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Abstract

This thesis explores the applications of compressed sensing (CS) in wireless

communication contexts. CS exploits the signal sparsity to overcome resource

limitation in wireless systems. This thesis considers two scenarios: wireless

sensor network and wideband wireless communication.

Wireless sensor networks generate big-data which lead to overwhelming traffic

in the networks. In order to reduce traffic, we apply 1-bit CS with a structured

measurement matrix to suit with wireless sensor data and memory limitation of

sensor nodes. The evaluation on sensor data and the implementation on sensor

nodes validate the viability on a practical system.

Wideband wireless communications require high-speed ADCs to sample wide-

band signals due to the Nyquist theorem. Sub-Nyquist sampling relaxes the

requirement by exploiting CS theory. Narrowband signals sparsely located in

wideband spectrum can be sampled by two CS-based sub-Nyquist sampling

systems: Random Demodulation based system and Modulated Wideband Con-

verter. The simulation and the implementation shows the performance of the

sub-Nyquist sampling systems in various scenarios.
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Introduction



1.1 Resourced-limited wireless systems Chapter 1 Introduction

“Why go to so much effort to acquire all the data when most of what we get will

be thrown away? Can we not just directly measure the part that will not end up

being thrown away?”

(David L. Donoho)

Compressed sensing (CS) [3] is another buzzword of a signal processing technique which

has a potential in many application fields. What CS attempts is intuitively explained

by the above quotation. The basic principle of applying CS is to sample a signal at

the information rate by exploiting incoherent measurement and a sparsity of the signal,

where “sparse” means when a signal can be expressed as a large number of zero or nearly

zero values and a small number of non-zero values. The potential of CS has attracted

abundant interest in the research community since 2006. However, limited researches have

translated CS theory into practical applications, and also demonstrated an evaluation in

real situations or a comparison with conventional approaches.

This thesis explores the applications of CS in resourced-limited wireless systems: wireless

sensor network and wideband wireless communication.

1.1 Resourced-limited wireless systems

1.1.1 Wireless sensor networks

Fig. 1.1 Data generation in WSN.
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1.1 Resourced-limited wireless systems Chapter 1 Introduction

Wireless sensor networks (WSN) are composed of large number of distributed-sensing

nodes, which capture environment data and communicate with each other via wireless

communication. The sensing nodes have a processing unit with memory to process tasks,

a wireless radio unit to communicate, one or more sensors, and a power supply. Many

different sensors can be used such as temperature, light intensity and humidity sensors as

well as accelerometer.

Compared with traditional computer networks, WSN are usually based on small sensor

nodes with limited processing power, small memory, and especially limited power supply.

In a sensor node, a communication module is considered the most energy consuming part

which is accounted as approximately 80%, where the rest 20% of power is consumed by

sensing and processing [4].

Data compression is an option to reduce the total power consumption by reducing the

power consumption of the power-hungry communication module. However, this has a trade

off with the power consumption in the sensing and processing part. The data compression

which is part of data generation process as shown in Fig 1.1 can be performed in order to

reduce the amount of wireless traffic. The benefits of traffic reduction are as follows:

• To reduce the transmission power which is the most energy consumption part in

a sensor node. This can either extend the battery maintenance period or make a

sensor node sustainable by an embedded energy harvesting unit.

• To reduce the requirement of bandwidth to transfer data. An operation such as

data collection and bulk data transfer requires less time and a user may obtain

information more promptly.

• To relax the necessity of data storage expansion. In the future, WSNs can be densely

deployed anywhere and generate tremendous amount of data which will be stored

in a datacenter. The sensed data should shrink down in size while the important

information is still preserved.

Although data compression provides significant improvements to WSN, the design of data

compression algorithms needs to satisfy the constraints and resource limitations of WSN.

The design in this thesis aims to obtain minimal error, minimal data delay, and feasibility

in limited memory.

Chapter 3 describes the design of CS-based compression algorithm which suits to the

WSN environment. We evaluate the algorithm with real sensor data: temperature, hu-

midity, illuminance and implement the algorithm in off-the-shelf sensor nodes.

– 3 –



1.1 Resourced-limited wireless systems Chapter 1 Introduction

1.1.2 Wideband wireless communications

Wideband wireless communications refer to scenarios where a system has to sample the

signal from the entire wide spectrum before extracting a informative data out of the signal

in digital domain. The scenarios can be categorized as two main types:

（ 1） Signals sparsely located in wide spectrum. The example of this scenario is an

cognitive radio system. This refers to the sparsity in the frequency domain and is based

on the assumption that many wireless channels are not always occupied, according to

the FCC report [1]. A frequency sparse signal can be demonstrated in Figure 1.2. In

the future of wireless communication, radio devices are required to be more flexible.

They may support wide range of frequency spectrum in terms of Gigahertz and operate

when the carrier frequency is unknown but could lie anywhere in a wide bandwidth.

（ 2） Ultra-wideband (UWB) impulse signal. The example of this scenario is communi-

cation and radar by using UWB impulse radio. This refers to the sparsity in the time

domain. The FCC defines UWB in terms of a transmission from an antenna for which

the emitted signal bandwidth exceeds the lesser of between either 500 MHz or 20% of

the center frequency and restricts the equivalent isotropically radiated power (EIRP)

to be generally less that -40 dBm [5].

Fig. 1.2 Graphical representation of sparse frequency spectrum and its real example [1].

By basic analog-to-digital converters (ADCs), both scenarios requires a high-speed signal

sampling that covers the whole wide spectrum for perfect data reconstruction. ADCs are

boundary between real analog world and modern signal processing domain – discrete-time

world. To deal with wideband signal where frequency tone locations are unknown in case
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1.2 Thesis overview Chapter 1 Introduction

of (1), the sampling rate of traditional ADCs needs to be at least twice of the highest

signal frequency according to the Shannon-Nyquist sampling theorem [6]. Due to the

current progress of technology, high-speed ADCs are limited and may not support such

future applications. Also, the current state-of-the-art ADCs operating at the order of

Giga samples-per-second still consume high power and have limited bit resolution [7–9].

Hence, sub-Nyquist sampling [10], i.e. the sampling system whose sampling rate is below

the Nyquist rate, attracts researchers’ interest to potentially overcome the necessity of

high-speed ADCs for sampling wideband signals [11–14].

This thesis focuses on the sampling of the case (1) signals sparsely located in wide

spectrum. Chapter 4 describes CS-based sub-Nyquist sampling systems including Ran-

dom Demodulation based system and Modulated Wideband Converter. We evaluate the

performance of them by simulation based on the scenario with signals sparsely located in

wide spectrum. The implementation of sub-Nyquist sampling with BPSK signals is done

on laboratory-instrument level to verify the simulation results.

1.2 Thesis overview

This thesis contains four chapters. It is organized as follows:

Chapter 1: Introduction

This chapter introduces the objective of this thesis and also the motivation to apply CS

for two target resource-limited wireless systems: wireless sensor networks and wideband

wireless communications.

Chapter 2: Background of compressed sensing

The basic mathematical background of CS is given in this chapter. We provide some

example applications of CS in addition to wireless sensor networks and wideband wireless

communications. Advantages and disadvantages of CS are also discussed.

Chapter 3: CS for wireless sensor networks

In this chapter, the application of CS on wireless sensor networks is discussed. The

design of CS-based data compression algorithm which suits to the WSN environment is

introduced based on 1-bit compressed sensing and structured measurement matrix. The

evaluation by using real sensor data and the implementation on off-the-shelf sensor nodes

are also described.

Chapter 4: CS for wideband wireless communications
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1.2 Thesis overview Chapter 1 Introduction

This chapter presents the application of CS for wideband wireless communications.

CS-based sub-Nyquist sampling systems including Random Demodulation based system

and Modulated Wideband Converter system are described. The performance of sub-

Nyquist sampling for signals sparsely located in wide spectrum is studied by simulation

and implementation.

Chapter 5: Conclusions and future works

This chapter summarizes the contributions of this thesis as well as future improvements.

– 6 –
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2.1 Mathematical background Chapter 2 Background of Compressed Sensing

In this chapter, we provide basic mathematical background of CS and also several ex-

amples of applications employing CS concept. After that, we describe general advantages

and disadvantages of CS,

Fig. 2.1 Block diagram of compressed sensing.

2.1 Mathematical background

When the original signals can be expressed as a large number of zero or nearly zero values

and a small number of non-zero values, the signals are said to be sparse or compressible.

