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Abstract

Task parallel programming model has been considered as a promising mean that brings parallel
programming to larger audience thanks to its high programmability. In task parallel program-
ming, programmers just need to specify tasks that can be executed in parallel then these tasks
would be distributed to available processor cores and executed in parallel dynamically by the
runtime system. However, this dynamic characteristics of task parallelism hides all execution
mechanisms of a task parallel application from programmers, which makes it difficult for them
to understand suboptimal performance of their application. We have developed tools to cap-
ture relevant data during the execution of a task parallel application as a directed acyclic graph
(DAG) of sequential code sections of application code. then visualize captured data. Our visual-
izer displays DAG in a hierarchical way that helps users conceive DAG structure at various levels
of detail. It also provides multiple views for a single DAG and supports coordination between
them, which has yielded interesting information as we case-study the applications in Barcelona
OpenMP Task Suite (BOTS). Specifically, the tool could pinpoint relevent code sections that
causes low parallelism time periods of interest. Moreover, this approach is prospective in the
way that we can visually compare two isomorphic DAGs generated by the same application
running on different environments which we intend to do in future work. This comparison is
expected to expose differences between task parallel runtime systems and exhibit insights useful
for developing scheduling algorithm.
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Chapter 1

Introduction

Due to some physical limitations such as heat dissipation, the development of computer hard-
ware has changed from increasing clock speed of a single-core CPU to increasing the number
of cores integrated in a multi-core CPU for more than a decade. There are more and more
cores which are integrated in a computer’s CPU, from 4 to 8 ones in a commodity PC up to
64 ones in a high performance computing server. Along with that change in hardware, another
programming model is needed to create software that can run on the new hardware architecture
which is usually called as parallel programs. A parallel program consists of multiple computing
threads which run at the same time, and each thread resides on one separate core.

A traditional approach to creating parallel programs on shared memory systems is that the
programmer demands thread creation one by one and assign work for each thread by themself.
Given that a computer has 64 cores, a programmer who wants to use all that computer’s
processing power has to write code to create 64 threads and divide work to 64 portions in
his program. POSIX Threads [1] is a library that provides this kind of programming model.
However, this kind of programming style makes programmers exhausted of thread managing
work rather than focusing their strength on developing the program’s algorithm. Moreover,
recent surge of Many Integrated Core (MIC) architecture developed by Intel has put a new
prospect on shared memory parallel programs which may now need to manage up to several
hundred simultaneously running threads. There is a need for a parallel programming model
that releases programmers from low-level detailed concerns so that they can take care better of
higher-level things and parallel programming can reach to more programmers who are usually
ignorant of low-level system and hardware knowledge.

Task parallel programming models help solving this problem. It has a very high programma-
bility, meaning easy to use for programmers to create parallel program. In the next section, we
talk about some task parallel programming models and the common API that we created to
unify their code.

1.1 Task Parallel Programming Models

In task parallelism, programmers just need to create as many tasks as possible, each task is an
execution of some function, and a task can create other tasks recursively. The other burdens
in parallel execution such as thread management, task stealing/migration, load balancing are
taken care by the runtime system. Therefore, the runtime system plays an important role in
the performance of a task parallel program.

Figure 1.1 illustrates a pseudo-code example of the fibonacci program written in task paral-
lelism. This example exhibits two main interfaces of a task parallel programming model. They
are an interface to create a task (Create Task) and another interface to wait for tasks that
have been created (Wait Tasks). This simple example has demonstrated task parallelism’s
high programmability. As programmers just need to transform their function calls into task
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1 int fib(int n) {
2 if (n < 2)
3 return 1;
4 else {
5 int x, y;
6 x = Create Task( fib(n−1) );
7 y = Create Task( fib(n−2) );
8 Wait Tasks();
9 return x+y;

10 }
11 }

Figure 1.1. A task parallel fibonacci program

creation primitives so that their program becomes a parallel one which can run on any (shared-
memory) parallel hardware environment, task parallelism is easy to use and particularly fit with
divide-and-conquer algorithms. Thus, it is promising to bring the tricky parallel programming
technique to a wider adoption among general programmers.

