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Abstract

There is considerable recent progress in physically-based simulations, driven

by the high demands in computer animated movies. Realistic animations of rigid

bodies, fluid, deformable objects and couplings among different objects became

possible. However, simulating wetting effects between solid objects and water is

still relatively in its infancy despite the fact that it is a common phenomenon in

the real world. The main cause is the complexity of physical mechanism of the

wetting effects. The wetting effects are interesting effects in our daily life and

could greatly enrich the realism of games and animations.

An object that has water absorbency is called a porous medium. An internal

structure of the porous medium consists of a solid part of the medium mixing

with a vast number of pores. These pores result in the capillary action where wa-

ter is absorbed into and flows through the medium. Pores inside porous media

such as cloth and sponge have their locations fixed in the media, while pores in

porous media such as granular material and hair are dynamically and temporally

arise from complex contact regions among the media. This dissertation catego-

rizes the former porous structure as a rigid porous structure and the latter as a

deformable porous structure. Recently, novel approaches for wetting effects in

the rigid porous structure have been proposed in the computer graphics field.

However, only a few studies have been introduced for the deformable porous

structures. Accordingly, this dissertation targets wetting effects in the deformable

porous structures, especially, wetting effects in sands and hair strands which are

the objects in our daily life and important in CG.

When granular material comes into contact with water, water is absorbed into

pores among granular particles and diffused from particle to particle throughout

the material by the influence of capillary action. Then, wet granular particles

stick together due to liquid bridges that are formed between particles. The liq-

uid bridges subsequently disappear when there is too much water penetrates into

the material. The similar physical mechanism occurs in the case of hair as well.

However, the wetting effects of hair are more complicated. There are three main

differences from the granular material. First, a single hair strand is also a kind of

porous medium. Water is absorbed not only into small contact regions among hair

strands, but also into the inner layer of each hair strand. When water percolates

into the inner layer of hair strand, a chemical reaction inside the strand causes

the shape of the hair strand to temporally change. Second, the contact regions

among hair strands are costly to examine, since a hair strand is a long cylindrical

deformable object. Third, hair is an anisotropic porous medium, as water diffuses

more in the hair strand direction.



To develop models for the wetting effects, the underlying simulation models

for granular material and hair strands are also important. While well-studied par-

ticle systems can be used for simulating fine-scale of granular material, simulation

of hair is still a challenging problem in computer graphics. Traditional simulation

techniques handle hair as clumps or continuum for efficiency; however, the visual

quality is limited because they cannot represent the fine-scale motion of individ-

ual hair strands. Although a recent mass-spring approach tackled the problem

of simulating the dynamics of every strand of hair, it suffered from high com-

putational cost and required a complicated setting of springs. The morphological

shape transformation of wet hair requires a model that can easily modify the shape

of hair, thus the recent models are not suitable. In this dissertation, the hair simu-

lation model on such a fine-scale is built up from a novel single strand simulation

model. Strand-like objects in our daily lives have a wide variety of materials,

e.g., extensible and inextensible strands, rubber, threads, plastic. Such strand-like

objects also exhibit interesting behaviors such as bending, twisting, tearing (by

stretching or twisting), and bouncing back when pulled and released.

This dissertation presents a strand simulation model that enables these behav-

iors, handles wide variety of materials, and is suitable for building a hair simula-

tion model for wetting effects. Specifically, this dissertation offers the following

four contributions. First, this dissertation introduces a strand simulation model

that based on Lattice Shape Matching (LSM), which has been successfully used

for simulating deformable objects. Each strand is represented as a chain of parti-

cles, and its deformation are handled by geometrically-derived forces of the chain

based on shape matching. The shape matching can simulate a stiff strand in a

numerically stable way. This benefits in handling stiff hairstyles such as curly

hair and afro. Second, this dissertation introduces a method for handling twist-

ing effects with both uniform and non-uniform torsional rigidities. Third, this

dissertation presents a method for estimating the tension acting on inextensible

strands in order to reproduce tearing and flicking (bouncing back), whereas the

tension for an extensible object can be computed via stretched length. The length

of an inextensible object is maintained constant in general, and thus, a novel ap-

proach is needed. Fourth, this dissertation introduces an optimized grid-based

collision detection for accelerating the computation. In the simulation of a large

number of hair strands, this dissertation develops a GPU-based simulator which

achieves visually-plausible animations consisting of several tens of thousands of

hair strands at interactive rates.

For the wetting effects in granular material, this dissertation introduces a wet-

ness value for each granular particle and integrates wet behaviors dependent on
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the wetness value into a simple particle-based framework. Using this method, a

GPU-based simulator can achieve dynamic animations of granular material in-

cluding wetting effects at interactive rates. For the wetting effects of hair, this

dissertation introduces a simulation model that reproduces interactions between

water and hair as a dynamic anisotropic porous medium. An Eulerian approach

is utilized for capturing the complex deformable porous structure of hair and the

wetting effects are efficiently handled using a Cartesian bounding grid. The pro-

posed model and simulation generate many interesting effects of interactions be-

tween fine-detailed dynamic hair and water, i.e., water absorption and diffusion,

cohesion of wet hair strands, water flow within the hair volume, water dripping

from the wet hair strands and morphological shape transformations of wet hair.
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要旨 

 

映画などの映像制作分野において、より高品質なコンピュータアニメーションが求

められていることを背景に、コンピュータグラフィクス(CG)分野において物理ベース

シミュレーションの研究は近年著しく進歩している。その結果、剛体、流体、柔軟物

体などの写実的なアニメーションが可能となってきた。しかしながら、実世界では一

般的な現象であるにもかかわらず、流体と物体の連成シミュレーションにおいて物体

の吸湿現象はその複雑さからこれまであまり扱われてこなかった。吸湿現象は日常的

に見受けられるため、吸湿現象の再現は現在のゲームや映画における表現を高めるた

めに重要な研究テーマである。 

吸湿性のある物体は多孔質媒体と呼ばれる。多孔質媒体は、スポンジなどのように、

内部に無数の小さな空孔を持つ。この空孔により、水分が媒体中で保持され、その中

を伝播するといった毛細管現象が起こる。多孔質媒体はそれらの多孔質構造により、

固定多孔質媒体と変形多孔質媒体に分類できる。布やスポンジなどは固定多孔質媒体

に分類され、空孔の位置は媒体中で固定されている。一方、本研究で対象とする粒状

および線状物体は変形多孔質媒体に分類され、水分が保持されるのは物体の接触領域

であり、その位置や保持できる水分量が動的に変化する。近年、固定多孔質媒体と流

体のシミュレーションモデルが提案されたが、変形多孔質媒体を扱うモデルはほとん

どなかった。本研究では、変形多孔質媒体として粒状物体および線状物体における、

吸湿現象のシミュレーションを対象とする。なお、吸湿現象を考慮した粒状物体と線

状物体の具体例として、日常的に見受けられ、かつCG分野で重要な例である砂と髪

の毛を扱う。 

 粒状物体と線状物体における吸湿現象の物理的機構について簡単に説明する。まず、

粒状物体では、水が粒状物体と接触することにより、水が粒状物体の空孔に吸収され、

粒状物体は水気を帯びる。水気を帯びた粒状物体は、流体の架橋 (liquid bridge) によ

って互いに吸着するようになる。この流体の架橋は水の表面張力によるもので、水分

量が過度になると失われる。こういった吸湿現象は髪の毛の場合において、同様に起

る。しかし、髪の毛の吸湿現象はより複雑であり、粒状物体と比べて三つの主な違い

がある。(1) 一本の髪の毛はさらに一種の多孔質媒体である。水は、髪の毛の間の小

さな接触領域だけでなく、各髪の毛の内層にも吸収される。水が髪の毛の内層にしみ

込むと、髪の毛の内層の化学反応により、髪の毛の形が一時的に変形する。(2) 髪の
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毛は長い円筒状の変形物体であり、髪の毛の間の接触領域を調べるコストが高い。(3) 

水は髪の毛の接線方向に沿ってより多く伝播するため、髪は異方性の多孔質媒体であ

る。 

吸湿現象を考慮した粒状物体と髪の毛のシミュレーションを実現するために、吸湿

現象をモデル化するだけではなく、粒状物体と髪の毛の適切なシミュレーションモデ

ルも必要である。粒状物体については、よく研究された従来の粒子ベースのシミュレ

ーションモデルが用いられる。一方、髪の毛については、人の頭部にある髪の毛(通

常10万本以上)の動きをシミュレーションすることは、コンピュータグラフィクスの

分野において長く挑戦的な課題であった。近年の手法の多くは、計算の効率化のため、

髪の毛を粗い束か連続体として扱っており、髪の毛の動きの自由度が制限されてしま

う。最近のバネモデルの研究は髪の毛の一本ずつの動きをシミュレートする手法を提

案した。しかし、計算コストが高く、バネの構造が複雑である。濡れた髪の毛の形状

変化のために、変形を効率的かつ安定的に扱える髪の毛モデルを必要とし、従来法は

適切ではない。本研究では、詳細な髪の毛のシミュレーションモデルは単一1次元変

形物体のシミュレーションモデルから組み立てる。我々の日常生活での1次元変形物

体の例はケーブル、プラスチック糸、ゴム糸などの様々な物体がある。本研究はこれ

らの1次元変形物体をストランドと呼ぶ。ストランドは、伸び縮み、ねじれ、断裂、

および伸長時から急激に収縮するといった性質も持っている。 

 本研究は、ストランドのそれらの効果を実現し、様々なストランドを扱い、ストラ

ンドのシミュレーション手法を提案する。具体的には、本研究は次の4つを提案する。

一番目に、Lattice Shape Matching (LSM)に基づき、ストランドのシミュレーション手

法を提案する。LSM は変形物体のシミュレーションにおいて成功を収めてきた。提

案法はLSMを単純化し、1本のストランドを粒子の鎖(チェーン)で表現し、そのチェー

ンの変形を形状一致法に基づいた幾何的な力で実現する。二番目に、ストランドの均

一・不均一なねじり剛性を考慮したねじれる効果を扱う手法を提案する。三番目に、

ストランドの断裂と急激な収縮を実現する。断裂と急激な収縮はチェーンのひずみの

値(伸びた長さ)から計算できるが、一般の伸びないストランドは物体が伸びすぎない

ように長さを制約してしまう。つまり、伸びた長さに基づいてチェーンの断裂や急激

な収縮を再現することが難しくなる。提案法では、伸びないストランドの張力を推定

し、断裂と急激な収縮を実現する。四番目に、衝突処理を高速化するために、最適化

したグリッドベース衝突検出を提案する。また、本研究ではGPUを使用したシミュレ

ータを開発し、数万本の髪の毛のアニメーションを対話的な速度で生成することがで
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きる。 

 提案法では、粒状物体や線状物体の吸湿現象を扱うため、下記の手法を導入する。

粒状物体の吸湿現象を実現するために、提案法では粒状物体の各粒子に対して、水分

量の値を導入し、その値に応じた粒状物体の挙動を、粒子ベースシミュレーションの

フレームワークに統合する。また、提案手法はGPUを用い、 吸湿現象を考慮したダイ

ナミックなアニメーションを対話的な速度で生成することができる。 髪の毛の吸湿

現象について、本研究は、髪を異方性の変形多孔質媒体として、水との相互作用を再

現するシミュレーション手法を提案する。髪を格子化することにより、髪の複雑な変

形多孔質構造を扱う。直交座標系のバウンディング・グリッドを使用し、効率的に吸

湿現象を実現する。提案法は、詳細な髪の毛と水の相互作用の多様な興味深い効果を

再現する。特に本研究では、髪の毛の吸水、水分の伝播、髪の毛が束になる様子、水

がしたたり落ちる様子、濡れた髪の毛の形状変化を扱う。 
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Chapter 1

Introduction

Recent advances in physically-based simulation have made it possible to generate

realistic animations of rigid bodies, deformable objects and fluid. However, in the

case of solid-fluid coupling, wetting effects have rarely been noticed despite their

visual importance and contribution to realism. Most objects in the real world are

permeable; when the objects come into contact with water, the water absorption

and diffusion happen. There is also changes in physical properties of the wet

objects, e.g., stickiness of wet sands, self-assemble of wet hair, weakening of wet

paper and sponges.

The mechanism behind the wetting effect is mainly caused by the capillary ac-

tion. The capillary action is the result of intermolecular attraction within the fluid

and between solid and fluid which are surface tension and adhesion, respectively.

To demonstrate this phenomenon, a capillary tube, a very thin glass tube with an

internal bore, is commonly used. If we place one end of the tube into water, the

water will permeate into the bore. When withdrawing the tube from the water,

some amount of the water is trapped in the tube. This phenomenon can be ob-

served on such other small open spaces among solid material, such as small gaps

among a pile of sand and small open spaces inside a sponge. The object with such

small open spaces is called a porous medium, and the small open space is called a

pore.

The porous medium can be categorized into four fundamental classes accord-
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ing to its dimensions in space, i.e., zero, one, two and three dimensional porous

media (Figure 1.1). Although, the zero dimensional object is generally a point

with no volume, this dissertation defines the zero dimensional object as a parti-

cle with a small volume such as a granule of sand. The pore structures in these

four classes of porous media are different. The pores in zero dimensional porous

medium reside in a vast amount of small gaps between individual granules. Like-

wise, the pores in one dimensional porous medium, such as hair strands, reside in

complex contact regions among the medium. Since the pores are formed up from

moving objects, the pore structures in zero and one dimensional porous media

are highly deformable. Only a small deposition of a granule or a hair strand can

drastically change the pore structures. In contrast, the pores structures in two and

three dimensional porous media, such as cloth and sponge, are more rigid. The

media themselves may deform, but the locations of pores are static in these media.

Several researches in computer graphics field have proposed methods that tar-

geted only the two and three dimensional porous media, e.g., wet cloth [37, 60]

and wet sponge [46]. The models for two and three dimensional porous media are

not suitable for zero and one dimensional porous media whose porous structures

are highly deformable as mentioned above. Therefore, this dissertation focuses on

the zero and one dimensional porous media. The general examples of zero and one

dimensional porous media are granular material (sand) and human hair, respec-

tively. Therefore, for concise expressions, the zero-dimensional porous medium

is shortly called as granular material and the one-dimensional porous medium is

shortly called as strands in this dissertation.

The ultimate goal of this dissertation is to create simulation models for gran-

ular material and strands taking wetting effects into account. In order to achieve

this goal, two main studies are required; (1) Simulation models for both granular

material and strands and (2) Wetting effects handling models of those two kinds of

porous media. As granular material consists of many small particles, it is suitably

to be modeled as a particles system. Particle-based simulation has a long history
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Figure 1.1: Permeable materials and their porous structures.

in computer graphics, and is well-studied. The particle-based simulation system

benefits the small-scale interactions between water and sand, thus highly dynam-

ics animations with wetting effects could be simulated. For a small rigid object

such as a grain of sand, the method called Discrete Element Method (DEM) has

been developed and used in various works. The DEM is the choice for basis sim-

ulation model of granular material in this dissertation. For fluid, the well-known

Smoothed Particle Hydrodynamics (SPH) is used. On the other hand, the simula-

tion of strands is a challenging problem, especially simulating hair in fine-scale as

individual strands. The problem further challenges in wet hair, since wet hair tem-

porally change shape when wet. A model that can dynamically transform shape

of hair is also necessary.