CS is a state-of-the-art data acquisition theory that exploits the incoherent measurement

and the fact that many natural signals are sparse or compressible in the appropriate

basis such as Fourier transform, Discrete Cosine Transform (DCT), and Discrete Wavelet

Transform(DWT) etc. [3,15]. CS typical represents signals in terms of discrete-time matrix

form.

Figure 2.1 shows the block diagram of CS. CS sampling is performed in analog front

end in our consideration. A measurement vector y which is an outcome of CS sampling

is passed to a reconstruction process. The reconstruction firstly find a sparse solution s

according to l1-norm minimization problem and then transform the sparse solution to a

reconstructed signal corresponding to a sparsifying basis.

Mathematically, let an N × 1 signal vector x can be represented as an N × 1 sparse

vector s with the relationship

x = Ψs, (2.1)
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2.1 Mathematical background Chapter 2 Background of Compressed Sensing

where Ψ is an N × N basis matrix. In the CS sampling, the original signal vector x is

compressed by an M ×N measurement matrix Φ as follows

y = Φx = ΦΨs, (2.2)

where y denotes the M × 1 acquired CS measurement vector. The measurement matrix

Φ should be incoherent with the basis Ψ in order to successfully reconstruct a sparse

solution. To guarantee the robust and the efficient recovery of the sparse signal s, the

measurement matrix Φ must obey the “restricted isometry property (RIP)” [16]

(1− δ) ∥s∥22 ≤ ∥ΦΨs∥ ≤ (1 + δ) ∥s∥22 , (2.3)

where ∥s∥22 =
∑

i si
2 and δ(0 ≤ δ < 1) is the smallest isometry constant that satisfies

Eq. (2.3). This property is difficult to verify. Practically, it is required that coherence

between the measurement matrix Φ and the basis Ψ is small enough. To define the degree

of compression, the compression ratio is defined as

compression ratio =
compressed size

original size
× 100%. (2.4)

CS framework recovers a sparse vector s from only these linear measurements with the

knowledge of Φ and Ψ at the reconstruction. Typically, the inverse problem of Eq. (2.2)

is an ill-posed problem that generally cannot be uniquely solved. However, under the

assumption that the signal vector x can be expressed in the basis Ψ, s can be estimated

by solving the following l1 norm minimization

min ∥s∥1 subject to y = ΦΨs, (2.5)

where ∥s∥1 =
∑

i |si|. If the RIP is satisfied, the sparse solution s can be successfully

reconstructed with high probability. Nevertheless, in the real world a signal is not perfectly

K-sparse where instead of exactly K entries are non-zero values, K entries have relatively

high value compared to the other almost zero or zero entries.

Eq. (2.5) can be solved by several reconstruction algorithms categorized as three main

types: convex optimization algorithms [17, 18], combinatorial algorithms [19], and greedy

algorithms [20,21]. Greedy algorithms provide a compromise between convex optimization

algorithms and combinatorial algorithms in terms of the required number of measurements
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2.2 Applications Chapter 2 Background of Compressed Sensing

and computational complexity, where convex optimization algorithms require least number

of measurements but incur most expensive computation.

Traditionally, one would collect data samples as x by using ADCs and then compress it

using matrix multiplication where this method is so called “digital CS”. On the other hand,

CS offers an impressive alternative by collecting roughly M samples using simple analog

measurement, thus sampling and compressing at the same time. This method which can

be categorized as “analog CS”. Since the compression occurs in the analog sensor read-out

electronics prior to ADCs, the analog CS can eliminate the necessity of the high-speed

ADC.

2.2 Applications

“Many natural signals are sparse or compressible in the sense that they have concise

representations when expressed in the proper basis.”

(Emmanuel J. Candès)

As inspired by one of the pioneers of CS, many applications adopting CS concept have

emerged. Since this thesis considers only two applications of CS, we here show some

examples of them.

• Optical imaging. One of the most well-known CS devices is “single-pixel camera”

developed by Rice University [22]. The idea is to trade spatial resolution for tem-

poral resolution. The camera uses a single pixel to capture many measurements

over time. Each measurement encodes the light information from the entire scene

by using a micro-mirror array which is a grid of pixel-like mirrors. An individual

pixel-like mirror may reflect the light either toward the single-pixel light sensor or

to some other directions. The mechanism can be modelled as a binary measurement

matrix.

• Medical Resonance Imaging (MRI). MRI is a promising application of CS. Applying

CS to MRI allows the reconstruction possible with fewer samples than conventionally

needed [23]. Fewer samples means faster scans so patients can spend less time

staying static during the examination.

• Seismic imaging. Seismic imaging has utilized the sparse approximation and CS-

based seismic imaging system can be done by manipulating the excitation signal

e.g. one sent by a ship and controlled explosion [24]. Another method is done in

– 10 –



2.3 Advantages and disadvantages Chapter 2 Background of Compressed Sensing

the receiving scheme where the rate and location of samples are random to obtain

incoherent measurements.

• Radar. A pure CS radar refers to a design of CS-based emitter and receiver devices.

The special radar pulse is designed to exploit CS and provides better resolution that

traditional radars [25].

• Data coding. CS-based data coding can compress the data at high degree of com-

pression and in real time, as a trade off with time and power consuming recon-

struction. This suits to the situation with limited transmission bandwidth and low-

powered sensors such as in astronomy [26]. We apply similar concept to wireless

sensor networks as explained in Chapter 3.

• Analog-to-digital converter (ADC). CS can be adopted in sampling system to brake

the link between the sampling speed and the signal bandwidth. CS-based sampling

systems, which can acquire a signal according to its amount of information, are

discussed in Chapter 4.

2.3 Advantages and disadvantages

CS has its own characteristics that determines whether it suits to a target application.

The advantages of CS include simplicity of the measurement process, flexibility, and gen-

erality. However, it also has some drawbacks including complexity of the reconstruction

process, and sensitivity to noise.

To begin with, one of the major advantages of CS is that it trades a processing load

from data acquisition part to data reconstruction process. This provides the simplicity in

the measurement process which is modelled as a linear, non-adaptive matrix multiplica-

tion. This property is preferred by most of applications in which the signal acquisition is

troublesome and critical, e.g. when the computational resources, the acquisition time, or

the sensor hardware are limited. In this kind of applications, CS can provide a saving in

terms of size, weight, power, or costs of acquisition devices.

Another main advantage of CS is its universality. In most applications, the same random

measurement matrix can be used for all signals. Typically, the measurement matrix that

is designed as an arbitrary random matrix satisfies CS theory because the measurement

matrix is usually incoherent with most fixed transformation basis. The application such

described in Chapter 3 utilizes this property.
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2.3 Advantages and disadvantages Chapter 2 Background of Compressed Sensing

Moreover, flexibility is another merit. CS sampling does not have to know what basis

the signal is sparse in. The sparsifying basis can be freely chosen at the reconstruction

process. This implies that we can improve the accuracy of the reconstruction over time

by obtaining more-sparse representation as long as a new sparsifying basis is incoherent

with the measurement, even though the samples have been measured in the past.

On the other hand, a major disadvantage of CS is the reconstruction complexity. The

post-process of the measurements is a time consuming process to recovery the signal. The

computation complexity is in terms of polynomial time. Since the load has been reduced

in the measurement side, the reconstruction generally requires more processing time and

higher computational capacity done by powerful or specifically designed processing units.

Also, CS is sensitive to input noise. Due to the incoherent measurement, the information

including noise are spread through out the measurements. The measurement process

aliases all the noise in the signal into the compressed measurements, where this mechanism

is so called “noise folding”. It reduces signal-to-noise ratio compared to that of the original

signal.

In summary, due to these merits and demerits, CS may match to some applications but

may not in some other cases. Even if we can utilize merits of CS to conquer a problem,

there will be difficulties coming together due to its disadvantages which we require to

solve.
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3.1 Introduction Chapter 3 Compressed Sensing for Wireless Sensor Networks

3.1 Introduction

Compressed sensing (CS) exploits signal sparsity to reduce the amount of traffic gener-

ated from a big-data technology e.g., wireless sensor networks (WSNs) for environmental

monitoring. The sensor data representing natural phenomena usually exhibits correlation

among data which can be represented as sparse data in some domain. Lower power con-

sumption for data transmission and server storage memory can be expected by applying

CS-based data compression [27]. 1-bit CS can improve the performance of traffic reduc-

tion in wireless sensor networks while applying a circulant random bipolar measurement

addresses the limitation of memory in sensor nodes.

