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1. INTRODUCTION 
 
1.1 Background 
 
In recent years, information regarding the flow of people is becoming increasingly 
available, and considered valuable in various situations. Not only is such data essential in 
business fields such as marketing and public services, but it can also be used in the event 
of disasters. For example, the massive earthquake that occurred in eastern Japan on 
March 11th, 2011, disrupted transportation networks in the Tokyo Metropolitan Area and 
left millions of commuters stranded, drawing further attention to the importance of 
understanding daily travel patterns. 
 
Until recently, such data was obtained primarily through household travel diary surveys, 
which are expensive and time-consuming to distribute, have filled out, collect, convert to 
data, and aggregate. They are also prone to human errors; for example, respondents may 
unintentionally forget to record a less significant trip, or simplify their departure or arrival 
times by rounding to the nearest hour or half hour. Most importantly, survey data provide 
information for a limited time period, such as the travel patterns of a single day. 
 
On the other hand, the spread of mobile phones has made it possible to accumulate Global 
Positioning System (GPS) data in large scales (up to hundreds of thousands of people) for 
long periods of time (from several months to several years). Although data quality may 
not be optimal, such information is already proving quite useful in estimating population 
distribution. For example, online “congestion maps” are provided by ZENRIN DataCom 
Co., Ltd. (Figure 1-1). Fragmentary GPS data provided by mobile phone users are used to 
estimate and map the number of people in a certain area at any given time of a day. Grid 
cells of varying sizes (depending on how closely the user zooms in on the online map) are 
shaded according to the population density at that moment. 
 
However, it is important to note that while this service examines the concentration of GPS 
data from multiple users, data from one individual are simply a sequence of points, as 
shown in Figure 1-2. Logs indicate when and where the user traveled, but does not 
indicate how the user traveled between these locations. 
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Figure 1-1  Image of online “congestion map” 

ZENRIN DataCom CO., Ltd., < http://lab.its-mo.com/densitymap > 

 
Figure 1-2  Example of GPS data from mobile phones, for one day from one person 
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1.2 Objective 
 
Therefore, the objective of this study is to use large-scale, long-term GPS data from 
mobile phones to identify how users traveled from one place to another, or in other words, 
to identify the main mode of transportation that was used for each trip. 
Our results can be used to conduct a mobility analysis, and examine how individuals 
depend on various on various transportation modes over a long period of time. Such an 
analysis is currently not possible with the aforementioned travel surveys, but is necessary 
for urban planning purposes as travel patterns differ by day. 
For this study, we used data from the Tokyo Metropolitan Area, one of the world’s most 
densely populated urban areas. 
 
1.3 Related works 
 
As the method of using GPS records to identify travel records has been gaining attention 
for some time, many similar studies exist. Most of these works begin with the 
segmentation of GPS logs into individual trips, usually when there is a significant drop 
in speed1, or when GPS logs remain in one area for a certain amount of time2. Each 
extracted trip is then identified into one of several transportation modes, including 
“walk”, “bicycle”, “car”, “bus”, or “rail”, using a variety of parameters. 
 
De Jong et al. conducted fundamental studies by developing a set of rules to determine 
the trip ends and transportation modes used by an individual wearing a GPS logging 
device3, and Chung et al. developed a trip reconstruction tool that identified road links 
and transportation modes 4 . Both studies overlaid GPS data with GIS data, or 
geographical information such as road networks, bus routes and railways, and railway 
stations and bus stops. Stopher et al. adds a survey for acquiring personal information, 
including home location and vehicle accessibility, to help identify trip mode and also 
trip purpose5. Car or bicycle ownership can help confirm the identification of such 

                                                 
1 Robert de Jong and Wytse Mensonides. (2003). Wearable GPS device as a data collection method for 
travel research. Working Paper, ITS-WP-03-02, Institute of Transport Studies, University of Sydney 
2 Hongmian Gong, Cynthia Chen, Evan Bialostozky, and Catherine Lawson. (2011). A GPS/GIS method 
for travel mode detection in New York City. Computers, Environment and Urban Systems 
3 Ibid. 
4 Eui-Huan Chung, Amer Shalaby. (2005). A trip reconstruction tool for GPS-based personal travel surveys. 
Journal of Transportation Planning andTechnology 28 (5), 381–401. 
5 Peter Stopher, Eoin Clifford, Jun Zhang, and Camden FitzGerald. (2007). Deducing Mode and Purpose 
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modes by determining if use of such a transportation mode was possible. 
 
While most studies conduct evaluation of their methods using census data, Bohte et al. 
developed an interactive online validation application where GPS users could confirm 
the transportation modes that were identified for their trips6. Furthermore, though most 
studies use a hierarchical labeling method, in recent years Shuessler et al.7 and Xu et 
al.8 have introduced a “fuzzy approach”, which uses ground truth data to determine the 
appropriate speed, acceleration, etc. ranges for each transportation mode, and classifies 
each GPS log accordingly.  
 
Finally, as GPS accuracy can be heavily influenced in urban environments, Gong et al. 
conducted a study in New York City, the largest city in the United States, and used 
variables unique to the area, for example considering the average speed of traffic in that 
area9. 
 
Basic information about each of these studies is shown in Table 1-1. However, most of 
these studies use GPS loggers, which tend to have short acquisition intervals, creating 
clear trajectories. Mobile phones, on the other hand, have longer intervals, making data 
sparser and providing less information. On the other hand, mobile phones have the 
advantage of being able to be collected for a large number of people over a long period 
of time. 
 
 

                                                                                                                                               
from GPS Data, paper presented to the Transportation Planning Applications Conference of the 
Transportation Research Board, Daytona Beach, Florida, May 
6 Wendy Bohte and Maat Kees. (2008). Deriving and validating trip destinations and modes for multiday 
GPS based travel surveys: An application in the Netherlands. Paper presented at the 87th Annual Meeting 
of the Transportation Research Board, Washington, DC 
7 Nadine Schuessler and Kay W. Axhausen. (2009). Processing GPS Raw Data without Additional 
Information. In Paper presented at the 88th annual meeting of the transportation research board, 
Washington, DC 
8 Chao Xu, Minhe Ji, Wen Chen, Zhihua Zhang. (2010). Identifying Travel Mode from GPS Trajectories 
through Fuzzy Pattern Recognition. In Proceedings of the Seventh International Conference on Fuzzy 
Systems and Knowledge Discovery 
9 Ibid., 6. 
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Table 1-1  Related works 
first 

author 
(year) 

modes location 
number of 
individuals 

duration 
data 

source 
GPS 

interval 

de Jong 
(2003) 

walk, bus, 
rail, car 

- - - - - 

Zenji 
(2005) 

walk, car, 
rail 

Akihabara, 
Kinshicho, 
Tsudanuma 

(Japan) 

N/A 1 day 
GPS 

loggers 
10 

seconds 

Chung 
(2005) 

bus, car, 
bicycle, 

walk 

Toronto 
(Canada) 

60 - 
GPS 

loggers 
- 

Stopher 
(2008) 

walk, rail, 
bus, bicycle, 

car 

Sydney 
(Australia) 

- - - 
not 

constant 

Bohte 
(2008) 

walk, 
bicycle, car 

Amersfoort, 
Veenendaal, 
Zeewolde 

(Netherlands) 

1104 1 week 
GPS 

loggers 
6 

seconds 

Schuessler 
(2008) 

walk, 
bicycle, car, 

bus, rail 

Zurich, 
Winterthur, 

Geneva 
(Switzerland) 

4882 
6.65 days 
(average) 

GPS 
loggers 

- 

Xu (2010) 
walk, 

bicycle, bus, 
rail, rest 

Shanghai 
(China) 

32 142 days 
GPS 

loggers 
- 

Gong 
(2011) 

walk, rail, 
bus, car 

New York 
City (U.S.) 