In this chapter, the background of simulation models for strands, wet granu-

lar material and wet strands are described following with an organization of this

dissertation.

1.1 Strands Simulation

Simulating the dynamics of a full head of hair (i.e., typically one hundred thou-

sand hair strands) has, for a long time, been a challenging task in computer graph-

ics. The difficulty mainly stems from the computational cost and numerical sta-
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bility, especially in the interactions between individual strands of hair, which are

essential for animation. Other important concerns for hair simulation include how

to model each strand to represent various hairstyles; many recent techniques han-

dle hair as clumps or a continuum to avoid the computational issues and focus

on specific hair styles such as straight only [3, 70, 91] or straight plus curly

hairstyles [9, 93]. Recently, an extended mass-spring model [80] undertook to

simulate the dynamics of up to ten thousand individual hair strands. However,

this required a complicated configuration for the spring structure and suffered

from high computational cost.

This dissertation develops a fine-detailed hair simulation model carving from

a single strand level. There are many strand-like objects in our daily lives, e.g.,

shoelaces, threads, rubber cords, plastic fiber and spaghetti. The strand-like ob-

jects have a wide variety of materials, and a simulation of its dynamics is a chal-

lenging problem. Such strand-like objects exhibit interesting behaviors such as

twisting, tearing (by stretching or twisting) and bouncing back when pulled and

released. However, all behaviors of a strand-like object are not introduced together

in a single framework in previous methods.

Handling of inextensible strands, such as hair strands and threads, poses an-

other technical challenge. To prevent inextensible strands from excessive elon-

gation, many length-constraint schemes called strain limiting have been devel-

oped [4, 21, 26, 63, 75]. With strain limiting, however, the tearing simulation be-

comes difficult; whereas an extensible strand will break when its length or strain

reaches a certain breaking point, it is difficult to see when an inextensible strand

will tear based on the constrained length. Moreover, beside the fact that an inex-

tensible strand is not elongated by their own weight, under a large applied force

such as a large pulling force, the strand should be elongated according to its mate-

rial property. However, the strain limiting causes the material property unrelated

to the applied force.

Contributions: This dissertation presents a model that handles the deformation
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of an individual strand based on Lattice Shape Matching (LSM) [76]. LSM has

been successfully used for simulating deformable objects because it is simple, fast

and numerically stable. While LSM assumes that a deformable object can be ap-

proximated by a set of particles aligned in a lattice, we represent a hair strand as

a chain of particles; therefore we call our method Chain Shape Matching (CSM).

CSM is much simpler than LSM because it only considers deformations along

a single chain. We can immediately use the particles’ positions in the original

shape to create a chain structure, which greatly benefits the shape transformation

process. Then, the model is further developed to enable interesting behaviors of

strand-like objects, i.e., twisting, tearing (by stretching or twisting) and bounc-

ing back when pulled and released. Specifically, the following three contributions

are offered. First, a method for handling twisting effects with both uniform and

non-uniform torsional rigidities is introduced. Second, this dissertation presents a

method for estimating the tension acting in inextensible strands in order to repro-

duce tearing and flicking (bouncing back); whereas the tension for an extensible

object can be computed via stretched length, the length of an inextensible object

is maintained constant in general, and thus we need a novel approach. Third, an

optimized grid-based neighbors search for accelerating the collision detection is

introduced. For a simulation of large number of hair strands, the proposed method

can be implemented entirely on the GPU and achieve interactive performance for

up to several tens of thousands of hair strands such as that in Figure 1.3(a).

1.2 Wetting Effects in Granular Materials

The physics of granular materials is far more complex than it looks. To the best of

our knowledge, a lot of researches are currently going on trying to understand the

physics of what happens to the physical properties of a granular material when

wet, but there are no reasonable theoretical models available to describe their

properties. This is mainly due to the difficulty of quantitative experiments that
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Figure 1.2: A sand pile consisting of 32,000 particles with a water stream emitted

from a black faucet. The frame rate is about 49 fps.

can be used to develop models.

Phenomena of both dry and wet granular material taken into consideration

in this dissertation are splashes of sand particles from interactions between sand

and water, traceable wetting fronts (the moving boundary between wet and dry

region), the travel of water through granular materials and the changes in physical

properties of granular material due to the wetness.

A pile of granular materials includes a vast number of small gaps between

the individual particles. When such a pile comes into contact with a water, water

is absorbed into the spaces and propagated through the material, mainly induced

by capillary actions. The capillary actions occur by the small gaps that are small

enough to have the capillary phenomena. Water is trapped into these small gaps,

so the gaps determine how much fluid can be held. To model this, the proposed

method introduces a capacity of wetness (a wetness value) for each particle, and

describe the physical phenomena based on the wetness value.

Contributions: This dissertation presents a simple particle-based method to

model the physical mechanism of wetness propagating through granular materi-

als; fluid particles are absorbed in the open spaces between the granular particles
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(a) (b)

Figure 1.3: (a) Animating 10,000 straight strands of hair (16 particles per strand,

about 12 fps on the GPU), with the dynamics of each strand of hair. (b) A sim-

ulation result of 5,000 wavy hair strands with water showered onto them until

completely wet. The water is absorbed and diffused, making the hair wet and sat-

urated, then the excess water flows along the hair strands until dripping out at the

tips. The wet hair strands stick to surrounding strands forming several clumps,

while the detail of some wet stray hair linking between clumps can be seen as

well.

and then these wet granular particles stick together due to liquid bridges that are

caused by surface tension and subsequently disappear when there is too much fluid

penetrates into the spaces. The proposed method can handle these phenomena by

introducing a wetness value for each granular particle and by integrating those

aspects of behavior dependent on wetness into the simulation framework. For the

use in interactive applications, this dissertation seeks a simple yet practical model

that simulates the physical phenomena of granular materials taking wetting effects

into account. Therefore, the proposed method is a simplified physical model. The

simulator, running entirely on a GPU, can produce animated scenes such as that

in Figure 1.2 in real time.
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1.3 Wetting Effects in Strands

Wetting of hair is an interesting phenomenon in our everyday life. When water

contacts with hair, the water is absorbed and diffuses into the hair, making the

hair wet. Then, the wet hair strands stick to surrounding strands and form several

clumps due to cohesive forces caused by water bridges. The absorbed water also

makes the hair strands heavier and temporally alters the protein structure (keratin)

of a hair strand, causing its shape to change. For example, one’s straight hair may

turn into wavy hair or vice versa when wet. With enough water, the hair will be

saturated and the excess water will flow down the hair strands to the tips. When

the water at the tips grows large enough, it will turn into a water drop dripping out

off the hair.

Hair strands have special characteristics differ from granular material. The

permeability (the water absorption and diffusion) of hair originates in not only a

vast amount of microscopic void spaces between the hair strands, but also an inner

part of each hair strand. Each hair strand is also a kind of porous medium which

can absorb water up to 30%-45% of its mass [52]. The microscopic void spaces

among hair strands form a porous structure similar to granular material. However,

open spaces in hair volume are different and difficult to capture. The open spaces

in hair usually lie in complex contact regions among the hair strands that can be

drastically changed with hair motion. Furthermore, hair is an anisotropic porous

medium; water diffuses more in the hair fiber direction than the orthogonal direc-

tion. Please see [77] for more detail on chemical and physical behaviors of a hair

strand.

Contributions: This dissertation introduces a simulation model that reproduces

full interactions between water and hair as a dynamic anisotropic porous medium.

The proposed method captures the wetting effects of fine-detailed dynamic hair

simulation using a Cartesian bounding grid. Hair can be handled as a dynamics

anisotropic porous medium. The complex porous structure of hair can be captured
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even under the motion. While the wetting effects of hair are handled by an Eule-

rian approach, the proposed CSM is used to simulate every single hair strand as an

individual entity, yielding the best plausible results of fine-detailed hair dynamics.

The CSM can efficiently handle individual hair strands as well as an easy shape

controllability of hair strands which advantages morphological shape transforma-

tion of wet hair. An interesting interactions between fine-detailed hair and water

can be handled by our method as shown in Figure 1.3(b), i.e., water absorption and

diffusion, cohesion of wet hair strands, water flow within the hair volume, water

dripping from the wet hair strands and morphological shape transformations of

wet hair.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces related

previous work. Chapters 3 describes fundamental simulation methods for fluid,

granular material (DEM) and the basis deformation behaviors for a strand (LSM).

Chapter 4 explains the proposed simulation model for strands. Chapters 5 and

6 introduce the proposed models for handling wetting effects in granular material

and strands, respectively. Finally, the conclusion and the future work are discussed

in Chapter 7.
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Chapter 2

Related Work

Physically-based simulation has a long history in computer graphics. This chapter

introduces some of the many techniques that have been proposed for simulating

fluids, granular materials and strands as well as their interactions with fluid taking

wetting effects into account.

2.1 Fluid Simulation

Fluid simulations are divided into the Eulerian and Lagrangian methods. The Eu-

lerian methods observe and analyze fluid at fixed positions by using a data struc-

ture such as a grid [23, 24, 59, 88]. In contrast, Lagrangian methods approximate

a continuous fluid using a set of particles and model the behavior, making La-

grangian techniques useful for simulations where the topology of the fluid largely

changes. Therefore, this dissertation uses particle-based methods in order to gen-

erate dynamic animations.

In the particle-based methods, Smoothed Particle Hydrodynamics (SPH) [62]

and the Moving Particle Semi-implicit (MPS) method [44, 74] have already been

studied well. The former solves the particle advection equation explicitly, while

the latter solves it implicitly. The former seems the preferred method for com-

puter graphics due to its computational simplicity. Following the proposal to apply

SPH-based fluid simulations to interactive applications by Müller et al. [62], vari-
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ous other methods, e.g., viscoelastic fluids [18] and multiple interacting fluids [65]

have already been presented. Several hybrid methods of Eulerian/Lagrangian [54,

81, 85] have been proposed as well. Techniques to accelerate SPH make use

of hierarchical data structures [42], adaptive sampling density [1] or GPU-based

computation [33, 35, 34, 50, 100]. The proposed method also uses SPH for the

fluid simulation.

2.2 Granular Materials Simulation

The dynamics of materials such as sand, gravel or grain are usually represented

either as a continuum or as a set of individual particles. For the continuum ap-

proach, several methods use height fields [15, 48, 69, 90] or handle the material as

a fluid [66, 103]. Bell et al. [7] used the Discrete Element Method (DEM) [19] to

represent a granular material as separate particles, and Harada [32] implemented a

DEM simulation on the GPU. The proposed method use DEM in order to be able

to handle dynamic animations.

2.3 Strands Simulation

Strand dynamics: The early research on strand simulations handled the dynamics

of individual strands of hair using the mass-spring system [78] and projective

dynamics [2]. However, these methods ignore hair-hair interactions, curliness and

torsion. Hadap and Magnenat [31] use a rigid multibody serial chain to represent a

hair strand which can capture the torsion effect, but still ignore curliness. Pai [71]

and Bertails et al. [9] introduced physically-based models based on Cosserat’s and

Kirchhoff’s theories, respectively, to represent a strand of hair. The models can

capture bending, torsion, non-stretching and the curliness behavior of hair at high

expense of computational cost.

For computational efficiency, several techniques regard hair as a continuum [3,

31, 93] or disjoint groups such as wisps [20, 45, 73, 72] and strips [27, 41, 43, 49,
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89, 92]. Instead of a continuum and fixed groups of strands, Ward et al. introduced

adaptive [96] and Level-of-Detail [98] approaches to increase the detail of hair.

However, these models limit the degrees of freedom (DOFs) of the hair motion;

although human hair has a collective tendency, a high number of DOFs is required

to represent the fine-scale motion of hair blown about by the wind. Please refer to

the survey [94] for advances on hair modeling, styling, simulation and rendering.

Recently, mass-spring systems have commonly been used for simulating dy-

namics of hair and other strand-like objects. Integrations in mass-spring systems

are performed using explicit or implicit schemes. Explicit schemes are often pre-

ferred due to the low computational cost and ease of implementation. However,

for stable simulation, the time step in an explicit scheme should be inversely pro-

portional to the square root of the spring constant (the Courant condition). As

a result, highly stiff hair is difficult to simulate at an interactive rate when using

an explicit scheme. Implicit schemes can solve the stability problem, with higher

computational cost. Selle et al. [80] proposed the use of additional altitude springs

to simulate the complex behavior of human hair and semi-implicit springs to solve

the stability problem. However, this is not suitable for stylized hair in interactive

applications due to the expensive cost and complex configuration of the springs.

As for hair-hair interactions, most of the previous methods only consider colli-

sions occurring on guide hair strands [9, 17] and possibly miss collisions between

interpolated hair strands when the guide strands do not collide. There has been lit-

tle research that takes full hair-hair interactions into consideration, except for the

time-consuming bounding box hierarchy used in [80] and the hybrid technique

of Eulerian and Lagrangian methods introduced in [56]. Tariq and Bavoil [91]

introduced a fast technique for inter-hair collisions using a hair density field. All

the hair strands are voxelized into a grid then repulsive forces are applied to hair

particles in high density areas. However, their technique only considers volume

preservation of hair, not collisions between each individual hair strands. The same

limitation can be seen in the continuum methods [3, 31, 93].
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Unlike most of the previous methods, the proposed method is easy to imple-

ment, can easily handle complex hairstyles, is interactive and numerically stable

even if the hair is very stiff. Also, our method handles collisions between individ-

ual hair strands.

Twisting effect of a strand: Considerable research on the twisting effects in

strand simulation introduced various models for solving the Cosserat and Kirch-

hoff energy equations. Bertails et al. [9] introduced a mechanical model called

super helices for simulating human hair based on the Kirchhoff theory. However,

handling collision responses is not straightforward due to the implicit represen-

tation of hair strands. Spillmann and Teschner [86] explicitly represented the

centerline of an elastic strand and used the finite element method (FEM) to solve

the Cosserat energy equation. Recently, Bergou et al. [8] introduced a discrete

model for simulating elastic strands based on the Kirchhoff theory. However,

the twisting angles are computed with a quasi-static assumption, thus the twist-

ing of non-uniform torsional rigidity along the strand is not addressed. There are

also several works on pseudo-physical models that can capture the twisting effect

without solving the energy equations. Hadap [30] introduced a model for captur-

ing the torsion effect by integrating a torsion spring into each joint of rigid links.

However, strands cannot be stretched and collision handling is not straightfor-

ward, because the motion is propagated from top to bottom in one single pass (no

backward propagation). Selle et al. [80] represented a hair strand by a chain of

tetrahedrons of springs and captured the torsion effect by introducing appropriate

altitude springs. However, the configuration of springs is complex, and auxiliary

particles are required along a strand.

The proposed method is a pseudo-physical model which is easy to implement

and can easily handle twisting effects with both uniform and non-uniform tor-

sional rigidities.

Strain limiting for an inextensible strand: In order to handle inextensible

objects simulated by deformation models, a variety of methods for stretch resis-
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tance have been continuously proposed; from Provot’s iterative post-processing

edge constraint [75], to a more recent constraint method based on impulse [21].

