
A Hypervisor for Protecting Information of

Public Cloud’s User on Memory and on Storage

from Malicious Operators
パブリッククラウドユーザのメモリ上・ストレージ上情報を

悪意あるオペレータから保護するハイパーバイザ

48-126454

村上 航規

Supervisors

Professor Shuichi Sakai

Associate Professor Masahiro Goshima

A thesis submitted to

the Information Engineering Cource

of the University of Tokyo

for the degree of Master of Engineering

February 2014

2

i

ABSTRACT

This paper introduces a novel cloud computing architecture that en- sure s

privacy for guest’s information and computation. In conventional cloud archi-

tecture, a security policy proposed by a provider only ensured the protection

of guest’s infor- mation. This enabled malicious operators to steal or modify

guest’s information. Our architecture protects guest’s infor- mation with

novel memory management function of hyper- visor from malicious operators.

Cloud computing generally relies on virtualization, and VMM or hypervisor

maintains page table for interfering VM’s memory accesses, which is called

shadow page table. Our hypervisor regulates memory accesses by management

VM by adding a authority bit to shadow page table entry. Our architecture

also prohibits a theft of guest’s information when it is stored in storage by

encrypting data when they leave memory.

ii

概要

本稿は、IaaS 型のパブリックク ラウド環境において、ユーザが所有する情報を

悪意あるオペレータによる窃盗・改変から保護するハイパーバイザを提案する。本

手法では、既存のハイパーバイザのページテーブル機構に新たな情報を付加する改

変を加える。またデータのスワップアウト時にストレージを暗号化することで、ゲ

スト情報を悪意あるオペレータから保護する。

iii

CONTENTS

ABSTRACT i

概要 ii

Chapter.1 Introduction 1

Chapter.2 Motivation and Related Work 3

2.1 Motivation . 3

2.2 Related Work . 4

Chapter.3 Memory Management Mechanism and Hypervisor Architecture 6

3.1 Virtualization . 7

3.2 Virtualization supported by Hardware 11

Chapter.4 Design of Hypervisor 14

4.1 Assumptions . 14

4.2 Overview . 14

4.3 Memory Protection Based on Shadow Page Table Entry 15

4.4 Memory Protection Based on Address Space Randomization . . 17

4.5 Storage Encryption . 19

4.6 Key Management . 19

4.7 Ensuring the Integrity of data on Storage 20

4.8 Compatibility with Hardware Supported Virtualization 21

Chapter.5 Discussion 22

5.1 Availability of Cloud Service Operation 22

CONTENTS iv

5.2 The safety of Cache . 23

5.3 Protection of Memory . 23

5.4 Protection of Storage . 24

5.5 Comparision of Two Techniques of Memory Protection 24

Chapter.6 Conclusion 26

Bibliography 27

Publications by the Author 29

Acknowledgement 30

1

Chapter.1

Introduction

Cloud computing is a model for enabling on-demand assignment of computer

resources and application based on the Internet. This technology is one of

the fastest growing segments of the IT industry. Cloud commputing allows

its users to use functionalities or applications with minimal management cost.

NIST defines three kinds of service model of cloud computing, Software as a

Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service

(IaaS)[11].

Owe to cloud computing, companies as well as individuals have become able

to gain fast access to variable applications or boost their IT infrastructures.

On the other hand, clients, especially companies concern security to store crit-

ical information in cloud. According to Intel’s survey on IT professionals[8], 28

percent of professionals have experienced a public cloud-related security breach.

For heavily regulated industries such as banking, finance and healthcare, 83 per-

cent of professionals concern the estrangement of legal responsibilities between

legal-sensitive companies and cloud providers.

Cloud providers guarantee with their security policies that there is no leakage

of clients’ data nor computations. If a operator of provider or data center is

malicious, however, they may steal or modify the data or computations of clients

with their authority. Security policy cannot prevent these operators from illegal

behavior. Needless to say, it will be more dangerous when management account

of hypervisor is stolen by adversaries.

Chapter 1 Introduction 2

This paper proposes a novel cloud computing architecture of IaaS cloud en-

vironment. Our architecture ensures the privacy of data owned by clients on

memory and storage even if provider’s operator is malicious.

Cloud computing normally bases on virtualization. Virtual Machine Mon-

itor(VMM) or Hypervisor has special page table for converting true physical

memory space to virtual machine’s virtual memory space and showing it to

Virtual Machine(VM) as physical memory space.

Two kinds of memory data protection methods of proposing architecture are

described in this paper. First one is based on additional privilege information

to entries of shadow page table, which is owned by hypervisor. Second one

is based on address space layout randomization (ASLR). These methods are

compared qualitatively with their privacy, integrity and availability.

