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o — R{4(cosby — costy) — tanb;(sinby — sinby)} + xotanb, (2.17)
2 {R(sinby — sinby) — xo}> '
00, X =R(sinfy—sinh)) —xze 000000, 000 ROODODDODOODOOOO,
y=a X'+ ap X? (2.18)
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Fig. 3.9: Stress concentration around intersection area.
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Fig. 3.10: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 20[°), w/R; = 0.06).

Fig. 3.11: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 20[°], w/R; = 0.08).
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Fig. 3.12: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 002, 0= 20[0],w/R1 = OlO)

+ Inmer Surface around Intersection
40- + Intersection area
Quter Surface around Intersection

005 006 008 01 012

d/R,
Fig. 3.14: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 20[°), w/R; = 0.14).
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Fig. 3.16: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 20[°), w/R; = 0.18).
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Fig. 3.13: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 20[°], w/Ry = 0.12).
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Fig. 3.15: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 20[°), w/R; = 0.16).
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Fig. 3.17: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 20[°], w/Ry = 0.20).
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Fig. 3.18: Optimum volume ratio in each length of intersection (t/R; = 0.02,60 = 20[°)).
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Fig. 3.19: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 002, 0= 30[0],w/R1 = OOS)

Fig. 3.20: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 30[°], w/R; = 0.10).
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Fig. 3.21: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 30[°], w/R, = 0.12).
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Fig. 3.23: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 30[°], w/R; = 0.16).
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Fig. 3.22: The relation between thickness

of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 30[°], w/Ry = 0.14).
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Fig. 3.24: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 30[°], w/Ry = 0.18).
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Fig. 3.25: Optimum volume ratio in each length of intersection (¢t/R; = 0.02,60 = 30[°]).
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Fig. 3.26: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 40[°], w/ Ry = 0.083).
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Fig. 3.28: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 40[°), w/R; = 0.12).
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Fig. 3.30: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 002, 0= 40[0],w/R1 = 016>
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Fig. 3.27: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,6 = 40[°), w/R; = 0.10).
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Fig. 3.29: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 40[°], w/Ry = 0.14).
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Fig. 3.31: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 002,6 = 40[0],w/R1 = 018)
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Fig. 3.32: Optimum volume ratio with in length of intersection (¢t/R; = 0.02,60 = 40[°)).
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Fig. 3.33: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 50[°], w/R; = 0.08).
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Fig. 3.35: The relation between thickness

of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 50[°], w/Ry = 0.12).
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Fig. 3.34: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 002,9 = 50[0],w/R1 = 010)
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Fig. 3.36: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.02,0 = 50[°], w/Ry = 0.14).
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Fig. 3.37: The relation between thickness of intersection and maximum Mises stress at

stress concentration area

(t/Ry = 0.02,6 = 50[°], w/ Ry = 0.16).
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Fig. 3.38: Optimum volume ratio in each length of intersection (¢t/R; = 0.02,60 = 50[°]).
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Fig. 3.39: The relation between angle of intersection and optimum volume ratio (t/R; =
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Fig. 3.40: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 20[°], w/Ry = 0.09).

Fig. 3.41: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,6 = 20[°], w/Ry = 0.12).
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Fig. 3.42: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 20[°), w/R; = 0.15).
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Fig. 3.44: The Relation between thickness
of Intersection and Maximum Mises Stress

