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Abstract 

 
 K-means clustering has been widely used to gain insight into biological systems from 
large-scale life science data. To process the growing volume of biological data (e.g., 
epigenomics data from the ENCODE project) due to the recent progress in efficient 
next-generation sequencing data collection, it is crucial to accelerate computational 
performance. To quantify the similarities among biological data sets, Pearson 
correlation distance and standardized Euclidean distance are used most frequently; 
however, optimization methods have been largely unexplored. These two distance 
measurements are equivalent in the sense that they yield the same k-means clustering 
result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is 
applicable to the other. Several optimization methods are available for the Euclidean 
distance and can be used for processing the standardized Euclidean distance; however, 
they are not customized for this context. We instead approached the problem by 
studying the properties of the Pearson correlation distance, and we invented a simple 
but powerful heuristic method for markedly pruning unnecessary computation while 
retaining the final solution. Tests using real biological datasets with 50-60K vectors of 
dimensions 5–2001 (~400 MB in size) demonstrated marked reduction in computation 
time for k = 2-500 in comparison with other state-of-the-art pruning methods such as 
Elkan’s and Hamerly’s algorithms. The BoostKCP software is available at 
http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/. 
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1 Introduction 
 
Clustering, an unsupervised learning algorithm to group data into similar categories, has been 
widely used to gain insights into biological systems from large-scale biological data, such as gene 
expression data monitored by microarrays [1-4], histone modifications [5-13], and nucleosome 
positioning [14-24]. A variety of clustering algorithms, such as hierarchical clustering, k-means 
clustering, self-organizing map (SOM), and principal components analysis (PCA), have been used 
(for review, see [25]). Of these, k-means clustering is the most widely used to process large-scale data 
sets, in part because the computational complexity of hierarchical clustering is quadratic or higher in 
the number of data points, while k-means clustering algorithms have lower computational 
complexity [26]. Accelerating k-means clustering algorithms is still necessary to process the growing 
volume of biological data due to the recent progress in data collection by next-generation sequencing. 
 
The basic concept of k-means clustering is simple.  
1. 1. It first selects k cluster centroids in some manner. The behavior of the algorithm is highly 

sensitive to the initial selection of k initial centroids, and many efficient initialization methods 
have been proposed to calculate better k centroids [26-33]. In this study, we use the initialization 
method proposed by Bradley and Fayyad [31], since it consistently performs better than the 
other methods in terms of several criteria according to the recent report by Celebi [26]. 

2. Subsequently, k-means clustering repeats the process of assigning individual points to their 
nearest centroids and updating each of k centroids as the mean of points assigned to the centroid 
until no further changes occur on the k centroids [34].  

 
Quantifying the same  data points is essential. Various measures are available, such as Euclidean 
distance, Manhattan distance, Pearson correlation distance, and Spellman rank correlation. Of these, 
Euclidean distance and Pearson correlation distance have been widely used for large-scale biological 
data processing [3, 4, 24, 35, 36]. Euclidean distance is sensitive to scaling, while correlation is 
unaffected by scaling. Precisely, given two data of high dimension such that their patterns are quite 
similar but their scales are different, Euclidean distance is not suitable for measuring the similarity. 
To avoid this problem, standardized Euclidean distance, which is not sensitive to scaling, is 
frequently used [3, 36-40].  
 
Of note, standardized Euclidean and Pearson correlation distances are equivalent in the sense that 
both yield the same k-means clustering result for identical sets of k initial centroids because the 
standardized Euclidean distance is proportional to the square root of the Pearson correlation 
distance [3, 40], and the two distances always produce consistent orderings. Thus, optimization 
methods designed to calculate one distance are applicable to the other. 
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Despite the importance of the Pearson correlation and standardized Euclidean distances for machine 
learning, optimization methods customized for these distances are largely unexplored. In general, 
several efficient k-means clustering algorithms have been proposed for processing Euclidean 
distances by utilizing the triangle inequality [41-43] or by analyzing the correlation coefficient 
between the centroids [44]. Thus, we can use optimization methods for the Euclidean distance to 
yield a k-means clustering result based on the standardized Euclidean distance that is in agreement 
with that based on the Pearson correlation distance [3].  
 
We instead examined the properties of the Pearson correlation distance and devised a simple and 
novel method for avoiding unnecessary computation in order to boost k-means clustering using the 
Pearson correlation distance. We demonstrate that our method outperforms pruning method 
applications using the Euclidean distance [41-43] compared with those that use the standardized 
Euclidean distance. Our method has been best optimized for k-means clustering using the 
standardized Euclidean and Pearson correlation distances. 
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2 Methods 
 
We first introduce the definition of Pearson’s correlation coefficient. 
 
Definition. To measure the distance between two d dimensional vectors 𝒙 = (𝒙[1], … ,𝒙[𝑑]), 𝒚 =
(𝒚[1], … ,𝒚[𝑑]), we define Pearson’s correlation coefficient:  

ρ(𝒙,𝒚) =
1
𝑑� �

𝒙[𝑖] − 𝒙�
𝜎𝒙

� �
𝒚[𝑖] − 𝒚�
𝜎𝒚

�
𝑑

𝑖=1
, 

where 𝒙�  denotes the average of 𝒙[1], … ,𝒙[𝑑] , and 𝜎𝒙  is the standard deviation, defined as 

�∑ (𝒙[𝑖] − 𝒙�)2𝑑
𝑖=1 𝑑⁄ . Let ‖𝒙‖ denote the length, defined as  �∑ 𝒙[𝑖]2𝑑

𝑖=1  . ∎ 

 
Note that Pearson’s correlation coefficient ranges from −1  to 1 , i.e., −1 ≤ ρ(𝒙,𝒚) ≤ 1 .  The 
Pearson’s correlation coefficient ρ(𝒙, 𝒚) itself does not serve as a distance because when 𝒙 and 𝒚 
are more similar to each other, ρ(𝒙, 𝒚) becomes larger and approaches 1 rather than 0.  
 
