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Abstract

Redundancy is a useful characteristic in a multitude of systems and is valued for
its ability to endow dexterity and fault tolerance in systems operating in dynamic,
remote, or unpredictable environments. Although useful, incorporation of redun-
dancy in a system endows added complication in the control structure which needs
to be resolved.

Easily the most popular method of resolving this redundancy is through ap-
plication of the 2-norm optimizing pseudoinverse. Resolution through 2-norm
optimization is very popularly utilized due to its analytical tractability: the 2-
norm resolves systems uniquely, continuously, and often most importantly, in a
very simple way. A well known problem exists in 2-norm resolution, however, in
that it fails to make use of systems’ full potential output space. Due to the com-
plexity of alternatives, system designers tend to either ignore this problem and
work within the bounds of 2-norm resolution or make use of methods to extend
the resolution range of 2-norm resolution.

The most popular extension of the 2-norm is found in the Cascaded General-
ized Inverse (CGI). CGI is an intuitive extension of 2-norm and prior to the work
of this thesis held its place as the largest extension of 2-norm resolution.

In this work, three methods will be introduced based upon 2-norm resolution.
The first two methods are modifications of CGI. It will be shown that although
successful in extending the resolution range of 2-norm, CGI loses out on one
of the main benefits of 2-norm resolution: continuity. Additionally, despite this
drawback, CGI still does not attain the full output range of arbitrary systems.

The first proposed method, the Continuous Cascaded Generalized inverse (cCGI),
is targeted at the first problem. cCGI is introduced as the largest extension of the
2-norm that ensures continuity of resolution. The continuity of CGI is analytically
proven and the dynamic improvements when using cCGI, with respect to 2-norm
and CGI, are simulated.

For systems in which this continuity is not a significant concern, or for such
systems that have been sufficiently tested to ensure discontinuity does not arise,
the Extended CGI (eCGI) is proposed. eCGI resolution is currently the largest
extension of 2-norm resolution.
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Both of these system are introduced and compared with application to kine-
matic redundancy in robotic manipulators.

Finally we look at a particular system, biarticular actuation redundancy, which
is unique in that there exist multiple resolution schemes with the simplicity of 2-
norm in implementation. The presence of these resolution solutions has allowed
us to propose the first realization of 2-norm/Infinity-norm switching resolution.
These two norms are physically preferable in opposite circumstances, and con-
necting the two allows for greater utility than either method used alone. The
continuity of this switching system is analytically proven, and the system is ex-
perimentally implemented on a robot arm. It is shown that utilization of switching
resolution improves both the motor size (with respect to 2-norm) and energy re-
quirements (with respect to infinity-norm) of the system.
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Chapter 1

Introduction: Redundancy in
Robotics

There is a growing trend of incorporating biologically-inspired elements in robotic
systems. It rises from system designers’ desire to, and the increasing practicality
of, seeing their robotic platforms extend into the same environments we inhabit.
Given human and animal ability to dexterously navigate even the most complex
environments, it makes sense to consider some evolutionarily honed biological
structures for their utility. As it turns out, many of the ways in which biology
deviates from conventional robotics approaches have to do with the redundancy
of these systems.

Three main types of redundancy have been adapted from biological systems
to be used in improving robot manipulation: kinematic redundancy, manipulator
redundancy, and actuation redundancy.

1.1 Kinematic redundancy
The most popularly utilized type of redundant system in robotics, kinematic re-
dundancy involves additional degrees of motion than are necessary to accomplish
the task. Consider a planar manipulator operating in 2-dimensional space. Such
motion can be achieved by a manipulator with only two links and two joints (three,
if orientation is also a restriction). Our arms are not so simple though. Operating
in 3-dimensional space, there exist three position variables and three orientation
variables to be realized by our arms. However, our arms are modeled as a 7
degree-of-freedom (DoF) manipulator as seen in Fig. 1.1 [1].

Incorporation of kinematic redundancy in robotics and our own arms endows
numerous advantages in control. Kinematic redundancy adds a degree of decou-
pling of the individual joint coordinates and the end-effector coordinates. The
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Figure 1.1: Kinematic model of human arm [1]

first and largest benefit of this is that it allows for object avoidance behavior due
to the numerous potential joint configurations realizing the same end-effector po-
sition [2].This characteristic also extends the range of manipulation of our arms.
Each of our joints have certain physical limits (the elbow being an obvious ex-
ample). The added degrees of motion in our arms enable us to re-task motion
to other more suitable joints if one joint reaches its limits of motion [3]. Such
re-tasking can also be conducted in the event an actuator fails. This may lead to
an elimination of redundancy in the arm, but still maintains the capability to real-
ize the desired task. Finally, these added degrees-of-freedom enable motion and
force output optimized by some physical quantities. For instance, when pushing
a heavy load a human naturally does so in a way to maximize their leverage. If
there were only one possible joint configuration to contact the load, this would
not be possible. Each of these control options have obvious advantages applied to
robotic manipulators.

Arguably the truest realization of such human bio-mimicry is found in the
DLR arm [4], seen in Fig. 1.2. Functionally identical to a human arm, the DLR
arm has 3 degrees of freedom in the shoulder, 1 in the elbow, 2 in the forearm, and
19 in the hand. The structure of the DLR arm makes it suitable in human motion
capture, study of human biomechanics, and development of humanoid robots.

Kinematic redundancy can also be use to surpass the dexterous capabilities
of humans. This aim is seen in hyper-redundant manipulators. Hyper-redundant
manipulators have far more degrees of freedom than are necessary for the desired
task. One such hyper-redundant manipulator is the Insertable Robotic Effectors
Platform (IREP) [5] as seen in Fig. 1.3. The IREP system is composed of two 9-
DoF arms and is aimed at the application of minimally invasive surgery. The IREP
system successfully realizes single-port entry surgery, which has the capability to
drastically improve patient care, but is impossible given human levels of dexterity.
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Figure 1.2: DLR hand-arm system [4]

Figure 1.3: IREP hyper-redundant surgery system [5]

Utilizing the IREP system allows the surgeon to dexterously guide the path of the
end-effector using a controller from outside the patient’s body.

1.2 Manipulator redundancy
The second major type of redundancy in robotics is that of manipulator redun-
dancy. Single, serial-manipulators (like the human arm) have numerous advan-
tages. They have large workspaces, are cheaply and easily implemented, and are
simple to control. However humans, for good reason, do not always use their
limbs in serial configurations. Serial manipulators cannot lift large loads and are
difficult to precisely control when loaded[6].

When precision or strength are required, we tend to use our limbs in parallel.
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Figure 1.4: Example system with manipulator redundancy used in discussion [7]

We of course use both arms when we lift heavy loads. We also use three fingers
in parallel to realize the precise movements necessary for writing.

To understand the physical justification for this, consider the example parallel
manipulator structure [7] in Fig. 1.4. The platform has three, 2-DoF manipula-
tors actuating it in 2-dimensional space. Therefore there exist three degrees-of-
freedom (two position, one orientation) to be actuated by these six joints acting
upon it.

If this platform were to be actuated by a single, serial manipulator, it would
need to be a 3-link manipulator. Additionally it would need to be far longer in
order to be able to realize the same workspace. Being simultaneously manipulated
by three manipulators then reduces the distance from the base in which a load or
disturbance force is applied. This reduces the torques applied at each joint and
results in overall increased stiffness of the system. If compliant elements are
used in the joints, this reduces the displacement of the arm in response to load or
disturbance. If the joints are not compliant this increases the force the manipulator
can withstand before it bends or breaks. Additionally, such systems are usually
designed so that the stiffnesses of each manipulator compensate each other, i.e.
one manipulator should always be able to resist disturbance for the benefit of the
whole system.

Manipulator redundancy has therefore found its place early in industrial appli-
cations, lifting heavy loads and performing precise manipulations [8, 9, 10].
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1.3 Actuator redundancy
The final type of redundancy influencing robotic manipulators is that of actuation
redundancy. Conventional robotics states that for each joint to be actuated, one
motor should be supplied to provide the necessary torque. While straightforward,
this is not how our bodies work. There are over 20 muscles actuating the seven
degrees-of-freedom in our arms [11]. Part of the reason for this high level of
redundancy is due to the difficulty of a biological actuator to produce force in
two directions. Our muscles are only capable of pulling, so they come in pairs to
provide force in each direction. But this only accounts for 14 muscles to actuate
seven degrees-of-freedom. Pairs of muscles, called biarticular muscles, also exist
which provide torque about multiple joints simultaneously.

It turns out there are a multitude of advantages in the complicated actuation
structure of our arms. The first arises from the unique physical characteristics of
our muscles. Unlike the linear springs we are used to dealing with, the tension in
our muscles is nonlinear with respect to displacement as seen in the muscle model
[12] in Fig. 1.5. This allows for simultaneous regulation of force and stiffness
through co-contraction. The advantage of stiffness regulation has already found
its consumer application in variable series elastic actuators (VSA’s) [13]. VSA’s,
similar to our own muscles, are actuators with two motors which are capable of
simultaneously controlling output torque and stiffness. These actuators are very
useful in robotic systems intended to work with humans, as compliance is funda-
mental to safety in robotics. The previously discussed DLR arm [4] makes use of
VSA’s in its joints to ensure the safety of the surrounding individuals a humanoid
robot would no doubt interact with.

Figure 1.5: Model of human muscle, leading to stiffness modulation [12]
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Figure 1.6: Thesis Structure

Biarticular actuation additionally allows for several useful control character-
istics. Activation of biarticular muscles allows for force transfer from proximal
to distal joints [14], allowing for a reduction in limb inertia by moving stronger
muscles toward the core. Due to the geometry of biarticular actuation, it addition-
ally improves output force [15] and stiffness homogeneity [C6, C7]. Biarticular
actuation is currently a popular topic of research in mechatronics, being applied
to realize some of these same useful characteristic [16, 17, 18, 19, 20].

1.4 Thesis structure
The structure of this thesis is outlined in Fig. 1.6

In Chapter 2, the mathematical formulation of redundancy as well as some re-
lated resolution techniques will be introduced. Chapters 3-5 are the contribution
of this thesis. Chapter 3 introduces the Continuous Cascaded Generalized Inverse
(cCGI) which is the largest extension of 2-norm for systems that demand continu-
ity. Chapter 4 introduces the the Extended Cascaded Generalized Inverse (eCGI)
which is the largest extension of 2-norm, but without the guarantee of continu-
ity in resolution. Finally, Chapter 5 introduces 2-norm/Infinity-norm Switching
Resolution of biarticular actuation redundancy. Conclusions are given in Chapter
6.



Chapter 2

Background

This problem of redundancy is considered as follows: The matrix BBB ∈ℜmxn trans-
lates input variables uuu ∈ℜn to output values vvv ∈ℜm as follows:

vvv =BuBuBu (2.1)

If n = m the system is said to be deterministic, and if BBB is nonsingular, a
unique selection of inputs uuu can be selected to realize a desired output vvv. If n > m
the system is said to be redundant, and if in a non-singular configuration, there
exist an infinite number of input selections to realize a desired output.