Some alternative ways of stabilizing stiff simulation were also proposed [4, 26,

63]. These methods, and many of their sequels, have a common goal to limit

the maximal strain to a certain threshold. Accordingly, these kinds of meth-

ods are problematic in case of excessive stretch or when rupture should occur.

Metaaphanon et al. [57] proposed a method to deal with cloth tearing using a

mass-spring model. However, it tears cloth by checking lengths of springs; when

and where yarns of cloth are cut were not directly related to user-applied external

forces and cloth material properties, but dependent on how the method constrains

the springs.

The proposed method can estimate the tension acting in inextensible strands.

The estimated tension is used for reproducing tearing and flicking (bouncing

back).

2.4 Wetting Effects in Granular Materials

Several methods handle the interactions of different material types such as fluids

and rigid bodies [1, 5, 6, 14] or fluids and soft bodies [16, 28, 84]. However, there

are only a few researches taking the wetting effects into account. Despite the fact

that employing wetting effects into solid-fluid coupling simulations could greatly

enrich the realism.

There are models for wetting effects in soil or pavement based on Darcy’s

law [22, 46] consider permeable materials as continuum, and thus they could not

be used in highly dynamic animations of granular materials or hair where the

structures have very large discontinuities.

Liu et al. [51] used height fields and the volume of fluid method to model

the case of fluids on the surface of an object being absorbed and causing ero-

sion. However, their method cannot represent small-scale movements or complex
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changes in the object’s topological structure. Wojtan et al. [99] handled the anima-

tion of natural phenomena such as erosion, sedimentation, and acidic corrosion.

They provided an example in which a sandcastle is washed away, but while the

volume of sand decreases, there are no signs of splashing of the sand or of water

absorption. Lenaerts et al. [47] presented a unified SPH framework to simulate

the interactions between fluids and granular materials. The volume of materials

is approximated by particles and the propagation of wetness between particles is

computed. They can generate the scene of water absorption and propagation in

granular materials. However, the large discontinuities of granular materials such

as spattering effects could not be generated, because the granular materials are

simulated as a continuous material. Moreover, the simulation has a high com-

putational cost and the results are rendered off-line. It could not be used in the

interactive applications which this dissertation targets.

By using a particle-based method, the proposed method can represent even

small-scale interactions between water and sand. Furthermore, by taking into ac-

count the wetness of the granular material when calculating its behavior, the pro-

posed method can model phenomena such as cohesion, erosion and the absorption

of water.

2.5 Wetting Effects in Strands

Most of previous work regarding wet hair did not target simulations but focused

on rendering [29] and modeling [12, 82]. Only a few research studies have been

introduced for the dynamics of strand-like objects with wetting effects. Bruderlin

[12] proposed a method for modeling wet fur used in the movie production, Stuart

Little. The wet fur is modeled as a cone whose shape is changed depending on

the amount of water absorbed. Silva et al. [82] introduced a method for handling

curling and clumping of animal fur using a 3D texture. Ward et al. [95, 97]

introduced a method for simulating wet hair whose wetness is supplied by user
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interactions. Their method is a clump-based model which sacrifices detail for

speed. None of these methods is a full simulation between hair and water. To the

best of our knowledge, the method of Ward et al. [95] is the latest approach in wet

hair simulation model.

The wetting effects in porous media and water simulation has been studied

recently. Lenaerts et al. [46] integrated porous flow into SPH framework for

permeable media (rigid and elastic bodies) and water simulation. Later, Lenaerts

et al. [47] applied their framework to porous flow in granular material such as

sand. Their methods sample solid permeable media in a macroscopic scale by

particles and handle wetting effects as an interactions between particles. However,

these models do not consider the dynamic anisotropic porous medium such as hair.

Huber et al. [37] introduced a simulation model for wet cloth including water

absorption, diffusion and stickiness. However, their model is limited to wetting

effects on a flat surface.

The proposed method can reproduce full interactions between water and hair

as the dynamic anisotropic porous medium, i.e., water absorption and diffusion,

cohesion of wet hair strands, water flow within the hair volume, water dripping

from the wet hair strands and morphological shape transformations of wet hair.
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Chapter 3

Fundamental Methods

In this chapter, the simulation methods for fluid, granular material and the basis

method for our strand dynamics are briefly introduced, i.e., Smoothed Particle Hy-

drodynamics (SPH), Discrete Element Method (DEM) and Lattice Shape Match-

ing (LSM), respectively. From this chapter, the particle in the DEM domain is

called a DEM particle and that in the SPH domain is called as a SPH particle.

3.1 Smoothed Particle Hydrodynamics (SPH)

SPH is a particle-based simulation method, which was originally developed for

use in astronomy [25, 55]. It uses a set of particles as a discrete approximation

of a continuum, expressing a field quantity A(x) by interpolating between the

respective quantities around point x, as follows:

A(x) =
∑

i

mi

Ai

ρi

W (x− xi, h), (3.1)

where mi is the mass of particle i, Ai is the respective quantity of particle i, ρi is

its density and xi its position. The function W (x, h) is a smoothing kernel with

core radius h (Figure 3.1).

Using Eq.(3.1) the density of fluid can be approximated as

ρi =
∑

j

mjW (xj − xi, h), (3.2)
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h

Water surface

Kernel function

Figure 3.1: SPH model and kernel function. h is a core radius of the kernel func-

tion.

then the pressure of particle is calculated.

pi = p0 + k(ρi + ρ0), (3.3)

where p0, ρ0 and k are the rest pressure of the SPH particle, the rest density of the

SPH particle and the fluid stiffness, respectively.

When applied to fluids, each of the terms in the governing Navier-Stokes equa-

tions are expressed in the above-mentioned form. The formulaization of Müller

et al. [62], which the proposed method also uses, keeps forces between particles

symmetric by calculating the pressure and viscosity terms as follows:

F
pressure
i = −

∑

j

mj

pi + pj

2ρj

∇W (xi − xj, h), (3.4)

F
viscosity
i = µ

∑

j

mj

vj − vi

ρj

∇2W (xi − xj, h), (3.5)

where µ, pi and vi represent the viscosity coefficient, the pressure and the velocity

of the particles, respectively. For more details, please refer to their paper [62].

3.2 Discrete Element Method (DEM)

DEM is also a particle-based simulation method, which was originally used for

rock mechanics problems [19]. In DEM, a sand particle is approximated as a
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Tangential force i
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Penetration depth = (ri + rj) - ||xi - xj||

xi

xj

Normal force j

Tangential force j

Figure 3.2: DEM model.

sphere, which is also true in the present system. Particles move freely under the

external forces such as the gravity force.

For a pair of colliding particles i and j, the proposed method calculates the

normal and tangential forces acting on the particles: Fnormal
i and F

tangential
i (Fig-

ure 3.2). Note that the normal direction is defined by the vector from a center xj

to xi. The normal force is modeled in terms of springs and dampers between the

particles, while the tangential force is due to the friction.

Fnormal
i = F

spring
i + F

damper
i , (3.6)

F
spring
i = ks(dij − ‖xi − xj‖)

xi − xj

‖xi − xj‖
, (3.7)

F
damper
i = kdv

normal
ij , (3.8)

F
tangential
i = kt

v
tangential
ij∥∥∥v
tangential
ij

∥∥∥
, (3.9)

where ks is the spring constant, dij = ri + rj (ri and rj are the radii of particles

i and j), kd is the damper coefficient, vnormal
ij and v

tangential
ij are the particles’

relative normal and tangential velocities and kt is the coefficient of friction.
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Regions Lattice particles

Figure 3.3: LSM model.

3.3 Lattice Shape Matching (LSM)

LSM is an extension of the shape matching method [64]. The main advantages

of the shape matching method are unconditional stability and high controllability

due to its geometrically-motivated computation. Optimally-transformed positions

are computed first, and then particles are moved towards those positions. Since

it guarantees that all particles are updated towards the appropriate positions, the

overshooting problem that occurs in explicit integration schemes is eliminated.

This technique is later generalized as position based dynamics [63], which can be

applied to general simulation systems.

In LSM, the particles are grouped into multiple-overlapping cubical regions

(Figure 3.3). The region half-width value w (w = 1, 2, 3, · · · ) corresponds to the

stiffness of the object. The positions of particles are updated as follows. First,

they are moved independently according to the external forces. Next, for each

region, LSM computes an optimal rigid transformation (i.e., rotation and trans-

lation) based on shape matching [64]. The rigidly-transformed positions of the

particles are called goal positions. The goal position gi of particle i is weighed

in the overlapping regions by particle per-region mass m̃i = mi

Nr
, where mi is the

mass of particle i and Nr is the total number of regions that the particle i belongs

to. The goal position of particle i is computed as follows.

gi =
1

Nr

∑

r∈Ri

(Rr(x
0
i − x0

cm,r) + xcm,r), (3.10)
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where Ri is a set of regions that particle i belongs to, x0
i is the original position,

x0
cm,r is the center of mass of the original shape of the region, xcm,r and Rr are

the optimal translation and rotation for region r. Finally, for each particle, the

velocity is computed toward the goal position.

vi(t + dt) = vi(t) +
gi(t)− xi(t)

dt
+ dt

fi,ext(xi, t)

mi

, (3.11)

xi(t + dt) = xi(t) + dtvi(t + dt), (3.12)

where dt is a time step, vi is the velocity and fi,ext the external force.
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Chapter 4

Strands Simulation

This chapter describes how to handle dynamics of a strand using Chain Shape

Matching (CSM) based on LSM. Next, a method for handling twisting, tearing

and flicking of a strand in CSM is presented. For the twisting effect, this chapter

introduces a simple method that adds twisting angles into each segment in a strand

which can handle both uniform and non-uniform torsional rigidities. A method for

estimating the tension is also explained for tearing and flicking effects in an inex-

tensible strand whose actual tensile stress and strain values are constrained from

the strain limiting. In addition, the torsional tension is considered to handle plas-

ticity and tearing from twisting as well. This chapter also introduces a collision

searching scheme for efficient collision handling of strands using a grid-based

data structure. The proposed searching scheme has a less number of neighbors to

be searched compared to typical searching schemes.

In the case of full head of hair strands, this chapter introduces a GPU imple-

mentation of CSM without twisting, tearing and flicking effects. For the GPU

implementaion, the twisting, tearing and flicking effects are neglected for the ef-

ficiency. This does not affect the realism. These effects are not significance in

common animations of human hair, because the external forces that cause these

effects in hair are rare.
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Algorithm 1 Pseudocode of CSM algorithm.

1: for all particles i do

2: initialize original position x0
i , xi ← x0

i

3: end for

4: loop

5: BucketGeneration() // Sections 4.5 and 5.6

6: for all particles i do

7: fi,ext ← ComputeCollisionForce() + fgravity

8: end for

9: for all particles i do

10: vi ← vi + dt
fi,ext

mi

11: xi ← xi + dtvi

12: end for

13: for all chain regions Ri do

14: xcm ← ComputeOptimalTranslation()

15: R← ComputeOptimalRotation()

16: end for

17: for all particles i do

18: gi ← ComputeGoalPosition() // Eq.(3.10)

19: end for

20: for all particles i do

21: gi ← StrainLimiting() // Section 4.2

22: xi ← gi

23: vi ← vi + gi−xi

dt

24: end for

25: end loop

4.1 Chain Shape Matching (CSM)

A strand is represented by a chain of particles grouped into multiple overlapping

chain regions (Figure 4.1). Each particle i is associated with a chain region Ri ∈

Ri that centers the particle i and contains adjacent particles within the region half-

width w. Each chain region uses the same shape matching method as used in LSM

(Figure 4.2). Therefore the proposed algorithm is called Chain Shape Matching

(CSM). Algorithm 1 describes the pseudocode of the CSM.

In CSM, we can design complex hairstyles at the strand-level as follows. The

shape of the strand can be defined by the original particle positions, since these
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Hair strand

Lattice

Hair particles

Chain regions

(b) CSM for a hair strand(a) LSM for a hair strand

Figure 4.1: Illustrations of LSM and CSM models for a hair strand.

original positions define the shape of the strand at rest (Figure 4.3). The root of

each strand is fixed by several particles which are constrained on the head. The

number and direction of the constrained particles partially determine the behavior

of the strand. The stiffness of the strand is defined by the chain region half-width

w (Figure 4.4), which can be partially modified to generate complex hairstyles;

e.g., soft straight hair near the root and stiff curly hair near the tip of the hair

strand.

Regarding the stiffness control of hair strands, one might consider the use of

parameters α, β ∈ [0, 1], as presented in the original shape matching paper [64]; α

controls the tendency that goal positions are moved towards rigidly-transformed

positions, and β allows goal positions to undergo a linear transformation (see [64]

for more details). While α and β can control the stiffness independently of w,

we simply fix α = 1 and β = 0 according to the LSM paper [76], taking into

account that α and β can make a region softer but not stiffer. Although reducing

the number of particles makes a region stiffer, it also reduces the hair strand’s

DOFs required especially for complex hairstyles. Nevertheless, the use of α and

β in conjunction with w might benefit to advanced stiffness control, which is left

as future work; a study on the relationship between β and w can be found in [68].
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Figure 4.2: x0
i is the original position, xi is the position updated by external forces

and gi is the goal position of particle i.

4.2 Strain Limiting

Techniques for constraining stretching were originally proposed in research on

cloth simulation, known as strain limiting. Most of the cloth simulations use an

elastic system to model cloth such as popular mass-spring systems. As a draw-

back, elastic objects are usually excessively stretched under its own weight and

large applied force. Using large stiff force can ease the excessive elongation prob-

lem, however, it leads to numerical instability. Instead, position constraints are

often imposed so that the length of each segment i does not exceed a certain

threshold Lmax
i [4, 21, 26, 63, 75]. For our implementation, we used the position

constraints method of [63].

Denoting the position vector of particle i by xi, we constrain the length Li =

‖xi+1 − xi‖ of segment i below Lmax
i by moving xi and/or xi+1 according to the

state of a strand. There are three possible cases.

1. A strand clamped at one end: Length-constraint is applied from the clamped

25



(a) Straight hair strands (b) Hair strands curled at the lower parts

Figure 4.3: The original particle positions define the shapes of the hair strands.

Green particles show the original particle positions.

Figure 4.4: A bunch of 1k strands is dragged over a cylinder, with different chain

region half-width w. Small w makes the strands softer while large w stiffer.

end sweeping through to another end. E.g., in a strand clamped at i = 0,

xi+1 is moved sweeping from the clamped end to another end.

2. A strand clamped at both ends: We do multiple adjustments from one end

to another end of the strand sweeping back and forth repeatedly, since cor-

recting the length of one segment may change the length of other segments.

3. A strand clamped at multiple points: We separate the strand into strands

clamped at both ends and strands clamped at one end, and do the length-

constraint accordingly.

However, case 1 is generally applied in case of hair since the root of a hair
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twisting angle θi

(a) (b) 

w twist-free frame

material frame

Figure 4.5: A strand model. (a) Multiple overlapping chain regions in CSM. (b)

A twisting angle of a segment of an elastic strand is an angle between a twist-free

frame and a material frame.

strand is always attached to a head. Note that just moving particles to the non-

stretched positions leads to the loss of linear and angular momenta. To conserve

the momenta, our method modifies velocity, similarly to [63].

