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ABSTRACT 

 

 

Dealing with peak electricity demand has always challenged electric power 

companies. Recent shrinkage of electricity supply capacity due to the nuclear accident in 

Fukushima, Japan, as well as growing electricity demand under extreme weather conditions 

threaten a shutdown of the electricity grid in the Kanto region of Japan. Demand response 

(DR) is one solution that reduces electricity consumption during those “tight” periods by 1) 

using incentives to solicit electricity consumers to cut consumption, or 2) raising real-time 

electricity prices.  

The residential sector has become the new target for improving energy efficiency, 

and this research estimates the potential electricity demand reduction at peak hours based on 

ten minute interval historical electricity consumption data for Japanese households from July 

2012 to September 2012 with 94 samples. A DR solution is considered where every 

electricity consumer in each house is assumed to i) leave the house, ii) cut consumption 

indoors, or iii) take no action in response to a predicted peak demand. The consumption 

levels reducible by actions i) and ii) are estimated, and simulations are run based on scenarios 

with different percentages of residents that take one of the three options. Of the three 

scenarios considered, the scenario “Medium Participation” highlights the most realistic level 

of DR outcome where 40% of residents in the house leave the house and 30% of the residents 

decide to reduce consumption indoors. This scenario is thought to be an ‘achievable’ level of 

DR outcomes, and our estimations show that, on average, the household electricity demand 

peak could be reduced by 28.6%. If the total demand peak for the residential sector in 



 

 

TEPCO service areas could be reduced by 28.6%, then the peak reduction would be 

equivalent to the electricity supply capacity of 4 and one quarter of nuclear reactors. 

Furthermore, living patterns of the households and their relationship with family 

structure is investigated, to answer the questions such as ‘Who consumes electricity during 

peak demand?’ or ‘What are the characteristics of those residents?’ The results of that 

investigation provide evidence that ties to recommendations aimed at designing effective DR 

programs for the residential sector. We first identified 4 representative living patterns based 

on the hours of resident occupancy. We found that on a daily basis, in an average of 46% of 

the households at least one household member remains in the house and consumes electricity 

during the day time. We identify this group of households to be a major potential contributor 

to DR programs. We then looked into the distribution of different family structures that 

characterize this group and found that nearly 70% of the households are couples living with 

their children. 

These findings enable us to recommend actions plans for policy makers and grid 

operators. We then describe a number of suggestions that would help households in each of 

the categories to contribute towards DR. We also suggest how businesses could engage in this 

project by motivating families that are inside the house during peak demand hours to 

participate in DR programs. Because, we identified that the majority of the households in 

Kashiwa-no-ha that consume electricity during peak demand hours are families living with 

children, our proposals emphasize the importance of providing services to motivate these 

families to leave their houses during times of peak demand. The findings and 

recommendations stated in this research should help policy makers and grid operators to 

design more effective DR programs. 
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Chapter 1 INTRODUCTION 

1.1. Introduction 

On March 11, 2011, a strong earthquake of magnitude 9.0 on the Richter scale 

suddenly hit the north eastern coast of Japan. The Tohoku coastal line was later hit by a series 

of strong tsunami waves damaging the Fukushima-Daiichi nuclear power stations in 

operation. The loss of cooling capacity of the reactors led to a series of devastating 

explosions releasing radioactive substances to the atmosphere. This event was not only life 

threatening to the people, but also a significant shock to the electricity dependent society. 

Rolling blackouts had followed to deal with the immediate loss of electricity supply capacity. 

The whole society began energy saving campaigns shifting working schedules for industries 

and dimming some lights in the public. Through this nuclear disaster, and the efforts made to 

cope with a new energy crisis, discussions on designing a more sustainable electricity system 

have emerged throughout the country. 

Electricity demand peaks have always challenged power companies. After the recent 

nuclear disaster in Fukushima, Japan, the Tokyo Electric Power Company (TEPCO) lost a 

significant amount of its electricity supply capacity, which threatened its ability to meet the 

demand peaks in the following summer. Demand response (DR) is known as one solution to 

solve this issue. This research explores the potential of DR for condominium type residential 

sectors under the TEPCO’s service areas. Historical electricity consumption data at 10 minute 

intervals from October, 2011 to September 2012 on 94 unified condominium sample houses 

in Kashiwa-no-ha, of Kashiwa City are analyzed to estimate the potential range of electricity 

reductions that could be attained using DR from these electricity consumers.  
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1.2. Overview 

Chapter 1 provides a general background to electricity infrastructure as well as 

explaining the basic concept of peak demand and DR. Chapter 2 explains how the research 

will focus into residential electricity demand with research objectives to follow. Chapter 3 

explains the type of data being used for analysis followed by the methodology for estimating 

DR potential. Chapter 4 explains results from estimations, and discussions are included in the 

final chapter. 
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Chapter 2 BACKGROUND 

2.1. Basic Structure of an Electricity Grid 

The fundamental principles of electricity infrastructure are described in this section. 

Figure 1 indicates a general view of a typical electricity infrastructure.  

Figure 1 Image of an electricity grid 

 
Source: [1] 

Electricity is generated at power stations from a wide variety of energy sources, 

including coal, natural gas, nuclear fission, hydro, and more. Electricity is then delivered 

through a series of power cables to reach consumers demanding electricity for commercial, 

industrial, and residential purposes. Some power stations possess an enormous amount of 

output potential that is measured in units of giga watts (billions of watts). This scale enables 

them to achieve economies of scale. Electricity is delivered from centralized power stations 

through transmission lines at high voltage. The higher voltage enables power delivery with 

low energy loss and suits long distance delivery. Substations that are located closer to 

consumption areas lower the voltage so that electricity is formatted into each consumer’s 

preference. Factories consume electricity at higher voltages that exceed 10,000 volts to 

operate heavy duty machinery. Homes or small shops prefer electricity at lower voltages 
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because they rely on electronic appliances that operate at around 100 volts in Japan. The 

current Japanese electricity infrastructure is characterized by centralized monopoly suppliers, 

single direction of electricity flow, and large area coverage. 

 

2.2. The Fundamental Principles of Electricity 

Current economic and institutional barriers make it difficult and costly to store 

electricity [2]. Therefore, as a general rule, electricity demand and supply must always be 

balanced to provide continuous and reliable electricity service. This implies that electricity 

demand must never exceed total electricity supply capacity and power stations must never 

undersupply electricity demand. The moment the system faces disequilibrium of demand and 

supply, the entire system shuts down resulting in a power outage [3]. The current paradigm 

requires that the balance of demand and supply be maintained almost entirely by the supply 

side. Electricity demand dynamically fluctuates during the day requiring power suppliers to 

make constant adjustments to supply.  
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2.3. Determining Peak Electricity Demand  

 Electricity demand for a region fluctuates throughout the day. Depending on the 

characteristics of the region, electricity demand may reach daily peaks at different hours of 

the day. Under TEPCO’s service areas, electricity demand fluctuates in a manner shown on 

figure 2.  

Figure 2 Peak electricity demand in the summer/winter for TEPCO in 2010 

 
Source: Recreated by author [4] 

 

 As shown in figure 2, for TEPCO, peak electricity demand is generally reached 

between 2PM to 4 PM on a hot summer day. When electricity demand reaches the lowest 

point of the day, the level drops to approximately 50% of the peak. This requires TEPCO to 

make wide ranges of supply adjustments.  

This task of meeting the highest electricity demand has always challenged power 

companies. Power companies usually possess redundant supply capacity greater than the 

expected peak demand to assure their capacity of adjusting supply to demand fluctuations. 

Since power companies construct supply capacity to meet such acute peaks in the summer, 

they possess power plants that rarely operate throughout the entire year [5]. Power companies 

must bear the cost for maintaining these idle power plants and this large burden is usually 

reflected on electricity prices. 
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Electricity demand curves could depend on geographic location, climate, and 

composition of electricity consumers. Therefore, in other locations, demand peaks are 

possibly observed in different hours of the day. Extreme weather is the most common reason 

for high demand peaks, but there are other occasions such as power plant maintenances or 

damages caused on the electricity grid that hinder secure electricity supply. Failing to supply 

sufficient electricity will cause temporary power outages and destroy components of the 

electricity infrastructure that further threaten continued electricity service. A combination of 

extreme heat waves with damaged electricity grids could become a worst case scenario. 

 

2.4. Consequences of Power Outages 

One of the more recent power outages in the world occurred in India in the summer 

of 2012. This power outage was reported to be a result of overloading a huge network that 

stretched across three interrelated electricity grids covering a vast area stretching from the 

eastern coast to the borders of Pakistan. The power outage affected the daily lives of over 670 

million people for over two days. Although, no casualties were reported, traffic jams, trapped 

coal miners, and stranded train passengers were notable consequences. This power outage 

was recorded as the largest power outage in terms of people affected. [6] 

Power outages are also common in some of the most powerful countries in the world, 

the United States. In the summer of 2003, the great northeastern blackout affected the lives of 

over 50 million people in the northeastern states to parts of Canada. The power outage lasted 

nearly two days, severely affecting financial centers located in New York and Toronto and 

leaving a huge economic impact estimated between 7 to 14 billion US dollars. The cause of 

this power outage was again reported as a result of peak loading [7].  

While the two cases reviewed here were due to excessive electricity loading, power 

outages can also occur as a result of damaged infrastructure. Perhaps one of the most 
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devastating nuclear accidents in the 21
st
 century occurred in Fukushima, Japan.  

 

2.5. The Nuclear Disaster 

On March 11, 2011, a strong earthquake with a magnitude of 9.0 on the Richter scale 

suddenly hit the north eastern coast of Japan. The Tohoku coastal line was later hit by a series 

of strong tsunami waves between 14 to 15 meters of height, which damaged the 

Fukushima-Daiichi nuclear power stations in operation [8]. After losing the ability to cool the 

reactors, the aftermath of this incident was beyond human imagination. 

Soon after the disaster, TEPCO realized that it had a severe shortage of electricity 

supply to meet electricity demand, and they announced the need for a rolling blackout. 

Businesses and households took turns to experience temporary power outages and were 

forced to discontinue all activities during those hours to relieve stress on the electricity grid. 

This event indicated the need for a dramatic change in the Japanese electricity paradigm. 

As an immediate response to electricity supply shortage, TEPCO announced and 

executed a rolling blackout. This action temporarily relieved tensions from increasing 

electricity demand on the electricity grid, but it was not a permanent solution. The damage 

caused to Fukushima and the vicinity by the radioactive pollution reaffirmed the risks 

involved with dependence on nuclear energy. The management of used nuclear reaction rods 

is also an unsolved problem that concerns the hearts of Japanese citizens. Ever since shutting 

down all nuclear power stations in Japan, continuing public protests as well as unsolved 

safety issues of operating nuclear power remain as great barriers for their recovery. As of 

October 2012, 53 out of 54 nuclear power plants are shut down, which significantly limits 

electricity supply capacity for all power companies in Japan [9]. 
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2.6. How Power Companies Shall Deal with Peak Demand 

 At the discussion level, the way in which society must deal with peak demand is 

changing ever since the nuclear disaster in Fukushima in March, 2011. The conventional 

methodology was to raise supply capacity by constructing power plants to clear the highest 

peak electricity demand expected in one year. Prolonged public protests against continuation 

of nuclear power impede resumption of nuclear power plants. TEPCO currently intends to 

increase supply capacity by substituting the loss through recovering and building new power 

stations that rely more on fossil fuels.  