Definition. [45] The Pearson correlation distance dis(𝒙,𝒚) is defined as 1 − ρ(𝒙, 𝒚). ∎ 
 
The Pearson correlation distance approaches 0 when 𝒙 and 𝒚 are similar. In contrast, when 𝒙 and 
𝒚 are more dissimilar, the Pearson’s correlation coefficient decreases to −1, and the Pearson 
correlation distance between 𝒙 and 𝒚  increases approaching 2. The range of the distance is 
0 ≤ dis(𝒙,𝒚) ≤ 2. The Pearson correlation distance violates the triangular inequality.  
 
Example. When 𝒙1 = (9, 3, 1), 𝒙2 = (3,1, 9), and 𝒙3 = (1,3, 9), we have dis(𝒙1, 𝒙2) = 1.5, dis(𝒙2,𝒙3) =

0.115, and dis(𝒙1,𝒙3) = 1.846, which do not meet the triangular inequality: 
dis(𝒙1 ,𝒙2) + dis(𝒙2,𝒙3) ≥ dis(𝒙1,𝒙3)     ∎ 

 
We illustrate here two examples that clarify how the Pearson correlation distance differs from the 
Euclidean distance.  
 
Example. When  𝒙1 = (1, 3, 9), 𝒙2 = (0.9, 0.3, 0.1),  and 𝒙3 = (0.1, 0.3, 0.9) , 𝒙1  and 𝒙3  have similar 
patterns, but their scales are different, while 𝒙2  and 𝒙3  have dissimilar patterns, yet their 
Euclidean distance is smaller than the distance between 𝒙1 and 𝒙3. Indeed, we have: 

dis(𝒙1 ,𝒙3) = 0 < 1.84615 = dis(𝒙2,𝒙3), 
while  

‖𝒙1 − 𝒙3‖ = 8.58545 > 1.13137 = ‖𝒙2 − 𝒙3‖.  ∎ 
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The next example illustrates the discrepancy between the Pearson correlation distance and the 
“normalized” Euclidean distance.  
 
Example. When 𝒙1 = (0.1, 0.3, 10),𝒙2 = (0.1, 1, 10),  and 𝒙3 = (0.1, 0.1, 1) , Pearson correlation 
distances meet 

dis(𝒙1 ,𝒙3) = 0.00016 < 0.00338 = dis(𝒙2, 𝒙3), 
implying that 𝒙3 is more similar to (correlated with) 𝒙1. In contrast, the normalized Euclidean 
distance yields the opposite ordering: 

�
𝒙1
‖𝒙1‖

−
𝒙3
‖𝒙3‖

� = 0.11304 > 0.08920 = �
𝒙2
‖𝒙2‖

−
𝒙3
‖𝒙3‖

�  ∎ 

 
We next define the standardized Euclidean distance. 
 
Definition. Let 𝑑𝑖𝑑_𝑆𝑆(𝒙,𝒚) denote 

���
𝒙[𝑖] − 𝒙�
𝜎𝒙

−
𝒚[𝑖] − 𝒚�
𝜎𝒚

�
2𝑑

𝑖=1

,  

the standardized Euclidean distance between two d dimensional vectors 𝒙 and 𝒚. ∎ 
 

The square root of the Pearson correlation is proportional to the standardized Euclidean distance. 
 
Proposition. [3, 40]   

√2𝑑�𝑑𝑖𝑑(𝒙,𝒚) = 𝑑𝑖𝑑_𝑆𝑆(𝒙,𝒚) 
The Pearson correlation distance and the standardized Euclidean distance produce consistent 
orderings; namely, for any 𝒙𝟏,𝒚𝟏,𝒙𝟐,𝒚𝟐,  

𝑑𝑖𝑑(𝒙𝟏,𝒚𝟏)  ≤ 𝑑𝑖𝑑(𝒙𝟐,𝒚𝟐) 
if and only if  

𝑑𝑖𝑑_𝑆𝑆(𝒙𝟏,𝒚𝟏)  ≤ 𝑑𝑖𝑑_𝑆𝑆(𝒙𝟐,𝒚𝟐). 
∎ 
 
We note here that the Pearson correlation distance and its square root are largely different. For 
example, �𝑑𝑖𝑑(𝒙,𝒚) = 0.4  when 𝑑𝑖𝑑(𝒙, 𝒚) = 0.1 6, and �𝑑𝑖𝑑(𝒙, 𝒚) = 1.3  when 𝑑𝑖𝑑(𝒙,𝒚) = 1.69 .  In 
general, two proximal (distal, respectively) points of the Pearson correlation distance < 1 (> 1) 
become more distant (closer) according to the square root of the Pearson correlation distance.  
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Next, we outline Lloyd’s algorithm, which implements k-means clustering. Given 𝑛 points in 𝑑 
dimensional space, a k-means (k-medians) algorithm starts with selecting 𝑘  initial centroids, 
�𝒄𝑝 � 𝑝 = 1, … ,𝑘},  in some way. It then repeats the following two steps until no further changes occur 
in any of the 𝑘 centroids: 
 Assigning step: Assign each of 𝑛 points to its nearest centroid. 
 Updating step: Update each 𝒄 of 𝑘 centroids as the mean (median) of points assigned to 𝒄. 
Lloyd proposed the basic concept of the above procedure [34]. Suppose that it takes Θ(𝑑) time to 
compute the distance between two 𝑑-dimensional points. A naïve implementation of the assigning 
step is to calculate the distance between each point and each centroid, which takes a Θ(𝑑𝑘𝑛) time 
in total, while the updating step needs a Θ(𝑑𝑛) time. Thus, accelerating the assigning step is 
crucial. Here, we present a way of avoiding unnecessary computation in the assigning step by finding 
unchanged nearest centroids. 
 