CS conventionally represents high-dimensional signals in the form of smaller number of

measurements by using randomized, linear, non-adaptive measurements. The conventional

CS assumes that the measurements are real valued and have infinite bit precision. However,

in practice the measurements are quantized into finite number of bits. In an extreme case,

Boufounos et al. introduced “1-bit CS” which uses only 1-bit quantization representing

sign of the measurements [28]. Although more measurements are necessary in 1-bit CS,

it can finally decrease the number of bits from the original high resolution quantized

bitstream.

The small sensor nodes of WSN usually have limited processing power, limited energy,

and scarce memory. This work focuses on applying CS without violating the memory

limitation which is crucial because it determines the feasibility of a desired application. A

measurement matrix used in CS measurement is stored in sensor nodes’ limited memory,

and it is accounted as main memory space consumption of CS data processing algorithm.

Since 1-bit CS requires more measurements which result in larger memory consumed by a

measurement matrix, a circulant structured matrix [29] with entries randomly generated

by Bernoulli distribution is introduced to cope with the memory issue.

In this chapter we evaluate the performance of memory-efficient 1-bit CS which adopts

a circulant random bipolar measurement matrix by using real sensor data including tem-

perature, relative humidity, and illuminance. The results show that the proposed scheme

can reduce the traffic and save significant amount of memory compared to the conven-

tional CS under same conditions. Furthermore, the experiment on real sensor nodes is

also conducted to verify our scheme.
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3.2 Related works Chapter 3 Compressed Sensing for Wireless Sensor Networks

3.2 Related works

CS has been applied to WSNs in various schemes to handle the sparsity in most natural

phenomena. Plenty of works [30–34] have applied similar CS-based data compression in

time axis to biological signals, such as electrocardiography (ECG), electroencephalography

(EEG), and electromyography (EMG) signals, gathered by body monitoring systems. In

particular, [32] analyzes both analog and digital implementations in circuit models and

presents in terms of EEG signals, whereas this thesis applies the digital calculation in

sensor nodes’ micro controller unit on environmental monitoring data. In addition, we

provide a few more examples of CS-based WSN data collection protocols and a design of

circuit to perform CS sampling in wireless sensor nodes. Lastly, we discuss advantages of

CS to WSN in general.

CS-based data collection schemes in WSNs has been introduced by the authors of [35,36].

They share common characteristic of taking CS sampling among sensor nodes i.e. exploit-

ing spatial correlation to compress the data, but they differ in the approaches to perform

matrix multiplication of CS sampling. [35] considers rather old-fashion analog amplitude

modulation and coherent transmission to achieve constructive summation in air interface

in order to perform CS sampling from multiple child nodes concurrently. On the other

hand, the spanning tree topology of WSN is considered in [36] and CS sampling is gradually

achieved when the transmitted data is collected from child nodes to a root node. That is,

a node projects its sensor data to CS measurements which is forwarded to its parent, then

the parent repeats the projection and sums to the intermediate CS measurements until

CS measurements reach the root node. Although this scheme reduces the transmission by

nodes near the root node significantly, it increases unnecessary transmission to a leaf-node

which usually send only a piece of data (its own sensor data). The problem is solved by

a hybrid CS scheme [37], where if a node sends less than a number of CS measurements

by the conventional method, the conventional method is used. Moreover, [38] considers

the use of sparse random measurement matrix in the data collection of WSN. Instead of

getting the measurements from all nodes, some of nodes are randomly chosen to transmit.

These schemes require a spanning-tree routing algorithm which may be not the case in

some network protocols [39].

Generally, CS has several merits which make it potentially suitable for WSNs. The

encoding part of CS which will be performed at data sources is designed to be simple,

linear, and non-adaptive. The only thing that the sensor nodes are required to perform is
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matrix multiplication, whose result can gradually build up while a sample data is sensed

from a sensor. Unlike thresholding-based transformation compressions which also exploit

the signal sparsity in some domains by extracting high coefficients as an output, the

encoding part of CS is universal among sensor data. The same encoding process with

random measurement can be done even when different sensor data are sparse in different

domains. The sensor nodes do not require a knowledge of which domain the data is sparse.

In another aspect, the reconstruction performance of CS is improvable ceaselessly. Given

CS measurements stored in a server, the discovery of better sparsifying basis for the data

can be applied at the reconstruction process to improve the reconstruction performance.

3.3 Data compression for WSNs

As shown in Fig. 3.1, CS measurement is performed in data sources which is sensor nodes

in our consideration. A measurement vector y which is an outcome of CS measurement is

transmitted along the network to a root node to reconstruct the original signal. The root

node which is usually a relatively high performance computer firstly finds a sparse solution

s according to l1-norm minimization problem and then transform the sparse solution to a

reconstructed signal corresponding to a sparsifying basis.

Fig. 3.1 CS sampling and reconstruction in WSNs.

3.3.1 1-bit compressed sensing

When reducing traffic at high rate, the conventional CS suffers from insufficient mea-

surements and results in high distortion from reconstruction. Therefore, we are interested
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in 1-bit CS where each measurement is quantized into one bit of sign information. At

a given target number of bits of compressed data, 1-bit CS can increase the number of

measurement. Despite of low resolution quantization, the additional measurements which

may even exceed the number of original signal can improve the reconstruction accuracy

and therefore lower distortion by 1-bit CS can be expected.

Let a length-N signal vector x be represented as a sparse vector s with the relationship

x = Ψs where Ψ is a basis matrix. In 1-bit CS measurement, the original signal vector x

is compressed by an measurement matrix Φ as follows

y = sign(Φx) (3.1)

where y denotes the length-M acquired CS measurement vector. sign() function returns 1

for positive numbers and −1 for negative numbers. Note that the conventional CS assumes

that the measurements y are real valued and have infinite bit precision. Therefore Eq.

(3.1) becomes y = Φx. However, in practice measurements y have to be quantized to

a discrete value over some finite range before being further processed. Let a system

quantization be B bits. A total compression rate including quantization Rc is defined as

the ratio between the number of bits required for a compressed and an original signal such

that Rc = Mconv/N for the conventional CS and Rc = M1bit/BN for 1-bit CS.

Although the amplitude information is lost during 1-bit measurement stage, the recon-

struction method [28] was proposed to enforce that the sparse solution s lies on the unit

sphere and the l1 norm minimization problem becomes

min ∥s∥1 subject to y = sign(ΦΨs), ∥s∥2 = 1. (3.2)

As a comparison between the conventional and 1-bit CS, 1-bit CS can increase the

number of measurement to BRcN compared to that of the conventional CS at RcN at

a given target number of bits of compressed data. However, due to larger measurement

matrix, memory requirement of 1-bit CS are increased by a factor of B to store the larger

measurement matrix.
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3.3.2 Structured measurement matrix

Generally, we require that coherence between the measurement matrix Φ and the basis

Ψ is small enough. A good choice for the measurement matrix Φ is random matrices.

In this work we consider two classes of sub-Gaussian distribution measurement matrix,

namely Gaussian and bipolar random matrix. Since entries in bipolar random matrix are

only 1 and −1 which can be represented by only 1 bit, the use of bipolar random matrix

as a measurement matrix can save some memory.

Instead of storing the fully random measurement matrix which occupies large memory

space, applying partial random structured matrices as measurement matrices is encour-

aged. It has been shown that circulant random matrices with entries generated inde-

pendently from the same distributions are also sufficient to satisfy the RIP (restricted

isometry geometry) with high probability [40]. Given a stem vector c = (c0, ..., ci)
T where

i = max (M,N), the circulant matrix can be drawn as

C =


c0 ci−1 · · · c1

c1 c0 · · · c2
...

...
...

ci−1 ci−2 · · · c0

 . (3.3)

In the conventional CS, we are interested when a number of raw signal N is larger than

a number of measurement M , the measurement matrix will be a row submatrix of C.

However, in most cases of 1-bit CS, a number of measurement M grows larger than a

number of raw signal N . The constructed measurement matrix will be a column submatrix

of C.

By using the circulant matrix, the memory required for storing measurement matrices

is reduced significantly. The memory for storing conventional CS measurement matrices

is reduced to O(N), unlike fully random matrices which occupy O(RcN
2). In the M >

N 1-bit CS case, structured matrices consume O(BRcN) memory, while fully random

matrices use O(BRcN
2). This comparison is done based on a given fixed number of

target compressed bits so that we can compare between the conventional CS and 1-bit CS.
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3.4 Evaluation

We evaluate the performance of 1-bit CS with circulant random bipolar measurement by

using real sensor data including temperature, relative humidity, illuminance of visible light

(320 nm to 730 nm). The raw data is sensed by using TelosB wireless sensor nodes [39]

from a tomato greenhouse during November 24th to December 5th [41].