2.1 2-norm resolution
By far the most popular method of resolving this redundancy is through optimiza-
tion of the 2-norm of resolved inputs [21], or

min
(√

u2
1 +u2

2 + ...+u2
n

)
(2.2)

2-norm optimization can be accomplished through utilization of the Moore-
Penrose pseudoinverse [22] which resolves the system redundancy as

uuu =BBB†vvv (2.3)

where if BBB is full row rank, the pseudoinverse, BBB†, of BBB is defined as:

BBB† :=BBBT (BBBBBBT )−1 (2.4)

Resolution using the 2-norm is by far the most popular method due to it’s an-
alytical tractability: it resolves systems uniquely, continuously, and foremost in a
simple closed-form solution. Physically, as a minimization of a sum of squares, an
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analog can be drawn between 2-norm optimization and an optimization of energy
or power [23]. Resolution using the two-norm does have a well-known drawback
however in its failure to exploit a system’s full output space if input bounds are
imposed.

The reason for this is simply that a 2-norm optimal input resolution does not
necessarily yield a result within arbitrary input bounds. This often leads to 2-norm
yielding unfeasible resolutions despite the existence of feasible alternatives.

2.2 Infinity-norm resolution
Recognizing this problem, many researchers have put forth alternative resolution
schemes which do not suffer from this drawback. One such popular method is
resolution using the infinity-norm [24, 25, 26, 27], or

min(max(|u1| , |u2| , ..., |un|)) (2.5)

subject to the task constraint, (2.1).
Minimization of infinity-norm is equivalent to a minimum-effort solution, as it

will only allow for a maximum system-wide exertion if it is absolutely necessary
considering the task output. Infinity-norm resolution suffers in application how-
ever due to its more complicated implementation — infinity-norm optimization
usually involves application of a numerical algorithm to locate an infinity-norm
optimal solution. Issues of continuity also exist in infinity-norm optimization aris-
ing from occasional lack of uniqueness of an infinity-norm optimal solution [28].

Issues such as these in infinity-norm resolution and other resolution methods
in competition with 2-norm have led to the majority of implementations to con-
tinue using 2-norm and abandoning the lost output space.

2.3 Extending the resolution range of the 2-norm
For applications in which this lost output space is a serious concern, system de-
signers tend not to switch resolution approaches entirely. Rather, methods to ex-
tend the output range of the 2-norm are typically utilized.

2.3.1 Least-Squares with Clipping
By far the simplest approach to extending the resolution range of 2-norm is Least-
Squares with Clipping [29]. As the name implies, Least-Squares with Clipping
involves simple application of the Moore-Penrose Pseudoinverse as seen in (2.3)
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Figure 2.1: Flowchart of Cascaded Generalized Inverse redundancy resolution.

and (2.4) and truncating any inputs resolved in excess of their input bounds. Al-
though simple, Least-Squares with Clipping will fail to realize the desired output
whenever 2-norm fails resolution. Consequently, most system designers prefer
more sophisticated approaches in extending the resolution range of the 2-norm.

2.3.2 The Redistributed Pseudoinverse
The Redistributed Pseudoinverse is a first step at actually extending the resolution
range of the 2-norm [30]. The process is described as follows:

1. Find the pseudoinverse resolution of the system. If all resolved inputs lie
within their output bounds, the process ends.

2. If any resolved inputs lie outside their output bounds, the corresponding
inputs are truncated to the respective maximums or minimums.

The new system created, corresponding to the un-maximized inputs and
the desired output minus the contributions of the maximized inputs, is then
resolved using the pseudoinverse.

The Redistributed Pseudoinverse does indeed extend the resolution range of
the 2-norm for a period. However, as the process of re-resolution is carried out
again using 2-norm, the re-resolution will suffer from the same failings as the
2-norm: the output range of the re-resolution is not fully exploited.
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2.3.3 The Cascaded Generalized Inverse (CGI)
The Cascaded Generalized Inverse (CGI) [31] is the above problem in re-resolution.
Whereas the Redistributed Pseduoinverse only re-resolves the system once, CGI
repeats the process indefinitely if the re-resolutions are also unfeasible, as seen in
block diagram of the method in Fig. 2.1. CGI was, prior to the work outlined in
this thesis, the largest and most popularly utilized extension of 2-norm resolution.

Variations exist where the process continues until the resultant system is repre-
sented by an invertible square matrix, one variable is arbitrarily saturated in each
iteration in the interest of speed [32], and the ”most” saturated variable is satu-
rated each iteration to preserve directionality at the expense of speed [33]. The
Cascaded Generalized Inverse has been applied to many problems including air-
craft control allocations [34, 35], VTOL control systems [36], ship berthing [37],
and ship positioning systems [38].



Chapter 3

Continuous Cascaded Generalized
Inverse Resolution (cCGI)

In this chapter it will be shown that although successful in extending the reso-
lution range of 2-norm, CGI loses out on one of the main benefits of 2-norm
resolution: continuity. A proposed alternative, Continuous Cascaded Generalized
Inverse (cCGI) approach to redundancy resolution will be introduced and some
dynamic benefits when applied to kinematic redundancy demonstrated. Sections
3.1 and 3.2 are the work of [C2]. Section 3.3 is the work of [C4]

3.1 Discontinuity in CGI
In this section we will demonstrate the issue of discontinuity in CGI through con-
sideration of an example resolution implementation. The considered system is the
four-link kinematically-redundant planar manipulator. The problem of kinematic-
redundancy is a particular example of (2.1) and is formulated as follows. The
manipulator Jacobian, JJJ, relates joint velocities, q̇qq, to end-effector velocity, vvveff as
follows:

vvveff = JJJq̇qq (3.1)

where

[JJJ](i, j) =
δ [xeff]i

δq j
(3.2)

In our case of a 4 link manipulator, there exist four joint space inputs to the
2-dimensional end-effector output, so there are two degrees of redundancy in this
system to be resolved.
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Figure 3.1: 4-link planar manipulator used for demonstration of discontinuity in
CGI Resolution

Consider a 4-link manipulator, as shown in Fig. 3.1, in Configuration A which
will be defined as the following:

Configuration A :=
L1 = L2 = L3 = L4 = 1 (unit)
qqq = [ π

32 ,
π

6 ,
π

6 ,
π

6 ] (rad)
q̇qqmax = [1,2,10,10] (rad/sec)
Fig. 3.2 illustrates the resolved joint velocities necessary to produce a given

end-effector velocity in the direction θ = 0. The results of redundancy resolution
are shown carried out by both 2-norm resolution and CGI.

It is seen that when the 2-norm resolution of q̇2 exceeds the maximum limit,
at ‖v‖ ≈ 11 units/sec, the discrepancy between this resolution and second-level
resolution associated with maximized q̇1 causes a discontinuity affecting joints
q2, q3, and q4.

Such discontinuity is often impossible to realize in the resolved system. In
our example, using CGI demands discontinuous changes in joint velocity, which
is clearly impossible. Attempting to realize the CGI resolution may lead to unde-
sirable dynamic effects as well as instability. It is desirable in many applications
then to find an extension of the 2-norm that would not lead to such discontinuity
in resolution. Our answer to that is the Continuous Cascaded Generalized Inverse
(cCGI).
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Figure 3.2: Static resolution of kinematic redundancy using CGI. CGI continues
resolution by discontinuously reassigning velocity amongst q2, q3, and q4.

3.2 Proposal: Continuous Cascaded Generalized In-
verse Resolution (cCGI)

We note that discontinuity in CGI is triggered by discrepancy between different
levels of pseudoinverse resolution and re-resolution. With that in mind, it seems
reasonable then that restricting CGI such that only one input may saturate per
resolution level will eliminate risk of discontinuity. For this proposed system,
consider the initial pseudoinverse resolution as one level, and each subsequent
process of truncation and re-resolution as another level. This process was deemed
the Continuous Cascaded Generalized Inverse or cCGI. Although most intuitively
implemented recursively as in Fig. 2.1 (with the added domain restriction), cCGI
can also be represented in the following closed-form expression.

Define BBBi as the i’th column of BBB and BBB′i1.i2...iz as the matrix BBB with the i1, i2,
... , and iz’th column removed. Likewise define ui as the i’th element of uuu, and
uuu′i1.i2...iz as the vector uuu with the i1, i2, ... , and iz’th element removed.

Parentheticals are used following input values to denote the resolution of the
inputs in the corresponding case. For example, u3(1(a)) and uuu′3(1(a)) refer respec-
tively to the values of the third element of uuu and the vector uuu with the third element
removed attained in the case 1(a). If inputs are referred to without parentheticals,
it will refer to the value attained from the currently discussed case.



3.3.2 Proposal: Continuous Cascaded Generalized Inverse Resolution (cCGI) 23

Case 0 :

uuu =BBB†vvv (3.3)

Case i1(a) :
ui1 = umax

i1 (3.4)

uuu′i1 = (BBB′i1)
†(vvv−BBBi1umax

i1 ) (3.5)

Case i1(b)
ui1 =−umax

i1 (3.6)

uuu′i1 = (BBB′i1)
†(vvv+BBBi1umax

i1 ) (3.7)

Case i1(x1).i2(x2)...iz−1(xz−1).iz(a) :

ui1 =

{
umax

i1 if x1 = a
−umax

i1 if x1 = b
(3.8)

...

uiz−1 =

{
umax

iz−1
if xz−1 = a

−umax
iz−1

if xz−1 = b
(3.9)

uiz = umax
iz (3.10)

uuu′i1...iz = (BBB′i1...iz)
†(vvv−

z

∑
γ=1

BBBiγ uiγ ) (3.11)

Case i1(x1).i2(x2)...iz−1(xz−1).iz(b) :

ui1 =

{
umax

i1 if x1 = a
−umax

i1 if x1 = b
(3.12)

...

uiz−1 =

{
umax

iz−1
if xz−1 = a

−umax
iz−1

if xz−1 = b
(3.13)

uiz =−umax
iz (3.14)

uuu′i1...iz = (BBB′i1...iz)
†(vvv−

z

∑
γ=1

BBBiγ uiγ ) (3.15)
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and define

case 0 := |ui(0)| ≤ umax
i , ∀ i ∈ [1,n] (3.16)

case i(a) := ui(0)> umax
i , |u j(0)| ≤ umax

j , ∀ j 6= i (3.17)

case i(b) := ui(0)<−umax
i , |u j(0)| ≤ umax

j , ∀ j 6= i (3.18)

Case i1(x1).i2(x2)...iz−1(xz−1).iz(a) :=
(Case i1(x1).i2(x2)...iz−1(xz−1)),

(uiz(i1(x1).i2(x2)...iz−1(xz−1))> umax
iz ), (3.19)

and (|ui j(i1(x1).i2(x2)...iz−1(xz−1))| ≤ umax
i j

,∀ j 6= z)

Case i1(x1).i2(x2)...iz−1(xz−1).iz(b) :=
(Case i1(x1).i2(x2)...iz−1(xz−1)),

(uiz(i1(x1).i2(x2)...iz−1(xz−1))<−umax
iz ), (3.20)

and (|ui j(i1(x1).i2(x2)...iz−1(xz−1))| ≤ umax
i j

,∀ j 6= z)

The continuity of cCGI is analytically proven in Appendix A.

