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1. Introduction 

1.1 Microwave Rocket 

Microwave Rocket is one of the Beamed Energy Propulsion systems applicable to future 

space launches. Propulsive energy is repetitively supplied by pulsed microwave beams 

irradiated form the ground and the atmospheric air is used as a propellant, so that it can be 

propelled without any energy sources or propellants onboard. In addition, it does not require 

complicated structures like combustion chambers and turbo pump systems equipped on 

conventional liquid rocket engines. Therefore, it is expected to achieve a high payload ratio 

and a low launch cost [1].  

Microwave Rocket consists of a cylindrical tube and a reflector for ignition. The closed 

end of the cylindrical tube has a conical reflector called “a thrust wall” and has inlet of the 

microwave beam, in which air is exhausted and refilled through. Its thrust generation mecha-

nism is explained in the analogy of the pulse detonation engine (PDE) model, which is based 

on propagation of the detonation wave in a tube shaped engine. The detonation wave is driven 

by ionization front propagation into wave source. So, in the energy conversion process, it is 

very important to understand the mechanism of ionization front propagation. Thus, for 

clarifying the mechanism, it becomes important to know the propagation structure of ioniza-

tion front in microwave discharge of the rocket, especially plasma formation process in a 

filamentary form in atmospheric pressure. 

1.1.1 Discharge phenomenon in Microwave Rocket 

High power millimeter-wave discharge in atmospheric air is characterized by filamentary 

structure and a supersonic propagation of the ionization front into wave source, driving a 

shockwave. 
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The filamentary structure has some characteristics, especially in high enough gas pressure 

as described below. 

In the past studies [2], this filamentary structure is remarkable in high pressure. When the 

pressure is decreased, one can observe the transitions from a well-defined array of filaments 

to a smeared-out array, and finally to a diffuse plasma. This tendency agreed with our past 

experiments as shown in Figure 1-1. 

  

Figure 1-1 Millimeter wave discharge in high and low pressure 

The below figures show pictures of plasma patterns taken in the (E, k) plane (E is the 

electric field, k is the wave vector) and (H, k) plane (H is the magnetic field) of incident 

wave during the propagation of the plasma array toward the wave source. We can see from 

these figures, the structure are different between in the (E, k) plane and (H, k) plane. The 

experiments of [2-4] shows the formation of plasma filaments that aligned the electric filed 

(in (E, k) plane). The distance between filaments is on the order of λ/4, where λ is the wave-

length of the incident electromagnetic field. 

Above characteristics of discharge propagation remained as in the case of linear polariza-

tion. The below figures show the plasma filaments in circular polarized wave. We can see 

from these figures, the ionization wave propagated into wave source in a spiral form. The 

step and diameter of the spiral were of order λ/4 [5]. 
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Figure 1-2 Typical time-integrated image volume breakdown plasma image in (a) E plane and (b)-(d) H 

plane (camera exposure time >> pulse width)-Microwave 1 MW 110 GHz [3] 

  

Figure 1-3 Typical time-integrated image volume breakdown plasma image in (a) E plane and H plane 

(camera exposure time >> pulse width)-Microwave 300-400 kW 7 GHz [4] 

 

Figure 1-4 Typical time-integrated image volume breakdown plasma image in circular polarized wave [5] 
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1.1.2 Experimental observation 

 

Figure 1-5 Gyrotron 

As of 2002, the experiments performed at JAEA showed the formation of regular self-

organized filamentary plasma arrays structure and the ionization front propagation toward 

the microwave source along with the development of Microwave Rocket. A 1MW-class 

170GHz gyrotron was used as a microwave generator. It was developed at Japan Atomic 

Energy Agency (JAEA) for Electron Cyclotron Heating and Current Drive (ECH&CD) in 

International Thermonuclear Experimental Reactor (ITER). Its specifications are listed in 

Table 1. It has achieved 60% energy conversion efficiency from electricity with Single-stage 

Depressed Collector (SDC) as an energy recovery system. The millimeter wave was trans-
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mitted through corrugated waveguides, and the profile of the output millimeter wave beam 

was a fundamental Gaussian beam with 20.4mm radial beam waist. 

Table 1-1 Gyrotron’s specification 

Parameters Values 

Microwave Frequency 170GHz 

Output Power < 1MW 

Pulse Duration 0.1ms to 1000s 

Beam Profile Gaussian 

Beam Diameter 40mm 

Electrical Efficiency 50-60% 

 

Figure 1-6 is the schematic of the discharge experiments. Two kinds of camera were ap-

plied, one was used for capturing the open-shutter (time integrated) images in the entire 

discharge event and another one was the fast intensified camera, which can see the snapshots 

of the discharge state at a certain stage. The working gases in the experiments were mainly air 

at atmospheric pressure. 

 

 

Figure 1-6 Our experimental apparatus of plasma observation [6] 
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In our filamentary plasma, the discharge was initiated at t=0. Figure 1-7 at t=0 shows that 

the ignition occurs in atmospheric air near the focal point. 

The subsequent photographs show, the ionization front propagated in three directions. 

They are classifiable into two types: a branch on the left-hand side and two spokes on the 

right-hand side. The left branch absorbs the millimeter-wave beam power provided from the 

waveguide directly during the pulse duration, grows to a large branch and propagated into 

wave source. On the other hand, two small spokes absorb the millimeter wave reflected on the 

parabolic reflector. 

 

Figure 1-7 Photograph of ionization front propagation [6] 

Figure 1-8 shows the time-integrated image of our ionization front propagation. The right 

hand side of figure 1-8 shows the trace of ionization in the edge region. 

  

Figure 1-8 Typical image of ionization front (open exposure), Trace of ionization front (in the edge) 

-25

-20

-15

-10

-5

0
010203040

R
ad

ia
l 

P
o

si
ti

o
n

 

[m
m

] 

Axial Position [mm] 



 

     10 

We can see from these figures, our ionization front propagation is characterized by granular 

plasmoids propagating not along or perpendicular to the electric field, but obliquely to the 

field in the edge region. However around the center region, the plasma pattern is not clear. 

Hence, this leads to one of the motivations for conducting the numerical simulation. 

1.2 Objective  

The detailed understanding of the mechanisms leading to the plasma dynamics and for-

mation of complex filamentary structures after microwave breakdown at high pressure is very 

important to evaluate the potential applications of microwave plasmas. Of course, this will 

inevitably lead to the development of Microwave Rocket. But, the plasma dynamics is less 

well understood. 

