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Abstract

We report first-principles electronic-structure calculations that clarify the

floating nature of electron states in covalent semiconductors. It is found that

wave functions of several conduction- and valence-band states, including the

conduction-band minima, do not distribute near atomic sites, as was taken

for granted, but float in interstitial channels in most semiconductors. The

floating states have a nearly-free-electron(NFE)-like character, and extend

in the channels broadly without atomic-orbital characters. The electrostatic

potential at the channels and the directions and shapes of the interstitial

channels depend on the crystal symmetry so that mysterious variation of

the energy gaps in silicon carbide (SiC) polytypes is naturally explained by

considering the floating nature. In addition, we have found that the floating

states are closely related to the anisotropy in effective masses in SiC.

It has been found that most conduction-band minima have floating nature.

The existence of the floating state comes from the internal space in the

crystal structures, and non-spherical charge distribution.

The substantial band-gap variation in SiC has been analyzed by an empiri-

cal parameter ”hexagonality” for a half century. Yet, we have clarified that

the parameter ”hexagonality” is a misleading parameter. Instead, we have

found that a new parameter ”channel length”, which represents the spa-

tial extension of the floating state, is essential in describing the band-gap

variation in SiC.

In addition, we have performed the linear-combination-of-atomic-orbitals

(LCAO) calculations and compared the results with those calculated by

the plane-wave-basis set. It is found that the floating characters in the

electron states are difficult to be pursued in the LCAO calculations. We

have also examined the floating states in pressurized sp3-bonded materials.



We have also found that the energy bands with floating character manifest

different behavior from other bands with atomic-orbital character under the

pressurized circumstances.
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Introduction

1.1 Limitation of the Si-based technology

One of the most prominent fields developed in the 20th century is undoubtedly elec-

tronics. Electronics is widely exploited in information processing, telecommunications,

computers and power supply. Electronics has made our lives happier and richer. Elec-

tronics becomes essential part of our lives, and is continuing to have great effects on hu-

man society in the future. The progress of the electronics has been mostly attributable

to the electrical engineering based on silicon semiconductors. Silicon is today, and will

be the dominant material in the semiconductor industry; Si is a material with proper-

ties suited to a wide range of applications. Silicon is abundant, and large high-quality

(>99.9%) single crystals can be produced at an economical cost. In addition, silicon

electronic devices withstand the high temperatures and electrical powers without be-

coming dysfunctional due to avalanche breakdown. In fact, silicon devices work well

even at around 100 ◦C. These prominent properties make silicon the core of modern

electronic devices.

Yet, Si is never an all-round material. With the development of the electronics,

electronic devices have been widely used in various places, e.g., electrical power plant,

transformer station, automobile, and rocket. Under the circumstances, requests for

electronics become more multifaceted: e.g., in some places more high-power device,

or high frequency device are demanded, and tough device under severe environments

(e.g., higher temperature up to hundreds degrees Celsius, and radiological threat) in

other places. Such requirements come not only from industries, but also from the
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1. INTRODUCTION

society. Now, modern society faces a lot of urgent issues, related to geoenvironmental

and energy problem. There has been great expectations for electronics to overcome the

problems. The responsibility of the electronics is continuing to increase in the future.

Si devices are soon reaching its performance limits. Within the Si technology, drastic

development can not be expected.

1.2 SiC: A promising material

Silicon carbide (SiC) is a promising material for high-power, high-temperature, and

high-frequency electronic devices. Although its outstanding technologically potential

has been recognized for several decades, the applications have been greatly hindered

by problems related to bulk crystal growth. SiC is not a material normally found in

nature. The earliest reported production of the silicon carbide is by Acheson in 1891.

SiC is one of the oldest semiconductors. The SiC crystal which is made by Acheson

method still contains a lot of impurities, and is difficult for practical applications as a

semiconductor. The first growth of high pure SiC crystal has been reported by Lely in

1955. Various properties of the SiC have been studied in the 1960s, and has attracted

great attention from semiconductor researchers due to its outstanding thermal stability.

There are further several breakthroughs, e.g., improved Lely method by Tairov (1),

step-controlled epitaxial method by Matsunami (2, 3), and repeated A-face growth

(RAF) method (4). SiC bulk crystal growth technology has recently achieved drastic

improvement and enabled the growth of large high-quality single crystals.

SiC is a sp3-bonded covalent-semiconductor material with a wide band gap. The

bond length is 0.189 nm, which is a value intermediate between that of silicon, 0.235 nm,

and of diamond, 0.154 nm. The cohesive energy of Si-C is 12.58 eV per pair of atoms,

much bigger than that in silicon bulk, 9.28 eV (5). Therefore, SiC is a hard material

next to the diamond. These marvelous properties provide a clear path to high efficient

power-electronics (3). The wide band gap enables SiC to show very high breakdown

fields and also high current densities, about ten times higher than that of Si or GaAs

(6) (See Table. 1.1). The large saturation velocity, more than 2 times of Si bulk, makes

SiC high power device at high frequencies. The energies of optical phonons in SiC are

as high as 100-120 meV (7), which leads to a high saturated electron drift velocity (8)

and high thermal conductivity (9). The smaller on-resistance and faster switching of

2



1.2 SiC: A promising material

Table 1.1: Comparison of physical properties among SiC (4H-SiC), Si, GaAs, GaN, and

diamond.

properties 4H-SiC Si GaAs GaN diamond

Band gap
3.26 1.12 1.42 3.42 5.47

(eV)

Mobility
1000 1350 8500 1500 2000

(cm2/Vs)

Breakdown field
2.8 0.3 0.4 3 8

(MV/cm)

Saturation Drift
2.2×107 1.0×107 1.0×107 2.4×107 2.5×107

(cm/s)

Thermal conductivity
4.9 1.5 0.46 1.3 20

(W/cmK)
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Figure 1.1: Sketches for the sp3-bond unit (a), the unit cell for the 2H-SiC (b), for the

3C-SiC (c), and for the 6H-SiC (d). In the figures, the blue and the red balls depict Si,

and C atoms, respectively. Each stacking sequence is also specified.

SiC helps to minimize energy loss and heat generation, and further its higher thermal

conductivity enables more efficient removal of waste heat energy from the active device.

Because heat energy radiation efficiency increases greatly with increasing temperature

difference between the device and the cooling ambient, the ability of SiC to operate

at high junction temperatures permits much more efficient cooling to take place, so

that heat sinks and other device-cooling hardware (i.e., fan cooling, liquid cooling, air

conditioning, heat radiators, etc.) typically needed to keep high-power devices from

overheating can be made much smaller or even eliminated. Due to the strong chemical

stability of SiC, the operation temperature of SiC is expected to increase up to around

600 ◦C. Compared with that of Si bulk, 120 ◦C, it is a prominent advantage for

automotive industries and in aerospace, for example.
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1.2 SiC: A promising material

From a crystallographic point of view, SiC is the most famous material for showing

polytypes. SiC exists in hundreds of different structures called polytypes (10). The

polytypes of SiC makes it difficult to grow single-phase material. The selective crystal

growth of SiC has been under intense studies(3, 11, 12, 13, 14, 15). In sp3-bonded

covalent semiconductors, each atom is bonded with its four nearest neighbor atoms

[See Fig. 1.1(a)]. The zincblende and the diamond structures with cubic symmetry

and the wurtzite structure with hexagonal symmetry are the typical two examples.

When tetrahedron units [Fig. 1.1(a)] are piled next to one another along the 〈111〉
direction or c-axis, the crystal stricture looks alternating layers of three bonds (bilayer)

and one bond (vertical bond). A simple way to discriminate different polytypes is to

use a silicon-carbon bilayer by a new building unit, and label each crystal structure

as its stacking sequence. The zincblende structure is represented by the stacking se-

quence of ABC and the wurtzite by AB. The stacking sequence is not limited to the

above two cases. Hence there are dozens of polytypes labeled by the periodicity of the

stacking sequence n and the symmetry (cubic or hexagonal) such as 2H (wurtzite), 3C

(zinblende), 4H, and 6H [Fig. 1.1(b-d)].

Figure 1.2: Brillouin zones of a) hexagonal and b) face-centered cubic lattice. (Ref. (16))

As for the energy-band structures, it is known that SiC is a semiconductor. Fig. 1.2

shows the first Brilloiun Zones for the cubic and hexagonal structures. Fig. 1.3 shows

5



1. INTRODUCTION

Figure 1.3: The band structure for the 3C-SiC (upper panel), for the 2H-SiC (b), for

the 4H-SiC (c), and for the 6H-SiC (d) within the DFT-LDA (See Sec. 2.4.1) (dotted

lines) and after inclusion of quasi-particle (QP) corrections (Solid lines). The band gaps

are estimated to be 1.30eV by the LDA, and 2.60 eV by the QP for the 3C, 2.13 eV by

the LDA, and 3.65 eV by the QP for the 2H, 2.19 eV by the LDA, and 3.54 eV by the QP

for the 4H, and 1.98 eV by the LDA, and 3.24 eV by the QP for the 6H. (Ref. (17))
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1.2 SiC: A promising material

Table 1.2: Comparison of physical properties in SiC polytypes.

Properties 2H-SiC 3C-SiC 4H-SiC 6H-SiC

Stacking sequence AB ABC ABCB ABCACB

Lattice constants (Å)
a=3.09

4.36
a=3.09 a=3.09

c=10.08 c=10.08 c=15.12

Band gap (eV) 3.33 2.23 3.26 3.02

Thermal conductivity (W/cmK) 4.9 4.9 4.9

Mobility (Ref. (18)) µ[112̄0]/µ[0001] : 0.83 µ[0001]/µ[11̄00] : 6.2

Effective mass (Ref. (16))
m||X−Γ : 0.67 mM−Γ : 0.30− 0.58 mM−Γ : 0.24− 0.42

m⊥X−Γ : 0.22− 0.25 mM−L : 0.33− 0.48 mM−L : .1.7− 2.0

the band structures of the 3C-, 2H-, 4H-, and 6H-SiC resulted from the density-

functional-theory (DFT) (See Sec. 2.3), and after inclusion of quasi-particle self-energy

correction, called GW method (17). All available calculations and experiments show

that the tops of the valence bands for all the four polytypes of SiC considered here are

at the center of the Brillouin Zone (Γ-point), while the minima of the conduction bands

are located off center. These semiconductors have indirect band gaps. The values for

the band gaps: 3.33 eV for the 2H, 3.25 eV for the 4H, 3.023 eV for the 6H, 2.461 eV for

the 3C, were experimentally determined (19, 20, 21) [Table. 1.2]. It is remarkable that

the band gap varies by about 40 % in spite that the local atomic structures are identical

to each other. The currently accepted locations of the conduction band minima are at

X-point for the 3C, K-point for the 2H, M -point for the 4H, and between M - and

L-point for the 6H [Fig. 1.3]. Although it is difficult to measure these minima directly

in experiments, these assignments are consistent with the band calculations.

As for the band-gap variation, Choyke argued in his pioneering works that the

band-gap variation is understood by the analyses using an empirical parameter ”hexag-

onality” a half century ago. A bilayer sandwiched by the two same stacking indexes is

called a hexagonal layer (h), and the other is a cubic layer (k). The parameter ”hexag-

onality” is the percentage of the hexagonal layers in the stacking sequence of the unit

7



1. INTRODUCTION

cell (21). Therefore, the hexagonality in the 3C structure is 0%, and that in the 2H

is 100%. Thus the parameter ”hexagonality” represents how the stacking sequence is

different from that of the cubic stacking. The band-gap variation has been argued to

be linear with the hexagonality. Yet, the relations between band-gap variation and

the hexagonality have not been validated from underlying physics. In addition, it is

noteworthy that the linear relation has been examined for only seven polytypes. In

order to examine the validity of the parameter, more samplings are certainly needed.

The understanding of the electronic properties would be quite limited and inadequate

only in the empirical discussion.

The conduction band structures as a function of the wave vector ki along a specified

direction i near a conduction-band minimum kmin can be approximated by a quadratic

form

E(ki) = E0 +
~2(ki − kmin)2

2m∗
, (1.1)

where E0 is the band energy at the conduction-band minimum, and m∗ is the effective

mass along that direction. The effective masses at the conduction-band minima have

been also studied. Experimentally, the effective mass is measured by means of Hall

mobility measurement (22, 23, 24, 25), infrared Faraday rotation measurement (26),

photoluminescence (27), cyclotron resonance (28, 29), infrared absorption spectrum

(30, 31). These measurements reveals that the effective mass in the 6H-SiC exhibits

quite large anisotropy [Table 1.2]: the effective mass along the c-axis is 6.2 times larger

than that in the plane perpendicular to the c-axis. On the other hand, particularly the

optically detected cyclotron resonance measurements have also been performed for 3C-

and 4H-SiC to find no such anisotropy of effective mass [Table. 1.2]. The reason for

the anisotropy is still unclear. In addition, the studies for the anisotropy in effective

mass of hole is limited, and the values are different to each other.

1.3 Atomic-orbital character and nearly-free-electron (NFE)

state in condensed matter

Atoms comprise condensed matter in which electron states generally have their own

atomic-orbital character and produce various physical and chemical properties. There-

fore, our understanding of condensed matter has been based on atomic orbital picture.

8



1.3 Atomic-orbital character and nearly-free-electron (NFE) state in
condensed matter

Figure 1.4: Upper panel: Ab-initio band structure of graphite along different lines in

Brillouin Zone. Lower panels: Charge-density distributions of some typical wave functions

at the Γ point of the Brillouin Zone: (a) second band, (b) fourth band, (c) eighth band,

and (d) ninth band. The ninth orbital (d) distributes not near atomic sites, but extends in

interlayer space broadly with nearly-free-electron (NFE) character. All these density are

presented in electron/unit cell. (Ref. (32))
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1. INTRODUCTION

The set of atomic orbitals, however, does not constitute a complete set to describe elec-

tron states in condensed matter, even if we sum up the high-energy-atomic orbitals.

This mathematical fact raises an interesting question: whether electron stases without

atomic-orbital characters exist in usual condensed matter? The answer comes to be

known partially. Some examples have been discovered in spacious matter. Interlayer

states in graphite (33) or intra- and inter-tube states in carbon nanotubes (34) are such

examples, where the corresponding wave functions distribute not near atomic sites but

in internal space, thus, floating in matter (See Fig. 1.4). These floating states are

usually unoccupied but appear near Fermi levels or fundamental energy gaps and play

crucial roles in excitation spectra (35, 36) and ground-state properties (37), including

occurrence of superconductivity (38, 39).

It has been recognized that there is no room to allow such floating states in usual

condensed matter. However, we have found in this thesis that certain electron states of

the conduction- and valence-bands in covalent semiconductors ranging from silicon to

III-V compounds float in internal channels. Shapes of floating electron clouds depend

on symmetry of the crystal and explain drastic and mysterious variation of the energy

gaps and the effective masses in several polytypes of compound semiconductors.

1.4 Our aim

As mentioned above in Sec. 1.2, the most mysterious and interesting characteristics

in SiC is that SiC exhibits various properties depending on the polytypes in spite of

their structural similarity. In this thesis, we focus on mainly two material properties:

substantial band-gap variation in polytypes, and anisotropy in effective mass. We have

performed theoretical calculations based on the density-functional-theory (DFT) (40,

41) to answer the following issues. First our purpose is to clarify the mechanism of the

substantial band-gap variation in SiC, and whether the mysterious band-gap variation

is common to other sp3-bonded materials: e.g., Si, diamond, AlN, BN, GaN. Second

our aim is to clarify the mechanism of the anisotropy in effective mass of electrons in

SiC, and investigate whether the effective mass of holes exhibits anisotropy or not.

10



1.5 Organization of the present thesis

1.5 Organization of the present thesis

In Chapter 2, we first describe the density -functional theory (DFT), which is a powerful

method to obtain the total energies and the electronic structures of real materials. This

chapter introduces the Born-Oppenheimer approximation, the fundamental theorem of

the DFT, the generalized gradient approximation (GGA), and pseudopotential method,

which we have adopted in this study. Though the GGA in the DFT has shown a

fantastic ability to understand and even predict material properties, the energy gaps

are underestimated substantially as is characteristic of GGA. We refer to the problem

in this chapter.

We show the calculated results to clarify the substantial band-gap variation in SiC

polytypes in Chapter 3. We have first determined the structural parameters, such as

lattice constants and total energies for each polytype of the six materials. The cal-

culated electronic band structures are also presented. Next, we are devoted to our

finding, which is the most important point in this thesis, that peculiar electron states

with nearly-free-electron (NFE)-like character, which we call floating state, are ubiqui-

tous in most sp3-bonded materials. The floating states distribute not near atomic sites,

but extend in internal space, called channels. We have succeeded to explain the mech-

anism of substantial band-gap variation naturally by considering the floating state. We

have also investigated the capability of the LCAO calculations in describing the floating

nature in this chapter.

We discuss why the energy level of floating state is lower than the vacuum level

in Chapter 4. We have found that non-spherical electron distribution plays important

roles in lowering the energy level of the floating state substantially. In addition, We have

also found that the energy bands with floating character manifest different behavior

from other bands with atomic-orbital character under the pressurized circumstances.

Chapter 5 is devoted to show that a new parameter channel length, which repre-

sents the spatial extension of the floating state, is an essential parameter in describing

the band-gap variation. We have also found that the anisotropy in effective mass of

electrons is closely related to the shapes of the channels.

Chapter 6 presents that the spontaneous polarization induced by the hexagonal

layers makes hole localized at the interface between the channel region and the hexag-

onal stacking region, thus showing anisotropy in effective mass of hole. We have also

11
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investigated the spontaneous polarization effects on the band gap.

12



2

Density Functional Theory

(DFT)

First-principles calculations are the theoretical method to treat the quantum many-

body system based on the principles of the quantum theory. The final goal of the

condensed matter physics is to solve the quantum many-body problem. Its Hamiltonian

is as follows in the CGS units:

Ĥ = Te + Tn + U, and U = Uee + Uen + Unn, (2.1)

where

Te =
∑
i

p2
i

2m
, Tn =

∑
I

P 2
I

2MI
, Uee =

1

2

∑
i 6=j

e2

|ri − rj |
,

Unn =
1

2

∑
I 6=J

Z2e2

|RI −RJ |
, Uen = −1

2

∑
i,I

Ze2

|ri −RI |
, (2.2)

where the m, MI , Z, pi, PI , ri, and RI represent the mass of an electron, the mass of

a nucleus, the atomic number, the momentum of the electron, the momentum of the

nucleus, the position of the electron, and the position of the nucleus, respectively.