3.4.1 Simulation

We compare the introduced scheme with the conventional CS and a fully random Gaus-

sian measurement, and their combinations. The conventional CS uses B = 16 bits for

quantization. GPSR [18] and BIHT [42] are used as reconstruction algorithms for the

conventional and 1-bit CS, respectively. Due to the isolation of complex numbers and the

exploitation of time correlation, DCT basis is employed as our sparsifying basis. Fig. 3.2

shows the example of DCT coefficients of each data. The evaluation is done in MATLAB

by using 10-day data collected from 83 sensors. The data are compressed and reconstructed

independently every hour (120 samples). It is worthwhile to notice that the signal vector

x is consistently removed the DC component, and both the DC component and the norm

are used to reconstruct the absolute data.

Fig. 3.3 shows the accuracy performance in terms of average absolute error at a cor-

responding compression rate of all three evaluated data. The results of different kinds of

sensor data all agree to the same conclusion. As mentioned in Section 3.3.1, the conven-

tion CS undergoes inadequate number of measurements that further lose more degree of

freedom when using the structured matrix. As a result, applying the circulant random

matrix to the conventional CS is undesirable option unlike using it with 1-bit CS. In 1-bit

CS the distortion is slightly enhanced. In particularly, when the compression rate is 0.1,

the distortion increased from when using fully random measurement matrix to when using

circulant measurement matrix is elaborated as the following numbers: from 0.06◦C to

0.08◦C for temperature, from 0.18%RH to 0.24%RH for humidity, and from 11.7 lux to

12.9 lux for illuminance. Therefore, it is worthwhile to obtain significantly more compact

measurement matrix.
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(a) Temperature

(b) Relative humidity

(c) Illuminance

Fig. 3.2 Example of DCT coefficients of sensor data.
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Fig. 3.3 Average absolute error comparison in terms of compression rate.
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3.4.2 Implementation

The implementation of the proposed scheme illustrates the feasibility on real sensor

nodes. We implemented it on TelosB nodes whose ROM memory is 48 KB. A sensor

acquires the data from an outdoor environment every 30 seconds and transmits by using

reliable data collection protocol [39]. At compression rate of 0.1, the proposed scheme

consumes only 24 B for storing a measurement matrix, while the fully random Gaussian

measurement matrix would occupy up to 2.9 KB and 46 KB in case of the conventional and

1-bit CS, respectively. Fig. 3.4 shows an example of 1-day data with its reconstruction.

The maximum absolute errors of each sensor data are 0.37◦C, 0.42%RH, and 79 lux for

temperature, humidity, and illuminance, respectively. In short, the scheme decreases 90%

of traffic without significant effect on memory consumption and accuracy.

In this chapter, we have evaluated the reconstruction accuracy in terms of distortion

which is measured in absolute difference in real world unit because it can give an idea

on real application and also be comparable to a sensor performance. The TelosB wireless

sensor nodes are equipped with an SHT11 humidity and temperature sensor. The SHT11’s

temperature sensing can provide ±0.5◦C at 25◦C accuracy with ±0.1◦C repeatability, and

the accuracy of ±3.5%RH along with the repeatability of ±0.1%RH for the relative humid-

ity. The results show that the CS-based compression and reconstruction can achieve the

same order of error with the sensor performance. The reconstruction of temperature and

relative humidity data are considerably accurate enough for most monitoring applications.

On the other hand, the fluctuating illuminance data cannot be recovered precisely at the

abrupt peak. The sharp peak results in low sparsity in DCT domain, and therefore the

illuminance data has least degree of compressibility compared to other two data.
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Fig. 3.4 Example of 1-day data and its reconstruction.
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Table. 3.1 Comparison of CS measurement schemes.

Conv. CS (B-bit CS) 1-bit CS

Metric Fully rand. Part. rand. Fully rand. Part. rand.

Distortion: high Rc Very low High Low Low

Distortion: low Rc Very high Very high Moderate High

Memory O(RcN
2) O(N) O(BRcN

2) O(BRcN)

Note that B represents bit resolution and a compression rate Rc is defined

the ratio between the number of bits required for a compressed and an

original signal.

Finally, Table 3.1 summarizes the characteristics of the conventional CS and 1-bit CS

with different measurement matrices according to the calculation in Section 3.3.2 and the

evaluation in Section 3.4. Notably, 1-bit CS with the structured measurement matrix

achieves memory-efficient with sufficiently low distortion which suits to memory-limited

applications employing small sensor nodes.

As a remark for other applications for monitoring with different constraints, we provide

some suggestions based on our results. Without the memory limitation, the conventional

CS with fully random measurement matrix can provide very low distortion at considerably

good compression ratio and therefore is a good choice for high accuracy applications, while

1-bit CS with fully random matrix can highly compress the data so that it is suitable to

transmission expensive applications such as satellite remote monitoring applications.

3.5 Summary

This chapter shows an empirical study of 1-bit compressed sensing with a circulant

random bipolar measurement on real sensor data which consists of temperature, relative

humidity, and illuminance. The evaluation results demonstrate that in case of resource-

limited wireless sensor networks, one may consider the circulant bipolar measurement

matrix operating in 1-bit compressed sensing scheme as an outstanding candidate. The

implementation on real sensor nodes also reveals the feasibility of the introduced scheme

practically.
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4.1 Introduction

High-speed ADCs are necessary to sample wideband signals due to the Nyquist theorem.

However, high-speed ADCs operating at the level of tens of gigasample-per-second are still

impractical by current technology [7–9]. Sub-Nyquist sampling relaxes the requirement

of Shannon-Nyquist theorem, i.e. reduces a sampling rate below the Nyquist rate, by

exploiting the sparsity of wideband signals along with CS theory. Instead of using a high-

speed ADC, a wideband signal can be acquired by using low-speed ADCs with the signal

preconditioning i.e. analog compressed sensing.

In this thesis, we consider a wideband signal whose spectrum is sparse. Within wideband

spectrum, there are narrowband signals existing in the sparse fashion. This is under the

assumption that most part of the bandwidth is not always occupied simultaneously [1]. A

possible application of sub-Nyquist sampling could be cognitive radio system, where the

sampling circuit of devices has to acquire the entire wide frequency band without carrier

demodulation due to the lack of prior knowledge of carrier frequency before the sampling.

This chapter describes CS-based sub-Nyquist sampling including two systems: Random

Demodulation (RD) based system [11, 14] and Modulated Wideband Converter (MWC)

[43]. RD-based system is based on signals in finite discrete model which discretizes the

frequency spectrum in discrete manner i.e. signals are traditionally viewed as a summation

of sinusoidal wave with discrete frequency. On the other hand, MWC system is based on

signals in infinite continuous model. MWC system can sample a band-limited signal from

wideband spectrum with low reconstruction complexity.

Previous works have mainly focused on the theoretical proof of concept in ideal situations

[12,14,43] and their prototype circuit design [44,13,45–47], but the performance of a sub-

Nyquist sampling system in more practical situation has not been discussed intensively.

The contribution of this thesis on either systems is described separately as follows:

• In RD-based system, we consider the mixing process where the selection of chipping

frequency of PN sequences is essential and still remains unexplored. The effect of the

chipping frequency variation is studied along with hardware nonidealities including

circuit noise, clock jitter and rise/fall of PN sequences.

• In MWC system, the evaluation is done in terms of digital communication - bit error

rate (BER) of BPSK/QPSK modulated signals, and thus the comparison between

the traditional Nyquist sampling is achieved. The effect of the chipping frequency
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variation is also studied. The implementation on laboratory-instrument is done level

to verify the simulation results.

4.2 Related works

In order to obtain effective high-speed sampling, although a Nyquist-rate time-

interleaved system [48] can combine n fADC-sample-per-second ADCs to act as an

nfADC-sample-per-second ADC, many researches have been done to exploit a prior

knowledge to achieve a sub-Nyquist system.

Dating back to the history, non-CS sub-Nyquist sampling systems have existed, but

due to hardware limitation some of them are not implemented commercially [49,50]. The

traditional sub-Nyquist sampling system with a prior knowledge of a band location is

demodulation (also known as down shifting). This scheme has been used widely in current

radio systems. A tunable local oscillator is dedicated to acquire one signal band. If

the information exist in multiple bands, then one has to redesign the analog hardware

according to the number of bands. Direct bandpass sampling [49] simply samples the signal

at sub-Nyquist rate which causes aliasing. [49] derives conditions to successfully acquire

beneficial aliasing. However, the conditions are difficult to be satisfied in practice. Also,

although a low-speed ADC can be applied, it still needs to support high analog bandwidth

according to the maximum frequency of the signal. Another sub-Nyquist sampling system

is periodic nonuniform sampling [50], which is actually a subsystem of time-interleaved

ADC system. This concept also exploits signal sparsity like CS, but frequency support is

known priori. Due to the direct point-wise sampling of input signal, high analog bandwidth

of ADCs is still required.