Mechanisms of storage encryption and key management are deployed for stor-

age data protection. They are able to applied to both memory data protection

methods this paper shows.

Our hypervisor prohibits accesses executed by malicious operators to memory

which is assigned to clients. The data swapped out to storage is always en-

crypted and cannot be read by attackers. As far as our architecture is adopted

in cloud provider’s infrastructure, the privacy of clients’ data is ensured.

The rest of the paper is organized as follows. Chapter 2 shows the motivation

of this study and related works. Chapter 3 discuss our assumptions and presents

popular designs of hypervisor. Chapter 4 reveals proposing architecture. A

qualitative security discussion is done in chapter 5. Finally, we conclude in

Section 6.

3

Chapter.2

Motivation and Related Work

2.1 Motivation

Our goal is to protect the information of cloud’s user from malicious operator

of cloud service provider. Conventional hypervisor gives a privilege for man-

agement functionality to a OS of a operator. This vulnerability does not only

mean a malicious operator can steal and modify user’s information but also

make an influence of takeover of the operator’s OS by adversaries. The method

of encryption of data on cloud storage service is already put to practical use, on

the other hand, plaintext data is stored on memory and malicious operator can

steal it. In addition, IaaS cloud services cannot adopt the storage encryption

method because some modifications of hypervisor architecture-level is required.

However, fabricating a hypervisor which prohibits illegal behavior of malicious

operators is a challenging problem. There are two reasons why hypervisor’s

manufacturer gives a privilege to a OS of a operator. Firstly, security-critical

operations are really necessary for operators to handle some situations such

as generation of virtual machines(VMs), migration and troubles. The second

reason is hardware device driver. Hypervisors called ”microkernel” do not have

device driver and every accesses to hardware by users’ VMs are actually per-

formed by a OS of a operator. This means that no mechanism on hypervisor

limits unfettered hardware accesses of its OS.

Despite the vulnerability of conventional hypervisors, a social demand of in-

Chapter 2 Motivation and Related Work 4

troducing cloud services to companies and organization is increasing. Ones

handle sensitive security information such as medical institutions and financial

ones also require the importation of cloud services. As a result of washed away

of servers of hospitals with electronic medical records in the 2011 Tohoku earth-

quake and tsunami, using cloud computing for records as a measures to deal

with a natural disaster is advocated[13].

The proposing architecture achieves both limitation of operator’s privilege for

protecting user’s information and ensuring the necessary management interface

of operator’s works. A threat of malicious operators’ OS, which is one of prob-

lems those have prevented companies and institutions from introducing cloud

computing, is resolved by the proposing hypervisor.

2.2 Related Work

In virtualized environment, a malicious guest may attack the vulnerability of

hypervisor and gain a privilege. Once the malicious guest does that, it may

run the illegal processes or steal their secret information. There are many

studies[1, 14, 17] for preventing it. Those studies focused on the limitation of

malicious guests’ processes, thus the malicious operator is not limited on his/her

privilege.

Dealing with a malicious operator’s illegal behavior is also studied.

CertiKOS[6] is an architecture for preventing information leakage on cloud

environment by extending the general method of certification. CertiKOS hides

the function of resource assignment in hypervisor and does not give its function

to management VM. Every resource assigment mechanisms are delegated to

the hypervisor kernel. Assigned resources are tagged and ownership record is

owned by hypervisor. Resources with these tags are isolated in order to prevent

certain VM (including management VM) from encroaching another VM’s

information. The granularity of CPU allocation on CertiKOS is a CPU core,

since tagging resource allocation method. Time slicing allocation, however,

cannot be performed.

NoHype[9] protects a guest operating system by extending CPU architecture

Chapter 2 Motivation and Related Work 5

and removing hypervisor. The address space conversion, which is normally per-

formed by hypervisor, is implemented in special CPU. This means that NoHype

cannot be applied on current commercial CPUs.

Challenging problems of protecting user’s information from malicious opera-

tors in a cloud computing environment originate in a contrudiction of protect-

ing the data and the process of lower-privileged subjects from higher-privileged

ones. The reason why specific processes are commisioned to dominate other ones

is privileged processes have mechanisms of critical functionalities such as hard-

ware devices and memory management. On this point, studies of secure proces-

sor and ones based on them resembles to this study. Proxos is a hypervisor-based

trust partitioning system. Overshadow[4] has multi-shadowing mechanisms to

protect the memory allocated to the application that presents defferent views

of the physical memory depending on whether the data is accessed by the ap-

plication or by the OS. Flicker[10] proposed by McCune relies on a secure co-

processor like TPM[16] to provide a secure execution environment. Suh et al.

proposed AEGIS[15] and it performs isolation between processes based on ID

that is stored as tags for processor registers. SecureME[5] consists of secure

processor substrate and hypervisor. The data of the application on memory is

encrypted by the mechanism of processor and hypervisor-based ID assignment

isolates process’s memory from other ones.