4.3 Twisting Effects

Based on CSM, a strand is represented as a chain of (n + 1) particles connected

by n segments (Figure ??(a)). A segment i ∈ {1, 2, . . . , n} has a twisting angle

θi tracking how much the segment is twisted. The twisting angle can be repre-

sented as an angle between a twist-free frame (bishop frame) and a material frame

(Figure 4.5(b)). In the initial state, we specify an initial angle θ0
i of each segment

i according to the shape of the strand. The twisting angle is assigned for each

segment, not for each particle, to avoid the ambiguity.

The behavior of twisting can be clearly observed when a strand clamped at

both ends is twisted at one end. Therefore, we use this scenario for our explanation

(Figure 4.6). When we twist one clamped end with an angle θt, the angle θi of

the segment is increased. The increment of the twisting angle of the segment is

propagated to the next segments in order to minimize the elastic energy in the

strand. In other words, the strand tries to minimize the twisting angles between
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Figure 4.6: (a) An elastic strand clamped at both ends is twisted at one end with

a twisting angle θt. (b) The increment of the twisting angle is propagated to next

segments.

each connected segment. We compute and update a goal twisting angle for each

segment, similarly to finding a goal position for each particle in shape matching.

First, we group the segments into multiple overlapping chain regions with the

region half-width wtwist ∈ {1, 2, 3, . . . } which affects the propagation speed of

twisting angles in the strand or the torsional rigidity; the larger the wtwist is, the

faster the change of twisting angles is propagated. The size of each region in a

strand can be varied for handling non-uniform torsional rigidity. The minimized

twisting angle increment ∆θregion
k of each region k is computed by averaging the

twisting angle increment ∆θj = θj − θ0
j of the segments in the region k weighted
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by mass mj:

∆θregion
k =

∑

j∈Sk

mj∆θj

∑

j∈Sk

mj

, (4.1)

where Sk is a set of segments within region k. Then, θi of each segment i is up-

dated with the twisting angle increment ∆θsegment
i . The goal twisting angle incre-

ment ∆θsegment
i is calculated by summing the twisting angle increment ∆θregion

k

of each region k that segment i belongs to:

∆θsegment
i =

∑

k∈ℜ

∆θregion
k , (4.2)

θi = ∆θsegment
i , (4.3)

where ℜ is the set of regions that segment i belongs to.

While a segment is updated to the goal twisting angle, a torque occurs in the

cross-section, causing the change of rotational velocity ωsegment
i in the segment’s

tangential axis. In each time step ∆t, a segment is rotated by the rotational ve-

locity first, then it is updated to the computed goal twisting angle in Eq.(4.3).

The rotational velocity and the time evolution of twisting angle are computed as

follows:

ωsegment
i ← ωi + Ii∆θsegment

i , (4.4)

θi ← θi + ∆tωsegment
i , (4.5)

where Ii is an inertia moment of segment i.

The twisting force f twist
i can be treated as an external force to particle i and

derived from the elastic energy equation [8] as follows:

f twist
i =

β

L
(θi+1 − 2θi + θi−1)(

−κbi+1 − κbi−1

2l
), (4.6)

κbi = 2
ei−1 × ei

|ei−1||ei|+ ei−1 · ei

, (4.7)
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Figure 4.7: Typical tensile and torsional stress-strain curves of a material.

where κ is the curvature, bi is the binormal vector, ei is the segment vector, l is

the length of the segment, β is the twisting stiffness of the strand and L is the total

length of the strand.

4.4 Tearing and Flicking Effects

This section briefly reviews the material science of a strand, and then describes

the method for handling tearing and flicking effects which was previously difficult

due to the strain limiting.

4.4.1 Stress and Strain

In material science, the strength of a strand is associated with its stress-strain

curve [10]. There are many kinds of the stress-strain curves depending on the di-

rection of force used in the material strength test, e.g., tensile, compressive, shear

and torsional stress-strain curves. Since tearing is typically affected by tensile and

torsional stresses, we consider only tensile and torsional stress-strain curves of

material in our model. The tensile stress-strain curve shows the relation between

an average force per unit area of a cross-section surface and elongation of a strand.

The torsional stress-strain curve shows the relation between an average torque on a
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cross-section surface and twisting of a strand. Examples of both curves are shown

in Figure 4.7.

The tensile stress σ and torsional stress τ of a strand are the average force and

the average torque per unit area of a cross-section surface, respectively:

σ =
‖Fn‖

A
, (4.8)

τ =
‖Tn‖

A
, (4.9)

where A is the cross-sectional area, Fn is the normal force and Tn is the normal

torque. The normal direction is the vector in the cross-section surface’s normal

direction.

The tensile strain ε and torsional strain γ of a strand are expressed as the ratio

of the elongation ∆L to the initial length L0 and the change of twisting along the

axis of the segment, respectively:

ε =
∆L

L0

=
L− L0

L0

, (4.10)

γ = (θi−1 − θi+1)r, (4.11)

where L is the current length of the strand and r is a radius of the segment. Note

that ∆θi = θi − θ0
i is the change of twisting angle from the rest state, not the

tensional strain. The torsional strain comes from the difference of twisting angles

between connected segments which are segments i− 1 and i + 1.

Along the curve, the material exhibits elastic behaviors until the yield point;

prior to the yield point the material will return to its original shape if the applied

force or torque is removed. The slopes of this elastic region are the Young’s mod-

ulus E = σ/ε and torsional constant J = τ/γ in the tensile and torsional curves,

respectively. Once the yield point is passed, the material becomes plastic; some

fractions of the deformation will be permanent and non-reversible. As deforma-

tion continues, the material will break when the stress or strain reaches the rupture

point.
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Figure 4.8: A simple example of the tension computation. From (a) to (c), an

ordinary length-constrained strand simulation is performed. In (d), tensions are

estimated by calculating forces that make the particles move from their uncon-

strained positions to the constrained positions, yielding an equivalent result with

(c).

The stress-strain curve can be derived via a strength testing of a material sam-

ple stored as a data set of the experimental result. The stress-strain curve of most

materials in the elasticity state is linear, and thus the part of the curve from the

origin to the yield point can be stored as a constant value. Still, the data set is

required for the curve in the plasticity state. In our implementation, we simply

approximate the curve by a line with a constant slope that fits the curve best. As a

result, our implementation uses two constant values to represent the stress-strain

curve in elasticity and plasticity states together with two constants for the yield

point and rupture point.

4.4.2 Tension Estimation

As previously stated, due to the constraint on lengths unrelated to applied forces,

actual tensile stress and strain values cannot be directly computed from the sim-

ulation result. Here we propose a novel approach to estimate the actual tensile

stress and strain values for inextensible strands. The stress and strain are then

used for handling elasticity, plasticity, tearing and flicking of strands.

The actual tensile stress and strain values can be computed by estimating the

tensions in the strand. To derive the tensions, we also consider the particle posi-
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tions computed without strain limiting. We model the tension Ti of segment i as

a stiff force (Figure 4.8d) that makes its particles i and i + 1 at both ends move

from their unconstrained positions x′
i and x′

i+1 (Figure 4.8b) to the constrained po-

sitions xi and xi+1 (Figure 4.8c). In our implementation, we compute the tension

as follows:

Ti = kstiff (‖x
′
i+1 − x′

i‖ − ‖xi+1 − xi‖)ti, (4.12)

where kstiff is a coefficient and ti is an unit vector from particle i to i + 1. The

tension derived this way is used to reproduce tearing and flicking as well as plastic

behaviors of a strand.

4.4.3 Tearing and Flicking Effects

For tearing under a tensile stress, we assign a rupture point or a tensile stress

threshold σrupture for each segment. If the segment’s tensile stress exceeds its

tensile stress threshold, the segment will be broken. The applied tensile stress σi

can be computed from tension Ti in each segment using Eq. (4.8) with Fn = Ti.

Similarly, we can handle the behavior of flicking using the tension. When an

inextensible strand is pulled and released or torn apart, the applied stress is van-

ished but the tensile strain of the segment from the elongated length still remains.

The bouncing back force could be computed from an internal tensile stress trans-

lated from the tensile strain by referencing the stress-strain curve. However, with

our tension estimation technique, we can directly use the tension as the bouncing

back force. Note that, without this technique, the strand would just fall down qui-

etly by the gravity force because tensile strain is limited, and thus very small in an

inextensible strand.

As can be seen in the tensile stress-strain curve (Figure 4.7(a)), a real strand is

lengthened according to the tensile stress in the elasticity and plasticity states prior

to the rupture point. Therefore, the maximum length Lmax
i of each segment used

in strain limiting should be updated accordingly (otherwise the strand does not
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elongate). For this, we look up tensile strain εi corresponding to applied stress σi

from the tensile stress-strain curve, and use it to compute the appropriate value of

Lmax
i using Eq. (4.10), Lmax

i = εiL0 + L0. In the elasticity state, the tensile strain

εi of a strand becomes zero when applied forces are removed. In other words, the

strand returns to its original length. However, when its tensile strain exceeds the

yield point (plasticity state), εi will remain the same as the last time the forces are

applied. Our method also modifies the radius of a segment in order to preserve the

volume of the segment when stretched.

The tearing of strand also happens when a sufficient torque is applied to the

strand. The tearing caused by twisting regularly arises in several soft strand such

as spaghetti and licorice(candy stick). In contrast to tearing by stretching, tor-

sional strain is not limited, and it can be directly calculated from current twisting

angles (Eq. (4.11)). Similar to tearing by stretching, when γi of segment i reaches

a rupture point, we tear the segment. For a plasticity of twisting, when γi passes

a yield point, we update θ0
i with (θi−1 − θi+1)/2 when it passes a yield point to

make the twisted angle of segment i permanent.

4.5 Collision Handling

In this section, we introduce an optimized searching scheme for collision detec-

tion of strands. Previous works often use techniques based on bounding volume

hierarchy (BVH) [80, 83, 87] and space partitioning using a grid-based data struc-

ture [33]. The grid-based data structure is a simple and efficient technique for

collision detection of strands which have a large number of self-collisions. There-

fore, we based our collision detection on the grid-based structure. Specifically,

we treat each segment as a capsule (a cylinder with two spheres at both ends) and

search for capsule collision pairs. For neighbor searches, we use a uniform grid of

voxels. The number of voxels to be searched is 27 (= 3×3×3) in a naı̈ve approach.

For better performance, we found that it suffices to search for colliding segments
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Figure 4.9: A 2D illustration of our optimized searching scheme. When doing

a collision detection between particles A and B, segment collision tests between

capsules (a, g), (a, f), (b, g) and (b, f) are tested.

in only seven neighboring voxels (top, bottom, left, right, front, back and center

voxels) under the following three specifications.

• Specifying the voxel size equal to or larger than segment length l

• Storing indices of particles in each voxel

• Searching for capsule collision pairs from two adjacent segments of each

particle in the seven neighboring voxels

For a better understanding, we describe using an example in 2D (five neighboring

cells). The idea can be generalized to the 3D case in a straightforward manner. In

Figure 4.9, particles A and B are neighbors. Our method does the segment colli-

sion test between their two adjacent segments, i.e., pairs of segments (a, g), (a, f),

(b, g) and (b, f). If two segments have an intersection, there is definitely a pair of

their both ends’ particles residing in each other seven neighboring cells. This can

be easily proved, if one writes all possible cases in 2D with five neighboring cells

(center, up, down, left and right).

The closest points of a pair of colliding segments i and j are indicated by

fractions s ∈ [0, 1] and t ∈ [0, 1], respectively.
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xi,s = xi + s(xi+1 − xi), (4.13)

xj,t = xj + t(xj+1 − xj). (4.14)

In order to move the colliding segments to the non-intersection positions, we

compute a penalty force between the closest points as follows.

Fij = kpn(dij − ‖xi,s − xj,t‖)
xi,s − xj,t

‖xi,s − xj,t‖
, (4.15)

where kpn and dij are a penalty force coefficient and a penetration depth between

the segments, respectively.

Then, we add the penalty force to the both-end particles of each segment cor-

responding to the fractions s and t as follows.

Fi ← Fi + (1− s)Fij, (4.16)

Fi+1 ← Fi+1 + sFij, (4.17)

Fj ← Fj − (1− t)Fij, (4.18)

Fj+1 ← Fj+1 − tFij. (4.19)

For hair-head interactions, the head model is represented by a set of large

spheres, and a collision force with each hair particle is calculated as a penalty

force between spheres.

4.6 GPU Implementation

For the GPU computation, the physical values of particles are stored in 2D tex-

tures in the GPU memory. One texel of each texture has four channels of color;

that is red(R), green(G), blue(B) and alpha(A). Instead of the RGBA color data,
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Figure 4.10: Physical values of particles are stored in textures (up to four values

per texel). Particles of each hair strand are distinguished by the strand index.

These are shown by different colors in this figure.

a floting-point value can be stored in each channel of a texel. Therefore, the pro-

posed method can store up to four physical values of particles into a texel. Our

implementation uses ten textures, i.e., two position textures, two velocity textures,

one property texture (region half-width w, particle index, strand index and non-

stretched length), one original position texture, one texture for optimal translation

and three textures for optimal rotation (3×3 matrix, 9 components). The position,

velocity, optimal translation and optimal rotation textures require only three chan-

nels each, therefore, RGB textures are enough for these textures. Strand indices

(see Figure 4.10) are required to distinguish strands because values for all particles

are stored in the same textures, and each strand can contain a different number of

particles. In addition, our implementation requires one bucket texture, where each

texel represents a voxel that stores particle indices for nearest-neighbor searches

in the collision detection process.

In each simulation time step, five passes of the GPU computation are assigned

(see the black rounded rectangles in Figure 4.11). The detail of each GPU pass is

explained together with corresponding line numbers of Algorithm 1 as follows:
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Passes 1 and 2 : Position update and collision detection (lines 5-12) First, the

bucket texture is generated for nearest-neighbor searches using a GPGPU tech-

nique [32]. The velocity of each particle is updated according to external forces

such as gravity and penalty forces calculated in the collision detection process

(Section 4.5). Then, the position of each particle is updated according to the up-

dated velocity and the time step.

Pass 3 : Chain shape matching (lines 13-16) The optimal rigid transformation

of each chain region is computed from the particle positions in the region. Hair

particles are stored sequentially in a texture. See Figure 4.12 for an example of

the texture layout. Particle a has a half-width size w = 3. Particles contained in

the region can be found in three texels to the left and right hand sides. In the case

of particle b with a half-width size w = 5, five adjacent particles can be found

on the right hand side, while the last two particles are found in the next row by

computing their addresses with the texture width. However, the last three particles

on the left hand side have a different strand index. Therefore, only two adjacent

particles can be found. The region doesn’t have to contain a maximal number of

particles (eleven in case of w = 5).

Pass 4 : Goal position computation (lines 17-19) After the optimal translation

and rotation computation, the goal position of each particle is computed by aver-

aging the goal positions of overlapping regions (Eq.(3.10)). This process can be

computed in a similar way to the chain shape matching pass (Pass 3). Instead of

particle positions, the computed optimal translation and rotation of the overlap-

ping regions can also be read from the adjacent texels.

Pass 5 : Strain Limiting (lines 20-24) The final pass is the strain liming process

(Section 4.2). The non-stretched position of each particle can be computed from

the length starting from the root particle of the strand to the particle (see particle c

in Figure 4.12). After updating particle positions, the velocities are also updated

in this pass.
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4.7 Results

This section shows simulation results of various behaviors of a single strand and

full head of hair. Then, this section discusses about parameters setting and some

limitations of the proposed model.