In this thesis work we try to establish a numerical model for the millimeter-wave dis-

charge at high (atmospheric) pressure with clear physical concepts. The model is described in 

chapter 2. The numerical model is based on a simple quasi-neutral fluid model for the plasma 

with reference to Boeuf’s model [7]. The diffusion in this model is an effective diffusion with 

a parameter that describes the transition from free diffusion at the plasma edge to ambipolar 

diffusion inside the plasma bulk. The microwave is described with Maxwell’s equations. In 

addition, the ionization and attachment frequency in this model are effective in any beam 

power density. The numerical scheme for plasma equation and the finite-difference-time-

domain(FDTD) scheme, as well as the absorbing boundary condition (or outgoing boundary 

condition) proposed by Mur [8]. The ionization and attachment frequencies are supposed to 

depend on the reduced effective field and the plasma density variations are averaged over one 

cycle of the microwave. By this coupling and these modeling, it will be possible to reproduce 

the local filed enhancement by wave interaction and discharge in the field.  
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 Thus, as a first step, 2-dimensional numerical analysis was conducted to see if this mod-

eling can reproduce our experimental filamentary plasma. In dozens of times the size of 

plasma element scale, the steady plasma structure formation was simulated, and we conducted 

the comparison of simulation results with previous experimental results.  

Accordingly, from the simulation and the comparison, my objective is to clarify the 

mechanism of plasma formation which leads to the enhancement of efficiency of Microwave 

Rocket.   
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2. Numerical Analysis of the Millimeter-wave discharge 

2.1 Theory of modeling millimeter wave discharge [32] 

The plasma column formed in atmospheric air by a millimeter wave beam is shown in 

Figure 2-1, which shows side-view photographs of the discharge development. As this figure 

shows, the ionization front propagates towards the upstream of the millimeter-wave beam 

source. 

 

 

Figure 2-1 Photograph of Microwave Plasma, 700kW, =0.4msec 

 

In a microwave discharge, the primary ionization of the gas due to the electron motion is 

the only production mechanism that controls breakdown. Breakdown occurs when the gain in 

electron density due to the ionization of the gas becomes greater than the loss of electrons by 

diffusion, attachment to neutral molecules, and recombination with positive ions. 

In the past studies, the studies of plasma dynamics for microwave discharge were gener-

ally based on a continuity equation, and this idea was kept in almost all the following 

modeling works. The density equation is considered over time scales larger than the micro-
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wave cycle and can be considered as integrated over a period of the microwave field so that 

only diffusion (no drift tern) appears in the continuity equation as shown in the below equa-

tion. 

     2nrDnn
t

n
eiai 




  (2-1) 

where n is the electron density, νi is the ionization frequency, νa is the frequency of attach-

ment of electrons to neutral molecules, D is the electron diffusion coefficient, and rei is the 

electron-positive ion recombination coefficient. 

At the ignition stage of microwave rocket, electron density is relatively small and the 

plasma and dimension is also smaller than Debye length λD = (ε0kTe/e
2
n)

1/2
, the diffusion in 

equation  (2-1) is an electron free diffusion De. Once the electron density reaches a value such 

that the dimension of the plasma is no longer smaller than the plasma Debye length, the 

electrons no longer diffuse freely, and the equation above becomes the ambipolar diffusion 

coefficient Da in equation (2-1). 

Actually, there is no clear consensus in the literatures, on what kind of diffusion coeffi-

cient should be used in equation (2-1). Although there is unquestionable that ambipolar 

diffusion should be used in the plasma bulk when the plasma dimension is large with respect 

to the minimum Debye length, the local Debye length becomes very large at the plasma edge, 

since the plasma density goes to zero there, thus electrons should diffuse freely at the edge. 

Mayhan et al. [9], citing the work of Allis and Rose’s [10] (which was related to ambipolar to 

free transition near the walls of a plasma column) describe the diffusion transition in micro-

wave breakdown with the expression: 

 
ξ

ξ
DD es

2.71

036.01




  (2-2) 

with ξ=Λ
2
ne/ε0kTe, and Λ is the local characteristics diffusion length, which is a common 

concept in the cavity discharge. Equation (2-2) was used to describe the transition from global 
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free diffusion to global ambipolar diffusion during the growth of the electron density in a 

microwave field. Our concern, mentioned above, is that even if diffusion is ambipolar in the 

plasma bulk, it should be free at the plasma edge where the local Debye length goes to infinity. 

More recently, Nam and Verboncoeur [11] used an ambipolar diffusion coefficient in 

their simulation of microwave breakdown in the similar conditions of the MIT experiments [2, 

3], but their calculated plasma densities seemed unrealistically large. 

Maxwell’s equations in the form (2-3), (2-4) or the derived wave equation are used to de-

scribe the microwave with impact of the plasma (the plasma is coupled to the field through 

the conduction or electron current term Jc). In theoretical analyses the wave equation can be 

solved in the same time step with the plasma model. But with Maxwell’s equations (2-3) and 

(2-4) the interaction between microwave and plasma can be seen more clearly. 

 e
t

ε J
E

H 



  (2-3) 

 
t

μe





H
E  (2-4) 

As said above, the plasma model is coupled to Maxwell’s equations through the conduc-

tion current in equation (2-5) for more clear reproduction of experiments. As the ion current is 

much smaller with respect to the electron current, thus the conduction current in Maxwell’s 

equations becomes mostly the electron current. 

 uJ ene   (2-5) 

where the electron mean velocity u is obtained from the simplified electron momentum 

transfer equation given by 

   uBuE
u

m
m

e

t





 (2-6) 

with νm is the momentum transfer collision frequency between electrons and neutral molecules. 
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2.2 Modeling physics  

2.2.1 Microwave and Maxwell’s equation  

Electromagnetic waves can be classified according to the wavelengths (or frequencies). 

The band of the wavelengths ranges from as long as 1 m to as short as1 mm (or with frequen-

cies from 200 MHz to 200GHz).  

Maxwell’s equations are a set of four equations, which firstly appeared throughout J. C. 

Maxwell. Maxwell’s equations are the basis of macroscopic electromagnetic theory, which is 

the most basic and important theory for analyzing electromagnetic problems. Maxwell’s 

equations can be written in many forms. Here, we present the basic differential time domain 

form in a linear isotropic medium: 

 e
t

e J
E

H 



  (2-7) 

 

t
μ





H
E  (2-8) 

   ρε  E  (2-9) 

   0 Hμ  (2-10) 

where, ε =εrε0, μ=μrμ0, ε0and μ0 are permittivity and permeability of free space, εr and μr are 

relative values of permittivity and permeability for a specific linear isotropic medium respec-

tively, for free space and air the values of εr and μr can be considered as one. 

The first equation (2-7) is total current equations, it is Ampère’s circuital law with Max-

well’s bound current correction, the second (2-8) is Maxwell-Faraday equation derived from 

Faraday’s law of induction, (2-9) and (2-10) are Gauss’s law for electric field and magnetic 

field respectively. These four equations represent all the information needed for linear iso-

tropic mediums to completely specify the electromagnetic behavior over time as long as the 

initial state is specified and satisfies the equations. Conveniently, the field and sources can be 
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set to zero at the initial time. The two divergence equations (2-9) and (2-10) are in fact 

redundant as they are included within the curl equations and the initial conditions. 