1.1.1 A Common Interface for All Six Task Parallel Systems

There are various task parallel programming models existing such as OpenMP [2], Cilk [3]
(Intel CilkPlus [4]), Intel TBB [5], QThreads [6], MassiveThreads [7] [8], and Nanos++ [9]. They
may be a language (OpenMP, Cilk, Intel CilkPlus) or just a library (Intel TBB, QThreads,
MassiveThreads, Nanos++) that provides interface functions to access the task parallel run-
times. Although each model has distinct differences in its API, they all support the two basic
interfaces showed in Figure 1.1, Create Task and Wait Tasks.

OpenMP model defines an additional set of compiler directives to a language (C, C++,
Fortran) in order to provide task parallelism for that language. In OpenMP, Create Task
manifests as a directive pragma beginning with “#pragma omp task”, and Wait Tasks mani-
fests as a pragma of “#pragma omp taskwait” (Figure 1.2b). Cilk language is formed by adding
some additional keywords to the C language to support task parallelism. These keywords include
“spawn” which is equivalent to Create Task, and “sync” which is equivalent to Wait Tasks
(Figure 1.2c).

On the other hand, Intel TBB model is a C++ library providing task group class in the
tbb namespace. task group’s run function corresponds to the Create Task primitive and
task group’s wait function corresponds to the Wait Tasks primitive (Figure 1.2d). We have
implemented another task group version that interfaces with the other 3 task parallel libraries
QThreads, MassiveThreads and modelnanox. Thus, writing code for these libraries is as much
similar as writing code for Intel TBB.

In order to evaluate all these six task parallel systems together with ease we have created a
common application program interface (API) covering all common grounds as well as distinct
differences between them. Another primitive of Make Task Group (mk task group) is added
to represent Intel TBB model’s task group declaration, which does not exist in OpenMP and
Cilk models. We built a macro wrapper that translates code based on this common API into
six individual executables corresponding to the six systems in compile time. An example of
the common API used in fibonacci program is showed in Figure 1.2a. Figure 1.2 gathers 4
versions of the fib program based on the common API, OpenMP, Cilk and Intel TBB models.
In addition, it also illustrates how a common API code gets transformed into these models. In
general, the method is that a common syntax between the common API and the target model
is replaced by the target model’s semantics, and a syntax that exists in the common API but
does not exist in the target model will get deleted.
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This common API eases the process of porting a program’s code into all six runtime sys-
tems. We now just need to write code once and get it compiled to six individual executables
corresponding to the six systems.

1.1.2 Critical Role of Task Parallel Runtimes

In task parallelism, the burden on programmers has been released, but that on the runtime sys-
tem has been piled up instead. The runtime system’s job in task parallelism can be generalized
in following 3 parts:

• interfacing with the underlying hardware.
• managing all created tasks and their parent-child relationships.
• delivering tasks to free doing-nothing threads so that the work is balanced between avail-

able threads.

All these parts are done dynamically at runtime. A common approach to the first part is
that the runtime system would initiate a certain number of concurrent threads at the beginning
of the program’s execution, which corresponds to the number of available processor cores in
the underlying hardware, each thread is bound to a single separate processor core, and usually
referred to as worker threads or simply workers. For the second part, each worker maintains a
work queue of its own, and every task is stored in the work queue of the worker on which it is
created. A worker executes tasks in its work queue one by one until it runs out of tasks (its
work queue gets empty). At that time, it will go to steal work from other workers who have
tasks waiting in their queues. The stealing mechanism is that the free worker chooses a victim
worker randomly, then goes to see if the victim worker’s work queue has any task available,
if there is, it will migrate that task to its thread and execute it. If there is no task remained
in the victim’s queue, it will choose another victim and go stealing again, and continue with
other victims continuously until it can steal a task. This load balancing mechanism is called
work stealing [10]. Work stealing is one of the mechanisms that a task parallel runtime uses to
accomplish its third part.