at Stress Concentration Area

(t/Ry = 0.03,0 = 20[°], w/Ry = 0.21).
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Fig. 3.46: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,6 = 20[°], w/Ry = 0.27).
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Fig. 3.43: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 20[°], w/ Ry = 0.18).
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Fig. 3.45: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/R; = 0.03,0 = 20[°], w/R; = 0.24).
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Fig. 3.47: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 20[°], w/Ry = 0.30).
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Fig. 3.48: Optimum volume ratio with in length of intersection (t/R; = 0.03,60 = 20[°]).
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Fig. 3.49: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 30[°], w/ Ry = 0.09).
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Fig. 3.51: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003, 0= 30[0],w/R1 = 015>
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Fig. 3.50: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 30[°], w/R; = 0.12).
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Fig. 3.52: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 30[°], w/Ry = 0.18).
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Fig. 3.53: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003,9 = 30[°],w/R1 = 021)
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Fig. 3.55: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003, 0= 30[0],w/R1 = 027)
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Fig. 3.54: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 30[°], w/R; = 0.24).
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Fig. 3.56: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 30[°], w/ Ry = 0.30).
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Fig. 3.57: Optimum volume ratio with in length of intersection (¢/R; = 0.03,60 = 30[°]).
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Fig. 3.58: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 40[°), w/R; = 0.09).
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Fig. 3.60: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003, 0= 40[0],w/R1 = 015)
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Fig. 3.59: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 40[°], w/Ry = 0.12).
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Fig. 3.61: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 40[°], w/Ry = 0.18).
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Fig. 3.62: Optimum volume ratio with in length of intersection (¢/R; = 0.03,60 = 40[°]).
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Fig. 3.63: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 50[°], w/Ry = 0.09).
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Fig. 3.65: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003, 0= 50[0],11]/R1 = 0113)
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Fig. 3.67: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 50[°], w/R;, = 0.133).
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Fig. 3.64: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 50[°], w/Ry = 0.10).
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Fig. 3.66: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 003,0 = 50[0],W/R1 = 012)
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Fig. 3.68: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.03,0 = 50[°], w/ Ry = 0.15).
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Fig. 3.69: Optimum volume ratio with in length of intersection (¢t/R; = 0.03,60 = 50[°]).
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Fig. 3.70: The relation between angle of intersection and optimum volume ratio (t/R; =

0.03).
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Fig. 3.71: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 20[°], w/Ry = 0.12).
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Fig. 3.73: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 004, 0= 20[0],w/R1 = 020)
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Fig. 3.72: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 20[°], w/Ry = 0.16).
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Fig. 3.74: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 20[°], w/Ry = 0.24).
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Fig. 3.75: Optimum volume ratio in each length of intersection (¢t/R; = 0.04,60 = 20[°]).
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Fig. 3.76: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,6 = 30[°], w/R, = 0.12).
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Fig. 3.78: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,60 = 30[°], w/R; = 0.20).
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Fig. 3.77: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,6 = 30[°], w/Ry = 0.16).
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Fig. 3.79: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 30[°], w/Ry = 0.24).
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Fig. 3.80: Optimum volume ratio in each length of intersection
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Fig. 3.81: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 40[°), w/R; = 0.12).
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Fig. 3.83: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 40[°], w/Ry = 0.20).
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Fig. 3.82: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 40[°), w/R; = 0.16).
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Fig. 3.84: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 40[°], w/R; = 0.24).
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Fig. 3.85: Optimum volume ratio in each length of intersection (t/R; = 0.04,60 = 40[°]).
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Fig. 3.86: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 004,9 = 50[0],w/R1 = 012)
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Fig. 3.88: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,60 = 50°], w/R; = 0.20).
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Fig. 3.87: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/R; = 0.04,0 = 50[°), w/R; = 0.16).
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Fig. 3.89: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.04,0 = 50[°], w/Ry = 0.24).
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Fig. 3.90: Optimum volume ratio in each length of intersection (¢t/R; = 0.04,60 = 50[°]).

t/Ry =0.040 0000 Fig.3.75,3.80,3.85,3.900 0 0 000 00000O0DOO0O0O
gbooobuogobbooboobbooboooob,bbooboboofo.ooa, g
gboobbobobuodoboobbooboaob.
oo0,0b0b00d0dJd00oboobobooobbooobobo,oobbo0ooobobogooon
gobobodobooobobooob,bo0bboobbooboilobboob. ba
O00¢/R =0.020030 0000000000, Fig.3.75,3.80,3.85,3900 00000
gbogbbogobooboob,ogbbobobodgboogobbobobogbod.
O000000,00000000000D000¢t¢/R,=004000000000000
gooooobooboobobobuobobobo. Feg39100o0oooo.