3.3 Dynamic analysis

3.3.1 Setup
In the following section the dynamic effects of the discontinuity in CGI, in addi-
tion to how they are alleviated applying cCGI will be analyzed.

We will consider another 4-link kinematically redundant manipulator, similar
to the one utilized in Sec. 3.1. For ease of understanding of calculations, the
manipulator was selected as having 1 kg, 1 m links and link inertia values per-
pendicular to the direction of rotation, Izi , were all set at unit value. Maximum
joint velocities were set as q̇qqmax = [0.5,0.7,5.0,5.0] (rad/sec). The manipulator is
assumed to be planar, so gravity terms can be neglected.

Additionally, we choose to model the joint stiffness. This stiffness is typically
assumed to be infinite to simplify calculation, but it will nevertheless affect the
dynamic performance of the arm. Considering the large torque and jerk which will
be applied as a result of the discontinuously resolved velocities, it seems likely that
this finite joint stiffness will play a role. The dynamics of such a manipulator can
be described by the following expression:
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MMM(qqq)q̈qq+CCC(qqq,q̇qq)+ggg(qqq)+D(q̇qq− θ̇θθ)+K(qqq−θθθ) = 0 (3.21)

MMM jθ̈θθ +D(θ̇θθ − q̇qq)+K(θθθ −qqq) = τττ (3.22)

where MMM ∈ℜnxn is the manipulator inertia matrix, MMM j ∈ℜnxn is the diagonal motor
inertia matrix, CCC ∈ℜnx1 is the vector of Coriolis and centrifugal force terms, ggg ∈
ℜnx1 is the vector of gravity terms, τττ ∈ℜnx1 is the applied joint torque, K ∈ℜnxn,
θθθ ∈ ℜnx1 are the motor coordinates, and D ∈ ℜnxn are the diagonal matrices of
joint stiffness and joint damping terms, respectively [39].

Joint stiffness values are chosen as K = 100000III4 (N/rad), which is chosen
as approximately 1 order of magnitude above common high stiffness threshold of
variable series elastic motors. Joint damping should be considered nonzero, but
much less than joint stiffness, so values of 10III4 (N·s/rad) were chosen.

Figure 3.3: Block diagram describing open-loop control of kinematically redun-
dant planar arm

The block diagram of the control structure utilized is seen in 3.3. In order
to effectively isolate the effect of the discontinuity, an open-loop control is used.
In the dynamic compensation, the joint stiffnesses are assumed to be infinite, as
this is a typical approach. However in the plant model, the finite joint stiffness is
considered. This allows for observation of the unexpected results of finite stiffness
while using a standard compensation model which neglects these terms.

In the dynamic analysis we neglect friction, as the effect is equivalent to damp-
ing in the region of interest. Backlash is neglected as both motors and gears with-
out backlash exist. Time delay is neglected as open loop control is utilized and
the physical system is time-invariant.

The described arm is commanded from rest at an initial position qqq = θθθ =
[0, π

4 ,
π

4 ,
π

3 ] (rad) to move with a straight-line end-effector trajectory 1 m in the di-
rection φ = π

4 (rad) with a velocity trajectory as described in Fig. 3.4 and resolved
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Figure 3.4: Velocity profile used in demonstrating effects of discontinuity. The
arm is commanded to travel 1 m with a given maximum velocity.

using CGI resolution for arbitrary vmax. The system updates with a frequency of
1

∆T = 10 kHz, and τ for the differential calculation is selected as 10 ms.
The structure of the velocity waveform allows variation of vmax to take CGI

through its three levels of resolution: CGI equivalent to both 2-norm and cCGI
resolution; CGI equivalent to cCGI resolution; and exclusively CGI resolution

3.3.2 Results
Figure 3.5 illustrates the simulation conducted with vmax set sufficiently low that
CGI resolution is equivalent to 2-norm resolution. For this simulation, vmax is set
as 2.5 m/sec which is very close to the failure region of 2-norm. It is seen that
the actual trajectory follows the intended trajectory fairly precisely. Some small
oscillation is introduced by the discontinuous torque applied at the midway point,
but that is quickly suppressed by system damping. Slight delay is also seen as
due to the approximate differential utilized in the control scheme, but this occurs
regardless of resolution method.

Figure 3.6 illustrates the simulation conducted with vmax set sufficiently high
that, of the three considered methods, only CGI can resolve the system. That is
to say, 2-norm yields unrealizable results, and the CGI resultant violates the con-
ditions of cCGI resolution. Simulation is conducted with a maximum velocity
of vmax = 5 (m/sec). At t ≈ 0.085 s, a discrepancy occurs between the saturated
value of q̇2 in the 2-norm resolution and the re-optimization against saturated q̇1.
This causes CGI to discontinuously redistribute velocity contributions amongst
q̇2, q̇3, and q̇4. This discontinuity in the resolved velocity yields large acceleration
and jerk, even despite the approximate differential. This causes large joint veloc-
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Figure 3.5: Joint velocities of trajectory realizable with pseudoinverse Redun-
dancy Resolution
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Figure 3.6: Joint velocities of trajectory realizable only with CGI resolution. Dis-
continuously resolved velocities generate velocity oscillation and error.
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ity oscillation and error, which is exacerbated upon deceleration when the same
happens again.
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Figure 3.7: Joint velocities of trajectory unrealizable with 2-norm, but realizable
with Continuous CGI resolution. Resolution is guaranteed continuous, so the large
oscillation observed in standard CGI resolution is not observed.

Figure 3.7 illustrates the simulation repeated with vmax set such that CGI is
equivalent to cCGI resolution. For this simulation maximum velocity, vmax is set
as 4.2 (m/sec). As anticipated the resultant resolved velocities are continuous.
This results in a realized velocity trajectory with similar dynamic properties to
2-norm but with only a 19 percent increase in time over the previously considered
example (still a large improvement over 2-norm).

Figure 3.8 illustrates the maximum velocity error observed with CGI resolu-
tion for the given maximum velocity, or

max(|q̇i(t)− q̇res
i (t)|) (3.23)

where q̇res
i is the resolved solution for q̇i.

As our examples have shown, error remains low and increases at a fairly con-
stant rate throughout the 2-norm and cCGI equivalence region. However, as soon
as cCGI fails resolution, the discontinuity which occurs in CGI resolution creates
sudden large error.

Fig. 3.9 illustrates the maximum achievable velocities (scaled down by a fac-
tor of 10) in all directions in configuration A, using 2-norm, CGI, and constrained



3.3.3.2 Results 29

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

q. 1

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

q. 2

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

q. 3

0
0.5

1
1.5

2

0 1 2 3 4 5 6 7

q. 4

vmax [m/s]

M
ax

im
u

m
 J

o
in

t 
V

el
o

ci
ty

 E
rr

o
r 

[r
ad

/s
]

Figure 3.8: Maximum joint velocity error given maximum end-effector veloc-
ity. 2-norm, cCGI, and CGI stop resolving the system at the red, blue, and black
dotted-lines, respectively. Magnitude remains low through 2-norm and cCGI res-
olution, but rapidly increases once cCGI stops resolution.

CGI. It is seen that while always greater than or equal to that achieved with 2-
norm, the maximum velocity of constrained CGI is always less than or equal to
unconstrained CGI. As such, for applications in which the effects of discontinu-
ities in resolution are not an issue, it would be preferable to still use unconstrained
CGI.
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Chapter 4

Extended Cascaded Generalized
Inverse Resolution (eCGI)

In the previous chapter we introduced an alternative to 2-norm resolution and CGI
resolution for systems in which continuity of resolution is a serious concern. How-
ever this cannot possibly represent all systems. CGI has been successfully imple-
mented in a number of systems and not explicitly impeded their performance.
Therefore for systems in which discontinuity in resolution is not an absolutely
discriminating factor or for systems which have been sufficiently tested to ensure
discontinuity does not arise, the additional output space of CGI resolution out-
weighs the certainty of continuity in cCGI resolution.

In the following chapter it will be demonstrated that, although it has until the
work of this thesis been considered the largest extension of 2-norm, CGI still does
not attain the full potential output range of arbitrary systems. An extension of
CGI resolution, termed the Extended Cascaded Generalized Inverse, or eCGI is
introduced and shown applied to resolved kinematic redundancy. This chapter
contains the work of [C5].

4.1 Limits of resolution range of CGI
In the following example, we will show that despite successfully extending the
resolution range of the 2-norm, CGI fails to extend resolution to the full potential
output space of arbitrary systems. Again, the considered example is resolution of
kinematic redundancy resolution, however this time in the acceleration domain.
For the following example let Configuration B represent the following arm states:

Configuration B:
qqq = [ π

32 ,
π

4 ,
π

4 ,
π

4 ] (rad)
q̇̇q̇q(t = 0) = [0,0,0,0] (rad/sec)
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τττmax = [5,1,1,1] (Nm)
Consider an arm in configuration B. We are free to make τ1max larger than the

other motors, since motor 1 would be mounted on the base and therefore would
not contribute to increased arm inertia. Coriolis and inertial forces are neglected
as they will not affect the redundancy resolution. For simplicity, MMM will be con-
sidered as the identity matrix. The arm will be considered horizontally-planar, so
gravity forces can also be neglected.
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Figure 4.1: Resolution of joint torques for given acceleration magnitude using 2-
norm, CGI, and infinity-norm resolution. CGI is seen to successfully extend the
realizable output over 2-norm, but not to the level possible using infinity-norm
resolution.

Fig. 4.1 illustrates a static resolution of the kinematic redundancy in this arm.
For given acceleration magnitude in the direction of θ = 335 degrees, the resolved
joint torques using 2-norm, CGI, and infinity-norm resolution are shown. It is seen
that the 2-norm is the first to fail at ‖a‖ ≈ 7 (m/s2), due to excess τ4 task assign-
ment. CGI on the other hand is able to extend the resolution range to ‖a‖ ≈ 9
(m/s2) by truncating 2-norm-saturated inputs and redistributing their output con-
tributions. However, looking at the infinity-norm resultant we can see the system
is capable of even greater output potential. Using infinity-norm resolution extends
the feasible output of this system to over 12 (m/s2), which is guaranteed by the
definition of the infinity-norm to be the maximum system-capable acceleration.

Fig. 4.2 illustrates the maximum end-effector acceleration (scaled down by a
factor of 10) possible in all directions in configuration B using 2-norm, CGI, and
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Figure 4.2: Scaled maximum end-effector acceleration achievable using 2-norm,
CGI resolution, and infinity-norm resolution. CGI is seen to extend resolution
range of 2-norm, but not to the full system capability represented by infinity-norm.

infinity-norm resolution. It is seen that although successful in extending the reso-
lution range of 2-norm in all but a few trivial points, CGI still fails to extend the
resolution of the system to the full system-capable output range. CGI addition-
ally suffers from a lack of directional isotropy in the clipped output space regions,
which might tempt further artificial reduction of the output space.

4.2 Proposal: Extended Cascaded Generalized In-
verse Resolution (eCGI)

Figure 2.1 illustrates our proposed answer to this problem, the Extended Cascaded
Generalized Inverse, or eCGI. eCGI is the current largest extension of 2-norm
resolution.