When a worker creates a new task, it has two choices to proceed, one is to pause the
current task and switch to executing the new task. The other is opposite, the worker pushes
the new task into its work queue and continue executing the current task. These approaches
are usually referred to as work-first, and help-first respectively [11]. Work-first ’s execution
order is similar to that of a serial execution. Therefore, it is expected to maintain the best
data locality and hence perform better than help-first. On the other hand, help-first tends to
spawn as many tasks as possible, exhibiting better parallelism for the scheduler to feed available
workers. There is no absolute answer to the question of which one, work-first or help-first, is
better yet. Because which one performs better may also depends on the computation model of
the program’s algorithm and possibly the number of underlying available workers. As we know,
OpenMP, Intel TBB and QThreads adopt help-first policy in their schedulers. Intel CilkPlus
and MassiveThreads adopt work-first.

Apparently the third part doing load balancing is the most important part of a task parallel
runtime system which decides its implementation’s quality. The better it is implemented the
better performance the runtime can deliver when executing task parallel programs. However, the
fact that load balancing is done dynamically at runtime and automatically by the runtime system
leads to another fact that a great deal of performance formation is out of the programmer’s
control. The same task parallel program, meaning the same algorithm, executed by different
task parallel runtimes could possibly present significantly different degrees of performance. And
the programmer has no clue of why it happens because all mechanisms inside the runtimes are
hidden from him.

Solving this problem is critical to the development of task parallel programming models. As
an attempt to attack it, we have built a tool that records relevant events during the execution of

6



1 cilk int fib(int n) {
2 if (n < 2)
3 return 1;
4 else {
5 int x, y;
6 mk task group;
7

8 create task( x, x = spawn fib(n−1) );
9

10 create task( y, y = spawn fib(n−2) );
11

12 wait tasks;
13 return x+y;
14 }
15 }

(a) Common API

1 int fib(int n) {
2 if (n < 2)
3 return 1;
4 else {
5 int x, y;
6 ;
7 #pragma omp task shared(x)
8 x = fib(n−1) );
9 #pragma omp task shared(y)

10 y = fib(n−2) );
11 #pragma omp taskwait
12 ;
13 return x+y;
14 }
15 }

(b) OpenMP

1 cilk int fib(int n) {
2 if (n < 2)
3 return 1;
4 else {
5 int x, y;
6 ;
7

8 x = spawn fib(n−1) ;
9

10 y = spawn fib(n−2) ;
11

12 sync;
13 return x+y;
14 }
15 }

(c) Cilk

1 int fib(int n) {
2 if (n < 2)
3 return 1;
4 else {
5 int x, y;
6 tbb::task group tg;
7

8 tg.run([&x,=] { x = fib(n−1); });
9

10 tg.run([&y,=] { y = fib(n−2); });
11

12 tg.wait();
13 return x+y;
14 }
15 }

(d) Intel TBB

Figure 1.2. Common API code gets translated into OpenMP, Cilk and Intel TBB codes auto-
matically
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a task parallel program so that we can analyze the performance of the execution port-mortemly.
It is called DAG Recorder and built upon the common API so it can work with all six task
parallel systems.

1.2 DAG Recorder

DAG Recorder is a performance measurement module that runs along with an execution
of a task parallel program and records all relevant performance events occurring during that
execution then stores them in a format of a directed acyclic graph (DAG) of nodes and edges.
DAG Recorder is built inside the common API, so programs written in this common API
can use DAG Recorder immediately with a minimal involvement of the programmer. This
is following three main API functions that the programmer need to remember:

• dr start()
• dr stop()
• dr dump()

The programmer uses dr start() to orderDAG Recorder to start its measurement, dr stop()
to stop DAG Recorder’s measurement and dr dump() to make DAG Recorder dump its
measurement data currently stored in memory out to files. Besides, DAG Recorder also de-
fines several environment variables for programmers to tweak its behaviors. DAG Recorder’s
usage is just that simple. We are going to describe DAG Recorder’s three aspects of what
kind of DAG that it records, how it does the measurement, and what kind of information it can
provide.

