degree (dy,...,d,)
with respect to O(1). That is, dy,. .., d, satisfies Z;zl d; = hp. We choose a nef-partition
of A, a special kind of Minkowski sum decomposition A = A; + -+ + A, of A, in the
following specific way. Define subsets E; of edges in E as

dy+-+d;

E= ) E (3.1.1)

k=d1 +'“+dj_1+1

where EX = {e € E | h(s(e)) = k}. It turns out that O(Dg;) = O(d)) and a nef-partition is
obtained from E = E; U E; U --- U E,. Define V; = Conv({0}, 5(E;)) and the Minkowski
sumV =V; +--.-+V, C Ngr. From [Bor], it holds that

A" =Conv(Vy,...,V,), V' =Conv(Ay,...,A) and A=A;+---+A, (3.1.2)

where A, is the integral polytope in Mg defined by (Ai, \ ]-> > —0;;. The explicit expres-
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sions of A; and V* are as follows:

4 d;
Aj=djl- Z Xay+tdi i — AAP) = Conv { d;x(T) — ZXd1+~~-+dj_1+i T€]J(P);, (3.1.3)
=1 i=1
4

V" = Conv { djx(t) - Z,xdﬁ st |[TEJP),ISjSTL, (3.1.9)

i=1

where x; := x(1)) = ZUET],((SuU)uep with 7; := {u € P | h(u) < j}.
Now we introduce the Batyrev-Borisov mirror of ¥ = X,, the strict transform of
Xp in a MPCP-resolution PA(p) of Py defined by [Batl]. The mirror of Y C PA(p) is

birational to the set given by the following equations in torus (C*)"':

fi=1- (Z 229 =0 (foralll<j<v), (3.1.5)

ecE i

where each g, € C is a parameter. Further, the precise mirror Calabi-Yau variety Y* of
Y is obtained as the closure of the above set in MPCP-resolution Py of Py.

The mirror Y* c Py actually has the expected stringy (or string-theoretic) Hodge
numbers as proved in [BB1, BB2] and is smooth in 3-dimensional case. The stringy
Hodge numbers of X, coincide with the usual Hodge numbers of Y if there exists a
crepant resolution Y — X,. Applying their formula for stringy (1, *)-Hodge numbers
to the case of Calabi-Yau complete intersections X, in Gorenstein Hibi toric varieties

PAp), we obtain the following convenient expressions in terms of the poset P.

Theorem 3.1.1 (cf. [BB1, Proposition 8.6]). The stringy (1,+)-Hodge numbers of a general
Calabi—Yau complete intersections Xq of degree (d1,...,d,) in a Gorenstein Hibi toric variety

Pp) are given by the following formulae

hiél(Xo) = |El - |P|, hl’k(XO) =0 (1 <k< |P| — = 1),

hi;lPl—r-l(Xo)=Z Z( 1)II|1 (d; — d] A(p) Z( 1y [Zl*(d] e)] il (3.1.6)

iel | JcI JcI ecE

where I = {1,...,7}, dj := ). ;;d; and O, is the facet of P corresponding to the edge e € E. The

-r-1 (

nonzero contributions in the first term of hi"'" "™} (Xo) comes only from the range of d; — dy > 0

and in the second term from that of dy = hp — 1 or hp.
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3.2 Constructions via conifold transitions

Let X be a smooth Calabi-Yau 3-fold of Picard number one degenerating to a general
complete intersection X in a Gorenstein Hibi toric variety IP5p) with a finite connected
pure poset P. Now we explain the conjectural mirror construction of X via conifold
transition proposed by [BCFKvS1] [Bat2].

A conifold transition of a smooth Calabi-Yau 3-fold X is the composite operation of a
flat degeneration of X to X, with finitely many nodes and a small resolution Y — X,. The
conjecture proposed in [BCFKvS1] is that the mirror Calabi-Yau 3-folds Y* and X" are
again related in the same way. The construction is depicted as the following diagram,
Figure 3.2.1. In the diagram, dashed and solid arrows represent flat degenerations and

small contraction morphisms, respectively.

- T *
N yex ]
h} Y
Xo Y:

Figure 3.2.1: Mirror symmetry and conifold transitions

In our case, a general complete intersection X in a Gorenstein Hibi toric variety
Pagp) has at worst finitely many nodes because of a Bertini type theorem for toroidal
singularities. In fact, we know that three dimensional Gorenstein terminal toric singu-
larities are at worst nodes. Thus we always obtain a conifold transition Y of X which is
a smooth Calabi-Yau complete intersection in a MPCP resolution i;A(p) of IPxp) and can
use the Batyrev-Borisov mirror Y* in §3.1.

By an argument in [Bat2] on generalized monomial-divisor correspondence, there
is a natural specialization Yj of the family of Y* to get the mirror of X. That is,
the specialized parameter (4.).cc should be L(A*)-admissible, i.e., there exists a L(A")-
piecewise linear function ¢ : Ng — R corresponding to a Cartier divisor on X such
that ¢ o 6(¢) = logla.|. In all our case, PicIPyppy = Pic X =~ Z holds. Then we can simply
specialize the family to be diagonal, i.e., setting all the coefficients a4, to be a same

parameter 4. Now we repeat the conjecture of [BCFKvS1].

Conjecture 3.2.1 ([BCFKvS1, Conjecture 6.1.2]). Let p be a number of nodes on a Calabi—Yau
3-fold Xo C Ppp). We define a one parameter family of affine complete intersections in (C*)
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by the following equations:
fi=1-aY ) =0 (orall1<j<r) (3.2.1)

eeE]-
The closure Yy, of the above set in a MPCP-resolution Py has p nodes, and there are (|E|—|P|—p—1)
relations between the homology classes of p vanishing 3-cycles on Y* shrinking to nodes in Y},

for general a. A small resolution X* — Y{ is a mirror manifold of X with the correct Hodge
numbers, h1(X*) = k> H(X).