 

2.2.2 Fluid models for plasma [32] 

Models of the discharge should be built on a microscopic description of the particles in 

the discharge. However the discharge gas in this work is atmospheric air, which is a mixture 

with complex compositions (N2, O2, CO2, Ar, etc.). It will be unnecessary work to describe 

the behaviors of every particle species in the discharge. Therefore we simply treat the ionized 

air as a mixture of one type of positive ions, electrons and neutral particles, and pursue a 

‘simple’ model to describe the evolution of the discharge plasma.  

All plasma models are founded in the Boltzmann equation. This equation results from the 

notion of a grand canonical ensemble, the Liouville equation, in statistical mechanics, and the 

assumption that the particle ensemble under consideration is sufficiently large to ensure that 

statistical fluctuations are small enough to be neglected. 

The Boltzmann equation describes the evolution of the velocity distribution function f(r, 

v, t) of a single particle species, which gives the particle number of specific species per unit 

phase volume with velocity v at the location r and at time t. The general form of the Boltz-

mann equation reads: 

 
e

v
t

f
f

m
f

t

f
















 F
v  (2-11) 

The left hands side reflects the flow of the particles in phase space, where m is the particle 

mass, F is the macroscopic forces (electro-magnetic and gravity forces) that cause the accel-

eration of the particles, while v  indicates the gradient operator in velocity space. The right 

hands side of the equation  
e

tf  denotes the effect of the microscopic, collisions and 
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radiation. Coupling with the multiple of Boltzmann equations for the different species togeth-

er with their right hands side is necessary to describe a discharge. However, this seven-

dimensional equation cannot be solved completely for any practical application at present, 

even for a single species. 

In this thesis we are interested in fluid description, which is applicable to the conditions 

which the mean free path of particles is significantly smaller than the characteristic dimension 

of the plasma. In fluid models the behaviors of various discharged particle species are de-

scribed in terms of average, macroscopic, hydrodynamic quantities such as particle density n, 

mean velocity u, and mean energy ε. All those macroscopic quantities correspond to velocity 

moments of the distribution function f (r, v, t): 

     vv dt,,rft,rn  (2-12) 

   vvvvu dt,,rf
n

1
 (2-13) 

   vvv dt,,rfv
n

mm
ε 22

22
 (2-14) 

The fluid equations, describing the evolution of the macroscopic variables, can be ob-

tained by taking different velocity moments of Boltzmann equation (2-11). 

Multiplying Boltzmann equation by some function of velocity Φ(v) and integrating over 

all velocity components gives the transport equation for the average moment quantity given 

by 

     vvv fd
n
Φ

1
Φ  (2-15) 

After some manipulating, equation (2-11) becomes the general transport equation for the 

macroscopic moment Φ , 

  
e

v
t

n

m

n
n

t

n


















 Φ
ΦΦ

Φ
Fv  (2-16) 
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where F is divergence free in velocity space, which holds true  for the electromagnetic force 

and the right hands side describes the effect collisions.  

This equation has the form of conservation equation for the density of the average or 

macroscopic quantity Φ . Now we are free to choose the velocity function Φ. As we can see, 

Φ=1 results in the particle continuity equation, 

   ,Sn
t

n





u  (2-17) 

where the source term S is the net number of charged particles created per unit time per unit 

volume due to collisions. 

Setting Φ= mv yields the momentum conservation equation, 

   ,R
m

n
m

n
t

n




 F
Puu

u 1
 (2-18) 

where P = m∫(v − u)(v − u) fdv is the pressure tensor, and R = nuνm is the momentum source 

due to momentum transfer collisions with other species, with νm the macroscopic momentum 

transfer collision frequency. 

And setting Φ= m|v|
2
/2 gives the energy conservation equation, 

 
 

  ,Snεn
t

εn
ε




FuQuPu  (2-19) 

where Q= ∫|v – u|
2
(v – u) fdv is the heat flux vector, Sε is the energy gained or lost in collisions. 

One crucial problem is that the equations obtained from (2-16) are not be able to com-

pletely solved as the n-th moment equation would introduce the (n+1)-th of macroscopic 

moment, which can be obviously see from the second term on the left hand side of the general 

transport equation (2-16), such that any finite set of moment equations would have more 

unknowns than number of equations. Therefore some additional information, limiting as-

sumption or additional physical setting is necessary to obtain the result. The first standard 

approximation for plasma is to assume that pressure tensor is diagonal and isotropic: 

 IP enT  (2-20 ) 
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Where enT=   vuv fd
m 2

3
 is the scalar pressure, T is the temperature in unit of eV, and 

I is the identity matrix. By substituting equations (2-17) and (2-20), the momentum conserva-

tion equation (2-18) becomes 

     u
F

uu
u

mν
m

nT
mn

e

t





 (2-21) 

For high collision condition, i.e., discharges at high pressure, the charged particle mo-

mentum equation can be further simplified by removing the inertia term and the magnetic 

term such that they are included in the force term on the right hand side. With respect to the 

collision term, assuming that collisions take place on much shorter time and smaller length 

scale than macroscopic field, pressure variations and cyclotron motion. With these assump-

tions the momentum conservation equation turns to be, 

    DnnμnT
νm

e
n

νm

q
n

mm

 EEuΓ  (2-22) 

where q is the particle charge. 

This is the so-called drift-diffusion equation, and the two transport coefficients of mobili-

ty and diffusion: 

 ,νmqμ m  (2-23) 

 .νm/eTD m  (2-24) 

These will be different for each particle species, and these two coefficients are connected 

by the Einstein relation: 

 .T
q

e

μ

D
  (2-25) 

By these definitions the continuity equation can be rewritten in a drift-diffusion form 

    .SDnnμ
t

n





E  (2-26) 
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One of the main questions to close the fluid models is how to describe the source term in 

the equation, i.e., ionization, attachment and recombination. The most popular closure for 

collision condition is the local field approximation, assuming local equilibrium between 

electric acceleration, which are the energy gain from the electric field, the collision momen-

tum and the energy losses, so that the ionization frequencies would depend only on the local 

electric field E, or rather, the reduced electric field E/N (or E/p) since the collision frequency 

is proportional to the gas density N (or pressure). Using the local field approximation the 

energy equation is not necessary anymore [15]. If we consider the ratio of diffusion coeffi-

cient and mobility to be constant, the diffusion coefficient in the equation above can be put 

out of ∇, 

   .SnDnμ
t

n





E  (2-27) 

For charged particle in high frequency microwave field, Maxwell’s and plasma equations 

are coupled with the conduction current density in the plasma, which generally reduces to the 

electron current density. The mean electron velocity for the electron current in high frequency 

fields is generally obtained from another approximation of the momentum equation (2-21). 

Assuming that the distance travelled over one field period is small with respect to the length 

scale of field and pressure variation, so all gradients can be neglected: 

   .uBuE
u

m
m

q

t





 (2-28) 

This simplified form of the electron momentum equation is appropriate in the calculation 

of the electron current in Maxwell’s equations in the condition that the time scale is much 

shorter than the microwave period. Also, equation (2-28) is an expression for conditions 

without magnetic field. If an external magnetic field is present and its effect is not negligible 

the corresponding magnetic force must be added in the right hands side of equation (2-28). 