63 5 days 
GPS 

loggers 
5 

seconds 
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2. METHODOLOGY 
 
2.1 Overall process 
 
For this study, we assume that large-scale, long-term GPS data refers to logs of several 
hundred thousand people for approximately one year. We also assume that GPS 
acquisition intervals range from several minutes to several hours, and that the margin of 
error is between several meters to several hundreds of meters. To improve mode 
identification accuracy, as well as to identify specific travel patterns, we overlay the 
long-term data of individuals and identify recurring trips. Our overall process, as 
illustrated in a simple flowchart in Figure 2-1, consists of the following steps: 
 
Identification and clustering of stay points 
First, we segment trips and remove non-trip data by extracting GPS logs recorded when 
the user stopped moving, hereafter referred to in this study as “stay points”. Since we 
overlay long-term data, we then identify which stay points refer to the same locations, 
or places that the user visits multiple times throughout the year, by clustering stay points 
that are located close to one another. 
 
Extraction and grouping of individual trips 
Next, we extract sets of consecutive non-stay points as trip data, identifying each by the 
combination of stay point clusters used as its origin and destination. Again we group 
similar trips, defining two or more “individual trips” to be the same “distinct trip” if 
they use the same combination of origin and destination clusters. This process helps 
make sparse GPS data become denser, providing more information for our next process. 
 
Identification of distinct trips 
At this point, we identify each set of distinct trips by the transportation mode that was 
most likely to have been used. The necessary parameters and thresholds were 
determined using ground truth data, or GPS logs that have been labeled by the users. As 
our dataset is very sparse in quality, for the purpose of this study we focus only on 
identifying one of three modes: walk, rail, or car, with car trips including all trips on 
buses, in taxis, and on bicycles. 
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Validation and analysis of results 
Finally, we validate our results by comparing the total number of individual trips, by 
transportation mode, from one area to another, with the results of Person Trip Surveys. 
We then use our results to calculate the long-term modal shares of individuals, to 
compare how people living in different regions of the Tokyo Metropolitan Area depend 
on different transportation modes throughout their daily lives. 
 
 

 
 
  

Figure 2-1  Flowchart of overall process 

Ground truth dataset

Stay points
•Cluster stay points

Trips
•Extract individual trips with labels
•Group individual trips into distinct trips 

Organize distinct trips
by transportation mode

Main dataset

Stay points
•Identify stay points
•Cluster stay points

Trips
•Extract individual trips
•Group individual trips into distinct trips

Identify each distinct trip
with transportation mode

Validate results

Conduct mobility analysis

Validation dataset
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2.2 About our data 
 
This study uses three different datasets: our main, large-scale and long-term GPS data; 
labeled GPS data as ground truth; and travel survey data for validation purposes. 
 
2.2.1 Main dataset 
 
Our main dataset consists of statistical data provided by ZENRIN DataCom Co., Ltd. 
GPS logs were collected from the approximately 1.5 million users of a certain mobile 
phone service, provided by a leading mobile phone operator in Japan. Although the 
dataset includes short-term users of this service, there are estimated to be about 800,000 
users’ worth of year-long data. GPS data was recorded between August 2010 and July 
2011, with intervals at a minimum of 5 minutes, but only when movement was detected, 
and only when GPS reception was available. Therefore, the average number of GPS 
logs collected was 37 points per individual per day. For each GPS log we use the 
following information: a user ID number, a timestamp of date and time (in seconds), 
and location coordinates represented as longitude and latitude. 
 
For the purpose of this study, we use the approximately 221,100 individuals observed to 
have spent the majority of their time in the following four prefectures: Tokyo Prefecture, 
Kanagawa Prefecture, Chiba Prefecture, and Saitama Prefecture. From this dataset, we 
randomly select nine users to use as test data for experimentation. These users satisfied 
the following requirements: each had a minimum of 5,000 logs, with at least 95% 
located in the aforementioned four prefectures. 
 
It is important to acknowledge that there is some selection bias in our dataset, as 
participants are limited to users of a specific mobile phone service. Therefore, we 
estimate the distribution of personal attributes for our dataset by using the results of a 
survey conducted a few years ago, about mobile phone-based navigation services and 
games. Respondents answered personal information, including gender, age, and home 
addresses, as well as which mobile phone services they had used within the past year.  
 
Of the 50,000 respondents of this online survey, 1,356 (about 2.6%) replied to using this 
service. As there are estimated to be over 100 million mobile phone users in Japan, and 
our dataset of 1.5 million users comprises 1.5% of this number, we can infer that users 
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were slightly overrepresented in this survey10. Figure 2-2 (a) shows the gender ratio and 
age distribution of respondents who use this service. The bottom half (b) indicates the 
same information, but for the 571 respondents who also reside in the Tokyo 
Metropolitan Area (42.1% of total service users). Note that users in their twenties and 
thirties are more likely to be female and those forty and over are more likely to be male.  
 

 

                                                 
10 Telecommunications Carriers Association < http://www.tca.or.jp/database/index.html > 

 

(a) All service users 

 

(b) All service users who live in the target area 
 

Figure 2-2  Gender ratio and age distribution of users from survey data 
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2.2.2 Ground truth dataset 
 
Ground truth data is used to determine our algorithm for identifying transportation mode. 
In a separate study, 160 individuals used the GPS features in their mobile phones for 
approximately one month, from November 28th to December 22th in 2011. Stay points 
were extracted automatically, and participants used an online application to confirm the 
main transportation modes used for each extracted trip. 
 
We process this dataset using the same methodology used in our main study. Stay points 
are clustered, and trips with the same combination of origin and destination clusters are 
grouped, creating distinct trips made up of multiple individual trips. By imitating this 
methodology, we prepare sets of trip data that are similar to the ones used in our main 
study. (It is important to note, however, that this dataset differs from our main dataset in 
that it has only been collected over one month, and therefore the numbers of individual 
trips for each distinct trip are fewer.) 
 
In this dataset, each individual trip has been labeled with the actual transportation mode. 
As shown in Table 2-1, there were a variety of candidate modes for study participants to 
choose from, and therefore each label is converted into one of the three modes used in 
this study. 
 
As transportation modes have been labeled by individual trip instead of distinct trip, it is 
possible for individual trips belonging to the same distinct trip to be labeled with 
different modes. Therefore, we label each distinct trip with the transportation mode that 
has the largest number of individual trips. (In the rare event that a tie occurs between 
two or more transportation modes, that distinct trip is considered faulty and is removed 
from our ground truth dataset.) 
 

 

Table 2-1  Labeled modes and converted modes, for ground truth data 
Labeled modes Converted modes 

Unclassified, Other Unclassified 
Rail Rail 

Bus, Car, Taxi, Motorcycle, Bicycle Car 
Walk Walk 
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2.2.3 Validation dataset 
 
The final results of our study are validated using aggregated results of Person Trip 
Surveys, questionnaires where respondents are asked to write down the details of every 
trip they took during a single day. These details include the time of departure and arrival, 
trip purpose, as well as the transportation mode used. This survey has been conducted in 
the Tokyo Metropolitan Area, in this case defined as Tokyo Prefecture, Kanagawa 
Prefecture, Chiba Prefecture, Saitama Prefecture, and the southern half of Ibaraki 
Prefecture, every ten years since 1960. Our study uses data from 2008, which consists 
of approximately 800,000 randomly chosen people (5 years or older), or roughly 2% of 
the 36 million residents, who live within the Tokyo Metropolitan Area. Respondents are 
asked to write about any weekday between October and November11. 
 
Aggregated data was provided by the National-Land Information Office website12. 
Personal attributes of respondents are used to multiply trip count so that the dataset 
becomes representative of the actual population. The Tokyo Metropolitan Area is 
segmented into 601 zones (164 in Tokyo, 154 in Kanagawa, 113 in Chiba, 118 in 
Saitama, and 52 in the southern half of Ibaraki), and trips are represented as traveling 
from one zone to another, as shown in Figure 2-3. All trips with the same pair of origin 
zones and destination zones are combined together, according to transportation mode, 
and referred to in this paper as a set of “grouped trips”. Therefore, the dataset is 
organized so that each line of data represents a single grouped trip, including the 
following features: origin zone code, destination zone code, trip count for surveyed 
modes, and total trip count. See Table 2-2 for a list of surveyed modes and how we 
converted them for use in this study. 
 