The structure of eCGI parallels that seen in CGI. In CGI, the system is re-
solved using 2-norm; if the resolution fails the result is truncated and re-resolved
using 2-norm. In eCGI, the system is resolved with CGI; if resolution using CGI
fails, combinations of CGI-saturated inputs are de-saturated and the system is re-
resolved using CGI.

The structure of eCGI takes advantage of the physical relationship between
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Figure 4.3: Flowchart of Extended Cascaded Generalized Inverse redundancy res-
olution.

2-norm and infinity-norm resolution. The problem of limited output space in CGI
resolution can be rephrased as a problem of CGI saturating inputs inconsistently
with those saturated by infinity-norm. This cannot be avoided, since the 2-norm
and infinity-norm optimize along different criteria. However we can say that in
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most physical systems the 2-norm and infinity-norm will often yield ”similar”
results. As we have noted, a 2-norm optimization can be compared with a mini-
mization of system energy, whereas an infinity-norm optimization is equivalent to
a minimum effort resolution. It is physicall unlikely for a minimum-effort solution
to be a particularly poor choice considering energy as a metric, and vice-versa. As
such, typically when resolution is conducted using 2-norm and infinity-norm, the
majority of saturated inputs will be shared. Those which saturate differently, due
to unusual conflicts of effort versus energy will be the exceptions.

This effect can be observed in the previously conducted static resolution in Fig.
4.1. It can be seen that in resolution CGI and infinity-norm successfully saturates
two of the three same inputs with the same sign. How to extend this example CGI
resolution to the infinity-norm potential is simple: desaturating the ”incorrectly”
saturated τ2 and re-resolving the system subject to the ”correctly” saturated τ1
and τ3 will result in a continuous linear extension from the CGI failure point to
the infinity-norm solution at the system-maximum output.

The generalization of this process results in our proposed eCGI.

4.3 Simulations and results
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Figure 4.4: Resolution of joint torques for given acceleration magnitude using
CGI, eCGI, and infinity-norm resolution. eCGI is seen to successfully extend the
realizable output from CGI to the full system capability.
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Fig. 4.4 illustrates the simulation shown in Fig. 4.1 repeated using CGI, eCGI,
and infinity-norm resolution. CGI is seen to stop resolution at ‖a‖ ≈ 9 (m/s2)
after saturating τ4, τ2, and τ3, in that order. eCGI then successfully extends CGI
resolution to infinity-norm resolution (both in acceleration magnitude and to the
unique infinity-norm resolution at the system boundary) by desaturating τ2 and
re-resolving τ2 and τ1 subject to saturated τ3 and τ4.
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Figure 4.5: Scaled maximum end-effector acceleration achievable using 2-norm,
CGI resolution, and eCGI resolution. Here, eCGI resolution can be seen extending
the feasible output space to the full potential space.

Fig. 4.5 illustrates the simulation shown in Fig. 4.2 repeated using 2-norm,
CGI, eCGI, and infinity-norm resolution. eCGI is seen to extend the maximum
controllable end-effector acceleration from that possible with CGI to that possible
with infinity-norm, which is by definition the maximum system capability.

4.4 Discussion
There are two drawbacks to eCGI resolution which should be emphasized. The
first is the issue of discontinuity in eCGI resolution. As we have already seen,
discontinuity exists in CGI resolution. Therefore eCGI, as an extension of CGI
resolution also has the possibility for discontinuity in resolution. It should then
be only applied after consideration has been made as to what effects may arise
if discontinuity in resolution occurs, or if the system has been tested to ensure



4.4.4 Discussion 37

discontinuity does not arise. If either of these are not feasible, then cCGI is the
recommended resolution scheme, as it is the largest guaranteed continuous exten-
sion of the 2-norm.

The second issue in resolution is that there is no way, currently, of knowing
a priori which combination of inputs ought to be de-saturated. Currently we can
only recommend trying all possible combinations of inputs until one works. Some
systemic way of determining which combination should be de-saturated would be
a useful addition to the method. This issue however disappears in the case of
single-degree redundant systems, which comprise a large portion of redundant
systems. In a single-degree redundant system, there only exists a single option to
de-saturate, significantly easing implementation and calculation time.



Chapter 5

2-norm/ Infinity-norm Switching
Resolution of Biarticular Actuation
Redundancy

In the previous two chapters, the methods were aimed at general systems and
therefore the most important criteria is its simplicity in application to numerous
systems.

If we restrict our consideration to a particular system, this opens the door for
a more tailored approach and therefore greater utility. The considered system, bi-
articular actuation redundancy, is relatively simple but commonly utilized. These
characteristics have allowed for the development of additional closed-form solu-
tions for resolving redundancy, to supplement the commonly considered 2-norm
solution. This has allowed us to propose 2-norm/Infinity-norm Switching Resolu-
tion of the redundancy in biarticularly actuated robot arms. The proposed method
marks a first step at the long desired goal of bridging the 2-norm and infinity-norm
resolution schemes.

Section 5.2 includes the work of [C3] and Section 5.3 includes the work of
[C1].

5.1 Biarticular actuation

5.1.1 Overview
Fig. 5.1(a) illustrates a widely used model of the actuation in the human arm in
2-dimensions [40]. The arm is actuated by three pairs of antagonistic muscles.
Muscle pairs e1 and f1 are monoarticular muscles which provide torque about
the shoulder. Muscle pairs e2 and f2 provide torque about the elbow. The pairs
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Figure 5.1: Model of actuation in human arm [40]
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e3 and f3 are biarticular muscles which provide torque about both the elbow and
shoulder.

After collapsing antagonistic muscle pairs into their resultant torques, a sim-
plified biarticular actuation model can be found in Fig. 5.1(b).

5.1.2 Resolution
The system in Fig. 5.1(b) is another particular case of (2.1) and can be represented
by the following expression.

[
T1
T2

]
= Bτττ =

[
1 0 1
0 1 1

] τ1
τ2
τ3

 (5.1)

where T1 and T2 are output joint torques, τ1 and τ2 are the monoarticular actuator
torques about joints 1 and 2 respectively, and τ3 is the biarticular actuator torque
actuating both joints.

Applying (2.4) allows computation of the 2-norm resolution of (5.1) as:

τ1 =
2
3

T1−
1
3

T2 (5.2)

τ2 =
2
3

T2−
1
3

T1 (5.3)

τ3 =
1
3

T1 +
1
3

T2 (5.4)

Infinity-norm resolution of (5.1) can be expressed [40] by the following closed-
form expression:

τ1 =


1
2(T1−T2) if T1T2 ≤ 0
T1− 1

2T2 if T1T2 > 0 and |T1| ≤ |T2|
1
2T1 if T1T2 > 0 and |T1|> |T2|

(5.5)

τ2 =


1
2(T2−T1) if T1T2 ≤ 0
1
2T2 if T1T2 > 0 and |T1| ≤ |T2|
T2− 1

2T1 if T1T2 > 0 and |T1|> |T2|
(5.6)

τ3 =


1
2(T1 +T2) if T1T2 ≤ 0
1
2T2 if T1T2 > 0 and |T1| ≤ |T2|
1
2T1 if T1T2 > 0 and |T1|> |T2|

(5.7)

Finally, application of CGI resolves (5.1) as
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Case 0 :

τ1 = τ
†
1 :=

2
3

T1−
1
3

T2 (5.8)

τ2 = τ
†
2 :=

2
3

T2−
1
3

T1 (5.9)

τ3 = τ
†
3 :=

1
3

T1 +
1
3

T2 (5.10)

Case τi(a) :
τi = τ

max
i (5.11)

τττ
′
i = (B′i)

−1(TTT −Biτ
max
i ) (5.12)

Case τi(b) :
τi =−τ

max
i (5.13)

τττ
′
i = (B′i)

−1(TTT +Biτ
max
i ) (5.14)

and define

case 0 (2-norm) := |τ†
i | ≤ τ

max
i , i = 1,2,3 (5.15)

case τi(a) := τ
†
i > τ

max
i , |τ†

i | ≥ |τ
†
j |, ∀ j = 1,2,3 6= i (5.16)

case τi(b) := τ
†
i <−τ

max
i , |τ†

i | ≥ |τ
†
j |, ∀ j = 1,2,3 6= i (5.17)

Where τmax
i is the maximum torque at motor i, τττ ′i is the vector τττ with the element

τi removed, Bi is the i’th column of the matrix B, and B′i is the matrix B with the
i’th column removed.

5.2 Proposal: 2-norm/Infinity-norm Switching Res-
olution

5.2.1 Concept
The connection of 2-norm and infinity-norm resolution has long been desired due
to their opposing utility in different circumstances. That is, 2-norm is not an op-
timal resolution scheme for large output magnitudes, and the infinity-norm is not
optimal for small output magnitudes. As we have seen, optimization using 2-norm
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optimizes in analog to minimization of system energy. This is a reasonable opti-
mization criteria for relatively small output magnitudes. However, we have also
seen that when the output magnitude grows, the 2-norm has a tendency to request
disproportionate exertion from individual inputs, even exceeding their limits. On
the other hand, the infinity-norm minimizes the maximum exertion in the system.
This is a very useful criteria for high output magnitudes, as it allows for the full
benefit of the system’s output space. However, when the desired output magnitude
is low, of course the resolved inputs will be low and of little concern. Therefore
infinity-norm resolution with a low output magnitude is effectively redundant.

Rather than using either method individually, it is clear then that a higher
utility system would utilize 2-norm when the output magnitude is low and switch
to infinity-norm when the output magnitude grows too large. Such a switching
system was hypothesized by [41], but realization of such a switching system has
met difficulty in implementation due to the lack of a closed-form solution of the
infinity-norm. This has made speculation as to how to bridge the norms as well as
analysis as to the continuity of the resultant system difficult. Instead compromises
have been made in the form of 2-norm/infinity-norm weighted solutions in [42]
and [43], but actual switching between the two remained unrealized. Thanks in
great deal to the advent of a closed-form solution for infinity-norm resolution of
biarticular resolution [40], we have succeeded in proposing the first realization of
2-norm/ infinity-norm switching resolution.

5.2.2 Proposal
A realization of the 2-norm/infinity-norm switching system for resolution of biar-
ticular actuation redundancy has been proposed as follows:

τττ =


τττ†, if |τ†

i | ≤ τswitch, i = 1,2,3
τττCGI, if ∃ τ

†
i , s.t. |τ†

i |> τswitch,

and |τCGI| ≤ τswitch, i = 1,2,3
τττ∞, if ∃ τCGI

i , s.t. |τCGI
i |> τswitch

(5.18)

where τswitch is a selectable torque switching level used as τmax
i in the evaluation

of CGI.
Proof of continuity of the proposed switching system can be found in Ap-

pendix B
A model of the proposed switching system can be seen in Fig. 5.2, which il-

lustrates the utilized resolution scheme for a given desired output with unit τswitch.
This shape is characteristic of the switching system, with only the relative sizes of
each section scaling with changing τswitch.
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Figure 5.2: Visualization of proposed switching system with unit switching
torque. The system resolves with respect to 2-norm until an infinity-norm thresh-
old is met, at which point torques are reallocated and further optimized with re-
spect to the infinity-norm.