6

Chapter.3

Memory Management Mechanism

and Hypervisor Architecture

Paging is a mechanism of memory allocation performed by OS. OS divides

physical address space in a fixed size (normally 4KiB) called pages, and assign

them to each processes. The physical memory space is partitioned into the

same size, and their fragments are called frames. Processes refer their virtual

address space and OS converts it to physical address space with a structure

named page table. The information of occupancy of frames are stored in

frame table. Paging mechanism and memory address virtualization prevent

memory area of certain process from overlapping one of another and relieve

application programer from the load of memory management implementation.

Fig. 3.1 shows a mechanism of virtual address conversion of general OSes.

A specific register of processor (called CR3 in x86 processors) stores the head

address of page directory table (PDT). Entries of PDT are links to heads

of page table. Each processes has its unique ID (PID) and it is correlated to

a CR3 value. This relationship isolates virtual memory area of each processes.

Conversion from virtual address to physical address is performed in the following

manner; firstly, the front part of a virtual address is offset from the head of page

table and a PDT entry is specified; secondly, a page table is linked with the

PDT entry and the middle part of one is offset from the head of PT; finally,

a page connencted to the page table entry(PTE) is referred and an absolute

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 7

physical address is determined by the bottom part of the virtual address.

Virtual AddressResister

Page
Directory Page Table

4KB Page

Page Table
Entry
(PTE)

Fig.3.1 A mechanism of virtual address conversion based on paging.

This conversion is one of reasons of overhead. Most CPUs relieve overhead

by caching its conversion information in its memory management unit(MMU).

Some of these kinds of CPUs defines the structure of page table entry(PTE)

having access permission bit and regulates accesses of processes. User processes,

which have lower authority than kernel processes, are prohibited accessing phys-

ical address with PTEs whose bit is not set available for user processes.

Once the conversion is performed, the result is stored in a specific cache

named translation lookaside buffer (TLB). This makes the conversion of second

or later faster.

3.1 Virtualization

3.1.1 Hypervisor

Virtualization is a technology for abstraction of physical resources of com-

puter. This enables to manage plural computers as one VM or to run variable

VMs in the same time.

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 8

TYPE 1 (native/bare metal) TYPE 2 (hosted)

Hardware

Hypervisor

OS OS OS

Apps Apps Apps

Hardware

Hypervisor

OS OS OS

Apps Apps Apps

Host OS

Fig.3.2 A classification of hypervisors.

Native and Hosted

The host software of virtualization, which is called hypervisor or Virtual Ma-

chine Monitor(VMM), manages the VMs as guests. Hypervisors are classified

under two types (shown in fig3.2), Type 1(bare metal) and Type 2(hosted).

Type 1 hypervisor runs directly on hardware and all guest OS do on hypervi-

sor. Type 2 hypervisor runs on host OS as an application.

Type 1 hypervisor interrupts some kinds of critical instructions of guest, and

other kinds of ones are computed in the same as physical environment. This

means the guest OS runs fast. Type 2 hypervisor, otherwise, simulates VM’s

hardware. This means the guest OS runs slower than one of Type 1. Due to the

faster computation, almost public cloud services consist on Type 1 environment.

Our architecture also assumes that a hypervisor is Type 1.

Ring Protection

Ring protection (or hierarchical protection domains) is a layered structure for

establishing the plural privilege levels. This protects data and functionalities

from system faults and malicious behaviors. The deferent access levels are pro-

vided to each resources by OS. A processor defines the privilege state of current

execution, and MMU controls accesses to memory confirming the present ring.

Fig. 3.3 shows a typical four-level structure of ring protection. A kernel level

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 9

process runs in ring 0 (the most privileged) and a user level process executes in

ring 3.

In a virtualized system with a certain Type 1 hypervisor, a kernel level pro-

cess of a guest OS works in ring 1 while the hypervisor acts in ring 0. A guest

OS cannot run on the environment with this kind of hypervisors since the work-

ing ring is defferent from the physical environment. Virtualized environment

which require guest OSes to be modified to suit to the environment is called

paravirtualization. On the other hand, full virtualization environment do

not demand guest OSes to be modified.