Selecting the distance between points is crucial in k-means clustering. The Euclidean and Pearson 
correlation distances are not always consistent and may produce different clustering results for an 
identical set of k initial centroids because during the assigning step, the centroid nearest to each 
vector can differ according to the distance selected. In contrast, the standardized Euclidean and 
Pearson correlation distances produce consistent orderings, and consequently the centroid closest to 
each vector is the same regardless of the distance selected. Using this property, we show that both 
distances yield the same clustering result.  
 
Proposition. For an identical set of k initial centroids, the k-means clustering algorithm produces the 
same clustering result for the standardized Euclidean distance as the Pearson correlation distance. 
Proof.  
We prove the inductive hypothesis stating that before each round of iteration, the set of k centroids 
for the standardized Euclidean distance is identical to that for the Pearson correlation distance. The 
hypothesis holds true before the first iteration simply because the same set of k initial centroids is 
the input for each distance. Assuming that the hypothesis is true before the i-th iteration, after the 
assigning step, the centroid nearest to each vector is identical for each of the two distances because 
for any vector 𝒙 and any centroids 𝒄1 and 𝒄2, 𝑑𝑖𝑑(𝒙, 𝒄1) ≤ 𝑑𝑖𝑑(𝒙, 𝒄2) if and only if 𝑑𝑖𝑑_𝑆𝑆(𝒙, 𝒄1) ≤

𝑑𝑖𝑑_𝑆𝑆(𝒙, 𝒄2). Thus, after the updating step, the set of vectors closest to each centroid 𝒄 is identical 
for the two distances, implying that the mean of the set, the revised centroid, is also identical. 
Consequently, the inductive hypothesis is true before the (i+1)-th iteration. ∎ 
 
This proposition allows us to perform k-means clustering with the Pearson correlation distance using 
optimization algorithms developed for the (standardized) Euclidean distance [41, 42, 44]; however, it 
is unclear whether the methods for the Euclidean distance are effective for accelerating the 
performance when using the standardized Euclidean distance. We show relevant experimental 
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results in the next section.  
 
For the following, we describe our new algorithm customized for the Pearson correlation distance. 
Centroids are updated frequently and are likely to move long distances in early stages of the 
repetitive steps. In contrast, in later steps, centroids are unlikely to move, and therefore, the 
assigning step has a tendency to reassign each point to the previous centroid as the nearest one, 
which should be avoided. Thus, we can accelerate the assigning step if we can test whether the 
nearest centroid for a point remains unchanged without recalculating the distances between the 
point and all centroids. Suppose that after the updating step, the centroid 𝒄𝑝 nearest to 𝒙 moves to 
 𝒄𝑝′ for 𝑝 = 1, … ,𝑘, and any other centroid 𝒄𝑞  (𝑞 = 1, … ,𝑘,𝑞 ≠ 𝑝) moves to  𝒄𝑞′. We ask if 𝒙 is still 
closest to cluster 𝒄𝑝′ after the updating step:  

dis�𝒄𝑝′,𝒙� ≤ dis�𝒄𝑞′,𝒙� 
for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝). 
 
To check this test efficiently for any point 𝒙 without recalculating the new distances on both sides of 
the inequality, we will develop an efficient method to estimate an upper bound of the new distance 
dis�𝒄𝑝′,𝒙� using the existing distance dis�𝒄𝑝, 𝒙�: 

dis�𝒄𝑝′,𝒙� ≤ dis�𝒄𝑝,𝒙� + an_upper_bound  , 
where we will define “an_upper_bound(≥ 0)” shortly. Similarly, we will derive a lower bound of 
dis�𝒄𝑞′,𝒙� using the previous distance dis�𝒄𝑞 ,𝒙�: 

dis�𝒄𝑞 ,𝒙�+ a_lower_bound ≤ dis�𝒄𝑞′,𝒙�  
for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝), where a_lower_bound ≤ 0.  
 
Using these methods, we can implement a pruning procedure. If  

dis�𝒄𝑝,𝒙�+ an_upper_bound ≤ dis�𝒄𝑞 ,𝒙� + a_lower_bound   for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝),     (*) 
we can confirm dis�𝒄𝑝′, 𝒙� ≤ dis�𝒄𝑞′,𝒙�  (𝑞 ≠ 𝑝)  without calculating the new distances, while 
retaining the final solution. In the next round of the assigning step, it might be necessary to 
calculate the new distances, but we can omit this step by substituting dis�𝒄𝑝,𝒙�+ an_upper_bound  
and dis�𝒄𝑞 ,𝒙�+ a_lower_boundfor new distances dis�𝒄𝑝′,𝒙� and dis�𝒄𝑞′,𝒙� respectively because this 
replacement does not violate the validity of the pruning procedure in the next assigning step. In 
cases in which the inequality (*) does not hold, we calculate dis�𝒄𝑝′, 𝒙� and dis�𝒄𝑞′,𝒙� for 𝑞 =

1, … ,𝑘 (𝑞 ≠ 𝑝), and determine the centroid nearest to 𝒙. 
 