Fig. 5.3 shows a view of the statics of the switching system. The graphs shows
the resolved motor torques for given desired joint torques, in an arm described by
(5.1). Resolution is carried out with unit τswitch. The resulting waveform is a
continuous function composed of three linear segments corresponding to 2-norm,
CGI, and infinity-norm respectfully.

5.3 Experimental implementation
The following chapter describes an experimental implementation carried out test-
ing the utility and veracity of our proposed switching resolution.

5.3.1 Setup
Hardware

For the purpose of testing our resolution system, a robotic arm with equivalent
torque characteristics to Fig. 5.1(b) was developed. The arm can be seen in Fig.
5.4 and a schematic diagram of the developed arm can be seen in Fig. 5.5. The
2-link, planar arm is actuated by three motors. Motor 1 is fixed to the base and
connected to a fixed pulley on joint 1, forming a monoarticular actuator on joint 1.
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Figure 5.3: Simulation of switching system static torque resolution. The resultant
waveform is a continuous function composed of three linear regions correspond-
ing to 2-norm, CGI, and infinity-norm respectively.

Figure 5.4: 2-link arm with two monoarticular actuators and one biarticular actu-
ator connected to elastic resistance platform.

Motor 2 is fixed to link 1 and connected to a fixed pulley on joint 2, forming a
monoarticular actuator on joint 2. Motor 3 is fixed to the base and is connected to
a fixed pulley on joint 2 through a free pulley about joint 1, forming a biarticular
actuator actuating both joints 1 and 2.
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Figure 5.5: Schematic diagram of 2-link arm with two monoarticular actuators
and one biarticular actuator utilized in experimental verification.

q 

Figure 5.6: Block diagram of control strategy employed in experimental trials.

The arm is equipped with optical encoders about joints 1 and 2, enabling dif-
ferential joint angle measurements. In order to compare electrical energy require-
ments, voltage probes are also placed on each motor.

The arm end-effector is affixed to an elastic resistance platform, which is com-
posed of two steel square plates with four shafts connecting the two plates at each
corner. The base plate is secured to the work bench. On two opposing shafts (in
the positive and negative y direction for these experimental trials) two equivalent
springs are connected to a shaft at the arm end-effector.

A list of relevant arm and elastic parameters can be found in Table 5.1.

Methodology

A block diagram of the control methodology utilized in the arm can be seen in Fig.
5.6. The end-effector position can be determined by the arm forward kinematics
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Table 5.1: Arm parameters
Link Lengths (L) 0.25 m

Motor Model
Maxon

DC Motor 148867

Motor Controller Model
Maxon Motor Controller

ADS 50/5
Maximum Continuous

0.177 mNm
Motor Torque

Motor Gain 30.2 mNm/A
Motor Pulley

6 mm
Inner Radius (r1)

Joint Pulley
22.5 mm

Inner Radius (r2)
Spring Coefficients 0.064 N/mm

Spring Natural Length 60 mm
Spring Prestretch Length 113 mm
Control Loop Frequency 833 Hz

Encoder Resolution 2000 Pls. (0.05 Degrees)
Voltage Measurement

5 mV
Resolution

described by the following relationship.

xxx =
[

x
y

]
=

[
Lcos(q1)+Lcos(q1 +q2)
Lsin(q1)+Lsin(q1 +q2)

]
(5.19)

A PI controller was chosen as it lends itself to the simplest comparison of these
three resolution schemes. We are only interested in the results of the redundancy
resolution — particularly its continuity and the physical utility of the solution —
so, as long as the task joint torque is equivalent across all three trials, the results
are admissible. Task space proportional and integral gains are chosen empirically
as Kp = 45 N/m and Ki = 45 N/(m · s).

The resultant force is translated to the joint space using the manipulator force-
torque characteristics described by the following relationship:

TTT = JJJTFFF (5.20)

With the desired joint torques calculated, the redundancy resolution is carried
out using one of the redundancy resolution approaches (two-norm, infinity-norm,
or switching resolution) and the motors are commanded with the resulting torques.
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The test trajectory is assigned as follows. The arm begins at rest in a config-
uration of qqq = [π

4 ,−
π

2 ] (rad), or xxx ≈ [0.35,0] (m). A cubic splines is constructed,
taking the arm from its starting position to a desired position of xxx = [0.41,0] (m)
and back, taking 10 seconds in each direction. The direction of motion was chosen
as it allows for the largest task-space displacement without risk of damaging the
springs. The magnitude was chosen empirically so that the entire trajectory lies
within the resolvable range of the maximum motor torques while 2-norm is used
to resolve the redundancy. The time was chosen empirically to mitigate oscillation
introduced by the elastic resistance platform.

When switching resolution is used to resolve system redundancy, the switch-
ing level τswitch is assigned as 0.35 Nm, chosen empirically for this trajectory to
best illustrate the difference between the three resolution methods.

5.4 Results
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Figure 5.7: Task space position trajectories using 2-norm, infinity-norm, and
switching resolution methods. The resolution method employed has no effect
on the resultant trajectory as net joint torques are equivalent.

Fig. 5.7 illustrates the resultant end-effector position trajectories across time
when 2-norm, infinity-norm, and switching resolution are employed in resolving
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actuator redundancy. End-effector position is calculated by forward kinematics
from recorded joint angles. As expected, the resultant position trajectories using
each method are equivalent. This is to be expected as regardless of which redun-
dancy resolution method is utilized, the resultant joint torques should still be the
same. The redundancy resolution method varies only the levels of co-contraction,
not the actual resultant torques. This is, however, a useful point of comparison.
So long as the position trajectories of each trial are the same, we can neglect the
effects of mechanical nonlinearities on our experimental results.
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Figure 5.8: Resolved motor torques using 2-norm, infinity-norm, and switching
resolution methods. The switching system is seen to switch continuously back
and forth between 2-norm and infinity-norm at the defined switching level.

Fig. 5.8 illustrates the results of the redundancy resolution using each method.
Until t=6.89 s both 2-norm and switching resolution resolve the system equiva-
lently. At this point, the 2-norm resolved τ2 exceeds τswitch causing the switching
system to switch to CGI resolution in order to reallocate motor torque. Switching
resolution continues equivalent to CGI resolution until t=8.35 s, at which point re-
allocation completes and resolution switches to infinity-norm, conserving motor
torque. Switching resolution is then equivalent to infinity-norm resolution until
t=14.43 s, at which point the required output torque magnitude again allows for
CGI resolution within input bounds. Finally resolution switches back to 2-norm
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when possible at t=15.83 s. As asserted, the torques along the entire trajectory are
resolved continuously.
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Figure 5.9: Maximum resolved motor torques using 2-norm, infinity-norm, and
switching resolution methods. The switching system is seen to require equivalent
maximum torque for this trajectory as the infinity-norm.

Fig. 5.9 illustrates the infinity-norm of the resolved motor torques (maximum
resolved motor torque) of each resolution method over the entire trajectory of
the arm. As anticipated while the requested torque magnitude is low, both 2-norm
and switching resolution demand equal maximum motor exertion. When the max-
imum torque demanded by 2-norm exceeds the switching threshold of τswitch, the
maximum torque is held constant as torque is reallocated to τ1 and τ3. When real-
location completes, from t=8.35 to 14.43 s, infinity-norm and switching resolution
demand equivalent maximum torque — this maximum torque is the minimal pos-
sible maximum torque given the desired output torque. Over the entire trajectory,
2-norm has a maximum required torque of 0.522 Nm. Switching resolution and
infinity-norm resolution have a maximum torque requirement of 0.435 and 0.437
Nm, respectively. Therefore to accomplish the same trajectory 2-norm requires
a motor with ≈ 20 percent larger torque capability than would be necessary for
either switching or infinity-norm resolution.

Fig. 5.10 illustrates the input electrical energy over the arm trajectory. Mea-
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Figure 5.10: Electrical energy requirements using 2-norm, infinity-norm, and
switching resolution methods. The switching system is seen to require equiva-
lent power as 2-norm until the switching condition is met and maximum torque is
prioritized.

sured voltages are filtered using a low pass Butterworth filter with f=0.2 Hz. The
total input energy (I.E) is then measured the relationship:

I.E.=
∫ t

0
(V1I1 +V2I2 +V3I3)dt (5.21)

where Vi is the filtered motor voltage at motor i, and Ii is the current of motor I
obtained by the command torque divided by the motor torque constant.

Since they resolve the system equivalently, it is found that 2-norm and switch-
ing resolution have equal energy demands until the two diverge at t=7.25 s. At
t=7.25 s, switching resolution switches to CGI in order to sacrifice energy effi-
ciency in order to prioritize safeguarding against overtaxing motors. After real-
location is complete, both infinity-norm and the switching system demand equiv-
alent power from the system. The same relationship is seen again as switching
resolution passes again through CGI and 2-norm resolution. Over the entire tra-
jectory it is found that the infinity-norm requires 5 percent more electrical energy
to realize the same trajectory as switching resolution. This difference in energy
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Table 5.2: Relative comparison of performances of 2-norm, infinity-norm, and
switching resolution across possible system configurations. Switching resolution
is seen to perform preferably in all high priority criteria.

Low Torque High Torque
Electrical Energy Maximum Torque Electrical Energy Maximum Torque
(High Priority) (Low Priority) (Low Priority) (High Priority)

2-norm Good Bad Best Bad
Infinity-norm Bad Good Worst Good

Switching Sys. Good Bad Middle Good

can be attributed to infinity-norms greater degree of co-contraction during low-
output magnitudes in order to ensure minimum system-wide exertion.

Table 5.2 compiles the results and compares the performance of 2-norm, infinity-
norm, and the switching system across the possible system configurations ob-
served. It is seen that the switching system uniquely performs preferably for all
high priority criteria regardless of system configuration.



Chapter 6

Conclusions

In this thesis, a body of work on improving 2-norm based resolution methods for
redundant systems was reviewed. In total, three methods were proposed targeting
three different classes of redundant systems.

The first two methods — the Continuous Cascaded Generalized Inverse (cCGI)
and the Extended Cascaded Generalized Inverse (eCGI) — are aimed at general
systems in which the simplicity of 2-norm based resolution is a major benefit. The
first of these, cCGI, is aimed at systems in which continuity of resolution is an ab-
solute requirement. For these sorts of systems, cCGI is the largest extension of
2-norm which guarantees continuity. cCGI can therefore be applied to any system
2-norm is applied to without any significant dynamic affects, while improving the
output space of the system. The second of these methods, eCGI, simply represents
the largest extension of 2-norm resolution. In a numerical example in resolution
of kinematic redundancy we showed eCGI was capable of extending the resolu-
tion to the full system capable output space. However like its predecessor, CGI,
eCGI makes no guarantees of continuity in resolution.

These two methods, cCGI and eCGI form a binary approach at a wide selec-
tion of systems which have been dominated by 2-norm based resolution. Since all
systems can be clearly distributed into continuity-vital and continuity-nonvital,
we can easily determine which method is preferable for a particular system given
the restriction. With little to no dynamic consequences cCGI can be applied to
any system 2-norm can be applied to while allowing for a larger output space.
If the dynamic consequences are negligible, eCGI can be applied for the largest
extension of 2-norm based resolution.