2012/12/11

1

Counter CacheLast Level Cache

LPID, Counter Value, etc

2. Seed

Cache Block

Plaintext

3. XOR

Main Memory

Ciphertext

MAC Generation

Merkle Tree Verification/Update

4

Merkle Tree Counters

Chip Boundary

5

Encryption/Decryption

Physical Address

Page Offset

1

Ring 3

Ring 2

Ring 1

Kernel

Mode

Ring 0
User Mode

Fig.3.3 Ring protection of general systems.

Management VM

In virtualized environment, an administrator has authority for managing it

and can access to management interface. Since there is no host OS in Type

1 hypervisor-environment, management interface is equipped to unique VM.

Xen[2] has the same architecture. The first-launched VM of Xen environment

is named dom0 and the administrator controls it as management interface. A

guest OS on dom0 can directly access all kinds of physical hardware.

Monolithic and Microkernel

Type 1 hypervisors are categorized as monolithic (e.g. VMware ESX[7]) or

microkernelized (e.g. Xen[2] and Hyper-V[12]). Monolithic hypervisors (fig.

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 10

3.4) have their own device drivers. Accesses to hardware with drivers of all

VMs (including an administrator’s VM) are virtualized and ones of hypervisor

perform the actual accesses to real hardware. These hypervisors are sperior in

terms of performance due to the intimate cooperation between hypervisors and

drivers, on the other hand, it is inconvinient that devices whose drivers are not

implemented in monolithic hypervisors is unavailable. Accesses from VMs to

hardware on microkernelized hypervisors are performed by drivers of manage-

ment VM (fig. 3.5). Users’ VMs cannot access directly while the management

VM can do. Developers of microkernelized hypervisors are not responsible for

implementing device drivers.

4

Fig.3.4 Hardware accesses on monolithic hypervisor.

5

Fig.3.5 Hardware accesses on microkernelized hypervisor.

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 11

Shadow Page Table

When a guest OS accesses to memory, ordinary OS directly refers certain

physical address. In virtualized environment, however, direct accesses to phys-

ical address performed by guest OS makes encroachment of memory assigned

to host or other guests. Shadow page table (SPT) avoid this by converting

system’s physical address to guest’s address. Fig. 3.6 is the relationship be-

tween address and page table. Hypervisor informs guest OS of virtual address

as physical address referring SPT. Since this physical address is actually virtual

address, hypervisor can isolate each assigned addresses for guests.

Shadow
Page
Table
(SPT)

Page
Table

Physical
Address

Guest’s
Physical
Address

Virtual
Address

Fig.3.6 Address conversion of shadow page table.

3.2 Virtualization supported by Hardware

In recent years, many products of processors implement the supporting mech-

anism of virtualization. This is caused by the spread of virtualization among

individual users. Hardware support of virtualization resolves some of prob-

lems of virtualized environment, especially complexity of implementation and

permance overhead.

Ring Protection

In conventional virtualization, Type 1 hypervisor runs in ring 0 and guest

OSes does in ring 1. Commercial OSes are generally constructed on the assump-

tion that they execute in ring 0. This mismatch makes some of instructions not

to be trapped by CPU and it may causes critical errors. Dealing processes with

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 12

10

Fig.3.7 The structure of ring protection in the environment of hardware

supported virtualization.

the mismatch is one of the large overhead in virtualized environment.

Fig. 3.7 shows the structure of ring protection with hardware supported

virtualization. Processors with virtualization support have special modes of

execution, VMM mode and VM mode. In such environment, guest OS runs in

ring 0 and processors switch the mode on interrupts of hypervisor. Since no

instruction handling mechanism is required in this architecture, performance

overhead will be smaller.

Shadow Page Table

Shadow page table is a mechanism for avoiding a conflict of memory area

of VMs. This makes an additional step to virtual address conversion and it is

performed by hypervisor (i.e. not hardware but software), thus it makes large

performance overhead. Processors with virtualization support implement the

hardware conversion of shadow page table entry. Though entries have the same

structure as hardware vendors ristricted, required time for address conversion

will be reduced greatly. Many processors have multi TLB for each VMs and

makes overhead furthermore smaller.

Processor vendors name this hardware-supported shadow page table while fix

the structure of its entry. In the environment of VT-x of Intel, this is named

extended page table. AMD-V of Advanced Macro Device calls it nested

Chapter 3 Memory Management Mechanism and Hypervisor Architecture 13

page table.