 

Figure 3 Indication of how electricity supply meets electricity demand 

 
Chart created by author based on [4,10] 

 

 Limited electricity supply capacity becomes a problem when dealing with peak 

electricity demand as it limits the flexibility of power companies to comply with volatile 

electricity demand. Figure 4 indicates a case where electricity demand exceeds total supply 

capacity. A power outage to all service areas is possible in such cases [3]. 

  

Demand 
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Figure 4 Diagram of electricity demand exceeding supply capacity 

 
Chart created by author based on [4,10] 

 

2.7. Use of DR 

 DR is a tool used by power companies whereby electricity consumers are requested 

to reduce electricity consumption whenever the electricity grid expects failure to meet 

electricity demand. It is an immediate response to prevent damage to the electricity grid and 

requires cooperation from electricity consumers. Consumers are given incentive payments 

from power suppliers or disincentives through dynamic pricing programs to cooperate with 

electricity companies when these DR alerts are announced.  

Figure 4 indicates a situation where DR could be useful. Power companies will 

forecast that electricity consumption will exceed electricity supply capacity one day before 

and send DR alerts to electricity consumers. Figure 5 indicates how a successful DR might 

alter the electricity demand curve. 
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Figure 5 An ideal DR outcome 

 
Chart created by author based on [4, 10] 

 

2.7.1 Overview of DR programs 

DR programs are classified into incentive based programs and price based programs. 

In incentive based programs, electricity customers will generally receive payments or credits 

in other forms as a reward for their cooperation. Price based programs include a variety of 

dynamic pricing systems that influence electricity consumers to modify their normal 

electricity consumption patterns during peak demand hours. Time of use rate, critical peak 

pricing and real time pricing are three distinguished programs in this category. 

Time of use (TOU) rate is one of the classical methods of changing electricity prices 

[10, 11]. There are annually predetermined pricing blocks for on-peak and off-peak hours 

charging electricity consumed at different prices. The pricing block in peak periods are set 

higher than off-peak hours to encourage electricity consumers to shift their consumption to 

off-peak hours. 

Critical peak pricing (CPP) rates is another pricing system that builds on the 

time-of-use pricing system. Power companies will use CPP rates on a limited number of days 

or hours each year by usually notifying consumers a day ahead. CPP rates generally impose 

even higher tariffs than TOU pricing on those selected pricing periods [10, 11]. 
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Real time pricing programs use advanced information and communication 

technologies to adjust electricity prices dynamically based on real time oscillations of 

wholesale market prices. Customers are required to install smart meters to receive 

dynamically changing pricing information. [10] Power companies generally provide options 

that vary from technology intensive real time pricing systems to conventional time-of-use 

programs, and consumers are free to choose what fits their living styles. 

 

2.7.2 Shared benefits among power companies and consumers 

Power companies would suffer profit loss if electricity consumers simply decide to 

reduce electricity consumption overall. However, electricity companies are likely to support 

DR to overcome peak demand, as it may reduce maintenance cost of existing power supply 

capacities. As mentioned earlier, since excessive levels of peak demand (those that exceed 

total supply level) occur rarely throughout the year, power companies carry redundant 

capacity that only operate for a short period in any given year. If DR could substitute the 

redundant power supply capacities, then the profitability of power companies could be 

increased greatly [10].  

Participants in DR programs could also benefit from future savings in their energy 

bill. If DR becomes a wide spread phenomenon and reduces the redundant capacity that 

power companies need in order to meet the peak demand, then operating costs for power 

companies would decline. This may result in lower electricity prices overall [3].  

 

2.7.3 Inconveniences/Costs from DR 

DR imposes inconveniences on electricity consumers since electricity users are 

required to shift their daily routine activities. Businesses may have to reschedule their 

operations, which could result in losses. For an entire DR system to function, there are initial 
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investments that incur additional costs such as installation of smart meters or energy 

management systems as well as planning effective responses in times of DR. 

From the utility side, there are initial costs of establishing metering and 

communication infrastructure in the technological aspect. As part of the running costs, the 

design of billing systems as well as educational systems for participating electricity 

consumers are also identified as being crucial costs [10]. 
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Chapter 3 PROBLEM STATEMENT 

3.1. Sustainability and the Electric Grid 

 Electricity in a broad sense involves a wide range of issues from the environment, 

society, and to the economy. In the quest for sustaining the electricity system, we need to 

focus on developing a system that can continue to provide reliable electricity services today 

without compromising the needs of the future. From a broader prospective, I feel the need to 

clarify where this research is positioned in the global shift towards sustainability. The next 

section briefly discusses existing problems surrounding the electricity grid in a broader sense 

in terms of sustainability and then, the discussion will return to the main focus of this 

research. 

 

3.1.1. Comprehensive overview of existing problems 

The Fukushima accident in March, 2011, revealed to the world how dependence on 

nuclear power stations could not only be unsustainable but life threatening. Unless some 

unsolved issues such as nuclear waste management or disaster compensation programs with 

the affected areas are resolved, we may need to reconsider the supply of electricity. 

 However, when we consider the economic benefits of providing secure and equally 

low priced electricity supply, as well as employment that the nuclear industry has brought, we 

cannot completely reject the conventional electricity system’s power supply. Businesses are 

also better off with cheaper and more stable electricity services provided. Increasing energy 

costs accompanied with intense global competition could drive companies to accelerate their 

shift overseas that could dampen the local and national economy.  

 If we simply replace the loss of supply capacity with thermal power stations, this 

will not only increase dependence on depletable fossil fuels, but carbon emission levels are 

also expected to increase. The volatility involved with natural resource prices has potential to 
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threaten stable procurement and affordable energy prices for consumers. Dependence on 

foreign fossil fuels also increases the outflow of national wealth. Trillions of yen are expected 

as additional expenses for securing fossil fuels, which could be spent on securing jobs for the 

unemployed instead [12]. As these issues identify, there are many problems observed at 

various levels from local to global and in different time scales. 

 

3.1.2. A paradigm shift to a ‘soft energy path’ 

 When we consider a sustainable energy system, Lovins suggested the necessity of a 

complete paradigm shift on the electricity system. He defines the conventional electric grid as 

taking a ‘hard energy path’ criticizing its characteristics of 1) highly centralized supply 

system, 2) generation far from points of use, and 3) preference on nuclear power. TEPCO 

covers a vast area of the Kanto plane by controlling every step from electricity generation, to 

distribution, characterizing a highly centralized supply system. The company’s possession of 

nuclear power plants located outside of their service areas complete the features of a ‘hard 

energy path’. On the other hand, Lovins states that a ‘soft energy path’ characterized by 1) 

decentralized supply systems, 2) public participation, and 3) preferences to renewable energy, 

is what our society should seek [13]. A decentralized supply system is composed of many 

smaller scaled electricity generation facilities run by diverse power suppliers that are located 

closer to the points of consumption. Public participation in energy usage is critical to improve 

energy efficiency as well as reducing total energy consumption [14]. For example, citizens 

actively involved in purchasing solar panels for their home’s usage brings energy production 

closer to people’s everyday lives. This is also explained by the NIMBY to IMBY (not in my 

backyard to in my backyard) movement, which depicts a paradigm shift for electricity users 

to achieve sustainable energy consumption [15].  

With these sustainability principles at hand, at the technological level, a new 
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emerging movement can be observed with recent projects around the world with smart grids. 

A smart grid uses the intelligence of information communication technology to manage 

electricity production, storage, and consumption for an entire community. In such systems, 

the necessity of having excessive supply capacity only to meet peak demand for a large area 

diminishes. This new system, with greater diffusion of energy storage and consumer 

participation can integrate a higher ratio of renewable energy to the grid than the 

conventional system. 

DR is one of the principal consumer participation features in a smart grid. DR is 

applicable to the current centralized grid, but its importance is expected to increase as our 

society shifts towards decentralization with preference to renewable energy, and small scale 

electricity grids that characterize a sustainable energy system.  

 

3.2. Need for Estimating DR Potential 

 As the importance of DR increases for maintaining the reliability of current 

electricity services in Japan, understanding the feasibility and potential of DR as a grid 

healing tool becomes an interesting topic. Modeling and simulation of potential electricity 

demand reduction based on historical electricity consumption data is one method to 

understand the effectiveness of DR. Power companies require estimates of predicted DR from 

a collection of consumers (e.g. factories, shopping centers, cluster of shops, cluster of 

residences etc.) in order to effectively exercise DR. [16] 

One of the reasons why power companies are willing to upgrade conventional 

mechanical meters with smart meters in Japan is for this purpose. While mechanical meters 

are simply designed to measure the cumulative amount of electricity consumption occurring 

since its installation, smart meters are capable of measuring real time consumption levels and 

report data in short time intervals (e.g. 30 minute consumption values) that enable power 
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companies to monitor compositions of electricity demand at given hours. Power companies 

use this data to understand real time electricity consumption from each electricity consumer 

for better use of DR programs. [17] 

Electric power companies would consider DR successful if electricity supply 

shortages are covered with the least effort from consumers. Excessive DRs reduce potential 

earnings for power companies and also result in excessive behavioral modification from each 

household. In such cases, the overall welfare for the society in terms of economics is reduced. 

Under-estimation is also problematic since insufficient DR would result in failure of the 

electrical grid. Once a power company understands how much electricity reduction it can 

expect from a cluster of consumers, the company can plan and execute DR accordingly. 

 

3.3. Scope of Research 

For the purpose of this study urban condominium type residential households are 

considered as the focus target for assessing DR potential. The residential sector is one of the 

greatest contributors of energy consumption increase marking a 30% increase in energy 

consumption over the last 20 years [18]. In terms of electricity consumption, the residential 

sector is responsible for 27% of total annual electricity demand [18]. Because of the need to 

address increases in energy consumption, various industries are targeting energy saving in 

households as a new business field [19]. 

Condominium type households are currently more popular than detached dwellings 

in the Tokyo metropolitan area. Between 2005 and 2011, 38% more condominium housing 

units were newly constructed than detached households in the same region. [20] The higher 

preference towards condominium type dwellings by Tokyo citizens increases the significance 

of focusing on this segment. 
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3.4. Past Research on DR Potential 

 Historical studies on DR to the residential sector go back to the late 1970s. The term 

load shifting was then used to study the potential of energy users shifting electricity 

consumption to off peak hours (i.e. times of day when electricity is demanded less) using the 

time of use (TOU) pricing methods. Time of use programs have been a classical approach by 

power companies to shift demand loading in order to reduce the stress imposed on the 

electrical grid during peak hours and increase efficiency of power stations. One of the earliest 

studies conducted by Aigner and Lillard, in southern California found TOU to be effective in 

shifting the consumption behavior of participants [21]. Caves et al. studied the effect of TOU 

in service areas of Pacific Gas and Energy on residents that volunteered to take part in TOU 

programs and found that the TOU programs caused a shift of approximately 5% of electricity 

consumption [22].  

Much later in Japan, Matsukawa et al. designed a TOU experiment in Fukuoka, 

Japan where participants received incentive payments for reducing the peak usage share of 

their annual electricity consumption compared to the previous year. Households that received 

incentives showed a slight shift in consumption compared to those that did not receive 

incentives, but the authors concluded that the effect was negligible [23].  

In recent years around the world, the focus is shifting towards real time pricing and 

other incentive programs to reduce peak demand more effectively. Deployment of smart 

meters that give customers feedback on energy use as well as dynamic price changes enable 

new programs to be introduced. In Japan, the long lasting dominance of vertically integrated 

and monopolized electricity markets long prevented the introduction of such equipment, and 

new pricing mechanisms/incentive programs are yet to begin. 