The final method on the other hand, 2-norm/infinity-norm Switching Resolu-
tion, is proposed for a particular redundant system — biarticular actuation redun-
dancy. This restriction of system renders the main benefit of 2-norm resolution (its
simplicity) not so important. Several other methods have already been proposed
in closed-form resolving this system. The presence of these methods however, al-
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lowed us to propose the first realization of the long-desired 2-norm/infinity-norm
switching resolution which allows for greater utility than using either alone in
resolution. This resolution scheme was experimentally implemented in a robotic
manipulator equipped with biarticular actuation redundancy, and was shown to
reduce motor size requirements, with respect to 2-norm, while reducing electrical
energy requirements, with respect to infinity-norm.

Points of possible future research additionally arise from the research pre-
sented in this thesis. Our proposal of 2-norm/infinity-norm switching resolution
no doubt sheds light on a more general form for the system. We believe that
eCGI combined with cCGI could provide for a more general implementation of
the 2-norm/infinity-norm switching system or for a larger continuous extension of
2-norm resolution. Additionally a method to determine a priori suitable combina-
tions of saturated inputs to de-saturate in eCGI would vastly improve implemen-
tation.



Appendix A

Proof of Continuity of cCGI
Resolution

Here we will demonstrate continuity of the constrained Cascaded Generalized
Inverse.

Let B be an mxn, full row rank matrix which translates actuation variables
u ∈ ℜn to task space values v ∈ ℜm as in (2.1). Let Bi, B′i1.i2...iz , ui, and u′i1.i2...iz
be as originally defined in section 3.2. We will first demonstrate continuity within
each individual case and then demonstrate continuity during switching of cases,
proving full piece-wise continuity.

In case 0 (when all 2-norm satisfying inputs are within their respective maxi-
mum bounds), the solution is equivalent to the pseudoinverse solution. If B is full
row rank, the solution is continuous within case 0 by the continuity property of
the pseudoinverse.

In case i1(x1).i2(x2)...iz−1(xz−1).iz(a), the solution for u is of the form:

ui1 =

{
ui1max if x1 = a
−ui1max if x1 = b

(A.1)

...

uiz−1 =

{
uiz−1max if xz−1 = a
−uiz−1max if xz−1 = b

(A.2)

uiz = uizmax (A.3)

u′i1.i2...iz = (B′i1...iz)
†(v−

z

∑
γ=1

Biγ uiγ ) (A.4)

In this region, ui1 ...uiz are constants which are clearly continuous, and u′i1.i2...iz
may be rewritten as
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u′i1.i2...iz = (B′i1...iz)
†v− (B′i1...iz)

†
z

∑
γ=1

Biγ uiγ ) = (B′i1...iz)
†v+k (A.5)

where k is a constant vector. If B′i1...iz is full rank, u′i is linear with respect to
v, by the continuity property of the pseudoinverse, and is therefore continuous.

A similar method shows continuity throughout case i1(x1).i2(x2)...iz−1(xz−1).iz(b).
Now that continuity has been demonstrated within each individual case, we

now turn to demonstrating switching continuity.
While in case i1(x1).i2(x2)...iz−1(xz−1), the system is prompted to enter case

i1(x1).i2(x2)...iz−1(xz−1).iz(a) when the value resolved in case i1(x1).i2(x2)...iz−1(xz−1)
for input uiz becomes greater than uizmax. We must therefore demonstrate continu-
ity at the condition:

(Case i1(x1).i2(x2)...iz−1(xz−1)),

(uiz(i1(x1).i2(x2)...iz−1(xz−1)) = uizmax), (A.6)
and (|ui j(i1(x1).i2(x2)...iz−1(xz−1))| ≤ ui jmax,∀ j 6= i)

At this boundary, in case i1(x1).i2(x2)...iz−1(xz−1), removing the elements of u
resolved as constants allows us to rewrite (2.1) as

v =
z

∑
γ=1

Biγ uiγ +B′i1...izu
′
i1...iz (A.7)

B′i1...inu′i1...iz = v−
z

∑
γ=1

Biγ uiγ (A.8)

It follows then that u′i1...iz is the unique minimum 2-norm resultant for (A.8),
else we could choose different elements for the vector u′i1...iz−1

(i1(x1).i2(x2)...iz−1(xz−1))

corresponding to the elements of u′i1...iz(i1(x1).i2(x2)...iz−1(xz−1)) with the same
or lower two norm while still resolving (2.1). But by definition, u′i1...iz−1

(i1(x1).i2(x2)...iz−1(xz−1))
is a minimum two norm solution for (2.1), so this is impossible by the uniqueness
property of the pseudoinverse.

As such at the boundary condition, for case i1(x1).i2(x2)...iz−1(xz−1) we have:

u′i1...iz = (B′i1...iz)
†(v−

z

∑
γ=1

Biγ uiγ ) (A.9)

Which is equal to the resolution of u′i1...iz in case i1(x1).i2(x2)...iz−1(xz−1).iz(a).
Since ui1 , ui2 , ... , uiz , and u′i1...iz are resolved equivalently in case i1(x1).i2(x2)...iz−1(xz−1),
and case i1(x1).i2(x2)...iz−1(xz−1).iz(a) at the switching condition, the system
switches continuously between cases i1(x1).i2(x2)...iz−1(xz−1) and i1(x1).i2(x2)...iz−1(xz−1).iz(a).
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A similar method demonstrates continuity between case i1(x1).i2(x2)...iz−1(xz−1)
and i1(x1).i2(x2)...iz−1(xz−1).iz(b).

We will now demonstrate that, given the asserted constraint, that switching
directly between any other cases is impossible. To do so, let us consider what
would be required for such switching to actually occur. Suppose across k levels
corresponding to u j1 ... u jk a solution switches to another solution whose same
levels now correspond to u j̃1 ... u j̃k , u j̃k̄

6= u jk̄ , k̄ = [1,k]. Consider the lowest order
of these switching occurrences, which correspond to variables uiλ and ui

λ̃
.

For a system to be in case i1(x1).i2(x2)...iλ−1(xλ−1).iλ (xλ ) the following must
be satisfied:

|uiλ (i1(x1).i2(x2)...iλ−1(xλ−1))|> uiλ max (A.10)
|uiΛ(i1(x1).i2(x2)...iλ−1(xλ−1))| ≤ uiΛmax, ∀Λ 6= λ (A.11)

Likewise, for a system to be in case i1(x1).i2(x2)...iλ−1(xλ−1).iλ̃ (xλ̃
) the fol-

lowing must be satisfied:

|ui
λ̃
(i1(x1).i2(x2)...iλ−1(xλ−1))|> ui

λ̃
max (A.12)

|uiΛ(i1(x1).i2(x2)...iλ−1(xλ−1))| ≤ uiΛmax, ∀Λ 6= λ̃ (A.13)

Thus, the only border case that exists between these two cases occurs when:

|uiλ (i1(x1).i2(x2)...iλ−1(xλ−1))|= uiλ max (A.14)
|ui

λ̃
(i1(x1).i2(x2)...iλ−1(xλ−1))|= ui

λ̃
max (A.15)

|uiΛ(i1(x1).i2(x2)...iλ−1(xλ−1))| ≤ uiΛmax, ∀Λ 6= λ , λ̃ (A.16)

which is in neither case i1(x1).i2(x2)...iλ−1(xλ−1).iλ (xλ ) nor i1(x1).i2(x2)...iλ−1(xλ−1).iλ̃ (xλ̃
).

Thus it is impossible to switch directly between cases i1(x1).i2(x2)...iλ−1(xλ−1).iλ (xλ )
and i1(x1).i2(x2)...iλ−1(xλ−1).iλ̃ (xλ̃

), due to the continuity property of the pseu-
doinverse. Due to the case conditions of the considered higher order switching
case, it is also now evident that switching between these generalized two cases is
impossible.

Finally we will show that, given the asserted constraints, that switching di-
rectly between a and b cases of the same level and variable is impossible. To do
so, let us consider what would be required for such switching to actually occur.
Suppose across k levels corresponding to u j1 ... u jk a solution switches to another
case where the corresponding a’s and b’s of these k variables invert. Consider the
lowest order of these switching occurrences, which corresponds to variables uiλ .

For a system to be in case i1(x1).i2(x2)...iλ−1(xλ−1).iλ (a) the following must
be satisfied:

uiλ (i1(x1).i2(x2)...iλ−1(xλ−1))> uiλ max (A.17)
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Likewise, for a system to be in case i1(x1).i2(x2)...iλ−1(xλ−1).iλ (b) the fol-
lowing must be satisfied:

uiλ (i1(x1).i2(x2)...iλ−1(xλ−1))<−uiλ max (A.18)

No boundary points exist between these two cases, so by the continuity prop-
erty of the pseudo-inverse, switching directly between these two cases is impos-
sible. Due to the case conditions of the considered higher order switching case, it
is also now evident that switching between these generalized two cases is impos-
sible.

A similar method proves that direct case switching combining switches in level
variables and switching of a and b cases of the same level variable are impossible,
given the asserted constraints.



Appendix B

Proof of Continuity of
2-norm/Infinity-norm Switching
Resolution

In this section, the continuity of the proposed switching system will be demon-
strated. CGI is defined such that it is continuous with increased torque mag-
nitude (maintaining the ratios of T1 and T2, and is clearly continuous while re-
optimized with respect to a single saturated motor torque. If discontinuity were
to arise within CGI, it would occur while switching the input to be saturated and
re-optimized against. Such switching events occur when two 2-norm torque reso-
lutions simultaneously saturate.

To demonstrate CGI’s continuity over the entire domain, we will show that
at these simultaneous saturation events that the resolution with respect to both
variables is equivalent. Further we will show that at such conditions, the 2-norm
resolution is equal to the infinity-norm resolution (so these saturated variables
cannot be re-optimized against). Note, this section of proof will concern itself
with desired outputs s.t. T1,T2 6= 0. A desired output with T1 or T2 equal to zero is
a specific case which will be analyzed separately as part of the next section.

With CGI demonstrated as continuous with the infinity-norm at simultaneous
saturation events, sequential saturation events will then be considered. It will be
demonstrated that after 2-norm saturates and the other torques are re-optimized,
when a subsequent motor torque saturates, the resolution is equal to the infinity-
norm solution.
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B.0.1 At least one saturated variable of 2-norm/CGI must be
shared in the solution of the inf-norm

Analysis of the closed-form solutions of the 2-norm, CGI, and infinity-norm yield
the following possible forms of resolutions for nonzero output torques:

τ1 τ2 τ3
T1 > 0 + + +
T2 > 0 + – +

– + +
T1 > 0 + – +
T2 < 0 + – –

A useful characteristic of the infinity-norm is that its solution always has two
or more inputs resolved as equal to the maximum value of the resolution.

Likewise, CGI fails to resolve after two or more inputs saturate. Although
from the information given alone, it cannot be said that at this point the CGI
resolution is equal to the infinity-norm solution, it can be said that at least one of
the saturated variables is shared by both solutions.