2.1 Frozen-phonon approximation

Condensed matter is composed of tremendous number of nuclei and electrons, and they

are interacting with each other. Therefore, to know all their behaviors is quite difficult

or impossible. Yet, by utilizing the fact that the mass of a nucleus is much heavier than

13



2. DENSITY FUNCTIONAL THEORY (DFT)

that of electrons, it is known that an efficient approximation, called frozen phonon

approximation, is applicable to the system. To solve the Hamiltonian, consider an

extreme case where the mass of the nucleus is infinite. In this situation, it is found that

the kinetic energy of the nucleus is negligible, and nuclei are fixed at a configuration

{RI}. The Hamiltonian is much simpler than the previous one, because the nuclei

coordinate {RI} are regarded as just parameters. As long as this approximation is

applicable, we can separate the degree of freedom of the electrons from that of nuclei.

The Schrödinger equation to solve becomes,

[Te + UR(r)]ψR(r) = εRψR(r), (2.3)

and

UR(r) = Uee + Uen + Unn, (2.4)

where r (R) represents a set of positions of the electrons (nuclei). In the equations,

atomic configuration {RI} are fixed, and the subscript R in the potential UR means

this explicitly. Remark that the variables {R} are not quantum operators, but just

parameters.

Above case is an extreme situation. In real systems, the mass of the nucleus is

much larger than that of electron, but it is not infinite. We should estimate the error

in neglecting the kinetic energy of the nuclei. The electrostatic potential for electrons

from nuclei is the sum of the potential from each nucleus. The potential from each

nucleus depends on the distance from the nucleus. Therefore, we rewrite the wave

function Ψ0({ri}, {RI}) to Ψ0(ri −RI). Therefore, the expectation values of the ∇2
R

and ∇2
r yields the same value, and the kinetic energy of the nuclei is smaller than that

of electrons by the order m/M ≈ 10−3. The neglected term in Eq. (2.3) is still found

to be small with an error of 10−3.

2.2 Schrödinger-Ritz variational principles

In this section, we derive a variational formalism of the Schrödinger equation for the

ground state. Let E0, Ψ0({ri}, {RI}) be an energy and the wave function of the ground

state of the considered Hamiltonian Ĥ.

ĤΨ0({ri}, {RI}) = E0Ψ0({ri}, {RI}). (2.5)

14



2.3 Density functional theory (DFT)

Define an energy functional of a wave function as follow:

E[Ψ] ≡ 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (2.6)

The energy functional yields the ground state energy when Ψ = Ψ0, and increases for

any variation of the wave function from Ψ0:

E[Ψ] ≥ E0. (2.7)

That is, we can derive a variational formalism of the Schrödinger equation for the

ground state with respect to the wave function:

E0 = MinΨE[Ψ]. (2.8)

Yet, remark that we must vary the wave function in the restrictions of antisymmetric

relations. If not, the energy functional gives lower energy than the ground state energy.

2.3 Density functional theory (DFT)

From the above sections, we focus on solving the simpler Hamiltonian, Eq. (2.3), with

the nuclei being fixed at some configuration. The simpler Hamiltonian, however, is

still quite difficult to solve, because the number of the concerned electrons is Avo-

gadro constant, ≈ 1023. The huge number of electrons are interacting with each other.

In addition, we must take account of the statistics of Fermions. Some efficient ap-

proximations, and methods to solve the Schrödinger equation are known. One of the

most famous approximations without any experimental values is the density functional

theory (DFT) (40, 41), which we have adopted in this study.

Professor Walter Kohn was awarded, with professor John Pople, the Nobel Prize

in chemistry in 1998 for his creative studies, that is the formulation of the DFT. His

outstanding works start from a simple question: Is it possible to reconstruct quantum

theory, based on the density, not the wave function. The idea is very ambitious because

the density is a function of the 3-dimensional spacious coordinates, while the wave

function is that of the 3N -dimensional coordinates, where the variable N represents

the number of electrons. He has succeeded to verify his hypothesis, thus, gives powerful

tool for theoretical calculations in condensed matter physics, and quantum chemistry.

In this section, we review the basic idea of the DFT.
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2. DENSITY FUNCTIONAL THEORY (DFT)

Figure 2.1: The figures show the variational space with respect to the wave function (left)

and electron density (right). The equivalence between these two space is non-trivial.

2.3.1 Hohenberg-Kohn theorem and n-representability

In this section, we derive the Hohenberg-Kohn theorem. We can rewrite the Eq. (2.8)

as follows:

E0 = MinΨ 〈Ψ|H|Ψ〉

= MinΨ 〈Ψ|Te + Uee + Uen|Ψ〉

= MinΨ{〈Ψ|Te + Uee|Ψ〉+ 〈Ψ|Uen|Ψ〉}

= Minn(r)

[
Min{Ψ which gives n(r)}{〈Ψ|Te + Uee|Ψ〉+ 〈Ψ|Uen|Ψ〉}

]
= Minn(r)

[
Min{Ψ which gives n(r)}{〈Ψ|Te + Uee|Ψ〉}+

∫
Vext(r)n(r)dr

]
≡ Minn(r)

[
F [n(r)] +

∫
Vext(r)n(r)dr

]
, (2.9)

where the F [n(r)] is a universal functional, which does not depend on the external po-

tential Vext, e.g., atom positions nor atom species. On the last line, we define the F [n(r)]

as Min{Ψ which gives n(r)}{〈Ψ|Te + Uee|Ψ〉}. Once the F [n(r)] is obtained, Etot
ground[n(r)]

of the system we are interested in is obtained by variation with respect to electron

density n(r). However, there are two important problems: one is that the variational

space of the electron density n(r) on the fourth line of the Eq. (2.9), and the other is

that the exact form of F [n(r)] is unknown. The latter is discussed in Sec.2.4 in more

detail.
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2.3 Density functional theory (DFT)

The former problem is, in other words, whether the variation, MinΨ, is equal to the

two-step variation, Minn(r)Min{Ψ which gives n(r)} [See fig.2.1]? To prove the equivalence,

we rewrite the variation MinΨ as follow:

MinΨ = Min{n(r)| corresponding Ψ exists}Min{Ψ which gives n(r)} (2.10)

There is evidence that, for any nonnegative density n(r), antisymmetric orbitals whose

squared norm yields the density exists (n-representability) (42, 43). Therefore,

Min{n(r)| corresponding Ψ exists} = Min{n(r)}, thus the Eq.(2.9) is proved.

2.3.2 Kohn-Sham equaion

Above, we have mentioned the mind of the DFT. In this section, we show a practical

procedure of DFT calculations. By assuming that the electron density is expanded by

Kohn-Sham (one-electron) orbitals φi(r), it is written as

n(r) =
∑
i≤εF

|φi(r)|2, (2.11)

where the εF represents the Fermi energy. Here, we divide the universal functional,

F [n(r)], to three parts as follows:

F [n(r)] ≡ Ts[n(r)] +
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)], (2.12)

where Ts[n(r)] represents the kinetic energy of the non-interacting virtual system yield-

ing the electron density n(r), the second term represents the electron-electron Coulomb

energy, and the third term is called the exchange-correlation energy representing all

the other quantum many-body energies. With these preparations, we determine the

Kohn-Sham orbitals variationally to give the minimum total energy with the Lagrange

multipliers. Then, a series of equations, called Kohn-Sham equation, are derived:

{−1

2
∇2 + Veff(r)}φi(r) = εiφi(r) (2.13)

n(r) =
∑
i≤εF

|φi(r)|2 (2.14)

Veff(r) = Vext(r) + VHartree(r) + Vxc(r) (2.15)

where Vext, VHartree, and Vxc are the potential energy from the nuclei, the poten-

tial energy from the electron-electron Hartree Coulomb repulsion, and the exchange-

correlation potential derived from the exchange-correlation energy. εi is the Lagrange
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2. DENSITY FUNCTIONAL THEORY (DFT)

multiplier. Therefore, a many-body problem is mapped to a one-body problem with

an effective potential Veff(r) in which the quantum many-body effects are incorporated

in the exchange-correlation potential:

Vxc(r) ≡ δExc[n(r)]

δn(r)
. (2.16)

Remark that the effective potential in the Kohn-Sham equation depends on the

electron density or the Kohn-Sham orbitals. Therefore, we have to solve the Kohn-

Sham equation self-consistently. In the practical application of the DFT, the procedure

is represented in the Fig. 2.2. We solve the Kohn-Sham equation until the input effective

potential accords with the updated potential.

2.4 Approximations for exchange-correlation energy, Exc

2.4.1 Local-density approximation (LDA)

As mentioned above, we have transformed the many-body-interacting problem to a

simple one-body problem, called Kohn-Sham equation. However, we neither know the

exact functional of the Exc[n], nor Vxc[n(r)]. Furthermore, the DFT scheme does not

provide a recipe for the Exc[n] and Vxc[n(r)], thus we need some approximation for

them. We introduce a drastic approximation, called the local-density approximation

(LDA) (44), such as

Exc =

∫
εunif
xc (n(r))n(r)dr, (2.17)

where the εunif
xc (n) is the exchange-correlation energy per electron of the uniform electron

gas with electron density n. If the spatial gradient of the electron density is small, the

approximation is expected to be justified. In fact, it is shown that the approximation

is justified in

{ ∇n(r)

6kF (r)n(r)
} � 1 (2.18)

(45). Therefore, the exchange-correlation potential Vxc(r) is derived as follow:

Vxc(r) = εunif
xc (n(r)) + n(r)

dεxc(n)

dn
. (2.19)

The remained problem is the εunif
xc (n). Many-body systems are too difficult to solve

exactly, even in the simple systems such as the uniform electron gas. Yet, the quantum

Monte Carlo (QMC) calculations by Ceperley and Alder (46), and more recent works

have provided essentially exact results for the uniform electron gas.
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Assume initial   Veff (r)

Solve Kohn-Sham equation: 
1

2

2
+ Veff  (r) i(r) = i i(r)

Update charge density: 
n(r)= i(r)

2

i (occupied)

Update potential: 
Veff

new(r) = V
ext (r)+ dr’

1

r r’
+VXC[n(r)]

Convergence check: 
 

Veff

new(r) = Veff

old (r)?
No

Update potential

Yes

Figure 2.2: Schematic flowchart of the self-consistent field (SCF) loop. We have to solve

the Kohn-Sham equation self-consistently, because the effective potential in the Kohn-Sham

equation depends on the electron density or the Kohn-Sham orbitals. First, we assume an

initial effective potential. Then, we solve the Kohn-Sham equation to get the electron

density. The procedure is repeated until the updated potential accords with the previous

potential.
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2. DENSITY FUNCTIONAL THEORY (DFT)

2.4.2 Generalized-gradient approximation (GGA)

The LDA in the DFT has shown fantastic ability to understand and even predict ma-

terial properties in spite of its relatively simple treatment of the exchange-correlation

energy Exc[n] as a functional of the electron density n(r); e.g., for many materials, lat-

tice and elastic constants are generally reproduced. The deviations from experimental

values are within less than 1%-2% and several percent, respectively, in the LDA. Yet the

LDA fails to describe some properties, including ground-state magnetic orderings even

for bulk iron and for some transition-metal oxides. It also tends to overestimate the

bonding strength, leading to an absolute error of molecular atomization energies. Some

of the limitations of the LDA are remedied by the generalized-gradient approximation

(GGA) (47, 48), in which the exchange-correlation energy is expressed in terms of not

only the electron density but also its gradient. The molecular atomization energies are

calculated with the error of several tenths of an electron volt, and the ground state

of the bulk iron is correctly predicted to be a ferromagnetic body-center phase. The

prevailing functional form of the GGA (PBE) generally provides better accuracy for

structural properties of a variety of solids and activation energies in chemical reactions

than the LDA does.

2.5 Psuedo-potential Method

We reviewed the theoretical framework of the DFT in the sections above. In practical

applications to the real systems, we should choose a basis-function set to describe the

wave function and the potential of the system. Usually the plane-wave-basis set is often

used as a basis set, because of easy controllability of the accuracy with the number of

plane waves, and easy estimation of differential and integral operators. Yet, a severe

problem arises, what we call ”variational collapse problem”, in expanding the wave

function with plane waves as follow: ψnk(r) = eik·r
∑
|G|≤kmax

αGe
iG·r, where kmax

represents the cutoff radius in the k-space.

2.5.1 Variational collapse problem

For simplicity, we consider the case of Silicon (Z=14) bulk. The lattice constant of Si

is a = 5.43Å= 10.26aB, and the unit cell is face-centered cubic with volume Ω = a3/4.

The radius of 1s orbital of the silicon atom, a1s, is a1s ≈ aB/Z, and the needed cutoff
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2.5 Psuedo-potential Method

radius in the k-space is kmax ≈ 2π/a1s = 2πZ/aB. The number of the reciprocal vectors

included within the sphere with the radius kmax is estimated as Z3(a/aB)3 ≈ 106.

Therefore, the dimension of the Hamiltonian including the 1s orbital is 106 × 106. For

the heavier atoms, larger number of basis functions are needed. The diagonalisation of

the Hamiltonian is impossible.

2.5.2 Need of pseudo-potential method

As we see above subsection, the calculation cost of the practical application of the DFT

to extended systems is still expensive. In particular, when we treat localized orbitals

such as core electrons, large number of plane-wave basis are needed to describe such

states. The number of the plane-wave basis is bigger and bigger, the diagonalisation

of the Hamiltonian matrix needs more and more time. In addition, the core states are

tightly bounded states and unchanged under the change of environments, thus expected

to have little effect on most of the physical and chemical properties. The fundamen-

tal idea of a pseudo-potential is the replacement of the strong Coulomb potential of

the nucleus and the effects of the tightly bounded core electrons by an effective ionic

potential acting on the valence electrons. In more strict sense, the pseudo-potential

method is to make a Hamiltonian including the pseudo-ion potential to reproduce the

same phase shift for the scattering problem of the real system.

First, we perform the DFT calculation for an isolated atom. Suppose that the

nucleus has a positive charge +Ze. After the calculation, we get the Kohn-Sham

energy and orbitals of core electrons, {εc} and {φc}, and valence electrons, {εv} and

{φv} of an isolated atom:

[Te + V all(r)] |φi〉 = εi |φi〉 . (2.20)

Then, we consider a Kohn-Sham equation as follows:

[Te + V all(r) + VR(r)] |φps〉 = εps |φps〉 , (2.21)

and

VR(r) |φps〉 =
∑
c

|φc〉 〈φc|F |φps〉 , (2.22)

where F is an arbitrary operator. Then, we can derive the {φv}, and {εv} from the

eigenfunction {φps}, and {εps} in the following procedures:

εps = εv, (2.23)
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2. DENSITY FUNCTIONAL THEORY (DFT)

and

|φv〉 = |φps〉 −
∑
c

|φc〉 〈φc|φps〉 . (2.24)

Proof )

First, we give a proof of εps = εv. We operate 〈φv| on Eq. (2.21), then we derive

εv 〈φv|φps〉 = εps 〈φv|φps〉 , (2.25)

because of 〈φv|VR = 0. Therefore, we can derive εps = εv, unless the φps is perpendic-

ular to all the {φv}. Usually, we exclude the possibility using the degree of freedom of

the arbitrary operator, F .

Next, we give a proof of the second relation, Eq. (2.24). When the relation εps = εv

holds, we show that the defined wave function |φ′v〉 in the right hand side of Eq. (2.24)

is an eigen function of the Eq. (2.20).

[Te + V all − εv]
∣∣φ′v〉 = −VR |φps〉 −

∑
c

(εc − εv) |φc〉 〈φc|φps〉

= −VR |φps〉 −
∑
c

|φc〉 〈φc|Te + V all − εv |φps〉

= −
∑
c

|φc〉 〈φc|F |φps〉+
∑
cc′

|φc〉 〈φc|φc′〉 〈φc′ |F |φps〉

= 0. (2.26)

�

Therefore, we can get the {φv} and {εv} from the Eq. (2.21), instead of the Eq. (2.20).

There are some advantages in the Eq. (2.21): we do not have to treat the Hamiltonian

including core-electron orbitals anymore. The potential from the core electrons are

included in the effective potential V all(r) + VR(r), and we call the potential ”pseudo-

potential”. Here, we show an example of pseudo-potential of silicon atom at F = ε− εc
(50). We estimate the behavior of the pseudo-potential as follow:

Vps |φps〉 = V all(r) |φps〉+
∑
c

|φc〉 〈φc| (ε− εc) |φps〉

= V all(r) |φps〉 −
∑
c

|φc〉 〈φc|H − ε |φps〉

≈ V all(r) |φps〉 −
∑
c

|φc〉 〈φc|V all |φps〉 . (2.27)
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r  (atomic unit)

Figure 2.3: Pseudopotential of silicon atom. Comparison between the ion potential,

V (r) = Z(r)
r , and pseudo-potential, Vps =

Zps(r)
r , from the Si+4 ion for the s-state.

Here, we have assumed that the potential energy is large enough to ignore the kinetic

energy and eigenvalue in the neighborhood of nucleus. In that region, the steep potential

from the nucleus is cancelled out considerably by the second term. In fact, it is clearly

seen in Fig. 2.3 that the pseudo-potential becomes shallow potential than the bare-ion

potential around the nucleus.

We use the pseudo-potential, which is made from the calculations of an isolated

atom, even in the calculations of extended systems. Thus, the ”transferability” is based

on an idea that core electrons are not affected by the environments. Remark that such a

pseudo-potential can be determined arbitrarily due to the arbitrary operator, F . Then,

we usually impose three conditions on the pseudo-potential to reduce the calculation

cost and to retain the transferability to different environments: (i) The pseudo-wave

function φps has no nodes within a core radius rc. (ii) φps(r) is equal to φv(r) outside

the core radius rc. (iii) The pseudo-potential Vps gives the same phase shift as the real

potential V all in the neighborhood of, not only at, the eigenvalue.
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2. DENSITY FUNCTIONAL THEORY (DFT)

2.5.3 Normconserving pseudo-potential

It is well known that the requirement (iii) is satisfied by ”Norm conserving” (51, 52)

condition. The Norm-conseriving condition is defined as follow:∫
r<rc

|φps(r)|2 =

∫
r<rc

|φv(r)|2. (2.28)

Remark that pseudo-potential Vps is a nonlocal operator; Vps = V all(r)+
∑

c |φc〉 〈φc| F̂ .