Herter et al. conducted an experiment to test the effect of critical peak pricing of 

electricity in California. They showed a significant residential customer response of up to 
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13% reduction for households equipped without direct load control equipment and 25% 

reduction for households equipped with direct load control equipment for a 5 hour duration. 

They concluded that critical peak pricing with direct load control equipment has a high 

potential to relieve stress on the electrical grid [24]. 

In Japan, InterTech Research Corporation conducted a DR pilot study in the Kanto 

and Kansai regions of Japan applying various pricing programs and direct control measures 

to subdivided groups of 900 households. The results were reported to be negligible, calling 

into question the usefulness of DR for the Japanese residential sector [25]. 

The study by InterTech Research Corporation lacks discussion on the possible 

reasons for the negligible effects. The experiment was conducted one time in the summer 

without prior education to participants or an analysis of household characteristics such as 

living patterns or family structure. In this research, we argue that electricity consumption 

depends greatly on each household’s capacities of taking action. Capacities can range from 

individual living patterns to awareness of energy saving strategies. Therefore this research 

will focus on living patterns as well as family structure to discuss strategic measures for 

effective DR outcomes.  

 

3.5. Research Objective 

The objectives of this research are 1) to understand the potential of DR based on 

predicted human behavior for urban condominiums in Kashiwa-no-ha of Kashiwa City and 2) 

to identify critical features that affect DR outcomes. This research aims to give 

recommendations to policy makers or power companies for designing effective DR programs. 

 

3.6. Specifying the Focus (Direct vs. Indirect Load Control) 

 In DR, there is a distinction between direct load control and indirect load control. 
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Direct load control is popular in the United States where grid operators are authorized to 

remotely control each household’s energy usage [11]. However, the diffusion of smart meters 

for enabling direct load control has raised disputes in the United States where consumers 

protested against the remote shut-off features that power companies would possess [26]. An 

indirect load control is where households are given incentives or disincentives to change their 

energy use during DR, but the households choose their own behavior. This research will be 

discussed in the context of indirect control which is participatory rather than coercive, giving 

electricity consumers the right to choose their response. 

 

3.7. Research Questions 

Part I: Estimating DR potential 

- Can DR bring significant peak reduction? 

1a. What were the conditions in which peak demand occurred in the previous year? 

2a. Which households consume electricity during those hours? 

3a. What are possible options for households? 

4a. What percentage of residents can be expected to take each action? 

Part II: Relationships between living pattern, family structure and electricity consumption 

- How do living patterns affect potential electricity reduction? 

1b. What are regular representative living patterns? 

2b. What is the distribution of different living patterns? 

3b. What is the relationship of family structure to living patterns? 

Part III: Recommendations 

- What are possible suggestions generated from the findings? What are the implications 

from the findings? 
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The first phase of this research involves calculations and running scenarios to 

understand findings based on selected behavior by electricity consumers. The second phase 

investigates the relationship between electricity consumption and living patterns, and how 

different living patterns are linked to family structures. The final phase provides suggestions 

and recommendations based on the findings for policy makers or power companies to 

practice DR with greater efficacy. 

DR is likely to follow a developmental process that is impossible to justify by a 

single experiment at an initial stage. The design of DR programs as well as the availability of 

continuous feedback and consumer education should greatly affect the outcomes. The 

calculations of DR potential using historical electricity consumption data will simply serve 

for setting target goals. [11] The next step explores how household living patterns and family 

structure are hints to discovering peak cut tactics. 
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Chapter 4 DATA AND METHODOLOGY 

4.1. Data 

 Electricity consumption data is collected from condominium residential buildings 

located in Kashiwa-no-ha of Kashiwa City. The sample size is 94 households and electricity 

measurements are collected at 10 minute intervals from October 1
st
 , 2011 to September 31

st
, 

2012. The selected households demonstrated reliable data submission from the electronic 

electricity meters with more than 95% of data successfully stocked in the data server each 

month of its duration. 

 

4.1.1. Data collection 

In each household of the residential district, an electronic meter that measures 

consumption of electricity, water and gas by 10 minute intervals is preinstalled. For the 

purpose of the study, the method for electricity metering is only described. On the distribution 

board of each residential unit, a current transformer (CT) is attached to the red and black 

voltage side electric wires. The CT collects all electric current that flows through both wires 

and measures the entire amount of electricity consumption for a single household in a given 

time interval. 
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Figure 6 An image of a typical Japanese distribution board 

 

Figure 7 CT attached to the voltage wires (left) and data collector (right) 

 

 

This instrument collects and sends electricity reading records via the wireless LAN 

to the energy data center. The data center processes all data and gives feedback to individual 

households via a social network system (SNS) and an interphone [27].  

 

4.1.2. Data characteristics: 

Currently more than 200 households continuously submit energy consumption data 

to the database. However due to instability of data submission observed in some households 

as well as constant increases in new residents, we have restricted the sample size to 94 

households. Once the entire condominium complex is complete, collection of data from 800 
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households is expected. Thus the current sample size represents approximately 12% of the 

future total. 

Residents interact through an SNS that is built-in to the condominiums before they 

move in. Active participants were requested to provide information on family size, family 

composition and household head’s age. All information for 51 of the 94 households that we 

have targeted was successfully collected. 

Family attributes show highly skewed distribution towards younger families and 

smaller family sizes. Approximately 80% of the families were couples having either one or 

no children. With a large majority of the household head’s age in the 30s, the families are 

considered typically young. 

 

Figure 8 Distribution of household head age (right) and family structure (left) both retrieved 

from the social network service’s database 

 
Source: [28] 

 

4.1.3. Advantages of using this data 

Since all data is collected from a single geographical site, there are no climatic 

factors that differentiate among different households. If data were dispersed throughout the 

country, energy consumption is likely to change depending on factors such as temperature, 

irradiation, or weather.  
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The sample size is also advantageous. Currently 94 households are monitored 

consistently and continuously producing 10 minute interval energy data. This size is 

important because, household electricity consumption differs widely among different 

households and this large collection of data should represent the whole population’s 

distribution well. 

Unified building structure is an additional benefit of using this data. The units of this 

condominium type residential block are all built with unified material and are rated under the 

CASBEE building rating system with the highest standards [27]. 

The Hawthorne effect in this study is expected to be insignificant. The Hawthorne 

effect is a type of bias that often occurs when conducting social experiments to people [29]. 

The theory states that when people are conscious of monitored for purposes of social 

experimentation, their behavior is likely to become biased. In the case of our target residential 

buildings in Kashiwa-no-ha, all energy meters are pre-installed to the each unit before the 

resident moves in. Therefore, it is likely that the data depicts the natural living patterns of 

residents.  
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4.2. Methodology for Estimations 

 

4.2.1. Input data 

- Data format:  10 minute interval total household electricity consumption data 

- Duration:  October, 1
st
 2011 to September, 31

st
 2012 

- Sample Size:  94 households from Kashiwa-no-ha condominium residences 

- Temperature Data:  Retrieved from the Japan Meteorological Agency’s Abiko station 

 

Sample selection was based on the reliability of each household’s electricity meters. 

While some electricity meters faced unstable wireless internet connection, the selected 

sample for this research showed excellent data transmission consistency with over 95% of 

data retained for each month in the 12 month period. 

 

4.2.2. Output features 

- Values: Enorm and Eshift per household (these are described below) 

- Time intervals: 1 hour cumulative values 

- Dates: 5 highest summer peak demand days for TEPCO’s supply area in 2011 

 

TEPCO’s summer demand peak is selected as the setting for DR estimation. In the 

summer, the demand peak is reached in the early afternoon, but demand stays quite high 

between 10AM and 6PM on a weekday. Therefore, our estimations will focus in this hour 

range. We estimate DR potential based on the following assumed human behavior model. 

Occupants are assumed to respond to DR in three possible ways: 1) stay inside the house and 

reduce electricity consumption, 2) leave the house and switch off all electricity consumption 

except for base loads such as refrigerators, 3) continue using electricity the same as before.  
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As an initial step to estimate the amount of reducible electricity, we classify all 

electricity consumption into 3 categories as indicated in figure 9. 

 

Figure 9 Classification rule of household electricity consumption 

 
 

4.2.3. Defining Eshift, Enorm, and Ebase 

Eshift is electricity consumption that an individual household is capable of shifting for 

a given period of time. The assumption here is that this type of consumption is characterized 

by short intervals of intensive electricity consumption, which results in sharp peaks in the 

consumption profile. These consumption types are also considered to be mostly unrelated to 

living patterns, occurring on an essentially random basis. Some examples of Eshift type 

electricity consumption include microwaves, toasters, vacuum cleaners, hair dryers, or 

washing machines. 

 

Figure 10 Sample load profile for Eshift (Microwave) 

 
Source: Direct measurements conducted by the author 
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Enorm consists of electricity consumption that an individual household regularly 

consumes while occupying the house. When household members stay inside the house, there 

are certain appliances that consume electricity at all times regardless of what they are doing. 

For example, some residents may always have lighting, air conditioning, television sets, 

personal computers, and/or the humidifier on during the entire time that they are in the house. 

Such consumption is categorized as Enorm consumption, and I assume that this consumption 

cannot be shifted to other hours unless all family members in a household leave the house. 

 

Figure 11 Sample load profile for Enorm (Above: air conditioner, Below: Desktop Computer 

and Display) 

 

 
Source: Direct measurements conducted by the author 

 

We also define Ebase, although this value is only used indirectly for estimating DR 

potential. Ebase includes electronic appliances that operate 24 hours per day regardless of 

household occupancy. A typical 24 hour consumer of electricity is a refrigerator.  
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Figure 12 Sample load profile for Ebase (Refrigerator) 

 
Source: Direct measurements conducted by the author 

 

The two sample profiles of different models of refrigerators depict differing load 

profiles. While “Refrigerator A” shows a smooth pattern, ‘Refrigerator B’ depicts a rougher 

pattern with frequent but small fluctuations. More recent models that are eco-friendly may 

show this rough pattern, which generally results in a much smaller total energy consumption. 

Another example of an appliance that consumes electricity 24 hours per day is the heated 

toilet seat that is popular in Japanese households. Simple standby electricity consumption by 

unused but plugged in appliances are also classified in this group. 

 

4.2.4. Disaggregating Enorm and Eshift from total consumption 

 This subsection will explain the methodology I have developed for estimating the 

values of each consumption type for individual households. Figure 12 indicates how total 

electricity consumption of a household is disaggregated into Enorm, Eshift, and Ebase. 
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Figure 13 Disaggregation of total consumption into Enorm, Eshift, and Ebase 

 
Source: Data collected from a selected sample household in Kashiwa-no-ha 

 

Enorm and Eshift are the amounts of electricity consumption above Ebase consumption. 

We assume that they only occur when residents occupy the house, although this assumption 

means that we ignore situations such as when the residents run washing machines while they 

are outside of the house. As figure 12 shows, when residents are in the house, electricity 

consumption tends to reach a plateau indicated on the top of the diagonally striped boxes. 

This plateau is the level of electricity consumption from Enorm. For this sample household, the 

plateau is at around the 800 watt level. All consumption readings exceeding this level are 

considered as a part of Eshift. We will name this 800 watt level as ebasic. ebasic is the level of 

power consumption that distinguishes Enorm from Eshift. All Enorm and Eshift are energy 

consumption calculated each hour between 10AM and 6 PM. 