Therefore the following can be said. If multiple variables saturate in 2-norm
resolution and re-optimization with respect to neither results in increased output
potential, the 2-norm resolution at this point is equal to the infinity-norm reso-
lution. If a single variable saturates in 2-norm, CGI is used to re-optimize, and
further re-optimization with respect to the variable which saturates in CGI reso-
lution does not yield further output potential, the CGI resolution is equal to the
infinity-norm resolution at that point. If re-optimization after CGI is possible, the
resolution at the highest torque magnitude in that direction is equal to the infinity-
norm resolution.

The remaining sections of proof will demonstrate:

1. Re-optimization after 2 simultaneous saturations, and re-optimization after
CGI resolution are further unnecessary.

2. 2-norm is equal to infinity-norm during simultaneous saturations, and that
in subsequent saturation events, CGI resolution is equal to infinity-norm.

Note, only the cases (T1,T2 > 0) and (T1 > 0,T2 < 0) will be considered.
(T1,T2 < 0) and (T1 < 0,T2 > 0) are duals of these two cases.

B.0.2 Continuity at equal saturation rates
T1,T2 > 0

τ1,τ2,τ3 ≥ 0
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• τ1,τ2 saturate simultaneously

τ1 =
2
3

T1−
1
3

T2 = τ
max (B.1)

τ2 =
2
3

T2−
1
3

T1 = τ
max (B.2)

=⇒ T1 = T2 =⇒ τ3 = 2τ1 = 2τ
max (B.3)

Which is a contradiction, so this condition cannot actually occur.

• τ1,τ3 saturate simultaneously

τ1,τ3 = τ
max =⇒ T1 = 2τ

max (B.4)

Clearly T1 can’t be resolved higher than 2τmax, so here the 2-norm resolu-
tion is equal to the infinity-norm resolution.

• τ2,τ3 saturate simultaneously

Dual of τ1,τ3 saturating simultaneously.

τ1,τ3 ≥ 0,τ2 ≤ 0

• τ1,τ2 saturate simultaneously

τ1 =
2
3

T1−
1
3

T2 = τ
max (B.5)

τ2 =
2
3

T2−
1
3

T1 =−τ
max (B.6)

=⇒ T1 =−T2 (B.7)

Which is a contradiction since both T1,T2 > 0, so this condition cannot ac-
tually occur.

• τ1,τ3 saturate simultaneously

Dual of τ1,τ2,τ3 ≥ 0,τ1,τ3 saturate simultaneously.

• τ2,τ3 saturate simultaneously

τ2 =−τ
max,τ3 = τ

max (B.8)
=⇒ T2 = 0 (B.9)

=⇒ τ1 =
2
3

T1 = 2τ3 = 2τ
max (B.10)

Which is a contradiction, so this condition cannot actually occur.
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τ2,τ3 ≥ 0,τ1 ≤ 0 Dual of τ1,τ3 ≥ 0,τ2 ≤ 0

T1 > 0,T2 < 0

τ1,τ3 ≥ 0,τ2 ≤ 0

• τ1,τ2 saturate simultaneously

We note that either maximum τ1 or maximum τ2 (or both) must exist in
the infinity norm solution in this configuration. We assume τ1 is maxi-
mum in the infinity norm solution, and that if τ1 and τ2 saturate at a torque
magnitude of k (corresponding to T1(k) and T2(k)) that there is some real-
izable output with a larger magnitude k+∆k in the same direction (whose
resolution linearly approaches the infinity norm solution at the maximum
attainable torque). At this point we resolve the system is resolved as

τ1 = τ
max (B.11)

τ3 = T1(k)+∆kT1(k)− τ
max (B.12)

τ2 = T2(k)+∆kT2(k)−T1(k)−∆kT1(k)+ τ
max (B.13)

=−τ
max +∆kT2(k)−∆kT1(k) (B.14)

=⇒ τ2 <−τ
max (B.15)

Which is a contradiction, so one cannot attain a higher magnitude output in
the same direction with maximum τ1. A similar process shows the same for
τ2. Therefore one cannot produce a higher magnitude torque in the same
direction. This implies that the 2-norm solution is equal to the infinity norm
solution at this point.

• τ1,τ3 saturate simultaneously

Dual of T1,T2,τ1,τ2,τ3 > 0: τ1,τ3 saturate simultaneously.

• τ2,τ3 saturate simultaneously

τ2 =−τ
max,τ3 = τ

max (B.16)
=⇒ T2 = 0 (B.17)

Which is a contradiction, so this condition cannot actually occur.

τ1 ≥ 0,τ2,τ3 ≤ 0 Dual of τ1,τ3 ≥ 0,τ2 ≤ 0.
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B.0.3 CGI equal to inf-norm at max. realizable torque
With the case of simultaneous saturation of 2-norm demonstrated to be equal to
the infinity-norm, we will now demonstrate single input saturation in 2-norm,
followed by saturation of another variable in CGI also yields an infinity-norm
equivalent resolution. Let such notation as τ1 → τ2 represent the condition that
the left input saturates in 2-norm, the system is re-evaluated in CGI with respect
to the left input, and the right input saturates in the CGI re-resolution.

T1,T2 > 0

τ1,τ2,τ3 ≥ 0

• τ1→ τ2

T2− (T1− τ
max) = τ

max (B.18)
=⇒ T1 = T2 (B.19)

(B.20)

Therefore τ1 and τ2 saturate at the same time. This case was covered in
section B.0.2, and it was shown that it cannot actually occur.

• τ2→ τ1

Dual of τ1→ τ2

• τ1→ τ3, τ2→ τ3, τ3→ τ1, τ3→ τ2

Duals of T1,T2,τ1,τ2,τ3 > 0: Simultaneous saturation of τ1 and τ3.

τ1,τ3 ≥ 0,τ2 ≤ 0

• τ1→ τ2

T2− (T1− τ
max) =−τ

max (B.21)
=⇒ T1−T2 = 2τ

max (B.22)
T1 ≤ 2τ

max =⇒ τ2 ≤ 0 (B.23)

Which is a contradiction, so this condition cannot actually occur.

• τ2→ τ1

Dual of τ1→ τ2

• τ1→ τ3

Dual of T1,T2,τ1,τ2,τ3 > 0: Simultaneous saturation of τ1 and τ3.
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• τ2→ τ3

τ3 = T2 + τ
max = τ

max (B.24)
=⇒ T2 = 0 (B.25)

Which is a contradiction. Therefore, this condition cannot occur.

• τ3→ τ2

Dual of τ2→ τ3

τ2,τ3 ≥ 0,τ1 ≤ 0 Dual of τ1,τ3 ≥ 0,τ2 ≤ 0

T1 > 0,T2 < 0

τ1,τ3 ≥ 0,τ2 ≤ 0

• τ1→ τ2, τ2→ τ1

Dual of T1 > 0 , τ1,τ3 ≥ 0, T2 < 0, τ2 ≤ 0: τ1 and τ2 saturate simultaneously

• τ1→ τ3, τ3→ τ1

Dual of T1,T2 > 0, τ1,τ2,τ3 ≥ 0: Simultaneous saturation of τ1 and τ3.

• τ2→ τ3, τ3→ τ2

Dual of T1,T2 > 0, τ1,τ3 ≥ 0, τ2 ≤ 0, τ2→ τ3.

τ2,τ3 ≤ 0,τ1 ≥ 0 Dual of τ1,τ3 ≥ 0,τ2 ≤ 0

T1 > 0,T2 = 0

In this case, 2-norm resolves the system as

τ1 =
2
3

T1 (B.26)

τ2 =−
1
3

T1 (B.27)

τ3 =
1
3

T1 (B.28)

τ1 will saturate at T1 =
3
2τmax and larger torques will be reevaluated by CGI as

τ1 = τ
max (B.29)

τ2 =−(T1− τ
max) (B.30)

τ3 = T1− τ
max (B.31)
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Both τ2 and τ3 will saturate when T1 = 2τmax. Since all three torques are saturated,
this CGI resolution is equal to the infinity-norm solution at this point.

Other Cases

(T1 < 0,T2 = 0),(T1 = 0,T2 > 0), and (T1 = 0,T2 < 0) are duals of (T1 > 0,T2 = 0).
(T1,T2 = 0) is a trivial case.



Bibliography

[1] T. Asfour and R. Dillmann, ”Human-like Motion of a Humanoid Robot
Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003, pp. 1407-
1412.

[2] A. A. Maciejewski and C. A. Klein, ”Obstacle Avoidance for Kinematically
Redundant Manipulators in Dynamically Varying Environments,” in The
Int. Journal of Robotics Research, vol. 4, no. 3, pp. 109-117, Sep., 1985

[3] T. F. Chan and R. V. Dubey, ”A Weighted Least-Norm Solution Based
Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,” in
IEEE Trans. on Robotics and Automation, vol. 11, no. 2, pp. 286-292, Aug.,
2002.

[4] M Grebenstein et al, ”The DLR Hand Arm System,” in IEEE Int. Conf. on
Robotics and Automation, Shanghai, China, 2011, pp. 3175 - 3182 .

[5] A. Bajo, R. E. Goldman, L. Wang, D. Fowler, and Nabil Simaan, ”Integra-
tion and Preliminary Evaluation of an Insertable Robotic Effectors Platform
for Single Port Access Surgery,” in IEEE Int. Conf. on Robotics and Au-
tomation, Saint Paul, MN, 2012, pp. 3381 - 3387 .

[6] J. Zhang, H. Yu, F. Gao, and H. Zhao, ”Key Issues in Studying Parallel Ma-
nipulators,” in Int. Conf. on Advanced Mechatronic Systems, Zhengzhou,
China, 2011, pp. 234 - 244 .

[7] L.W. Tsai, ”Robot Analysis: The Mechanics of Serial and Parallel Manip-
ulators,” New York, John Wiley and Sons Inc.,1999.

[8] C. Yang, Q. Huang, H. Jiang, O. O. Peter, and J. Han, ”PD control with
gravity compensation for hydraulic 6-dof parallel manipulator,” in Mecha-
nism and Machine Theory, vol. 45, no. 4, pp. 666 - 677, Apr., 2010.



Bibliography 66

[9] Y. Yun and Y. Li, ”Modelling and Control Analysis of a 3-PUPU Dual
Compliant Parallel Manipulator for Micro Positioning and Active Vibration
Isolation,” in Journal of Dynamic Systems, Measurement and Control, vol.
45, no. 4, pp. 666 - 677, Apr., 2010.

[10] Q. Liang, D. Zhang, Z. Chi, Q. Song, Y. Ge, and Y. Ge, ”Six-DOF micro-
manipulator based on compliant parallel mechanism with integrated force
sensor,” in Robotics and Computer-Integrated Manufacturing, vol. 134, no.
2, p. 021001, 2012.

[11] Ball State University, ”Human Arm Muscles Diagram,” [online] Available:
http://libx.bsu.edu/cdm/ref/collection/AnatMod/
id/211.

[12] M. Kumamoto, T. Oshima, and T. Yamamoto, ”Control properties induced
by the existence of antagonistic pairs of bi-articular muscles– Mechanical
engineering modeling analyses ,” in Human Movement Science, vol. 15,
no. 5, pp. 611-634, Oct., 1994.