We rewrite the φc(r) as φc(r) = Rc(r)Ylm(θ, φ), where Rc(r) and Ylm(θ, φ) represent

the radial function and spherical harmonic function of the core electron, respectively.

Then we rewrite the pseudo-potential as follow:

vion
l (r) =

∞∑
l,m

|lm〉 vion
nonlocal,l(r) 〈lm|

=

lmax−1∑
l=0,m

|lm〉 vion
nonlocal,l(r) 〈lm|+

∞∑
l=lmax,m

|lm〉 vion
nonlocal,l(r) 〈lm|

'
lmax−1∑
l=0,m

|lm〉 vion
nonlocal,l(r) 〈lm|+ vion

local(r)

infty∑
l=lmax,m

|lm〉 〈lm|

= vion
local(r)− vion

local(r)

lmax−1∑
l=0,m

|lm〉 〈lm|+
lmax−1∑
l=0,m

|lm〉 vion
nonlocal,l(r) 〈lm|

= vion
local(r) +

lmax−1∑
l=0,m

|lm〉 (vion
nonlocal,l(r)− vion

local(r)) 〈lm|

= vion
local(r) +

lmax−1∑
l=0,m

|lm〉 v′ion
nonlocal,l(r) 〈lm| ,

where |lm〉 represents the spherical harmonic function, vion
nonlocal,l(r) represents a pseudo-

potential acting on an electron having the angular momentum l, vion
local,l(r) represents

a pseudo-potential acting on an electron having the angular momentum more than

lmax, v′ion
nonlocal,l(r) represents a remained pseudo-potential after removing the vion

local(r)

component from the vion
nonlocal,l(r). In this way, a pseudo-potential is composed of the

local part vion
local,l(r) and nonlocal part vion

nonlocal,l(r).

2.6 Underestimation of band gaps in LDA/GGA

In this section, we discuss a well-known problem in the LDA/GGA, that the LDA/GGA

underestimates energy gaps in semiconductors and insulators. For example, silicon(Si)
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is a semiconductor with band gap of 1.17 eV, but the calculated band gap by the GGA

is 0.61 eV, thus showing 48 % underestimation. You might think that band gap is a

quantity related to excited states. The DFT is only accurate for ground state properties,

hence the error in the band gap does not matter. The idea, however, is wrong. The

band gap is a well-defined ground-state property. Band gap, εgap, is formally defined

as follow:

εgap ≡ (E[N + 1]− E[N ])− (E[N ]− E[N − 1])

= −A+ I, (2.29)

where E[N ] is the total energy of the N -electron system, A represents the electron

affinity, and I represents the ionization energy. Therefore, the underestimation of the

band gaps calculated by the LDA/GGA is an error inherent in the approximations.

Failures of the LDA/GGA are occasionally discussed in terms of the self-interaction

error (SIE)(53, 54). An electron is under the electrostatic potential due to other elec-

trons. Yet the expression of the electrostatic potential in the LDA/GGA includes the

spurious interaction with the electron itself. When we consider the Hartree-Fock (HF)

exchange potential with Kohn-Sham orbitals, this spurious self-interaction is cancelled

by a term in the exchange potential. In the (semi)local expression of the exchange

potential in the LDA(GGA), however, this cancellation is incomplete so that each elec-

tron is affected by the self-interaction. Several schemes to correct SIE are proposed

and their capabilities have been examined for molecular systems(55, 56, 57, 58).

The SIE affects the band gaps substantially. In the DFT with the exact exchange-

correlation energy, the band gap is expressed as the difference between the highest

occupied Kohn-Sham level εN+1(N +1) of the (N +1)-electron system and its counter-

part of the N -electron system εN (N): i.e., ∆Eg = εN+1(N+1)−εN (N).(59, 60, 61, 62)

When we introduce a fractional electron system with N + f electrons as a mixed state

of real integer-electron systems, then the total energy E(N + f) becomes linear for

0 < f < 1 and shows discontinuity at the integer value N for finite-gap systems. Using

Janak theorem(63) which relates the Kohn-Sham level to the derivative of the total

energy as εN+1(N + f) = ∂E(N + f)/∂f , the linearity of E(N + f) leads to the con-

stant εN+1(N + f) as a function of f . In the (semi)local approximations, however, the

Kohn-Sham level εN+1(N + f) [εN (N − f)] increases (decreases) with increasing f due
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to the self-interaction, leading to the concave shape of E(N + f). This may cause an

underestimate of the energy gap.(58, 64, 65)

The HF approximation (HFA) is free from the self-interaction. Yet the calculated

band gaps in HFA are substantially overestimated due to the lack of the correlation

energy. Hence the hybrid functionals combining LDA or GGA with HFA may be

effective to break the limitation of the semilocal approximations. Recently several

hybrid functionals have got a lot of attention as a post-LDA/GGA. Here we show

three hybrid functionals: PBE0 (Perdew-Burke-Ernzerhof parameter-free) (48), HSE

(Heyd-Sucseria-Ernzerhof) (66), and LC (long-range corrected) (68) functionals.

The PBE0 hybrid functional is given by

Exc = EPBE
xc +

1

4
(EHF

x − EPBE
x ), (2.30)

leading to the mixing of 25 % HF exchange and 75 % PBE exchange, where we adopt

the PBE(47) as GGA functional.

Heyd, Sucseria, and Ernzerhof have proposed(66) a different hybrid functional in

which the long-range part of the HF-exchange energy is treated by the semilocal ap-

proximation in the DFT and the short-range part is calculated exactly. The actual

procedure is conveniently done by splitting the Coulomb potential as

1

r
=

erfc(ωr)

r
+

erf(ωr)

r
, (2.31)

and applying the first term only, i.e., the screened Coulomb potential, to the HF-

exchange energy. The second term to the exchange energy is calculated with the GGA.

Adopting the mixing ratio in PBE0, then the HSE hybrid functional becomes

EHSE
xc = EPBE

xc +
1

4
(EHF,SR

x − EPBE,SR
x ). (2.32)

EHF,SR
X is the Fock-type double integral with the screened Coulomb potential.

The HSE functional partly removes SIE by incorporating the HF-exchange energy

in the PBE functional. Yet the cancellation of the Hartree potential and the exchange

potential is absent in the long-range part. This may cause erroneous description of,

e.g., the Rydberg states in isolated polyatomic systems or properties of charge-transfer

systems. To remedy this point, application of the long-range part of the Coulomb
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Figure 2.4: Calculated band gaps obtained from different exchange-correlation function-

als: PBE (blank squares), HSE with ω=0.1 a−1B (green dots), and LC with ω=0.2 a−1B

(purple squares), plotted against experimental band gaps. Group I consists of materials

having the experimental gap less than 7 eV, while Group II is composed of materials with

the gap more than 7 eV. (Ref. (69))

potential to the HF-exchange energy is necessary (67). The long-range corrected (LC)

functional has been proposed based on this viewpoint (68), being expressed as

ELC
xc = EPBE

xc + (EHF,LR
x − EPBE,LR

x ), (2.33)

with EHF,LR
X being the Fock-type double integral with the long-range part of the

Coulomb potential [the second term of Eq. (2.31)].

Figure 2.4 is a summary of calculated band gaps by the PBE(GGA), HSE and LC

functionals. For the HSE and LC, the calculated results with the ω values: ω = 0.1

a−1
B for the HSE and ω = 0.2 a−1

B for the LC. It is clearly shown that the calculated

band gaps by the hybrid functionals, PBE0, HSE and LC, are in better agreement with

the experimental values than the PBE (GGA) approximation, indicating the promising

possibility of the hybrid functionals. It is clearly seen that the HSE is a good approxi-

mation for relatively small-gap materials and that the LC is a good approximation for
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relatively large-gap materials.

We discuss which functional is appropriate for this study in Sec. 3.2.

2.7 Parameters in this study

In this section, we describe our calculation details. We used in this study the plane-

wave-basis-set total-energy band-structure calculation code, TAPP(70, 71, 72), and

the linearlized-combination-of-atomic orbital (LCAO) calculation code, OpenMX (73,

74). Our calculations have been performed in the generalized gradient approximations

(GGA) (47, 48) in the density functional theory (DFT) (40, 41). Nuclei and core

electrons are simulated by either norm-conserving(49) pseudo-potentials in the TAPP

code.

We generate norm-conserving pseudo-potential to simulate nuclei and core elec-

trons, following a recipe by Troullier and Matins.(49) The core radius rc is an essential

parameter to determine transferability of the generated pseudo-potential. We have ex-

amined rc dependence of the calculated structural properties of benchmark materials

and adopted the pseudo-potentials generated with the following core radii in this paper:

0.85 Å for Si 3s, and 1.16 Å for Si 3p, 1.06 Å for Ga 4s and 4p, and 1.48 Å for Ga 4d,

0.64 Å for N 2s and 2p, 0.85 Å for C 2s and 2p, 1.06 Å for Al 3s, 3p, and 3d, 0.847 Å

for B 2s and 2p.
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3

Floating states in sp3-bonded

materials

In Sec. 3.1, we provide the calculational results of structural parameters, such as lattice

constants and total energies for each polytype of the six materials: SiC, AlN, BN, GaN,

diamond, and Si. Sec. 3.2 presents the results for electronic band structures for the

obtained structures. In Sec. 3.3, the mechanism of the band-gap variations is discussed

in detail. In that section, we have found a peculiar electron state, which we call floating

state. We have clarified the mechanism of substantial band-gap variation by considering

the floating state. In Sec. 3.4, we discuss why floating states are ubiquitous in sp3-

bonded materials. Sec. 3.5 is devoted to examine capability of the linear-combination-

of-atomic-orbital (LCAO) calculations in describing floating states.

3.1 Determination of structural parameters

In this section, we focus on three polytypes, called 2H, 3C, and 6H, of each material

to reveal correlation between their structures and electronic properties.

The parameters used in this study are followings: Appropriate choice of cutoff

energies Ecut in the plane-wave-basis set, which is related to hardness of the adopted

norm-conserving pseudo-potentials, is a principal ingredient to assure the accuracy of

the results. We have examined convergence of structural properties and band gaps

with respect to Ecut and reached the following well converged values with Ecut for each

material: the cut-off energy in the plane-wave-basis set is chosen to be 49 Ryd except
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3. FLOATING STATES IN SP 3-BONDED MATERIALS

for 64 Ryd for AlN and 81 Ryd for BN to assure the accuracy in the total-energy of 16

meV per molecular unit and that in the band gap of 10 meV. The remaining important

ingredient to assure our assessment is the sampling k points for the BZ integration. We

have adopted a unit cell of the 6H structure even for 2H and 3C structures to facilitate

the comparison among the polytypes. We have adopted the scheme by Monkhorst and

Pack in which BZ is divided by equally spaced mesh. After careful examination, we

have found that 10×10×2 sampling k points are enough to assure the accuracy of

the total energies and energy bands in the six materials. A structural optimization of

internal atomic coordinates has been performed using Hellmann-Feynman forces in the

unit cell. Our criterion for optimizing the internal coordinates is that the maximum

force acting on each atom should be less than 10−3 Ht/bohr.

At first, we have theoretically determined lattice constants in the hexagonal plane

and along the stacking direction, a and c in the GGA. The obtained a and the ratio

c/na of each polytype are listed in Table 3.1, where n represents the number of bilayers.

The differences of c/na among the polytypes are found to be extremely small, meaning

the distortion along the c-axis is quite small. Our calculated lattice constants agree

with experimental data available with an error of at most 2 %. Table 3.1 also shows the

calculated total energy differences (∆E) among the polytypes for SiC, AlN, BN, GaN,

Si, and C using the calculated structural parameters. The table includes some polytypes

not observed yet, .e.g, 6H-AlN. Yet, it is likely that these polytypes are synthesized

since the total energy difference is small, being in the range of 50 meV or less per

molecular unit. The most energetically favorable polytype in SiC is the 6H followed

by the 3C with the energy increase of 1.2 meV per SiC molecular unit. It is said that

4H is also one of the most energetically favorable polytypes. Yet, the 6H structure

is a often observed polytype in experiments, and our calculations show quite small

difference in total energy than that of 4H polytype by 0.1 meV. Then we discuss the

6H polytype in this study. The least energetically favorable polytype is 2H whose total

energy is higher than 6H by 7.1 meV per SiC. The obtained total energies are consistent

with the experimental facts that 3C-SiC and 6H-SiC polytypes are only synthesized by

Molecular Beam Epitaxy (MBE). We have found that, compared with other materials,

SiC exhibits smaller energy difference among polytypes. As for the other materials,

most stable structure of each material is 2H-AlN, 2H-BN, 2H-GaN, 3C-Si, and 3C-C,
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3.2 Electronic band structures

respectively. The most stable structures in other materials are commonly observed in

experiments.

3.2 Electronic band structures

Fig. 3.1 shows calculated electronic energy bands for polytypes of the six materials.

Remark that we have adopted a unit cell of the 6H structure even for 2H and 3C

structures to facilitate the comparison among the polytypes. From the figures, the

valence bands of the three polytypes resemble each other in each material. The tiny

differences come from the difference of the symmetries by which degenerate states in the

high-symmetry structure split in the low-symmetry structure. The valence-band top is

located at Γ point in all the polytypes in all the materials. In contrast, the conduction

bands are qualitatively different among polytypes in spite of their structural similarity

in the local atomic arrangement. In the SiC polytypes, the conduction-band minimum

(CBM) is located at K point in the 2H-structure, whereas it is at M point in the

3C-, and 6H-structure. The X point in the cubic Brillouin zone (BZ) is folded on

the M point in the hexagonal BZ. Furthermore, the lowest conduction band in the 3C

structure is isolated and shifts downwards substantially, making the band gap narrower

by 0.7 - 0.9 eV than those in the 6H and 2H polytypes. The calculated energy bands

for other compounds clearly show the same feature as in SiC, i.e., the CBM in the

3C-AlN, 3C-BN is located at M point, whereas that in the 2H-BN, and 2H-diamond

is located at the K point.

The calculated and experimental band gaps for the polytypes are given in Ta-

ble 3.2. Overall features of the calculated band gaps are in accord with the experimen-

tal values. As discussed in Sec. 2.6, it is clearly seen that the GGA underestimates

energy gaps by about 50% because of the shortcoming inherent in the GGA. If nec-

essary, the quantitative description of the energy gaps is possible using more sophisti-

cated schemes of the GW (84, 85, 86) for quasiparticle-self energy or HSE functional

(66, 69, 87, 88, 89, 90, 91) for the exchange-correlation energy. Yet, the relative differ-

ence in the energy gap calculated by the GGA among the polytypes is well reproduced,

i.e., calculated results show the band gap of the 3C-SiC is smaller than that of the 2H-

SiC by 0.936 eV, which corresponds to the experimental one, 0.93 eV. Therefore, in this
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3. FLOATING STATES IN SP 3-BONDED MATERIALS

Table 3.1: Calculated hexagonal lattice constant a and ratio c/na for different polytypes

labeled as either nH or nC (n = 3) of the various sp3-bonded semiconductors. Calculated

total energies per molecular unit are also shown. The values are relative to the energy of

the corresponding most stable structure. Hexagonality H (explained in Sec. 1.2) is also

listed.

Materials
a [Å] c/na

∆E [meV] H (%)
this work Expt. this work Expt.

2H-SiC 3.085 3.076 (Ref. (75)) 0.8217 0.8205 (Ref. (75)) 7.1 100

3C-SiC 3.091 3.083 (Ref. (76)) 0.8165 0.8165 (Ref. (76)) 1.2 0

6H-SiC 3.091 3.081 (Ref. (77)) 0.8180 0.8179 (Ref. (77)) 0 33

2H-AlN 3.117 3.110 (Ref. (78)) 0.8103 0.8005 (Ref. (78)) 0 100

3C-AlN 3.112 3.090 (Ref. (79)) 0.8165 0.8165 (Ref. (79)) 41.9 0

6H-AlN 3.112 − 0.8148 − 28.4 33

2H-BN 2.556 2.553 (Ref. (80)) 0.8252 0.8265 (Ref. (80)) 35.5 100

3C-BN 2.561 2.557 (Ref. (80)) 0.8165 0.8165 (Ref. (80)) 0 0

6H-BN 2.556 2.500 (Ref. (81)) 0.8203 0.8293 (Ref. (81)) 9.6 33

2H-GaN 3.255 3.189 (Ref. (82)) 0.8156 0.8130 (Ref. (82)) 0 100

3C-GaN 3.255 3.175 (Ref. (83)) 0.8165 0.8165 (Ref. (83)) 15.3 0

6H-GaN 3.255 − 0.8159 − 9.5 33

2H-Si 3.853 − 0.8238 − 22.3 100

3C-Si 3.863 3.863 (Ref. (83)) 0.8165 0.8165 (Ref. (83)) 0 0

6H-Si 3.858 − 0.8193 − 4.0 33

2H-C 2.503 − 0.832 − 50.9 100

3C-C 2.514 2.519 (Ref. (83)) 0.8165 0.8165 (Ref. (83)) 0 0

6H-C 2.508 − 0.8230 − 12.8 33
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3.3 Floating states and band-gap variation

study, we have adopted the GGA, which is verified to be accurate even quantitatively

to study the variation of the band gap among the polytypes.

From the Table 3.2, it has been found that the large band-gap variation is not

limited to the SiC polytypes. For AlN and BN, the energy gap decreases substantially

in the 3C structures by 0.9 eV and 0.8 eV, respectively. In the case of AlN, the

CBM at M point shifts downwards substantially, so that the transition between the

direct gap in the most stable 2H-structure and the indirect gap in the metastable 3C-

structure takes place. This result gives good agreement with the observed experimental

fact. In contrast, for the diamond polytypes, the band-gap decrease occurs not at the

3C-structure, but at the 2H-structure: the energy gap varies from 4.521 eV in the

6H-structure to 3.406 eV in the 2H-structure.