 

  

Eshift 

Enorm 

Ebase 
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4.2.5. Estimating Enorm and Eshift 

There are two steps to estimate Enorm, and Eshift for each household. The first step is 

to detect occupancy for the hours between 10AM and 6PM. To do this, we use a process that 

refines the raw data into simplified forms that eliminate minor fluctuations but keep major 

fluctuations. By processing the raw data in this way, only abrupt changes that indicate the 

beginning or the end of occupant activity remain. The second step is to determine ebasic, 

which is the level of power consumption that distinguishes Enorm from Eshift. ebasic is the power 

consumption level for a minimum livable indoor ambience for the occupant. In this research, 

all consumption above the ebasic is considered to be shift-able. Consumption at or below the 

level of ebasic is considered to be non-shift-able: this electricity will be consumed unless 

occupants leave the house and switch off all appliances. The assumption is that electricity 

users will not give up the livable ambience provided by ebasic when they are staying indoors. 

 

4.2.6. Occupancy detection (the first step) 

For a selected 24 hour period of meter readings over 60 minute intervals for a 

particular household, the following equation is used to assign a unitless value to each meter 

reading. 

 lit = [
𝑒𝑖𝑡−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
]X 5 (1) 

 

lit is the amount of electricity used by household i at time t normalized to a value 

usually between 0 to 5. Whenever eit is greater than the estimated emax, lit could have a greater 

value than 5. eit is the actual measurements of power consumption by household i at time t. 

emin is the estimated lowest power consumption value for the target date’s consumption while 

emax is the estimated maximum value of power estimated for the target date. 

Each emin and emax for a given household is determined as follows. emax is estimated 
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by initially identifying the daily maximum power consumption values of 60 minute interval 

data over the previous 7 days I then take the average value over all the 7 values to determine 

emax. emin is estimated by taking the minimum of 60 minute interval daily minimum data from 

the past 7 days. We have used the previous 7 days of data in order to eliminate the following 

types of biases. If the occupant happened to be home all day and used the air conditioner for 

24 hours, the minimum value of the actual day will not reflect minimum levels of 

consumption when the occupant leaves the house and switches off all appliances. In a similar 

manner, if the occupant is absent from the house for holidays, the maximum value of the 

actual analysis day will be useless. Observing the past 7 days helps to exclude those bias 

factors. (Refer to the Appendix A) 

The following equation is then applied to all of the processed data as a rule to 

determine occupant activity. This rule of distinguishing occupant activity enables further 

understanding of living patterns. (Refer to Appendix B) 

 

Figure 14 Flow chart for Occupancy Detection Algorithm 

 
 

4.2.7. Solving for ebasic (the second step) 

I use the original 10 minute interval data to calculate Enorm and Eshift, because 10 
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minute interval data depicts sharp rises and declines of electricity consumption changes better 

than 60 minute interval data as indicated in figure 15. 

 

Figure 15 A comparison between 10 minute interval average power data and 60 minute 

interval average power data 

 

 

The method is as follows. For the hours in which there was occupant activity, (i.e. lit 

> 1) subtract a emin from all 10 minute interval data between 10AM and 6 PM to obtain hit. 

The value of hit is understood to be the electricity consumption from activities that occur as a 

result of the household member being in the house. Occasionally, hit will be a negative value. 

This can occur because even though a 60 minute interval data may depict household 

occupancy, one of the six 10 minute interval data may not. The base load refrigerator profile 

is likely to cause minor fluctuations where values fall below emin, and I have ignored such 

values. 

I use an iterative method to establish the value of ebasic. First, I set the initial value of 

ebasic to be the median value of hit for a given household on the analyzed date. I then count the 

number of hit values that are above ebasic. If more than 90 percent of the hit values are above 

ebasic, I increase ebasic by 60 watts and then repeat the count. (Refer to Appendix C) 
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Figure 16 Flow chart for computing ebasic 

 
 

Enorm and Eshift are calculated using ebasic as follows. Any values of hit that exceed 

ebasic are considered non-shift-able consumption patterns included in (Eshift). The remainder of 

hit is considered shift-able (Enorm). For clarification, figure 17 provides a graphical 

representation of each variable identified in this methodology section. 
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Figure 17 Graphical representation of the 6 variables identified 

 
Source: Source: Data collected from a selected sample household in Kashiwa-no-ha 

 

4.2.8. Solving for ENORM and ESHIFT  

So far we have explained the steps to solve Enorm and Eshift for individual households. 

However, we seek to understand the total potential of electricity reduction from the entire 

residential building. We aggregate every Enorm and Eshift from all households to get ENORM and 

ESHIFT that represent the total building’s values. ENORM is the total amount of non-shift-able 

electricity consumption over a predetermined period of time (one hour) calculated for all 

households assessed. ESHIFT is the total amount of shift-able electricity consumption 

calculated for all households assessed. All letters are capitalized to distinguish between the 

values estimated for individual households and aggregated values estimated for the entire 

residential building. 

Once ENORM and ESHIFT are calculated, the potential electricity consumption 

reduction based on each of the consumer actions, 1 Leave house, 2 Reduce electricity 

consumption while staying indoors, and 3 No action can be calculated. The total amount of 

electricity that would be reduced by leaving the house over the specified period of time (one 

hour) is the sum of ENORM and ESHIFT. The total amount of electricity consumption that can be 
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reduced while staying indoors is ESHIFT. Figure 18 illustrates the rules of calculation. 

 

Figure 18 Equations for estimating ‘Leave house’ and ‘Reduce indoors’ 

 
 

4.2.9. Aligning the Units 

 So far, all estimations for Enorm, and Eshift, were in units of energy consumption (Wh) 

per each hour. In numerical terms, this watt-hour per hour is equivalent to the average power 

consumption (watts) for the same time interval. DR is about power savings rather than energy 

saving. Power is the instantaneous level of electricity consumption for a particular moment. 

Analyzing the potential DR of an instantaneous power demand for a household is impossible 

with the current resources I have. However, we can attain a good estimate of the power level 

for a particular time interval by aggregating a large collection of datasets. Instantaneous 

demand could oscillate dynamically, but by aggregating hundreds of electricity consumption 

data, the fluctuations occurring at different moments in a particular hour interval cancel out to 

form a rather smooth estimate. In this research, I estimate ENORM, and ESHIFT in units of Wh 

per hour, but I treat the potential DR outcomes in terms of watts (W) reduced.  

 

4.3. Scenario setting 

I have evaluated three scenarios depending on the participation ratios for each action. 

Complete participation in “leave house” depicts the unrealistic situation where all DR 
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participants decide to leave their houses. This value gives the maximum reduction amount 

possible from the DR program considered here. The other two scenarios are more realistic 

situations that include smaller ratios of participants who elect to leave their houses and a 

significant percentage of non-participating residents who take no action. 

Table 1 Scenario setting 

Scenarios Leave house Reduce indoors No action 

Complete 

Participation 

100 % 0% 0% 

Medium 

Participation 

40% 30% 30% 

Minimum 

Participation 

20% 40% 40% 

 

If the residents that decide to leave the house end up consuming the same amount of 

electricity elsewhere, the contributions to DR from those individuals will be nullified. 

Therefore, it is important to design the DR program so that household members gather at 

public spaces that share an air conditioned environment. The overall energy consumption is 

expected to decline as people gather and share energy use.  

 

4.3.1. Complete Participation 

In this situation, those residents consuming electricity during the critical peak 

demand hours will all decide to leave their houses for a certain period of time. This is a 

highly unlikely scenario since it is difficult to imagine all residents abandoning an entire 

residential building for energy saving purposes. However, values calculated for this scenario 

could give an understanding on the maximum potential for the DR program considered here 

to contribute to reduction of peak electricity demand. 

 

 Complete Participation = ENORM + ESHIFT (2) 
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4.3.2. Medium Participation 

In this case, 40% of the occupants in home are expected to participate by leaving 

their house during the peak demand hours, while 30% would participate in their houses by 

shifting some activities earlier or later than the peak demand hours. Therefore, it is assumed 

that in total, 70% of all residents in their homes would contribute to DR, generating numbers 

that are more conceivable in a real situation. Through experience and improved design of DR 

programs, we expect to achieve results similar to this scenario. 

 

 Medium Participation = (40%*(ENORM + ESHIFT) + (30%* ESHIFT) (3) 

 

4.3.3. Minimum Participation 

In this scenario, 20% of households inside the house will leave the house and 40% 

would decide to shift consumption to other non-peak hours. Therefore, the total participation 

rate is 60%, leading to a smaller impact than the other two scenarios. At the initial stage of 

DR, we expect outcomes to be similar to this scenario. 

 

 Minimum Participation = (20%*(ENORM + ESHIFT) + (40%* ESHIFT) (4) 

 

4.3.4. Significance of each scenario 

These scenarios serve as benchmarks on the responsiveness of the residents to DR. 

The effect of DR should grow as more citizens are exposed to the program and gain 

experience. At the initial stage, the DR effect may fall way below expectations, but as citizens 

become aware of available actions, the results from the Medium Participation and even Full 

Participation scenarios may become achievable. 
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Chapter 5 RESULTS 

5.1. ENORM and ESHIFT Calculated 

ENORM (non-shiftable electricity consumption) and ESHIFT (shiftable electricity 

consumption) for the entire condominium buildings of Kashiwa-no-ha is estimated. Every 

value of Enorm it and Eshift it for each household in the 94 samples was calculated and then 

averaged to compute per house values. Assuming that the 94 households represent 

Kashiwa-no-ha, per house values were multiplied by 2000 to attain the residential building’s 

value.  

 

Table 2 ENORM and ESHIFT estimates on the average of 5 highest peak demand days 

 
 

ENORM and ESHIFT were calculated for the five highest peak electricity demand days 

of the TEPCO service area. Those values were averaged to obtain the values on the table. 

ENORM and ESHIFT are used to compute scenario results. 

 

  

Hour 10 11 12 13 14 15 16 17 Average

ENORM  (kWh per hour) 325 311 391 408 435 445 463 545 415

ESHIFT  (kWh per hour) 60 64 86 72 89 135 124 120 94

Weekday Summer 2012
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Figure 19 Graphical representations of Kashiwa-no-ha residential demand (94 sample total) 

and DR outcome by scenarios on the average of 5 highest peak demand days for TEPCO 

 
Source: [4] 

 

Table 3 Residential DR outcome by scenarios on the average of 5 highest peak demand days 

 
 

Under the Medium Participation scenario, an average of 232 kilowatts of power 

consumption can be reduced from the condominium residential building, which corresponds 

to a 32% electricity reduction of the data population. Greater or lesser electricity cuts will 

result if participation levels change. The minimum participation would generate a 17.2% 

reduction on average and the complete participation would result in a 62.9% average 

reduction. 

 

  

Hour 10 11 12 13 14 15 16 17 Average
Complete Participation (kW) 386 376 477 480 524 580 587 664 509

(% reduction) (-56.2%) (-54.6%) (-61.7%) (-62.0%) (-64.5%) (-66.8%) (-66.9%) (-70.5%) (-62.9%)
Medium Particpation (kW) 172 169 216 214 236 272 272 302 232

(% reduction) (-25.1%) (-24.6%) (-28.0%) (-27.6%) (-29.1%) (-31.4%) (-31.0%) (-32.0%) (-28.6%)
Minimum Participation (kW) 101 101 130 125 141 170 167 181 139

(% reduction) (-14.7%) (-14.7%) (-16.8%) (-16.1%) (-17.3%) (-19.6%) (-19.0%) (-19.2%) (-17.2%)

Weekday Summer 2012
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5.2. Significance of ~28.6% Peak Reduction from the Residential Sector 

When we consider a society, households differ greatly with respect to building 

characteristic, family income, geographical location, or energy type dependence. However, if 

we assume that the entire residential sector under TEPCO’s service area (30% of the total 

demand in the service area) reduces 28.6% of electricity demand during peak demand, the 

effect on the TEPCO peak electricity demand would be a reduction of 8.58%. [30] Peak 

demand of TEPCO in the summer of 2012 was 50.17GW and 8.58% of this value is 

approximately 4.3 GW. 