[13] S. Wolf and G. Hirzinger, ”A New Variable Stiffness Design: Mathcing Re-
quirements of the Next Robot Generation,” in IEEE Int. Conf. on Robotics
and Automation, Pasadena, CA., 2008, pp. 1741 - 1746.

[14] T. Klein and M. A. Lewis, ”A Robot Leg Based on Mammalian Muscle
Architecture,” in IEEE Int. Conf. on Robotics and Biomimetics, Guilin,
China, 2009, pp. 2521 - 2526.

[15] V. Salvucci, S. Oh, Y. Hori, and y. Kimura, ”Disturbance Rejection Im-
provement in Non-Redundant Robot Arms using Biarticular Actuators,” in
IEEE Int. Symp. on Industrial Electronics, Gdansk, Poland, 2011, pp. 2159
- 2164.

[16] T. Tsuji, C. Momiki, S. Sakaino, “Stiffness control of a pneumatic reha-
bilitation robot for exercise therapy with multiple stages,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Tokyo, 2013, pp. 1480-1485.

[17] M. A. Lewis, M. R. Bunting, B. Salemi, and H. Hoffmann, “Toward ultra
high speed locomotors: Design and test of a cheetah robot hind limb,” in
IEEE Int. Conf. on Robotics and Automation, Shanghai, 2011, pp. 1990-
1996.

[18] K. Tadano, M. Akai, K. Kadota, and K. Kawashima, “Development of grip
amplified glove using bi-articular mechanism with pneumatic artificial rub-
ber muscle,” in IEEE Int. Conf. on Robotics and Automation, Anchorage,
AK, 2010, pp. 23632368.

http://libx.bsu.edu/cdm/ref/collection/AnatMod/id/211
http://libx.bsu.edu/cdm/ref/collection/AnatMod/id/211


Bibliography 67

[19] R. Niiyama, S. Nishikawa, and Y. Kuniyoshi, “Athlete robot with applied
human muscle activation patterns for bipedal running,” in 10th IEEE/RAS
Int. Conf. on Humanoid Robots, Nashville, TN, 2010, pp. 498503.

[20] M.A.M. Dzahir, T. Nobutomo, and S.I. Yamamoto, “Antagonistic mono-
and bi-articular pneumatic muscle actuator control for gait training sys-
tem using contraction model,” in Biosignals and Biorobotics Conf., Rio De
Janerio, 2013, pp. 1-6.

[21] Klein CA, Huang CH. Review of pseudoinverse control for use with
kinematically redundant manipulators. IEEE Trans Syst. Man Cybern.
1983;13.2:245-250.

[22] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices. Wiley- Inter-
science, 1971.

[23] O. Khatib, “Dynamic control of manipulators in operational space,” in
6th IFToMM Congr. on Theory of Machines and Mechanisms, New Delhi,
1983, pp. 1123-1131.

[24] I-C. Shim and Y-S. Yoon, “Stabilized minimum infinity-norm torque so-
lution for redundant manipulators,” Robotica, vol. 16, no. 2, pp. 193-205,
1998.

[25] H. Ding and J. Wang, “Recurrent neural networks for minimum infinity-
norm kinematic control of redundant manipulators,” IEEE Trans. Syst. Man
and Cybern. A., Syst. Humans, vol. 29, no. 3, pp. 269-276, 1999.

[26] A. S. Deo and I. D. Walker, “Minimum effort inverse kinematics for redun-
dant manipulators,” IEEE Trans. Robot. Autom., vol. 13, no. 5, pp. 767-775,
Oct. 1997.

[27] Y. Zhang, J. Wang, and Y. S. Xia, “A dual neural network for redundancy
resolution of kinematically redundant manipulators subject to joint limits
and joint velocity limits,” IEEE Trans. Neural Netw., vol.14, no. 3, pp. 658-
667, May 2003.

[28] I.A. Gravagne and I.D. Walker, “On the structure of minimum effort so-
lutions with application to kinematic redundancy resolution,” IEEE Trans.
Robot. Autom., vol. 16, no. 6, pp. 855-863, 2000.

[29] J.A.M Petersen and M. Bodson, “Constrained quadratic programming tech-
niques for control allocation,” IEEE Trans. Control Syst. Technol., vol.14,
no.1, pp.91-98, Jan. 2006.



Bibliography 68

[30] J. C. Virnig and David S. Bodden. “Multivariable control allocation and
control law conditioning when control effectors limit (STOVL aircraft),” in
AIAA Guidance, Navigation, and Control Conf., Scottsdale, AZ., 1994, pp.
572-582.

[31] K. A. Bordignon, “Constrained control allocation for systems with redun-
dant control effectors,” Ph.D. Dissertation, Aero. Eng., Virginia Poly. Inst.
and State. Univ., Blacksburg, 1996.

[32] D. Enns, “Control allocation approaches,” in Guidance, Navigation, and
Control Conf. and Exhibit, Minneapolis, MN., 1998, pp. 98-108.

[33] R.E Beck.“Application of control allocation methods to linear systems with
four or more objectives,” Ph. D. Dissertation, Aero. Eng., Virginia Poly.
Inst. and State. Univ., Blacksburg, 2002.

[34] Y. Zhang, C. A. Rabbath, and C. Y. Su, “Reconfigurable control alloca-
tion applied to an aircraft benchmark model,” in American Control Conf.,
Seattle, WA., 2008, pp. 1052-1057.

[35] Y. Zhang, V.S. Suresh, B. Jiang, and D. Theilliol, “Reconfigurable control
allocation against aircraft control effector failures,” in IEEE Int. Conf. on
Control Applications, Singapore, 2007, pp. 1997-1202.

[36] A. Marks, J.F. Whidborne, and I. Yamamoto, “Control allocation for fault
tolerant control of a VTOL octorotor,” in UKACC Int. Conf. on Control,
Cardiff, Wales, 2012, pp. 357-362.

[37] V. P. Bui, H. Kawai, Y. B. Kim, and K. S. Leei, “A ship berthing system
design with four tug boats,” J. of Mechanical Science and Technology, vol.
25, no. 5, pp. 1257-1264. May 2011.

[38] X. Shi, Y. Wei, J. Ning, and M. Fu, “Constrained control allocation using
Cascading Generalized Inverse for dynamic positioning of ships,” in Int.
Conf. on Mechatronics and Automation, Beijing, China, 2008, pp. 1636-
1640.

[39] A. De Luca, R. Farina, P. Lucibello, “On the Control of Robots with Visco-
Elastic Joints,” in Int. Conf. on Mechatronics and Automation, Barcelona,
Spain, 2005, pp. 4297 - 4302.

[40] V. Salvucci, Y. Kimura, O. Sehoon, and Y. Hori, “Force maximization of bi-
articular actuated manipulators using infinity norm,” IEEE Trans. Mecha-
tron., vol. 18, no. 3, pp. 1080-1089. Jun. 2013.



Bibliography 69

[41] I. Gravagne and I. D. Walker, “Properties of Minimum Infinity-Norm Opti-
mization Applied to Kinematically Redundant Robots,” in IEEE/ASME Int.
Conf. on Intelligent Robots and Systems, B.C., 1998, pp. 152-160.

[42] D. Guo and Y. Zhang, “Different-level two-norm and infinity-norm mini-
mization to remedy joint-torque instability/divergence for redundant robot
manipulators,” Robotics and Autonomous Systems, vol. 60, no. 6, pp. 874-
888, 2012.

[43] Y. Zhang, B. Cai, J. Yin, and L. Zhang, “Two/infinity norm criteria reso-
lution of manipulator redundancy at joint-acceleration level using primal-
dual neural network,” Asian Journal of Control, vol. 14, no. 4, pp. 1036-
1046, 2012.



List of Publications

Journals
[C1] T. Baratcart, V. Salvucci, and T. Koseki, “Expermental Verification of Two-
norm, Infinity-norm Continuous Switching Implemented in Resolution of Biartic-
ular Actuation Redundancy,” Advanced Robotics. [Submitted].

International Conference- First Author
[C2] T. Baratcart, V. Salvucci, and T. Koseki, “On the continuity of cascaded
generalized inverse redundancy resolution, with application to kinematically re-
dundant manipulators,” in IEEE Industrial Electronics Conf., Vienna, Austria,
2013.

[C3] T. Baratcart, V. Salvucci, and T. Koseki, “2-norm/infinity-norm continuous
switching resolution in biarticularly actuated robot arms,” in The 13th Int. Work-
shop on Advanced Motion Control, Yokohama, 2014.

[C4] T. Baratcart, V. Salvucci, and T. Koseki, “Dynamic Analysis of Continu-
ous Cascaded Generalized Inverse Resolution of Kinematically Redundant Ma-
nipulators with Flexible Joints,” in The 13th European Control Conf., Strasbourg,
France, 2014.

[C5] T. Baratcart, V. Salvucci, and T. Koseki, “Extending the Resolution Range
of the Cascaded Generalized Inverse,” in The IEEE/ASME International Conf. on
Advanced Intelligent Mechatronics, Strasbourg, France, 2014.

International Conference- Second Author
[C6] V. Salvucci, T. Baratcart, and T. Koseki, “Increasing Isotropy of Intrinsic
Compliance in Robot Arms through Biarticular Structure,” in 19th World Congress
of the International Federation of Automatic Control, Cape Town, South Africa,
2014.



Bibliography 71

[C7] V. Salvucci, T. Baratcart, and T. Koseki, “Analytical Study on Increas-
ing Isotropy of Intrinsic Stiffness in Manipulators through Biarticular Structure,”
in The IEEE/ASME International Conf. on Advanced Intelligent Mechatronics,
Strasbourg, France, 2014.


	Introduction: Redundancy in Robotics
	Kinematic redundancy
	Manipulator redundancy
	Actuator redundancy
	Thesis structure

	Background
	2-norm resolution
	Infinity-norm resolution
	Extending the resolution range of the 2-norm
	Least-Squares with Clipping
	The Redistributed Pseudoinverse
	The Cascaded Generalized Inverse (CGI)


	Continuous Cascaded Generalized Inverse Resolution (cCGI)
	Discontinuity in CGI
	Proposal: Continuous Cascaded Generalized Inverse Resolution (cCGI)
	Dynamic analysis
	Setup
	Results


	Extended Cascaded Generalized Inverse Resolution (eCGI)
	Limits of resolution range of CGI
	Proposal: Extended Cascaded Generalized Inverse Resolution (eCGI)
	Simulations and results
	Discussion

	2-norm/ Infinity-norm Switching Resolution of Biarticular Actuation Redundancy
	Biarticular actuation
	Overview
	Resolution

	Proposal: 2-norm/Infinity-norm Switching Resolution
	Concept
	Proposal

	Experimental implementation
	Setup
	Hardware
	Methodology


	Results

	Conclusions
	Proof of Continuity of cCGI Resolution
	Proof of Continuity of 2-norm/Infinity-norm Switching Resolution
	At least one saturated variable of 2-norm/CGI must be shared in the solution of the inf-norm
	Continuity at equal saturation rates
	T1, T2 >0
	T1 > 0, T2 <0

	CGI equal to inf-norm at max. realizable torque
	T1,T2>0
	T1>0, T2<0
	T1 > 0, T2=0
	Other Cases