0.13 , | T T T

e
—
12
‘h
T
1

volume ratio

o
—_
12
T
1

0N ———2030—30 350 %0

0 (degree)

Fig. 3.91: The relation between angle of intersection and optimum volume ratio (t/R; =

0.04).
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Fig. 3.92: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,60 = 20[°), w/R; = 0.12).
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Fig. 3.94: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 20[°], w/Ry = 0.24).
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Fig. 3.93: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,6 = 20[°], w/ Ry = 0.18).
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Fig. 3.95: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 20[°], w/ Ry = 0.30).
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Fig. 3.96: The relation between thickness of intersection and maximum Mises stress at

stress concentration area

(t/Ry = 0.06,0 = 20[°], w/Ry = 0.36).
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Fig. 3.97: Optimum volume ratio in
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each length of intersection (t/R = 0.06,60 = 20[°]).
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Fig. 3.98: The relation between thickness

of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,6 = 30[°], w/R; = 0.12).

Fig. 3.99: The relation between thickness

of intersection and maximum Mises stress

at stress concentration area
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Fig. 3.100: The relation between thickness Fig. 3.101: The relation between thickness

of intersection and maximum Mises stress of intersection and maximum Mises stress

at stress concentration area

at stress concentration area

(t/Ry = 0.06,0 = 30[°], w/Ry = 0.30).
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Fig. 3.102: The relation between thickness of intersection and maximum Mises stress at

stress concentration area

(t/Ry = 0.06,0 = 30[°], w/Ry = 0.36).
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Fig. 3.103: Optimum volume ratio in each length of intersection (¢/R; = 0.06,60 = 30°).
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Fig. 3.104: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/R; = 0.06,0 = 40[°], w/R; = 0.12).
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Fig. 3.106: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 40[°], w/R; = 0.24).
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Fig. 3.105: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/R; = 0.06,0 = 40[°], w/R; = 0.18).
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Fig. 3.107: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 40[°], w/R; = 0.30).
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Fig. 3.108: The relation between thickness of intersection and maximum Mises stress at

stress concentration area

(t/Ry = 0.06,0 = 40[°], w/ Ry = 0.36).
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Fig. 3.109: Optimum volume ratio in each length of intersection (¢/R; = 0.06,60 = 40[°]).
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Fig. 3.110: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 006,9 = 50[0],w/R1 = 012)
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Fig. 3.112: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 006,9 = 50["],w/R1 = 024)
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Fig. 3.111: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 50[°], w/R; = 0.18).
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Fig. 3.113: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.06,0 = 50[°], w/Ry = 0.30).
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Fig. 3.114: The relation between thickness of intersection and maximum Mises stress at

stress concentration area

(t/Ry = 0.06,60 = 50[°), w/R;, = 0.36).
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Fig. 3.115: Optimum volume ratio in each length of intersection (¢/R; = 0.06,60 = 50[°]).
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Fig. 3.116: The relation between angle of intersection and optimum volume ratio (t/R; =

0.06).
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Fig. 3.117: The relation between thickness Fig. 3.118: The relation between thickness

of intersection and maximum Mises stress of intersection and maximum Mises stress
at stress concentration area at stress concentration area
(t/Ry = 0.08,0 = 20[°], w/Ry; = 0.24). (t/Ry = 0.08,0 = 20[°], w/Ry = 0.32).
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Fig. 3.119: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 008,9 = 20[0],w/R1 = 040)
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Fig. 3.120: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,6 = 20[°], w/Ry = 0.48).
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Fig. 3.121: Optimum volume ratio in each length of intersection (t/R; = 0.08,60 = 20[°]).
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Fig. 3.122: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 008, 0= 30[0],w/R1 = 024)
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Fig. 3.123: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 008, 0= 30[0], U)/Rl = 032)
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Fig. 3.124: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,0 = 30[°], w/R; = 0.40).