 

5.3. Significance of 4.3 GW 

We can compare the 4.3 GW of reduction from DR to the electricity supply capacity 

of nuclear reactors in Japan. Prior to the Fukushima Daiichi nuclear disaster in March, 2011, 

there were 17 nuclear reactors operating for TEPCO. The average capacity of each of the 17 

nuclear reactors in TEPCO service area was 1.01GW [31]. Therefore, the total electricity 

consumption reduced from the residential sector is approximately equivalent to 4 and one 

quarter of nuclear reactors. 

 

5.4. Observing Different Living Patterns 

In the following section, we analyze the relationship between living patterns and 

family structure with electricity consumption in order to clarify the attributes that could 

contribute to effective DR participation. We believe that by understanding the two attributes 

we can better plan tactics to reach more effective DR outcomes. The aim of this section is to 

deepen data analysis to deliver effective recommendations to DR operators. 

 

5.4.1. Analyzing representative living patterns of electricity consumption 

I conducted an extensive study over different living patterns from several hundred 
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households, which resulted in a rough classification of living patterns indicated in figure 20. 

 

Figure 20 Sample of representative Living Patterns 

 
 

The red brackets indicate the hours between 10:00 AM and 6:00 PM, corresponding 

to the hours in which people usually work. We classify the household living patterns based on 

the different forms of electricity consumption profiles within each bracket. 

 

Table 4 Summary of representative living patterns 

Pattern Characteristics Example situations 

A Absent during the daytime 

 

All family members work or go to school 

during the day. 

B Present in the morning and absent 

from the afternoon 

Mother and young child leave for shopping 

in the afternoon. 

C Absent in the morning but returns 

home early afternoon 

Young child returns home in the early 

afternoon from school on weekdays 

D Present all day 

 

An elderly family member stays in the 

house all day.  

Air conditioning is left on all day for a pet 

that is taken care of in the house. 

 

On the same days that were used for estimating DR potential in the previous analysis, 

we investigated the distribution of different living patterns.  
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Figure 21 Tabular and graphical view on ratios of living patterns by day 

 

 
 

Approximately 30% of the households are representative of type A while 54% are 

representative of type D. Type B and type C were less often observed. The final row of the 

table indicates the average electricity consumption per pattern between 10AM and 6PM. Type 

D patterns consume far more electricity than other patterns. 

Residential buildings with high percentage of type D households would have large 

potentials for DR because more households simply consume greater electricity during the day. 

In the same manner, motivating the households showing type D patterns to participate in DR 

would result in greater outcomes. 

 

  

Date (temperature) A B C D
2012/8/30 (28.9) 31% 12% 6% 51%
2012/7/27 (28.4) 30% 5% 5% 60%
2012/8/23 (28.7) 27% 15% 3% 55%
2012/8/24 (28.7) 29% 9% 6% 56%

2012/8/02 (28.4) 33% 12% 5% 50%

Average 30% 10% 5% 54%

Average demand (Wh) 1048 2136 2392 4639
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5.4.2. Regularity of each pattern  

On any particular weekday, we can find the distribution of different living patterns 

for that day. However, observing the regularity of each pattern by individual households is 

necessary to understand the relationship between family structure and living pattern. Using 

the five highest peak demand days from the earlier analysis, the regularity of each living 

pattern for every household was observed. A particular living pattern is assumed to be regular 

for a household if it occurs at least 4 days out of 5. (Appendix D) 

 

Table 5 Living Pattern regularity of 94 households 

 
 

No families showed regularity for type B or type C patterns. 19% of the sample 

households remained absent during the day for 4 days or more indicating type A patterns, and 

46% of the sample households consumed electricity throughout the day for 4 days or more, 

indicating type D patterns. The remaining 35% of the sample households demonstrated no 

adherence to any of the living patterns. 

 

5.4.3. Redefining electricity consumption patterns 

 Since none of the households showed regularity for type B and type C patterns, we 

merged those patterns with the “Other” group into a group ‘Partial Absence’. We redefine 

households showing regular type A patterns as ‘Total Absence’, and households with regular 

type D patterns as ‘Non-absence’. 

 

5.5. Family Structure and Electricity Consumption Patterns 

The next step seeks to understand the relationships between regular consumption 

Pattern Type A Type B Type C Type D Other
Number of

Households
18 0 0 43 33

Ratio 19% 0% 0% 46% 35%



44 

 

patterns and family structure. Out of the 94 households used for analyzing electricity 

consumption data, we successfully collected family structure information on 51 households. 

Family structures of the remaining 43 households are unknown, but an analysis of family 

type dependency on each of the three groups was conducted otherwise. 

Families are categorized into 4 groups which are 1) single, 2) couple living with no 

children, 3) couple living with children, and 4) others. The category ‘others’ is comprised of 

families where the household owner lives with their parents. 

 

Figure 22 Tabular and graphical representation of the relationship between family structure 

and regular living patterns 

 

 
 

Results show that nearly 70% of the households showing ‘Non-absence’ are families 

with one or more children. Although a minority, those families under the category ‘other’ that 

have elderly family members also tend to stay inside the house on a regular basis. Families 

under ‘Total Absence’ are dominated by smaller family sizes such as single households or 

Family Structure
Non-
absence
(46%)

Partial
Absence
(35%)

Total
Absence
(19%)

Total

Single (2) 0 0 2 2
Couple No Children (22) 4 8 10 22
Couple with Child(ren) (23) 13 9 1 23
Others (4) 2 2 0 4

total 19 19 13 51
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couples living with no children. In ‘Partial Absence’ group, different family structures are 

mixed. 

 

5.6. Summary of Results 

At the first stage of analysis, DR estimation found an approximate 28.6% reduction 

of electricity use for summer TEPCO peaks. This estimate involved a close look into 

individual household’s electricity consumption profiles for the tested dates. The significance 

of this figure was later calculated to give a rough estimate of 4.3 GW potential reductions 

from the entire residential sector under TEPCO service areas. This value was comparable to 

the power capacity of 4 and one quarter of an average nuclear reactor of TEPCO property. 

The second stage involved a deeper observation into different living patterns that 

each household follows. Each household was roughly categorized into 4 representative 

patterns based on the time of electricity use. A comparison of the number of households each 

category indicated that 55% of the households consumed electricity on a consistent and 

constant basis throughout the day. This group labeled “type D” households was the greatest 

consumer of electricity during the day, and it was concluded that demand participation from 

this group would have the greatest impact on reducing electricity consumption during the 

peak. 

Although it was understood that type D pattern was the most common and most 

electricity consuming, we also wanted to understand the regularity of each electricity 

consumption pattern. For each household, the tendency to stay with each pattern was studied. 

Results showed that 46% of the households were consistently labeled as type D pattern. Type 

B and type C patterns had no regularity. Type A patterns appeared 19% of the time and the 

remaining 35% of the households involved a variety of different patterns (type A through type 

D patterns) with no specific regularity. This part of the analysis concludes by forming 3 new 

groups that are labeled as, ‘Total Absence’, ‘Non-absence’, and Partial Absence. 
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The final step observed the relationship between family structures and the 3 new 

groups of living patterns. The ‘Non-absence’ group was composed nearly 70% by couples 

living with children. ‘Total Absence’ was composed more than 90% by either single 

households or couples with no children. 
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Chapter 6 DISCUSSION (RECOMMENDATIONS) 

6.1. Strategy Planning for Effective DR Outcomes 

Table 6, is a list of recommendations for each corresponding group. There are two 

types of recommendations with different ends. The first is advising ways to encourage 

household members to leave the house for a temporary period and switch off all electricity 

consumption except for the base load consumption. The other is to consider how to reduce 

electricity consumption while staying inside the house either by shifting the activity or 

eliminating wasteful electricity consumption. 

Families with ‘Non-absence’ consumption patterns were mostly families with young 

children. We can assume that while one parent takes care of the children, the other is out for 

work. Reasonable suggestions would include ways to motivate parents and children to gather 

outside of the house, (e.g. at shopping malls or other public facilities), and create social 

interactions with other families of a similar kind. Ice cream shops or cafes could distribute 

discount coupons to residents that are in the house to bring their children outside. Amusement 

facilities may also become another important location to attract these young families with 

children. Although, small in percentage, families with elderly family members were also 

labeled with ‘Non-absence’ consumption patterns. If movie theatres could provide senior 

discount tickets or if public facilities could organize social gatherings targeting these people, 

then a significant reduction in electricity consumption could be expected.  

We also expect that many residents would prefer to spend their time in the house 

rather than leaving the house on a hot summer day. If a household still chooses to participate 

in DR, then it is important that these households understand effective practices that reduce 

electricity consumption indoors. One of the fundamental ways to participate is by shifting 

consumption activity to different hours. For example, vacuuming the floor, or washing the 

clothes are shift-able to other hours of the day depending on the individual’s priorities. The 



48 

 

initial DR estimate conducted in this research is based on people’s choice to shift 

consumption. However, people could achieve greater electricity consumption reduction by 

cutting the use of large electricity consuming appliances in the house. Some of the largest 

electricity consuming appliances in an average household are identified as the air conditioner, 

refrigerator, lighting, and television [30]. One simple strategy is to understand which of those 

4 categories of consumption are consuming the most electricity. If households that share 

some basic features (e.g. geographical location or size) could compare their levels of 

consumption on each of the 4 categories of consumption, then each household should be able 

to identify their target of focus. A feedback system that incorporates appliance-specific 

breakdowns is proven effective [31]. 

The second largest group ‘Partial Absence’ was families that showed no attachment 

to a particular living pattern. These households are still flexible in terms of mobility since 

members of the household tend to stay and leave the house from time to time. Occupants of 

these types of households could most effectively reduce electricity consumption during peak 

hours by modifying their schedule either by leaving the house early or returning to the house 

late. 

Families showing ‘Total Absence’ living patterns represented nearly19% and the 

main family structures were single or couples with no children. Since these people are almost 

never in the house during the day, the only contribution is by reducing the level of electricity 

running 24 hours as much as possible. Measures to do that include setting the refrigerator at 

low consumption mode, or identifying appliances that consume standby electricity and 

unplugging them.  
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6.1.1 Maximum potential effect per recommendation 

For any given residential area, the maximum effect of all recommended actions 

would highly depend on the size of each classified group. Here, I evaluate the effect of 

recommended actions listed on table 6 within the residential area of the sample data. Since 

‘Non-absence’ and ‘Partial Absence’ are the only groups that would mainly participate in DR, 

I first calculate the ratio of each family subgroup within the 2 living pattern groups. All 

‘Non-absence’ groups are considered to be potential participants but only a quarter (25%) of 

‘Partial Absence’ will be considered potential participants due to its random nature. 