14

Chapter.4

Design of Hypervisor

4.1 Assumptions

In the proposing method, a cloud service provider is assumed to offers IaaS

cloud and use a data center as a storage. The provider authorizes its operator

enough to do his/her operation; otherwise he/she does not obey the security

policy which is presented by provider. Even if the operator is innocent, malicious

operator might take over the OS of the operator. Malicious management OS

might access whole physical memory area and search the critical information

of users from it. A client puts its data to assigned storage, which may contain

critical information. In addition, malicious operators might modify bytecode of

a running application on memory to Operators of the data center might also

be malicious and steal the critical information. The provider adopts Type 1

hypervisor.

In general, it is assumed that there is a hypervisor-verification mechanism

such as intel TXT. Hence, an attempt to modify the hypervisor before launch

will be detected as an integrity failure and users can know it. Users may inquire

of the service provider whether security hazard has occured.

4.2 Overview

The proposing hypervisor protects user’s data from malicious operators both

from theft and modification wherever it is. Data on cache are isolated depend-

Chapter 4 Design of Hypervisor 15

ing on processes. Cache-isolation mechanism is implemented on CPU, on the

other hand, isolation of data on memory or storage is not. They are two selec-

tion of memory peotection on the proposing hypervisor. First one is based on

modification of shadow page table entry and second one is base on address space

layout randomization. Both techniques have their own advantages and defects

which is discussed on chapter 5. Storage protection of proposing hypervisor is

based on encryption.

4.3 Memory Protection Based on Shadow Page Table

Entry

This section introduces the first technique of memory protection based on

modification of shadow page table entry. Since this technique prohibits accesses

of management VM to user’s memory, this one has no uncertainty.

4.3.1 Additional Bit

Proposing architecture adds a novel authority information to shadow page

table entry (SPTE). Certain bit of SPTE presents whether management VM

can access the address related to SPTE or not. When hypervisor generates

new instance of VM except for management VM, hypervisor assigns demanded

amount of physical memory. This physical memory is converted to user’s phys-

ical memory space with SPTE, and its permission bit is set true.

Shadow Page Table Entry

Address

Translation

Info

Other

Info

Access Permission

For Management

OS

Fig.4.1 Our novel structure of shadow page table entry.

Chapter 4 Design of Hypervisor 16

4.3.2 Safe Memory Mapping

Fig. 4.2 is the sequence of memory allocation to the management VM in

order to protect user’s data on memory. The sequence is as follows;

• When a management OS tries to map certain physical address, hypervisor

interrputs it and receive the destination address.

• Hypervisor checks whether the destination address is already allocated to

VMs (including the management OS). This check is actually performed by

the verification of frame table of hypervisor. If the destination address

is not allocated, hypervisor generates a SPT entry corelated to it and

informs the management VM of a virtualized address.

• If the destination address is already allocated, hypervisor searches a

shadow page table entry connected to it. If the additional bit of the

entry is set true, the destination address is owned by user’s VM. This

causes access privilege fault. If the bit is set false, the access is allowed.

• Allowed access triggers the general memory mapping sequence.

• The result of access is returned to the management VM.

Note that the guest OS cannot distinguish a physical environment and virtu-

alized environment. The novel permission bit does not violate all processes of

VMs of clients.

9

Fig.4.2 The sequence of memory allocation to the management VM.

Chapter 4 Design of Hypervisor 17

4.4 Memory Protection Based on Address Space

Randomization

Address space layout randomization (ASLR) is originately proposed to deal

with a threat of buffer overflows. This technique consists of randomized layout

of critical data area such as a foundation of executable file, library, heap and

stack on the physical memory area. The layout randomization of such addresses

makes an adversarie’s expectation of an address of attacking target. Some

of commercial OSes (e.g. OpenBSD, Linux, Windows) implement implement

ASLR.

4.4.1 Address Space Layout Randomization on Virtualized Environ-

ment

The proposing hypervisor adopts ASLR as a concealing mechanism of user’s

meaningful information. Fig 4.3 shows the structure of proposing ASLR tech-

nique. While the technique of memory protection based on shadow page table

entry restrics management VM’s accesses to user’s data on memory, one based

on ASLR does not. On an environment with the proposing hypervisor, memory

allocation of user’s VM is randomized.

The address space whom a VM refers is already virtualized and the VM can

deal with the virtualized address space as the consecutive area. This means that

no modification of guest OS is required to be accommodated to the proposing

hypervisor.

When a malicious operator inspects whole physical memory area, he or she

can only see all the data of user’s VM randomly deployed. As far as he or she

does not know the function and the seed of randomization, he or she cannot

construct the meaningful information from the randomized data.

Chapter 4 Design of Hypervisor 18

6

Fig.4.3 Address space layout randomization of proposing hypervisor.