 
 

                                                 
11 Tokyo Metropolitan Region Transportation Planning Commission <http://www.tokyo-pt.jp/index.html> 
12 National-Land Information Office, <http://www.mlit.go.jp/kokudoseisaku/gis/index.html> 

Table 2-2  Labeled modes and converted modes, for validation data 
Surveyed modes Converted modes 

Rail Rail 
Bus, Car, Bicycle/Motorcycle Car 

Walk Walk 
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Figure 2-3  Image of aggregated trip data from Person Trip Surveys 

National-Land Information Office, < http://www.mlit.go.jp/kokudoseisaku/gis/index.html > 
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3. EXTRACTION OF TRIP DATA 
 
3.1 Stay points 
 
The first half of the process for extracting trip data consists of separating trip data from 
non-trip data, or stay points. This process is illustrated in Figure 3-1, where we suppose 
an area for three days’ data overlap. Stay points are identified, clustered, and labeled. 
 

 

 
↓ 

 
↓ 

 
↓ 

 

Figure 3-1  Illustration of identifying, clustering, and labeling stay points 

DAY 1 DAY 2 DAY 3

C1
C2
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3.1.1 Identifying stay points 
 
First, we determine if each log was recorded while traveling or not. Previously published 
studies, which used GPS loggers, extracted logs with a significantly slow speed13, or logs 
concentrated in a certain area14, to indicate when users stopped moving. But as our study 
uses mobile phones, which record GPS data at longer and inconsistent intervals, speeds 
cannot be accurately calculated, and the time spent in an area is not necessarily 
proportional to the number of logs recorded there. 
 
Therefore, we extract stay points by selecting GPS logs that are located within a certain 
distance of each other for longer than a specific length of time. As in the work of 
Witayangkurn et al.15 , we assume that a set of GPS points for one individual are 
represented as P =  ( , , … )  where  =  (id, time, lat, lon)  and n = the total 
number of points. We can then apply the following equation16: 
 

 
where Dthreh and Tthreh are adjustable parameters. Dthreh is the maximum diameter of an 
area considered as a stay point, whereas Tthreh is the minimum time spent in that area. 
After some experimentation, we decided to set Dthreh = 150 meters and Tthreh = 20 minutes. 
This time frame ensures that stops for transferring from one transportation mode to 
another, such as rail transfers which are common in Tokyo, are not extracted. Separate 
stay points are identified by numbering them in the order that they are extracted. 
 
  

                                                 
13 Ibid., 6. 
14 Daniel Ashbrook and Thad Startner. (2003). Using GPS to Learn Significant Locations and Predict 
Movement Across Multiple Users. Personal and Ubiquitous Computing, v.7 n.5, p.275-286. 
15 Apichon Witayangkurn, Teerayut Horanont, Yoshihide Sekimoto, and Ryosuke Shibasaki. (2010). Large 
Scale Mobility Analysis: Extracting Significant Places using Hadoop/Hive and Spatial Processing. 
Technical Study. 
16 Raul Montoliu, Jan Blom, and Daniel Gatica-Perez. (2012). Discovering places of interest in everyday 
life from smartphone data. Multimedia Tools and Applications, 1-29. 

Distance( , )  <   and TimeDiff( , )  <   
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3.1.2 Clustering stay points 
 
In our next step, we cluster stay points to identify which ones refer to the same locations, 
and therefore may be considered the same trip origin or destination. Note that during this 
process, stay points are represented as a single point using the coordinates of their 
centroids. For this process, we considered various clustering algorithms. 
 
First we considered OPTICS (Ordering Points To Identify the Clustering Structure) and 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise), both 
well-known algorithms for finding density-based clusters in spatial data. This method is 
convenient for extracting frequently visited places, such as home or work areas, but as the 
purpose of this study was to extract all trips and therefore all possible trip nodes, we 
determined it to be inadequate. 
 
Another common algorithm is the K-means clustering method, which groups data into a 
predetermined k number of clusters where each point belongs to the cluster with the 
nearest mean17. An n number of points (x1, x2,… xn) is divided into k clusters (k ≤ n) S = 
{ , , … } with the aim of minimizing the following squared error function: 
 

  J = ∑ ∑ ( ) −  

 
where is the mean of points in . As a result, data space is partitioned into Voronoi 
cells. However, in this study the number of clusters k represents the number of different 
locations visited by a single person. As this value is sure to vary for each individual, yet 
difficult to predetermine, application of this algorithm seemed difficult. 
 
We also considered a variant of the K-means algorithm which was proposed by Ashbrook 
et al.18 for the same purpose of extracting significant locations from GPS data. Instead of 
the number of clusters, we determine a specific cluster radius. One randomly selected 
point from the dataset is positioned as the center of a cluster, and all other points within 
the radius are extracted. The mean of these points becomes the new center, and this 
                                                 
17 James MacQueen. (1967) Some methods for classification and analysis of multivariate observations. In 
Cam, L. M. L. and Neyman, J. (eds), Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, 
vol. 1, pp. 281–297. University of California Press. 
18 Ibid., 17. 
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process is repeated until the center stops changing. At this point, all extracted points are 
grouped as a cluster, and removed from the dataset. This procedure is repeated until all 
points in the dataset have been assigned to clusters. However, since points that have been 
added to clusters are removed from further consideration, the outcome becomes 
dependent on the order that points are chosen. 
 
We finally decided to use a combination of canopy clustering and the aforementioned 
K-means algorithm. Canopy clustering is similar to the K-means, except that it creates 
overlapping subsets by using two radii thresholds, where points within the larger radius 
and outside the smaller one are added to the cluster but not removed from the remaining 
dataset. After some experimentation, we set both thresholds at 500 meters to create a set 
of temporary clusters. We used the number of clusters generated from this algorithm to 
conduct the K-means algorithm. 
 
Note that stay point clusters are formed solely for the purpose of identifying similar stay 
points. Therefore, non-stay points that may be located within the radii of these clusters 
will remain non-stay points, and will be used as trip data in the subsequent process. 
Again, we identify stay point clusters by numbering them in the order that they are 
extracted. 
 
  



20 
 

3.2 Trips 
 
After identifying, clustering, and labeling stay points, we use these markers to prepare 
sets of trip data. This process is illustrated in Figure 3-2, where non-stay points are 
extracted as individual trips and grouped into distinct trips. 
 

 
 
  

 

↓     ↓ 

  
↓     ↓ 

  
↓     ↓ 

 

Figure 3-2  Illustration of extracting and grouping individual trips 
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3.2.1 Extracting individual trips 
 
At this point, each GPS log has been labeled as either a stay or non-stay point, with a 
specific stay point number and cluster number. Therefore, we extract consecutive 
non-stay points as sets of trip data, as shown in Figure 3-3. This procedure is conducted 
throughout the entire dataset of each individual, with no segmentation of days. Each 
extracted individual trip is identified by the combination of its origin and destination, or 
the cluster numbers of the stay points immediately before and after it.  
 

 

 
During this process, we identified two different types of trips: those where the origin 
and destination were separate clusters, and those where they were the same cluster. We 
call these trips, respectively, types A and B, as shown in Table 3-1. Type B may indicate 
a situation where the user did not stop for longer than our threshold time (20 minutes) 
before returning to their former location. However, our algorithm may have failed to 
extract a stay point if GPS logs stopped recording for long periods of time, which is a 
high possibility in dense urban environments and especially when users step indoors. 
For the purpose of this study, we decided to acknowledge such type B trips as trip data. 
 