1.2.1 DAG Structure

A computational DAG of a task parallel program consists of a set of nodes and a set of edges.
Each node represents a sequential code segment in the application-level code that does not
contain any task parallel primitive. Edges are the manifests of those task parallel primitives,
they represent the task-parallelism-style relationships between nodes. These relationships are:

• parent-child (spawning) relationship
• continuation relationship
• synchronizing relationship

For example, two contiguous code segments separated by a Create Task primitive in
the application’s code would have continuation relationship between them. The code segment
preceding Create Task and the first code segment of the function assigned to the task cre-
ated by Create Task would have spawning relationship. The last code segments of all tasks
(or functions) synchronized by a Wait Tasks primitive and the code segment preceding that
Wait Tasks primitive would bear a synchronizing relationship with the code segment follow-
ing that Wait Tasks primitive. There are possibly two or more nodes that have synchronizing
edges pointing to a single node of the code segment following Wait Tasks depending on how
many tasks that Wait Tasks synchronizes.

DAG Recorder classifies nodes into 3 node kinds based on the task parallel primitives
that end their code segments. A code segment ended by Create Task is represented by a
create node. A code segment ended by Wait Tasks is represented by a wait node. The last
code segment of a task (function) is called an end node. Based on this naming, a small DAG
of a fib(3) program is showed in Figure 1.3.

Actually the DAG’s structure is hierarchical. Three kinds of create, wait and end are just
terminal nodes that do not contain any sub-graph inside them. There are two other kinds of

8



Figure 1.3. DAG of fib(3) execution

Figure 1.4. All node kinds of DAG Recorder (or PIDAG)

non-terminal nodes which are section and task. They are collective nodes containing sub-graphs
of terminal or other collective nodes inside. All these 5 kinds of nodes are shown in Figure 1.4.

A task node corresponds to a task entity in the runtime system. It can contain none, one or
multiple section nodes before ending by an end node. A section node contains one or multiple
create and section nodes before ending by a wait node. The purpose of section kind is to mark
all tasks that will get synchronized by a Wait Tasks primitive. All tasks created by child
create nodes in a section node are synchronized by the last child wait node of that section node.
Figure 1.5 shows the member variables of a DAG Recorder’s node’s structure: info is a child
structure that holds all performance information related to the code segment that the node
represents, next is a pointer to the next node in the list of all child nodes of its parent, if the
node is of create kind child pointer will point to the task node that it creates, if the node is a
collective node of kind task or section subgraphs list will contain all its child nodes.

1.2.2 Methodology

In order to capture the DAG structure as described in the previous sub-section,DAG Recorder
needs to instrument measurement code at following seven positions:

• EnterCreateTask : right before entering the Create Task primitive
• LeaveCreateTask : right after leaving the Create Task primitive
• EnterWaitTasks: right before entering the Wait Tasks primitive
• LeaveWaitTasks: right after leaving the Wait Tasks primitive
• StartTask : right before starting a new task
• EndTask : right before ending a task
• MakeSection: to mark the start of a new section

Let’s consider the above items also as the code that need to be inserted at corresponding
positions. DAG Recorder has modified the process through which a common API primitive
is translated into a specific task parallel API so that it puts these code at appropriate posi-
tions. Inside Create Task, DAG Recorder puts EnterCreateTask as near the upper code
as possible, LeaveCreateTask as near the lower code as possible, StartTask right before execut-
ing the task function and EndTask right after the task function finishes. Inside Wait Tasks,
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1 struct dr dag node {
2 dr dag node info info;
3 struct dr dag node ∗ next;
4 union {
5 struct dr dag node ∗ child;
6 dr dag node list subgraphs[1];
7 }
8 }

Figure 1.5. DAG Recorder’s node

A() {

  for(i=0;i<2;i++) {

    task_group tg;

    tg.run(B);

    tg.run(C);

    D();

    tg.wait();

  }

}

D() {

  task_group tg;

  tg.run(E);

  tg.wait(); 

}

E
C

CreateTask

WaitTasks

EndTask

B

E
C

B

CreateCont

Create

WaitCont

Wait

D()

D()

Figure 1.6. An example of task parallel computational DAG

DAG Recorder puts EnterWaitTasks as near the upper code as possible and LeaveWaitTasks
as near the lower code as possible. Inside Make Task Group, DAG Recorder sets a flag
to remember to create a new section to enclose all following nodes that is other than end node
and a wait node would end that section.