Remark 3.2.2. In the case of smoothing of 3-dimensional Calabi-Yau hypersurfaces in
Gorenstein Hibi toric varieties, we can see Conjecture 3.2.1 holds by the same argument
as in [BCFKvS1] [BK], i.e., in fact the polar duality of faces gives a one-to-one correspon-
dence between singular P! C P,p) and torus invariant P! X P* ¢ Pa. which intersect
non-transversally with the closure of the set {f; = 0}. Further the MPCP-resolution

Pp > Py increases them by hp = deg X times.

In general, the existence of a smooth mirror X" is still an open problem. In the

remaining part, we refer to not only X* but also Y7, as a conjectural mirror of X.

3.3 Fundamental period

We derive the explicit form of the fundamental period for the conjectural mirror family
of X. Obviously, the coordinate transformation ¢, — ("¢, gives a Zy,,-symmetry a — (a
in the family in Conjecture 3.2.1, where { = ¢*" V=1/kr _Therefore we should take x := a"
as a genuine moduli parameter. The fundamental period wy(x) of the mirror family‘is
defined by integration of the holomorphic (|P| —r)-form Q, on a (real) torus cycle T that

vanishes at x = 0. By residue theorem, we get the following formula up to the constant

multiplication,
1 1 rds
= Q, = T e
@@ fq; (271 V=) =1 IT5m1 £ H t;
o . Sond, |P}
— pm___ - o(e)ydjm
;‘)a (Zn\/_)“" jl;A -1 H eeZE] a H
=Y x4 {«p Uf,(m) —E \ $Um) CEj, Y ¢7He) = Y ¢‘1<e>}
m=0 s(e)=u te)=u
- Y e {w Uron —>E‘¢(Ik(m NCE Y vie= ), v 1<e>}
= : k=1 s(e)=u te)=u
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where J;(m) := {(j,i) € N? | 1 <i < djm} and J¥(m) := {(k,i) e N? | 1 <i < m}.

~ In the case that the Hasse diagram of P (and hence P) is a plane graph, we can
go further like [BCFKvS2]. This is originally formulated in the work of Bondal and
Galkin [BG] for the Landau-Ginzburg mirror of minuscule homogeneous space G/Q
(cf. §4). If the Hasse diagram of P is a plane graph, we can define the dual graph B of
the Hasse diagram of P on a sphere S* = P! with putting 1,0 on + V—Too respectively.
We denote by by, b the elements b € B corresponding to the farthest left and right areas
respectively. We draw the Hasse diagram of P and its dual graph B below, Figure 3.3.1,

for the minuscule poset of G(2, 6) as an example (cf. §4).

Figure 3.3.1: An example of P and the dual graph B

The orientation of an edge e of B is defined as the direction from the left I(e) to the

right r(e). We attain the variable m;, for each element b € B and set m;,, = 0 and my, = m.

Proposition 3.3.1. Let X be a smooth Calabi—Yau variety of Picard number one degenerating
to a general complete intersection Xy in a Gorenstein Hibi toric variety Pap) with a finite
connected pure poset P. Assume that the Hasse diagram of P is a plane graph. Then, the
fundamental period wo(x) for the conjectural mirror family of X is presented in the following:

wo(x) = i W Y1 (mr‘e)]xm. (33.1)

=0 myeB ecE(B) \ TH(e)

3.4 Assumptions from mirror symmetry

We prepare some further definitions related with the monodromy calculations of a
Picard-Fuchs operator D, in one variable x which has two maximally unipotent mon-
odromy (MUM) point at x = 0 and x = co. Assume that there exist smooth Calabi-Yau
3-folds X and Z in the mirror side associated with the MUM points x = 0, oo, respec-
tively.
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Recall the argument in [CdOGP] based on the mirror symmetry, which involves
an integral symplectic basis of solutions in the original Calabi-Yau geometry. Let us
start from the Frobenius basis of solutions for D, around x = 0, namely the unique

normalized regular power series solutions wy(x) = 1 + O(x) and the followings

w1(x) = wo(x) log x + W] B(x),
w2 (%) = wo(x)(log x)* + 2w, 5(x) log x + wy 5(x), (3.4.1)

w3(x) = wo(x)(log x)* + 3w, B (x)(log x)* + 3w, 5(x) log x + w; (%),

where w, ®(x) is a regular power series around x = 0 without constant term. We expect
an integral symplectic basis has the following form:
1 0 0 0\ (nwlx)
T¥(x) = ( gt 4 2 0 )(,’Z;g;ﬁﬁi) , (34.2)
y B/24 0 «x/6 ) _
where ¥ = —deg(X), § = —c2o(X) - H, y = —n3C3)x(X), m = 1/(2mi)* with the topo-
logical invariants of X (cf. §4.6), and 4 is an unknown parameter without geometric
interpretation although it may be consistent to choose a € deg(X)/2 + Z.
Around x = oo, we also expect the existence of similar basis zPTT%(z) of solutions
for O, under some appropriate coordinate change z = c/x, where p is the index of
the singularity at x = oo of D,. We denote by IT*(z) the gauge fixed basis, exactly the

same form as I'T*(x) with the Frobenius basis wZ(z) for DZ := 2D,z ? and topological

invariants deg(Z), c2(Z) - H, x(Z) and an unknown parameter 4.
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Complete Intersections in Minuscule Schubert

Varieties

In this chapter, we study complete intersection Calabi-Yau 3-folds in minuscule Schu-

bert varieties including a new example Z(1%).

From Section 4.1 to Section 4.4 are devoted to give preliminaries for the combinato-
rial notion of minuscule posets and the geometry of minuscule Schubert varieties.

In Section 4.5, we make a list of all the deformation equivalent (diffeomorphic)
classes of smooth complete intersection Calabi-Yau 3-folds in minuscule Schubert vari-
eties. We will see that there is a unique nontrivial example of such Calabi—Yau 3-folds,
£(1°) embedded in a locally factorial Schubert variety I in the Cayley plane OP2.