To facilitate the simple description of formula and derivations, we introduce a method of 
decomposing the Pearson’s correlation coefficient ρ(𝒙,𝒚) into two vectors called “correlation 
coefficient vectors.”  
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Definition. Correlation coefficient vectors are defined as  
1
√𝑑

�
𝒙[1] − 𝒙�

𝜎𝒙
,
𝒙[2] − 𝒙�

𝜎𝒙
,⋯

𝒙[𝑑] − 𝒙�
𝜎𝒙

� 

 
1
√𝑑

�
𝒚[1] − 𝒚�

𝜎𝒚
,
𝒚[2] − 𝒚�

𝜎𝒚
,⋯

𝒚[𝑑] − 𝒚�
𝜎𝒚

� 

for 𝒙 = (𝒙[1], … ,𝒙[𝑑]) and 𝒚 = (𝒚[1], … , 𝒚[𝑑]), respectively. Let 𝐶𝐶𝒙 and 𝐶𝐶𝒚 denote the respective 
correlation coefficient vectors. ∎ 
 
Note that the Pearson’s correlation coefficient ρ(𝒙,𝒚) is equal to the inner product of 𝐶𝐶𝒙 and 𝐶𝐶𝒚; 
i.e., ρ(𝒙, 𝒚) = (𝐶𝐶𝒙,𝐶𝐶𝒚). Any correlation coefficient vector 𝐶𝐶𝒙 is of length 1; namely, ‖𝐶𝐶𝒙‖ = 1, 
and similarly, ‖𝐶𝐶𝒚‖ = 1. 
 
To facilitate the discussion of calculating better upper and lower bounds, we introduce a new 
definition.  
 
Definition.  Let 𝒄 and 𝒄′ be respective centroids before and after the updating step, and let 
𝐶𝐶𝒄 and 𝐶𝐶𝒄′ be their correlation coefficient vectors. Let ∆𝑑𝑖𝑑(𝒄, 𝒄′,𝒙) denote 𝑑𝑖𝑑(𝒄′,𝒙) − 𝑑𝑖𝑑(𝒄,𝒙), the 
distance variation of point 𝒙 to  𝒄 and 𝒄′.  ∎ 
 
For example, dis�𝒄𝑝′, 𝒙� ≤ dis�𝒄𝑝,𝒙�+ an_upper_bound can be concisely described by  

∆𝑑𝑖𝑑�𝒄𝑝, 𝒄𝑝′,𝒙� ≤ an_upper_bound. 
Another merit of this notation is that we are able to transform the distance variation into an inner 
product of (𝐶𝐶𝒄 − 𝐶𝐶𝒄′) and 𝐶𝐶𝒙 : 

∆𝑑𝑖𝑑�𝒄𝑝, 𝒄𝑝′,𝒙� = 𝑑𝑖𝑑�𝒄𝑝′,𝒙� − 𝑑𝑖𝑑�𝒄𝑝,𝒙�  = 𝜌�𝒄𝑝,𝒙� − 𝜌�𝒄𝑝′, 𝒙� = �𝐶𝐶𝒄𝑝, 𝐶𝐶𝒙� − �𝐶𝐶𝒄𝑝′,𝐶𝐶𝒙�
= (𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′,𝐶𝐶𝒙) 

This inner product allows us to estimate an upper bound and a lower bound of ∆𝑑𝑖𝑑(𝒄𝑝, 𝒄𝑝′,𝒙) by 
analyzing the two vectors independently as well as by considering each dimension separately. 
 
We can derive an upper bound and a lower bound that are effective for any point 𝒙 for which the 
nearest centroid is 𝒄𝑝. A simple approach is to derive two bounds from 

�∆𝑑𝑖𝑑�𝒄𝑝, 𝒄𝑝′,𝒙�� = ��𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′ ,𝐶𝐶𝒙�� 
≤ �𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′�‖𝐶𝐶𝒙‖, 

where the inequality holds because of the Cauchy-Schwarz inequality. Because ‖𝐶𝐶𝒙‖ = 1, we can 
use �𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′� and −�𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′� as the upper and lower bounds, respectively, and we 
define them as follows: 
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Definition.  
upperA�𝒄𝑝,𝒄𝑝′� ≝ �𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′� 
lowerA�𝒄𝑝, 𝒄𝑝′� ≝ −�𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′�       ∎ 

 
These upper and lower bounds are simple formulas but effective for eliminating unnecessary 
computation. It takes Θ(𝑑𝑘) time to calculate the lower and upper bounds for all 𝑘 centroids, and 
Θ(𝑘) space to store these bounds. We also design more complicated bounds by taking the sum of the 
differences at individual coordinates. 
 
Definition.  Let 𝑆𝒄𝑝denote the set of all points for which the nearest centroid is 𝒄𝑝 

upperB �𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝� ≝ 

∑ maximum�𝐶𝐶𝒄𝑝[𝑗] − 𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝� ,𝑑
𝑗=1   

where  

maximum�𝑧, 𝑆𝒄𝑝� ≝ �
𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝} 𝑧 ≥ 0
𝑧 × min {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝} 𝑧 < 0 

For 𝑞 = 1, … ,𝑘 (𝑞 ≠ 𝑝), define 

lowerB �𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝� ≝ 

∑ minimum�𝐶𝐶𝒄𝑞[𝑗]− 𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑝�
𝑑
𝑗=1 ,  

where  

minimum�𝑧, 𝑆𝒄𝑝� ≝ �
𝑧 × min {𝐶𝐶𝒙[𝑗] | 𝒙 ∈ 𝑆𝒄𝑝} 𝑧 ≥ 0
𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝} 𝑧 < 0 

∎ 
 
Proposition.  For any 𝒙 ∈ 𝑆𝒄𝑝,  

∆𝑑𝑖𝑑�𝒄𝑝, 𝒄𝑝′, 𝒙� ≤ upperB �𝒄𝑝,𝒄𝑝′, 𝑆𝒄𝑝� and lowerB �𝒄𝑞 ,𝒄𝑞′, 𝑆𝒄𝑝�  ≤ ∆𝑑𝑖𝑑�𝒄𝑞 , 𝒄𝑞′,𝒙�  (𝑞 ≠ 𝑝).  