StartTask, LeaveCreateTask and LeaveWaitTasks are positions where an interval (a node)
begins, so DAG Recorder records necessary information such as file name, line number,
time, worker number, cpu number in order to later combine with an end interval information to
construct a full node. End interval information is recorded at EndTask, EnterCreateTask, and
EnterWaitTasks.

Figure 1.6 demonstrates the collective task node kind and how a section marks effective
tasks to be synchronized by a wait. White nodes with one character inside are of task kind. The
transition to a new section is indicated by the task group tg; declaration.

DAG Recorder has an useful feature of on-the-fly contraction that it can contract un-
interesting subgraphs into only one node. An uninteresting subgraph is a subgraph that was
executed wholly on a single worker. There was no work stealing, task migration happenning in
that subgraph. Such kind of subgraphs is not interesting from the perspective of task parallel
performance analysis. Contracting them does not affect our performance analysis potential,
and also helps reduce a considerable number of nodes in the DAG which is helpful for the vi-
sualizer that visualizes the DAG. When a task or a section is contracted, the statistical data of
its child nodes are aggregated into its dr dag node info structure (Figure 1.7). For a section,
DAG Recorder also includes statistical data of all task nodes created by the section’s create
nodes.

1.2.3 Capability

DAG Recorder observes all execution intervals of a task parallel program and manifests these
intervals as nodes in the DAG. Each node of the DAG holds a dr dag node info structure (Fig-
ure 1.7) that stores relevant performance data of the interval’s execution. In short, currently
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1 typedef struct dr dag node info {
2 dr clock pos start; /* start clock, start position (filename,line#), worker, cpu */

3 dr clock pos end; /* end clock, end position (filename,line#), worker, cpu */

4 dr clock t est; /* earliest start time */

5 dr clock t t 1; /* work */

6 dr clock t t inf; /* critical path */

7 dr clock t first ready t; /* time at which this node became ready */

8 dr clock t last start t; /* time at which the last node started */

9 dr clock t t ready[dr dag edge kind max]; /* weighted sum of ready tasks */

10 long logical node counts[dr dag node kind section]; /* including collapsed nodes */

11 long logical edge counts[dr dag edge kind max]; /* including collapsed edges */

12 long cur node count; /* actual node count excluding collapsed nodes */

13 long min node count; /* min # of nodes if all collapsable nodes are collapsed */

14 long n child create tasks; /* # of direct children of create_task type */

15 int worker; /* worker */

16 int cpu; /* cpu */

17 dr dag node kind t kind; /* kind of this node */

18 dr dag edge kind t in edge kind; /* kind of edge from last node initiating it */

19 } dr dag node info;

Figure 1.7. Node info structure

DAG Recorder records time metrics and source code positions. Source code position infor-
mation is critical for tracing back to the responsible application-level code blocks that occur
the time metrics quantities. The recording source code positions also shows the superiority of
DAG Recorder’s instrumentation approach. By instrumenting measurement code into ap-
plication code, DAG Recorder can avoid the painful process of extracting application-level
information from binary executables that is needed by the sampling measurement approach. In
general, DAG Recorder can attributing time metrics back up to application-level code which
is useful for programmers to analyze their application’s performance.

The information that a node can provide about the performance of the interval it represents
can be described shortly below:

• start and end positions (filename, line number) of the code segment.
• est (earliest start time): this is the start time of the node if it is single, or the start time

of its head child node if it is collective.
• t 1 : work time of the node or collective work time of its child nodes.
• t inf : critical path of its subgraph or just equals t 1 if the node is single.
• first ready t : time at which the last of its dependent nodes finishes, making it ready to

execute.
• last start t : time at which the last of its child nodes gets started, or just equals est if the

node is single.
• worker : the worker on which this node was executed on
• cpu: the core number on which this node was executed on

We are next going to discuss some useful information based on the DAG thatDAG Recorder
records such as work, critical path, time series of actual and available parallelism, steal history.