4.4.2 Duplicated Mapping

The memory protection technique based on ASLR does not limit accesses of

management VM to physical memory at all. This means that no restriction of

modification of a malicious operator is on system. Note that the memory protec-

tion technique based on an additional bit of SPTE does not allow a management

VM to access the physical address allocated to user’s VM and modifications are

also not allowed.

Instead of prohibiting accesses of management VM, memory duplication is

implemented on proposing hypervisor with ASLR. Duplicated allocation is il-

lustrated in fig. 4.4 Hypervisor correlate VM’s physical address to two system’s

physical address on memory allocation. When a process on VM attempts to

access a certain virtual address, an address conversion from VM’s physical ad-

dress to system’s physical address is performed after one from virtual address

to VM’s physical address. Every time address coversion is performed, hypervi-

sor checks data both on two physical addresses. If these fragments of data are

Chapter 4 Design of Hypervisor 19

7

Fig.4.4 Address space layout randomization of proposing hypervisor.

inconsistent, hypervisor issues an integrity fault.

4.5 Storage Encryption

Our architecture protects a clients’ information when data exists on mem-

ory from attacks of management VM ordered by malicious operators. On the

other hand, when clients’ information leaves memory and is stored to storage,

such as swapping out and suspend, it is easily stolen by malicious operators of

data centers. Our architecture encrypts all information when they left memory.

Encryption keys are unique to each clients.

Hypervisor knows the relationship between a VM and pieces of physical ad-

dress assigned to it. The information of this relationship is stored in the SPTE

record, which is referred on allocation and release of physical memory of VM.

Guest OSes do not need to be informed of encryption keys. Both encryption

on swap out and decryption on swap in are performed on hypervisor layer.

4.6 Key Management

A method of managing cryptograph keys is critical problem. Leaving client

a duty of generating private key and public key pair and requiring public key

does not solve this problem. This is because VM must handle the plaintext and

Chapter 4 Design of Hypervisor 20

it needs private keys. Our hypervisor has key-generating function and shares a

generated key with client by the private pass such as Virtual Private Network

(VPN). On second or later logging on, hypervisor requires a client to send it.

Fig. 4.5 illustrates a mechanism of storage protection of proposing hypervisor.

Encryption keys are managed by hypervisor when they are on memory. The

area of physical memory where keys are stored as well as SPT is not allowed to

be mapped by VMs.

8

Fig.4.5 A mechanism of storage protection of proposing hypervisor.

4.7 Ensuring the Integrity of data on Storage

Though a malicious operator cannot know a meaningful structure of user’s

data on storage, he or she is enable to modify it in disorder. In general, modifi-

cation of data on storage is harder for the user to perceive than that on memory.

To ensure the integrity of data on storage, HAIL[3] is introduced to proposing

hypervisor. HAIL devides a single file to the plural fragments and disposes these

fragments and parity blocks in the plural servers. It is difficult to identify the

layout of them and to modify suitably. This enables hypervisor to detect an

illegal modification.

Chapter 4 Design of Hypervisor 21

4.8 Compatibility with Hardware Supported

Virtualization

Though processors with virtualization support implement the mechanism of

address conversion of shadow page table entry, the technique of memory pro-

tection with an additional bit of shadow page table entry can be adopted in the

environment with these processors. This is because there are some extra bits in

the structure of shadow page table entries and processors do not concern it, and

limitation of accesses of management VM is done before address conversion.

In the case of the technique of memory protection with ASLR is more simple.

Since this technique is besed only on address layout, hypervisor only need to

direct a processor the randomized physical address.

22

Chapter.5

Discussion

5.1 Availability of Cloud Service Operation

It is a critical question whether an innocent operator of cloud service provider

is able to complete his or her regular operation under an environment with

proposing hypervisor. Operators are needed to have means of launching or

shutting down users’ VMs, killing ones and dealing with troubles caused by

users.

Obviously, operators do not need to touch the memory area where the hy-

pervisor deal with in launching operation. What operators should determine

are how large the physical resource to allocate and when they launch the VM.

Where the memory area will be assigned to new VM can be completely hidden

in hypervisor mechanism. The case operators are required to shut down user’s

VM should be very rare if a steady OS is used as user’s guest OS. Proposing

hypervisor does not limit operators to shut down user’s VM. However, shutting

down causes flush of memory which is allocated to VM and swapping out. Data

swapping out is protected by the technique of encryption and the key is stored

until VM completely shuts down. This means no data leakage will be caused

by shutting down.