Figure 23 Distribution of DR Participating Groups 

 

‘Non-absence’/’Couple with children’ represents 57% of all potential participants 

being the largest group. Thus, the greatest DR outcome is expected with this group’s full 

participation. I then compare the maximum DR effect per recommendation in the figure 

below, by multiplying the ratio of each group by the maximum impact from the action 

‘Leave’, which is leaving the house and switching off all appliances except for the base load 

consumption, and for ‘Stay’, which is reducing electricity consumption while staying indoors. 
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Figure 24 Maximum DR Effect per Recommendation 

 

As expected, the impact from ‘Non-absence’/’Couple with children’ is far greater 

than all other recommendations. Comparisons with the two scenarios suggest that ‘Medium 

Participation’ is equivalent to approximately 80% of ‘Non-absence’ / ‘Couple with children’ 

leaving the house. 

 

6.2. Motivational Factors 

The essence of this research is providing suggestions of actions that people could 

take in order to more effectively address peak cuts from urban condominiums. The 

motivational factor that encourages people to take those suggested actions is another area that 

would complement the work of this research. The following section mentions key aspects that 

need consideration to motivate people and deliver the desired DR results. 

 

6.2.1. Rule making 

In order to encourage households to take action, a system that could generate 

monetary or non-monetary rewards to participants is important. The level of rewards one 

could earn should depend on the level of participation. Special consideration shall be given to 

those households that decide to leave the house during the peak demand since this not only 

requires large efforts but also results in the greatest reduction. For participants reducing 
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inside the house, rewards shall depend on the level of consumption achieved.  

 

6.2.2. Financial sources 

I suggest that either TEPCO or DR management companies (i.e. demand 

aggregators) should be the source of financial resources for realizing all the activities. As 

mentioned earlier, TEPCO has the incentive to cut peak demand. Because TEPCO is forced 

to possess power supply that only operates during the very few hours when the peak demands 

occur, reduction of extra supply capacity could significantly cut running costs. 

 

6.2.3. Negawatt 

 Negawatt refers to the amount of electricity consumption that is reduced. Under a 

negawatt system, the amount of electricity consumption reduced is considered equivalent to 

the amount of electricity generated. The negawatt thinking is one popular system of 

generating economic incentives to those participants in DR [32]. 

 In deregulated electricity markets such as those observed in parts of the United 

States, or Europe, there are multiple businesses involved in the electricity infrastructure at 

different levels. Nordpool is a Scandinavian wholesale electricity market initiated by Norway 

in 1993.This country launched its deregulation program by introducing a wholesale market 

that promoted competition among electricity suppliers. Electricity suppliers and distributors 

exchange bids based on market prices. By 2000, Sweden, Finland, and Denmark had joined 

the system making it the world’s largest wholesale electricity market with 300TWH of 

electricity exchanged [33].  

The principal objective of the wholesale electricity market is to have balanced bids 

of electricity supply and demand. In such systems, supply biddings and demand reduction 

biddings are treated equally. Whenever expected electricity demand exceeds expected supply, 
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demand reduction biddings are valued more than ever. Demand reduction biddings can bid 

with the same economic value of those bids by electricity suppliers. Figure 24, indicates how 

electricity supply biddings and demand reduction biddings are considered equally. 

Figure 25 Diagram of supply biddings of Negawatt and Megawatt in a electricity 

wholesale market 

 
Source: [33, 34] 

 

The economic incentives for reducing electricity consumption during the peak are 

generated through this system. Those participants in DR programs can earn money through 

cooperation. Applying this model to provide services that will incorporate consumer 

participation is discussed in the next section. 

 

6.2.4. DR aggregator business; Negawatt application on business 

 We identified recommendations to generate better demand reduction outcomes for 

the condominium type residential sectors studied. In a negawatt system, individual 

households are incapable of bidding in a wholesale electricity market due to its small 

contribution. Therefore, new businesses that aggregate household electricity demand 

reduction emerge as one tactic for joining the bidding scheme. 

 Recommendations we provide involve local businesses such as coffee shops or 
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movie theatres in town. As mentioned earlier, the most effective electricity demand reduction 

an individual household can execute is leaving the house. To achieve this objective, one 

method is to lure residents out of the house by providing discount information of the 

resident’s favorite places to gather. 

 

Figure 26 Business proposal for a DR aggregator 

 
Service flow Money flow 

①Access for advertisement rights ①Monthly access fee 

②Successful peak cut ②Reward for successful peak reduction 

③Coupon distribution to selected customers ③Reward for DR participation 

 

Figure 25 indicates a sample business model emerging as a DR aggregator. DR 

aggregators are business entities that will aggregate all the DR participation efforts of 

residences willing to participate in DR programs. Although contributions at individual levels 

are small, aggregating participatory efforts from hundreds of households result in kilowatts of 

demand reduction. We develop a model that connects advertisement rights for shops that are 

willing to attract customers during the daytime. Shops are capable of providing advertisement 

to the right customers that are in the house during the day. If possible, by linking customer’s 

historical purchasing data, shops can directly send recommendations to suit each customer’s 

preferences. Participating households will benefit both from rewards received through 

participating in DR as well as coupons received from their local shops. The DR aggregator 
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business gains small revenues from DR reward payments from the electricity wholesale 

market and payments of advertisements rights from supporting local shops. Note, that the DR 

aggregator protects privacy of individual households by coordinating between residents and 

shops. Those participating shops will not have direct access to the resident’s energy data. One 

of the limitations is that DR does not occur frequently. Therefore, for such a business entity to 

survive, another business model that generates returns on a consistent basis is necessary. 
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6.3. Limitations 

6.3.1. Limitations with living patterns 

Type D households simply could have been sick and sleeping, or they may keep a 

pet dog indoors while the human occupant stayed elsewhere. Therefore, there are still 

uncertainties with the classification of living patterns. 

 

6.3.2. Leaving the house 

 DR estimates are based on people choosing to either leave the house or stay indoors. 

The most important rule that requires absolute attention is not consuming greater additional 

electricity elsewhere. If the residential sector reduces consumption at home but increases 

consumption in the community, there is no meaning to DR. Therefore, people who decide to 

leave the house must gather in public areas where an additional individual would not increase 

the total electricity consumption. 

 

6.3.3. Estimations based on carefully drawn assumptions 

 In the first step of data analysis, households that decide to leave the house are 

assumed to switch off all appliances and reduce electricity consumption levels to minimum 

levels. In the real world, there is always human error involved where some consumers simply 

forget to switch off appliances. The other estimation that involved shifting electricity 

consumption of particular appliances to other times is highly theoretical. The assumption is 

based on the findings observed while measuring electricity consumption patterns of both the 

entire house and by appliance in the author’s house. These assumptions may differ widely 

from house to house. 
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6.3.4. Applicability 

 The findings from this research are specific to the residential units in Kashiwa-no-ha, 

Japan. The ratio of families in each family structure as well as different living patterns will 

vary greatly depending on location. However, the 3 groups based on living patterns (Total 

Absence, Non-absence, and Partial Absence) and their strong relationship to family structures 

is likely to be common in other parts of the Kanto region. Therefore, the recommendations 

summarized on table 6 should have positive effects.  
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6.4. Future Work 

6.4.1. Other peaks 

For this research, peak demand for TEPCO service areas in the summer was 

considered, but there are other situations where peak demand occurs depending on the scale 

of the grid in consideration. The hours in which DR is necessary would alter depending on 

the scale of the grid in consideration, type of day, and season. In those three contexts, the 

following table identifies a general overview of different peaks each categorized in the 3 

contexts mentioned above. 

 

For each category the curves indicate an average value of the 5 highest maximum 

demand days in 2012. The Maximum Peak is the highest point from the curve and peak hours 

indicate the hours in which demand was greater than 99% of the its peak. All values under the 

peak hours are colored in red. 
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Table 7 Summer and Winter Peaks in TEPCO service areas 

Weekdays Weekends 

 
Maximum Peak: 50.17 GW 

Peak Hours: (1 PM~3 PM) 

 
Maximum Peak: 42.80 GW 

Peak Hours: (12 PM~3PM) 

 
Maximum Peak: 48.56GW 

Peak Hours: (5PM~6PM) 

 
Maximum Peak: 43.86 GW 

Peak Hours: (6 PM ~ 7 PM) 

Source: Charts recreated by author [4] 

 

Findings from comparing distinct TEPCO demand peaks 

- Depending on season and day type, magnitude as well as the hours of demand peak differ 

- Depending on the peak to address, strategies to effectively reduce electricity consumption 

differ 

 

6.4.2. Peak from the residential sector alone 

Currently there are governmental discussions on deregulating electricity markets and 

constructing a “smart grid” shifting towards smaller scale electricity grids with more local 

energy production and local energy consumption. Under such transitions, observing the local 

grid’s peak shall become necessary, and in such cases, the peak may occur at different hours. 

Similar to the previous table, the target area’s peak was analyzed with the understanding that 
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at a smaller scale grid with different energy users, peaks from the residential sectors may 

reflect the local grid’s peak. 

Similarly to the previous table, based on the four seasonal and day type 

characteristics, different electricity demand peaks are displayed. Each figure shows a 

computed value of aggregate electricity consumption from the 94 households used for this 

analysis. The 5 highest peak demand days of 2012 under each category were selected and 

average values were computed accordingly per each hour. The peak hour bars colored in red 

indicate those hours in which 95% of the highest peak demand was observed. 

 

Table 8 Residential peak demand by season and type of day 

Weekdays Weekends 

 
Maximum Peak: 68.1 KW 

Peak Hours: (9 PM) 

 
Maximum Peak: 67.7 KW 

Peak Hours: (8 PM~10PM) 

 
Maximum Peak: 97.3 KW 

Peak Hours: (9PM~10PM) 

 
Maximum Peak: 98.0 KW 

Peak Hours: (8 PM ~ 9 PM) 

Source: Aggregate demand of 94 target households in Kashiwa-no-ha 

Some of the findings from observing the variety of the residential sector’s electricity 

load are listed below. 

- Peak for the residential sector is observed between 8PM and 10PM regardless of season. 
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- Weekdays in the winter experience a sharp increase between 6AM and 7AM where in 

some days with high demand the morning peak exceeds night peak. 

- Night hours shall have the greatest potential in addressing DR for the entire society 

 

6.4.3. Strategy planning for residential DR on other peaks 

As indicated on the charts above, electricity demand peaks occur at different times of 

the day. Thus a direct application of summer day-time measures will not function to address 

the peak on the other occasions and a different approach to address peak demand is necessary. 

Demand peaks in the winter for TEPCO as well as year-round peaks for the 

residential sector itself are observed in later hours of the day compared to the summer time. 

TEPCO’s winter demand reaches the peak between 5PM and 6PM, and the residential sector 

experiences demand peaks between 8PM and 9PM in both winter and summer. Late hour 

peaks are expected to differ from day time peaks in the following context 

- Shops and stores are usually closed later in at night 

- Leaving the house after dark may involve danger in some areas 

 

Therefore, there are limitations on the options available for DR programs in the 

residential sector. However, since demand is high, there is a high demand reduction potential. 

Table 4.8 gives a summary. 

 

Table 9 Comparison of the strengths and weaknesses between summer peak strategies and 

winter peak strategies 

 Day-time (Summer Peaks) Late Afternoon ~ Night (Winter Peaks) 

Options Abundant Limited 

Potential Modest High 

 

Another issue needing attention is conflicts with other demand peaks. While TEPCO 

announces a need for demand reduction on a cold winter day at 5 PM, some households may 

respond by shifting some of their consumption to later hours. However, because peak 
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electricity demand for the residential sector is usually around 9PM, this may increase 

electricity consumption at that hour. Thus a simple shift of electricity consumption to other 

hours may augment electricity demand at a different scale.  