In Section 4.6, we give a computational method of calculating topological invariants
for a smooth Calabi-Yau 3-folds of Picard number one degenerating to a general com-
plete intersection in a Gorenstein Hibi toric variety. We work on Z(1°) as an example.
The topological Euler number is computed by using a conifold transition.

In Section 4.7, we study the mirror symmetry of £(1°) using the results and the
assumptions in Chapter 3. We obtain the Picard-Fuchs operator D,, which suggests
the existence of a non-trivial Fourier-Mukai partner of X (Conjecture 4.7.2). We also
perform the monodromy calculation. Every result seems very similar to that happened
for the examples of the Pfaffian-Grassmannian [Red] [HK] and the Reye congluence
Calabi-Yau 3-fold [HT1, HT2].
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4.1 Definitions

First of all, let us define a minuscule weight, a minuscule homogeneous space and
minuscule Schubert varieties (Definition 4.1.1). Let G be a simply connected simple
complex algebraic group, B a Borel subgroup and T a maximal torus in B. We denote
by R* the set of positive roots and by S = {ay,...,a,} the set of simple roots. Let W
be the Weyl group of G. Denote by A the character group of T, also called the weight
lattice of G. The weight lattice A is generated by the fundamental weights A4,..., A,
defined by (a;’, Aj) = 6 for 1 <i,j < n, where (,) is a W-invariant inner product and
a¥ ;= 2a/(a, a). An integral weight A = },n;A; € A is said to be dominant if n; > 0 for
alli =1,...,n. For an integral dominant weight A € A, we denote by V the irreducible
G-module of the highest weight A. The associated homogeneous space G/Q of A is
the G-orbit of the highest weight vector in the projective space IP(V;), where Q > B is
the associated parabolic subgroup of G. A Schubert variety in G/Q is the closure of a
B-orbit in G/Q.

Definition 4.1.1 (cf. [LMS, Definition 2.1]). Let A € A be a fundamental weight. We call

A minuscule if it satisfies the following equivalent conditions.

(1) Every weight of V, is in the orbit WA C A.
(2) (@¥,A)<1foralla € R".

The homogeneous space G/Q associated with a minuscule weight A is said to be

minuscule. The Schubert varieties in minuscule G/Q are also called minuscule.

4.2 Minuscule homogeneous spaces

We give some further notations and recall the classification of minuscule homogeneous
spaces (Table 4.2.1). A parabolic subgroup Q D B is determined by a subset Sg of S
associated with negative root subgroups. A useful notation for a homogeneous space
G/Q is to cross the nodes in the Dynkin diagram which correspond to the simple roots
in §\ Sg. With this notation, the minuscule homogeneous spaces are as shown in
Table 4.2.1. This contains the Grassmannians G(k, n), the orthogonal Grassmannians
OG(n,2n), even dimensional quadrics Q*" and, finally, the Cayley plane OP> = E¢/Q;
and the Freudenthal variety E;/Qy, where we use the Bourbaki labelling for the roots.
We omit two kinds of minuscule weights for groups of type B and type C, since they

give the isomorphic varieties to those for simply laced groups.
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Glk,n+1) OG(n,2n) Q2 OrpP? E;/Qy

Table 4.2.1: Minuscule homogeneous spaces

4.3 Minuscule posets

The Weyl group W is generated by simple reflections s, € W for a € S. These generators
define the length function / on W. Let us denote by W the Weyl group of Q, i.e. the
subgroup generated by {s, € W | a € Sp}, and by WX the set of minimal length
representatives of the coset W/ W in W. For any w € W2, we denote by X(w) = BwQ/Q
the Schubert variety in G/Q associated with w, which is a I(w)-dimensional normal
Cohen-Macaulay projective variety with at worst rational singularities. There is a
natural partial order < on W called the Bruhat order, defined as w; < w, & X(w;) C

X(w,). We recall the following fundamental fact for minuscule homogeneous spaces.

Proposition 4.3.1 ([Pro, Proposition V.2]). For a minuscule homogeneous space G/Q, the
poset WX is a finite distributive lattice.

From Proposition 4.3.1 and the Birkhoff representation theorem, Theorem 1.2.2, we
can define the minuscule poset Pg for a minuscule G/Q such that J(Pg) = WX as in [Pro].
Moreover, the order ideal P,, C Pg associated with w € WH is called the minuscule
poset for the minuscule Schubert variety X(w) ¢ G/Q. For example, the order ideals
Pg, @ C Pg turn out to be the minuscule posets for the total space X(wg) = G/Q and
the B-fixed point X(id) = Q/Q, respectively, where wg is the unique longest element
in W. The minuscule poset for minuscule Schubert varieties is a generalization of the

Young diagram for Grassmann Schubert varieties.

Example 4.3.2. An easy method to compute the Hasse diagram of WX to trace out the
W-orbit of certain dominant weight whose stabilizer coincides with Wy, (cf. [BE, §4.3]).
Denote by (ij - - - k) the element w = Sa;Sa; " Sa € W, where s, is simple reflection with
respect to a € S. The initial part of the Hasse diagram of W® for the Cayley plane OIP?

is the following
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(65431)
5431 265431
id—(l)_(31)—(431)<2243 1; (25431) 105431 4265431) - - -
' 3425431)-- -,
where the right covers the left for connected two elements with respect to the Bruhat
order. Thus we obtain the Hasse diagram of the distributive lattice W? and hence the

minuscule poset for every Schubert variety in OIP2.

Definition 4.3.3. In the above notations, let us set w = (345134265431) € WR. We
denote by X the associated 12-dimensional Schubert variety X(w) in the Cayley plane
OIP? corresponding to the minuscule poset P in Figure 1.2.1.

Remark 4.3.4. We remark on another geometric characterization of minuscule homoge-
neous spaces in [LMS, Definition 2.1]. A fundamental weight A is minuscule (Definition
4.1.1) if and only if the following condition holds.