3.3 Floating states and band-gap variation

In this section, we show the microscopic mechanism of the band-gap variation. We have

found that peculiar electron states having a NFE-like character play important roles

in the band-gap variation. The peculiar electron states float in interstitial channels in

most semiconductors. The directions and shapes of the interstitial channels depend on

the crystal symmetry so that mysterious variation of the energy gaps in SiC polytypes

is naturally explained by considering the floating nature. We show the floating states

in the 3C structures in Sec. 3.3.1, and in the 2H structures in Sec. 3.3.2.

3.3.1 Floating states in 3C structure

Figures 3.2 (a) and (b) show the Kohn-Sham (KS) orbital at the CBM of the 3C-SiC on

(01̄1), and (110) plane, respectively, obtained in the GGA calculations. Surprisingly,

the orbital distributes not near atomic sites but extends, or floats, in channels along

〈110〉 direction. The orbital changes its sign along the 〈110〉 channel with the periodicity

of
√

2a0 ( a0: lattice constant) and has nodes on the atomic plane containing Si atoms,

thus avoiding atomic sites and distributing solely in the internal space. By examining

the irreducible representation at M point, it is found that this phase variation of the

KS orbital is allowed only at M point in the hexagonal BZ.

Figure 3.2(c) shows the contribution from the kinetic-energy,

εkin = 〈ϕi| − ∇2/2|ϕi〉, (3.1)
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Figure 3.1: Band structures calculated by the GGA. The energy of the valence-band top

is set 0. In these calculations, we adopted supercell calculations, so that the number of

electrons is equal to each other for easy comparison and they have the same Bullirouin

zone. Note that 3C structures are also calculated in the hexagonal supercell, thus the X

point in cubic cell being folded to M point.
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3.3 Floating states and band-gap variation

Table 3.2: Calculated, εgap, and experimental, εexpt., energy gaps of the 2H, 3C and 6H

structures for various sp3-bonded semiconductors. Hexagonality is also listed. Experimen-

tal data are taken for SiC from Ref. (92), for 2H-AlN from Ref. (93), for 3C-AlN from

Ref. (94), for 3C-BN from Ref. (95), for GaN, Si, and diamond from Ref. (83).

Materials εgap εexpt. H

(eV) (eV) (%)

2H-SiC 2.355 (indirect) 3.33 (indirect) 100

3C-SiC 1.419 (indirect) 2.40 (indirect) 0

6H-SiC 2.077 (indirect) 3.10 (indirect) 33

2H-AlN 4.233 (indirect) 6.23 (direct) 100

3C-AlN 3.328 (indirect) 5.34 (indirect) 0

6H-AlN 3.817 (indirect) − 33

2H-BN 5.251 (indirect) − 100

3C-BN 4.487 (indirect) 6.4 (indirect) 0

6H-BN 5.190 (indirect) − 33

2H-GaN 1.622 (direct) 3.28 (direct) 100

3C-GaN 1.489 (direct) 3.47 (direct) 0

6H-GaN 1.533 (indirect) − 33

2H-Si 0.477 (indirect) − 100

3C-Si 0.660 (indirect) 1.17 (indirect) 0

6H-Si 0.639 (indirect) − 33

2H-diamond 3.406 (indirect) − 100

3C-diamond 4.246 (indirect) 5.48 (indirect) 0

6H-diamond 4.521 (indirect) − 33
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Figure 3.2: (a), (b) Contour plots of the calculated Kohn-Sham(KS) orbital of the con-

duction band minimum at M point in the 3C-SiC on (01̄1) and (110) plane, respectively.

The M point which we discuss corresponds to X = (0, 0, 2π/a0) in cubic BZ. (c) Energy

analyses of KS orbitals in 3C-SiC. The kinetic-energy contribution, εkin = 〈ϕi|−∇2/2|ϕi〉,
and the Hartree-energy contribution, εH = 〈ϕi|

∫
ρ(r′)/|r − r′|dr′|ϕi〉, to the orbital ener-

gies of each KS state for M point in 3C-SiC. The abscissa represents the ith KS state from

the valence-band bottom and the 25th state is the conduction-band minimum. (d), Con-

tour plots of the effective potential in the KS equation. The brown and white balls depict

Si atoms and C atoms, respectively. In these contour plots, the mark ’X’ represents the

tetrahedral (Td) interstitial sites surrounded by Si atoms, and the mark square represents

the Td interstitial sites surrounded by carbon atoms.
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3.3 Floating states and band-gap variation

(a) (b) 

-1.9

0.0

1.0

Figure 3.3: Contour plots of the calculated Kohn-Sham(KS) orbital of the fourth-lowest-

conduction-band minimum at Γ point in the 3C-SiC on (110) (a) and (111) (b) plane. In

these contour plots, the brown and white balls depict Si atoms and C atoms, respectively.

The mark ’X’ represents the tetrahedral (Td) interstitial sites surrounded by Si atoms.

and that from the Hartree-energy,

εH = 〈ϕi|
∫
ρ(r′)/|r− r′|dr′|ϕi〉, (3.2)

to the orbital energy of each KS state at M point in the 3C-SiC. It is clear that the

floating state gains the kinetic energy and the Hartree energy, compared with other

states. The kinetic-energy gain obviously comes from the extended orbital distribution

in the 〈110〉 channel. The Hartree-energy gain, on the other hand, comes from ionic

character of SiC. The electronegativity of C, 2.55, is larger than that of Si, 1.90, caus-

ing the electron transfer from Si to C in SiC. Our calculations indeed show that the

electrostatic potential at the tetrahedral (Td) interstitial site surrounded by 4 Si atoms

is lower than that at another Td site surrounded by 4 C atoms by 2.56 eV (See Fig.

3.2(d)). The floating state has the maximum amplitude at the Si-surrounded Td sites,

thus floating in the 〈110〉 channel. These energy gains cause the band-gap narrowing

at M point.

The floating-state orbital with its sign unchanged along the 〈110〉 channel is also

possible. Such in-phase state is allowed, however, not at M point but at Γ point.

Furthermore, the in-phase orbital has amplitudes inevitably at atomic sites, thus mixing
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Figure 3.4: Component of wave function outside the s- and p-atomic orbitals in the 3C-

SiC. The residual norm is represented by the color and the size of the dots. The energy of

the valence-band top is set 0. The residual norm is defined as Eq. (3.3) in the text.

with mainly s-character orbitals. We have indeed found such hybridized states at Γ

point as shown in Fig. 3.3(a) and (b): The fourth lowest conduction-band at Γ which

is the lowest conduction-band state at L point in the original cubic BZ is the anti-

bonding state of the in-phase floating state and s orbitals of C. This mixing with

atomic orbitals makes the resultant hybridized state shift upwards due to the kinetic-

and Hartree-energy increase.

In order to identify the floating electron bands, it is useful to calculate the residual

norm of the wave function after projecting it to the s- and p-atomic orbitals. The

quantity is calculated in the following procedure. Remark that atomic orbitals cen-

tered on different lattice sites are not orthogonal. Therefore, from the pseudo-atomic

orbitals φisolated
s and φisolated

p of isolated silicon and carbon atoms, we have composed

orthonormal basis set {φatom
i } with the Gram-Schmidt orthonormalization. Then we

have calculated the squared residual norm, which is defined as follows:∣∣∣∣∣|φnk〉 −∑
i

∣∣φatom
i

〉 〈
φatom
i |φnk

〉∣∣∣∣∣
2

(3.3)
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3.3 Floating states and band-gap variation

for each k point, and each band n. Figure 3.4 shows the calculated squared norm of

the residual components for the 3C-SiC. It is clearly shown that the valence bands are

well described in the linear combination of the atomic s- and p-orbitals. The squared

norm of the residual wave function at the valence-band top is only 0.09. On the other

hand, as for the electron state at the CBM, the residual norm is as much as 0.33.

It is clear that the floating state is difficult to be described by the s-, and p-atomic

orbitals only. Yet, it is also found that the 66% component of the CBM is explained

by the atomic orbitals. More detailed discussions are in Sec. 3.5.1. Furthermore, it is

also clearly seen in Fig. 3.4 that the wave function of the CBM at K point has also

floating nature; i.e., 0.37. It extends along the [11̄0], [101̄], and [011̄] channels on (111)

plane and mixes with C atomic orbitals (See Figure 3.5). Fig. 3.5(d) shows that the

kinetic-energy and the Hartree-energy gains for the floating states at K point are 6.8

eV and 9.1 eV, respectively, compared with the valence-band top state, which is of

usual atomic-orbital character.

The existence of floating states is expected in other sp3-bonded compound semi-

conductors, 3C-AlN, 3C-BN, and 3C-GaN. Fig. 3.6 shows the KS orbitals at the CBM

at M and Γ point in these materials. The KS orbitals distribute broadly around the

Td interstitial sites and the cation sites, exhibiting the floating character. These char-

acteristics are similar to those of the floating states existing in the 3C-SiC.

Below we discuss why large band-gap decrease does not occur in 2H and 6H struc-

tures of compound semiconductors. We explain the reasons by considering the channel

length and charge transfer. As mentioned above, in the 3C structures, the 〈110〉 chan-

nels play important roles in the variations in energy gaps. A similar structural feature

is observed in 6H structure. There is a channel with the length of about 7a0/2
√

2 along

〈2̄201〉 which is slanted relative to [0001] direction. At the hexagonal-stacking layer, the

slanted channels are closed. Hexagonal-stacking layers play as a wall of the channels,

thus interrupting the floating character of electrons in the slated channels. Due to the

limited length in the channel, the kinetic energy gain is smaller than in 3C structure

and the energy gap in 6H structure become wider [Fig. 3.1]. We have indeed found

that the KS orbital of the CBM at M point in 6H-SiC floats in this channel [Fig. 3.7].

The contour plots (a) and (b) show that the floating state at M point distributes in

the finite-length slanted 〈22̄01〉 channels broadly. The contour plots (c) and (d) show
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Figure 3.5: Contour plots of Kohn-Sham (KS) orbitals in 3C-SiC (a), (b), and (c).

Contour plots of squared KS orbitals at the conduction-band minimum (CBM) at K point

are shown on (110) plane. The CBM state is triply degenerate since we use a unit cell

being three times longer along (111) direction. Burgundy and white balls depict Si and

C atoms, respectively. Each state distributes in three channels along [11̄0], [101̄], and

[011̄] directions, thus floating in (111) plane. Atomic orbitals of C atoms contribute to

this state with different phases. (d): Energy analyses of KS orbitals in 3C-SiC. The

kinetic-energy contribution, εkin = 〈ϕi| − ∇2/2|ϕi〉, and the Hartree-energy contribution,

εH = 〈ϕi|
∫
ρ(r′)/|r − r′|dr′|ϕi〉, to the orbital energies of each KS state for M point in

3C-SiC. The abscissa represents the ith KS state from the valence-band bottom and the

25th state is the CBM.
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Figure 3.6: Contour plots of the calculated Kohn-Sham (KS) orbitals of the conduction-

band minimum at M (left and central panels) and Γ point (right panel) for the 3C-AlN

(a), 3C-BN (b), and 3C-GaN (c) on (01̄1) (left, right panel) and (110) (central panel)

plane. The M point which we discuss corresponds to X = (0, 0, 2π/a0) in cubic BZ. The

mark ’X’ depicts the tetrahedral (Td) interstitial sites surrounded by cations. In Fig. (a),

purple(large) and white(small) balls depict aluminum and nitrogen atoms, respectively. In

Fig. (b), green and white balls are boron and nitrogen atoms, respectively, in Fig. (c),

green and white is gallium and nitrogen atoms, respectively.
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3. FLOATING STATES IN SP 3-BONDED MATERIALS

the floating state at K point. The floating state clearly extends the horizontal chan-

nels broadly. They resemble the corresponding KS orbitals in 3C-SiC. The relations

between the channel length and band gap is discussed in Sec. 5.1 in more details.

Next we refer to the case of the 2H structure. As mentioned above, charge transfer

plays important roles in the substantial band-gap decrease in the 3C structures. Due

to the electron transfer from silicon to carbon, the 〈110〉 channels are surrounded by

positive Si atoms, and cause the energy level of the floating state lower. In contrast,

in the 2H-structure such a cation-surrounded channel is absent. The internal space

surrounded by cations overlaps considerably with that by anions in the 2H structure

[Fig. 3.8]. The cation-surrounded interstitial site is very close to the anion-surrounded

one with the separation of 1/3 d, where d is the bond length between silicon and carbon

atoms. In fact, the electrostatic potential at the cation-surrounded interstitial sites is

almost the same as that at anion-surrounded ones within 0.1 eV. Therefore, in the 2H

structures, charge transfer doesn’t cause the substantial band-gap shift.

Next we discuss why the elementary semiconductors do not exhibit the energy-gap

decreases in the 3C polytype. There is no charge transfer in the 3C-Si and 3C-diamond.

This means that these systems lack one reason for the decrease of energy gap. Yet, even

in elemental semiconductors, the floating states exist although they are not necessarily

at the CBM. We have examined cubic Si and C and indeed found the floating states.

For 3C-Si, Fig. 3.9(a) shows the KS orbital of the CBM at M point (X point in

cubic BZ). We have found this state has the bonding character of the floating and

the atomic-orbital states. From the tight-binding picture, the CBM at M point is

the anti-bonding state of the s orbital and the neighboring p orbital extending along

〈001〉 direction. This state is mixed with the floating state and thus the KS orbital

distributes in the 〈110〉 channel. The KS orbital of the valence-band-bottom state at

Γ is shown in Fig. 3.9(b). Basically it is the bonding state of s orbitals, but extends in

the interstitial region substantially: The calculated amplitude at the interstitial Td site

is 23 % of the maximum amplitude in sharp contrast with the valence-band-top state

which is the bonding state of p orbitals with the amplitude at Td site being about 1 %

of the maximum value. Hence the valence-band-bottom state is obviously the bonding

state between s orbitals and the floating state. The KS orbital of the anti-bonding

counterpart which is located at 7.81 eV above the valence-band top, i.e., above the

vacuum level, is shown in Fig. 3.9(c), clearly exhibiting the floating character.
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Figure 3.7: Contour plots of the calculated Kohn-Sham (KS) orbitals of the conduction-

band minimum at M point [(a) and (b)], and at K point [(c) and (d)] for 6H-SiC on (112̄0)

[(a) and (c)] and (0001) [(b) and (d)] plane. The brown and white balls depict Si atoms

and C atoms, respectively. The mark ’X’ represents the tetrahedral (Td) interstitial sites

surrounded by Si atoms.
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(a) 3C-SiC (b) 2H-SiC

Figure 3.8: Sketches of two tetrahedral (Td) interstitial sites in the 3C-polytypes (a),

and the 2H-polytypes (b): One is surrounded by 4 cations and the other is by 4 anions.

The blue balls represent cations, and the red ones anions. In the 3C-polytype (a), the

cation-surrounded interstitial site is spatially separated from the anion one. On the other

hand, they overlap each other in the 2H-polytype.
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Figure 3.9: Contour plots of the KS orbitals in 3C-Si. (a) Contour plot on (110) plane

of the conduction-band minimum at M. The sp orbitals mixed with the floating state

distributed in 〈110〉 channel. (b) Contour plot on (110) plane of the valence-band minimum

state at Γ. The state is mainly of s bonding character but extends in the interstitial channel

region. (c) Contour plot on (110) plane of the conduction-band state at Γ located at 7.81

eV above the valence-band top.
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3.3 Floating states and band-gap variation

3.3.2 Floating states in 2H structure

The floating state at M point in the 3C-polytypes distributes along the 〈110〉 channel

which is slanted relative to [111] direction. In the 2H structure, such a slanted channel

is absent. Instead, there are channels along 〈112̄0〉 and 〈0001〉 directions. We find that

the CBM at K point in the 2H structure floats in the 〈112̄0〉 channel (Fig. 3.10(a)).

This floating state distributes solely in the 〈112̄0〉 channel with its phase changing

consecutively by exp(i2π/3), thus avoiding the atomic sites on (0001) planes. It is

also found that the floating state distributes closer to the planes of positively-charged

Si atoms to gain the electrostatic energy. The phase change of the floating orbital

along this channel is compatible with the symmetry of the Bloch state at K point.

Analyses of the KS orbital energies shown in Fig. 3.10(b) clearly show that the energy

gain comes from the kinetic- and the Hartree-energy parts. Fig. 3.10(c) shows that

the residual norm of the wave function without s- and p-atomic orbitals [Eq. 3.3]. A

similar tendency is seen in the figure as that in the 3C-SiC. It is clearly shown that

the valence bands are well described in the linear combination of the atomic s- and p-

orbitals. The residual norm of the wave function at the valence-band top is only 0.08.

On the other hand, as for the CBM, the residual norm is as much as 0.40. Yet, it is

found that the 60% component of the CBM is explained by the atomic orbitals. More

detailed discussions are in Sec. 3.5.2. According to the result, the wave function of the

CBM at M point has also floating nature; i.e., 0.35.

Diamond polytypes show substantial band-gap decrease in the 2H structure, not

in the 3C structure. We have expected the existence of floating state in them, and

have investigated the mechanism. Fig. 3.11(a), (b) and (c) show the KS orbital at the

CBM of the 2H-diamond. The KS orbital also distributes not near atomic sites, but

floats in internal space. Fig. 3.11(d) shows the residual norm of wave function after

the projection to the s-, and p-atomic orbitals. As much as 0.37 are floating character

at the CBM in the 2H-diamond, while it is only 0.04 at the valence-band top. This

fact shows that this KS orbital at the CBM does not consist of atomic orbitals too.

The maximum amplitude is at the axis of the 〈0001〉 channels, and the floating state

distributes in the horizontal channels. We have found that the floating state induces

band-gap variations also in this system. In order to clarify the reason for energy gain

of the floating state, we show the energy analyses of KS orbitals at K point in the
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Figure 3.10: Kohn-Sham(KS) orbital of the conduction-band minimum (CBM) at K

point of 2H-SiC. The burgundy and the white balls depict Si and C atoms, respectively.