This area will become a new field to investigate as part of future studies. With a 

more comprehensive understanding of different approaches to achieve greater DR results, 

electricity grid operators will gain greater confidence. 
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Chapter 7 Conclusions 

Conclusions 

As total supply capacity of electricity significantly decreased in TEPCO’s service 

areas as a result of the nuclear plant accident, meeting peak electricity demand has become an 

increasingly difficult task. This research has explored the potential to resolve this threat by 

using DR focusing on condominium residential sectors. Special recommendations are 

provided to help practitioners of DR to obtain as much electricity demand reduction as 

possible. 

This research began by estimating potential electricity demand reductions during 

peak demand using 10 minute resolution electricity consumption data obtained from 94 

condominium units in Kashiwa, Japan. Utilizing data from the 5 highest peak demand 

weekdays in summer 2012 under TEPCO’s service areas, potential demand reduction was 

calculated based 3 possible human responses. 1, leave house, 2, shift consumption to off peak 

hours, 3, no action. 3 scenarios were set with different ratios of electricity consumers 

deciding to take each of the three options. 

Under Medium Participation (scenario: 40% leave house, 30% shift, 30% no action), 

we estimated that the condominium residential building with 2,000 units would reduce 

approximately 232 kW equivalent to a 28.6% reduction on average of electricity consumption 

between 10PM and 18PM. Although, a rough estimate, this 28.6% percentage reduction was 

multiplied by the proportion of the residential sector’s electricity consumption ratio (30%) 

under TEPCO’s service during the peak demand hours (10AM to 18PM). 4.3 GW was the 

potential power savings calculated and this is equivalent to the power capacity of 4 and one 

quarter of average size nuclear reactors of TEPCO’s property. 

These results led us to investigate household attributes that affect levels of demand 

reduction. Living patterns were observed by categorizing each household into 4 
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representative living patterns. Type D, which is a pattern that shows continuous consumption 

between 10AM to 6PM, represented 55% of the sample observed. We also became interested 

in observing how each household is dependent on any of the living patterns. We identified 

that 19% of the sample households showed a tendency to be absent during the day, 46% were 

generally present throughout the day and 35% had no particular dependence on any of the 

patterns. In this 35% of the sample households, it seems that family members have random 

and potentially flexible scheduling. 

The next step investigated the links between living patterns and family structure. We 

identified that 68% of households that stayed in the house all day were couples with children. 

Another trend showed that families with elderly members were also likely to show type D 

patterns on a continuous basis. Therefore providing services that encourage these electricity 

consumers to participate in DR programs and leave the house will have the greatest impact on 

reducing peak demand.  

In the discussion section we provide a list of recommended actions to corresponding 

living patterns and family types which we identified. 
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Table.6 List of recommended actions by living pattern 

 

We also need to take into account about the possible changes in demographic 

structure in the future. The current situation in Kashiwa-no-ha with younger households is 

likely to change over time. When the demographic trends change, so shall the strategies to be 

implemented. In order to sustain a DR program, the program must also have features to adapt 

to such social changes. 

Motivational factors are also important areas that need consideration. We state that 

rulemaking as well as ensuring financial sources are critical for running DR. Collaborations 

among different players in the electricity market and consumers shall also play an important 

role in this field’s innovation. We additionally provide information on electricity wholesale 

markets that would emerge as a result of deregulation in the Japanese electricity market. A 

business proposal for DR aggregation in the residential sector is also inserted to demonstrate 

how the business sector shall take part in this new system. Since we truly believe that DR 

outcomes are better achieved through educating and improving the design of DR programs, 

we hope that our findings from this research help the Japanese electricity market launch an 

effective and smart DR program for the residential sector. 

  

Issues
Families Structure i) Leave House ii) Reduce Indoors

N
o
n
-
ab

se
n
c
e

Dominant Family Structures
- Couple with Children (70%)
- Couple no Children (20%)
- Others (10%)

Visit public spaces
-Residential lounges
-Library/community centers

Entertain/Enjoy
-Ice cream shops, cafes etc..
-Movie theatres
-Amusement Park

P
ar

ti
al

 A
bs

e
n
c
e Dominant Family Structures

- Couple with Children (50%)
- Couple no Children (40%)
- Others (10%)

Extend stay at destination

1.Return home later
2.Leave home earlier

T
o
ta

l 
A

bs
e
n
c
e Dominant Family Structures

- Couple no Children (75%)
- Singles (10%)
- Couple with Children (5%)

N/A

Cut standby electricity

1.Unplug unused appliances before
leaving the house
2.Operate refrigerator at “low”

Solutions

Refrain additional electricity use.

Check air conditioner, lighting, and,
television. Switch off or curtail
intensity on the lowest priority use.
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APPENDIX A 

 

 

Determining emax and emin 

emax is the maximum amount of electricity consumption expected over any 60 minute 

interval from a particular household i on time t. Similarly, emin is the minimum amount of 

electricity consumption expected over any 60 minute interval from a particular household i 

on time t. Estimates of both values are necessary to run the occupant detection algorithm.  

 

Using 60 minute interval energy data 

In this analysis, 60 minute interval data is used instead of the original 10 minute 

interval data, where the 60 minute interval data is calculated by simply averaging the six 10 

minute interval data points within each 60 minute. With 10 minute interval data, 

distinguishing the base load consumption is difficult. Figure A1 compares 10 minute interval 

and 60 minute resolution on the same data set taken on August 2, 2012. 

 

Figure A1 Sample comparison of a 10 minute and a 60 minute electricity consumption profile 

 
 

 Base load consumption is mainly composed of the refrigerator. A unique 

characteristic of many refrigerators is that they operate on a cycle of intensive and 

non-intensive periods of electricity consumption throughout the day. Such movements cause 
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minor but frequent fluctuations of electricity consumption patterns to appear in a 10 minute 

interval data. By observing the same data set in 60 minute intervals, the small fluctuations 

cancel out and become smooth facilitating the estimates for the base load consumption. In the 

60 minute interval data set, base load is approximately at the 100 watt level, but with the 10 

minute interval data, the base load is barely distinguishable. Utilizing 60 minute interval data 

will also smooth the maximum electricity consumption values that differ day by day.  

Determining the number of previous days to observe 

 To calculate emin and emax, we must observe data beyond the day of interest. This is 

because the lowest 60 minute interval consumption level and the highest 60 minute interval 

consumption level could vary day by day in those cases, as indicated on figures A2 and A3. 

In the same season, the minimum value could vary tremendously as a result of changes in 

base load energy consumption. For example if a household purchased an additional 

refrigerator, the minimum base load electricity consumption would increase by two folds. To 

check this possibility, I first obtained the daily 60 minute minimum interval data for one year 

on 3 randomly selected households. Figure A2 indicates all the daily 60 minute minimum 

consumption values plotted over the entire year for those 3 selected households. We can 

observe that these minimum values experience minor fluctuations and a few major ones 

throughout the year, particularly in the summer. Major fluctuations could be a result of 

leaving the air conditioner on during the entire night where this is not a common practice for 

the particular household. 
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Figure A2 Change of Daily 60 minute Minimum Values 

 
 

 Similarly, daily 60 minute interval maximum consumption values were plotted over 

the entire year on different households selected randomly for the analysis on figure A3. 

Seasons appear to influence maximum consumption values, with highest values occurring in 

the winter. There are a few occasions in which these daily maximum values drop significantly 

while other days remain high. Such days with low maximum values perhaps indicate those 

days where residents were completely absent from the house. 
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Figure A3 Change of Daily 60 minute Maximum Values 

 
Figures A2 and A3 indicate the problem with simply using daily minimum and daily 

maximum values for computing emin and emax. Because of the dynamic nature of daily 

minimum values, as well as daily maximum values, I cannot select emin or emax by simply 

taking the minimum and maximum consumption values for the date of interest. We could 

obtain a better estimate for emin and emax by considering how daily minimum and maximum 

values have changed over the recent past days. 

 

I expect that the minimum 60 minute interval consumption value over the previous 7 

day span is a sound rule for computing emin. To test this hypothesis, I plot the standard 

deviations of the year round data set on intervals ranging from daily minimum values to 14 

day interval minimum values as indicated on figure A5. (ex. A 4 day interval minimum value 

will be the 60 minute interval minimum value for the interval ranging from the present day to 

3 days back) 
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Figure A4 1 day, 7 day, 14 day interval minimum values plotted over a 1 year span for 

household A 

 
 

First, I plot daily minimum data for the entire year using different day intervals. 

Figure A4 shows an example where I plot 1 day, 7 day and 14 day interval data. I then 

calculate the standard deviation of each data set and then plot each interval as indicated on 

figure A5. As we stretch the range of interval from 1 day to 14 days, the rough profiles shown 

on figure A2 begin to smoothen. As the patterns smooth, the standard deviation that measures 

the magnitude of fluctuations will gradually diminish.  

 

Figure A5 Change of Standard Deviation of Minimum Values Over Extended Time (Day) 

Intervals 

 
 

Standard deviations decrease rapidly initially and then reach a steady smooth value 
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as I continue to expand the interval of days to around 5 to 7 days. Although the values 

continue a decline, expanding excessively could conceal the seasonal bias that we need to 

incorporate. Therefore, I select the minimum value of the latest 7 days as the necessary 

measure to find emin. 

 

To obtain the appropriate maximum value, I first plot daily maximum values of the 

entire year using different day intervals. Figure A6 demonstrates an example but I only 

display the summer time for a better distinction between the curves. I plot standard deviation 

of the year round data set on intervals ranging from daily maximum values to 14 day interval 

maximum values as shown on figure A7. In this situation, the average value over each daily 

maximum value is used. As I extend the interval from 1 day to 14 days, the patterns indicated 

on figure A3 smoothen. The change in the roughness of patterns on figure A3 as I extend the 

interval days, is captured by the changes in standard deviation of those data sets.  
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Figure A6 1 day, 7 day, 14 day interval maximum values plotted over a the summer for 

household A 

 
 

 

Figure A7 Standard deviation of maximum values 

 
 

Also in this situation, standard deviations appear to flatten from the 7 day period. 

Although the values continue a decline in a smoother manner, extending excessively may 

conceal the seasonal bias we need to incorporate. Therefore, I select the 7 day average value 

of each of the daily 60 minute interval maximum consumption values as the necessary 

measure to find emax..  
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APPENDIX B 

 

 

For the purpose of confirming the accuracy of occupant detection algorithm, a 

dummy experiment was conducted at the author’s housing unit. This single occupant 

household is a single room apartment unit in a 3 story reinforced concrete building located 5 

kilometers away from the actual data site of Kashiwa-no-ha. An identical meter used for the 

households in Kashiwa-no-ha was installed and connected to the distribution board of the 

housing unit. Measurements were also in 10 minute intervals and the duration of this 

experiment was between November 9
th

, 2012 and November 22
nd

 2012. 

I kept a record of the exact time I left and returned to the house. For the purpose of 

this research, the hours between 10AM and 6PM were considered. All minutes were rounded 

up the next hour. 

The number of hours in which lit was below 1 were compared with actual number of 

hours in which the resident (myself) was absent from the house. The numerical values 

displayed on this figure below represent each lit. The highlighted cells indicate the hours in 

which I was absent from the house. 
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Figure B1 

 
 

 Drawing up from the chart on figure B1, the table below indicates the accuracy of 

this algorithm on detecting residence occupancy. I decided to judge the algorithm’s accuracy 

based on the correctness of predicting ‘absent’ when the occupant should have been absent. 