Since the emergence of CS plenty of researches have attempted to apply the concept to

sub-Nyquist sampling systems. In CS-based systems, instead of high sampling speed of

ADCs, there must be another components operating at high speed or bandwidth. Both

fully random sampling [51] and multicoset sampling [52] requires Nyquist-rate bandwidth

of ADCs, while [53] and [54], which perform random filtering and filter bank respectively,

also requires Nyquist-rate bandwidth of filter in addition to the ADCs. Two similar

promising architectures are RD [11] and MWC [43] that utilize naturally supporting high-

bandwidth devices like mixers and high-speed sequence generators. Though both of them

are similar in measurement circuit, the reconstruction behind are difference as discussed

later in Section 4.3. RD-based sub-Nyquist sampling theories have existed in the literature
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for many years. This system architecture is originated from [55, 11] and developed more

detailed explanation in [12]. The extension to multiple signal paths is developed by Yu et

al. [13]. Its modified version also supports an input signal which is sparse in time-frequency

domain such as in short-pulse radar application [56]. The prototype circuit implementation

can be found in [44,13,45,46]. On the other hand, MWC [43,47] was firstly introduced in

recent few years with fully theoretical explanation and proof-of-concept implementation.

However, to the best of our knowledge, none of previous works has not considered the

effect of PN chipping frequency and intensive BER evaluation of MWC which will be

considered in this chapter.

4.3 Sub-Nyquist sampling

A signal sparsely located in wideband spectrum can be sampled at sub-Nyquist rate by

two main systems: Random Demodulator based system in Section 4.3.1 and Modulated

Wideband Converter in Section 4.3.2. In each section, system model and its overclocked

version are explained.

4.3.1 Random Demodulation based system

(a) System model

Fig. 4.1 Block diagram of RD-based sub-Nyquist sampling.
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Fig. 4.2 Modeled measurement matrix of multiple-channel RD. (black: -1, white: 1, grey:

0).

The block diagram of RD-based sub-Nyquist sampling system is shown in Fig. 4.1. The

analog input signal x(t) is mixed with a PN sequence waveform by obtaining multipli-

cation between them. The mixed signal is then passed to an integrate-and-dump whose

output is sampled by a low-speed ADC. After that, the sampled signal is processed in

the digital domain to reconstruct the signal. In the reconstruction, a sparse solution s(f)

is determined according to l1-norm minimization problem and then it is transformed to

obtain a reconstructed original signal x(t) by using invert Fourier transform. In the mul-

tiple channel architecture as presented in [14, 45], a measurement matrix considered the

reconstruction process can be visualized as shown Fig. 4.2. Note that the black and white

pixels represent -1 and 1 values of the PN sequence, respectively, whereas the grey area is

0.

Let us present a mathematical model of the analog signal and also the system basically

in terms of one parallel channel [12]. The analog input signal x(t) is K-sparse multitone

signal in which there are K number of active tones during the observation time tobs. The

input signal x(t) can be written as

x(t) =
∑
f∈F

afe
−j2πft for t ∈ [0, tobs) (4.1)

where af is an amplitude of each sinusoidal component. F is a set of K frequency tone

which satisfies Ω ⊂ {0,∆, 2∆, ..., fmax}. fmax is the highest frequency component existing

in the analog signal where each possible frequency component is equally spaced by ∆.
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The PN sequence waveform that is multiplied to the input signal x(t) is produced from

a discrete-time chipping sequence ε0, ε1, ε2, ... of numbers whose values are 1 or -1. The

continuous-time PN sequence waveform is created the discrete-time chipping sequence by

PN(t) = εnp(t), t ∈
[

n

fclk
,
n+ 1

fclk

)
, (4.2)

where p(t) is a pulse of PN sequence waveform. In ideal case, p(t) is a square pulse shape

represented by

p(t) =

1 , t ∈ [0, 1
fclk

]

0 , otherwise
(4.3)

.

The result of multiplication between the input signal x(t) and the PN sequence waveform

PN(t) is

y(t) = x(t) · PN(t), t ∈ [0, tobs). (4.4)

. The demodulated signal y(t) is passed through low-pass filter where here is simply an

integrate-and-dump every 1
fADC

seconds. The accumulated signal is sampled right before

resetting to obtain a sequence ym of measurements which form y as written by

ym = fADC

∫ (m+1)/fADC

m/fADC

y(t)dt. (4.5)

where fADC is the sampling rate of a low-speed ADC.

Next, the measurements y is used to reconstruct the frequency-sparse solution s as

described in Section 2.1. Note that since in this system we map a continuous signal to

a discrete-time signal to represent in a matrix form, the reconstructed time signal x is

discrete-time signal where its value x′
n is determined by the pulse shape of PN sequence

waveform. In the ideal square pulse case, it denotes the average value of the input signal

x(t) over a time interval of length 1/fclk starting from a time instant tn = n/fclk for an

integer n as

x′
n =

∫ tn+1/fclk

tn

x(tn)p(t− tn)dt∑
f∈F

sfe
−j2πftn =

∑
f∈F

afe
−j2πftnP (f).

Thus,

af =
sf

P (f)
(4.6)
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where P (f) is the frequency response of a pulse p(t) of PN sequence waveform which is

ideally the frequency response of perfect square pulse defined by

P (f) =
e
−jπ f

fclk

fclk
sinc

(
πf

fclk

)
. (4.7)

Finally, we can obtain a discrete-time representation of x(t) in terms of x[n] similarly to

the output of a traditional uniform periodic sampling system at rate fclk via the formula

x[n] =
∑
f∈F

afe
−j2π f

fclk . (4.8)

(b) Overclocked system

Previous works [12, 45] usually choose the Nyquist frequency as their PN chipping fre-

quency whose spectrum is, however, attenuated at high frequency due to their square-

shaped pulse. Therefore, compensation is necessary for the proper sampling. Unfortu-

nately, in practice the PN sequences are not perfectly square, and therefore the compensa-

tion needs troublesome calibration to determine the frequency response of an actual pulse

shape. To reduce the attenuation factor within the frequency range of an input signal

and consequently reduce the dependency on both compensation and calibration, we apply

overclocked PN sequences to the mixing stage.

Fig. 4.3 Power spectrum of PN sequences.

In RD-based sub-Nyquist sampling, CS allows low-speed sub-Nyquist ADCs to success-

fully sample wideband sparse signals by mixing an input signal with minimally Nyquist-

rate PN sequences. Fig. 4.3 illustrates the power spectrum of the PN sequence that
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exhibits an attenuation when the frequency is increasing as described by

PN2(f) =
2

fclk

∣∣∣∣sinc( πf

fclk

)∣∣∣∣2 . (4.9)

The existing works [14] [12] set the sequence clock frequency fPN at Nyquist frequency

fNyq at which the power is attenuated by 2.47 times. The extension of fPN to higher

frequency can flatten the power spectrum within the operating frequency band (f < fmax)

as demonstrated by shaded area in Fig. 4.3.

After mixing the input signal with the PN sequence or equivalently convolution in fre-

quency domain, the higher-frequency tones of the input signal contribute less to the mixed

signal compared to lower-frequency tones. [12] compensates the attenuation in the recon-

structed signal by the invert frequency response of square-shaped pulse as described in

(4.7). Higher attenuation within the operative frequency band implies the more depen-

dency to the compensation. Moreover, the PN sequences are practically not square, which

usually leads to more attenuation in higher frequency. Therefore, the calibration is re-

quired to obtain a frequency response of an actual pulse shape for using in compensation

step. In some systems, the calibration could be burdensome. By overclocking, the fre-

quency spectrum becomes more level and therefore it is able to reduce the necessity of the

compensation and also the calibration. Without compensation, (4.7) is approximated to

P (f) = 1 and subsequently af ≈ sf .

As a trade-off, it can lead to higher noise vulnerability due to the reduction of overall

power within the operating frequency. The power are spread to higher frequency to a flat-

tened spectrum. The circuit noise e.g. thermal noise, quantization noise which consistently

occurs inside the system may have more influence to the measurements y.