(3) For the associated homogeneous space G/Q, the Chevalley formula

[H- Xw)]= ) [X@)] (43.1)

w covers w’ '
holds for all w € W® in the Chow ring of G/Q, where H is the unique Schubert
divisor in G/Q and WX is the poset with the Bruhat order.

As a corollary, it turns out that the degree of a minuscule Schubert variety X(w) with
respect to Og/o(1)lxw) equals the number of maximal chains in J(P,,). For example, we
obtain deg X = 33 by counting the maximal chains in J(P) in Figure 1.2.1.

4.4 Singularities

We introduce further definitions to describe singularities of minuscule Schubert vari-
eties. As we expect from the corr{putation in Example 4.3.2, the Bruhat order on W® is

generated by simple reflections for minuscule G/Q [LW, Lemma 1.14], that is,
W1 COVers Wy & Wy = Sy * wz and l(w1) = l(w,) + 1 for some @ € S.

From this fact, ajoinirreducible element u € W2 covers the unique element sg,,)-u € W2
where Bo(u) € S. Thus we can define the natural coloration g : Po — S for a minuscule-
poset Py by simple roots S. We also define the coloration , on each minuscule

poset P,, C Pg by restricting fg on P,. The minuscule poset P, with the coloration
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Bw @ Pw — S has in fact the same information as the minuscule quiver introduced by
Perrin [Perl, Per2], which gives a good description of geometric properties of minuscule
Schubert varieties X(w). Now we translate the combinatorial notions and useful facts on

singularities of minuscule Schubert varieties X(w) from [Per1, Per2] in our terminology.
Definition 4.4.1. Let P be a minuscule poset with the coloration : P — S.
(1) A peak of P is a maximal element u in P.

(2) A holé of P is a maximal element u in 87'(a) for some a € S such that there are
exactly two elements v1, v, € P with u < v; and (B(u)", B(v))) # 0 (i = 1,2).

Let us denote by Peaks(P) and Holes(P) the set of peaks and holes of P, respectively. A
hole u of the poset P is said to be essential if the order ideal P* := {v € P | v #* u} contains
all other holes in P.

Let X(w) be a minuscule Schubert variety in G/Q and P, the associated minuscule
poset. Weil and Cartier divisors on X(w) are described in terms of the poset P,. In fact,
itis clear that any Schubert divisor coincides with a Schubert variety D, associated with
P! for some u € Peaks(P,). It is well-known that the divisor class group Cl(X(w)) is the
free Z-module generated by the classes of the Schubert divisors D, for u € Peaks(Py),
and the Picard group Pic(X(w)) is isomorphic to Z generated by Og/o(1)lxw)- As we

saw in Remark 4.3.4, the Cartier divisor corresponding to Og/g(1)|x) is

D.. (4.4.1)
uePeaks(Py)

Proposition 4.4.2 ([Perl, Per2]). Let X(w) be a minuscule Schubert variety and P, the

associated minuscule poset.

(1) [Perl, Proposition 4.17] An anticanonical Weil divisor of X(w) is

~Kxw) = Z (h(u) + 1)D,. (4.4.2)
u€Peaks(Py)

In particular, X(w) is Gorenstein if and only if P, is pure. In this case X(w) is a Fano

variety of index hp,.

(2) [Per2, Theorem 2.7 (1)] The Schubert subvariety associated with the order ideal Py, C Py,
for an essential hole u of Py, is an irreducible component of the singular loci of X(w). All

the irreducible components of the singular loci are obtained in this way.
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We apply Proposition 4.4.2 to our example Z € OP? and obtain the following.
Proposition 4.4.3. Let L be the minuscule Schubert variety in OP? (Definition 4.3.3).
(1) X is a locally factorial Gorenstein Fano variety of index 9.
(2) The singular locus of & is isomorphic to IP°.

Proof. The former holds because the corresponding minuscule poset P (Figure 1.2.1) is
pure with ip = 9 and the unique peak. From the computation of the Hasse diagram of
W¥ of OP? in Example 4.3.2, the coloration 8 : P — S is given as the following picture.

pu\c “p
¢
AN

Figure 4.4.1: The coloration of the minuscule poset P and the singular locus

A unique (essential) hole of P is the circled vertex u, whose color is a; € S. The
corresponding Schubert subvariety is described by the minuscule poset P*, which
coincides with the singular locus of X by Proposition 4.4.2. It is isomorphic to P°

because the degree equals to one. m]
We record the useful vanishing theorems for minuscule Schubert varieties.

Theorem 4.4.4 ([LMS, Theorem 7.1]). Let A be a minuscule weight, G/Q C P(V,) the

associated homogeneous space and X(w) C G/Q a minuscule Schubert variety.
(1) H'(P(V};), O(m)) — HY(X(w), O(m)) is surjective for all m > 0,
(2) H'(X(w),O(m)) =0 forallm € Z and 0 <i < l(w),

(3) H'®(X(w),O(m)) =0 forall m > 0.

4.5 List of complete intersection Calabi-Yau 3-folds

Now we study the smooth complete intersection Calabi—Yau 3-folds in minuscule

Schubert varieties. We show that there is a unique new deformation equivalent class

24



of such Calabi—Yau 3-folds, that is, the complete intersection of nine hyperplanes in a
locally factorial Schubert variety X in Definition 4.3.3.

First we fix some basic terminologies to clarify the meaning of our list. Let X(w) be
a minuscule Schubert variety. We call a subvariety X C X(w) a complete intersection if it
is the common zero locus of r = codimX global sections of invertible sheaves on X(w).
We may denote by X = X(w)(ds,...,d,) the complete intersection variety of general r
sections of degree d, ..., d, with respect to Og/o(1)|xw) since Pic X(w) =~ Z. A Calabi-Yau
variety X is a normal projective variety with at worst Gorenstein canonical singularities
and with trivial canonical bundle Kx = 0 such that H/(X,0x) = 0 for all 0 < i < dim X.
Two smooth varieties X; and X, are called deformation equivalent if there exist a smooth
family X — U over a connected open base U C C such that X;, ~ X; and X}, = X, for
some #,t, € U. In this case, X; and X, turn out to be diffeomorphic.