The contour plot of the squared KS orbital on (11̄00) plane is shown (a). Energy Analyses

of KS orbitals in the 2H-SiC (b). The kinetic-energy contribution εkin = 〈ϕi| − ∇2/2|ϕi〉
and the Hartree-energy contribution εH = 〈ϕi|

∫
ρ(r′)/|r− r′|dr′|ϕi〉 to the orbital energy

of each KS state for K point in the 2H-SiC. The abscissa represents the i-th KS state from

the valence-band bottom and the 25-th state is the CBM. (c)The residual norm in the

2H-SiC is represented by the color and the size of the dots. The residual norm is defined

as Eq. (3.3) in the text.
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Figure 3.11: Isosurface (a) at its value of 90% of maximum value and contour plots (b)(c)

of the calculated Kohn-Sham (KS) orbital at the conduction band minimum at K point in

the 2H-diamond on (0001) and (11̄00) plane, respectively. The blue balls depict C atoms.

(d)The residual norm is represented by the color and the size of the dots. The residual

norm is defined as Eq. 3.3 in the text. (e)Energy analyses of KS orbitals in 2H-diamond.

The kinetic-energy contribution εkin and the Hartree-energy contribution εH to the orbital

energy of each KS state for K point. The abscissa represents the ith KS state from the

valence-band bottom and the 25th state is the conduction-band minimum.
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3. FLOATING STATES IN SP 3-BONDED MATERIALS

Fig. 3.11(e). According to the figure, there is a similar tendency to that of the 3C-SiC.

Floating state reveals the kinetic energy gain by spreading in the channels broadly.

Another energy gain is Coulomb energy gain, because the floating state distributes

far from atomic nuclei, where many electrons distribute. In addition, we have found

that the electrostatic potential from the ions energy gain plays important roles in the

decrease of the energy gap in the 2H-diamond.

There are structural difference around the interstitial sites between the 3C and

2H structure. In fact, the interstitial site in 2H structure is surrounded by six nearest

neighbor atoms, and six next nearest neighbor atoms. In contrast, interstitial site in the

3C polytype is surrounded by four nearest neighbor, and three next neighbor atoms.

That is, in the 2H polytypes, the number of neighbor atoms around the interstitial

sites is large compared with other polytypes. This structural difference makes the

electro-static potential at the interstitial sites in the 2H structure lower than that in

the 3C by 0.589 eV in diamond. That value corresponds to the band-gap variation in

the 2H polytype, 0.8 eV. The relation between the number of neighbor atoms and the

electro-static potential is discussed in detail in Sec. 4.1.

We then expect that the existence of the floating states is common to the 2H

polytypes in most covalent semiconductors. We have therefore examined 2H-SiC, 2H-

AlN, 2H-BN, 2H-GaN and 2H-Si. Fig. 3.12 shows the CBM at K point for them. We

clearly see the floating states. In-phase floating state also exists at the CBM of Γ point

in 2H-AlN, and 2H-GaN [Fig. 3.13]. Due to the stronger ionicity in III-V compound

semiconductors, the extension of the KS orbital to the cation sites makes the energy

of the CBM at Γ point lower in AlN and GaN. Owing to the competition with the

electrostatic energy gain from the cation tetrahedron which makes the energy of the

floating state at M -point low, the transition between the direct gap in 2H structure

and the indirect gap in 3C structure takes place for AlN.

3.4 Packing efficiency and floating state

It is thought that there is no space to allow ”floating” states in condensed matter. Yet,

the appearance of the conduction-band states which float in particular channels in sp3-

bonded materials is a consequence of the existence of the internal space. It is noteworthy

that the packing efficiency, p, of the sp3-bonded structure is 0.34, being extremely small
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(d) GaN

(b) AlN

(c) BN

(a) SiC

(e) Si

0.0

1.0

Figure 3.12: Contour plots of the calculated Kohn-Sham(KS) orbitals of the conduction-

band minimum at K point for 2H-SiC (a), 2H-AlN (b), 2H-BN (c), 2H-GaN (d), and

2H-Si on (11̄00) (left panel) and (0001) (right panel) plane. In Fig. (a), the brown and

white balls depict silicon and carbon atoms, in Fig. (b), the pink and sky blue balls are

aluminum and nitrogen atoms, in Fig. (c), green and white balls are boron and nitrogen

atoms, in Fig. (d), green and white are gallium and nitrogen atoms, respectively, and in

Fig. (e), the blue balls are silicon atoms.
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Figure 3.13: Contour plots of the calculated Kohn-Sham(KS) orbital at the conduction-

band minimum at Γ point in the 2H-AlN on (0001)(left panel) and (112̄0)(right panel)

plane, respectively. The pink and sky blue balls depict aluminum and nitrogen atoms,

respectively.

compared with other crystal structures: p = 0.52 for simple cubic, p = 0.68 for body-

centered cubic, p = 0.74 for face-centered cubic and p =0.74 for hexagonal close-packed

structures, respectively. It has been concluded that the existence of the floating states

is common to most sp3-covalent semiconductors. In addition, the difference in the

electro-negativity between the constituent atoms causes particular Td interstitial sites

energetically favorable.

3.5 Comparison with LCAO calculations

The focus of this section is on the capability of describing the floating states by LCAO

calculations. LCAO calculation is one of the simplest and most widely used schemes to

analyze the electron states. The spirit is based on an idea that electrons generally have

their own atomic-orbital characters even in the condensed matter and thus produce

various physical and chemical properties. Thus, LCAO calculation uses atomic orbital

as a basis function to describe the electron states. Therefore, it is thought that rela-

tively small basis set is enough to provide reasonable results. In sp3-bonded materials,

however, floating state is ubiquitous in conduction bands, as described above. It is

nontrivial whether the LCAO calculations describe the floating states or not. We have
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3.5 Comparison with LCAO calculations

investigated the capability of the LCAO calculations in describing the floating nature

in this section.

3.5.1 Floating states in 3C polytype calculated by LCAO basis sets

We have used OpenMX code to perform LCAO calculations. In the OpenMX code

(73, 74), the LCAO basis are generated by introducing a cutoff radius at which the

potential well cut the tail of the atomic orbitals. In this scheme, the accuracy of the

results is determined by two important parameters: a cutoff radius and the number of

basis orbitals. The cutoff radius represents the spread of basis orbitals, which implys a

larger cutoff radius and larger number of basis orbitals provide more accurate results.

We have performed the LCAO calculations, changing the number of basis orbitals. We

have used two kinds of cutoff radii in this work: (i) larger cutoff radii, and (ii) smaller

ones. (i) The larger cutoff radii for Si is 4.76 (Å), and for C is 5.29 (Å), (ii) smaller ones

for Si is 2.91 (Å), and for C is 2.65 (Å). The number of basis orbitals is the following:

(a) the minimum basis set: 3s, and 3p of Si, and 2s, and 2p of C, (b) the more accurate

basis set: 3s, 3p, and 3d of Si, and 2s, and 2p of C, and (c) the most accurate basis

set: 3s, 3p, 3d, 4s, 4p, 4d, and 4f , 5s, and 5p of Si, and 2s, 2p, 3s, 3p, 3d, 4s, and

4p of C. Other calculation conditions are the same as those in the plane-wave-basis-set

calculations.

Table 3.3 shows the total energies, Etot, calculated by the LCAO basis sets. In

the LCAO calculations, KS orbitals are expanded by the atomic orbitals, and the

total energy behaves under the variation principle. In fact, the convergence of total

energy with respect to the number of basis orbitals gives an indicator, representing the

calculation accuracy. From the table, larger-cutoff radii and larger number of basis

orbitals give more accurate results as we expect.

Fig. 3.14 shows the calculated band structures and KS orbital of the CBM at M

point with the larger cutoff radii. From the figures, the valence bands resemble each

other, regardless of the number of basis orbitals. In contrast, the conduction bands are

changed sensitively depending on the number of basis orbitals.

From the Figure 3.14(a), the CBM shifts upward by 2.01 eV compared with Fig. 3.14(0),

indicating the incompleteness of the atomic-orbital basis. The KS orbital at the CBM

is quite different from the plane-wave-basis one. It is understood clearly that the orbital

in Fig. 3.14(a) consists of the anti-bonding orbitals of carbon-s and silicone-pz orbitals.
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3. FLOATING STATES IN SP 3-BONDED MATERIALS

Table 3.3: Total energies, Etot, calculated by the LCAO basis sets for 3C-SiC in unit of

eV per molecular unit.

Index basis sets Etot

(eV)

larger cutoff radii

(a) Si-3s, 3p, C-2s, -2p −269.013

(b) Si-3s, -3p, -3d, C-2s, -2p −270.592

(c) Si-3s, -3p, -3d, -4s, -4p, -4d,

-4f , -5s, -5p, C-2s, -2p,

-3s, -3p, -3d, -4s, and -4p −271.142

smaller cutoff radii

(a) Si-3s, 3p, C-2s, -2p −268.621

(b) Si-3s, -3p, -3d, C-2s, -2p −269.157

(c) Si-3s, -3p, -3d, -4s, -4p, -4d,

-4f , -5s, -5p, C-2s, -2p,

-3s, -3p, -3d, -4s, and -4p −271.086
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Figure 3.14: Energy bands and the Kohn-Sham(KS) orbitals at the conduction-band min-

imum of the 3C-SiC by plane-wave-basis set Fig.(0) and by the LCAO basis sets (a)(b)(c)

with larger cutoff radii (see text) on (01̄1) (left) and (110) (right) plane, respectively. The

brown and white balls depict Si atoms and C atoms, respectively. The mark ’X’ represents

the tetrahedral (Td) interstitial sites surrounded by Si atoms.
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The result is consistent with a result by tight-binding model, in which the tail of the p

orbitals extend to the interstitial region. The maximum amplitude is, however, at the

carbon atomic sites in contrast with Fig. 3.14(0) where the maximum amplitude of the

state obtained in the plane-wave-basis set is at the tetrahedral, Td, interstitial sites. In

the LCAO result, the amplitude at the Td site is 62.3 % of the amplitude at the atomic

sites. As mentioned in the Sec.3.3.1, the 66% of the KS orbital at the CBM is atomic

orbital component, and the LCAO results seem to resemble the plane-wave-basis one.

If we use more extended atomic orbitals as basis functions, then the floating nature

may be reproduced.

We also present the LCAO results increasing the number of basis orbitals in Fig. 3.14(b),

and (c). The energy gaps in Fig. 3.14(b), (c) are 1.56 eV, and 1.38 eV, respectively.

This shows that even the LCAO calculation including Si-3d orbitals as a basis set is still

insufficient. The energy level of Si-3d orbital is much higher than that of Si-3p orbital

by 8.33eV. The KS orbital at the CBM resembles that by the plane-wave-basis set in

(b) and (c). These results reproduce the location of the maximum amplitudes properly.

Yet, this shows that we need to use more atomic orbitals as a basis set than our simple

expectation, when we perform the LCAO calculations for sp3-bonded materials.

3.5.2 Floating states in 2H polytype calculated by LCAO basis sets

As shown above, floating states exist also in the 2H polytypes. Therefore, we have

also performed the LCAO calculations for the 2H-SiC, and the 2H-diamond with the

OpenMX code.

We have performed the LCAO calculations, changing the cutoff radii, and the num-

ber of basis orbitals. The cutoff radii used in this work are followings: For the calcula-

tions of 2H-SiC, the same as those of the 3C-SiC above. For 2H-diamond, the larger

cutoff radius for C is 5.29 (Å), and smaller one for C is 2.65 (Å). The number of basis

orbitals is following: (a) the minimum basis set: C-2s, and -2p, (b) the more accurate

basis set: C-2s, -2p, -3s, -3p, and -3d, and (c) the most accurate basis set: C-2s, -2p,

-3s, -3p, -3d, -4s, -4p, and -4d.

Table 3.4 shows the calculated total energy. It is found that the minimum basis set

yields 1.077 (1.222) eV higher total energy in each cutoff radii, compared with the most

accurate basis set. For the larger cutoff radii, it is clearly seen that the total energy

is improved by using the basis set including more high-energy Si-3d orbitals as a basis
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Table 3.4: Total energies, Etot, calculated by the LCAO basis sets for 2H-SiC in unit of

eV per molecular unit.

Index basis sets Etot

(eV)

larger cutoff radii

(a) Si-3s, 3p, C-2s, -2p −134.490

(b) Si-3s, -3p, -3d, C-2s, -2p −135.296

(c) Si-3s, -3p, -3d, -4s, -4p, -4d,

-4f , -5s, -5p, C-2s, -2p,

-3s, -3p, -3d, -4s, and -4p −135.567

smaller cutoff radii

(a) Si-3s, 3p, C-2s, -2p −134.317

(b) Si-3s, -3p, -3d, C-2s, -2p −134.601

(c) Si-3s, -3p, -3d, -4s, -4p, -4d,

-4f , -5s, -5p, C-2s, -2p,

-3s, -3p, -3d, -4s, and -4p −135.539

55



3. FLOATING STATES IN SP 3-BONDED MATERIALS

K K

K K

K K

K K

0.0

1.0

Figure 3.15: Energy bands and squared Kohn-Sham(KS) orbital of the 2H-SiC calculated

in the GGA by plane-wave-basis set Fig.(0) and by the LCAO basis sets (a)(b)(c) with

larger cutoff radii (see text). In the central panel, isovalue surface of the KS orbital at

the conduction-band minimum viewed from the [0001] direction at its value of 80% of the

maximum amplitude, and in the right panel, contour plot of the same orbital on the (11̄00)

plane.The brown and white balls depict Si atoms and C atoms, respectively.
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Figure 3.16: Energy bands and squared Kohn-Sham(KS) orbital of the 2H-SiC calculated

in the GGA by plane-wave-basis set Fig.(0) and by the LCAO basis sets (a)(b)(c) with

smaller cutoff radii (see text). In the central panel, isovalue surface of the KS orbital at

the conduction-band minimum viewed from the [0001] direction at its value of 80% of the

maximum amplitude, and in the right panel, contour plot of the same orbital on the (11̄00)

plane.The brown and white balls depict Si atoms and C atoms, respectively.
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set. On the other hand, as for the smaller cutoff basis set, including the Si-3d orbitals

as a basis set is still poor to describe the total energy, i.e., 0.938 eV higher than the

most accurate basis set.

1.0

0.0

(a)       (b)

Figure 3.17: Contour plots of squared Kohn-Sham(KS) orbitals of the 2H-SiC by LCAO

basis sets (a) with larger cutoff radii, and by plane-wave-basis set (b). In theses panels,

contour plots of the squared KS orbital at the conduction-band minimum on the (112̄0)

plane. The brown and white balls depict Si atoms and C atoms, respectively.

Fig. 3.15 shows the calculated band structures using the larger cutoff radii, and

Fig. 3.16 using the smaller cutoff radii. For the larger cutoff radii, it is found that

valence bands resemble each other. On the other hand, as for the minimum basis set

(Fig. 3.15(a)), qualitative features of the conduction bands are substantially different

from those obtained with the plane-wave basis set as shown in Fig. 3.15(0): The CBM

is at some point between Γ and M in the LCAO basis, whereas it is at K point in

the plane-wave basis. The band gap in the LCAO is 2.207 eV higher than that by the

plane-wave-basis set. The floating nature of the state which is clearly shown in the

center and right panels of Fig. 3.15(0) obtained in the plane-wave-basis-set calculations

are totally lacking in this LCAO-basis-set calculations. In a tight-binding model, the

conduction-band bottom at K point is the anti-bonding state of p orbitals extending

in the (0001) plane. The squared KS orbitals shown in the center and right panels of

(a) are in accord with this picture. The wave function at lowest-conduction band at K

point has the maximum amplitude at the carbon sites, showing no floating character.

This atomic-orbital nature is clearly seen in Fig. 3.17 where the contour plots of the
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3.5 Comparison with LCAO calculations

same orbital on the (112̄00) plane obtained in LCAO calculations are shown. In the

LCAO calculations, the CBM consists of 57.4 % of Si-3p, and 42.5 % of C-2p. On the

other hand, the floating state distributes closer to the planes of positively-charged Si

atoms to gain the electrostatic energy [Fig. 3.17(b)].

Even if we include the Si-3d atomic orbitals as a basis set (b), the band gap is

3.134 eV, much larger by 0.779 eV. The KS orbital at the CBM at K point extends

to the interstitial sites to some extent, but still the maximum amplitude is at atomic

sites, silicon sites. Using the most accurate basis set (c), it is found that the wave

function looks like the plane-wave one. It is found that floating nature is quite difficult

to produce by the conventional LCAO calculation. The band gap is 2.34 eV, in good

agreement with the value by the plane-wave-basis set, 2.355 eV. In the case of smaller

cutoff radii, the minimum basis set is poor to describe the band structure as well. The

band gap is 4.923 eV, much larger than that using the plane-wave-basis set, 2.355 eV.

For the basis set (b), the KS orbitals seem to have the floating character, but their

band gaps are 3.115 eV, still larger than that calculated by plane-wave-basis set, 2.355

eV. The band gap calculated by the LCAO using the most accurate basis set shows

2.26 eV, which accords with that by plane-wave-basis set. We have found that when

we use extremely high-energy atomic orbitals as a basis set, the LCAO calculations

reproduce the floating nature. This fact clearly shows that we should go beyond the

conventional LCAO picture to reproduce the floating nature.

Furthermore, we have performed LCAO calculations for 2H-diamond. Table 3.5

shows the total energies, Etot, calculated by the LCAO basis sets. From the table,

larger-cutoff radii and larger number of basis orbitals give more accurate results.

Fig. 3.18 shows the calculated band structures and KS orbitals of the CBM at K

point with the larger cutoff radii. From the figures, the valence bands resemble each

other, regardless of the number of basis orbitals. In contrast, the conduction bands are

changed sensitively depending on the number of basis orbitals.

From the Figure 3.18(a), the CBM is at Γ point, thus showing a direct-gap semicon-

ductor. This result qualitatively contradicts with that of plane-wave-basis set, where

this system is a indirect-gap semiconductor. Its band gap is 6.02 eV, which is higher

than that of plane-wave-basis set by 2.61 eV, indicating the incompleteness of the

atomic-orbital basis. The KS orbital at the CBM has no floating nature. It is un-

derstood clearly that the orbital consists of the anti-bonding orbitals of carbon-p or-
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Table 3.5: Calculated total energies, Etot, calculated by the LCAO basis sets for the

2H-diamond in unit of eV per molecular unit.