4.3.2 Modulated Wideband Converter system

(a) System model

Fig. 4.4 shows MWC-based sub-Nyquist sampling system. Although most of the com-

ponents are similar to what presented in RD-based system, the input signal and the

reconstruction algorithm are difference. The input signal x(t) is modeled as multiband

signal in which narrowband signals existing sparsely in wide frequency band. Firstly, x(t)

flows into parallel channels. In each channel, x(t) is mixed with the periodic PN sequence

waveform whose clock rate is written as

fclk = fPNN (4.10)
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Fig. 4.4 Block diagram of MWC sub-Nyquist sampling.

where fPN is the repetition frequency of the PN sequence and N is the PN code length.

The mixed signal is then passed through an anti-aliasing low pass filter before being

sampled by a low-speed ADC with the sampling frequency fADC = fPN . The sampled

signals from all parallel channels are fed into the reconstruction process consisting of two

main steps: (1) support detection determines the band location of the signal and (2) signal

reconstruction calculates the reconstructed input signal x̂ based on the recovered support.

As a necessary condition for successful reconstruction, the passband bandwidth B of the

modulated signal is required to satisfy fADC = fPN ≥ B. Note that this thesis limits the

consideration when fADC = fPN which is an option in [43], but the consideration of fPN

setting is extended later on within this section.

Let us present a mathematical model of the analog signal and also the system of MWC.

The multiband input signal x(t) is composed of an even number Q of bands because

the conjugate symmetry in its Fourier transform is also counted. Each band occupies a

bandwidth smaller than B. The bands could lie anywhere in the wide spectrum without

overlapping to each other and exceeding the maximum frequency fmax, where the Nyquist

rate of the signal is defined as fNyq = 2fmax.

Since MWC system does not rely on the square pulse shape of PN sequence waveform

but only requires a periodicity, we represent the PN sequence waveform in a square pulse

for simplicity. The PN sequence waveform of channel i that is multiplied to the input

signal x(t) is produced from a periodic discrete-time chipping sequence ε0, ε1, ε2, ..., εN of
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numbers whose values are 1 or -1. It is written as

PNi(t) = εin, n
TPN

N
≤ t ≤ (n+ 1)

TPN

N
, 0 ≤ n ≤ N − 1, (4.11)

where PNi(t) is repeated with a period TPN = 1
fPN

as shown in Fig. 4.5a. Due to TPN -

periodic, it can be written in a Fourier expansion as

PNi(t) =

∞∑
l=−∞

cile
j2πfPN lt, (4.12)

where

cil =
1

TPN

∫ TPN

0

PNi(t)e
−j2πfPN ltdt. (4.13)

Thus, the Fourier transform of the mixed signal x̃i(t) = x(t)PNi(t) is

X̃i(f) =

∞∑
l=−∞

cilX(f − lfPN ), (4.14)

which is a linear combination of fPN -shifted copies of the Fourier transform of x(t) or

X(f) defined as X(f) =
∫∞
−∞ x(t)e−j2πftdt as shown in Fig. 4.5b.

The frequency fPN determines the aliasing of X(f) into the spectrum of X̃i(f). The

mixed signal x̃i(t) is passed through a low-pass filter and sampled by an ADC to get

an informative aliased spectrum of X̃i(f). To achieve the reconstructible aliasing, the

periodicity of PN sequence waveform has to be selected such that fPN ≥ B so that at an

arbitrary f0, there are only one nonzero of X(f0 − lfPN ) from each band where l ∈ Z.

Satisfying this condition, the beneficial information for reconstructing the original signal

x(t) are implicitly embedded in [− fPN

2 , fPN

2 ], [ fPN

2 , 3fPN

2 ], [ 3fPN

2 , 5fPN

2 ], etc. At least 2Q

sets of information are theoretically necessary for signal reconstruction [43]. For exam-

ple, 2Q sets of information can be gathered from M = 2Q channels with each channel’s

sampling rate fADC = fPN , or from M = 2Q/2 channels with each channel’s sampling

rate fADC = 3fPN . In this thesis, we concentrate on when fADC = fPN , so the cutoff

frequency of the low-pass filter is fADC/2.

(b) Overclocked system

Since fclk = fPNN , the increase of fPN can overclock the system. The overclocking of

PN sequence, which is originally introduced by this work, permits the system to support

wider bandwidth and therefore higher bit rate in the case of BPSK/QPSK modulated

signal. In addition, the overclocking also permits untroubled higher sampling rate which

eases the reconstruction and thus lower the reconstruction error, since the increase of
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(a) Periodic PN waveform when v = 1 and 2.

(b) Spectrum aliasing when v = 1.

(c) Spectrum aliasing when v = 2.

Fig. 4.5 Periodic PN waveform and spectrum aliasing in MWC.

fADC is accordingly required to satisfy fADC = fPN . Note that higher fADC is reasonable

because it is still feasible by conventional ADC technology e.g. from 40 to 80 MHz.

Let the overclock rate be v such that fPN,overclk = vfPN,normalclk where v > 1. Eq.

4.14 and 4.13 can be rewritten as

X̃i(f) =

∞∑
l=−∞

cilX(f − lvfPN ), (4.15)
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and

cil =
v

TPN

∫ TPN/v

0

PNi(t)e
−j2πvfPN ltdt, (4.16)

respectively. Therefore, the sampling rate of ADC and the cutoff frequency of the low-

pass filter are changed corresponding to the wider aliased spectrum as shown in Fig. 4.5c.

Because the overclocking process results in the same information embedded in the sampled

aliased spectrum, it provides the similar performance on support detection. However, the

higher sampling rate allows better performance in signal reconstruction.

4.4 Evaluation

This section evaluates RD-based and MWC sub-Nyquist sampling systems. As shown

in Table 4.1, RD-based system is designed to sample a signal modeled as a summation of

finite number of sinusoidal signals, while MWC is designed to sample narrowband signal.

Therefore, we evaluate them with the corresponding signals by simulation. In addition,

the implementation of MWC system is discussed.

Table. 4.1 Comparison between RD-based and MWC system

Characteristics RD-based system MWC system

Input signal model Sum of K sinusoidal signals
Q bands of signal,

each BW ≤ B

Reconstruction speed Slow Fast

Sampling delay High Low

Remarks
Universal but impractical

amount of computation

Limited number of bands

and bandwidth

4.4.1 Simulation

(a) RD-based system

In the implementation aspect, many issues have not been fully discussed in previous

works. Among them, this thesis focuses on the analysis of hardware in the mixing process of

RD-based systems. We consider the effect of PN chipping frequencies along with nonideal

circuit parameters including circuit noise, jitter, and imperfect square pulse shape of the

PN sequence.
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Fig. 4.6 Evaluation model of RD-based sub-Nyquist sampling.

Simulation settings

We evaluate the system over a frequency range of noise-free input signal up to the

television UHF bandwidth 400 MHz. Hence, the Nyquist rate is 800 MHz. The system

is simulated to sample signals from 400 subcarriers with resolution of 1 MHz. The PN

sequences are generated as PRBS whose values are 1 or -1 by employing LFSR (linear-

feedback shift register). Our sub-Nyquist sampling system employs 10 parallel channels

(10 ADCs) where each channel is equipped with an ADC with a sampling frequency of 40

MHz. The CS reconstruction algorithm is OMP [20].

Fig. 4.6 shows the overview of this evaluation. Several practical issues are taken into

accounts such as jitter and rise/fall time error of PN waveform, input noise ni, and system

noise ns.

(a) Jitter error (b) Rise/fall time error

Fig. 4.7 Errors in PN sequence waveform [2].
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The generation of PN sequences contains nonidealities including jitter and imperfect

square pulse which affect the mixing process. The change in chipping frequency of PN

sequence waveform affects the ratio of jitter noise appearing to the system, whereas im-

perfect square pulse requires pushes the system to be more dependent on the calibration

and compensation, especially for Nyquist-rate PN chipping frequency. The modeling of

jitter and rise/fall time is based on the work by Abari et al. [2].

The jitter noise is caused by the clock drift of a system clock that controls the timing

in the system. Given a fixed jitter, the shorter chip interval (faster clock) enlarges the

portion of the errors appearing in the PN sequence signal. The jitter noise can not be

compensated after the reconstruction because of its randomness. Fig. 4.7a shows the

model of jitter noise. Let a jittered PN sequence waveform denoted by PN̂(t) where

PN̂(t) = PN(t) + J(t). The jitter noise J(t) is given as

J(t) =
∑
j

(εj−1 − εj)sign(εj)pj(t− jTPN , εj) (4.17)

where pj(t, εj) denotes a unit amplitude pulse with the pulse width equal to a jitter width

ε over the interval [min(0, ε),max(0, ε)]. The jth jitter width is εj ∼ N(0, σJ ). σJ which is

the jitter rms is one of specifications of a clock generator. Note that all channels undergo

the same jitter because the same clock generator is used.