Problems refers to storage is not in a range of operators’ responsibility. Re-

solving possible troubles of users with storage do not requires the help of an

administrator. On the other hand, troubles of memory such as long-time of

Chapter 5 Discussion 23

memory leakage are normally impossible to be solved without the strong priv-

ilege of operators in system’s lifetime. However, there problems can be solved

simply by shutting down VM. Operators does not need to know the allocated

physical memory address while all of information are hidden in hypervisor.

5.2 The safety of Cache

Most commonly, an OS manages the plural processes by performing con-

text switch. the OS saves the value of registers and cache of the information

of address conversion(a general processor retains it in Translation Lookaside

Buffer(TLB)) to memory when the OS changes the running processes. Hyper-

visor, likewise, saves value when it changes a running VM. Accesses on memory

performed by posterior VM do not result in accesses to cache TLB is cleared.

This means that conventional hypervisor does not allow the leakage of cached

data from a VM to another VM.

5.3 Protection of Memory

Memory Protection Based on An Additional Bit

According to section 4.1, all accesses on memory after context switch lead

accesses to memory. They are always accompanied by address conversion from

guest’s physical address to system’s physical address. This means that hy-

pervisor can interrupt all memory accesses performed by VMs and validate

an additional permission bit. Therefore a malicious operator cannot map the

memory domain which is assigned to user and steal contents of it.

Memory Protection Based on ASLR

Some concerns at the memory protection of this technique. Firstly, malicious

operator might ractionate the random function and seed. The more simple

random function is, the higher risk of disclosing critical values is. For example,

linear congruential generators (LCGs) are too simple to ensure the privacy.

The risk of disclosure depends also on the number of VMs the platform in-

Chapter 5 Discussion 24

cludes. In case that great number of VMs are running and their data is ran-

domly deployed on the physical memory area, inference of cpmsecitove data is

very difficult.

The granularity of data randomization is still a critical issue. Ordinaly sys-

tems assign processes the memory area devided in 4KB size. Consistent 4KB

data might be enough for adversaries to steal the secret infomation. The

address-level granularity might cause the size of memory area overhead in return

for resolving security issue.

5.4 Protection of Storage

Saving data from memory to storage is always followed by encryption. As far

as the encryption key does not be exposed, the privacy of stored information

is ensured. Encryption key is protected both on communication path and on

memory by VPN and access limitation, respectively.

5.5 Comparision of Two Techniques of Memory

Protection

11

Fig.5.1 Comparision of Two Techniques of Memory Protection.

Fig. 5.1 shows the comparision of two techniques of memory protection. An

additional bit of SPTE make user’s data completely untouchable from malicious

operator while aslr can deal with the data even if the meaningful information is

unavailable. ASLR is favorable in terms of implement cost and performance. In

Chapter 5 Discussion 25

case of that the lifetime of VMs is short, ASLR would be adopted due to the risk

of complete analysis of randomized address layout is very low. An additional

bit suits the security-critical usage such as the platoform for cloud system of

medical records.

26

Chapter.6

Conclusion

In this paper a novel hypervisor architecture for cloud computing was pro-

posed, which ensured the privacy of cloud user’s information even if provider’s

operator was malicious. Proposed hypervisor was focused especially when those

kinds of information are in memory, but can protect them when they are in stor-

age.

Two choices of memory protection techniques are available and each of them

has its specific advantages and defects. Memory protection based on an ad-

ditional bit of shadow page table entry enables strict protection but is more

complex. On the other hand, memory protection based on address space layout

randomization excels at the simple implementation.

Storage protection owe to encryption of data on swapping-out from memory to

storage and decryption of data on swapping-in. Keys for encryption/decryption

are stored in specific memory area where cannot be allocated to VMs for VM’s

lifetime. Proposed hypervisor requires a user his or her key when the user log

on the VM. Trust of conventional cloud services is based only on their privacy

policy. Proposed hypervisor does not make trust besed on it but on architecture.

This makes more companies and organizations to determine to introduce the

cloud services to their operations without security concern.

27

Bibliography

[1] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky.

Hypersentry: enabling stealthy in-context measurement of hypervisor in-

tegrity. In Proceedings of the 17th ACM conference on Computer and com-

munications security, CCS ’10, pages 38–49, New York, NY, USA, 2010.

ACM.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In

Proceedings of the nineteenth ACM symposium on Operating systems prin-

ciples, SOSP ’03, pages 164–177, New York, NY, USA, 2003. ACM.

[3] K. D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and in-

tegrity layer for cloud storage. In Proceedings of the 16th ACM Conference

on Computer and Communications Security, CCS ’09, pages 187–198, New

York, NY, USA, 2009. ACM.

[4] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,

D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: A virtualization-

based approach to retrofitting protection in commodity operating systems.