The magnetic field of the wave itself must also be included in some specific cases and leads to 
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the so-called ponder motive effect. Moreover, in our cases, the simulation domain is relatively 

large (cm-scale), so we take into account the magnetic field. 

2.2.3 Introduction of quasineutral assumption and effective diffusion   [32] 

In microwave discharge plasma, the electric field in equation (2-18) should be the sum of 

the microwave field and a DC or slowly varying space charge field. The wave field plays an 

essential role in electron heating and ionization, but its contribution to particle transport 

averaged over one wave cycle is negligible, so only space charge field contributes to charged 

particle transport, therefore equation (2-27) can be rewritten as, 

   SnDnμ
t

n
sp 




E  (2-29) 

where the space charge field is noted with Esp.  

As mentioned before, we simply treat the ionized air in our problem as a mixture of posi-

tive ions, electrons and neutral particles. Two equations therefore are needed to describe the 

discharge plasma, 

   ,SnDnμ
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n
eespee
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E  (2-30) 

   .SnDnμ
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iispii

i 



E  (2-31) 

In microwave field with the absence of DC field, quasineutrality (ne = ni = n) is often a 

good approximation. With the quasineutral approximation, we can write Γi =Γe =Γ, and can 

express the space charge (ambipolar) field as: 
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So the common flux is then given by 
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Thus, equations (2-30) and (2-31) can be represented in a common form 
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   SnD
t

n
a 




 (2-34) 

which is known as the ambipolar diffusion coefficient. 

In most conditions, we can take μe»μi and Di is negligible with respect to De, so the mag-

nitude of Da can be estimated with 

 e

i

e

a D
μ

μ
D   (2-35) 

The ambipolar diffusion coefficient above is obtained with the quasineutral assumption, 

which is valid in the bulk of static plasma, but for the plasma in open space even if the plasma 

dimension is much larger than the Debye length, the plasma density at the edge goes to zero 

and, therefore, there should be a small region in the edge where the electrons freely diffuse 

instead of ambipolarly. This question has been considered somewhat empirically in the 

literature. In our work, we use Boeuf et al’s [7] more theoretical modeling for this coefficient. 

The way of modeling is shown below. 

Since free diffusion prevails only in the front while the plasma bulk is controlled by am-

bipolar diffusion, we need a parameter to describe this transition. We define below an 

effective diffusion coefficient, deduced from the current continuity equation in the drift 

diffusion approximation, to describe this transition. We start the derivation by considering the 

‘more exact’ description for the ionized air without the quasineutral assumption, i.e., equa-

tions (2-30) and (2-31). The space charge electric field Esp in the equations is related to the 

electric potential by Esp = Φ , and the electric potential can be obtained from Poisson’s 

equation: 

  .nn
ε

e
ei 

0

2Φ  (2-36) 

Subtracting equation (2-30) from (2-31) yields: 
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Eliminating densities in the first term with Poisson’s equation and using the quasineutral 

approximation, we obtain 
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μμ
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t
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


E

E
 (2-38) 

where τm =ε0/en(μi+μe) is the dielectric (or Maxwell) relaxation time. With respect to the 

ambipolar field (2-34) there is an extra time partial differential term on the left hands side of 

equation (2-38), and this is what we will play with. 

The first term at the left hands side of equation (2-38) can be replaced by τm ionU spE , 

where we use 
ionU  as the front propagates at the velocity 

ionU ei Dν2 . The velocity 
ionU

ei Dν2  can be seen in the some references [16, 17] as plasma streamer front propagation 

speed.  spE  in the front can be approximated with Esp/2L, where L ie ν/D is the charac-

teristic length of the front. So, we get τm ionU spmisp τν EE  , which means the first term of 

equation (2-38) is of the order of α=νiτm with respect to second term. 

Thus, equation (2-38) can be approximated with: 
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E  (2-39) 

Using this space charge field expression, the electron flux turn to be (the second term of 

equation (2-30)) 
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with an effective diffusion coefficient 

 mi

ae

eff τνα,
α

DDα
D 




 with 

1
 (2-41) 

where we also used the assumption of μi«μe, Di « Da. 



 

     24 

We can see from the above that the use of equation (2-34) has validity with the effective 

diffusion coefficient (2-40). Finally, we get the below equation, 

   SnD
t

n
eff 




 (2-42) 

This model equation (2-40) is not mathematically exact but gives the good limits and a 

correct estimation of the parameter a controlling the crossover from free diffusion in the front 

(α »1or >1) to ambipolar diffusion in the bulk for electrons. 
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2.3 Numerical method 

The numerical method is a way of discrete equations for the physical model, in which the 

partial differential terms are replaced by finite-differences or some other discrete schemes. 

Choosing an appropriate scheme is very important during the numerical simulations. In our 

works, we used Bouef’s numerical scheme [7, 18] as a guide for our scheme. 

 

2.3.1 FDTD (Finite Difference Time Domain) scheme for electromagnetic field 

The FDTD method, first proposed by Yee in 1966 [19], is the most popular numerical 

method for the solution of electromagnetic problems. In the FDTD method the electric field 

(E) is defined on a grid that is offset both spatially and temporally from the magnetic field (H) 

grid. The fields at the next time step are deduced from the previous fields using a simple leap 

frog scheme. 

 

2.3.1.1 FDTD Algorithm 

In FDTD method, equations (2-3) and (2-4) are replaced by six coupled scalar equations 

in the3D rectangular coordinate system (x, y, z): 
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Figure 2-2 Positions of field components in a unit cell of the FDTD [19] 

 

 

Figure 2-3 Positions of time components in a unit cell of the FDTD 
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Figure 2-3 is the illustration of Yee’s FDTD lattice, this algorithm centers E and H com-

ponents in 3D space so that every E component is surrounded by four circulating H 

components, and every H component is also surrounded by four circulating E components ; in 

time the E and H are centered in a leapfrog arrangement. Using the finite-difference notation 

and Yee’s lattice, scalar Maxwell’s equations (2-43) and (2-44), can be numerically approxi-

mated by 
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As shown in (2-45) and (2-46) Yee’s algorithm is second order accurate in both space 

and time. The fundamental constraint for Yee’s cell is that the size must be much less than the 

wavelength for which accurate results are desired. And an often quoted constraint is “10 cells 

per wavelength”[20], meaning that the size of the cells should be λ/10 or less, which is much 

smaller than the Nyquist sampling limit ( Δx≤λ/2 ). So it is reasonable to say that a cell size of 

λ/50 can give a desired accuracy in most conditions. For the free space computational stability 

of equations (2-45) and (2-46) requires the courant condition as shown in below.  
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c0 = (ε0μ0)
-1/2 

denotes the speed of light in free space, and if Δs = Δx = Δy = Δz, the stabil-

ity condition simplifies to Δt ≤ Δs/c0 3 . 