We summarize all possible smooth complete intersection Calabi-Yau 3-folds in

minuscule Schubert varieties:

Proposition 4.5.1. A smooth complete intersection Calabi—Yau 3-fold in a minuscule Schubert

variety is one of that listed in the following table up to deformation equivalences.

minuscule posets .(-'i:_. L Q g
v kx(n-k)

ambient varieties G(k,n) 0OG(5,10)
degrees 10 examples (15,2) (1%

In this table, 10 known examples in Grassmannians of type A include five in projective spaces;
P4(5), P°(2,4), P°(3?), P%(2%,3) and IP7(2%),
and five in others, whose mirror symmetry was discussed in [BCFKvS1];
G(2,5)(1%,3), G(2,5)(1,2%), G(2,6)(1%,2), G(3,6)(1°) and G(2,7)(17).
For all these Calabi—Yau 3-folds, the Picard number equals to one.

Proof. We may assume that the ambient minuscule Schubert variety is Gorenstein. In
fact, from the adjunction formula and the Grothendieck-Lefschetz theorem for divisor

class groups of normal projective varieties [RS], we have an explicit formula of the
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canonical divisor as a Cartier divisor, Kxw) = —=D; — - — D, where D; C X(w) is a very
ample Cartier divisor of degree d; and X(w)(dy, . . ., d,) is a general Calabi—Yau complete
intersection.
Let P*=PU {i}, P, =PU {0} be the posets with the partial orders extended from
a finite poset P by u < 1, 0 < u for all u € P, respectively (cf. Example 1.2.3). From
Corollary 1.3.5, d-times iterated extension P} corresponds to d-times iterated projec-
tive cones over Pyp). Let X(w), X(w') be minuscule Schubert varieties and P, Py
the corresponding minuscule posets, respectively. Assume that P, coincides with a
d-times iterated extension (Py);s of Py,. It holds that IPaep,) is isomorphic to a complete
intersection of d general hyperplanes in IPp, . By Theorem 2.3.2, there exist toric de-
generations of X(w) and X(w’) to the Hibi toric varieties Pxp,) and Paep,,), respectively.
This means that general complete intersection Calabi—Yau 3-folds X = X(w)(dy,...,d,)
and X’ = X(w')(14,d, ... ,d,) can be connected by flat deformations through a complete
intersection Xy = Pap,)(d1,...,d;). Since Xj has at worst terminal singularities, the
Kuranishi space is smooth by [Nam, Theorem A] and the degenerating loci have a pos-
itive complex codimension. Therefore X and X’ are connected by smooth deformation.
Thus we eliminate redundancy arisen from iterated extensions of minuscule posets.
A Gorenstein minuscule Schubert variety X(w) with minuscule poset P = P, is
a |P|-dimensional Fano variety of index hp as we saw in Proposition 4.4.2 (1). The
condition for general complete intersections in X(w) to be Calabi-Yau 3-folds gives a

strong combinatorial restriction for the poset P as follows,
hp—1<|P| < hp +3. (4.5.1)

On the other hand, there is a complete list of the minuscule posets in [Perl]. Hence
we can make a list of the complete intersection Calabi-Yau 3-folds by counting such
posets.

We check that the resulting 3-folds X c X(w) with trivial canonical bundles turn
out to be Calabi—Yau varieties after some computation using the vanishing theorems
for X(w), Theorem 4.4.4. We verify the smoothness of these 3-folds by looking at the
codimension of the singular loci of X(w) using Proposition 4.4.2 (2). For example, a
general linear section X = £(1%) is smooth since the singular loci of X have codimension
7 as we saw in Proposition 4.4.3. All the smooth cases are contained in locally factorial
minuscule Schubert varieties, i.e., the minuscule poset P has the unique peak. Thus the -
Picard number equals to one again by the Grothendieck-Lefschetz theorem for divisor

class groups [RS]. This completes the proof. m|
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4.6 Topological invariants

Now we explain our calculation of topological invariants valid for a smooth Calabi-Yau
3-fold of Picard number one degenerating to a general complete intersection Calabi-
Yau 3-fold in a Gorenstein Hibi toric variety by taking X = X(1°) as an example. The
topological invariants mean the degree deg(X) = fx H3, the linear form associated with
the second Chern class c;(X) - H = chz(X) U H and the topological Euler number
x(X) = fx c3(X), where H is the ample generator of Pic(X) = Z. These three invariants
characterize the diffeomorphic class of smooth simply connected Calabi-Yau 3-folds of

Picard number one [Wal].

Proposition 4.6.1. The topological invariants of X = X(1°) are
deg(X) =33, c(X)-H=78, x(X)=-102.

Proof. The degree of X coincides with that of the minuscule Schubert variety £ ¢ OIP?
since the ample generator Oz(1) of Pic L is the restriction of Ogp:(1) and X is a linear
section. We obtain deg(Z) = 33 by using the Chevalley formula of OP? as we already
saw in Remark 4.3.4.

The Schubert variety V° := Z and its general complete intersections V7 := L(1/) have

at worst rational singularities. Hence the Kawamata—Viehweg vanishing theorem gives

H(V/, wy; ® Oyi(k)) = H(V/,Oyi(k+j—9)) =0 foralli>0andk > 0. (4.6.1)
Together with the long cohomology exact sequences of

0 — Oyj(k) = Oyi(k +1) = Oypja(k+1) = 0,

the holomorphic Euler number of X = V? becomes

x(X,0x(1)) = dim H*(X, 0x(1)) = dim H*(E, Og(1)) - 9 = |J(P)| - 9 = 12. (4.6.2)
On the other hand, it holds that

1

X(X, 0x(1)) = gdeg(X) + 75e2(X) - H

from the Hirzebruch-Riemann—Roch theorem of the smooth Calabi—Yau 3-fold X. Thus
we obtain c(X) - H = 78.