Work

Based on the DAG we can know when a worker is working on the application’s code and when
it is not. The time that a worker is working on application code is considered as work time or
simply work. The time that it executes other code such as runtime system’s code and the time
it is idle are not work time. This non-work execution time of a worker can be classified into two
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Figure 1.8. BOTS’s scalability

categories of delay and nowork (idleness). By subtracting the end and start time of a node,
we can calculate its work, and summarizing them of all nodes in a DAG would give us the total
work of the execution. The time a worker moves from a EnterCreateTask instrumentation point
to its consecutive StartTask point (for work-first based scheduler) is considered as delay time.
It is also delay for the intervals between EnterCreateTask and LeaveCreateTask (for help-first
based scheduler). The time that a worker is not executing anything is nowork.

The total elapsed time of all workers in an execution equals to the multiplication of the
execution time and the number of processor cores on which the execution occurred. We refer to
this kind of time quantity as worker time with the meaning that it is the time an application
uses workers. This is analogous to the definition of “CPU time” which is commonly defined the
time that a process uses computer CPU.

Based on the DAG, we can break down worker time of an execution into 3 categories of
work, delay and nowork.

We have run DAG Recorder with all ten applications in the Barcelona OpenMP Task
Suite (BOTS) benchmark suite [12] and aquired the DAG of every execution. Experiment
environment and parameters for each benchmark are described in Chapter 4’s Table 4.1 and
Table 4.3.

Based on simple execution times of the experiments we can draw a scalability graph of all
MassiveThreads model based applications in Figure 1.8.

The experiments were conducted on the same machine with the same compiler. Thus, there
are still only 3 experiment parameters varying, they are the application (app), the number
of cores (ppn) and the task parallel model (type) in use. A combination of specific app-ppn-
type indicates a single experiment execution (or a single DAG) of the type model-based app
application on ppn cores. In Figure 1.8, the type parameter remains the same asMassiveThreads,
only app and ppn vary in the graph. On the other hand, in Figure 1.9 the app parameter
remains the same as Sort, ppn and type vary. One more different point is that Figure 1.8 plots
the speedup values which are the ratios of the execution time of ppn = 1 over other ppns, while
as Figure 1.9 plots the worker times of the executions.

By fixing ppn parameter, the graph in Figure 1.9 can get split into 4 graphs in Figure 1.10.
Moreover, in Figure 1.10 each bar which represents an execution is divided to 3 parts of 3 colors
corresponding to work, delay and nowork components of the execution’s worker time.

On the other hand, by fixing type parameter, bars in Figure 1.9 gets rearranged and composes
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Figure 1.9. Compare six task parallel systems running Sort

4 graphs corresponding to 4 task parallel systems in Figure 1.11.

Critical path

DAG Recorder can provide information about the critical path of a single node, a collective
node with subgraph or the whole DAG. The critical path of a single node is equal to the work
of that node:

info.t inf = info.t 1 = info.end.t− info.start.t

For a collective node, its t inf is accumulated as the longest path in its subgraph. This can
be calculated straightforwardly based on the structure of the subgraph and that t inf of all
child nodes have been accumulated. The critical path of a whole DAG is stored in t inf of its
original task node.

Time series of parallelism

Based on the start time (start.t) and end time (end.t) of every node, together with the time
it became ready for execution (first ready t), we can calculate the time series of available and
actual parallelism of a DAG. A node contributes one point to avaiable parallelism during its
ready period from first ready t to start.t, and one point to actual parallelism during its execution
time from start.t to end.t.

For a collective node, its available parallelism is calculated by following formula

t ready

last start t− first ready t

in which t ready is the total time that its child nodes spends in ready state, first ready t is
the earliest time that one of its child nodes becomes ready, and last start t is the latest time
that one of its child nodes starts. Output these time series of parallelism into file and have it
drawn by Gnuplot, we can have result graph like Figure 1.13 which is called parallelism profile
graph of an execution of a task parallel program.