It takes Θ(𝑑𝑛 + 𝑑𝑘2) time and Θ(𝑑𝑘 + 𝑘2) space in order to calculate upperB �𝒄𝑝,𝒄𝑝′, 𝑆𝒄𝑝� and 

lowerB �𝒄𝑞 ,𝒄𝑞′, 𝑆𝒄𝑝� (𝑝 =  1, … , 𝑘,𝑞 = 1, … ,𝑘,𝑞 ≠ 𝑝) for every cluster 𝒄𝑝. 
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Proof 

∆𝑑𝑖𝑑�𝒄𝑝, 𝒄𝑝′, 𝒙� = ��𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝′�,𝐶𝐶𝒙� 

= ∑ �𝐶𝐶𝒄𝑝[𝑗]–  𝐶𝐶𝒄𝑝′[𝑗]� × 𝐶𝐶𝒙[𝑗]𝑑
𝑗=1   

≤ ∑ maximum�𝐶𝐶𝒄𝑝[𝑗] −  𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝� 𝑑
𝑗=1   

= upperB �𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝� 

∆𝑑𝑖𝑑�𝒄𝑞 , 𝒄𝑞′,𝒙� = ��𝐶𝐶𝒄𝑞 − 𝐶𝐶𝒄𝑞′�,𝐶𝐶𝒙� 

= ∑ �𝐶𝐶𝒄𝑞[𝑗]–  𝐶𝐶𝒄𝑞′[𝑗]�× 𝐶𝐶𝒙[𝑗]𝑑
𝑗=1   

≥ ∑ minimum�𝐶𝐶𝒄𝑞[𝑗] − 𝐶𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑝�
𝑑
𝑗=1    

= lowerB �𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝� 

For efficiency, we first compute the maximum and minimum of {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝} for each dimension 
𝑗 = 1, … ,𝑑 and for each cluster 𝒄𝑝 (𝑝 =  1, … ,𝑘), and store this information in a table of size Θ(𝑑𝑘). 
This tabulation process takes Θ(𝑑𝑛)  time. Looking up the table, it is possible to calculate 

upperB �𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝�  for any cluster 𝒄𝑝  in Θ(𝑑)  time, and lowerB �𝒄𝑞 ,𝒄𝑞′, 𝑆𝒄𝑝� for (𝑘 − 1) clusters 

𝒄𝑞(𝑞 = 1, … , 𝑘,𝑞 ≠ 𝑝) in Θ(𝑑(𝑘 − 1)) time. Repeating this calculation for each cluster 𝒄𝑝 = 𝒄1, … , 𝒄𝑘 
requires Θ(𝑑𝑘2) time and Θ(𝑘2) space for storing upper and lower bounds. ∎ 
 
Using the above two calculations for upper and lower bounds, we devise the pruning procedure that 
checks 

dis�𝒄𝑝,𝒙� + upperA�𝒄𝑝,𝒄𝑝′� ≤ dis�𝒄𝑞 ,𝒙� + lowerA�𝒄𝑞 , 𝒄𝑞′�, 
or 

dis�𝒄𝑝,𝒙� + upperB �𝒄𝑝,𝒄𝑝′, 𝑆𝒄𝑝� ≤ dis�𝒄𝑞 ,𝒙� + lowerB �𝒄𝑞 ,𝒄𝑞′, 𝑆𝒄𝑝� 

for each 𝒙 of 𝑛 points (𝒙 ∈ 𝑆𝒄𝑝 for each 𝑝 = 1, … ,𝑘) and for each 𝑞 = 1, … ,𝑘 (𝑞 ≠ 𝑝). If 𝒙 meets one 
of the inequalities, we can confirm dis�𝒄𝑝′, 𝒙� ≤ dis�𝒄𝑞′,𝒙�   (𝑞 ≠ 𝑝)  by skipping the calculation of the 
new distances. The total computation time of checking the above inequality is Θ(𝑘𝑛). Using upperB 
and lowerB requires additional computational time Θ(𝑑𝑛 + 𝑑𝑘2) and space Θ(𝑑𝑘 + 𝑘2), which is 
constantly required to calculate the two bounds in each iteration. In contrast, computing upperA and 
lowerA needs Θ(𝑑𝑘) time and Θ(𝑘) space. 
 
For each 𝒙 that violates the above inequality, we compute new distances dis�𝒄𝑝′,𝒙� and dis�𝒄𝑞′,𝒙� 
for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝) to find the centroid nearest to 𝒙. In the best case, no calculation is needed. In 
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the worst case, however, it is necessary to compute new distances dis�𝒄𝑝′,𝒙� for 𝑝 = 1, … ,𝑘 and 𝑛 
points, and the worst time complexity is 𝑂(𝑑𝑘𝑛). Recall for comparison that the assigning step of 
Lloyd’s algorithm requires Θ(𝑑𝑘𝑛) time.  
 
We have defined two heuristic algorithms: one uses upperA and lowerA, and the other upperB and 
lowerB to prune unnecessary computations when performing k-means clustering using the Pearson 
correlation distance. We call the former BoostKCP (boundA) and the latter BoostKCP (boundB), 
where BoostKCP stands for Boosting K-means Clustering for Pearson correlation distance.  
 