The cells colored in light brown indicate the hours in which the occupant (I) was outside of 

the house. If the number indicates a 1, then the algorithm indicates the occupant was outside 

of the house. On 6 occasions out of 85 selected hours where the occupant was in fact absent 

from the house, the algorithm presented a mistake. Thus, on 92.9% of the times, the 

algorithm is correct. 

 

  

10 11 12 1 2 3 4 5

2012/11/09 Fri 4 4 2 1 1 1 1 1
2012/11/10 Sat 1 1 1 1 1 1 1 1
2012/11/11 Sun 1 1 1 1 1 1 2 1
2012/11/12 Mon 1 1 1 1 4 4 5 4
2012/11/13 Tue 1 1 1 1 1 1 1 1
2012/11/14 Wed 3 4 3 1 1 1 1 4
2012/11/15 Thu 1 2 3 1 1 1 1 1
2012/11/16 Fri 3 3 1 1 1 1 1 1
2012/11/17 Sat 1 1 1 1 1 1 1 1
2012/11/18 Sun 1 1 1 1 2 1 2 3
2012/11/19 Mon 9 12 2 1 1 1 2 9
2012/11/20 Tue 1 1 2 1 1 1 1 1
2012/11/21 Wed 5 2 2 1 1 1 2 3
2012/11/22 Thu 1 1 1 1 1 1 1 1

Time of Day (hours from 10AM to 6PM)
Dates
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Table B1 

 
I have provided this brief analysis as a proof for the occupancy detection 

methodology indicated in chapter 4. 

  

Date Absent Algorithm Difference
2012/11/09 Fri 5 5 0
2012/11/10 Sat 8 8 0
2012/11/11 Sun 8 7 1
2012/11/12 Mon 4 4 0
2012/11/13 Tue 8 8 0
2012/11/14 Wed 5 4 1
2012/11/15 Thu 5 5 0
2012/11/16 Fri 6 6 0
2012/11/17 Sat 8 8 0
2012/11/18 Sun 5 5 0
2012/11/19 Mon 5 3 2
2012/11/20 Tue 8 7 1
2012/11/21 Wed 3 3 0
2012/11/22 Thu 7 8 1

Accuracy 92.9%
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Appendix C 

 

 

Verifying Enorm and Eshift 

 As a way to check the algorithm’s reliability, individual appliances were measured at 

the author’s household. Each appliance was categorized into each category below. 

 

Table C1 list of appliances monitored 

 Base load Regular Temporal 

Desktop Computer  ✔  

Computer Display 1  ✔  

Computer Display 2  ✔  

Speakers  ✔  

Printer   ✔ 

Internet Modem ✔   

Internet Router ✔   

Air Conditioner  ✔  

Refrigerator ✔   

Toaster   ✔ 

Microwave   ✔ 

Washing Machine   ✔ 

Hair Dryer   ✔ 

Battery Chargers   ✔ 

 

The total consumption under ‘Regular’ is equal to Enorm and the total consumption 

under ‘Temporal’ is equal to Eshift. I measured electricity consumption for 3 weeks between 

November 11 and December 12 of 2012. Running the identical algorithm on total electricity 

consumption for the entire household, the following results were obtained.  
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Table C2 

 
 

While Enorm had a fairly low error ratio at 12%, Eshift showed an unacceptably large 

error of 307%. One of the reasons why this happened was most likely due to the air 

conditioner. When we simply assume Eshift as consumption that are above a certain level 

(ebasic), we ignore the fact that not all Enorm consumptions are completely flat. The air 

conditioner experiences a sharp peak in electricity consumption at the beginning of its energy 

consumption. Stable levels of electricity consumption are only reached after a certain lag 

which most likely corresponds to the moment in which the room temperature reaches desired 

temperature. 

  

Measured
Enorm (Wh)

Estimated
Enorm (Wh)

Difference
(Wh)

Measured
Eshift (Wh)

Estimated
Eshift (Wh)

Difference
(Wh)

11/22 73 0 73 19 0 19
11/23 2486 2666 -180 18 461 -443
11/24 1321 1084 237 15 366 -351
11/25 961 770 191 73 241 -168
11/26 1395 1501 -106 15 349 -334
11/27 535 421 114 0 65 -65
11/28 1213 1196 17 33 115 -82
11/29 849 720 129 0 139 -139
11/30 1299 1170 129 134 100 34
12/1 2383 2309 74 0 310 -310
12/2 356 0 356 101 0 101
12/3 1757 1833 -76 55 91 -36
12/4 1597 1279 319 0 154 -154
12/5 440 236 204 51 6 46
12/6 366 344 22 144 58 86
12/7 930 803 127 0 60 -60
12/8 1937 1491 446 103 574 -470
12/9 2094 1893 202 38 367 -329

12/10 1365 939 426 73 297 -223
12/11 1389 1261 128 110 243 -133
12/12 45 0 45 0 5 -5

24789 21912 2877 983 3998 -3015

Error ratio (%) 12% Error ratio (%) 307%
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Figure C1 Air conditioner electricity load profile of target household 

 
 

After the initial stage of consumption that lasts nearly 60 minutes, the load profiles 

settle. The level of stable electricity consumption at 10 minute intervals appears to stay 

around 400 watts. I now calculated the total consumption that resulted from the initial peak 

from the air conditioner’s electricity consumption for the 3 week period. The sum of all initial 

peaks consumption above the 400 watt level was calculated 2,925 Wh. This value nearly 

corresponds to the difference between measured and estimated Enorm and Eshift. With this value 

of consumption exchanged between Enorm and Eshift, the error ratio is reduced to convincing 

numbers. Enorm improved to a 0.2% error ratio from 12% and Eshift improved to a 9% error 

ratio from 75%.  

 

Table C3 Adjusted estimates for Enorm and Eshift 

 Enorm Eshift 

Measured (Wh) 24789 983 

Adjusted Estimations (Wh) 24837 1073 

Difference (Wh) 48 90 

Error Ratio (%) 0.2% 9% 

 

The results show that, as long as the initial peak consumption pattern observed from 

the air conditioner is considered as a part of Enorm instead of Eshift, the range of errors for Enorm 

and Eshift is small. This also indicates that as long as the air conditioner is running on stable 

mode after the peak, the accuracy of this methodology is kept quite high. Also in this 
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particular household, the usage under Eshift was particularly small. Therefore, the absolute 

error value was a large portion of the entire Eshift value. At this moment, we intend to continue 

to use this algorithm for estimating Enorm and Eshift. In households that have countless 

combinations of electricity appliance usage, we simply cannot single out this peak behavior 

from total household electricity load profiles. 
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AppendixD 

 

Table D1 List of Living Pattern Regularity Test 

 
  

Meter ID A B C D Family Type
O09K0003 2 1 1 1 Couple 1 Child
O09K0004 2 0 2 1 Couple 1 Child
O09K0009 3 0 2 0 #N/A
O09K0012 0 0 1 4 #N/A
O09K0013 0 0 0 5 #N/A
O09K0026 0 0 1 4 #N/A
O09K0027 3 1 0 1 #N/A
O09K0029 5 0 0 0 Couple No Children
O09K0030 0 1 0 4 #N/A
O09K0031 1 2 1 1 Couple No Children
O09K0032 0 0 0 5 Couple No Children
O09K0039 0 0 1 4 Couple, 1 Child, Father, Mother
O09K0042 0 0 0 5 Couple No Children
O09K0045 2 0 0 3 Couple 1 Child
O09K0056 4 1 0 0 #N/A
O09K0057 0 0 0 5 #N/A
O09K0060 0 0 2 3 Couple No Children
O09K0062 0 0 1 4 Couple 1 Child
O09K0063 0 0 0 5 #N/A
O09K0067 2 1 0 2 #N/A
O09K0068 0 0 1 4 #N/A
O09K0072 0 1 0 4 #N/A
O09K0076 5 0 0 0 Single
O09K0078 1 2 0 2 #N/A
O09K0084 5 0 0 0 #N/A
O09K0086 0 1 0 4 #N/A
O09K0088 4 1 0 0 Couple No Children
O09K0091 1 0 1 3 Couple No Children
O09K0094 0 0 0 5 Couple 1 Child
O09K0096 0 0 0 5 Couple 1 Child
O09K0099 0 0 2 3 Couple, No Children, Mother in law
O09K0100 2 0 1 2 Single, Mother
O09K0101 0 0 0 5 Couple 1 Child
O09K0108 5 0 0 0 Couple No Children
O09K0109 0 0 1 4 #N/A
O09K0110 5 0 0 0 #N/A
O09K0111 0 0 1 4 #N/A
O09K0113 5 0 0 0 #N/A
O09K0114 2 0 3 0 Couple No Children
O09K0118 2 2 0 1 Couple 1 Child
O09K0121 0 0 0 5 #N/A
O09K0122 0 0 1 4 Couple 1 Child
O09K0123 0 0 2 3 #N/A
O09K0124 0 1 0 4 Couple 1 Child
O09K0125 0 0 0 5 #N/A
O09K0126 5 0 0 0 Couple No Children
O09K0127 3 0 2 0 #N/A
O09K0128 0 1 2 2 Couple 2+ Children

Living Pattern Type
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(continued) 

 

 

 

 
 

O09K0129 4 0 0 1 Couple No Children
O09K0132 5 0 0 0 Single
O09K0133 2 1 2 0 Couple 1 Child
O09K0135 1 0 0 4 #N/A
O09K0137 2 0 0 3 Couple No Children
O09K0138 0 0 0 5 #N/A
O09K0142 0 0 0 5 #N/A
O09K0143 2 0 0 3 Couple 1 Child
O09K0144 0 0 1 4 Couple 1 Child
O09K0147 0 0 1 4 #N/A
O09K0148 1 0 0 4 #N/A
O09K0150 1 0 1 3 Couple 2+ Children
O10E0431 4 1 0 0 Couple No Children
O10K0153 0 0 0 5 #N/A
O10K0162 2 0 0 3 Couple No Children
O10K0167 0 0 2 3 Couple 2+ Children
O10K0168 0 0 0 5 #N/A
O10K0183 5 0 0 0 Couple No Children
O10K0199 2 1 0 2 #N/A
O10K0201 0 0 0 5 Couple No Children
O10K0211 0 0 0 5 Couple 1 Child
O10K0220 5 0 0 0 Couple No Children
O10K0226 0 1 0 4 Couple 2+ Children
O10K0227 0 0 0 5 Couple No Children
O10K0230 0 0 0 5 Couple 1 Child
O10K0236 3 0 2 0 #N/A
O10K0246 0 1 1 3 #N/A
O10K0247 3 0 1 1 #N/A
O10K0250 0 0 1 4 #N/A
O10K0264 5 0 0 0 Couple No Children
O10K0265 0 0 0 5 #N/A
O10K0271 0 0 0 5 #N/A
O10K0272 0 0 1 4 Couple 1 Child
O10K0274 0 1 1 3 #N/A
O10K0275 5 0 0 0 Couple No Children
O10K0283 1 1 2 1 Couple No Children
O10K0285 5 0 0 0 Couple 1 Child
O10K0296 0 0 0 5 Couple, No Children, Father, Mother
O10K0336 3 0 0 2 Couple No Children
O10K0346 5 0 0 0 #N/A
O10K0389 2 1 1 1 #N/A
O10K0396 0 0 0 5 Couple 1 Child
O10K0420 0 1 0 4 Couple 1 Child
O11C0898 0 0 1 4 #N/A
O11C0900 2 0 1 2 #N/A
O11C0901 1 0 1 3 #N/A

total count 18 0 0 43 33