For 2D problems, in which assuming source and materials have a translation symmetry, 

say, z-direction, the electromagnetic field quantities will be independent of the z coordinate, 

thus z derivation terms in Maxwell’s equations become zero ( 0




z
). Then the full set of 

Maxwell’s scalar equations in rectangular coordinates given by (2-43) and (2-44) reduces to 
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For singular electromagnetic modes Maxwell’s scalar equations can be further simplified, 

such as for transverse magnetic (TM) mode, E field only has the component in wave vector 

(k) direction and H field has components only in the transverse directions, and the finite 

difference scheme, given by (2-45) and (2-46) also can be simplified respectively. As in 2D 

problem only a single plane in the lattice, seen in Figure 2-3, is used and the stability condi-

tion turns to be Δt ≤ Δs/c0 2 , when Δs = Δx = Δy. 

The Maxwell’s equations (2-3) and (2-4) can be discretized to obtain a total field FDTD 

scheme as (2-45) and (2-46). Alternately the fields can be expressed separately as [20] 

 ,sit EEEE   (2-49) 

 ,sit HHHH   (2-50) 

with subscripts t, i, and s for the total, incident, and scattered fields. 
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For a microwave discharge phenomenon, the separation expression allows further insight 

into the interaction process because microwave incident field can be easily written in a simple 

formula. 

By the separate expression (2-49) and (2-50), Maxwell’s equations can be rewritten as 

  
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As the incident and scattered fields must satisfy the Maxwell’s equation independently in 

linear materials, so the incident fields traversing the media satisfy free space conditions 
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Subtracting the incident fields above from (2-53) and (2-54), we can obtain the equations 

governing the scattered fields 
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As the incident field can be specified analytically, we just need to approximate (2-55) and (2-

56) with the numerical scheme of (2-45) and (2-46). 

2.3.1.2 Absorbing conditions [8] 

For problems in free space, it is impossible to set the simulation domain to be infinity or 

big enough to neglect the boundary effects, an Absorbing Boundary Condition (ABC) should 

be used to truncate the computational domain since the tangential components of the electric 

field along the outer boundary of the computational domain cannot be updated using the basic 

Yee’s algorithm. The most popular two kinds of ABCs are those that derived from differential 
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equations and those that employ a material absorber [21, 22]. Differential-based ABCs are 

generally obtained by factoring the wave equation, and by allowing a solution which permits 

only outgoing waves, while the material-based ABCs employ an absorbing medium to 

dampen the propagating fields. 

In this work, we use a differential-based ABC, which was proposed by G. Mur, to trun-

cate the computational domain. 

Eliminating H or E from Maxwell’s equations for free space, we obtain 
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where W standing for E or H. Thus, 
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Above equation’s left term indicates the wave is traveling in the direction of decreasing x if 

x=0 is boundary as shown in Figure 2-5.  

 

 

Figure 2-4 Plane wave incidence to absorbing boundary  

In x=0, we formulate the equation (2-58) on the basis of FDTD. Then after some steps, the 

first order Mur’s boundary condition is obtained as (2-59): 
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In a similar way, the boundary condition approximations for the boundary plane of x = xd 

can be obtained, and also for the other boundary planes. 

2.3.2 Formulation of the quasineutral plasma equation 

The quasineutral plasma equation (2-42) can be solved with a explicit scheme for the dif-

fusion and ionization terms, in order to impose the positivity of the solution the loss terms are 

treated implicitly or semi-implicitly. 
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where Δt and Δsp, Δxp, Δyp, Δzp note the time and space step for plasma. 

In order to ensure the stability of the numerical scheme for the quasineutral plasma equa-

tion, the time step (Δtp) must satisfy the CFL condition: 
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 max,
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3 eff
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D

s
t
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  (2-61) 

where Δsp is the fluid mesh size and Deff,max corresponds to maximum value of effective 

diffusion coefficient. However, we don’t have to care about the condition because the time 

step of FDTD is much shorter than that of fluid equation. 

In the problem of microwave breakdown at high pressure, the space gradient of plasma 

density can be extremely large, and we will see in the following chapters that the plasma 

equation (2-42) asks finer grid spacing than the FDTD grid for the Maxwell’s equations. The 

density gradient can be estimated by characteristic length iνD . For our condition (E0 ~ a 

few hundred kV/m, p~760 torr), the diffusion coefficient is on the order of 10
-3

 m
2
s

-1
 and the 

ionization frequency in the front is on the order of a few 10
7
 s

-1
, so that L of the front is in the 
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10 micrometer range, which is on the order of a few hundredths of the wavelength (1.73 mm 

for 170 GHz). 

An efficient way to deal with the requirement of the finer grid to describe the sharp densi-

ty gradients would be to apply an adaptive mesh refinement (AMR) scheme, symmetric 

boundary condition at center axis and an unequally-spaced mesh scheme. 

First, about AMR scheme, it adapts the distribution of grids according to the density gra-

dients. But it is very complex to apply the automatic AMR in our numerical model, and we 

found that using a fixed grid fine enough to resolve the density gradients led to reasonable 

computation times. 

For example, we consider a double grid method, using different grid size for FDTD and 

plasma density. The ratio between two grid sizes is defined by 

 .ssm pΔΔ  (2-62) 

where Δs is the grid spacing for the Maxwell equations (FDTD scheme) and Δsp is for the 

fluid equation of the density. 

Solutions of the quasineutral plasma equation need the transport coefficients, i.e., ioniza-

tion frequency νi and attachment frequency νa, which are functions of the electric field. Since 

the electric field is available only at the coarser FDTD grid points, an interpolation is needed 

to obtain the electric field on the fine grid in order to estimate the ionization and attachment 

frequencies in the quasineutral plasma equation. For solving the equations on the fine grid, we 

will employ a simple bilinear interpolation scheme as shown in Figure 2-5 and the bilinear 

interpolation formula (2-62). 
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Figure 2-5 Overlapping coarse FDTD and fine density grid. 

The values of the electric fields on the small pots can be obtained by the bilinear interpo-

lation formula 
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 (2-63) 

For reducing calculation cost, we introduce a symmetric boundary condition on the center 

plane. We set the condition x=0, z=0 plane. (Wave vector k is on the y axis.) 

 

Figure 2-6 Schematic of calculation domain 

Moreover, we introduce an unequally-spaced mesh scheme to solve much larger scale 

calculation domain. Figure 2-7 shows the schematic of the way of component’s interpolation 

in the unequally-spaced mesh.  
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Figure 2-7 Non-uniform mesh 

We use Jiang’s modeling [23]. This modeling presents the FDTD method by using different 

mesh sizes of large ratio more than two. In this modeling, as shown in Figure 2-7, we have to 

interpolate the components on the boundary between different meshes (red axis in Figure 2-7).  