12~
* Inner Surface around Intersection
+ Intersection area
10+
& g
8
=
3] 6-
4L
1 1 1 1 ]
0 0.1 0.2 03 0.4 0.5
d/R,

Fig. 3.125: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,60 = 30[°), w/R; = 0.48).
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Fig. 3.126: Optimum volume ratio in each length of intersection (¢/R; = 0.08,60 = 30[°]).
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Fig. 3.127: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Rl = 008, 0= 40[0],’LU/R1 = 016)
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Fig. 3.128: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,0 = 40[°], w/Ry = 0.24).
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Fig. 3.129: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,6 = 40[°], w/Ry = 0.32).
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Fig. 3.130: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,6 = 40[°], w/ Ry = 0.40).
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Fig. 3.131: Optimum volume ratio in each length of intersection (¢t/R; = 0.08,60 = 40[°)).
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Fig. 3.132: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,0 = 50[°], w/ Ry = 0.16).
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Fig. 3.133: The relation between thickness
of intersection and maximum Mises stress

at stress concentration area

(t/Ry = 0.08,0 = 50[°], w/Ry = 0.24).
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Fig. 3.134: The relation between thickness  Fig. 3.135: The relation between thickness

of intersection and maximum Mises stress of intersection and maximum Mises stress
at stress concentration area at stress concentration area
(t/Ri = 0.08,0 = 50[°], w/Ry = 0.32). (t/Ry = 0.08,0 = 50[°], w/R; = 0.40).
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Fig. 3.136: Optimum volume ratio in each length of intersection (¢/R; = 0.08,60 = 50[°]).

t/Ry =0.080 000000000000, Fig3.97, 3.103, 3.109, 3.1150 0 000 O,
ooooodbooo,0bo00bo0oobo0obwbbD0obOO0Ob0ODOoD,0O0b0OO
gbooobobogboo,ggbooobda.gbog,gbboobuooboobbd
gbogobboobuogoboobboo.

oo, 0o0oboddJd0obooobbooobbobooo,booobboooDo,o
goobobooboobobobobosbobobobobOo.0obobo,obd
000000 Fig3.121, 3.126, 3.131, 3. 13600 0 0000, 000000000000
gboobodgb,bbodgbbodgbboobbuoobbuoobboobboobbo
gboogbbooboad.

Fig.3.121, 3.126, 3.131, 3. 136 000 0000 O0DOODOODO,000000O0oooog
O00¢R =0080000, 0000000000000 00O0O0O0OOOODODO.
Fig3.13700ooogno.

o2



<o
[
‘n

<o
)
T

o
12
D9
T T

volume ratio

|

010 20

30 40 30 60

0 (degree)

Fig. 3.137: The relation between angle of intersection and optimum volume ratio (t/R; =
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Fig. 3.144: Method of comparison between multi-segment spherical pressure hull and

cylinder.
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Fig. 3.145: The relation between diving depth and specific gravity each types of pressure
hull (SS400) .
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Fig. 3.146: The relation between diving depth and specific gravity each types of pressure
hull (6A1-4V-Ti-Alloy) .
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Fig. 3.147: The relation between diving depth and specific gravity each types of pressure
hull (High Tensile Strength Steel) .
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Fig. 3.148: The relation between diving depth and specific gravity each types of pressure
hull (Silicon-Nitride Ceramic) .
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Fig. 4.2: Measurement point by using strain gage.
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Fig. 4.3: Measurement point of each thickness of intersection (d = 12,18,30) .
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Table. 4.1: The specification of multi-
segments spherical pressure hull using for

pressure Test.

Material SS5400

Diameter 200[mm)]

Thickness 6[mm]
Angle of Intersection 20[°]

Thickness of Intersection | 12, 18, 30[mm]

Fig. 4.4: Multi-segment spherical pressure Width of Intersection 18[mm]

hull using for pressure test.

go,00b0bo03000000 Feg49000000400000000000.
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Fig. 4.5: Hemisphere parts with hole for

IE55 conecter. Fig. 4.6: Hemisphere parts with no hole.

Fig. 4.7: Intersection parts. Fig. 4.8: V-Band made of Delrin .