We compare the performance of Elkan’s and Hamerly’s methods, BoostKCP(boundA), and 
BoostKCP(boundB) with respect to time and space complexity. Although individual method 
accelerates Lloyd’s algorithm using lower and upper bounds to prune unnecessary computation, each 
iteration requires 𝑂(𝑑𝑘𝑛) time in the worst case. Thus, we summarize the overhead of computing 
lower and upper bounds in terms of time and space complexity (Table 1). The entries of 
“time/iteration” show the asymptotic overhead computation time required to calculate lower and 
upper bounds in each iteration by individual algorithms. The entries for BoostKCP have been 
described, while those for Elkan’s and Hamerly’s algorithms are detailed in [42]. Table 1 shows that 
the time and space complexity of BoostKCP(boundA) are smaller than those of the other methods. In 
the experimental results, we will show that BoostKCP(boundA) also outperforms the others in terms 
of computational performance using real biological datasets, confirming that BoostKCP(boundA) is a 
simple and powerful heuristic method for accelerating k-means clustering when using Pearson 
correlation and standardized Euclidean distances. 
 

 
  

 time/iteration memory 

BoostKCP(boundA) Θ(𝑑𝑘) Θ(𝑘) 

BoostKCP(boundB) Θ(𝑑𝑛 + 𝑑𝑘2) Θ(𝑑𝑘 + 𝑘2) 

Elkan Θ(𝑑𝑘2) Θ(𝑘𝑛 + 𝑘2) 

Hamerly Θ(𝑑𝑘2) Θ(𝑛) 
 
Table 1. Comparison of the asymptotic overhead spent by calculating lower and upper bounds in 
addition to Lloyd’s algorithm in terms of time and space complexity.  
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3 Experimental Results 
 
3.1 Data Sets 
We generated a synthetic dataset of vectors whose elements were randomly selected from 0 to 1 
using the Mersenne twister [46], a widely used pseudo random number generator with an 
extraordinarily long cycle of 219937-1. We generated datasets of 50,000 vectors of dimension d = 10, 20, 
50, 101, 201, 501, 1001, and 2001. This random data set was an extreme example from which 
meaningful clusters were difficult to extract. We used these sets to compare the effectiveness of 
BoostKCP (boundA) and BoostKCP (boundB) for pruning unnecessary computation. 
 
In order to compare BoostKCP with other available state-of-the-art pruning methods, we used three 
different types of high-dimensional real biological datasets rather than random datasets. The first 
real data set was a set of vectors with human nucleosome positioning signals at genomic positions 
surrounding transcription start sites (TSSs). A nucleosome positioning signal at a genomic position is 
a real value and represents the possibility of the presence of nucleosome centers at that position. 
From the GENCODE database, version 7 [47], we obtained human nucleosome positioning signals 
using MNase-sequencing and the TSSs of the human reference genome hg19. We repeated the 
process of merging neighboring TSSs within 1000 bp into a group, and we selected representative 
TSSs whose expression levels were maximal in individual groups. From the representative TSSs, we 
excluded those having any other TSSs within 1000 bp on the reverse strand to eliminate their effect. 
Subsequently, from the nucleosome positioning signal data, we generated a base set of 56,772 vectors 
of dimension 2001 (~400M bytes) such that their elements were real-valued nucleosome positioning 
signals within 1000 bp around representative TSSs and more than half of the elements within 50, 
100, 250, and 500 bp of the TSSs were nonzero. To monitor how the algorithms behave for data of 
different dimension, from the base set, we generated four sets of vectors of dimension d = 101, 201, 
501, 1001, and 2001 by selecting the elements within 50, 100, 250, 500, and 1000 bp of the TSSs. The 
last digit “1” of dimension d indicates the TSS position. Because of the construction of the base set, 
more than half of the elements in each vector are guaranteed to be nonzero. For smaller dimensions 
d = 10, 20, and 50, we selected every  (2000/𝑑)-th element from the base set;  e.g., elements at 
-1000, -800, -600, …, +600, and +800 bp for d=10. The second real data set was a typical example of 
gene expression data, a set of 54,613 genes  from 180 glioma samples [48]. The third real data set 
was a set of 60,000 gray-level images of handwritten letters in the MNIST database [49]. Each image 
consisted of 28 x 28 pixels, and we set dimension d = 282 = 784. As letters were categorized into 78 
types, we set k = 78. 
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3.2 Comparison of computational performance 
 
We compared the following five methods: 

 Lloyd’s algorithm [34] 
 BoostKCP (boundA) 
 BoostKCP (boundB)  
 Elkan’s algorithm [41] 
 Hamerley’s algorithm [42, 43] 

We used the first three methods to compute k-means clustering using the Pearson correlation 
distance. In contrast, since the latter two algorithms were designed to process the Euclidean distance, 
we used these to calculate k-means clustering using the standardized Euclidean distance, the results 
of which are equal to those using Pearson correlation distance as described in the previous section. 
For any initial centroid set, the above five methods give the same final clustering result. 
 
Selecting the initial set of k centroids largely affects the final result, and for this purpose, we used 
Bradley and Fayyad’s method [31] because it performed better than the other applicable 
initialization methods for several criteria [26]. After selecting the initial centroids, we measured the 
elapsed time during the application of each method towards the same initial centroid set derived 
from different types of data. We excluded the time required to compute the initial set of centroids 
because it was typically much less than the time used to compute k-means clustering. We monitored 
the computational performance using an Intel® Xeon® CPU E5-2670 processor with a clock rate of 
2.60 GHz and 66 GB of main memory. 
 