The rise/fall time error causes the PN sequence waveform not to be perfect square-

shaped pulses. It occurs due to nonidealities of circuit where a PN waveform generator

takes some time to change signal’s state and also a mixer does not operate instantaneously.

Since these circuit nonidealities are deterministic, we can calibrate the system by the

compensation after the reconstruction. However, this makes the system more dependent

to the compensation and also calibration. Fig. 4.7b shows the model of rise/fall time

error. Let a imperfect-square PN sequence waveform denoted by PÑ(t) where PÑ(t) =

PN̂(t)+D(t, ε). Note that the reference point of the rise/fall time error is at the transition

location which is dictated by the jitter noise. The rise/fall time error D(t) is described as

D(t, ε) =
∑
j

(
εj − εj−1

2

)
q (t− jTPN + εj) (4.18)

where

q(t) =


(

2t
Tr

+ 1
)

−Tr

2 < t ≤ 0(
2t
Tr

− 1
)

0 < t < Tr

2

0 otherwise

(4.19)

where the time duration Tr defines the time required for the sequence to change its value.
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When input noise ni, and system noise ns are considered, Eq. 2.2 can be rewritten as

ŷ = (Φx+ ni) + ns, (4.20)

where y = (Φx+ ni). ni accounts for the noise of input signal at the antenna such as

random disturbances in the channel, while ns is system noise caused by CS measurement

circuit. We model both of them as an i.i.d. Gaussian noise N(0, σn) where the noise power

Pn is σ2
n. We quantify the amount of them as the following metrics:

SNRof input =
∥x∥22

E(∥ni∥22)
, (4.21)

and

SNRof CSmeasurement =
∥y∥22

E(∥ns∥22)
. (4.22)

Note that the SNR of input here is considered as out-of-band SNR, which includes the

entire noise across the full bandwidth. Also, we measure the sampling performance by the

accuracy of reconstructed signal defined as

SNRof reconstruction =
∥x∥22

E(∥x− x̂∥22)
, (4.23)

where x and x̂ are the original and reconstructed signal, respectively. It should be noted

that the original signal x is uniform periodic Nyquist-rate samples.

Simulation results

Firstly, the relationship of PN chipping frequency and sparsity rate (occupancy of fre-

quency band) of the noiseless input signal is studied independently of other hardware

nonidealities. Fig. 4.8 shows the comparison among different PN chipping frequencies

in terms of SNR of the reconstruction. Fig. 4.8a and 4.8b shows the results when the

compensation is applied after the reconstruction and when is not, respectively. As shown

in Fig. 4.8a, since the overclocking of PN sequence widens a measurement matrix (less

compression rate) modeled in the CS algorithm, the SNR of the higher PN chipping fre-

quency starts falling earlier as the sparsity rate increases. This agrees with CS theory .

When the compensation is not applied and the sparsity rate is less than 20%, higher PN

chipping frequency achieves higher SNR. For example, at 10% sparsity rate, the SNR of

the reconstructed signal without the compensation is increased from 1.86 dB in normal

clock frequency to 13.1 dB in overclocked frequency at 3200 MHz, comparing to 56.5 dB

when the compensation is applied.
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Fig. 4.8 RMS error of overclocked PN sequences in noise-free system.

We have shown that the overclocked system is less dependent to the compensation. After

this the system outcome is all compensated assuming that the pulse shape is perfectly

square. Next, we study the effect of the system noise ns Fig. 4.9 shows that the system

with overclocked PN sequences is more sensitive to the noise. The non-overclocked system

can sustain the noise 5dB better, at the same SNR of reconstruction. In particular, the

SNR of the reconstruction drops by 3 dB from the best of 56.5 dB to 53.5 dB when the

SNR of CS measurement is 23 dB and 28 dB for non-overclocked and overclocked system,

respectively.
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Fig. 4.9 Effect of noise-prone system.

Since jitter noise causes the pulse width to be random, the jitter noise cannot be compen-

sated. Fig. 4.10 shows the effect of jitter to each PN chipping frequency. Higher chipping

rate is unfavorably more affected by the jitter because of its shorter pulse width. Given a

fixed amount of jitter rms, the jitter noise appears in larger ratio in shorter pulse width.

For example, given jitter rms is 2ps it appears as 0.16% of 800MHz PN sequence’s pulse

width, while it is accounted as 0.64% in 3200MHz case. The SNR is slightly dropped from

56.5 dB to 53.4 dB for the non-overclocked, but decreased to 46 dB for the overclocked

system.
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Fig. 4.10 Effect of jitter.
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Fig. 4.11 Effect of rise/fall time.

Lastly, the impact of imperfect square pulse of PN sequence waveform is evaluated

in terms of rise/fall time. Here, in order to reveal the effect of inaccurate calibration,

we assume the scenario when the calibration cannot be achieved and the pulse shape is

perfectly square in the compensation. Similar to jitter noise, the electronics field usually

considers the amount of rise/fall time based on the state of technology regardless of the PN

chipping frequency, i.e. the amount of rise/fall time is fixed at the same value on both non-

overclocked and overclocked systems, and the same rise/fall time appears as larger error

in overclocked systems. The result is shown in Fig. 4.11 that the non-overclocked system

is more preferable to the overclocked system. For example, the SNR of reconstruction of

the Nyquist-rate system is 1.7 dB better than that of the overclocked system when the

rise/fall time Tr is 50 ps.

As a small remark, Fig. 4.12 shows that the overclocking is not affected from the SNR

of input, and RD-based sampling provides no noise to the signal (SNR of reconstruction

≈ SNR of input) when the system is ideal.

In this section, we present the hardware analysis of RD-based sub-Nyquist sampling

systems. The evaluation is done in the aspect of a hardware parameter and three hardware

nonidealities including PN sequence chipping frequency, circuit noise, jitter, and imperfect

pulse shape. Based on simulation results, the overclocked system is preferable if the

compensation is not available and also when precise calibration of actual PN sequence

pulse shape is burdensome. On the other hand, since the overclocking makes the system

more vulnerable to a circuit noise and jitter noise, the Nyquist-rate PN sequences is
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Fig. 4.12 Effect of SNR of input.

generally optimal to most implementations.

(b) MWC system

Since MWC system can sample the signal in continuous frequency domain, we evaluate

the performance of MWC system for BPSK/QPSK modulated signal. The simulation

is done to obtain the traditional graph of BER versus Eb

N0
. The effect of the number of

channels M on BER is also studied.

Simulation setting

Fig. 4.13 Evaluation model of MWC sub-Nyquist sampling.

Fig. 4.13 shows the overview of the evaluation setup. The input signal is a noisy mod-

ulated signal described as

x(t) =
2Eb

Tsym
[I(t) cos(2πfct) +Q(t) sin(2πfct)] + n(t) (4.24)
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where Eb, Tsym, and fc are the energy per bit, symbol interval, and the carrier frequency

of the BPSK/QPSK signal, respectively. I(t) and Q(t) are the square pulse waveform

representing bit streams which are drawn randomly as ±1, where Qi(t) = 0 for BPSK

modulation. The modulated signal is mixed with the additive white Gaussian noise n(t)

with the noise spectral density N0 corresponding to Eb

N0
. The passband bandwidth B is

defined the symbol interval Tsum where B equals 2
Tsym

. The simulation of 3000 runs is

done by using MATLAB. Each run contains 50 BPSK/QPSK symbols. The low pass filter

is ideal. Table 4.2 shows the simulation settings.

Table. 4.2 Simulation settings

Parameter Value

Passband bandwidth B 40MHz

Carrier frequency 2.2GHz

PN code length M 123

fp = fs (normal clock frequency) 40.65MHz

fPN (normal clock frequency) 5GHz

Overclocking rate 1x, 2x (labeled as Overclk)

The BER is used a performance metric defined as

BER =
# error bits

# total bits
(4.25)

Simulation results

Firstly, we evaluate the system with considerably high number of channels at 60 over

varying Eb

N0
. Fig. 4.14 shows the trade-off of the sub-Nyquist sampling compared to

the traditional Nyquist system. Even though the sampling rate is reduced to about

49%( 40.65MHz×60
5GHz ) in the normal clock case, the sub-Nyquist system requires approxi-

mately more 9 dB compared to the traditional Nyquist system, while the overclocked

system requires about 7 dB higher than the traditional one. In particular, at least 13

dB is required for the overclocked system to obtain the average BER = 10−3, while 15

dB is required for the non-overclocked one. Fig. 4.15 shows the performance of support

detection in terms of failed rate which accounts for when the frequency location is wrong

determined. Note that the failed rate of QPSK signal is better than that of BPSK sig-

nal, because the performance support detection depends on the SNR within the interest

bandwidth. At the same Eb

N0
, the SNR of QPSK signal is 3 dB higher than that of BPSK
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signal according to SNR = r Eb

N0
, where r is the bit rate. This also explains why at low

Eb

N0
, the BER of BPSK signal is higher than that of QPSK signal.