For the topological Euler number x(X), we use the toric degeneration of X to the

Hibi toric variety Pp), Theorem 2.3.2. Recall that we have a conifold transition Y
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of X passing through a general complete intersection Calabi-Yau 3-fold X, in the
degenerated variety IP5y and a MPCP resolution fA(p) of Paep) (cf. §3.2). By Theorem
3.1.1, the Hodge numbers of Y can be calculated as h'(Y) = 5 and

H(Y)=9(J(P)I-9) - Z(l*(%e) —9I'(86.)) - |P|
e€E
= 96— ) _(I'(96,) - 9I'(86.). (463)
¢eE

To count the number of interior integral points in each facet, we use Proposition 1.4.3
which states a face of the order polytope is also the order polytope of some poset P'.
For each facet 8,, the corresponding poset P’ (or ) is easily obtained by replacing an
inequality Xs¢) = Xy by the equality xs¢) = x¢), and by considering the induced partial
order. The Hasse diagram of resulting posets P’ are shown in the following table, where
the numbering of edges is chosen from the upper left in a picture of the Hasse diagram
of P in Figure 1.2.1.

facets 01| 6, |050s| 64| 65 | 607,010 | Og | Og | O11 | 612,014 | O13 | B15,016, 617
el e g€ € x| ¢ <€

reey | 1| - | - | - | - - - -] - - - 1

POy 2013 1 | 2| -| 1 -2 - 1 2 20

As shown in this table, some posets P’ are pure and others are not pure. For a pure
poset P/, the face 8, = A(P’) is unimodular equivalent to a reflexive polytope (cf. §1.6).
Then we know I*(hp:6,) = 1 and I*((hp + 1)6,) =|J(P’)|. When P’ is not pure, we can also
easily obtain the number *(k8,) by counting the points satisfying the inequalities of the
polytope k6, = kA(P’) strictly. For example, 90, contains three internal integral points
corresponding to

T T T
%o 7 7 7
ikt = 5%° 0 5759 and  ¢75°
28 434 434 434
’%3?110 2 2 2
0 0 0

From the table, we get h*>}(Y) = 37, hence x(Y) = 2(h(Y) — b (Y)) = —64.
Let us recall that the conifold transition is a surgery of Calabi-Yau 3-folds replacing

finite vanishing S by the same number of exceptional P* ~ S as in [Cle]. From the
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inclusion-exclusion principle of the Euler numbers, x(X) and x(Y) are related with each
other as:

x(X) = x(Y) = 2p, (4.6.4)
where p is the number of nodes on Xj. Then we need to know the total degree of
codimension three singular loci of Pa¢p), which equals the number p/[];d; = p in our
case. From Proposition 1.5.1 (2), an irreducible component of singular loci of the Hibi
toric variety IPa(p) corresponds to a minimal convex cycle in P. There are four such
cycles (or boxes) by, - - - , by and all of them define the codimension three faces in A(P) as
in Proposition 1.4.3. Again we can compute the corresponding index poset P’ of them

by the method used above. The resulting posets P’ are summarized as follows.

bl bz b3 b4

& 4N

degree 513|219

singular loci

From Proposition 1.5.1 (3), we can compute the degree of each irreducible component
of singular loci by counting the maximal chains in J(P’). Then we obtain that total
degree p, that is, the number of nodes on Xj is 19. We conclude x(X) = —102. O

Remark 4.6.2. 1. The existence of the Calabi~Yau 3-fold with these topological in-
" variants were previously conjectured by [vEvS] from the monodromy calculations
of Calabi-Yau differential equations. We also perform the similar calculation in

the next section.

2. It may be possible to calculate the topological Euler number x(X) in another
way, by computing the Chern-Mather class of the Schubert Variety X. For the
Grassmann Schubert varieties, this is done by [Jon] using Zelevinsky’s IH-small
resolution. In our case, however, it is known that X does not admit any IH-small

resolution [Per1].

4.7 Mirror symmetry for I(1%)

From Theorem 2.3.2, we have a toric degeneration of X to the Hibi toric variety P
where P is the minuscule poset for X. Thus we can use all the results in §3 based on
the conjectural mirror construction via conifold transition.

The fundamental period of the conjectural mirror family of X can be read from the

following diagram.
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The vertices of the dual graph B corresponds to the separated areas. The fundamental
period turns out to be

o SEEER

where x = a°. With the aid of numerical method, we obtain the Picard—Fuchs equation
for the conjectural mirror family of X.

Proposition 4.7.1. Let w(x) be the above power series around x = 0, which corresponds to the
fundamental period for the conjectural mirror family of the Calabi—Yau 3-fold X = X(1°). This

satisfies the Picard—Fuchs equation D,wy(x) = 0 with 6, = xd, and
D, =1216% — 77x(1306* + 2666° + 2106% + 776, + 11)
— x*(321266% + 8999062 + 10372562 + 552530, + 11198)
— x3(287230% + 741846° + 6347462 + 206250, + 1716)
— 7x*(11356* + 23366° + 188162 + 71360, + 110) — 49x°(0, + 1)*.

The Riemann scheme of the differential operator D is

G -11/7 G 0 G5 o

0 0 0 0 0 1
Pl1 1 101 1%,

1 3 1 01 1

2 4 2 0 2 1

where {; < {; < {3 are the roots of the discriminant x3+159x? + 84x— 1. The singularities
at x = (3, {p, (3 are called conifold and there is no monodromy around the point
x = —=11/7, called an apparent singularity.

We expect that the MUM point at x = oo also have a geometric interpretation and

assume all the assumptions in § 3.4. Once passing to a numerical calculation, we obtain
the following results.