Index basis sets Etot

(eV)

larger cutoff radii

(a) C-2s, -2p −316.659

(b) C-2s, -2p, -3s, -3p, -3d −317.573

(c) C-2s, -2p, -3s, -3p, -3d, -4s, -4p, -4d −317.726

smaller cutoff radii

(a) C-2s, -2p −314.744

(b) C-2s, -2p, -3s, -3p, -3d −317.635

(c) C-2s, -2p, -3s, -3p, -3d, -4s, -4p, -4d −317.691
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Figure 3.18: Energy bands and squared Kohn-Sham(KS) orbital of the 2H-diamond

calculated in the GGA by plane-wave-basis set Fig.(0) and by the LCAO basis sets (a)(b)(c)

with larger cutoff radii (see text). In the central panel, isovalue surface of the KS orbital

at the conduction-band minimum viewed from the [0001] direction at its value of 90% of

the maximum amplitude, and in the right panel, contour plot of the same orbital on the

(11̄00) plane. The blue balls depict C atoms.
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Figure 3.19: Energy bands and squared Kohn-Sham(KS) orbital of the 2H-diamond

calculated in the GGA by plane-wave-basis set Fig.(0) and by the LCAO basis sets (a)(b)(c)

with smaller cutoff radii (see text). In the central panel, isovalue surface of the KS orbital

at the conduction-band minimum viewed from the [0001] direction at its value of 90% of

the maximum amplitude, and in the right panel, contour plot of the same orbital on the

(11̄00) plane. The blue balls depict C atoms.
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bitals. Indeed, the maximum amplitude is at the carbon atomic sites in contrast with

Fig. 3.18(0) where the maximum amplitude of the state obtained in the plane-wave-

basis set is at the axis of the 〈0001〉 (vertical to the a, b-plane) channels. In the LCAO

result, the amplitude at the axis of the 〈0001〉 channels is only 7 % of the amplitude at

the atomic sites. In addition, this result is consistent with that of tight-binding model.

We also present the LCAO results with increasing the number of basis orbitals in

Figs. 3.18(b), and (c). The energy gaps in Fig. 3.18(b), (c) are 4.01 eV, and 3.49

eV, respectively. In the calculation (b), we use carbon-3s, -3p, and -3d orbitals as a

basis set in addition to basis set(a), which are energetically higher state than carbon-2p

orbitals by 8.48 eV, is still inadequate to describe the conduction bands. The maximum

amplitude is still at carbon sites, and shows floating nature a little. The amplitude at

the axis of the vertical channels is 78 % of the atomic sites. In the calculation (c),

we sum up with atomic orbitals higher 14.16 eV than C-2p orbitals. The results seem

to show floating nature of KS orbital. The maximum amplitude is at the axis, thus

reproducing the band-gap variations in LCAO calculations.

From the analysis of the component of the wave function in the LCAO calculation,

the CBM at K point consists 61.4% of carbon-3d, and 12.6 % of carbon-4d orbitals.

It’s noteworthy that total percentages of the components of carbon-3s, 3p, 4s, 4p is

only 4.6 %. The unnatural fillings are remarkable. To describe the conduction bands

in sp3-bonded materials, we need more basis orbitals than those usually thought to

be enough. We have also performed the LCAO calculations with small cutoff radii, in

Fig. 3.19. The results show little difference from that of the larger cutoff ones. From

the results, we have found the LCAO calculations are difficult to reproduce the floating

nature, regardless of the spread of the basis orbitals.

3.6 Intercalated systems

In most cases, floating sate exists in the conduction electron states. Yet, the DFT is

not verified in application to the unoccupied electron states. We then have performed

electronic-structure calculations for electron-doped SiC polytypes. The doped electrons

are thought to occupy the floating sate at the CBM. We have doped 1.59× 1021 [cm−3]

per the 6 pairs of SiC molecule units. First, we have optimized the lattice constants in

the hexagonal plane and along the stacking direction, a and c. For the doped 3C-SiC,
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the lattice constant a indicates only 0.38 % increase over that of the intrinsic 3C-SiC.

Moreover, the lattice constant a (c) of the doped 2H-SiC is increased only 0.49 %

(0.354%). From these results, the lattice constants are almost unchanged in electron

doping.
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Figure 3.20: Calculated band structures of the electron-doped 2H-SiC (a) and 3C-SiC

(b). The broken line represents the Fermi energy.

Fig. 3.20 shows the calculated band structures. We have found that the band

structures are understood completely by the rigid band model. The KS orbital at the

occupied CBM is shown in the Fig. 3.21. The orbitals clearly manifest the floating

character. We have found the electron carriers have floating nature in n-doped SiC

semiconductors.
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0.0

1.0

0.0

3C-SiC 2H-SiC

Figure 3.21: Contour plot at the conduction-band minimum (CBM) of the electron-

doped 3C-SiC (left panel), and isosurface and contour plot at the CBM of the 2H-SiC

(right panel). The isosurface of the orbital is its 80 % value of the maximum amplitude.
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4

Electrostatic potential in internal

space

4.1 Multipole decomposition of electrostatic potential

From the chapter. 3, we have found that floating states are ubiquitous in sp3-bonded

materials. The floating nature is a consequence of the existence of the internal space

in the materials. In most covalent semiconductors, the floating states appear at the

conduction-band minima whose energy level is lower than the vacuum level: e.g., the

vacuum level is higher than the conduction-band minimum (CBM) in the 6H-SiC by

3.0 eV in the experiment (130). Here one question arises: why the energy level of

floating state is lower than the vacuum level? It means that the electrostatic potential

in the internal space should be lower than vacuum level substantially. However, the

core- and valence-electron cloud distributes near the nucleus, and screens the attractive

potential from the nucleus. Due to the Gauss’s theorem, the electro-static potential far

from the nucleus seems to decay exponentially. Therefore, the electrostatic potential at

interstitial sites is thought to not to be so lower than the vacuum level. This expectation

looks conflicted with the existence of the floating state at the CBM.

In order to clarify this apparent contradiction, we have first plotted the electro-

static potential of an isolated Si atom (Fig. 4.1 (a)). First, it is clearly seen that

the electro-static potential from the nucleus and occupied electrons has a spherical

symmetry, because the electron distribution has also spherical symmetry in the case of

an isolated atom. The electro-static potential at the distance of 1.9 Å from the nucleus
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4. ELECTROSTATIC POTENTIAL IN INTERNAL SPACE

is only −0.6 eV, where the distance of 1.9 Å is the distance between the Si atom and

the interstitial site in the 3C-SiC. In the 3C-SiC, the tetrahedral interstitial site is

surrounded by 4 Si atoms. Therefore, we estimate the electro-static potential at the

interstitial site to be −0.6× 4 = −2.4 eV at most, based on the analysis of the isolated

atom. Its absolute value is too small to explain the appearance of the floating state at

the level of the 3.0 eV below the vacuum state.

Yet in sp3-bonded materials, each atom forms four bonds with its neighbors located

with tetrahedral symmetry. Hence the electrostatic potential is certainly non-spherical.

To mimic the situation, we adopt a simple model in which a point charge of +4 is

surrounded by four −1 point charges located with tetrahedral symmetry, as shown in

Fig. 4.1 (b1). The former charge corresponds to the charge distribution of Si nucleus

and core electrons, whereas the latter charge corresponds to valence-electron bond

charges. The distance between the positive and the negative charge is set to be a half

of the bond length. As is clearly seen in the Fig. 4.1 (b2), the electro-static potential

is non-spherical, and the negative part of the potential expands to the tetrahedral

interstitial sites, which is marked by the red squares. Thus, the non-spherical-charge

distribution makes the potential at the interstitial sites lower, showing the electro-static

potential at the interstitial sites 2 eV lower than the vacuum level. By considering that

the interstitial sites are surrounded by 4 atoms in the 3C-SiC, we have estimated the

electrostatic potential at the interstitial site to be 2×4 = 8.0 eV lower than the vacuum

level. Significant lowering takes place. This estimated value is roughly consistent with

the effective potential in the DFT calculation of the 3C-SiC: −12.3167 (−9.757) eV at

the interstitial sites surrounded by Si (C) atoms. We have found that non-spherical-

electron distribution plays important roles in the appearance of the floating state at

the CBM. Here we have neglected the effects of the charge transfer in the 3C-SiC for

simplicity.

Next, we discuss the substantial band-gap variation in the 2H-diamond. In the case

of diamond, drastic decrease of 0.84 eV occurs in the 2H polytype: i.e. the band gap in

the 3C-diamond is 4.246 eV, while that in the 2H-diamond is 3.406 eV. As mentioned in

the Sec. 3.3.2, the energy-gap variation comes from the structural difference around the

interstitial sites between the 3C and 2H structures: i.e., each interstitial site in the 2H

structure is surrounded by six nearest neighbor (NN) atoms, and six next NN atoms,

and that in the 3C polytype is surrounded by four NN, and three next NN atoms.
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Figure 4.1: Isovalue plots of Coulomb potential from a nucleus and electrons for an

isolated silicon atom (a). In (a), the positions of the Si ion and the interstitial sites are

represented by a pink dot and red squares. It is apparent that valence electrons distributes

around the ion with spherical symmetry, and thus showing spherical-symmetric electro-

static potential. However, in real sp3-bonded systems, electrons don’t distribute around

the nucleus with spherical symmetry. Therefore, we consider a more realistic model, which

mimics the sp3-nonspherical electron distribution, to analyze the electrostatic potential at

the interstitial sites. In the model, Si ion is replaced by a +4 point charge, and four valence

electrons by −1 point charge. Four electrons are located with tetrahedral symmetry, rep-

resenting valence-electron bond charges. A cutting plane, represented by green plane (b1),

and isovalue plots of Coulomb potential from Si ion and four electrons on that plane (b2).

In (b2), the positions of the Si ion and the valence electrons are represented by a pink dot

and red triangles, respectively. Red squares depict the positions of interstitial sites.
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4. ELECTROSTATIC POTENTIAL IN INTERNAL SPACE

Table 4.1: Structural difference around the interstitial between the 3C-diamond and the

2H-diamond. The Kohn-Sham (KS) effective potential at the interstitial site in the DFT

calculation is also listed. The electro-static potential of the interstitial site from the nearest

neighbor (NN) atoms is calculated by two model, isolated model and sp3 model (See the

text).

3C-diamond 2H-diamond

Band gap (eV) 4.246 3.406

Number of nearest neighbor (NN) atoms 4 6

Distance between the NN and interstitial site (Å) 1.540 1.641

Number of 2nd NN atoms 4 6

Distance between the 2nd NN and interstitial site (Å) 1.778 1.943

Effective potential at the interstitial site in the DFT (eV) −12.349 −12.938

Electro-static potential calculated by the isolated atom model (eV) −2.456 −2.700

Electro-static potential calculated by the sp3 model (eV) −9.061 −10.979
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4.2 Pressure effects on floating states

These structural difference causes the electro-static potential at the interstitial sites in

the 2H structure lower than that in the 3C by −12.349− (−12.938) = 0.589 eV, which

corresponds to the band-gap variation in the 2H polytype, 0.8 eV [See Table. 4.1].

From the analysis of the isolated carbon atom, the electro-static potential at the

distance of 1.54Å, which corresponds to the distance between the interstitial site and

the NN atom in the 3C-diamond, is estimated to be −0.614 eV. Therefore, electro-static

potential at the interstitial site is calculated to be −0.614 × 4 = −2.4564 eV. On the

other hand, the potential at the distance of 1.64 Å from the nucleus, which represents

the distance between the interstitial site and NN atom in the 2H-diamond, is −0.450

eV. In the same way as in the 3C-dimaond, electro-static potential at the interstitial

site is −0.450×6 = −2.700 eV, which is lower than that in the 3C-diamond by 0.245 eV.

From the rough estimation, it has been clarified that the potential difference of the two

polytypes at the interstitial site comes from its difference in surrounding environments.

The relative difference of the electro-static potential has succeeded to be explained

by the above model. The absolute value of the potential, however, is too small, com-

pared with the effective potential in the DFT calculation: the potential at the inter-

stitial site is −12.349 eV in the 3C polytype and −12.938 eV in the 2H. We have

calculated the potential again using the sp3 model. The electro-static potential at the

distance of 1.54 (1.64) Å from the nucleus is −2.265 (−1.830) eV, respectively. The

estimated potential at the interstitial site is −2.265 × 4 = −9.061 eV in the 3C poly-

type, and −1.830× 6 = −10.979 eV in the 2H, which are much lower than those in the

isolated atom model. The potential at the 2H polytype is 1.918 eV lower than that in

the 3C. We have found that non-spherical electron distribution plays important roles

in the effective potential.

From both models, it has been clarified that the potential at the interstitial site

in the 2H is lower than that in the 3C, because of the difference of the surrounding

environments. In addition, we have found that the much lower potential than the

vacuum level comes from the non-spherical electron distribution.

4.2 Pressure effects on floating states

In this section, we examine the pressure dependence of floating states. We have focused

on the response of the floating state to the isotropic pressure, and we don’t consider the
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4. ELECTROSTATIC POTENTIAL IN INTERNAL SPACE

possibility of the structural transition derived from the pressure. First, consider the

behavior of the electronic band structures, based on the conventional atomic-orbital

picture. Under the pressurized circumstances, atoms are closer to each other, thus

making stronger bonds. This fact leads to larger energy gap between the bonding and

anti-bonding orbitals. For example, consider the two-site tight-binding model with

hopping t. The energy gap is estimated to be 2t, and each band width is also 2t. This

simple model predicts that the energy gap and the band width become larger with

increasing the pressure.
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Figure 4.2: Calculated band structures of the 3C-SiC under the pressurized circum-

stances. Each band structure shows the electron bands with lattice constant scaled from

1.0 to 0.75 with respect to the values in the Table. 3.1. The energy of the valence-band

top is set 0. The corresponding pressures are followings: 0 (GPa) for (a), 31.0 (GPa) for

(b), 73.7 (GPa) for (c), 128.7 (GPa) for (d), 202.6 (GPa) for (e), and 306.5 (GPa) for (f).
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Figure 4.3: Calculated energy levels of the 3C-SiC at several k points with scaling lattice

constants. The corresponding pressures are followings: 0 (GPa) for a = a0, 31.0 (GPa)

for a = 0.95a0, 73.7 (GPa) for a = 0.9a0, 128.7 (GPa) for a = 0.85a0, 202.6 (GPa) for

a = 0.80a0, and 306.5 (GPa) for a = 0.75a0.
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Figure 4.4: Calculated potential energy at the interstitial site of the 3C-SiC with scaling

lattice constants. The corresponding pressures are followings: 0 (GPa) for a = a0, 31.0

(GPa) for a = 0.95a0, 73.7 (GPa) for a = 0.9a0, 128.7 (GPa) for a = 0.85a0, 202.6 (GPa)

for a = 0.80a0, and 306.5 (GPa) for a = 0.75a0.
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Fig. 4.2 shows the calculated band structures of the 3C-SiC with reducing the lattice

constant to 75 % with respect to the values of the Table. 3.1 with 5 % increments.

First, it has been found that the band widths of the valence bands get larger with

increasing the pressure. The valence-band width in the a = 0.75a0 is 14.358 eV, which

is 1.70 times larger than that in the a = a0. This tendency is consistent with what we

consider. Yet, it is noteworthy that the band gaps behave in quite different way from the

simple consideration. As is clearly seen, the energy level at the CBM shifts downwards,

showing narrower band gaps. Fig. 4.3 shows the calculated energy gaps with respect

to the valence band top for several high-symmetrical k points. In particular, it has

been found that the behavior of the CBM at M point is peculiar than that of other

k points. This is thought to be due to the potential energy gain at the interstitial

sites. The interstitial sites come closer to the nucleus under the pressurized condition,

and the potential at the interstitial sites is lower and lower, as is expected from the

Fig. 4.1(b). In fact, Fig. 4.4 shows the electro-static potential at the interstitial sites,

and thus potential-energy gain is apparent. Therefore, it is clear that potential-energy

gain causes the floating sates shift downwards, thus showing smaller band gaps.

In the 2H-SiC, the CBM is located at K point, and the wave function manifests

the floating character. It is clear also in this case that valence-band width with lat-

tice constant scaled by 0.75 is 14.617 eV, which is 1.70 times larger than that with

a = a0(Fig. 4.5). We have found the energy shift of the floating state also in the pres-

surized 2H-SiC. Fig. 4.6 and Fig. 4.7 show the energy levels and potential energy at the

interstitial site of the 2H-SiC, thus showing similar behaviors as those in the 3C-SiC.

We then expect that the energy-level shift of the floating state is common to other

polytypes. Here we show some examples: 3C-GaAs and 2H-diamond. 3C-GaAs is

a III-V semiconductor, and has a direct band gap, 1.43 eV. GaAs is widely used in

the manufacture of devices such as microwave frequency integrated circuits, monolithic

microwave integrated circuits, laser diodes, solar cells and optical windows. Yet, the

difference in the electro-negativity of component atoms of GaAs is relatively small: That

of gallium is 1.81, and arsenic 2.18. This fact does not lead to appearance of floating

state at the CBM at X point of the 3C-GaAs. Yet, surprisingly the floating state

appear at the CBM at X point, and shifts downwards under the pressurized condition

(See Fig. 4.11), because of the electro-static potential gain at the interstitial sites.

Fig. 4.9 shows the result. In particular, it is noteworthy that owing to the competition
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Figure 4.5: Calculated band structure of the 2H-SiC under the pressurized circumstances.