2.3.3 Coupling Maxwell’s equations with plasma model 

As we discussed in the model section, the plasma due to the microwave discharge in at-

mospheric pressure can be treated as quasineutral, and equation (2-42) can give a good 

description for the evolution of the discharge plasma. In this section we describe the way how 

Maxwell’s equations are numerically coupled with the plasma equations. 

In gas discharge with local field approximation the apparent ionization frequency νi (in-

cluding the attachment effect) depends on the local electric field only, or rather, the local 

reduced effective electric field. Also, the electron –ion recombination coefficient is supposed 

to be the function of the local electric field. 

   ,nrnνnD
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n
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The conduction current Jc is approximated by the electron conduction current (the ion 

currents neglected because of the much smaller ion mobility): 

   ,enetc uEJ   (2-67) 

where u is the mean velocity of electrons, which can be obtain form the approximate momen-

tum equation, 

   ,uBuE
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e

t
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
 (2-68) 

From equations (2-64) -(2-68), the quasineutral plasma model ‘sees’ Maxwell’s equations 

through the conductive current, which depends both on the plasma density and the total 

electric field, and Maxwell’s equations feedback with ionization (and attachment) frequency, 

which depends on the local reduced electric field under local field approximation. 

The FDTD scheme in section is an explicit second order accurate time-domain method 

with centered finite differences. When a direct integration approximation is used for the 

electron momentum equation (2-68), writing [24, 25] 
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In the case of taking into account magnetic field effect, equation (2-69) can be rewritten as, 
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a new leapfrog approximation can be made for equation (2-65) to improve the accuracy, 
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where ωp means the plasma angular frequency and σ is the electric conductivity of a medium. 

2.3.4 Source term modeling 

Now the remaining question is how the microwave field determines the ionization fre-

quency. Generally, the ionization frequency can be found either by solving the kinetic 

equation for electron energy distribution or experimentally. The local field approximation 

mentioned above seems to be a reasonable approximation for the space dependence of the 

transport coefficients and collision frequencies. This approximation is made in most models 

of atmospheric discharges (e.g. DC steamer models). Under microwave conditions, by the 

dependence on the wave frequency and collision frequency, electron transport may or may not 

be in equilibrium with the local field at a given time. Thus we have to conduct modification of 

the modeling. 

A usual approximation [26] is used when electron transport can be considered on time 

scales in the order of the field period. This gives an assumption that the electron transport 

coefficients and collision frequencies depend on the local value of an effective DC field that 

would give the same electron energy gain per unit-time as the microwave field, when this 

energy gain is integrated over one cycle. The average time for energy gain per unit-time is 

proportional to the average of the product of the electric field multiplied with the electron 

mean velocity. The calculation formula is written as follows vE  e  

The mean electron velocity is solution of the momentum equation (2-70) for a microwave 

field E = E0 sinωt, where E0 is the amplitude, and can be written as 
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so the mean energy gain per unit time that the field performs on an electron is 

  
,

2 22

2

0

2

me

m

f νωm

νEe
e


 vE  (2-74) 

while mean energy gain in dc field is 

 .
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From (2-76) and (2-77), we can define an effective field, 

 .
1 22

m

rms

eff

νω

E
E


  (2-76) 

where Erms is the local root mean square field, which can be obtained from the FDTD over 

one cycle. So for high frequency conditions the transport coefficients and ionization frequen-

cy will be taken as a function of the local effective field defined by equation (2-76) using the 

same functional dependence as under a DC field. 

One can easily find in the literature values of the ionization frequency in air as a function 

of the reduced electric field in the form of analytical expressions fitted from experiments or 

numerical simulations. However the range which experimental or simulation data exist is 

confined almost exclusively to indicated region I in Figure 2-8. Because it is not possible to 

ignite a self-sustained discharge without any initiated setting such as a metal rod or a prelimi-

nary discharge introduced by laser in II or III region, experiments under that conditions had 

not been conducted so much. 
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Figure 2-8 Classification of microwave discharge form  [2, 27] 

(Critical filed means “Paschen curve” in microwave range) 
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Therefore, we first tried to obtain the ionization frequency or attachment frequency from 

solving the kinetic equation. However this approach cannot estimate the ionization frequency 

or attachment frequency. This is because the results from the approach leads to the wrong 

value as the order of them are not correctly estimated. Hence, we decided to use the value of 

the attachment frequency and recombination coefficient according to[28]. About the ioniza-

tion frequency, for the time being, we use an empirical fitting expression for the past 

experimental data.  

The expression for the ionization frequency is typically of the form (2-77). 
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Where p is ambient pressure and Ec is the critical field. β is the fitting parameter, and 5.3 is 

used in most of papers [29]. 

νa is given by [28]: 

  .25.07.4101552.1 7 NEανa   (2-78) 

α is the fitting parameter. Usually α = 1, so we set it that value. Also, N is concentration of 

molecules in m
-3

, and Ec is obtained from our experiments. At atmospheric pressure, Ec is 

almost 3.1kV/cm.  

Recombination coefficient is given by [28]: 

   .m30010 132114   sTγr eei  (2-79) 

Also, γ is the fitting parameter. Usually γ= 0~1 have been used. We use γ= 1 as simulation 

condition. 
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3. Results and discussion 

Recent simulations by Boeuf et al [7, 18] were reproduced at MIT [2, 3, 30]. In their 

work, the effective diffusion coefficient modeling was justified by comparing the simulation 

results with the ‘more exact’ drift diffusion Poisson model. Moreover, they also showed the 

influence of recombination coefficient and pressure and their 2D simulations in both (E, k) 

plane and (H, k) showed a good agreement in self-organized pattern formation comparing 

with the experimental result. The elongation of plasma filament formed in the standing wave 

at the intersection of two incident waves with opposed wave vectors and the front elongation 

to E field was successfully reproduced. 

In our case we conducted 2D simulations in both (E, k) plane and (H, k) plane with the 

presence of many plasmoids in a cm-scale simulation domain like what we have done in the 

experiment. As a result, we found the tendency of the filament formation, and then we com-

pared the simulation results of filamentary patterned and ionization front velocity with the 

experimental results. . Finally we discussed the mechanism of the ionization front propagation. 

3.1 Calculation conditions 

 

Figure 3-1 Schematic of the simulation domain 
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In this work, we performed the 2D simulation in two cases.  In first case, the simulation 

plane (x, y) contains H and the wave vector k (parallel to the x direction) while E is perpen-

dicular to the plane. This case corresponds to the x and z direction as the wave direction and 

polarized plane respectively.  In Boeuf’s [7]  and my cases, the filaments were perpendicular 

to the simulation plane and the stretching of the filaments did not appear in the simulation. In 

contrary, E and k were considered as the simulation domain while H is perpendicular instead 

for the second case. This case corresponds to a y-polarized and x-directed wave as shown in 

Figure 3-1. The filaments are in the simulation domain and the model showed the stretching 

of filament in the direction of the field as well as the propagation of the plasma toward the 

source which is similar to Boeuf et al [7]. 