1. There exists the integral symplectic basis IT*(x) and zIT#(z) with the parameters,

a=-1/2, c= -1, deg(Z) =21, ;(Z) - H = 66, x(Z) = =102, a* = ~1/2.
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2. The analytic continuation along a path in the upper half plane gives the following
relation of two basis [T¥(x) and zIT#(z),

IT¥(x) = N,S.,z1T%(2),
8 4

25
with N, = 1 and the symplectic matrix Sy, = ( %32 )
50

3. With respect to the local basis of the analytic continuation of IT*(x) and zIT*(z)
along a path in the upper half plane, the monodromy matrices M’ and M7 at each

singular point x = —-1 =17,05,0,C3, 0 have the following form, respectively:

z
13 -8 2 4 1 000 1001 286 -130 55 111
6 31 2 1 100 0100 89 -43 17 34
24 -1656 8 16 33 10 88(1)(1) -307 127 -60 -122

169 -80 32 64

MX 84 -39 16 32

P 210 -100 41 80

441 210 -84 -167/ \-36 24 -6 -11/ \-12 17 -1 1 -465 218 -89 -179

1001\/1301\ /343 -17 83 168/ 211 20 50 100\ /1 0 00
MZ o0100)f{o100 {104 9 25 50 |[105-9 25 50 {{1 1 00
p 0010)l091-3)\ 49 8 -121-247 || 42 -2 11 20 |l1021 10
0001/\0001/\-432 32 -104 -209/ \ -441 42 -105 -209/ \ -9 -11 -1 1

Table 4.7.1: Monodromy matrices

Allin the above results strongly indicate the existence of the geometric interpretation
at x = co. Thus we are led to the following conjecture based on the homological mirror
symmetry similar to the examples of the Grassmannian—Pfaffian in [Red] and the Reye
congluence Calabi-Yau 3-fold in [HT1].

Conjecture 4.7.2. There exists a smooth Calabi—Yau 3-fold Z whose derived category of coherent
sheaves is equivalent to that of X = L(1%). The topological invariants of Z are

deg(Z) =21, c(Z).H=66, x(Z)=-102, K*(Z)=1, WY Z)=52,
where H is the ample generator of the Picard group Pic(Z) = Z.

The Calabi-Yau 3-fold Z in Conjecture 4.7.2 can not be birational to X because h! = 1
and deg(Z) # deg(X), so that it should be a non-trivial Fourier-Mukai partner of X.
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5_

Complete Intersections of Grassmannians

In this chapter, we study the mirror symmetry for an example (G(2, 5)?).

5.1 Complete intersection of projective varieties

We use the word complete intersection in a generalized sense as follows.

Definition 5.1.1. A projective variety X c PV is called a complete intersection of
projective varieties Vy,...,V, if X = V1 N --- NV, as a scheme for some simultaneous
embeddings V,...,V, c PN and codim X = codim V; + - - - + codim V,. We denote by

(V4,...,V,) a general complete intersection of V5, ..., V,.

We explain an idea of regarding any complete intersection variety in this sense
as a complete intersection of hyperplanes in another high dimensional variety. Let
Vy ¢ P} and V, C P} be projective varieties in n-dimensional projective subspaces
P7, P} < P> with general positions. A choice of an additional general projective
subspace P" C IP?**! gives an identification P? =~ IP} by regarding it as a graph of the
isomorphism. Therefore a complete intersection variety of V; and V, in IP" coincides
with a complete intersection of a projective subspace IP” and the projective join J(V1, V3)
in P! In particular, we have (V3, V3) = J(Vi, Vo)(1™*1). Of course, the story can be
generalized for complete intersections of » > 2 varieties by defining the projective join
of r varieties as J(Vy, Vs, ..., V,) := J(V1, J(Va, ..., V).

Example 5.1.2. A general complete intersection of two Grassmannians G(2,5) c P’ isa
smooth Calabi-Yau 3-fold of Picard number one [Kan]. We denote by X = (G(2,5))?) :=
(G(2,5),G(2,5)) = J(G(2,5),G(2,5))(1'%) in this section. The topological invariants of X
are obtained by [Kan] as

degX =25, c(X)-H=70, x(X)=-100,
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where H is the ample generator of the Picard group Pic X = Z.

5.2 Mirror symmetry for (G(2,5)?)

We have a toric degeneration of Grassmannians G(2, 5) to the Hibi toric variety P(2,5) =
PA(P) [BCFKvS1] (Theorem 2.3.2), where the Hasse diagram of the poset P is shaped like
a rectangle. From Corollary 2.3.3, we obtain a toric degeneration of J(G(2,5), G(2,5)) C
PY to the Hibi toric variety Pagpp). The Hasse diagram of the projective join J(P, P) is
depicted in Figure 1.3.1. Thus we can use all the results in § 3 based on the conjectural

mirror construction via conifold transition.

Remark 5.2.1. The Calabi-Yau 3-fold X = (G(2,5)?) also degenerates to a complete
intersection Xy = Pager)(1'%) which has 5+ 5 + 5 + 5 = 20 nodes. Of course, we can

recover the topological invariants for X in Example 5.1.2 using the procedure in §4.6.

The fundamental period of the conjectural mirror family of X can be read from the

diagram in Figure 1.3.1 and turns out to be

o= ZLLICTORE -
-0 -

where x = 4'°. From this power series expansion, we obtain the Picard-Fuchs equation

(5.2.1)

for the conjectural mirror family of X.

Proposition 5.2.2. Let wq(x) be the above power series around x = 0, which corresponds to the
' fundamental period for the conjectural mirror family of the Calabi—Yau 3-fold X = (G(2,5)%).
This satisfies the Picard—Fuchs equation D,wy(x) = 0 with 6, = xd, and

D, =6% — x(1246% + 2420° + 18762 + 660, + 9)+
+x%(1236% — 24662 — 78762 — 5540, — 124)+
+x3(1230% + 73802 + 68902 + 2100, + 12)—
— x*(1246% + 25462 + 20562 + 780, + 12) + x°(0, + 1)*.
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The Riemann scheme of the differential operator D, is

-1 064G 1 & o
0 00 000 1
PP1 00111 13,
1 01 3 1 1
2 0 2 4 2 1

where {; < {, are the roots of the discriminant x* — 123x + 1. The singularities at
x = —=1,(;, C; are called conifold (although —1 is slightly different from the latter two,
conjecturally the point where a lens space $%/Z; vanishes), and the point x = 1 is an
apparent singularity.