4.7.1 Simulation Results

The prototype implementation was written in C++, using OpenGL and GLSL. All

experiments were conducted on a PC with an Intel Core i7 3.20GHz, 6GB RAM

and an NVIDIA GeForce GTX 480 graphics card. For the hair simulation, the

structure of a strand is rendered as connected line segments between particles,

and the visual quality is enhanced by Catmull-Rom splines on the GPU using the

instanced tessellation technique [11]. As for the shading and self shadowing of

hair, we used the Kajiya-Kay shading model [39] and Deep Opacity Maps[102],

respectively. All simulation and rendering were entirely conducted on the GPU.

The frame rates in this paper include both simulation and rendering. We perform

only a single simulation step per frame.

Figure 4.13 shows the result of hair simulation with and without strain limiting

described in Section 4.2. The hair strands are stretched due to the external forces

without strain limiting. Figure 4.14 shows the result with different numbers of

strands on the head. With more strands the visual quality is increased.

Figure 4.15 demonstrates the twisting effects in our model. An application

for hanging boxes is presented in Figure 4.15(a), where objects at the tips of

strands are rotated by wind forces making the strands twisted. With twisting

effects, the strands try to twist back to the initial state, making the rotational

velocities increased and the objects rolling back and forth in the wind. The

twisting of strands can reproduce phenomena such as an instability of bending

and twisting called buckling which makes a strand to form a spiral shape (Fig-

ures 4.15(b) and 4.15(c)). Figures 4.15(d) and 4.15(e) show the twisting of strands
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with uniform and non-uniform torsional rigidities, respectively. In the strand with

non-uniform torsional rigidity (thicker at the middle of the strand in this result),

the thicker part has a larger torsional rigidity, and therefore has less twisting.

Figure 4.16 shows plasticity handling of strands in our model. When an ap-

plied stress from a force or torque passes a yield point, a strand will irreversibly

deform; this means the strand will not return to its original length or twisting an-

gle. In the top row, we compare two strands under the applied forces below (left

strand) and over (right strand) the yield point. Likewise, two strands in the bottom

row show a comparison under the different applied torques. It can be observed

both in top and bottom rows that the strand on the left returns to its original shape,

while the strand on the right is permanently deformed.

Animation sequences of flicking are shown in Figure 4.17. Without flicking,

the strand in Figure 4.17(a) falls naturally when an applied force is removed. In

our model, the strand bounces back by the estimated tensions when the applied

force is removed as shown in Figure 4.17(b). When the twisted strand in Fig-

ure 4.17(c) is pulled and released, the twisting effect also occurs.

To demonstrate the practical uses of our method, Figures 4.18 and 4.19 show

applications in an animation and game. Figure 4.18 shows a destruction of a

hanging bridge. Wooden boards (rigid bodies) are tied with strands (ropes in this

case) to build the bridge. The ropes are gradually torn apart from collisions of

the wooden boards and incoming crates that cause high tensions in the ropes.

We used a particle-based simulation method [32] for rigid body simulation in our

implementation. Figure 4.19 shows a twisting games. A box is hanging to a

wooden beam by a strand. The rule of the games is to shoot the box and make the

strand twisted until breaking.

The breakdown computational time in each process for strands with a dif-

ferent numbers of particles is shown in Table 6.1. All strands consist of 100

segments, except 150 segments in Figure 4.17, 200 segments in Figure 4.15c

and 746 segments in Figure 4.18. The computational time of the results in Fig-
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Table 4.1: The computational time in milliseconds of each process in one time

step. The time step in our implementation is 10 milliseconds.
No. Updating CSM Twisting Tension Collision Total

of segments particles computation estimation handling time

100 0.011 0.086 0.098 0.221 1.31 1.73

150 0.022 0.168 0.184 0.424 1.36 2.16

200 0.029 0.221 0.237 0.564 1.37 2.42

746 0.128 0.501 0.739 1.67 3.13 6.17

ures 4.18 and 4.19 is measured excluding the time for rigid body simulation.

Figure 4.20 shows animation sequences of straight, curly and complex hairstyles

flowing in the wind. Each strand of the complex hairstyle is straight around the top

and curly around the bottom. Each scene consists of 10,000 strands (160,000 par-

ticles), 10,000 strands (580,000 particles) and 17,000 strands (764,000 particles),

respectively.

Figure 4.21 shows animation sequences of a head with 120,000 roots of hair

strands which is approximately a number of human hair strands in the real world.

However, only 80,000 strands that are visible during the animation are simulated.

The simulation was run on a CPU, because the current GPU memory is insufficient

for such a large number of hair strands. Apart from other results, this result was

rendered using an off-line rendering software, POVRay 3.7 [67].

The breakdown computational time used in each GPU pass and rendering for

each result is shown in Figure 4.22. The simulation and rendering speeds of each

sequence are 12, 7 and 4 fps, respectively.

4.7.2 Parameters Setting

To indicate the bending stiffness of hair strand in real world, the elastic modu-

lus such as Young’s modulus could be used. However, the measurement of the

elastic modulus of hair is difficult. When a user wants to simulate the particular

type of hair in hand, measuring the elastic modulus of a very small hair strand
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requires highly precise measurement and experimental settings. There are many

measurement methods in textile literature [61] that are applicable for a hair strand

such as treating a short hair strand as a cantilever beam center-loaded and loop

deformation of a hair strand.

Instead of the elastic modulus, Scott et al. [79] introduced a stiffness index

to represent the stiffness of hair with a simpler measurement. A hair strand is

attached with small plastic tubes (0.1g each) at both ends of the strand and draped

over a wire hook. Then, the stiffness index is measured from the distance between

two legs of the hair strand in centimeter. Finally the elastic modulus of bending

EB can be calculated as follows.

EB =
πTD2

2A2
, (4.20)

where T is the applied force, D is the stiffness index and A is linear density of a

hair strand in g/cm units.

The stiffness of hair strand simulated by CSM is proportional to the chain

region’s size which is an integer. Therefore, the modification of the stiffness index

of hair in CSM is in a discrete way. As shown in Figure 4.23, the stiffness index is

discretely increased according to the chain region size. From our experiments, the

stiffness index also depends on the segment length. With the same chain region’s

size, the stiffness index is linearly increased as shown in Figure 4.24. Therefore,

the desired stiffness index of the hair strand can be achieved by the adjustment of

chain region size and segment length. For example, to achieve a stiffness index

of 8 cm (D = 8), several combinations of (chain region size, segment length) can

be applied by using the experimental data in Figure 4.24. At D = 8 on the y-

axis, the combinations such as (2, 2.2cm), (3, 1.6cm), (4, 1.25cm) and (5, 1.1cm)

can be read from the graph. Each combination achieves the same stiffness index,

however, the resolution of strands is different as shown in Figure 4.25. The strand

appears smoother with a smaller segment length.

The proposed method also enables simulation of strands with various material

42



properties, i.e., tensile strength, plasticity and torsional strength, using the stress-

strain curve. Figure 4.26 shows the variation tests. The stress-strain curves are

shown in the top row, and their corresponding results are shown as animation

sequences below each curve. Parameters used in tearing, i.e., rupture points, yield

points and Young’modulus, are assigned to all segments in the strand. However,

that kind of completely uniform strength is impossible in the real strand, so we

randomly altered the parameters in each segment with the range of variation up to

0.01%. To demonstrate the effect of parameters setting, three experiments were

conducted as follows:

• Tensile rupture point variation (Figure 4.26(a)): Tensile rupture points of

strands are varying, increasing from strand numbers 1 to 4. As expected,

the topmost strand (no.1), which has the lowest rupture point, is torn first.

• Young’s modulus variation (Figure 4.26(b)): Young’s modulus is a measure

of the elasticity of material. Since values of Young’s modulus of strands

in this test are lessened from numbers 1 to 4 while the applied stresses re-

quired for breaking the strands are equal, the bottommost strand (no.4) is

lengthened most before breaking.

• Torsional rupture point variation (Figure 4.26(c)): Similar to Figure 4.26(a),

torsional rupture points are varying, increasing from strand numbers 1 to 4.

When the strands are twisted by the applied torques on the right hand side,

the topmost strand (no.1), which has the lowest torsional rupture point, is

torn first.

4.7.3 Limitations

There are some limitations. As previously mentioned, the proposed method is

not a full physically-based model, thus, more advanced physics behaviors such

as spring-twisting pendulum and anisotropic bending in [8] are hard to simulate.
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The rapid motion of strands could cause the strands to pass through each other

or themselves. In case of rapid motion, continuous collision detection should be

considered.

4.8 Summary

This chapter has presented a simple model for simulating a strand based on shape

matching as well as a model for twisting, tearing and flicking of strands, which

is fast and easy to implement. This chapter has demonstrated the the proposed

method can handle twisting effects of strands with both uniform and non-uniform

torsional rigidities as well as rotational velocity caused by twisting. The tension in

an inextensible strand can be estimated for generating tearing and flicking effects.

The tearing effects in twisting have also been enabled. A variation in the quality of

strands, i.e., elasticity and plasticity, can be achieved. Based on the proposed indi-

vidual strand model, visually-plausible animations of hair with complex hairstyles

can be archived in a numerically stable way, even for highly stiff and curly hair

like an afro. This chapter has also demonstrated that a GPU-based simulator can

achieve interactive performance up to several ten thousand hair strands.
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Position (A) Velocity (A)
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Position (B)

Position (B) Velocity (B)

Bucket

Property

Pass 2 : Position Update

and Collision Detection
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Pass 5 : Strain Limiting

Pass 4 : Goal Position
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Figure 4.11: Simulation flow of a single step on the GPU. Blue rectangles rep-

resent the texture data, black rounded rectangles represent operations and green

directed line segments represent the flow of data.
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(a)

(b)

(c)

w = 3

w = 5

Figure 4.12: Layout of hair particles on a texture memory. (a) The region half-

width w = 3. The particles in the region can be found in the adjacent texels. (b)

The region half-width w = 5. All five adjacent particles in the right half can be

found. The left half has only two adjacent particles in a strand. (c) Access pattern

for strain limiting. The non-stretched position is computed by tracing the length

of each segment from the root particle.

With strain limiting Without strain limiting

Figure 4.13: Moving bunch of hair strands with (left) and without (right) strain

limiting.
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Figure 4.14: Increasing hair strands greatly improves the visual quality. From left

to right, there are 1,250, 5,000 and 10,000 hair strands on the head.

(a) (b)

(c)

(d)

(e)

Figure 4.15: Our simulation results of twisting effects. (a) An application for

hanging boxes in wind forces. (b) The twisting effect of a strand clamped at both

ends. The strand is gradually twisted on the left end and finally twisted to form

a loop. (c) A twisted strand that forms a spiral shape like a telephone cord. (d)

A strand with uniform torsional rigidity. (e) A strand with non-uniform torsional

rigidity.
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reference length

(a) Initial state (b) Forces are applied (c) Forces are released

(d) Initial state (e) Torques are applied (f) Torques are released

Figure 4.16: Plasticity of the material of extensible strands under tensile and tor-

sional stresses. (a) and (d) are the states before forces and torques are applied in

(b) and (d), respectively. In (b) and (d), the strands on the left do not pass the yield

points, while the strands on the right do. (c) and (e) are the state after the forces

and torques are released.
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(a) Animation sequences of 

a strand without flicking

(b) Animation sequences of 

a strand flicking

(c) Animation sequences of 

a twisted strand flicking

zoomed in zoomed in

Figure 4.17: Flicking animation sequences of strands from top to bottom.

Figure 4.18: Animation sequences of a hanging bridge colliding with incoming

crates.
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(a) At the beginning of a game. (b) At time = 5 seconds.

(c) At time = 16 seconds. (d) At time = 49 seconds. The strand is torn by twisting.

Figure 4.19: A game application using our method. The goal of this game is to

shoot a box and make a strand twists until it is torn apart. The more it is twisted

the harder it will twist back. Therefore if a player misses, the bar will decrease

the twisting angles the player have hit so far. Players can compete the time and

the number of boxes they used with others.
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Figure 4.20: Animation sequences of straight (top row, 12 fps), curly (middle row,

7 fps) and complex hairstyles (bottom row, 4 fps) in the wind. There are 10,000

strands (160,000 particles), 10,000 strands (580,000 particles) and 23,000 strands

(764,000 particles), respectively. The stiffness configurations of the straight and

curly hair are w = 2 and w = 5. Each strand of the complex hairstyle is straight

near the roots and curly near the tips with chain region half-widths of w = 2 and

w = 6, respectively.
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Figure 4.21: Animation sequences of 80,000 straight hair strands (1,600,000 par-

ticles). The stiffness configuration is w = 3.
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Figure 4.22: The computational time in milliseconds used in each GPU pass and

rendering. The detail of each GPU pass is described in Section 5.6. The numbers

of hair strands and particles used in each result are shown as (no. of strands, no.

of particles).
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Figure 4.23: A graph shows stiffness indices of hair strands with different chain

region sizes. The segment length in this experiment is 1 cm.
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Figure 4.24: A graph shows stiffness indices of hair strands with different segment

lengths.
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Chain region size:

Segment length (cm):
 2       3     4     5

2.2     1.6          1.25    1.1

Figure 4.25: Strands have the same stiffness index, but different adjustment of

segment length and chain region size.
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Figure 4.26: Experiments of various stress-strain curves and curves’ results. A

variety of stress-strain curves are shown in the top row and their results are shown

as animation sequences from top to bottom.
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Chapter 5

Wetting Effects in Granular

Materials

This chapter describes a method for computing the interactions between fluids and

granular materials. First, a physical mechanism for the propagation of wetness is

introduced, followed by a presentation of the outline of the proposed method, and

then the details are finally described.

5.1 Overview

In the real world, most materials are permeable; when the object comes into con-

tact with fluids, the absorption and propagation of the fluids happen. The mech-

anism behind this wetting phenomenon is mainly caused by the capillary action.

The capillary action is the result of surface tension and adhesion which are in-

termolecular attraction within the fluid and solid materials. To demonstrate this

phenomenon, a capillary tube, a very thin glass tube with an internal bore, is com-

monly used. If one end of the tube is placed into fluid, the fluid will penetrate into

the bore (Figure 5.1). When withdrawing the tube from the fluid, some amount

of the fluid is trapped in the tube. This phenomenon can be observed in such

other small open spaces between two solid materials, such as small gaps between

granular particles.

56



Water

Figure 5.1: The capillary action demonstrated by capillary tubes.

(a) Dry granular materials (b) Wet granular materials

Figure 5.2: The microstructure of granular materials. The small gaps between

granular particles that are small enough to have the capillary action or the capa-

bility to hold fluid.

A pile consisting of granular materials includes a vast number of small open

spaces between the individual particles (Figure 5.2(a)). When such a pile comes

into contact with a fluid, wetness is absorbed into the spaces and propagates

through the material, mainly induced by capillary forces (Figure 5.2(b)). Sim-

ilar descriptions can be found in studies of the weathering of stones [22] and

on-surface flows [51].