On the other hand, there were also cases where GPS logs jumped from one stay point 
cluster to another, without any non-stay point logs in between them. This may occur 
when GPS logs stop being recorded temporarily, such as if the mobile phone is turned 
off or its battery is low, or if the user travels through an indoor or underground 
passageway, as when taking the subway. For this study, the purpose of which is to 
extract and identify all of the trips made by individuals, we count these occurrences as 
type C trips. As our next process involves grouping individual trips, type A trips would 

Figure 3-3  Process of extracting individual trips 

LINE DATE LON LAT ERROR SPEED STAY SPNUM CLUSTER
472 2010/8/18 12:31 139.7981 35.80481 3 0.4045 0 0 0
473 2010/8/18 12:37 139.7992 35.80555 1 2.6226 0 0 0
474 2010/8/18 12:51 139.8164 35.82092 1 0 1 26 2
475 2010/8/18 12:56 139.8164 35.82092 1 0 1 26 2
476 2010/8/18 13:21 139.8164 35.82092 1 7.6856 1 26 2
477 2010/8/18 13:26 139.7992 35.80555 1 0.5528 0 0 0
478 2010/8/18 14:36 139.8164 35.82092 1 0.6447 0 0 0
479 2010/8/18 15:36 139.7992 35.80555 1 0.0218 1 27 3
480 2010/8/18 17:41 139.8005 35.80625 1 0.3141 1 27 3
481 2010/8/18 17:56 139.7982 35.80483 3 3.0413 1 27 3
482 2010/8/18 18:01 139.7906 35.80138 2 4.4724 0 0 0
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provide data for type C trips if they are grouped together.. 
 
Conversely, similar situations where GPS logs jump from one stay point to a different 
stay point, but where both stay points belong to the same cluster, were not considered 
trips (type D). In all likelihood, GPS logs stopped recording when users stopped moving 
and generated a time gap, causing two different stay points when there should only be 
one. 
 

 
 

 
 
  

Table 3-1  Organization of trip types 
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3.2.2 Grouping individual trips 
 
For each individual, trips with the same combination of origin and destination are 
grouped as distinct trips. In this way, we assume that a user who travels from one 
specific location to another, multiple times, will always use the same route. Although 
we understand that this may not always be the case, this assumption allows us to use 
more GPS points, and thus more information, for each distinct trip; in particular, it 
provides data for trips categorized as type C in the previous section (3.2.1). 
 
At the same time, this process allows us to calculate the number of different trips a user 
takes throughout a year. An OD matrix for each individual helps to organize this 
information, such as the one shown in Table 3-2. Rows represent origin clusters and 
columns represent destination clusters, and each cell indicates a distinct trip. (Due to 
space constraints, this matrix has been created using only stay point clusters with ten or 
more stay points.) 
 

 

 
 

  

Table 3-2  Example of an OD matrix (partial) 

 

1 3 4 8 16 18 19 20 22 29 30 31 35 38 44 47 48
1 147 9 14 5 8 9 14 3 12 10 8 5 5 4 3 2 5
3 7 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 9 2 4 0 0 1 0 0 0 0 0 0 1 0 0 1 0
8 10 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
16 8 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0
18 9 0 2 1 0 12 0 0 0 0 0 0 0 0 0 0 0
19 12 0 0 0 0 0 20 0 0 0 1 0 0 0 0 0 0
20 2 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
22 10 0 1 0 1 0 1 0 14 0 0 0 0 0 0 0 0
29 7 0 0 1 1 0 0 0 0 13 11 0 0 0 0 0 0
30 5 0 1 2 0 0 0 0 0 8 14 0 0 0 0 0 0
31 4 0 0 1 0 0 0 0 0 0 0 9 0 0 0 0 0
35 2 0 1 0 1 0 0 0 0 0 0 0 10 0 0 0 0
38 3 0 1 1 0 0 0 0 0 0 0 0 0 5 0 0 0
44 2 0 1 0 0 0 0 0 0 0 0 0 0 0 8 0 0
47 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
48 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7
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3.3 Results of test data 
 
Results of the trip extraction process on our test data, labeled as IDs “A” through “I”, 
are as shown in Table 3-3. On average there were 724.3 individual trips and 205.2 
distinct trips for a full year, and thus about 1.98 individual trips per day. In addition, 
there were an average of 793.0 stay points and 71.4 stay point clusters for a full year. 
Therefore, roughly 2.17 stay points are extracted per day. 
 
In the following pages, we visualize some of our results for ID “A”. In Figure 3-4, small 
red circles indicate the locations of all 12,327 GPS logs and larger blue circles indicate 
the locations of the 864 extracted stay points. Each trajectory of GPS records appears to 
end in one or multiple stay points. Figure 3-5 is an enlarged view of the area marked by 
a white rectangle in Figure 3-4, and shows yellow markers that indicate the centroids of 
stay point clusters. As should be the case, these markers fall in areas where stay points 
appear to be concentrated. Figure 3-6 shows an individual trip (the same image as in 
Figure 1-2) and the distinct trip that it belongs to, which consists of 14 individual trips. 
Therefore we can confirm that, compared to a single day’s worth of data, logs collected 
over a long period of time tend to concentrate on the route that was most likely to have 
been taken. In this way, we can improve mode detection accuracy. Figure 3-7 shows 
multiple distinct trips (including the one shown in Figure 3-6) and confirms that trip 
trajectories can be extracted and grouped regardless of their distance. 
 

 

Table 3-3  Results of trip extraction process for test data 

 
All Logs 

Stay 
Points 

Stay Pnt  
Clusters 

Trips 
(A) 

Trips 
(B) 

Trips 
(C) 

AllTrips 
(ABC) 

Distinct 
Trips 

A 12327 864 53 381 337 39 757 185 
B 8031 731 52 199 384 14 597 110 
C 15998 890 69 708 141 12 861 273 
D 12102 516 65 370 98 2 470 165 
E 10410 782 55 425 275 31 731 148 
F 6764 646 34 456 86 5 547 85 
G 12133 969 33 536 274 92 902 87 
H 25400 679 53 522 126 8 656 153 
I 25703 1060 229 873 104 21 998 641 

Avg. 14318.7 793.0 71.4 496.6 202.8 24.9 724.3 205.2 
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Figure 3-4  All GPS logs (small red circles) and stay points (larger blue circles) for “A” 

 
Figure 3-5  Enlarged view of white box in Figure 3-4,  

with stay point clusters (yellow markers) 
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(a) An individual trip   (b) A distinct trip 

 
Figure 3-6  Examples of (a) individual trips (same as Figure 1-2) and (b) distinct trips, for “A” 

 

  
  Figure 3-7  Multiple examples of distinct trips 
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4. IDENTIFICATION OF TRIPS 
 
4.1 Classifier 
 
Finally, we identify the main transportation mode used in each distinct trip by running 
each group of trip data through a mode detection algorithm. Most previous studies used 
speed as a primary feature in separating walk from other modes, as in the works of 
Stopher et al.19 and Gong et al.20 But through some experimentation with our ground 
truth data, where trips have been extracted and labeled with the correct transportation 
modes, we discovered that accurate speed values were difficult to determine from 
mobile phone-based GPS datasets, where logs are sparse and often inaccurate. 
 
Therefore, we test several different features of ground truth data to determine what other 
parameters and thresholds are necessary. Our dataset consists of 160 individuals over a 
month-long period, resulting in a total of 7021 trips. Of this total, 5329 trips (75.9%) 
were labeled with transportation modes, and 5954 (84.8%) contained GPS logs that we 
could calculate various features from. For this study we used the 4733 trips (67.4%) that 
were both labeled and that contained GPS logs. 
 
4.1.1 Input: candidate features 
 
For each of these labeled trips, we calculate values for various features, and then use a 
software called RapidMiner21 to process these values and create a decision tree with the 
appropriate parameters and thresholds. As a result, the following features were used for 
classifying trips into transportation modes. 
 