Steal history

Because DAG Recorder annotated every execution interval (node) with the worker that it
was on, the history of task migrations between workers can be easily computed.
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Figure 1.10. Breakdown graphs of Sort on 1, 16, 32, 64 core(s)

1.3 Motivation

DAG Recorder is useful in doing statistical analyses. Using the data it collected some inter-
esting breakdown graphs can be produced like in Figure 1.10 and Figure 1.11. If we consider
three quantities of work, delay and nowork as a metrics to measure the difference between
task parallel systems, through Figure 1.10 we can understand that these systems perform pretty
much differently. QThreads model has relatively large work and delay compared with other
systems on 16 and 32 cores, but on 64 cores, it becomes normal. On the same number of cores,
the amounts of three quantities vary on different systems. MassiveThreads exibits the best
performance in these graphs. We would ofcourse like to reason specific causes of the breakdown
quantity variation and QThreads’s notably bad performance, but these statistical analyses is
not enough to do that.

In Figure 1.11, along with the increase in number of cores, all three quantities inflate signif-
icantly. The increase in nowork may be reasonable because increasing number of cores while
keeping the parallelism algorithm at the same just makes the idle state of workers worse, hence
nowork gets worse. But the inflations of work and delay are not that trivial to understand
but rather sometimes seem to be very mysterious.

In these breakdown graphs, if all bars have the same height the performance is perfect.
However, heights of these bars vary among systems (type) and rise along with high core counts
(ppn) in fact. We name the surpassed part of work on high core count compared with that
on one core (serial execution) as “work stretch”. To say in another way, if those components
of work stretch, delay and nowork disappear, we would have perfect performance. There-
fore, the performance loss of a task parallel execution can be attributed to the 3 factors of
work stretch, delay and nowork. To analyze the underlying causes of these 3 factors is the
motivation of our work.

Figure 1.12 and Figure 1.13 gather a compact set of statistical graphs for Sort application.
Figure 1.12a is the speedup graph of Sort run by MassiveThreads. It has fixed app and type
parameters and ppn varying. Figure 1.12b has the same set of experiment parameters (app=sort,
type=MassiveThreads, ppn varies) with the speedup graph (Figure 1.12a) but the quantity
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Figure 1.11. Breakdown graphs of Sort based on MassiveThreads, Intel CilkPlus, OpenMP,
Intel TBB

to be plotted is different, and it also has breakdown information which is not shown in the
Figure 1.12a. Figure 1.12c fixes app (MassiveThreads) and ppn (64) and lets ppn vary, hence it
shows the differences between task parallel systems when executing Sort application based on
the work-delay-nowork metrics.

Figure 1.13 gives a closer look into a single execution of Sort application on 64 cores by
MassiveThreads (all three parameters app, ppn, type fix). Parallelism profile graph expresses the
actual parallelism and available parallelism of an application in the course of its execution as the
x-axis represents time flow and the y-axis represents parallelism degree. The actual parallelism
is the number of running tasks or working workers at a point of time. It is manifested by the red
color area in the graph. Apparently actual parallelism never surpasses the number of cores on
which the program is executed. The available parallelism is divided further into several kinds
based on the kind of waiting the ready node is waiting on. Available parallelism is represented
by areas of other colors on the graph. Blue create kind indicates task nodes that have been
newly created but not start executing yet. Pink create cont kind indicates nodes that follow
a Create Task primitive and are waiting for execution. Green end kind indicates task nodes
that have finished execution but not synchronized yet. Cyan wait cont kind indicates nodes that
follow a Wait Tasks primitive and are waiting for tasks that they synchronize to be finished.

According to Figure 1.13, it is understood that the large nowork factor origins from the lack
of parallelism in the latter half of the execution. In its latter half, Sort was doing its merging
phase merging sub-arrays that have been sorted. The parallelization of this merging phase has
not been done well enough to exhibit sufficient parallelism for 64 cores. We need a tool to help
us look closer into what the worker are doing during this low parallelism period so that we can
know which parts in the application code to revise.