Secondly, the BER analysis over a number of channels is done under various conditions

where Eb

N0
(dB) = 15, 20, and infinity. Fig. 4.16 shows that the overclocking can reduce

the number of channel required to obtain the same BER. For example, when Eb

N0
= 20

dB, if the desired BER equals 10−3, 15 and 22 channels are required for the overclocked

and non-overclocked system, respectively. When Eb

N0
= 15 dB, the reason that the BER of

BPSK signal is higher than QPSK signal’s can be explained by Fig. 4.17.

In this section, we evaluate the BER of BPSK/QPSK modulated signals by using a

MWC sub-Nyquist sampling system as a receiver. The performance of the sub-Nyquist

sampling is compared to that of the traditional Nyquist sampling. In addition, although

the overclocking needs faster clock rate and sampling rate, it makes the system require

less Eb

N0
and less number of channels to reach a targeted BER.

4.4.2 Implementation

In this section, we implement MWC sub-Nyquist sampling system by using laboratory-

instrument as a collaboration research with NTT Corporation. We aim to obtain the

experimental result and compare with the simulation result as shown in Fig. 4.16.

Fig. 4.18 Experiment setup of MWC sub-Nyquist sampling.

The experiment is set up as shown in Fig. 4.18. A modulated signal is generated by

Arbitrary Waveform Generator (AWG) and passed through a doubled-balanced mixer

manufactured by Watkins Johnson M1G. Another input of the mixer is PN sequence

waveform generated from the AWG as well. The output of the mixer is recorded by

an oscilloscope at 40 GHz. The low-pass filtering and sampling by low-speed ADC are

done in MATLAB. While the input modulated signal is fixed, the PN sequence waveform
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is changed every measurement to mimic an operation of one of parallel channels. The

measurements are repeated until we get the target amount of channels.
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Fig. 4.19 Experimental BER over a number of channels.

Generally the parameters are set as same as those of simulation as shown in Table 4.2.

However, as an initial step, we focus on only when Eb

N0
= 15 dB, the modulation is BPSK,

and the PN chipping frequency is at Nyquist rate. Fig. 4.19 shows the experimental

result. Due to difficulties in time synchronization, the experiment results occasionally

contain severe errors and we manually remove them from our evaluation. Therefore, the

experimental results are shown as two lines: with adjustment and without adjustment.

The experimental result with the adjustment shows some degradation from the simulation

result. This can caused by the time synchronization and the effect of the off-the-shelf

mixer.

4.5 Summary

The performance of a sub-Nyquist sampling system has been evaluated intensively. We

consider two sub-Nyquist sampling systems, which applies compressed sensing theory, in-

cluding Random Demodulation based and Modulated Wideband Converter based system.

In RD-based system, we consider the effect of the PN chipping frequency variation

along with hardware nonidealities including circuit noise, clock jitter and rise/fall of PN
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sequences. The results show that the overclocked system is preferable if the compensation

is not available. Otherwise, the Nyquist-rate PN sequences is generally optimal to most

implementations, since the overclocking makes the system sensitive to a circuit noise, jitter

noise, and rise/fall time error.

In MWC system, the evaluation in terms of bit error rate of BPSK/QPSK is achieved.

The comparison between the traditional Nyquist sampling shows that the sub-Nyquist

system requires significantly better signal condition, as a trade-off to reduce a sampling

rate. The effect of the chipping frequency variation is also studied. The implementation

on laboratory-instrument is done level to verify the simulation results.

– 49 –



Chapter 5

Conclusions and

Future Works



5.1 Conclusions Chapter 5 Conclusions and Future Works

5.1 Conclusions

Compressed sensing (CS) has become a hot research topic due to its promising features:

reducing size of a signal by exploiting signal sparsity and incoherent measurements. This

thesis explores the applications of CS in two resourced-limited wireless systems: wireless

sensor network and wideband wireless communication. In both applications, the develop-

ment and evaluation are based on practical aspects.

To reduce the traffic of WSN, CS is designed to suit to WSN environments. The evalu-

ation on sensor data and implementation on sensor nodes are provided. Memory-efficient

1-bit CS which adopts a circulant random bipolar measurement matrix are applied to

achieve data compression in environmental data including temperature, relative humidity,

and illuminance. The results show that the scheme can reduce the traffic and save signif-

icant amount of memory compared to the conventional CS. The implementation on real

sensor nodes also reveals the feasibility of the introduced scheme practically. Generally,

the merits of CS-based data compression stems from CS including universal measurement

matrix for most sensor data and simple encoding for small sensor nodes. However, one

may consider reconstruction complexity as a demerit which is admissible in environmental

monitoring application.

CS-based sub-Nyquist sampling systems for a frequency-sparse wideband signal are

evaluated intensively. We study two leading architectures – random demodulation (RD)

and modulated wideband converter (MWC) – based on their suitable signal model. Results

show that the sub-Nyquist sampling system can achieve significant sampling rate reduction

which is a main objective of applying CS. In particular, the performance of both sub-

Nyquist sampling system architectures in a practical situation is discussed intensively. The

overclocked RD-based system is preferable if the compensation is not available. Nyquist-

rate PN sequences are generally optimal to most implementations, since the overclocking

makes the RD-based system sensitive to hardware nonidealities including circuit noise,

clock jitter and rise/fall of PN sequences. In MWC system, the evaluation in terms

of bit error rate of BPSK/QPSK is achieved. The comparison between the traditional

Nyquist sampling shows that although the sub-Nyquist system can reduce a sampling

rate, it requires significantly better signal condition to obtain a target BER. Unlike RD-

based system, the overclocking provides some improvement in signal reconstruction of

MWC system. However, further improvements to tolerate noise and also speed up the

reconstruction are required to bring CS into wide application in wideband communication

area such as cognitive radio.
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5.2 Future works

This section suggests approaches possibly done to accomplish more accuracy and faster

speed of what have been presented in this thesis. Moreover, the application of CS on

UWB impulse radio is also briefly discussed.

The reconstruction of data compression in wireless sensor networks (WSN) as presented

in Chapter 3 may be improved by applying a learning basis. CS-based data compression

in WSN currently applies a fixed DCT basis as a sparsifying basis in the reconstruction

process. The results show that it cannot well reconstruct highly fluctuating signals as

demonstrated by illuminance data. In WSN, there are also more fluctuating signals such

as wind speed. A learning basis that is trained by a set of an pre collected original signal

can represent a signal in more sparse manner, and therefore improves the reconstruction

accuracy of CS algorithms.

Improving reconstruction speed of CS will help the practical application of CS, espe-

cially RD-based sub-Nyquist sampling system. As a disadvantage generally arisen by CS,

rather than developing a new fundamental of reconstruction algorithm, distributed paral-

lel computation concept can be used as a tool to speed up the processing. For example,

GPU (graphics processing unit) programming can be a proof-of-concept implementation

of an parallel computing.

As introduced in Section 1.1.2, UWB impulse radio can also be sampled by a sub-

Nyquist sampling. Though CS measurement circuit and reconstruction are slightly from

what present in Chapter 4, we have done an initial experiment by using a radar sensor

developed by Time Domain as shown in Fig. 5.1. The radar sensor is deployed in an

empty room with a large object located 5 meters apart from the sensor as shown in

Fig. 5.2. Fig. 5.3 shows an example of demodulated signal which is down shifted by the

carrier frequency and subtracted by a background signal. The subtraction of background

signal is to reduce the effect of clutters and indoor environments. The peak represents

the 5-meter object which results in the theoretical pulse delay 5×2
3×108 = 33 ns. CS-based

sub-Nyquist sampling is applied to sample the demodulated signal and its performance

of pulse detection is shown in Fig. 5.4. About 95% of pulses can be detected within a

small error, while the sampling rate is reduced by 10 times i.e. from 4.4 GHz to 440 MHz.

This initial experiment shows the feasibility of CS on noise-reduced UWB signals. Due

to the low power transmission of UWB, the future work will include the development CS

measurement and reconstruction scheme which improves noise tolerance.
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Fig. 5.1 UWB radar kit by Time Domain.

Fig. 5.2 UWB experiment setup.
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Fig. 5.3 Example of demodulated signal reflected from 5-meter object.
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