We first compared the performances of BoostKCP  (boundA) and BoostKCP (boundB) using 50,000 
random vectors of dimension d = 10, 20, 50, 101, 201, 501, 1001, and 2001. We calculated the average 
elapsed time by executing 10 trials for d = 10, 20, 50, 101, 201, 501, and 1001, but 5 trials for d = 
2001, due to the large amount of computation. We observed that BoostKCP (boundA) outperformed 
BoostKCP (boundB). Specifically, we calculated the performance improvement by 
BoostKCP(boundA) as the acceleration rate; i.e., the elapsed time for BoostKCP (boundB) divided by 
that for BoostKCP (boundA). Fig. 1 displays the elapsed time and acceleration rate for each 
dimension and for k =10, 20, and 30. In all cases except where d=10 and k=30, BoostKCP (boundA) 
was faster than BoostKCP (boundB) partly because computing lower and upper bounds for 
BoostKCP(boundA), Θ(𝑑𝑘) , is less expensive than computing those for BoostKCP(boundB), 
Θ(𝑑𝑛 + 𝑑𝑘2), where 𝑑 is the dimension, 𝑛 is the number of data, and 𝑘 is the number of clusters 
(Table 1). We therefore used BoostKCP (boundA) for our comparisons with the other four algorithms 
using real datasets. 
 
We next compared BoostKCP (boundA) with Lloyd’s, Elkan’s, and Hamerly’s algorithms using real 
biological datasets. For measuring the performance improvement by BoostKCP(boundA), we again 
defined the acceleration rate as the average elapsed time of each algorithm divided by that of 
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BoostKCP (boundA). 

 
 
Fig. 2 shows the experimental results obtained by applying the four algorithms to the nucleosome 
positioning data for dimension d = 10, 20, 50, 101, 201, 501, 1001 and 2001 and for number of 
clusters k =10, 20, and 30. We set these values for k  because nucleosome positioning signal vectors 
can be categorized into 10–30 groups with biologically meaningful characteristics [24]. We computed 
the average elapsed time by performing 10 trials with the exception of 5 trials where d=2001. Fig. 
2A-C show the BoostKCP (boundA) acceleration rates compared with those of the Lloyd’s, Elkan’s, 
and Hamerly’s algorithms. BoostKCP (bound A) clearly outperformed Lloyd’s and Hamerly’s 
algorithms for all parameter value combinations, and it was also faster than Elkan’s algorithm in 
most cases.  
 
It has been reported that Hamerly’s algorithm is often faster than Elkan’s algorithm for various 
low-dimensional (d < 50) data using the Euclidean distance [42, 43]; however, Hamerly’s algorithm 
did not work as well for nucleosome positioning data using the standardized Euclidean distance (Fig. 
2A-C). We remark here that the standardized Euclidean distance between two points is likely to be 
much smaller than the Euclidean distance between the two points, implying that the points are 
densely distributed in standardized Euclidean space. When handling more densely distributed 
points, greater care has to be taken for pruning unnecessary computation. In each iteration, Elkan’s 
algorithm carefully maintains the lower and upper bounds for the distance between each point and 
each centroid, while Hamerly’s algorithm considers the closest and second closest centroids only. For 
pruning unnecessary computation, put another way, Elkan’s algorithm requires more time and space 
to estimate tighter bounds than does Hamerly’s algorithm, allowing the former to be more effective 
in removing unnecessary computation than the latter. 
 
Fig. 2D-F display the average elapsed time when using each combination of d and k values; however, 

Fig. 1. Comparison between BoostKCP (boundA) and BoostKCP (boundB). Randomly generated 50,000 vectors of 
dimension d = 10, 20, 50, 101, 201, 501, 1001, and 2001 were grouped into k (= 10, 20, and 30) clusters. The first y-axis 
and second y-axis show the elapsed time and acceleration rate, respectively. 
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there is insufficient information as to how these times differed, since the elapsed time in each trial 
largely depended on the selection of the initial k vectors. To understand this further, we investigated 
how the elapsed time in each trial changed depending on the number of iterations when we applied 
BoostKCP (boundA), Elkan’s, and Lloyd’s algorithms to the nucleosome positioning signal data of 
dimension d = 501 for k = 10, 20, and 30. We did not consider Hamerly’s algorithm because its 
performance was similar to that of Lloyd. Fig. 3A shows that how elapsed time of individual 
algorithm changes for ten different initial sets of centroids. The figure shows that the elapsed time of 
each algorithm increased in proportion to the number of iterations. A major difference between the 
three algorithms was that the elapsed time of Elkan’s and Lloyd’s algorithms increased for larger val 
ues of k, but that of our pruning method was almost independent of k, which explains why the 
acceleration rate increased for larger values of k, as seen in Fig. 2. 

 

Fig. 2. Performance improvement by BoostKCP (boundA) using nucleosome positioning data of dimension d = 10, 20, 50, 

101, 201, 501, 1001, and 2001. (A-C) Acceleration rates by BoostKCP (boundA) for each of Lloyd’s, Hamerly’s, and Elkan’s 

algorithms. The lines for BoostKCP(boundA) show the constant rate of 1, the elapsed time for BoostKCP (boundA) divided by 

itself. Nucleosome positioning data were grouped into k clusters where k = 10 (A), 20 (B), and 30 (C). To make the comparison 

fair, we supplied all the algorithms with the same set of initial centroids that we generated using Bradley and Fayyad’s 

method. (D-F) The average elapsed time of BoostKCP (boundA), Lloyd’s, Hamerly’s, and Elkan’s algorithms.  
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To gain a better understanding of this, Fig. 3B presents an in-depth analysis, showing the elapsed 
time in each iteration of the three algorithms. Each iteration time for Lloyd’s algorithm is almost 
constant because the algorithm does not avoid unnecessary computation, while each iteration time 
for BoostKCP (boundA) and Elkan’s algorithm for k =10, 20, and 30 decreased markedly after the 
first few steps. In later steps, the elapsed time of BoostKCP (boundA) became almost independent of 
the value of k, giving the account that its overall elapsed time was almost proportional to the number 
of iterations but independent of k, as shown in Fig. 3A. In contrast, the elapsed time of Elkan’s 
algorithm in each iteration increased for larger values of k. This is because in each iteration, Elkan’s 
algorithm maintains a large array of lower and upper bounds for the distance between each ~56K 
points and each k centroid at an expense. In contrast, BoostKCP (boundA) needs to calculate only the 
lower and upper bounds for each k centroid (Table 1). 
 