The microwave frequency is 170 GHz (λ ~1.73 mm). The simulation domain is 2.5~ × 

2.5~ λ, i.e., about 4.3~ × 4.3~ mm. In the experiment, the microwave beam was focused with 

a reflector which created 2 region of interested that are the near focal region and the almost 

steady region (region where the wave moves toward the source). In our simulation only the 

region where the ionization front propagation is almost steady was solved. In addition, the 

incident millimeter-wave beam did not set as the plane wave but the Gaussian wave. The 

equation is given by:  

  
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where 

r is the radial distance from the center axis of the beam, 

x is the center axis, i is the imaginary unit, 

k=2π/λ is the wave number, E0 is the amplitude at x at w(x)= w0, 

w(x) is the radius at which the field amplitude and intensity drop to 1/e and 1/e
2
 of their 

axial values, respectively, 
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w0 is the waist size (experimental condition : 2 cm), 

R(x) is the radius of curvature of the beam's wavefronts, and 

ζ(x) is the Gouy phase shift, an extra contribution to the phase that is seen in Gaussian 

beams. 

Additionally, the field has a time dependence factor e
iωt 

which was used to suppress the above 

expression (3-1). The beam in the simulation is shown in Figure 3-2 

 

Figure 3-2 Incident Gaussian wave in the simulation 

The initial electron density with a maximum of ~10
22

 m
−3

 was assumed in every simula-

tion as shown in Figure 3-3. Different positions of the electron density have different value 

such that the initial plasma arrays changes with the simulations. 

 

Figure 3-3 Initial electron density profile : ne [m
-3

] 
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3.2 Plasma formation in the domain to which E vector is perpendicular  

According to the experimental conditions, we consider now a 170 GHz, 0.87 MV/m (0.2 

MW/cm
2
 in power density) wave at 760 Torr propagating from left to right along the x axis. 

When the E field is perpendicular to the simulation plane (x, y), i.e., (H, k) plane, the induced 

electron current in the plasma oscillates in the direction perpendicular to (x, y) and thus, the 

elongation of the filaments cannot be described in this configuration. This was also confirmed 

in Bueuf et al’s simulation [7, 18]. We will see in this section that the formation of an array of 

filaments can be described in the case of none single plasmoid as shown in Figure 3-4. So, we 

set the initial electron density as in Figure 3-4. 

 

Figure 3-4 Initial electron density profile :  ne [m
-3

] 

Moreover, in this simulation we set α=1 and γ=1 in the source term modeling (2-79)-(2-

81).  

 

 

The time evolution of the plasma (electron) density is shown in Figure 3-5. The ioniza-

tion front shape is bow-like and almost agrees with our experiments. 
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(a) t=40 nsec 

: ne [m
-3

] 

 

(b) t=70 nsec 

: ne [m
-3

] 

 

(c) t=100 nsec 

: ne [m
-3

] 

 

Figure 3-5 Time evolution of electron density 
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Figure 3-6 Plasma density distribution (left) : ne [m
-3

], 

 field intensity distribution (right) at a time-step : Erms [V/m] 

We can see from Figure 3-5 that the ionization front propagated into wave source. More-

over, from figure 3-6, the high intensity field was formed obliquely. And it is made of 

interference of the indent wave and the reflection by the interaction of the incident wave and 

plasmoids. Then in the high intensity region, new plasmoids were generated.  

Here, we discuss the formation of the high intensity region in greater detail. Figure 3-7 

shows the high intensity region at around center (y~0) region and the edge (y~1 cm) region. 

(a) (b) 

   

Figure 3-7  High intensity region (Rainbow scale) (a) :around center, (b) : in the edge,  

grayscale shows electron density profile. 

Right figure : typical field intensity distribution 
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In the center region, a plasmoid was generated between the plasmoids as shown in figure 3-

7(a). Since in this region the electron density and the incident wave intensity do not vary with 

the distance from the center y~0. So, if two plasmoids was set such in figure 3-7(a), they 

caused comparable wave reflection from each plasmoid and then the high intensity field was 

generated in the position between the near plasmoids, resulting in the generation of plasma in 

the field. On the other hand, in the outer region (near the edge of the wave) plasma will be 

generated in the front of a plasmoid as shown in figure 3-7(b). In this region, field intensity 

became weaker toward away from the center axis because of Gaussian profile. This caused 

non-equivalent reflection. Thus instead of in between the plasmoids plasma was generated in 

front of the plasmoid itself. This difference leads to the different in propagation mechanism 

between the center region and the edge region. In the edge region, the ionization front propa-

gated obliquely as described in Figure 3-8. This tendency agrees with our experiments. 

 
 

Figure 3-8 Left : Time integrated image of electron density, 

Right : The trace of ionization front in experiments 

However, the front velocity is much faster than our experiments. This is because our sim-

ulation scheme solved only one component in terms of electric field. Moreover ionization 

modeling is also attributed to this. 
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3.3 Plasma formation in the domain to which H vector is perpendicular   

In this case we considered an incident 170 GHz plane wave with amplitude of 0.87 

MV/m (0.2 MW/cm
2
 in power density) at the atmospheric pressure (760 torr) propagating 

from left to right along x-axis. This condition is the same as section 3.2 condition. When the 

H field is perpendicular to the simulation plane (x, y), i.e., (E, k) plane, the induced electron 

current in the plasma oscillates in the direction parallel to (x, y) and thus, the elongation of the 

filaments can be described in this configuration. This was also confirmed by Boeuf et al’s 

simulations [7, 18]. Furthermore, their simulations agreed with Hidaka’s experiments (single 

plasmoid discharge) [2, 3].  Here, we conducted the simulations in the case of plasmoids just 

like the previous section. 

In this simulation, we set α=1 and γ=1 in the source term modeling (2-79)-(2-81) as with 

the previous case. 

 

Figure 3-9 Initial electron density :  ne [m
-3

] 

The time evolution of the plasma (electron) density is shown in Figure 3-9. The ioniza-

tion front propagated discretely in the y axis. This hasn’t been found in our experiments.  
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t=140 nsec 

: ne [m
-3

] 

 

t=250 nsec 

: ne [m
-3

] 

 

t=390 nsec 

: ne [m
-3

] 

 

Figure 3-10 Time evolution of electron density 
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Figure 3-11 Plasma density distribution (left) : ne [m
-3

],  

field intensity distribution (right) at a time-step : Erms [V/m] 

We can see from Figure 3-10, ionization front itself propagated into the wave source. 

Moreover, from figure 3-10, the high intensity field was formed obliquely in a whole. How-

ever, the ionization front did not propagate obliquely but parallel with x axis. This is because 

high intensity field near plasmoids was formed in the front of a plasmoid shown in figure 3-12. 

  

Figure 3-12  High intensity region (Rainbow scale), grayscale shows electron density profile. 