Each band structure shows the electron bands with lattice constant scaled from 1.0 to 0.75

with respect to the values in the Table. 3.1. The energy of the valence-band top is set

0. The corresponding pressures are followings: 0 (GPa) for (a), 31.0 (GPa) for (b), 74.2

(GPa) for (c), 129.5 (GPa) for (d), 203.9 (GPa) for (e), and 308.5 (GPa) for (f).
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Figure 4.6: Calculated energy levels of the 2H-SiC at several k points with scaling lattice

constants. The corresponding pressures are followings: 0 (GPa) for a = a0, 31.0 (GPa)

for a = 0.95a0, 74.2 (GPa) for a = 0.9a0, 129.5 (GPa) for a = 0.85a0, 203.9 (GPa) for

a = 0.80a0, and 308.5 (GPa) for a = 0.75a0.
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Figure 4.7: Calculated potential energy at the interstitial site of the 2H-SiC with scaling

lattice constants. The corresponding pressures are followings: 0 (GPa) for a = a0, 31.0

(GPa) for a = 0.95a0, 74.2 (GPa) for a = 0.9a0, 129.5 (GPa) for a = 0.85a0, 203.9 (GPa)

for a = 0.80a0, and 308.5 (GPa) for a = 0.75a0.
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Figure 4.8: Calculated band structures of the 3C-GaAs under the pressurized circum-

stances. Each band structure shows the electron bands with lattice constant scaled from

1.0 to 0.75 with respect to the optimized values. The energy of the valence-band top is

set 0. The X point corresponds to M point in the hexagonal unit cell. The corresponding

pressures are followings: 0 (GPa) for (a), 5.9 (GPa) for (b), 12.5 (GPa) for (c), 21.3 (GPa)

for (d), 33.6 (GPa) for (e), and 51.5 (GPa) for (f).
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Figure 4.9: Calculated energy levels of the 3C-GaAs at several k points with scaling

lattice constants. The corresponding pressures are followings: 0 (GPa) for a = a0, 5.9

(GPa) for a = 0.95a0, 12.5 (GPa) for a = 0.9a0, 21.3 (GPa) for a = 0.85a0, 33.6 (GPa) for

a = 0.80a0, and 51.5 (GPa) for a = 0.75a0.

Figure 4.10: The pressure dependence of Γ, L, and X band energies in Al0.15Ga0.85As.

It is evadent that the direct-indirect crossover occurs near 24.5 bars at this composition.

(Ref. (131))
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(a) 1.0 (b) 0.75

0.0

1.0

Figure 4.11: (a) Contour plots of the calculated Kohn-Sham (KS) orbital of the conduc-

tion band minimum (CBM) at X = (0, 0, 2π/a0) point in the 3C-GaAs on (01̄1) plane. (b)

Contour plots of the KS orbital of the CBM at X point with the lattice constant being

on the scale of 0.75. Floating character is not seen in the figure (a). In the figure (b),

floating character is apparent. The gray and green balls depict Ga atoms and As atoms,

respectively.

with the electrostatic energy gain from the cation tetrahedron which makes the energy

of the floating state at X point low, the transition between the direct gap in the no-

pressurized structure and the indirect gap in the pressurized structure takes place. This

fact is consistent with experimental facts (131) [Fig. 4.10].

Another interesting system is the pressurized 2H-diamond. Fig. 4.12 shows the

calculated band structures of 2H-diamond. The floating state at K point shifts down-

wards substantially and causes a transition from the indirect-gap semiconductor to a

semimetal. The Kohn-Sham orbital at the CBM of the 2H-diamond at the a = 0.75a0

is shown in Fig. 4.13. We have found apparent floating character.
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Figure 4.12: Calculated band structure of the 2H-diamond under the pressurized circum-

stances. Each band structure shows the electron bands with lattice constant scaled from

1.0 to 0.75 with respect to the values in the Table. 3.1. The energy of the valence-band

top is set 0. The corresponding pressures are followings: 0 (GPa) for (a), 34.6 (GPa) for

(b), 80.0 (GPa) for (c), 138.2 (GPa) for (d), 214.4 (GPa) for (e), and 319.3 (GPa) for (f).
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0.0

1.0

Figure 4.13: Isosurface (a) at its value of 90% of maximum value and contour plots (b)

of the calculated Kohn-Sham (KS) orbital at the conduction band minimum (CBM) at K

point in the 2H-diamond on (11̄00) plane, respectively. The blue balls depict C atoms.
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5

Channel length and floating state

5.1 Relations between channel lengths and floating states

As mentioned in the introduction, the band-gap variation in SiC is understood by

the analyses using an empirical parameter ”hexagonality” for a half century. The

band-gap variation has been said to have linear relations with the hexagonality. Yet,

the relations between band-gap variation and the hexagonality have not been verified

yet. Our purpose in this section is to manifest that the hexagonality is a misleading

parameter and that the parameter misses an important point of floating nature in the

conduction-electron state for SiC. In addition, we propose an essential parameter in

describing the band-gap variation, and show that the analyses using the parameter

make it possible to reproduce the band-gap variation even quantitatively.

Above, we have clarified the mechanism of the band-gap variation in SiC poly-

types based on the DFT. The key is the appearance of the floating states at the

conduction-band minima in most sp3-bonded materials. The floating state has a nearly-

free-electron (NFE) like character, extending in channels without atomic-orbital charac-

ters. In addition, the difference in the electronegativity between the constituent atoms

in the system causes particular Td interstitial sites to be energetically favorable. In

fact, the difference in the electro-negativity makes the energy level of the floating state,

extending in the [110] channels, shift downwards, thus causing substantial band-gap de-

crease in the 3C-SiC (See Fig. 5.1 (a)). A similar structural feature is observed in the

6H-SiC. Yet, the hexagonal layers block the channel, and the channel length becomes

finite. There is the channels with the length of about 7a0/2
√

2 along the [22̄01], which
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5. CHANNEL LENGTH AND FLOATING STATE
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C (k)
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A (h)

Figure 5.1: Contour plots of the Kohn-Sham (KS) orbitals at the conduction-band mini-

mum for the 3C-SiC (a), and for the 6H-SiC (b) on (11̄0), and (112̄0) plane, respectively.

The value for each contour color is relative to the corresponding maximum absolute value.

White and burgundy balls depict C and Si atoms, respectively. In (b), the channel length

of the 6H-SiC is finite, and the broken lines represent the longest channel length. At the

broken lines, the hexagonal layers block the channel.

is slanted relative to [0001] direction. We have indeed found that the Kohn-Sham (KS)

orbital at the conduction-band minimum (CBM) in 6H-SiC distributes in this chan-

nel (Fig. 5.1 (b)). Due to the limited length in the channel, the kinetic energy gain

is smaller than in the 3C structure, and the energy gap in the 6H structure becomes

wider by 0.9 eV. Therefore, one expectation arises that the energy gap is larger with the

[110]-channel length decreasing. This means that ”channel length” is a more essential

parameter than the ”hexagonality”.

Here we have performed the calculations for the SiC polytypes whose periodicity

of the stacking sequence is lower than 12-bilayers. Each of the nH polytypes with

2 ≤ n ≤ 5 have a unique structure. The 6H, 8H, 10H, and 12H polytypes have 2,

6, 18, and 58 structures, respectively (127). The possible hexagonalities in the 10H

polytype are 20, 40, 60, and 80%. Those in the 12H polytype are 16.7, 33.3, 50, 66.7,

and 83.3%. We have treated all possible hexagonalities in the 8H, 10H, and 12H (128).

The stacking sequences, which we have treated in this study, are 24 different stacking

sequences, listed in the Table 5.1.

Fig. 5.2, and Table 5.1 show the calculated band gaps for the 24 different polytypes.
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5.1 Relations between channel lengths and floating states

Table 5.1: Calculated band gaps for 24 different SiC polytypes. The definitions of the

”hexagonality” and ”channel length” are in the text.

polytypes band gap hexagonality channel length

(eV) (%)

3C structure

ABC 1.419 0 ∞

4H structure

ABCB 2.315 50 3

5H structure

ABCBC 1.822 40 5

6H structures

ABCBCB 2.452 66.7 3

ABCACB 2.077 33.3 4

8H structures

ABCABACB 1.853 25 5

ABCABCAB 1.679 25 8

ABCACBAB 2.087 50 4

ABCACBCB 2.104 50 4

ABCBABAB 2.408 75 3

ABCBCBAB 2.324 75 3

10H structures

ABCABCABAB 1.593 40 8

ABCABCABCB 1.585 20 9

ABCABCBACB 1.754 20 6

ABCACBCACB 2.071 40 4

ABCBCACBCB 2.436 60 3

ABCBCBCBCB 2.399 80 3

12H structures

ABACABCBCACB 2.094 50 4

ABCABACABACB 1.864 33.3 5

ABCABACBCACB 1.911 33.3 5

ABCABCABCACB 1.574 16.7 10

ABCABCACBACB 1.679 16.7 7

ABCACACACACB 1.975 66.7 4

ABCBCBCBABAB 2.402 83.3 3
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Figure 5.2: Calculated band gaps for SiC polytypes are plotted. (Left panel) The abscissa

depicts the hexagonalities and the ordinate depicts the calculated band gaps for SiC poly-

types. (Right panel) The abscissa depicts the channel lengths. We draw a fitting function,

expressed by the Eq. (5.1) in the text.

Most conduction-band minima are located at M point, except for the 5H-SiC at L

point. This is because of the odd number of the periodicity of the stacking sequences in

the 5H structure. Floating state at the CBM changes its sign along the [110] direction.

By examining the irreducible representation, such phase shift is allowed not at M point,

but at L point. Fig. 5.2 shows the relations between the calculated band gaps and the

hexagonalities. As a whole, the results seem to reveal some correlation between them.

Yet, the dispersion is very large. It is clear that the relation can not be expressed by

a simple mathematical function. Next we plots the calculated band gaps as a function

of the channel lengths. In the figure and the table, we plot the channel length as the

number of the stacking sequence of the longest [110] channels in the unit cell. We have

found the clear relations between the channel length and the band gap. The relation

is expressed by a following function with beautiful fitting:

y = 1.4248 +
17.626

(x+ 1.2678)2
. (5.1)

Next we discuss the verification of the fitting function. Consider an electron, confined

in a 1-dimensional quantum well with infinite depth. The energy level of the ground
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5.1 Relations between channel lengths and floating states

state, ε is

ε = ε0 +
~2π2

2m∗L2
, (5.2)

where ε0, m∗, and L are constant, effective mass, and the width of the well, respectively.

Comparing the Eq. 5.1 with the Eq. 5.2, the ε0 represents the band gap in the 3C, or

corresponds to the case of the infinite channel length. It shows good agreement with the

calculated band gap of the 3C, 1.419 (eV). In addition, we have derived an important

factor, effective mass, from the comparison with the two equations. The effective mass

is 0.326m0 with m0 being an electron mass in vacuum. The effective mass gives the

great agreement with the experimental value, 0.363m0. The x+ 1.2678 in the Eq. 5.1

depicts the effective width of the quantum well, because the depth of the well is not

infinite in the real system. The figure, 1.2678, shows that the floating state penetrates

outside the channel by one-bilayer thickness.

Here we show a prominent result, where two polytypes should have the same band

gap from the viewpoint of the hexagonality. The two are ABCABCABAB and AB-

CACBCACB. Their hexagonalities are the same, 40%, while their channel lengths are

different, being 8, and 4, respectively. Their band gaps are 1.593 eV, and 2.071 eV, re-

spectively. It has been apparent that the hexagonality fails to reproduce the band-gap

variation. In contrast, the new parameter ”channel length” works well also in this case.

We easily imagine the distribution of KS orbital at the CBM. The Fig. 5.3 shows the

results. The distribution of the orbitals extends in the longest [110] channels in each

polytype as is expected.

Here we discuss an interesting system. Consider the system that we cut a bundle

of channels with a cutting plane inclined from the channel axis. When the channel has

the infinite length, each channel has the same length, and any interesting phenomenon

does not occur. When the channels with finite length are cut by the inclined plane, each

channel has different length like a xylophone. Then the distribution of the KS orbital

at the CBM is spatially gradient: the floating state distributes in longer channels, not

in the shorter channels. When we prepare such a surface, an interesting non-uninform

distribution of the floating state at the CBM will appear on the surface.

In addition, we refer to another possible model for the situation where electrons

extending in channels. Above, we have adopted a 1-dimensional quantum-well model

as a fitting function for the relations between channel length and band gap. Yet, the
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Figure 5.3: Contour plots of the Kohn-Sham (KS) orbitals of the conduction-band min-

imum at M for the ABCABCABAB stacking (left panel), and for the ABCACBCACB

stacking (right panel) on (112̄0) plane for the 10H-SiC. The value for each contour color is

relative to the corresponding maximum absolute value. White and burgundy balls depict

C and Si atoms, respectively. The broken lines represent the interface between the longest

channel region and hexagonal region.
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5.1 Relations between channel lengths and floating states

situation where electrons extending in tube-like nano space shows that another model,

quantum confinement model in a finite-length tube, may be more realistic. The model

hamiltonian is,

− 1

2m∗
∇2φ = εφ, (5.3)

in the atomic units, with a boundary condition, φ(r = a) = 0, where a represents the

radius of the tube. Here, we rewrite the equation on the cylindrical coordinates:

− 1

2m∗
{ d

2

dr2
+

1

r

d

dr
+

1

r2

d2

dθ2
+

d2

dz2
}φ = εφ. (5.4)

By the separation of variables, we then separate the Eq. (5.4) into two parts, the radial

component and the axial component:

− 1

2m∗
{ d

2

dr2
+

1

r

d

dr
}φr = εrφr, (5.5)

and

− 1

2m∗
d2

dz2
φz = εzφz. (5.6)

The eigen function for the ground state of the radial component, Eq. (5.5), is a Bessel

function, and the eigenvalue is

εr =
Z2

0

2m∗a2
, (5.7)

where Z0 represents a zero of the Bessel function, 2.40483. In contrast, as for the axial

component, Eq. (5.6), this is the same problem as the 1-dimensional quantum well, and

we know the answer

εz =
π2

2m∗L2
. (5.8)

Therefore, the eigen value ε of the Eq. (5.3) is given as ε = εr + εz, as follow:

ε =
Z2

0

2m∗a2
+

π2

2m∗L2
. (5.9)

Compared with Eq. (5.2), the effect of the tube-like boundary is included in the ε0 in

the Eq. 5.2. Suppose that the effective mass in the radial equation m∗ is the same as

that in the axial equation, the derived confined radius a is estimated to be 6.527 Å.

The radius of the [110] channel in the 3C-SiC is about 1.171 Å. The estimated confined

radius is 3.8 times of the [110] channel. We have found that the above two models gives

the same solution.
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5. CHANNEL LENGTH AND FLOATING STATE

Table 5.2: Comparison of effective masses in SiC polytypes.

Properties 3C-SiC 4H-SiC 6H-SiC

Stacking sequence ABC ABCB ABCACB

Experimental effective mass (Ref. (16))
m||X−Γ : 0.67 mM−Γ : 0.30− 0.58 mM−Γ : 0.24− 0.42

m⊥X−Γ : 0.22− 0.25 mM−L : 0.33− 0.48 mM−L : .1.7− 2.0

Calculated effective mass (present work)
mM−Γ : 0.41 mM−Γ : 0.53 mM−Γ : 0.26

mM−L : 0.29 mM−L : 0.3 mM−L : .1.6

In conclusion, our GGA calculations have clarified that the parameter ”hexago-

nality” is a misleading parameter in describing the substantial band-gap variations in

SiC. In contrast, we have found that a new parameter ”channel length” is an essen-

tial parameter. We have found that the energy level of the floating state, confined in

a channel with finite length, shifts upwards due to the electron confinement. There-

fore, the parameter ”channel length” represents the spatial extension of the floating

state, and has clear physical validity. We have also found that the analysis by using

the parameter ”channel length” makes it possible to reproduce the band-gap variation

quantitatively. The results not only clarify the mechanism of the band-gap variation,

but also provide a guideline for designing electronic properties by controlling the shapes

of internal nanospace in matter.

5.2 Anisotropy of effective mass

In this section, we consider the anisotropy in effective masses of electrons. As we

mentioned in the Sec. 1.2, an anisotropy in effective mass in the 6H structure along

the c-direction is reported in experiments (Table 5.2). We have also calculated the

effective masses in the 6H-SiC. Our calculations have given a good agreement with

the experimental values in the 6H-SiC: The effective mass perpendicular to the c-

axis, M − Γ direction, is estimated to be 0.264m0, while that along the c-axis to be

1.605m0, where m0 represents electron mass in vacuum. Furthermore, it is known that

the anisotropy in effective masses depends on the structural polytypes substantially

in experiments. There are no such peculiar anisotropy in the 4H, and 3C structures.
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5.2 Anisotropy of effective mass

L

c
a,b

Figure 5.4: Square boxes represent the unit cells. The red tubes represent the finite-length

[110] channels along the c-direction. Remark that the wave function of the conduction-

band-minimum distributes only in the channels, which are colored region by the red. The

region without any color in the unit cell represent the hexagonal stacking region. The

barrier width between the two channel regions, or in other words channel distance, along

the c-axis is L.

In fact, our calculations for the effective masses in the 3C-SiC along the c-axis and

the perpendicular to the c-axis shows no peculiar anisotropy: 0.41059m0 along the

M -Γ direction, and 0.2934m0 along c-axis. As we have mentioned in this thesis, we

have clarified that the wave function at the CBM in SiC polytype has a floating

character, extending in interstitial channels. Furthermore, we have found that when

channel lengths are finite, floating states distribute or are localized in the finite region

of the channels. In particular, the 6H structure has finite length channels along the

c-direction, which suggests a possibility of the deep relations among the floating states,

channel length, and the anisotropy in effective masses. We have investigated the relation

in this section.

Let me consider a simple model of finite-length channel along the c-direction (Fig. 5.4),

where each channel is separated one another by distance, L. Remark that the KS orbital
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5. CHANNEL LENGTH AND FLOATING STATE

Table 5.3: Calculated effective mass for the 7 different SiC polytypes. The 3C-SiC is also

listed for reference. The corresponding channel distances, channel length, and band gap

are also listed.

polytypes channel length Barrier width effective mass effective mass band gap

L (ab-plane) (c-axis) (eV)

3C
∞ − 0.41059 0.2934 1.419

(ABC)

5H
5 0 0.519 0.497 1.888

(ABCAB)

7H
5 2 0.739 6.264 1.852

(ABCABAB)

9H
5 4 0.677 1.511 1.815

(ABCABABAB)

11H
5 6 0.665 2.655 1.802

(ABCABABABAB)

13H
5 8 0.665 9.011 1.780

(ABCABABABABAB)

15H
5 10 0.669 40.081 1.764

(ABCABABABABABAB)

17H
5 12 0.668 159.86 1.747

(ABCABABABABABABAB)

at the CBM distributes solely in the finite-length interstitial channels. If the distance L

is very large, the electron transport probability along the c-axis is expected to be very

small, because the hopping from one channel to another is quite small. Remark that

there are infinite-length channels perpendicular to the c-axis. (In the cubic structure,

the [110] channel has equivalent six channels: [110], [101], [011], [1̄10], [101̄], and [01̄1]

channels. Even if the [110]-channel length, which is ”slanted” to the a, b-plane, is finite,

other equivalent channels, [11̄0], [01̄1], and [101̄] channels exist, which are ”parallel”

to the a, b-plane.) Therefore, the electron transport in the ab-plane is expected not to

show such peculiar behaviors.