Wetness among granular particles forms structures called liquid bridges (Fig-

ure 5.3) due to the surface tension of the liquid. These liquid bridges induce

grain-to-grain attractive forces and strengthen the cohesion of the material. They

are therefore essential for the construction of sand castles. The force yielded by
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granular particle

liquid bridge

Figure 5.3: Liquid bridges. For illustration purpose, the distances between parti-

cles are exaggerated.

fluid particles

(SPH domain)

granular particles

(DEM domain)

Figure 5.4: Overview of the proposed method. Wetness is provided by fluid parti-

cles, and then propagates through granular particles.

a liquid bridge can be computed in an extremely simple case (i.e., two spheres

only) using a theoretical formula that agrees well with experimental data. How-

ever, in cases where there are many granular particles, the liquid-bridge forces are

difficult to consider because their shapes become complicated, and, to the best of

our knowledge, there are no reasonable theoretical models available so far. Please

refer to the paper [36] for recent advances in the physics of wet granular materials.

This dissertation presents a simple, empirical model for the propagation of

wetness and the forces yielded by wetness. In the proposed method, each gran-

ular particle is regarded as spherical, and has an individual wetness value. The

proposed method assumes that the intensity of the liquid-bridge forces reduce

linearly with regard to wetness. The proposed method also assumes that, in the
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dry wet overwet

0 wthreshold

Figure 5.5: Terms according to the wetness value. Each bar indicates the wetness

value.

propagation of wetness, gravity has much less influence compared to the capillary

forces and thus can be ignored. The proposed method computes the interactions

of a granular particle with fluid particles and other granular particles, according to

its wetness (Figure 5.4):

Interactions with fluid particles: Inter-particle forces are computed based on

SPH. Then, if the wetness value of the granular particle does not reach a

maximum wetness value, the granular particle receives wetness from the

fluid particles, and the fluid particles disappear (Section 5.3).

Interactions with other granular particles: Attractive forces yielded by liquid

bridges are computed in addition to the forces used in DEM. Then, if the

wetness value of the granular particle exceeds a threshold, the excessive

wetness is distributed to those neighboring particles whose wetness values

are below the threshold (Section 5.4).

Additionally, we control the propagation speed of wetness among granular parti-

cles (Section 5.5).

5.2 Wetting Model for a Granular Particle

In our model, each granular particle i has a wetness value wi ∈ [0, wmax]. We

refer to a granular particle by different terms according to wi (Figure 5.5):
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(a) Real photo (b) 2D simulation

Figure 5.6: 2D comparison in which a flat surface is depressed due to moisture

absorption. Photograph courtegy of Daniel D. Fritton and Katharine L. Butler.

dry particle: wi = 0

wet particle: 0 < wi ≤ wthreshold

overwet particle: wthreshold < wi ≤ wmax

where wthreshold is a threshold of wetness. Dry or wet particles receive wetness

from fluid particles or overwet particles at the time of contact. The wetness value

is used to compute the grain-to-grain attractive forces. In addition, in order to

represent the aggregation of wet granular materials, the proposed method shrinks

the radius ri of a granular particle i according to the wetness value:

ri = R− krwi, (5.1)

where R is the base radius used in DEM, and kr is a coefficient. This modification

allows us to represent the depression of wet surfaces composed of granular ma-

terials. Figure 5.6 shows a 2D comparison between a real photo and a simulated

result.
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5.3 Interactions between Fluid and Granular Parti-

cles

When fluid particle i collides with granular particle j, the proposed method first

computes the inter-particle forces. The forces for fluid particle i are computed

based on SPH (Section 3.1) by regarding granular particle j as a fluid particle that

has a constant density and pressure, and by modifying Eqs. (3.4) and (3.5):

F
pressure
ij = −

Vi Vj

4
(pi + pj)∇W (xi − xj, h), (5.2)

F
viscosity
ij = µ

Vi Vj

2
∇2W (xi − xj, h), (5.3)

where Vi = mi/ρi is the volume of fluid particle i, Vj is the volume of the granular

particle, and pg is a constant pressure. For granular particle j, −F
pressure
ij and

−F
viscosity
ij are added as external forces.

The proposed method assumes that a fluid particle has a wetness value wfluid.

After the computation of forces, if there are dry or wet particles in the vicinity

of the fluid particle, the fluid particle is absorbed by them. That is, the fluid

particle equally distributes its wetness value wfluid to the dry or wet particles,

then disappears.

5.4 Interactions among Granular Particles

The proposed method modifies the computation of forces in DEM (Section 3.2),

accounting for the amount of wetness. When granular particles i, j collide with

each other, the inter-particle forces are computed by modifying Eqs. (3.8) and

(3.9):

F
damper
i = kd(1 + wi + wj)v

normal
ij , (5.4)

F
tangential
i = kt(1 + wi + wj)

v
tangential
ij∥∥∥v
tangential
ij

∥∥∥
. (5.5)
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Liquid bridge

Liquid bridge force

(cohesive force)

Particle i Particle j

Figure 5.7: The inter-particle force called liquid bridge force between two wet

granular particles.

Additionally, the liquid-bridge force F
bridge
i is computed. F

bridge
i is designed to

work between wet particles only (wi + wj > 0), and to reduce as the wetness

increases:

F
bridge
i = kbridge max

{
0, wf−

wi + wj

2

}
(vj − vi), (5.6)

where kbridge is a coefficient and wf is a threshold for fluidization. The proposed

method uses F
bridge
i only when the particles are moving away from each other,

that is, (vj − vi) · (xj − xi) > 0.

After computing the forces, if a granular particle i is overwet, i.e. wi >

wthreshold, and if there are dry or wet particles in its vicinity, the excessive wetness

value ∆w = wi − wthreshold is distributed equally among them.

5.5 Control of Propagation Speed

To control the speed of wetness propagating among granular particles, the pro-

posed method introduces a coefficient kp for the propagation rate. Let wt
i be the

wetness value of particle i at time t and ∆wt
i be the excessive wetness of par-

ticle i at time t (i.e., ∆wt
i = wt

i − wthreshold). The proposed method assumes

that the propagation speed of wetness from particle i to neighboring particles j

(j = 1, 2, . . . , Ni) exponentially decreases according to the excessive wetness
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A texel with 4 channels color

2D texture data

Particle i

Physical values 

store in textures

Figure 5.8: 2D texture data and each texel’s 4 channels color. The physical values

of particles are stored in the textures.

∆wt
i:

wt+1
j = wt

j + kp

∆wt
i

Ni

∆t, (5.7)

where ∆t is the timestep. Larger kp yields faster propagation of wetness while

smaller kp results in slower propagation.

5.6 GPU Implementation

With modern graphics hardware, many computational processes could be per-

formed on the GPU (Graphics Processing Unit), especially simulation processes.

Harada et al. [33] have demonstrated that the particle-based simulation system

could be entirely implemented on the GPU. The speed-up of computation time

is the main advantage of the GPU implementation. Since the proposed method is

also based on the particle system, the GPU implementation technique can be used.

For the GPU computation, the physical values of particles, both in DEM and

SPH domains, are stored as 2D textures in the GPU memory. The proposed

method stores both DEM and SPH particles in the same texture and distinguishes

by particle domain flags. In the implementation of this dissertation, the particle

domains is set to ’1’ for DEM particles and ’2’ for SPH particles. Each particle

occupies one texel of the 32bit floating-point RGBA textures (Figure 5.8).
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Several computational processes need to read the values and write back into

the texture. However, GPUs cannot read and write a single texture at once without

data hazard, and thus two textures (read and write textures) are required. In the

proposed method, read and write textures are required in the computation of posi-

tions, velocities and particle properties. On the other hand, only a single texture is

required for each computation of forces and fluid properties because they are not

updated in the same computational pass. Consequently, the prototype implemen-

tation uses nine textures as follows (Table 5.1):

• two textures (read and write textures) for positions; the RGB channels store

position data in xyz coordinates and the alpha channel stores a particle’s

lifetime that indicates the particle’s life in a scene.

• two textures (read and write textures) for velocities; the RGB channels store

velocity data in xyz coordinates.

• two textures (read and write textures) for particle’s properties; radius, wet-

ness value, SPH particle’s deleted flag and a flag for the particle domain.

• one texture for the computed force of each particle; the force in each coor-

dinate is stored in the RGB channels.

• one texture for fluid particle properties; the RGB channels store density,

volume and pressure of a SPH particle. The alpha channel is used for storing

the number of propagate neighboring particles.

• one texture for a bucket data structure required for nearest-neighbor searches.

In each simulation time step, four passes of the GPU computation is assigned.

See blue rectangles in Figure 5.9. Firstly, the proposed method updates the veloc-

ity of each particle influenced by the external forces such as the gravity and colli-

sion forces. Then the position of each particle is updated according to the updated
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Table 5.1: Physical parameters stored in the GPU memory as textures. There are

five sets of physical parameters of particles stored in eight 2D textures. Note that

another texture is required for nearest neighbor searches. x, y, z, vx, vy, vz, Fx, Fy

and Fz are the position, velocity and force data in xyz coordinates, repectively.

Positions, velocities and properties textures require two textures each. Properties

and fluid properties textures require only one texture each.

Parameter \ Channel Red Green Blue Alpha

Positions x y z life time

Velocities vx vy vz

Properties ri wi
deleted

flag

particle

domain

Fluid properties density volume pressure Ni

Forces Fx Fy Fz mass

velocity and the time step. From the updated positions, the proposed method gen-

erates a bucket texture for nearest-neighbor searches. The 3D simulation space

in the proposed method is divided into a uniform grid. The grid is then sliced

and represented with a set of 2D bucket textures for the use of nearest-neighbor

searches. Each texel of the bucket texture stores four particle indices in its four

color channels. Suppose that ik (k = 0, 1, 2, 3) are the indices stored in a texel

and i0 < i1 < i2 < i3. These indices are stored in this order using the technique

proposed by Harada et al. [33]. The bucket texture then can be used in density

computation, collision detection, wetness propagation and force computation.

The sizes of these textures, except the bucket texture, depend on the number

of particles used in the scene. The size of the bucket texture is linked to the 3D

simulation world space’s size and the resolution of uniform grids.

For each pair of colliding particles, the forces regarding to their domains are

computed (Sections 3.1, 3.2 and 5.3). Then, the wetness propagation among DEM

particles is handled (Section 5.5). In the wetness propagation, the number of

propagating neighbors Ni has to be known (Eq.(5.7)). Before the wetness value

computation pass, the proposed method can employ this process into the SPH

computation pass to avoid one more pass for costly nearest-neighbor searches on
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the GPU. While SPH particles compute the density, pressure and volume from

SPH neighbors, the proposed method computes the number of propagating DEM

particles Ni by checking whether the wetness should be distributed or not (Section

5.4).

5.7 Results

This section shows several simulation results of the proposed method. Then, this

section makes discussions on computational time and limitations of the proposed

model.

5.7.1 Simulation Results

The prototype implementation was written in C++, using OpenGL, GLSL and

Cg. All experiments in this dissertation were conducted on a PC with an Intel

Core 2 Quad 3.0GHz processor, 2GB memory and an NVIDIA GeForce GTX280

graphics card.

Figure 5.10 shows the 2D simulation result with and without the wetting ef-

fects. The simulation result without wetting effects has only the force interactions

between fluids and granular materials. With the wetting effects taken into account,

the simulation result becomes more realistic.

Figure 5.11 shows an animation sequence of the wetting front spreading through

a sand bed from the interface between fluid and granular materials. The boundary

between wet and dry part of granular materials (wetting front) can be observed.

Figures 5.12 and 5.13 show animation sequences consisting of a pile of sand

with a water stream emitted from a black faucet. These scenes contain 32,000

and 160,000 granular particles, respectively. The emitted fluid in each scene con-

tains 8,000 and 16,000 fluid particles, respectively, although only a fraction of

the fluid particles are actually visible. The frame rate is about 49 fps and 13 fps,

respectively.
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Figure 5.14 is a comparison of the properties of dry, wet and overwet parti-

cles. The modified-DEM forces introduced in Section 5.4 result in sand piles with

different heights as the sand particles stack to them. Each scene is simulated at 82

fps, with 32,000 granular particles.

Figure 5.15 shows the interactions between granular particles with a rigid

shovel (with 32,000 particles, around 70 fps). The liquid-bridge forces and modified-

DEM forces proposed in Sections 5.4 result in different behaviors when the wet

and dry granular particles interact with a rigid body.

In Figure 5.16, massive fluid interacts with a sand castle. The result shows a

sand castle containing 25,000 particles being destroyed by a massive wave with

70,000 particles. Sand particles of the sand castle are washed away while the

wetness is propagated into the structure, simultaneously. The proposed method

archieves 13fps speed.

Rigid bodies can be integrated into the simulation framework. A rigid bunny

is approximated by a set of particles and rendered as a mesh. Figure 5.17 shows

the interaction between granular materials containing 35,000 granular particles,

fluids containing 64,000 fluid particles and a rigid bunny. The frame rate is about

12 fps.

For rendering, granular materials are rendered as solid spheres using point

sprites, and the visual quality is enhanced by a screen-space ambient occlusion

technique similar to Mittring’s work [58]. And fluid is rendered as metaballs

using the GPU-based ray-casting technique proposed by Kanamori et, al [40].

The frame rates of all results includes both simulation and rendering.

The simulation times of the results in Figures 5.12 (a sand pile), 5.15 (a large

sand pile), 5.16 (a sand castle) and 5.17 (a bunny with fountains) are shown in

Table 5.2. The simulation time is divided into the time used in each pass of

the GPU computation and rendering. As shown in the table, the most compu-

tational cost pays to density and force computation due to costly nearest-neighbor

searches. The rendering time directly depends on the number of fluid particles in
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the simulating scene. The rendering is more slower with more fluid particles in

the simulating scene.

5.7.2 Parameters Setting

This section describes the effects of parameters related to the behavior of granu-

lar material and wetness propagation together with simulation results of different

parameters setting.

One of the common properties that characterize behavior of granular mate-

rials is the angle of repose, the angle between a stable pile of granular material

and the ground [13]. Different kinds of granular materials have different internal

friction, particles’ size and shape which result in different angles of repose. In

the proposed model, varying angles of repose can be achieved by adjusting the

friction coefficient kt in Eq.(3.9). As shown in Figure 5.18, the larger the friction

coefficient kt between particles is, the steeper the angle of repose is.

The wetness propagation is controlled with parameters as follows. The thresh-

old of wetness value wthreshold determines when the granular particles begin prop-

agating wetness, while the maximum wetness value wmax determines when the

granular particles stop absorbing fluids. If the wetness value of the granular parti-

cle exceeds wthreshold, the excessive wetness is distributed to neighboring particles

with propagation rate kp. The proposed method uses different propagation rate kp

varied in the surronding region of the particle. The region surrounding the particle

can be divided into upward, downward and lateral regions (Figure 5.19).

In the case of absorbing fluids from the surface, the wetness of the particles

at the surface exceed wthreshold first, then the exceeded wetness is propagated to

downward particles. Therefore, the upward propagations rarely occur. Figure 5.20

shows the simulation results with different portion of the lateral and downward

propagation rates, the upward propagation is neglected in this result. As shown

in the result, the larger the downward propagation rate is, the deeper the wetting

front is. Likewise, the larger the lateral propagation rate is, the wider the wetting
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front is.