Right figure (white circle shows left figure): typical field intensity distribution 

This interaction that was formed the filed in the front of a plasmoid was caused by plasma 

elongation to the E field. Thus, the time of interaction between the incident wave and the 

reflection wave was lengthened by this elongation. .Accordingly, it can be considered that 

high intensity field was dragged from the original (oblique) position to the front of a plasmoid. 
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Similarly, the ionization front velocity was higher than the experimental value because of 

the same reason as already mentioned in the previous case.  
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3.4 The velocity and structure of the plasma front 

3.4.1 Modifying of νi and νa for Tokyo University experiments 

As mentioned above, the time averaged velocity of the ionization front was found to be 

around 10 km/s in (E, k) plane and much faster in (H, k) plane, which it is obviously that 

there is a huge difference compare to the experimental value. As the ionization front velocity 

in the experiment at atmospheric pressure was about 100m/sec~1 km/sec as shown in in 

Figure 3-13.  

This is because the empirical equation of the ionization and attachment frequency (2-79), 

(2-80) was overestimated on the order of themselves. When the expression was used, the front 

velocity was estimated to be around 6 km/sec from the “theoretical” speed ieDU 2ion   [16, 

17]. However, we don’t actually have the experimental data or any calculation of the ioniza-

tion or the attachment coefficients in our bean’s power range. Since the past studies did not 

include the power range we used because of under-critical field but on the other hand the 

source term is very important for reproducing our experiments. 

Then, in turn, we deduced the ionization and attachment frequency from ieνDU 2ion   to 

suit our experimental velocity in Figure3-13 (fitting). Then we used four following expres-

sions (3-2)-(3-5) and also we did the fitting. The expressions are given by: 
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The first expression can be taken from the empirical expression. The second expression is 

taken from Kossyi et al‘s [28] calculation fitting. Diffusion coefficient is deduced from the 

Einstein’s relations. Electron temperature is as reference with Woo et al’s [31] relation. 

At first, we selected the diffusion coefficient from (3-4) and (3-5) equations in our power 

range. Next, we assumed the critical field Ecr.from our experiments. Finally, we decided to 

choose the ionization and attachment frequency from (3-2) and (3-3) equations in order to 

reproduce experimental ionization front velocity’s characteristics as shown in Figure 3-13. 

Thus, it is possible to reproduce the plasma pattern in our experimental range (low power 

density). In the new expressions, we set α=0.008, β=4.1in (3-2)-(3-3).  

10
2

10
3

10
4

0 0.1 1 10

Tokyo U exp.
MIT exp.
fitting

U
io

n
 [

m
/s

]

S [MW/cm
2
]

 

Figure 3-13 Ionization front velocity as function of beam’s peak power density at 760 Torr [2] 

As we mentioned before, the ionization front velocity is different in (E, k) and (H, k) 

plane. This is because our simulation scheme has solved only one component of an electric 

field in (H, k) plane and two components in (E, k) plane. Hence, it is possible to say that the 
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value of front velocity in (E, k) plane is closer to the accurate value. As a result, we conducted 

the simulation in (E, k) plane for the velocity’s comparison. 
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3.4.2 Ionization front propagation in our experimental power region  

First, we simulated the ionization front propagation in our experimental conditions. Fig-

ure 3-14 shows electron density distribution in (E, k) plane at some time step. We also 

showed the time development of the ionization front in the surrounded region of Figure 3-14 

with white dashed line.  

 

Figure 3-14 Ionization front at some time step 
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ne [m
-3

] :   

t=1200 nsec 

 

 

ne [m
-3

] :   

t=1600 nsec 

 

 

ne [m
-3

] :   

t=1900 nsec 

 

 

Figure 3-15 Time-development of ionization front in our experimental conditions 
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3.4.3 Ionization front propagation in MIT experimental power region  

In addition, we simulated the ionization front propagation in MIT experimental condi-

tions. Figure 3-16 shows electron density distribution in (E, k) plane at some time step. 

Similarly, we then showed the time development of the ionization front in the surrounded 

region of Figure 3-16with white dashed line.  

 

Figure 3-16 Ionization front at some time step 
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ne [m
-3

] :   

t= 67 nsec 

 

 

ne [m
-3

] :   

t=105 nsec 

 

 

ne [m
-3

] :   

t=132 nsec 

 

 

Figure 3-17Time-development of ionization front in MIT experimental conditions 
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3.4.4 Discussion  

We can see from these figures that the plasma front propagated into the wave source in 

both cases, but the plasma pattern is obviously different as shown in Figure 3-18. In high 

power density region, we can see from the right hand side of Figure 3-18 that the structure is 

characterized by the streamer and discrete. On the other hand, in the left hand side, the 

structure is characterized by non-streamer and non-discrete. 

  

Figure 3-18 Ionization front structure in low power (left) and high power (right) 

About the front velocity in the simulations, we obtain some agreements with the experiments. 

The comparison is shown in Figure 3-19.  
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Figure 3-19 Ionization front velocity in simulations and experiments [2] 
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In case of plasma pattern, especially streamer, a past study [5] said that there is a bounda-

ry of beam power density which transits into streamer propagation. In Figure 3-19 (transverse 

line), the boundary is about 1~1.2 MW/cm
2
 at atmospheric pressure. According to the study, 

if the beam power density is over the boundary value, the streamer structure can be seen. 

However, if the power density is below the boundary value, the streamer structure doesn’t 

show up. This experimental tendency agrees with our simulation as shown in figure 3-18. 

This characteristic can be discussed by the relation between the diffusion coefficient and the 

ionization frequency. This can be explained by the “theoretical” speed ieνDU 2ion  . The 

diffusion coefficient does not almost change by beam power density, but the ionization 

frequency is drastically changing. So, in the case of low power range, it is possible to deduce 

the effect of the electron diffusion such that it becomes greater than in the case of high power 

condition. It can be considered that this makes the plasma pattern changes.   

As a result, in (E, k) plane, we can suggest that there is a boundary which causes the fil-

amentary to form. 
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4. Conclusions 

The formation of a self-organized plasma array and its propagation toward to the source 

during high pressure air breakdown by a linear polarization 170 Gaussian wave was investi-

gated using a 2D plasma-Maxwell’s model in this thesis. The comparison between the 

simulation results and the experimental results at JAEA (Japan Atomic Energy Agency) was 

conducted to investigate the pattern structures and plasma front propagation velocities.  

Followings are the conclusion     

 

1. According to the simulation results, we can see that either in (H, k) or (E, k) domain, the 

ionization front propagated toward the wave source. 

2. In (H, k) domain, the ionization front propagated obliquely in the region far from the center 

region of the Gaussian wave profile.    

3. In (E, k) domain, the ionization front propagated in the direction of the wave itself i.e. 

parallel to the k direction. This phenomenon occurred due to the front elongation to the E field 

4. In case of the original ionization term, we found that the front velocity is comparatively 

faster than the experimental value. In contrast, if we used the modified ionization term, the 

value from simulation agreed with the value from the experiment. Moreover, this agreement 

includes the plasma filamentary structure as it became blob-like which is similar to the 

experimental result. 
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