At first, we have investigated the relations between the channel distance and the

effective mass with channel length fixed. We have examined the following polytypes:
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Figure 5.5: Calculated effective masses of the conduction-band minimum (CBM) along

the c-axis as a function of barrier widths. Blue curve represents the fitting function (See

text). The plotted points represent 5H, 7H, 9H, 11H, 13H, 15H, and 17H polytypes

listed in Table 5.3.
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5. CHANNEL LENGTH AND FLOATING STATE

Figure 5.6: Isosurface of 60 % of maximum amplitude and contour plot on (112̄0) plane of

the Kohn-Sham (KS) orbital at the conduction-band minimum (CBM) for the 7H polytype

(a) and 9H polytype (b). The 7H (9H) polytype has 5-bilayer channel length and 2-bilayer

(4-bilayer) barrier width. In each polytype, the KS orbital is localized at the channel

regions. Yellow and blue surfaces depict the positive and negative sign of the KS orbital

at the CBM, respectively.
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5.2 Anisotropy of effective mass

5H (ABCAB), 7H(ABCABAB), 9H(ABCABABAB), 11H(ABCABABABAB),

13H(ABCABABABABAB), 15H(ABCABABABABABAB), and

17H(ABCABABABABABABAB). Each polytype has 5-bilayer-length [110] channels,

slanted to the a, b-plane, and we have separated the channels away by adding hexagonal

layers, AB-stacking layers, between the channels up to 12 bilayers. The filling hexagonal

layers work as a Barrier for the electron at the CBM. Table. 5.3 shows the effective

masses in the ab-plane, and along the c-axis. From the table, it has been found that

the effective mass in the ab-plane shows no anisotropy, and almost no changes with

increasing the barrier width, L. On the other hand, the effective mass along the c-

direction shows surprising dependence on the channel distance, or barrier width. In

particular, as for the 17H polytype, the effective mass along the c-axis is 240 times

larger than that in the a, b−plane. Fig. 5.5 shows the effective mass along the c-

axis as a function of the barrier width. From the figure, the enhancement of the

effective mass is increasing exponentially with increasing the barrier width. The fitting

function is y = 0.040× exp(0.693× x). The reason of the exponential enhancement is

followings: the wave function of the CBM is confined in the finite-length-channel region,

and penetrates outside the channel region with exponential decay. In the barrier region,

or hexagonal region, two localized wave functions have overlap with each other at the

tail of the exponential decay. Therefore, the hopping from one channel region to another

is thought to be exponential decay as a function of the barrier width. We have found

the shapes of channels are decisive in determining the anisotropy in the effective mass

of electrons substantially. Fig. 5.6 shows the KS orbitals at the CBM with the 2-bilayer

barrier width (a), and 4-bilayer barrier width (b). It is clearly seen that each orbital is

localized in the channel regions.

The calculated band gaps are also listed in the Table. 5.3, showing almost the same

values within the range of 0.15 eV, as is expected, because their channel length is fixed

at 5 bilayers.

We also have calculated another case where the channel length is fixed at 8 bilayers.

The Table. 5.4 and Fig. 5.7 shows the results. A similar anisotropy in effective masses

is seen as those with channel length fixed at 5. The anisotropy with the channel

length fixed at 8, however, appears more significantly. This difference comes from that

increasing channel length leads to electrons being confined strongly in channel, because
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5. CHANNEL LENGTH AND FLOATING STATE

Table 5.4: Calculated effective mass for the 7 different SiC polytypes. The 3C-SiC is also

listed for reference. The corresponding channel distances, channel length, and band gap

are also listed.

polytypes channel length Barrier width effective mass effective mass band gap

L (ab-plane) (c-axis) (eV)

3C
∞ − 0.41059 0.2934 1.419

(ABC)

8H
8 0 0.487 0.566 1.597

(ABCABCAB)

10H
8 2 0.618 14.443 1.560

(ABCABCABAB)

12H
8 4 0.589 2.667 1.495

(ABCABCABABAB)

14H
8 6 0.587 4.593 1.451

(ABCABCABABABAB)

16H
8 8 0.589 19.251 1.415

(ABCABCABABABABAB)

18H
8 10 0.585 30.782 1.385

(ABCABCABABABABABAB)

20H
8 12 0.591 305.236 1.359

(ABCABCABABABABABABAB)
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Figure 5.7: Calculated effective masses of the conduction-band minimum (CBM) along

the c-axis as a function of barrier width.
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5. CHANNEL LENGTH AND FLOATING STATE

the energy level of the floating state is lower. As for the 20H polytype, the effective

mass in the a, b-plane is 516 times larger than that along the c-axis.
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6

Spontaneous polarization

6.1 Spontaneous polarization effects on band gap

As we have shown in Table 5.3, and Table 5.4 in Sec. 5.2, the band gaps are decreasing

monotonically with increasing the barrier width. Fig. 6.1 and Fig. 6.2 show the results.

In particular, the 20H-SiC with 12-bilayer-barrier width gives band gap, 1.359 eV,

which is narrower than in the bulk 3C polytype, 1.419 eV. It shows clearly that another

factor should be taken into account.

The symmetry of the 3C structure is Td including six mirror symmetries. On the

other hand, the symmetry of the 2H structure is C6v, which does not include the mirror

symmetries perpendicular to the c-axis (horizontal mirror symmetry, σh). Whether

each structure has the horizontal mirror symmetries or not has great effects on the

occurrence of the spontaneous polarization along the c-axis. The 2H has spontaneous

polarization along the c-axis, while the 3C structure does not. We have found the band-

gap narrower is related to the spontaneous polarization. In this section, we clarify the

influence of the spontaneous polarization on the energy bands.

Local density of states (LDOS),D(ε, z), is useful to identify the region where carriers

are confined and clarify effects of the spontaneous polarization. Using the obtained

Kohn-Sham (KS) eigenvalue εnk and the orbital ϕnk, it is defined by

D(ε, z) =

∫
dr⊥

∑
nk

δ(ε− εnk)|ϕnk(r)|2 (6.1)

where z is the coordinate along the stacking direction of polytypes and r⊥ is a two

dimensional vector on the perpendicular plane in a unit cell. Figure 6.3 shows calculated
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Figure 6.1: Calculated band gaps with respect to the barrier width with channel length

being fixed at 5-bilayer. These values are listed in Table 5.3.
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Figure 6.2: Calculated band gaps with respect to the barrier width with channel length

being fixed at 8-bilayer. These values are listed in Table 5.4.
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Figure 6.3: Contour plots of the calculated local density of states (LDOS) D(ε, z) for the

8H (ABCABCAB) polytype (a) and the 20H (ABCABCABABABABABABAB) polytype

(b) listed in Table 5.4. Horizontal direction is the stacking direction (c-axis) and corre-

sponds to z coordinate. Contour plot and isosurface of the 30 % of the maximum values

of the Kohn-Sham (KS) orbital at the valence-band top (VBT).
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6.1 Spontaneous polarization effects on band gap

(a), band lineup without polarization

(b), band lineup with polarization

Figure 6.4: Sketches of band lineup of the 20H-SiC in Fig. 6.3. (a): Sketches of band

lineup of an imaginary 20H-SiC polytype without spontaneous polarization. In reality,

however, the spontaneous polarization in the barrier region renders the band lineup slanted

in real space along the stacking direction, and further the counter polarization in the

channel region (b).
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Figure 6.5: Calculated band gaps as a function of barrier width with the channel length

being fixed at 8 bilayers.

LDOS for the SiC-polytypes giving the largest and smallest band gap in the Table 5.4.

Spiky contrasts represent atomic positions along the z axis. It is clearly shown that the

conduction bands in channel region is located at lower positions in energy than in the

barrier region: i.e., electrons are confined in channel region. The valence-band offset is

unclear in these polytypes than the conduction bands. Fig. 6.4 shows the sketches of the

band lineup. The spontaneous polarization in the barrier region renders the band lineup

slanted in real space along the stacking direction, and further the counter polarization

in the channel region makes it slanted in reverse direction. We have found that the

slanted band lineup causes downward (upward) shift of the conduction (valence) band

edge and the band gap becomes narrower.

Then, we have investigated the band gaps with increasing the barrier width with

the channel length being fixed at 8 bilayers. Fig. 6.5 shows the calculated band gaps

as a function of barrier width. The calculated band gaps are decreasing monotonically

until the barrier width reaches 40 bilayers. Yet, over the 40 bilayers of the barrier
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6.2 Spontaneous polarization effects on effective mass of hole

Table 6.1: Calculated effective mass for hole of the 7 different SiC polytypes. The

corresponding channel distances, channel length, and band gap are also listed.

polytypes channel length Barrier width effective mass effective mass band gap

L (ab-plane) (c-axis) (eV)

5H
5 0 1.662 1.687 1.888

(ABCAB)

7H
5 2 2.007 1.959 1.852

(ABCABAB)

9H
5 4 2.255 2.923 1.815

(ABCABABAB)

11H
5 6 2.357 5.237 1.802

(ABCABABABAB)

13H
5 8 2.391 11.701 1.780

(ABCABABABABAB)

15H
5 10 2.389 29.532 1.764

(ABCABABABABABAB)

17H
5 12 2.384 76.626 1.747

(ABCABABABABABABAB)

width, the band gaps are constant, 1.206 eV.

6.2 Spontaneous polarization effects on effective mass of

hole

The effects of the spontaneous polarization on the electronic structure is not limited to

the band-gap. We have found that the effective mass of the hole in SiC-polytypes is

also considerably affected by the spontaneous polarization. Fig. 6.3 in the above section

also shows the KS orbitals of the valence-band top (VBT). For the 8H polytype, the

KS orbital at the VBT is delocalized in the system. In contrast, the corresponding

orbital in the 20H polytype is localized at the interface between the channel region and

barrier region, because of the slanted band lineup due to the spontaneous polarization.

We have investigated the effective masses of holes with increasing the barrier width.
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Figure 6.6: Calculated effective masses of the valence-band top (VBT) along the c-axis

as a function of barrier widths.

106



6.2 Spontaneous polarization effects on effective mass of hole

(a), 15H-SiC

(b), 17H-SiC

0

3

-3En
er

gy
   

(e
V)

0

3

-3En
er

gy
   (

eV
)

A B C A B A B A B A B A B A B

A B C A B A B A B A B A B A B A B

Figure 6.7: Contour plots of the calculated local density of states (LDOS) D(ε, z) for the

15H (ABCABABABABABAB) polytype (a) and the 17H (ABCABABABABABABAB)

polytype (b) listed in Table 6.1. Horizontal direction is the stacking direction (c-axis) and

corresponds to z coordinate.
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Figure 6.8: Contour plots of the calculated local density of states (LDOS) D(ε, z) for the

15H (ABCABABABABABAB) polytype listed in Table 6.1. Horizontal direction is the

stacking direction (c-axis) and corresponds to z coordinate. Contour plot and isosurface

of the 20 % of the maximum values of the Kohn-Sham (KS) orbital at the valence band

top (VBT).
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We have first investigated the effective masses of holes depending on the barrier

width. Table 6.1 shows the calculated effective masses with the channel length fixed

at 5 bilayers. Drastic change in effective masses in the a, b-plane is not observed, but

the effective masses along the c-axis clearly show exponential increase with increasing

the barrier width. Figure. 6.6 shows the effective masses for holes along c-axis. In

particular, in the case of the 17H, the effective masses along the c-axis is 32 times

greater than that in a, b-plane. This anisotropy in effective mass apparently comes

from the localized KS orbitals of holes. Figures. 6.7 and 6.8 show the calculated LDOS

and contour plot of KS orbital at VBT. The orbital is localized at the interface between

channel region and barrier region. We have found that spontaneous polarization causes

the localization of holes, thus showing anisotropy of effective masses of holes.
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7

Summary and Conclusions

7.1 Summary and Conclusions

We have performed electronic-structure calculations within the generalized-gradient ap-

proximation (GGA) in the density-functional theory (DFT) to clarify the mechanism

of substantial band-gap variation and anisotropy in effective masses depending on poly-

types of sp3-bonded materials. Our GGA calculations clarify that several conduction

band states do not distribute near atomic sites but float in the interstitial channels in

covalent semiconductors.

We have found that the electrostatic potential in an interstitial channel varies sub-

stantially in polytypes, depending on the morphology of the interstitial channel. There-

fore, the changes of the channel shape makes a drastic changes of the energy level of

the floating states. In compound semiconductors such as AlN, BN, and also SiC,

the difference in the electronegativity between the constituent atoms causes particular

tetrahedral (Td) interstitial sites to be energetically favorable. This makes the energy

level of the floating state distributing solely around the particular Td sites shift down-

wards. Such distribution is possible in the 3C polytype. This explains the observed

substantial band-gap decrease in the 3C polytypes of the compound semiconductors. In

contrast, for elementary semiconductor such as diamond, such difference in elsctroneg-

ativity is absent. Instead, in the 2H polytypes the number of neighbor atoms around

the interstitial sites is large compared with other polytypes. This causes the band-gap

decrease in the 2H polytype, in accord with the experiment.

We have clarified that the appearance of the floating states unrecognized in the past
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are related to the following two factors: The low packing efficiency in sp3-bonded mate-

rials, and the non-spherical-charge distribution. The appearance of the floating states

is a consequence of the existence of the internal space, and the low packing efficiency

is therefore advantageous for floating states. We have found that non-shperical-charge

distribution makes the potential in the interstitial channels lower substantially than the

vacuum level. For these reasons, floating states are ubiquitous in sp3-bonded materials.

Next, we have investigated the capability of the linear-combination-of-atomic-orbital

(LCAO) calculations in describing the floating nature. We have found that the descrip-

tion of the floating nature with atomic orbitals is quite difficult. It is found that unex-

pectedly high-energy-atomic orbitals are needed to describe the floating nature, while

LCAO calculations reproduce valence bands efficiently. For example, floating nature

in SiC can not be seen in the LCAO calculations using the minimum basis set: 3s and

3p of Si, and 2s and 2p of C. Furthermore, including Si-3d atomic orbital as a basis

set in LCAO calculation is still insufficient to describe the floating nature. Therefore,

we have shown that the floating nature is difficult to describe in conventional LCAO

picture.

We have also investigated the validity of the ”hexagonality” to describe the band-

gap variation in SiC polytypes. The substantial band-gap variation has been analyzed

by an empirical parameter hexagonality for a half century. Yet, we have clarified that

the parameter hexagonality is misleading. Instead, we have found that a new quantity

”channel length” is essential in describing the band-gap variation. The channel length

has a clear physical meaning: This represents the spatial extension of the floating

state. It is clearly seen that the smaller the channel length is, the energy level of the

conduction-band minimum shift higher due to the electron confinement.

We have found a clear relation between floating states and the anisotropy in the

effective mass of the electron. When channel lengths are finite, floating states distribute

or are localized in the finite region of the channels. Then, it is clearly seen that effective

mass along the direction from one channel region to another increases exponentially

with the distance between the two channel regions being larger. We have found the

shapes of channels are decisive in determining the anisotropy in the effective mass of

electrons substantially.

We have clarified the spontaneous polarization effects on the band gap in SiC poly-

types. Calculated local density of states (LDOS) unequivocally reveals substantial
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effects of spontaneous polarization in the hexagonal polytypes: The polarization in

the hexagonal region renders the band lineup slanted in real space along the stacking

direction, and further the counter polarization in the cubic region makes it slanted

in the reverse direction. We have found that the slanted band lineup causes down-

ward (upward) shift of the conduction (valence) band edge and the band gap becomes

narrower. In addition, the slanted band lineup makes the wave function of the hole

localized at the interface between the channel region and the hexagonal region, thus

showing anisotropy of effective mass.

7.2 Possibility of observation

In this section, we discuss how to verify the existence of the floating states directly

and indirectly in experiments. We have found that the existence of the floating states

at the conduction-band minima in sp3-bonded materials plays important roles in the

band-gap variation in polytypes. Therefore, the band-gap variation in polytypes is one

of the verifications for the existence of such peculiar electron states. In addition, if

the exponential increase of electron-effective masses, mentioned in Sec. 5.2, is observed

experimentally, the existence of the floating states is reinforced.

However, the above experimental measurements are indirect techniques. Here, we

discuss another perspective of the direct observation of the floating states by exper-

iments. We first focus on the experimental technique by using positron annihilation

for investigating floating nature. The positron is the antiparticle or the antimatter

counterpart of the electron. The positron has an electric charge of +1e, a spin of 1/2,

and has the same mass as an electron. When a positron collides with an electron,

annihilation occurs, resulting in the production of two γ-ray photons (electronpositron

annihilation). By detecting the energy spectrum of the γ-ray, we can estimate the mo-

mentum of the electron and the lifetime of the positron.The lifetime of the positron is

a quantity related to the electron density at the position where the annihilation occurs.

Larger the electron density is, more often the electron-positron annihilation occurs,

thus showing shorter lifetime of the positron. In addition, the positron has a positive

charge, and distributes mainly in interstitial sites, because the nuclei have large positive

charge. Therefore, electron-positron annihilation is one of the most efficient techniques

to measure the electron density at the interstitial space.
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We propose, here, that an electron-positron-annihilation measurement in electron-

doped SiC reveals floating nature of the conduction-band minimum. In particular, we

predict that comparative study of electron-positron-annihilation measurement for the

intrinsic and electron-doped SiC clearly shows the floating electron nature.
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