Average speed (meters per second) 
Speeds were calculated for each GPS point by using the distance and time difference 
between it and the following point. We define the average speed of each distinct trip to 
be the average speed value of trip data. 
As GPS points collected from mobile phones tend to include errors, especially in dense 
urban environments, we also tried calculating the average speed of distinct trips by 

                                                 
19 Ibid., 6. 
20 Ibid., 6. 
21 RapidMiner < http://www.rapidminer.com/ > 
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using the distance and time difference between the first and last logs of each trip. 
However, our decision tree results did not include this feature, judging it to be less 
relevant. This may be because GPS acquisition intervals are longer than 5 minutes, and 
because logs failed to be recorded when underground or indoors (as most users will be 
at the start or end of a trip), and therefore the starting and ending times of each trip were 
difficult to determine. 
 
Trip distance (meters) 
We calculate the direct distance between the centroids of the origin cluster and the 
destination cluster. Centroids of clusters are used instead of centroids of stay points 
because they seem to provide a more accurate representation of the visited location. 
 
Proximity to railway network (%) 
First, we conduct a simple process for removing GPS points that, supposing rail was 
used, may have been recorded between the origin or destination and the used railway 
stations. For this study, we assume that railway users board trains from stations that are 
closest to their origin or destination (although we acknowledge this may not necessarily 
be the case), as shown in Figure 4-1. We use a list of stations and their coordinates to 
find the one that is closest in distance to the origin or destination centroid. We then form 
a circle that is centered on the midway point between that station and the origin or 
destination centroid, and that passes through both locations. All GPS points found 
within this circle are removed. Next, we use railway data to determine which of the 
remaining GPS logs fall within 100 meters of the network, and calculate that number as 
a percentage of all logs in that distinct trip.  
Both station data and railway network data were provided by the National-Land 
Information Office, the same source as our validation data22. We used the most recent 
data available, which was prepared on July 31, 2011. 
To confirm if our decision to remove certain GPS logs was effective, we also tried 
preparing a set of values without conducting the initial removal process. As our decision 
tree results did not include this feature, we can be certain that this preprocessing helps 
improve detection accuracy. 
 

                                                 
22 Ibid., 14. 
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Values for the following features were also calculated and processed, but did not appear 
in our decision tree results. Therefore, we can determine that they were not relevant 
enough for classifying transportation modes. 
 
Trip type (A, B, or C) 
We labeled each trip with one of the three trip types described in the previous chapter 
(3.2.1), on the assumption that different types of trips may need different methods of 
mode identification. However, it seems that trip type does not affect the classification 
process. 
 
Density of data (number) 
We calculated the number of individual trips, as well as the number of GPS logs, for 
each distinct trip, as we assumed that different data densities may require different 
methods. Again, this feature was determined as irrelevant. 
 
Accessibility to railway station (meters) 
We assumed that trips where origin or destination locations were closer to railway 
stations were more likely to have used rail as the main mode of transportation. 
Therefore, we calculated the distances between the origin or destination centroids and 
their closest stations. However, this feature, too, was less significant than we had 
assumed. 

 
↓ 

 
Figure 4-1  Removal of logs prior to calculating railway network proximity 
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4.1.2 Output: decision tree 
 
Decision tree results are as shown in Figure 4-2. Proximity to railway network seems to 
work best as the primary feature for classifying transportation modes, in particular for 
separating rail and car trips. Trip distance helped separate walk from rail trips, and 
average speed walk from car trips. 
 
We find that trips with over 55.7% of GPS logs within 100 meters of railway networks 
are more likely to be classified as either rail or walk, and those with less as either car or 
walk. This threshold seems to take into consideration erroneous GPS logs found further 
away from the network. We experimented with increasing the maximum distance value 
as well, but found this did not improve accuracy.  
 
Walk trips seem slightly more difficult to classify, as they are not limited to specific 
transportation networks. For trips found located near railway networks, those with a 
travel distance of less than 1402 meters are more likely to be walk trips. If we assume 
that the average walking speed is 6 kilometers per hour, we can state that most walk 
trips took place under 14 minutes. 
 
For trips found located further away from railway networks, those with an average 
speed of less than 1.3 meters per second, or about 4.8 kilometers per hour, are more 
likely to be walk trips. This threshold was slightly lower than we expected, but is most 
likely due to the fact that bicycle trips—which travel more slowly than car trips—are 
included as car trips as well. 
 

 
 

Figure 4-2  Decision tree result 
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Accuracy results for this decision tree are as shown in Table 4-1. Overall accuracy is 
calculated by dividing the sum of trips that were labeled and identified as the same 
mode, or “accurate trips”, by the total number of trips. In addition, precision and recall 
are calculated for each mode. Precision is defined as the fraction of predicted data that is 
accurate, and recall is defined as the fraction of labeled data that is accurate (Figure 
4-3). 
 

 
 

 

 
Furthermore, in order to analyze the characteristics of our decision tree, we calculated 
the actual breakdown of trips labeled as car. Figure 4-4 indicates that nearly 
three-fourths were actually car trips, but 16% were bicycle and 6% were bus trips. 
 

 

Table 4-1  Accuracy results for decision tree 
Accuracy: 80.63% 

 
True Class 

precision Walk Rail Car 

Pr
ed

. Walk 427 129 312 49.19% 
Rail 83 1160 138 84.00% 
Car 67 188 2229 89.73% 

Class recall 74.00% 78.54% 83.20% 
 

 

 

Figure 4-3  Basis for precision and recall 
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Figure 4-4  Actual breakdown of trips labeled as car 
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4.2 Discussion 
 
Unlike past studies with GPS data, our results determined that railway proximity works 
best as the primary feature for identifying transportation modes. This feature separates 
rail from car trips, returning fairly accurate results for both modes. Most car trips, 
especially those that cover long distances, use main roads, which are usually located at 
some distance from railway lines. This is understandable as the majority of people 
accessing railway stations are pedestrians, and thus there is little need for main roads 
and railways to be located near each other. 
 
It is interesting to note that different features were used to separate walk trips from rail 
trips and from car trips. One explanation may be that trip distance is a more definite 
feature in identifying rail trips, because it is highly unlikely for the trip to be shorter 
than the distance between two railway stations. In contrast, car trips may be used for 
relatively short distances, especially if they are actually bicycle trips. 
 
The accuracy table indicates that precision for walk is particularly low, and the decision 
tree shows that most of these errors occur when separating walk from car trips, and that 
the trips labeled walk here contain the most mixed results. We assume two reasons why 
this might occur. 
 
First, as a classification feature, average speed seems less reliable than trip distance. 
Distance is based on origin and destination clusters, which are calculated using multiple 
stay points, which in turn have been calculated from multiple GPS points. On the other 
hand, speed is calculated directly from GPS log coordinates. Therefore it is more likely 
to be distorted by inaccurate GPS logs affected by urban environments. 
 
Second, let us suppose that average speed values have been calculated correctly. In this 
case, our labeling method may have created confusion. One example is that trips were 
labeled with the main transportation mode. As a result, trips with multiple modes 
including walk (for example, walk, car (such as bus), walk) may include low speed 
values and thus be predicted as walk trips, but will be labeled as either car or rail trips. 
Another example is that 16% of trips labeled as car were bicycle trips. Such trips, which 
may include situations where users get off and push their bicycles may, again, include 
low speed values and be predicted as walk trips, but be labeled as car trips.  
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4.3 Results of test data 
 
The features and thresholds in the aforementioned decision tree are used to identify 
transportation modes of distinct trips in our main dataset. Note that trips without trip 
data, meaning that they consist only of trips categorized as type C, are not identified and 
are labeled as “unclassified”. 
 
The results of this identification process on one user, mentioned in the previous chapter 
(3) as “A”, are as shown in Table 4-2. We identified the 182 distinct trips for this user, 
and multiplied each distinct trip with its number of individual trips to calculate the total 
number of trips by transportation mode. In addition, the ratio of modes for all trips 
returns what we define as the modal share of this individual. All trip data has been 
visualized according to transportation mode in Figure 4-5.  
 