SIGPLAN Not., 43(3):2–13, Mar. 2008.

[5] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Secureme: A

hardware-software approach to full system security. In Proceedings of the

International Conference on Supercomputing, ICS ’11, pages 108–119, New

York, NY, USA, 2011. ACM.

[6] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. Certikos: a

certified kernel for secure cloud computing. In Proceedings of the Second

Asia-Pacific Workshop on Systems, APSys ’11, pages 3:1–3:5, New York,

Bibliography 28

NY, USA, 2011. ACM.

[7] V. Inc. Workstation user’s manual, 2007.

[8] Intel. What’s holding back the cloud? http://www.

intel.com/content/dam/www/public/us/en/documents/reports/

whats-holding-back-the-cloud-peer-research-report2.pdf.

[9] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype: virtualized cloud

infrastructure without the virtualization. In Proceedings of the 37th annual

international symposium on Computer architecture, ISCA ’10, pages 350–

361, New York, NY, USA, 2010. ACM.

[10] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:

An execution infrastructure for tcb minimization. SIGOPS Oper. Syst.

Rev., 42(4):315–328, Apr. 2008.

[11] P. Mell and T. Grance. The NIST definition of cloud computing (draft).

NIST special publication, 800(145):7, 2011.

[12] Microsoft. Hypervisor functional specification, 2008.

[13] M. of Internal Affairs and C. of Japan. White paper information and

communications in japan, 2012.

[14] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin,

and L. van Doorn. Building a MAC-based security architecture for the

Xen open-source hypervisor. In Proceedings of the 2005 Annual Computer

Security Applications Conference, ACS ’05, pages 276–285, 2005.

[15] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Aegis:

Architecture for tamper-evident and tamper-resistant processing. In Pro-

ceedings of the 17th Annual International Conference on Supercomputing,

ICS ’03, pages 160–171, New York, NY, USA, 2003. ACM.

[16] Trusted Computing Group. Tpm main part 1 design principles, 2007.

[17] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide

lifetime hypervisor control-flow integrity. In Security and Privacy (SP),

2010 IEEE Symposium on, SP, ’10, pages 380–395, 2010.

29

Publications by the Author

[1] K. Murakami, T. Yamada, R. S. Yamaguchi, M. Goshima and S. Sakai. A

Cloud Architecture for Protectiong Guest’s Information against Attacks of

Malicious Operator. Computer Security Symposium, 2013. (In Japanese)

[2] K. Murakami, T. Yamada, R. S. Yamaguchi, M. Goshima and S. Sakai.

A Cloud Architecture for Protectiong Guest’s Information against Theft

and Modification by Malicious Operator. Symposium on Cryptography and

Information Security, 2014. (In Japanese)

[3] K. Murakami, T. Yamada, R. S. Yamaguchi, M. Goshima and S. Sakai.

A Cloud Architecture for Protecting Guest’s Information from Malicious

Operators with Memory Management. ACM Conference on Data and Ap-

plication Security and Privacy, 2014.

30

Acknowledgement

This work is done in the Graduate School of Information Science and Tech-

nology of the University of Tokyo.

Foremost, I would like to express my special appreciation and thanks to my

supervisors, Professor Shuichi Sakai and Associate Professor Masahiro Goshima,

you have been tremendous mentors for me. I would like to thank you for

encouraging my research and for allowing me to grow as a research scientist.

Duscussions with you have been illuminating.

My sincere thanks also goes to Contract Associate Professor Rie Yamaguchi,

for her encouragement, insightful comments and detailed coaching as a security

reseacher.

I am deeply indebted to Harumi Yagihara and Tamaki Hasebe. Their support

were invaluable for acts in laboratory.

The students of security team made enormous contribution to the inspection

of research, thanks to Tsuyoshi Yamada, Mizuki Miyanaga, Kenjiro Nakata,

Takuya Chida and Takuya Okamoto.

Many thanks to the following students in Sakai Goshima Laboratory: Yaoko

Nakagawa, Teppei Hirotsu, Takashi Toyoshima, Naruki Kurata, Junji Yamada,

Choi Seoyun, Shuji Yoshida, Soichiro Hirohata, Koske Asami, Akifumi Fu-

jita, Manami Iwata, Suguru Nishikawa, Ushio Jinbo, Takashi Fukuda, Akihito

Tsusaka, Masumi Fukuda, Yasutaka Ishikawa, Yuichi Tanigawa, Yoshiro Yam-

abe, Tatsuya Sugimoto, Yoshitaro Yonamoto.

Last, but not least, I wish to thank my family for their support.