In Figure 5.20(d) where the downward propagation rate is zero, the particles

near the surface absorb fluids and exceed the threshold. Without downward prop-

agation, their wetness values gradually reach the maximum value, hence fluid

particles are not absorbed.

Several granular materials are aggregated when wet. The proposed method

shrinks the radius ri of a granular particle i according to the wetness value and

controls the degree of shrinkage by the coefficient of radius shrinkage kr. Fig-

ure 5.21 shows depressions of the surfaces with different kr.

The coefficient of liquid-bridge force kbridge defines how strong the liquid

bridge force is. In order to generate a structure such as a sand castle, the liquid

bridge forces and modified DEM forces in Section 5.4 are required to stregthen

the cohesion of the structure.

5.7.3 Limitations

The major limitations in the proposed method are scalability, physical plausibility

and stability.

Scalability : In order to achieve highly dynamic animations, the proposed

method handles granular materials as individual particles, instead of as a contin-

uum. Therefore, the model suffers from the memory usage and performance in a

very large scene. The memory usage and performance are directly influenced by

the number of particles used in the scene. Employing an adaptive technique [1] or

hybrid methods with height fields [69] could solve these problems.

Physical plausibility : Because the proposed model is a simplified physical

model targeting the interactive applications, the parameters related to the wetting

effects are not exactly physically-based. The parameters related to the wetting

effects are particle’s radius, threshold of wetness value wthreshold, maximum wet-

ness value wmax, propagation rate kp (Eq.(5.7)), coefficient of radius shrinkage

kr (Eq.(5.1)) and coefficient of liquid-bridge force kbridge(Eq.(5.6)). These para-
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maters are all user-defined values. Therefore, to simulate a scene with the specific

physical behaviors, users have to set parameters with trial and error. In addition,

the force interaction between a fluid particle and a granular particle is also com-

puted as the fluid - fluid interaction which is physically not true.

Stability : The proposed method uses the explicit integration scheme for the

simplicity. Therefore, the proposed method is conditionally stable. The inte-

grations in the simulation systems can be performed using explicit or implicit

schemes. Explicit schemes are often preferred due to its low computational cost

and ease of implementation. However, for stable simulations, the time step in

explicit schemes should be carefully considered. In other words, the time step is

limited by stability. Implicit schemes can solve the stability problem, at the cost

of the high computational cost and complexity in the implementation.

5.8 Summary

This chapter has introduced simulations of interactions between fluids and granu-

lar materials based on SPH and DEM. Specifically, this chapter has presented the

following contributions in order to handle the propagation of wetness provided by

a fluid passing through granular materials and the transition of the properties of

the granular materials:

1. An empirical model for the propagation of wetness by means of introducing

a wetness value for each granular particle,

2. Shrinkage of the radii of granular particles for the aggregation, and

3. Integration of the attractive force due to the amount of wetness introduced

into the DEM framework.

This chapter has also demonstrated that a GPU-based simulator can achieve real-

time performance.

71



Position 

(read)

Velocity

(read)
Force Properties

(read)

Update

velocities and positions

Generate

bucket texture

Compute SPH and the 

number of  propagating 

neighbors Ni

Compute forces 

and wetness values

Position 

(write)

Velocity

(write)

Properties

(write)

Bucket

Fluid

properties

Force

Swap

read / write textures

Figure 5.9: Flow chart of a single simulation time step on the GPU. Grey rectan-

gles represent the texture data, blue rounded rectangles represent operations and

black directed line segments represent the flow of data.
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(a) simulation without wetting effects (b) Simulation with the wetting effects

Figure 5.10: 2D simulation results with and without the wetting effects.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Propagation of wetness through a sand bed. A water stream is emitted

from a red line in the scene. The fluid particles are rendered as blue dots.
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(a)

(b)

(c)

Figure 5.12: Animation sequence of a sand pile and water stream emitted from a

black faucet. This scene contains 8,000 fluid particles and 32,000 granular parti-

cles. The proposed method can simulate this scene with around 49 fps.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Animation sequence of a large sand pile with a water stream emitted

from a black faucet. The result shows the destruction of a large sand pile con-

taining 160,000 sand particles by a high velocity flow containing 16,000 water

particles with 13 fps simulation and rendering speed.
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(a)

(b)

(c)

Figure 5.14: Comparison of the behaviors of dry (light brown), wet (brown) and

overwet (dark brown) particles.
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(a)

(b)

Figure 5.15: Interaction between granular particles with a rigid shovel. The liquid-

bridge forces and modified-DEM forces result in different behaviors when the

particles interacts with a rigid body.
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(a)

(b)

(c)

Figure 5.16: Interactions between massive fluid and a sand castle. The interactive

speed (13 fps) can be achieved.
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(a) (b)

(c) (d)

Figure 5.17: Interactions between sands, fountains and a rigid bunny. The pro-

posed method can simulate this scene with around 12 fps.
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(a) kt=10

(b) kt=50

(c) kt=100

Figure 5.18: Interactions between massive fluid and a sand castle. The interactive

speed (13 fps) can be achieved.
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Downward particles

Upward particles

Lateral particlesLateral particles

Particle i

Figure 5.19: The neighboring particles in the vicinity of the particle i. The up-

ward particle is shown as the green particle. Lateral particles are shown as blue

particles. Downward particles are shown as yellow particles.
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The position where 

fluid particles are added

(a) A dry sand bed (b) Downward 50% (c) Downward 70%

Lateral 50% Lateral 30%

(d) Downward 30% (e) Downward 100% (f) Downward 0%

Lateral 70% Lateral 0% Lateral 100%

Figure 5.20: The simulation results with different downward and lateral propa-

gation rates kp. The shapes of the wetting fronts are various according to the

propagation rates.
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(a) Without radius shrinkage (b) With kr = 0.1

(c) With kr = 0.2 (d) With kr = 0.3

Figure 5.21: The simulation results with different coefficients of radius shrinkage

kr. The larger kr results in a more depressed surface.
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Chapter 6

Wetting Effects in Strands

This chapter gives an overview of the proposed method and how to rasterize a hair

volume using a Cartesian bounding grid. Then, the methods for wetting effects of

hair utilizing the grid are described.

6.1 Overview

To model wetting effects in coupling simulations of hair and water, our method

introduces a Cartesian grid to implicitly represent the dynamic capillary system

among hair strands (Section 6.2). Each voxel in this grid defines the unit for water

absorption and diffusion. Water travels in the hair volume both in microscopic

(hair strands) and macroscopic scales (voxels). In the microscopic scale, each hair

segment of each hair strand holds some water inside and around the segment. The

water inside the segment diffuses to adjacent segments in a hair strand, and the

water around the segment flows along the hair strand. In the macroscopic scale,

each voxel containing hair absorbs water and the water diffuses among voxels.

The water in each voxel is then distributed to each segment within the voxel. The

water propagation processes are summarized in the following four stages:

Voxel absorption: When voxels contacts with water, the water is absorbed to the

voxel (Section 6.3.1).
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Figure 6.1: A brief microscopic illustration of wet hair and our simulation model

of a hair segment. Water permeated into hair is represented as a water mass of a

hair segment. The total possible amount of water mass is a summation of absorbed

water, water bridge and free-flow water capacities.

Macroscopic propagation (Inter-voxel diffusion): The water propagates to the

neighboring voxels according to the difference of capillaries of the voxels

(Section 6.3.2). The change of water in each voxel is then distributed to

segments in the voxel.

Microscopic propagation: Water inside each segment diffuses to its connected

segments and the excessive water around the segment flows along the hair

strand, which is followed by intra-voxel diffusion that uniformizes seg-

ments’ water amount within the voxel (Section 6.3.3).

Water dripping: Water drips out as a droplet from a voxel if the water mass

exceeds its capacity in certain duration. (Section 6.3.4).

After these processes, the stored water in each segment causes cohesion forces

(Section 6.4) and morphological shape transformation (Section 6.5) as well as

increase of the weight of hair strands. Algorithm 2 shows the pseudocode of our

algorithm.
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Algorithm 2 Pseudocode of our algorithm.

1: Given V : a set of non-empty voxels.

2: Given M : hair surface meshes (Section 6.3.4).

3: Given wi: current water mass in segment i
4: Given wv: current water mass in voxel v
5: Given Wv: a set of water capacities in voxel v
6: loop

7: SIMULATECSMANDSPH()

8: V,wv,Wv ← CONSTRUCTGRID() // Section 6.2

9: for all voxel v ∈ V do

10: VOXELABSORPTION(wv,Wv) // Section 6.3.1

11: INTERVOXELDIFFUSION(wv,Wv) // Section 6.3.2

12: for all segment i in voxel v do

13: wi ← wi+ INTERPOLATECHANGE()

14: INSIDEHAIRSTRANDDIFFUSION(wi)

15: end for

16: end for

17: for all segment i do

18: FREEWATERFLOW(wi) // Section 6.3.3

19: end for

20: for all voxel v ∈ V do

21: INTRAVOXELDIFFUSION() // Section 6.3.3

22: end for

23: M ← CONSTRUCTHAIRSURFACE()

24: DRIPWATER(M ) // Section 6.3.4

25: for all segment i do

26: COMPUTECOHESIONFORCES() // Section 6.4

27: SHAPETRANSFORM() // Section 6.5

28: end for

29: end loop
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6.2 Grid Construction

As introduced in Section 1, when hair contacts with water, the water absorption

and diffusion happens due to the permeability of hair strands and capillaries. How-

ever, the capillaries of hair is difficult to figure out due to the complexity of hair

structure. We can do nearest neighbors search for each hair segment and exam-

ine contact regions among neighboring hair segments to accurately determine the

capillaries, but it is not an efficient way. Therefore, we introduce a grid of uniform

voxels to approximate the capillaries of hair.

Hair volume is divided into voxels. Each voxel contains portions of hair seg-

ments and acts as a porous voxel that absorbs and diffuses water. In a porous voxel

v, the maximum water capacity Wmax
v that a porous voxel v can hold is considered

as a summation of three capacities of water as follows (see Figure 6.1).

• Water capacity in hair segments W s
v : The water capacity can be held

inside of the hair segments.

• Water capacity in capillaries W c
v : The water capacity held by capillaries

(the extremely small gaps) between hair segments. We call the water in the

capillaries water bridges.

• Water capacity of free-flow W f
v : The capacity of water around the hair

segments that is not absorbed into hair segments or held as water bridges,

but covers the hair segments due to a cohesion. This capacity is a user-

defined value controlling the amount of water considered as an Eulerian

free-flow water.

The maximum capacity of the voxel is then: Wmax
v = W s

v + W c
v + W f

v . The

W s
v and W f

v can be directly computed from a function of the total mass of hair in

the voxel, while the capacity of capillaries W c
v is approximated.

To determine the total hair mass in the voxel, we rasterize each hair segment

in the grid using 3D Digital Differential Analyzer (3DDDA). 3DDDA yields a set
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of voxels that segment i passes through together with its length in each voxel. Let

liv be a length of segment i in a voxel v (Figure 6.2), then the total length of hair

segments Lv and total mass of hair mhair
v in the voxel can be computed as follows.

Lv =
∑

i∈R(v)

liv, (6.1)

mhair
v = ρhairπr2Lv, (6.2)

whereR(v) is a set of segments in the voxel v, ρhair is the density of hair segment

and r is a radius of cylindrical hair segment. Then, we can compute water capacity

in portions of hair segments W s
v and free-flow water capacity W f

v as follows.

W s
v = Khair mhair

v , (6.3)

W f
v = kfree mhair

v , (6.4)

where Khair is a permeability of a hair segment (usually 0.3 ≤ Khair ≤ 0.45,

as described in Chapter 1) and kfree is a constant controlling the free-flow water

capacity.

To approximate W c
v , we assume that the contact regions of hair strands are

proportional to the total mass of hair inside the voxel.

W c
v =

{
0, if ‖R(v)‖ = 1
kcapillaries mhair

v , otherwise
(6.5)

where kcapillaries is a constant and ‖R(v)‖ is the number of segments in the voxel

v. Our simple assumption is based on the fact that wet hair segments tend to stick

to each other such that the water bridges totally lie in the clump of hair strands.

The higher the number of hair strands in the clump is, the larger the water bridges

are. However, there is a possibility of large error due to the complexity of dry

hair. The more accurate method for approximating topology of contact region

inside the voxel is one of our future work.

In our model, a hair segment i stores water mass wi. The summation of wi of

all hair segments is the total water mass in the hair volume. The current amount of
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water mass wv in a voxel can be computed from a summation of water mass of the

portions of segments in the voxel. We consider that the water mass of a segment

is uniformly distributed in the segment (Figure 6.2), therefore a water mass of a

portion of the segment is linear proportional to its length.

wv =
∑

i∈R(v)

wi

liv
li

, (6.6)

where li is the total length of segment. Note that we use a small w for the current

amount of water mass and a capitalized W for the water capacity, while sub-

scripted i and v indicate a segment and a voxel, respectively.

Later in this dissertation, the current amount of water mass in each capacity is

used to handle the wetting effects. We define the current amount of each kind of

water mass as follows.

ws
v= min{wv,W

s
v }, (6.7)

wc
v= min{max{0, wv−W

s
v },W

c
v}, (6.8)

wf
v= max{0, wv −W s

v−W
c
v}. (6.9)

Eqs.(6.7), (6.8) and (6.9) represent the current water mass of each kind in the

voxel. We use the same equations for the current water amount of a segment as

well, i.e., ws
i , wc

i and wf
i .

To handle an anisotropic water diffusion in hair, a representative tangent vector

of hair in each voxel has to be known. We use an averaged tangent vector of each

segment in the voxel dv as the representative tangent vector using the equation

belows.

dv =
1

Lv

∑

i∈R(v)

ui

liv
li

, (6.10)

where ui is the tangent vector of segment i.

90



Water particles
Hair particle

Hair segment

Porous voxel

li : length of segment i

liv : length of segment i in voxel v

wv W
f

v

W
c

v

W
s

v

Water mass capacity of a voxel

dv : reprentative tangent vector

Figure 6.2: An Eulerian grid of uniform voxels for capturing hair porosity. Each

voxel contains portions of hair segments.

6.3 Water Propagation

Water flows into and drips out of the hair volume influenced by voxel absorption,

macroscopic and microscopic water propagations. In this section, we describe the

detail of each stage.

6.3.1 Voxel Absorption

When a water particle p contacts with a porous voxel v, we consider the following

conditions to check whether the water particle gets absorbed or not.

• The porous voxel has a capacity left, i.e., wv < Wmax
v .

• The water particle’s velocity vp is toward the porous voxel, i.e., vp ·npv > 0,

where npv is the vector from the water particle to the center of the porous

voxel.

When the water particle is absorbed into the porous voxel, the water mass of the

porous voxel is increased by the water particle’s mass wv ← wv + wSPH , where

wSPH is the water mass of the water particle (Figure 6.2).
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6.3.2 Macroscopic Propagation

The difference of water in capillaries between the porous voxels is the main cause

of the inter-voxel diffusion. We employ the Fick’s second law for the change of

the water in capillaries over time.

∂wc
v

∂t
= ∇ · (Dv∇wc

v), (6.11)

where Dv is the diffusivity of porous voxel. The diffusivity of an isotropic porous

voxel can be some constant. However, hair is an anisotropic permeable medium

where the water diffuses more in the hair tangent direction. Given D‖ and D⊥ are

diffusivity constants in the hair tangent and orthogonal directions, respectively,

we modify the diffusivity for an anisotropic porous voxel as follows.