 

Table 4-2  Example of mode detection results 
  Walk Rail Car Unclassified Total 

Distinct trips 47 9 123 3 182 
Individual trips 348 15 388 8 759 

Modal share 45.80% 2.00% 51.10% 1.10% 100.00% 
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(a) Walk 

 

    
(b) Rail    (c) Car 

 
Figure 4-5  Trip data visualized according to transportation mode for “A” 
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5. FINAL RESULTS 
 
5.1 Processing results 
 
Finally, we ran the aforementioned process on our entire dataset for the Tokyo 
Metropolitan Area. From the 221,100 users, we extracted 26,837,942 distinct trips, or 
approximately 121.38 per user. Each distinct trip included the following data: a user ID 
number to distinguish individuals, origin coordinates (longitude, latitude), destination 
coordinates (longitude, latitude), the number of individual trips, and the identified 
transportation mode.  
 
In order to validate our results, trips are grouped in the same way as our Person Trip 
(PT) Survey dataset. For each distinct trip, origin and destination coordinates are 
converted to the polygon zone codes they are located in. All distinct trips with the same 
pair of origin and destination zones are combined together, to form a single “grouped 
trip”. 
 
Information about extracted trips for both datasets is organized in Table 5-1. Note that 
trip count comparisons cannot be made directly, due to differences in time frame and the 
number of represented individuals. For PT data, we extracted about 2.20 individual trips 
per person, for one day. For ZDC data, we extracted an average number of 402.89 
individual trips per person. However, since many users only used this service for a short 
period of time, providing us with only a few months’ worth of data instead of a full year, 
it is not possible to estimate the average number of trips per day. 
 

 

Table 5-1  Total numbers of extracted trips 
Dataset PT data GPS data 

Time frame 1 day 1 day - 1 year 
Represented individuals approx. 36 million 221,100 

Total trips 
Grouped 116,667 309,979 

Individual 79,038,534 89,077,507 
Individual 
trips, by 

transportation 
mode 

Rail 23,984,945 30.3% 14,463,731 16.2% 
Walk 17,479,400 22.1% 6,576,126 7.4% 
Car 37,574,189 47.5% 67,637,798 75.9% 

Unclassified 0 0.0% 399,852 0.4% 
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Although our GPS data was collected from residents of the Tokyo Metropolitan Area, 
their logs include trips to or from outside of this area as well. Therefore, we limit trips 
from both datasets to those that occurred within our target area, which we define in this 
study as the following four prefectures: Tokyo, Kanagawa, Chiba, and Saitama. These 
datasets, the details of which are organized in Table 5-2, are used as the main dataset in 
our subsequent correlation analysis. 
 

 
 

From PT data, 95.6% of distinct trips and 95.6% of individual trips were within our 
target area. For GPS data, 87.6% of distinct trips and 93.0% of individual trips were 
extracted, which indicates that trips to or from outside of this area were occasional. 
Figure 5-1 draws comparisons between the numbers of all trips and trips within our 
target area, according to transportation mode. For both datasets, the majority of trips to 
or from outside this area were identified as car. This is logical as railway networks are 
sparse in areas outside of the Tokyo Metropolitan Area. 
 

 

Table 5-2  Total numbers of extracted trips within target area 
Dataset PT data GPS data 

Total trips 
Grouped 111,591 271,454 

Individual 75,587,788 82,835,555 
Individual 
trips, by 

transportation 
mode 

Rail 23,641,874 31.3% 13,944,005 16.8% 
Walk 17,059,356 22.6% 6,448,940 7.8% 
Car 34,886,558 46.2% 62,105,171 75.0% 

Unclassified 0 0.0% 337,439 0.4% 
 

 
  (a) PT data   (b) GPS data 
 

Figure 5-1  Comparisons between all trips and trips within our target area 
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5.2 Correlation analysis 
 
Having compared the overall number of trips, we then confirm if our identified 
transportation modes are attributed to the appropriate groups of trips from one zone to 
another. We conduct a correlation analysis between the two datasets by creating scatter 
plots, with PT data plotted on the x axis and our GPS data plotted on the y axis. Each 
group of trips from one zone to another is represented as a point, where the x coordinate 
is the number of trips in the PT dataset, and the y-coordinate the number in our GPS 
dataset. 
 
One scatter plot is prepared to compare the total number of trips, regardless of 
transportation mode, and evaluate the accuracy of our trip extraction process. Three 
separate plots are prepared to compare the total number of trips for each of the 
identified transportation modes, and evaluate the accuracy of our trip identification 
process. 
 
5.2.1 Raw values for all trips 
 
First, we extract all grouped trips that were found in both datasets, which we found a 
total of 110,640, as shown in Table 5-3. This value is 99.15% of the PT dataset and 
40.76% of ZDC dataset. However, these distinct trips contained 99.9% of individual 
trips from PT data and 96.4% of individual trips from our GPS dataset. Note that at this 
point, we only draw ratio comparisons between raw values from both datasets. 
 
Scatter plots are as shown in Figure 5-2. For the total number of trips from one zone to 
another, the coefficient of determination 0.69 suggests a fairly strong correlation, 
confirming that the trips were extracted fairly accurately. From the plot we can observe 
that certain grouped trips are overestimated in our GPS data, which will be discussed 
later in this chapter. 
 
Of the three transportation modes, results for car show the strongest correlation and for 
walk the weakest. For walk in particular, we can observe that many grouped trips with a 
high value in PT data are not at all identified in GPS data, or have a value of close to 
zero. This tendency, too, will be discussed later in this chapter. 
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Table 5-3  Raw values of all trips for correlation purposes 
Dataset PT GPS 

Total trips 
Grouped 110,640 110,640 

Individual 75,525,194 79,825,493 
Individual 
trips, by 

transportation 
mode 

Rail 23,611,393 31.3% 13,173,186 16.5% 
Walk 17,058,553 22.6% 6,448,655 8.1% 
Car 34,855,248 46.2% 59,869,992 75.0% 

Unclassified 0 0.0% 333,660 0.4% 
 

 (a) Total     (b) Walk 

  
 (c) Rail     (d) Car 

  
 

Figure 5-2  Scatter plots of raw values for all trips 
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5.2.2 Weighted values for all trips 
 
Next, we recalculate trips to more accurately represent the actual population of the Tokyo 
Metropolitan Area. To do so, we multiplied the number of individual trips for each user 
by a specific weight  that was calculated for each mesh code m.  
 

=   

 : number of people who live in in mesh grid m 
 : number of ZDC users who live in mesh grid m 

 
where national census data was used for mesh-based population data and home locations 
of users were identified by Witayangkurn et al23. The correlation between these two 
datasets is as shown in Figure 5-3. 
 
Results of this adjustment are shown in Table 5-4. Since the above weight is assigned to 
users regardless of the duration of their GPS logs, the total number of individual trips will 
not be representative of a full year’s worth of data, and thus is not 365 times the number 
of PT data. The shares of identified transportation modes change slightly, but not 
significantly.  
 
On the other hand, the scatter plots in Figure 5-4 indicate that the coefficients of 
determination increase in all four cases. Therefore, we can confirm that using weighted 
values instead of raw values helps, to some extent, to correct any bias in our GPS dataset.  
 

 
                                                 
23 Ibid., 17. 

 
Figure 5-3  Correlation between ZDC user population and national census population 
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Table 5-4  Weighted values of all trips for correlation purposes 
Dataset PT GPS 

Total trips 
Grouped 110,640 110,640 

Individual 75,525,194 8,209,160,983 
Individual 
trips, by 

transportation 
mode 

Rail 23,611,393 31.3% 1,296,748,933 15.8% 
Walk 17,058,553 22.6% 618,362,774 7.5% 
Car 34,855,248 46.2% 6,259,244,321 76.2% 

Unclassified 0 0.0% 34,804,955 0.4% 
 

 (a) Total     (b) Walk 

 
 (c) Rail     (d) Car 

  
 

Figure 5-4  Scatter plots of weighted values for all trips 
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5.2.3 Weighted values for trips between different zones 
 
In the scatter plots we can observe there to be many outliers, most of which had the 
same zone code as both their origin and their destination. These trips may be of short 
distances that took place within a single zone, or in some cases, trips where the origin 
cluster of stay points was the same as the destination cluster, or trip type B. Therefore, 
we prepared datasets where these trips were removed. 
 