 
  

Fig. 3. In-depth performance 

analysis on k-means 

clustering of nucleosome 

positioning data. (A) 

Analysis of clustering 

nucleosome positioning data 

of dimension d=501 by 

BoostKCP (boundA), Elkan’s 

and Lloyd’s algorithms. 

Hamerly’s algorithm was not 

considered because Lloyd’s 

and Hamerly’s algorithms 

performed similarly. A dot 

represents the number of 

iterations (x-axis) and the 

elapsed time (seconds) of 

each experiment of 10 trials 

for k = 10, 20 and 30. (B) 

Elapsed time of each iteration 

(including the assigning and 

updating steps) in typical 

trials.  
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We then applied the three algorithms to the gene expression data, a set of 54,613 vectors of 
dimension d = 180. Because the dimension was fixed, we grouped the data into k (=2, 3, 10, 20, 30, …, 
70) clusters of genes to determine if BoostKCP (boundA) achieved better performance with larger 
values of k. Fig. 4 shows the average elapsed time for ten trials and the acceleration rate of 
BoostKCP (boundA). The three algorithms used Bradley and Fayyad’s method to generate the same 
set of initial centroids. BoostKCP (boundA) outperformed Elkan’s and Lloyd’s algorithms for each k 
except for the case that the acceleration rate by BoostKCP (boundA) for Elkan’s algorithm was 0.988 
when k = 2. The acceleration rates were 1.02, 1.13, and 1.32 when k = 3, 10, and 20, respectively. The 
acceleration rate increased for larger values of k, which was consistent with the performance 
improvement that we observed for the nucleosome positioning data in Fig. 2. 

 
 
We also applied BoostKCP (boundA) and 
Elkan’s algorithm to a dataset of handwritten 
letters (d = 784) to obtain 78 (= k) groups 
(different letters). The average acceleration rate 
of the 10 trials was high (2.18 – 2.46) 
presumably because the number of clusters was 
large. Fig. 5 shows the elapsed time, 
acceleration rate, and number of iterations for 
each of the ten trials. The iteration numbers are 
likely to be smaller than those in Fig. 3A 
because the images of the handwritten letters 
are grouped inherently. In general, the number 
of iterations depends on individual data, and it 
tends to be smaller when the focal data have 
inherently discriminating groups of similar 

 
 
Fig. 4. Performance 
improvement by BoostKCP 
(boundA) using gene 
expression data of 
dimension d = 180 to group 
the data into k (= 2, 3, 10, 
20, 30, …, 70) clusters. (A) 
Acceleration rates by 
BoostKCP (boundA) for 
each of Elkan’s and Lloyd’s 
algorithms. (B) Average 
elapsed time of ten trials. 

Fig. 5. The elapsed 
time, acceleration 
rate, and number of 
iterations of each of 
ten attempts to 
cluster handwritten 
letter images of 
dimension 784 (=d) 
into 78 (=k) groups 
using BoostKCP 
(boundA) and 
Elkan’s algorithm.  
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vectors that are relatively easier to categorize. In contrast, randomly generated data avoid this data 
skewness; thus, the algorithms spend more time searching for centroids.  
 
We have so far examined situations when the number of clusters (k) ranges from 2 to 78 simply 
because these numbers of groups are of interest in real biological applications. We here investigate 
whether BoostKCP (boundA) outperforms Elkan’s and Lloyd’s algorithms for larger values of k, such 
as k = 100 and 500. Indeed, Fig. 6 illustrates that BoostKCP (boundA) is the winner when the three 
algorithms were used to cluster the nucleosome positioning data of dimension d = 10, 20, 50, 101, and 
201 into k = 100 and 500 groups. 

 
 
  

 
 
Fig. 6. Performance 
improvement by 
BoostKCP (boundA) using 
nucleosome positioning 
data of dimension d = 10, 
20, 50, 101, and 201 to 
group the data into k = 100 
and 500 clusters. (A,C) 
Acceleration rates by 
BoostKCP (boundA) for 
each of Elkan’s and Lloyd’s 
algorithms when k =100 (A) 
and k = 500 (C). (B,D) 
Average elapsed time of 
ten trials for BoostKCP 
(boundA), Elkan’s, and 
Lloyd’s algorithms when k 
=100 (B) and k = 500 (D). 
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4 DISCUSSION AND CONCLUSION  
 
High-dimensional data, such as nucleosome positioning, single nucleotide polymorphisms, and gene 
expression patterns, are quite common in biological research. K-means clustering using the Pearson 
correlation and standardized Euclidean distances has proven useful for obtaining novel insight from 
such large-scale biological datasets; however, it is likely to be a computationally intense task, thus 
demanding a method for accelerating computational performance for high-dimensional biological 
data. We have addressed the problem of eliminating unnecessary calculations associated with the 
k-means clustering algorithm. In this paper, we introduced BoostKCP, a simple but powerful 
heuristic method that has proved useful for reducing the computational time. We applied BoostKCP 
to three types of real biological datasets of dimension d=10, 20, 50, 101, 180, 201, 501, 784, 1001 and 
2001 to perform k-clustering for k = 10, 20, 30, 40, 50, 60, 70, and 78. BoostKCP outperformed Lloyd’s 
algorithm, Hamerly’s algorithm, and the state-of-the-art Elkan’s algorithm. Our concept is also 
applicable to k-medians clustering, which uses the median of points in a cluster as the cluster 
representative, and this method is applied frequently to generate tight clusters. 
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