Dv = D‖λ + D⊥(1− λ), (6.12)

λ = ‖dv · u‖, (6.13)

where u is the unit vector from the voxel v to a neighboring voxel. The evolution

of diffused water mass, ∆wv, is then computed on the grid as follows.

∆wv

∆t
=

∑

u∈G(v)

Dv(Su − Sv)
(wc

u − wc
v)

∆d
, (6.14)

where G(v) is a set of six connected neighboring voxels of voxel v, ∆t is a time

step, ∆d is a size of voxel, and Sv is a saturation of the voxel v. The saturation is

a mass fraction of water in the capillaries of the porous voxel: Sv = wc
v

W c
v

.

After the absorption and diffusion processes, we update the change of wa-

ter mass in each porous voxel ∆wv to segments in the voxel. The increase is

distributed to each segment according to the fraction of its portion length in the

voxel (Eq. (6.15)). The longer the portion is, the more change is distributed to that

segment.

∆wincrease
i =

∑

v∈G(i)

∆wv

liv
Lv

, (6.15)
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where G(i) is a set of voxels that segment i passes through. However, there’s

possibly a problem in case that the change of water mass is decreasing and some

segments in the voxel has no water mass. The water mass of those segments

will be updated to a negative value, which is impossible. Therefore, we use a

fraction of water mass that the segment contributes to the voxel wiv for the change

(Eq. (6.16)), instead of the fraction of length.

∆wdecrease
i =

∑

v∈G(i)

∆wv

wiv

wv

. (6.16)

6.3.3 Microscopic Propagation

In microscopic level, we consider the diffusion of water inside a segment ws
i and

the flow of free-flow water wf
i . For each segment, there are also three kinds of

water mass capacity. W s
i and W f

i are directly computed from the mass of the hair

segment, while W c
i is derived from the approximated W c

v in the voxels (Eq. (6.5))

that the segment resides in.

W c
i =

∑

v∈G(i)

W c
v

liv
li

. (6.17)

As a result, the current amount of water inside the segment ws
i and free-flow water

mass of the segment wf
i can be calculated using Eq. (6.7) and (6.9), respectively.

The current water mass inside the segment diffuses to the adjacent segments

in its strand. We use a simple diffusion process as follows.

∆wi

∆t
= Ds(w

s
i+1 + ws

i−1 − 2ws
i ), (6.18)

where ∆wi is the variation of wi and Ds is a diffusivity between hair segments.

The water that flows within the hair volume is the free-flow water of the seg-

ment, wf
i . We move this free-flow water along a hair strand from segment to

segment controlled by a flow rate kflow and the direction of the segment. We de-

termine the direction of the flow by checking the dot product of the unit tangent

vector of hair segment ti and the unit gravity direction g, i.e., kdir = ti · g.
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1. There will be no flow, if ‖kdir‖ is less than a threshold ε.

2. If kdir ≥ ε, the water will flow to the next segment, wi+1 ← wi+1 +

∆tkflow‖kdir‖w
f
i .

3. If kdir ≤ −ε, the water will flow to the previous segment, wi−1 ← wi−1 +

∆tkflow‖kdir‖w
f
i .

Each segment transfers an amount of free-flow water from voxels to voxels. The

update of the water mass wv in each voxel can be computed using Eq. (6.6). The

free-flow water inside the voxel diffuses among the segments as well, e.g., there

might be free-flow water inside the voxel that has dry segments. We update wi of

each segment as follows.

∆wi = ∆tkf (w
f
v

liv
Lv

− wf
i

liv
li

), (6.19)

where kf is a constant. The first term on the right hand side in Eq. (6.19) is the

probable free-flow water mass of the segment when all segments in the voxel are

equally wet. The second term is the current free-flow water mass that the segment

contributes to the voxel. The equation can be interpreted that the free-flow water

mass of each segment gradually becomes equals to each other.

6.3.4 Water Dripping

Water droplets drips out when the water mass in a voxel exceeds Wmax
v . Water

droplets should be created around hair strands, but voxels are too coarse to specify

where hair strands exist. For this, we create a surface mesh from the hair volume

using distance transform of hair segments and the marching cubes algorithm [53].

We refer to this mesh as the hair surface mesh. If wv > Wmax
v in voxel v and a hair

surface mesh exists within the voxel, we generate a water particle and decrease

the water mass of the voxel by the water particle’s mass, wv ← wv − wSPH . The

decrease of the water mass is interpolated back to the segments in the voxel using
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of free-flow water

Figure 6.3: Handling free flow water and cohesion of wet hair.

Eq. (6.16). The position of the generated water particle is an averaged barycenter

of the surface meshes (Figure 6.3). If there is a water particle within a water

particle’s radius of the generated position, we add radius and mass to the water

particle instead of creating a new one.

To guarantee that absorbed water does not turn into water particles repeatedly

or vice versa at the interface between porous voxels and water particles, we add a

time delay γ. The dripping occurs, if the voxel has the water mass exceeded Wmax
v

for γ time steps. We also add a small velocity to the generated water particle in

the direction of an averaged normal vector of the surface meshes to avoid the

absorption of generated water particles.

6.4 Cohesion of Wet Hair

Cohesion of wet hair is influenced by the water bridges and the free-flow water.

We add a sticking force between a pair of colliding segments according to those

water masses of the segments (Figure 6.3). The result of the collision detection
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gives the closest points xi and xj on the segments i and j, respectively. The pair

of segments is a colliding pair when the length of the vector xij = xi − xj is

less than dij , where dij is a distance of ri and rj including a radius from the water

masses.

dij = ri + rj + σ(wi + wj), (6.20)

where σ is a ratio of increasing water radius. The sticking force between segment

i and j is computed when dij ≥ |xij| > (ri + rj):

Fstick
ij =

1

2
kstick(wi + wj)(dij − |xij|)

xij

|xij|
, (6.21)

where kstick is a coefficient of the sticking force. If |xij| < (ri + rj), the penalty

force is computed:

F
penalty
ij = kp(ri + rj − |xij|)

xij

|xij|
, (6.22)

where kp is a coefficient of the penalty force.

6.5 Morphological Shape Transformation

The absorbed water inside a hair strand can temporally alter the shape of wet hair

due to chemical reactions. In the CSM model, a user assigns a predefined shape

of a hair strand by giving positions of hair particles or tangent vectors of hair

segments (see Figure 6.4). When the hair particles are moved by external forces,

CSM tries to maintain the predefined shape. Accordingly, we assign two prede-

fined shapes for a dry hair strand and a wet hair strand. When the hair segment

i is wet, we first calculate a tangent vector that segment i should transforms into,

called goal tangent t
goal
i . The goal tangent is interpolated between the tangent of

dry segment t
dry
i and wet segment twet

i using the absorbed water mass inside the

segment ws
i . The current tangent vector ti is then updated towards t

goal
i as follows.

t
goal
i = (1−

ws
i

W s
i

)tdry
i +

ws
i

W s
i

twet
i , (6.23)

ti ← kt∆t(tgoal
i − ti), (6.24)
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Shape of a dry hair strand Shape of a wet hair strand

Tangent vector of 

dry hair segment
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t
dry
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Figure 6.4: Morphological shape transformation of wet hair. Predefined shapes of

dry hair and wet hair are assigned by the user.

where kt is a constant controlling speed of the chemical reactions of hair strand.

6.6 Results

This section shows hair simulation results with wetting effects generated by the

proposed method. Then, this section gives discussions and limitations of the pro-

posed model.

6.6.1 Simulation Results

Our implementation was written in C++ with OpenGL. All experiments were

conducted on a PC with an Intel Core i7 3.20GHz, 6GB RAM and an NVIDIA

GeForce GTX 480 GPU. Our final results are rendered using an off-line rendering

software, POVRay 3.7 [67]. Each hair segment is rendered as a semi-transparent

cylinder. The color of a hair segment gets darker according to the amount of ab-

sorbed water mass. When the amount of free-flow water around a hair segment

is large enough, the free-flow water can be seen as a thin water film covering

the segment. In our rendering, we add some virtual water particles (not used for

simulation, only for rendering) along the hair segment with the size according to
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(a) 500 straight hair strands. (b) Hair is raterized into

 a grid. Each voxel has 
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(c) Water travals through hair

volume. A red particle is water

dripping from the tips.
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v
w v

Water dripping

Figure 6.5: A simulation result demonstrating an overview of our model.

the free-flow water amount. Then, we employ the method proposed in [101] for

constructing the surfaces of water particles in SPH domain and virtual particles

around hair segments.

An overview of water traversal in our model is shown in Figure 6.5. The water

capacities in each voxel are shown as a stack of three white boxes. From bottom

to top, the boxes indicate the water capacities in hair segments, capillaries and

free-flow. As shown in the figure, the higher the number of hair segments in a

voxel is, the larger the water capacities are. When a voxel contacts with water, the

water gets absorb in hair segments first, then capillaries and free-flow capacities.

Afterwards, the absorbed water in hair segments diffuses to their adjacent seg-

ments in the same hair strand, while the water in capillaries of each voxel diffuses

to its neighboring voxels. If the free-flow water exists, the water flows through

hair volume influenced by tangent direction of hair segment until dripping out of

hair (a red particle in the figure).

Our simulation result compared with the real world is shown in Figure 6.6.

The real hair and our results are shown in the left and right columns, respectively.
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Figure 6.6: Comparison of our simulation results and real world experiments.

The top row shows dry hair and the bottom row shows wet hair.

Figure 6.7 shows results of morphological shape transformations according

to the absorbed water. Straight hair temporally turns into wavy hair in Figure

6.7(left), while the wet curly hair in Figure 6.7(right) becomes more straight. In

the curly hair, hair strands become straight due to the weight of the absorbed water

and the morphological shape transformations, but largely induced by the shape

transformations. Figure 6.9 shows results of 5,000 strands of wet mob being pull

out of a water tank. The strands are completely wet under the water. The water

amount in the strands is maximum. Therefore, a great amount of excess water

(free-flow water) flows along the strands until pouring out of the strands when

the mob is rising into the air. Figure 6.10 shows animation sequences of 11,000

wavy hair strands interacting with water from a shower. The water is absorbed and

diffuses into the hair. The wet hair strands form several clumps. The excess water

gradually drips at the tips. The breakdown computational time in each process is
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Figure 6.7: Results of morphological shape transformations in our model. The

wet parts of straight hair (left) and curly hair (right) turn into wavy and straight

hair, respectively.

(a) With water repellent (b) Without water repellent

Figure 6.8: Simulation results of hair with and without water repellent.

shown in Table 6.1.

6.6.2 Discussions and Limitations

Compared to the real world, there are much more underlying physics of water and

hair interactions, e.g., water repellent, surface tension between fluid and hair. In

the real world, sometimes hair has a water repellent where the water is repelled

by the oil component or static electric in hair. We demonstrate a simple way to

handle this in Figure 6.8. We give each hair segment an α value that indicates the
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strength of oil component (or static electric) of the segment. The voxel absorption

occurs only when the summation of α values in the voxel is less than a threshold.

Unless, the α values of segments in the voxel keep decreasing when the voxel

contacts with water. However, this should be handled in a more physics-inspired

way.

Regarding the choice of voxel size, we use the size equal to or larger than

a diameter of water particle, since a water particle can be totally absorbed into

a voxel. Although the overall water mass in the hair volume remains the same

with a larger voxel size, the water absorption and diffusion processes affect more

hair segments in a time step. An order of computation cost of hair rasterization is

O(n), where n is a number of voxels. Therefore, the performance gain is linear to

the voxel resolution.

The rendering method we used is a simple hair rendering with a changing of

hair color according to absorbed water mass. More realistic rendering method

would greatly enhance our results, especially the rendering of water inside the

hair volume. The free-flow water should be rendered as a very thin water film,

while the water in the capillaries has a complex shape linking between hair strands

(water bridges).

In our implementation, we use a simple Euler explicit integrator which has

a high possibility of missing collisions when hair has a large motion. However,

there are no significant problem in the scenarios of our shown results.

6.7 Summary

We have introduced a model for handling the wetting effects in coupling simula-

tions of hair and water. Hair is modeled as an anisotropic dynamics permeable

media. We have proposed a method utilizing Eulerian approach for capturing hair

porosity and handling wetting effects on the fine detailed hair simulation using

Lagrangian method. Our method have enabled many interesting effects of wet-
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Figure 6.9: Animation sequences of 5,000 strands of wet mob (87,000 segments)

being pull out of a water tank.

Figure 6.10: Animation sequences of 11,000 straight hair strands (220,000 seg-

ments) interacting with water from a shower.

ting hair. To the best of our knowledge, our system is the first to fully simulate the

interactions between hair and water both in macroscopic and microscopic levels.
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Chapter 7

Conclusion and Future Work

This dissertation has proposed the methods for handling wetting effects in de-

formable porous structures of granular materials and strands.

For the wetting of granular materials, this dissertation has introduced water

absorption, water propagation between granular particles and changes of physi-

cal properties of wet granular particles into a simple particle-based framework of

DEM and SPH (Chapter 5). Dynamic animations of granular material including

wetting effects were achieved at interactive rates using a GPU-based simulator.

To handle the wetting effects of hair, first, this dissertation has proposed a

strand simulation method (Chapter 4). The proposed strand simulation method

can handle stiff strand in a numerically stable way, and easily modify the shape of

a hair strand. This dissertation has demonstrated a simulation result with a large

number of hair strands comparable to the real world, which has never been tackled

in the previous works. The twisting, tearing by stretching, tearing by twisting and

flicking effects of a strand have also been introduced together with an optimized

grid-based collision detection. Then, on top of the proposed strand simulation

model, this dissertation has proposed a simulation model that reproduces inter-

actions between water and hair as a dynamic anisotropic porous medium (Chap-

ter 6). This dissertation has demonstrated that the proposed model can generate

many interesting effects of interactions between fine-detailed dynamic hair and

water, i.e., water absorption and diffusion, cohesion of wet hair strands, water
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flow within the hair volume, water dripping from the wet hair strands and mor-

phological shape transformations of wet hair.

For future work, the collision detection of hair was the most time-consuming

process in this dissertation, so we would like to develop an efficient model for hair

collision detection. The collision between segments is treated as a collision be-

tween rigid segments. We would like to improve the collision detection algorithm

to handle the collisions between deformable segments. Although, wet granular

material and hair simulations were conducted on GPU, wet hair simulation is still

run on a CPU. We would like to implement the wet hair simulation on the GPU

as well. We would like to consider a deformation of cross-sections during twist-

ing. In the proposed model, each segment is rendered as a spherical cylinder,

however, cross-sections of most material can be deformed when it is twisted. The

non-uniform torsional rigidity in our model is considered along the length, not the

cross-sections. A non-uniform density distribution within the cross-section should

be considered to simulate more interesting results. For rendering, the plausibility

of wet surface rendering of granular material and hair strands could be improved

by employing, e.g., subsurface scattering [38] of wet materials.

With the initiative of this dissertation, we hopefully look forward to more

approaches in physics simulation taking wetting effects into account. We strongly

believe that the researches in this topic can help animations and games getting

closer to the real world in the near future.
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