Results are as shown in Table 5-5 and the differences in data size are shown in Figure 
5-5. The number of grouped trips has decreased by 547, and as there are 601 zones in 
the Tokyo Metropolitan Area, we can determine that 91.0% of zones include such trips. 
Since this process involved eliminating trips with shorter distances, walk trips decreased 
significantly during this process; for PT data to 16.2% and for GPS data to 11.3% of all 
trips. However, numbers for car trips decreased as well; for PT data to 54.0%, and for 
GPS data to 48.6%. Few rail trips were removed. 
 

 
 

As a result, the ratio of rail trips almost doubled, and the ratio of car and walk trips 
dropped significantly in both datasets. From this result, we can assume that nearly half 
of all car trips were used for relatively short distances, most of which may be bicycle 
trips. Our scatter plots, as shown in Figure 5-6, indicate that correlation becomes 
stronger when trips within the same zone are removed, especially for the numbers of 
trips identified as car and walk. We can assume that trips with longer distances are more 
likely to be extracted and/or identified accurately. 

 
  (a) PT    (b) GPS 
 

Figure 5-5  Comparisons between all trips and trips between different zones 
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Table 5-5  Weighted values of trips between different zones for correlation purposes 
Dataset PT GPS 

Total trips 
Grouped 110,093 110,093 

Individual 44,701,971 4,402,016,097 
Individual 
trips, by 

transportation 
mode 

Rail 23,104,503 51.7% 1,279,393,281 29.1% 
Walk 2,764,378 6.2% 69,592,411 1.6% 
Car 18,833,090 42.1% 3,039,336,127 69.0% 

Unclassified 0 0.0% 13,694,278 0.3% 
 

 (a) Total     (b) Walk 

  

 (c) Rail     (d) Car 

  

Figure 5-6  Scatter plots of weighted values for trips between different zones 
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5.3 Discussion 
 
Throughout our comparison of the two datasets, the total number of trips extracted 
indicated strong correlation, and car trips indicate about the same coefficient of 
determination (in fact, for raw values the value for car trips is actually higher). Although 
not as high, rail trips indicate fairly strong correlation as well. In general, walk trips 
indicate weak correlation. We assume the following explanations for these results. 
 
First of all, when tested on ground truth data our algorithm returned the highest recall 
rate for car trips, and the lowest rate for walk trips. Our results on the entire dataset may 
simply reflect this tendency. 
We contemplated further explanations for this tendency in both datasets, and determined 
that it may be explained by a lack of, or inaccurate, GPS data. As described earlier, logs 
are recorded at a minimum of 5 minutes, and either do not record, or record a slightly 
different location, if reception quality is low. Walk trips are generally for shorter periods 
of time, and may not contain enough data to be identified; for example, trips with no 
data are labeled as “unclassified”. Furthermore, both walk and rail trips usually take 
place across relatively urbanized areas. Pedestrians will often use narrow streets, 
possibly lined with tall buildings, and subway users will travel underground. In contrast, 
most car trips will take place on wide roads, usually located some distance away from 
railway stations and the buildings that surround it. Therefore, car trips will record more 
and more accurate GPS data. 
 
However, we noted a significant difference between the results of our ground truth data 
and our main dataset. In the former dataset there was an overestimation of walk trips, 
but in the latter dataset there is rather an overestimation of car trips. 
 
One explanation for this may be that PT data is a survey taken during one weekday, 
whereas both of our GPS datasets includes trips on weekends. Many people living in the 
Tokyo Metropolitan Area may use the railway to commute to central Tokyo, where their 
workplace may be located, but use cars to travel to suburban areas on their days off. 
(Though there may be some sample bias, Figure 5-7 compares the actual breakdowns of 
trips labeled as car for both datasets, and indicates that is a higher percentage of actual 
car trips in the ground truth data.) 
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Also, by examining scatter plots for walk we realized that compared to other 
transportation modes, there were grouped trips for PT data that did not exist at all for 
our GPS dataset. When we identified some of these trips, we found that they included 
trips between zones that were located far apart from each other. Figure 5-8 shows one 
such example, from zone code 220, in central Tokyo, to zone code 4416, in Chiba 
Prefecture. This is a distance of approximately 40 kilometers, and while GPS data 
returned zero walk trips, PT data indicated 105. We assume this to be the result of an 
error that occurred somewhere during the process of collecting and aggregating Person 
Trip Survey data.  
 

 

 

 

   
(a) Ground truth data   (b) PT data 

 
Figure 5-7  Comparison of actual breakdowns of trips labeled as car 
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Figure 5-8  Example of a grouped trip that included walk trips for PT data 
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6. MOBILITY ANALYSIS 
 
6.1 Organization of data 
 
Finally, our identified trips are used to analyze the long-term mobility of individuals 
living in the Tokyo Metropolitan Area. Survey-based data, such as the Person Trip Survey 
information used in the previous chapter, can be acquired only for a limited period of time. 
GPS data, on the other hand, can be collected easily over a longer duration. Therefore, we 
can estimate how often each transportation mode is being used by each individual, and 
draw comparisons between people living in different areas. 
 
First, we group all extracted and identified trips by user. Then, the long-term modal share 
of each user is calculated by dividing the total number of trips for each mode with the 
total number of trips for that person, as in the following equation: 
 

=  +  + +   

 
where  indicates the total number of individual trips for mode m. After determining 
the long-term modal share for each user ( , , ), we group users according to 
the polygon zone where their home is located. Home locations are the same areas used in 
the magnification process in the previous section (5.2). Finally, we calculate the average 
modal shares for each group of users and map the results by polygon zone. 
 
Note here that certain adjustments were made to our dataset. Our study and thus algorithm 
focuses on identifying transportation modes within our target area, the four main 
prefectures of the Tokyo Metropolitan Area. Therefore, we cannot be certain of trips to or 
from outside this area. For our validation process, we removed such trips, but for 
calculation of modal share, removal would reduce trip count for each individual and 
distort ratios. Instead, we re-label all trips to or from outside of this area as “unclassified”. 
Table 6-1 shows the numbers of trips within and outside of our target area, and the 
converted dataset that we used for the calculation of modal shares. 
 
 



46 
 

 
 

All of the following maps classify polygon zones into ten classes using the Jenks 
optimization method. This data classification method is a common one that aims to 
reduce the variance within classes and maximize the variance between classes. To focus 
on our target area, when we map our results we remove all users whose homes were 
located outside of this area. This left us with 219,364 of the 221,085 users in our dataset 
(99.2%), who resided in 548 of the total of 601 polygon zones (91.2%). 
 
Population data for each polygon zone was provided by the Tokyo Metropolitan Region 
Transportation Planning Commission from their Person Trip Survey results in 200824. 
  

                                                 
24 Ibid., 11 

Table 6-1  Organization of number of re-labeled trips 
 Dataset Trips within area Trips outside of area  Converted datset 

Total Trips 82,835,555 6,241,952 89,077,507 
Rail 13,944,005 16.8% 519,726 8.3% 13,944,005 15.7% 

Walk 6,448,940 7.8% 127,186 2.0% 6,448,940 7.2% 
Car 62,105,171 75.0% 5,532,627 88.6% 62,105,171 69.7% 

Unclassified 337,439 0.4% 62,413 1.0% 6,579,391 7.4% 
 



47 
 

6.2 Trip results 
 
6.2.1 Distribution of users 
 
The distribution of users is shown in Figure 6-1. The first map plots the actual number 
of users, but as polygon sizes vary, the second map plots this value as a percentage of 
the actual residents in each zone. Each polygon is represented by a roughly equal 
percentage of the population, mostly below one percent. Lowest values are seen in the 
westernmost areas of Saitama, Tokyo, and Kanagawa, as well as the southernmost areas 
of Chiba, while certain polygons in central Tokyo are overrepresented.  
 