The MUM point at x = oo seems to correspond to the same geometry as around x = 0
because of the operator identity zD;,,z™! = D,. We may assume all the assumptions in
§3.4 together with Z = X = (G(2,5)?). Then we obtain the following results.

1. There exists the integral symplectic basis IT*(x) and zIT(z) with the parameters,

a=-1/2, c=1.

2. The analytic continuation along a path in the upper half plane gives the following
relation of two basis IT¥(x) and zIT*(z),

IT*(x) = N,S.,zIT*(2),
_ 7 14
with N, = 1 and the symplectic matrix S, = (105 29 18)
0 -15 0 -4

3. With respect to the local basis of the analytic continuation of IT*(x) and zIT*(z)

along a path in the upper half plane, the monodromy matrices M at each singular

point x = % = -1,0, (3, Cy, o0 have the following form:
21 8 4 8 1 0 00\/1001\/1 60 016\ /-19 248 -4 75
MX | (1032 4 1 100l{fo1o00f{0 1 00 9 93 2 -29
p 2085 8 Jl122510J{0010]]0-2251-60 ]} -17-118 -5 -23
5020-10-19/\-10-13-11/\0001/\0 0 0 1 /\-40 383 -9 121

Table 5.2.1: Monodromy matrices

Let V C IP" be a smooth projective variety of Picard number one. In [BCFKvS1], the

authors introduce the A-series Ay(g) of V as a holomorphic power series solution of
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the quantum cohomology D-module of V. Let X = V(d,...,d,) C IP" be a Calabi-Yau
complete intersection of V and general hypersurfaces in IP" of degree d; (j = 1,...,7).
They say that the Trick with Factorials works for X if the fundamental period wy(x) of the

mirror family X* is written as

oo

wo(x) = Z al(mdy)! - - (md,)x™, (5.2.2)

m=0

where Ay = Y. qarg™. The Trick with Factorials is a special version of the quantum
hyperplane section theorem [Kim].
It seems natural to generalize their definition as follows:

Definition 5.2.3. Let V;,---,V, c P" be smooth Fano manifolds of Picard number
one and X = (Vy,--+,V,) C IP" be a general Calabi-Yau complete intersection of Fano
manifolds V; (j = 1,...,r). We say that the Trick with Factorials works for X if the

fundamental period wy(x) of the mirror family X" is written as
wp(x) = Z avt...qlx™, | (5.2.3)
m=0

where Ay, =}, a,V,,iqm G=1,...,7.
From the formula (5.2.1) of the fundamental period, we expect the following.

Conjecture 5.2.4. The Trick with Factorials works for (G(2,5)?).
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A__

BPS numbers

As a further consistency check in Conjecture 4.7.2 or an application of the mirror
construction, we carry out the computation of BPS numbers by using the methods
proposed by [CAOGP] [BCOV1, BCOV2]. The BPS numbers n,(d) are related with the
Gromov-Witten invariants N,(d) by the following formula [GV],

Z Ng(d)A%72 = Z Z ng(d/k)%(Z sin %)28-2.

g0 Kd g=0

Hence we obtain the prediction for Gromov-Witten invariants from the computations.

We skip all the details and only present results here for X = 2(19) and its conjectural
Fourier-Mukai partner Z and (G(2,5)%). For the details, one can get many references
in now. Here we have followed [HK], where a very similar example to ours, the

Grassmannian-Pfaffian Calabi-Yau 3-fold, has been analyzed.
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A.1 BPS numbers for X = £(1°) and Z

d | g=0 g=1 g=2 g=3 g=4

1 |252 0 0 0 0

2 | 1854 0 0 0 0

3 | 27156 0 0 0 0

4 | 567063 0 0 0 0

5 | 14514039 4671 0 0 0

6 | 424256409 1029484 0 0 0

7 | 13599543618 112256550 5058 0 0

8 | 466563312360 9161698059 7759089 0 0

9 | 16861067232735 645270182913 2496748119 151479 0

10 | 634912711612848 41731465395267 438543955881 418482990 -3708

11 | 24717672325914858 2557583730349461 56118708041940 217285861284 33975180

Table A.1.1: BPS numbers 13 (d) of X = Z(1°)

d | g=0 g=1 g=2 g=3 g=4
1 {387 0 0 0 0

2 | 4671 0 0 0 0

3 | 124323 1 0 0 0

4 | 4782996 1854 0 0 0

5 | 226411803 606294 0 0 0
~6 | 12249769449 117751416 27156 0 0

7 | 727224033330 17516315259 33487812 252 0

8 | 46217599569117 2252199216735 15885697536 7759089 0

9 | 3094575464496057 265984028638047 4690774243470 13680891072 1127008
10 | 215917815744645750 29788858876065588 1053460470463461 9429360817149 12259161360

Table A.1.2: BPS numbers 7 (d) of Z
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A.2 BPS numbers for X = (G(2,5)?)

d 1g=0 g=1 g=2 g=3
1 | 325 0 0 0

2 | 3200 0 0 0

3 | 66250 0 0 0

4 | 1985000 325 0 0

5 | 73034875 109822 0 0

6 | 3070310300 19018900 650 0

7 | 141603560675 2367994150 1829200 0

8 | 6990803723200 247337794725 938148600 72650

9 | 363591194115575 23368078640700 253848387875 287055600

10 | 19705196405545000  2075562931676048 48865015050900 225293359750

11 | 1104153966524594850  177059059777938850  7643658178867550  90644383230350

12 | 63598129792406485600 14692505162221545750 1041954995886347300 25018039373344450

Table A.2.1: BPS numbers n(d) of X = Z = (G(2,5)%)
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