Fig. 4.9: 4 segment spherical pressure hull.

64



4.1.2 0000

oo, 0boobooboboobooboboboboobobobb.00nDgn 20MPal
gboo,gbgogooosgb,gbbogbolrob,ogobobo3bgbbobbonobd
gboogobdoagd.

go,0oooooogogbob,0o0obobobobobobg,1bobob,
40000000DO0DOODODOO. 0ODO,0DbO0ODODODODODODODO
gboboboboboboobobobo. bob,b0oboboo0obobobobd
ood.0oboobob, Figd410000000,0000000000000000,0
goodgbogbobooboobuodgboob,gobogbuoobooboob,d
gboogbboobdodgboogo.gbogb,g0gboobbooboadd.

Fig. 4.10: Strain gage glued to inner surface of intersection.
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Fig. 4.11: Measurment system of pressure test.
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Table. 4.2: The specification of pressure

test vessel.

Material SNCN Steel
Diameter 300[mm]
Height 1000[mm]
Maximum Pressure | 120[MPa]

Fig. 4.12: Pressure test vessel.
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Table. 4.3: The specification of strain am-

plifier.
Kyowa Electoronic Instruments
Manufacturer
Co.,Ltd.
Output Range +5[V]

Fig. 4.13: Strain amplifier.
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Table. 4.4: The specification of strain

o % gage.
.
} Kyowa Electoronic Instruments
Manufacturer

X Co.,Ltd.

Vi Model KFG-1-120-D16-11 T-F7

\ Gage Length 1[mm]

Gage Ratio 2.1

Fig. 4.14: Strain gage. Resistance 1209
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Fig. 4.15: The relation between pressure Fig. 4.16: The relation between pressure
and stress inner surface of hemisphere in and stress inner surface of hemisphere in
latitude direction. meridian direction.
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Fig. 4.17: The relation between pres- Fig. 4.18: The relation between pressure
sure and stress in latitude direction (d = and stress in meridian direction (d =

12[mm], py). 12[mm], p1).
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Fig. 4.19: The relation between pressure
and stress in circumferetial direction (d =

12[mm],p2).
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Fig. 4.20: The relation between pressure
and stress in axial direction

(d = 12[mm], ps).
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Fig. 4.21: The relation between pres-
sure and stress in latitude direction (d =

18[mm], p3).
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Fig. 4.22: The relation between pressure
and stress in meridian direction (d =

18[mm], p3).
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Fig. 4.23: The relation between pressure Fig. 4.24: The relation between pressure

and stress in circumferential direction (d = and stress in axial direction

18[mm], p4). (d = 18[mm], py).
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Fig. 4.25: The relation between pressure Fig. 4.26: The relation between pressure

and stress in stress concentration area and stress in stress concentration area
around end of arc in latitude direction around end of arc in meridian direction

Fig4.25,42600000,00000000000000000000000O00. 0
goobd, Fig427roooo,00b0boboboboooooobobo. bd
g,bogbobobobodgbdodg,bobboobodbooboobbobbobbdo
gbooooboo.

O0000d=12,18,30mm|0 300000000, 20MPa)0 O 0OD0ODOODOOO
gooooobooboobouobobooboobuobobobobobonoo. Figd.29,
4300 0000000000000 Db0b0Ob0O0OLFeg43,43200 000000000

70



0 ' T FEI\[ ] 300 : :
. Tenerime + FEM
Experiment + Experiment
-100+ 200k
© b
2001 ] 100}
=300 1 L L /
0 : 113 13 20 % 3 10 15 20
P
Fig. 4.27: The relation between pressure Fig. 4.28: The relation between pressure
and stress in circumferential direction (d = and stress in axial direction
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Fig. 4.29: The relation between thickness Fig. 4.30: The relation between thickness

of intersection and stress in latitude direc- of intersection and stress in meridian di-
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Fig. 4.31: The relation between thickness Fig. 4.32: The relation between thickness

of intersection and stress in circumferen- of intersection and stress in axial direction
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