 

 

 
Figure 6-1  Number of users and percentage of actual population for each zone  
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6.2.2 Number of trips 
 
Next, we examine the average number of trips for the residents of each polygon zone. 
The numbers of individual trips, as shown in the top map of Figure 6-2, range between 
259 and 521, with lower values found in the outskirts of the Tokyo Metropolitan Area, 
such as southern Chiba and western Saitama. These values may be affected by the age 
of residents in each zone, as the proportion of elderly people is said to be higher in these 
areas. The numbers of distinct trips, on the other hand, range between 71 and 162, and 
indicate the variety of trips for residents of each zone.  
 

 

 

 
Figure 6-2  Average number of individual trips and distinct trips 
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6.2.3 Distance of trips 
 
We also add together the distance of all trips, for each individual, and calculate the 
average value for each polygon zone, as shown in Figure 6-3. Note that areas which in 
the previous section had a high number of individual and distinct trips, around the 
border between Saitama and Chiba, are low in value, and areas in northeastern 
Kanagawa are high. Therefore when we divide each distance value by the average 
number of individual trips, calculating the average distance per trip, we see this area in 
northeastern Kanagawa seem the highest, along with northern Chiba. 
 

 

 

 
Figure 6-3  Average total distance and average distance per trip 
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6.3 Transportation mode results 
 
6.3.1 Modal share 
 
In Figure 6-5, we map the average ratio of trips for each transportation mode. As we had 
expected, values for rail are higher in central Tokyo, whereas values for car are lower.  
Zones with high rail percentages tend to have low car values, which is understandable 
as these two transportation modes make up the majority of our dataset. 
 
To confirm our assumption that shares for rail and car are influenced by railway 
network density, we overlay such data on the map representing rail percentages (Figure 
6-4). It is clear that zones with railway networks, especially networks that extend 
outwards from central Tokyo, are areas where users depend more heavily on rail as a 
transportation mode. 
 

 

 

 
Figure 6-4  Average percentage of trips for rail, overlayed with railway network data 
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Figure 6-5  Average percentage of trips for each transportation mode 
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6.3.2 Relation to railway station proximity 
 
Furthermore, we assume that station proximity is a large factor in determining mode 
choices. We estimate the distance between home locations and nearest stations for each 
user, then calculate the average value for each zone and map results in Figure 6-6. As 
we expected, those living in zones with dense railway networks had shorter distances. 
 
We then compared these distances with modal shares, by creating scatter plots for each 
transportation mode with distance values as the x value and percentages of modal share 
as the y value. In the graphs on the left side of Figure 6-7, each point represents one 
user; on the right side, each point represents one polygon zone. User-based comparisons 
did not show a significant correlation, as coefficients of determination values were very 
low (all below 0.1) due to those who live near stations yet have a relatively low 
percentage of trips that use rail. However, we can observe from the scatter plots that 
users who live some distance away from stations will not use rail or walk as often. 
Zone-based comparisons, which used average values of residents for each polygon, 
showed more significant correlation. For (b) walk and (d) rail there is a slight negative 
correlation, showing that individuals are more likely to depend on these two modes of 
transportation if they live closer to railway stations. In addition, there is a slight positive 
correlation for (f) car, showing that users whose homes are located further from railway 
stations are more likely to rely on car for their trips.  
 

 
 

Figure 6-6  Average distance between home and nearest station 
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(a) walk, for each user   (b) walk, for each zone 

  

(c) rail, for each user   (d) rail, for each zone 

 
(e) car, for each user   (f) car, for each zone 

 

Figure 6-7  Scatter plots showing relation between modal share and proximity to stations 
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6.3.3 Relation to trip distances 
 
Finally, we noted some similarities in the distribution of areas where rail dependency 
was high and those where total trip distances were relatively high (6.2.3). Therefore we 
conducted a correlation analysis similar to the one comparing station proximity (6.3.2), 
using scatter plots with percentages of modal share as the y value. For the x value 
Figure 6-8 uses the total distances traveled, whereas Figure 6-9 uses the average 
distance per trip, as calculated earlier. In both figures, scatter plots on the left are 
user-based comparisons and those on the right are zone-based. 
 
Similar to the analysis regarding station proximity, user-based comparisons indicated 
very low coefficients of determination, while zone-based results showed weak 
correlation. Albeit only slightly, walk and rail percentages indicated positive correlation, 
meaning that those who traveled longer distances were more likely to use these 
transportation modes. On the other hand, users who were more dependent on car tended 
to travel shorter distances. These analyses are another example of how long-term GPS 
data can be used to compare the mobility of residents in different areas. 
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(a) walk, for each user   (b) walk, for each zone 

   

(c) rail, for each user   (d) rail, for each zone 

  
(e) car, for each user   (f) car, for each zone 

  

Figure 6-8  Scatter plots showing relation between modal share and total distance traveled 
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(a) walk, for each user   (b) walk, for each zone 

   

(c) rail, for each user   (d) rail, for each zone 

  

(e) car, for each user   (f) car, for each zone 

  

Figure 6-9  Scatter plots showing relation between modal share and average distance per trip
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7. CONCLUSION 
 
7.1 In summary 
 
In this study we used a large dataset of GPS logs collected from mobile phones, and 
used it to extract trips and identify the main transportation modes as walk, rail, or car. 
As such data was sparse, we assumed that individuals traveling from one location to 
another multiple times used the same route each time and grouped GPS logs accordingly. 
By increasing data for each trip, we were able to use proximity to railway networks as a 
primary parameter for identifying transportation modes. 
 
We validated the results of our trip extraction and identification process by using 
single-day data, Person Trip Survey data, to compare the numbers of trips from one area 
zone to another. Finally, we used the identified trips to conduct a mobility analysis of 
the Tokyo Metropolitan Area, where we compared how home locations affect the 
frequency of using specific transportation modes. 
 
During the validation process, we observed some difficulty in identifying certain trips, 
especially those more likely to be affected by limitations of GPS data, low accuracy and 
frequency, such as trips between short distances and that take place in densely urbanized 
areas. At the same time, we noticed limitations with single-day travel survey data. In 
addition to the risk of human error, such information, while suitable for understanding 
commuting travel patterns, does not include travel behavior for weekends, when people 
move more freely. 
 
Furthermore, our analysis of results succeeded in highlighting how geography, in 
particular accessibility to public transport networks, affects dependency on different 
transportation modes. This sort of information is helpful for urban planning purposes, 
especially for the maintenance and improvement of transport-related infrastructure. This 
aim, combined with the aforementioned limitations of survey data, help to emphasize 
the importance of collecting and analyzing long-term data collected from a reasonably 
large sample set, which is easy to accomplish with the use of GPS features in mobile 
phones.  
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7.2 Future works 
 
In the future, our methodology may be applied to other regions besides the Tokyo 
Metropolitan Area. Parameters and thresholds may need to be reconsidered depending 
on the characteristics of each area, but we believe that Tokyo presents the most 
difficulty in that densely urbanized areas can cause inaccurate and missing GPS logs, a 
fact which seemed to be confirmed during our study. 
 
Furthermore, our methodology can be expanded upon and improved. First of all, 
preparation of the GPS dataset can be refined, either by removing inaccurate logs or 
interpolating logs to fill gaps. Inaccurate logs may be detected by searching for 
unrealistic speeds or directions, and also by identifying base stations where such logs 
may be concentrated. Next, the trip extraction process can include segmentation of 
individual trips for identifying more specific transportation modes, such as the walk 
trips before and after a rail trip. Furthermore, we can increase the variety of modes to be 
identified. As our results indicate a large ratio of car trips, identification of more specific 
transportation modes, such as bus and bicycle trips, may be of particular interest. 
 
Finally, our study results and mobility analysis– including the locations of users’ 
homes— may help to identify the personal attributes of individual users, such as gender 
or age, or even further characteristics of the trips themselves, such as trip purpose. This 
would provide similar information to survey data in a more efficient manner. 
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