Figure 1.14 and Figure 1.15 introduce the same set of statistical graphs for Strassen appli-
cation. The two factors work and delay rise along with high core counts too. Their amounts
also vary among task parallel systems tool. Figure 1.15 shows the parallelism profile of Strassen
running on 64 cores by MassiveThreads. In the first half of the execution its actual parallelism
is very low as only one. We need another tool that provides a closer look into this period to see
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what the worker is doing and where in the application code it is executing.
DAGViz is a tool like that. DAGViz visualizes the DAG and provides interaction func-

tionalities to allow the user to explore the DAG visually.
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Figure 1.12. Sort’s scalability and breakdown graphs
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Figure 1.13. Sort’s parallelism profile at 64-core execution by MassiveThreads
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Figure 1.14. Strassen’s scalability and breakdown graphs

 0

 50

 100

 150

 200

 250

 300

 0  5e+08  1e+09  1.5e+09  2e+09  2.5e+09  3e+09  3.5e+09

running
end

create
create cont

wait cont
other cont

Figure 1.15. Strassen’s parallelism profile at 64-core execution by MassiveThreads

1.4 Organization of this Thesis

The structure of this paper is organized as following: the next chapter discusses related work,
the third chapter describes DAGViz’s design and implementaion, the fourth chapter talks
about using DAGViz in case studies of BOTS’s applications. Chapter 5 describes a preliminary
implementation of sampling-based measurement method. Chapter 6 discusses about evaluations
of DAG Recorder and DAGViz. it describes what the profiler can do and show. Finally,
chapter 7 is conclusions and future work.
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Chapter 2

Related Work

2.1 Parallel Performance Analysis

Tallent et al. [13] categorized parallel execution time of a multithreaded program into 3 kinds
of work, parallel idleness and parallel overhead. They use sampling method that interrupts
workers regularly after a fixed period of time to record a sample of where workers are working
on. They proposed techniques to measure and attribute parallel idleness and parallel overhead
back to application-level code based on an additional binary analysis process of the executable
to re-construct the program’s user-level call path. Their approach has been implemented in
the HPCToolkit performance tool of the Rice University. They claim that these two parallel
idleness and parallel overhead metrics can help to pinpoints areas in a program’s code where
concurrency should be increased (to reduce idleness), or decreased (to reduce overhead).

Olivier et al. [14] had taken a step further than [13] by identifying that the inflation in
work is in some cases more critical than parallel idleness or parallel overhead factors in task
parallelism. They systemize the contributions of the 3 factors of work inflation, idlness and
overhead in the performance loss of applications in Barcelona OpenMP Task Suite (BOTS).
They demonstrated that work inflation accounted for a dominant part and proposed a locality-
aware scheduler which could mitigate this factor.

There have been many tools for analyzing parallel performance. The TAU performance
system [15] is an open source system that has a powerful automatic instrumentation toolset.
Intel VTune Amplifier software [16] uses sampling method and does not need to instrument the
executable. These tools focus on the analysis of only one single execution of the application.
They can pinpoint the most costly code blocks in the application-level code which consume
most of the execution time. To analyze the work inflation factor we need to compare a pair of
executions on fewer and more numbers of cores, which these tools do not support.

Liu et al. [17] has built a NUMA profiler for multithreaded programs. It can assess the
severity of remote access bottleneck and provide optimization guidance of redistributing data
based on memory access patterns of threads. But for task-parallel applications, when tasks are
distributed dynamically, the solution must be more complicated.

The Cilkview Scalability Analyzer [18] describes Cilkview tool which monitors logical paral-
lelism during an instrumented execution of the Cilk++ application on a single processor core,
then analyzes logical dependencies between tasks to predict the application’s performance on a
machine with more cores.
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2.2 Visualizations for Analyzing Performance and Graphical
Tools

Visualization is an highly useful tool in doing analysis. Visual elements can convey structure of
the problem at a glance, and they may ignite insights to the solution that numbers and tables
merely can hardly reveal. By sticking to the analysis mindset of “overview first, zoom and filter,
the details on demand” [19], a visualization tool can support effectively the analysis of complex
hierarchical large datasets.

Visualization has been used as an effective tool to deal with various specific performance
problems. Knowing that communication cost in massively parallel applications on large dis-
tributed systems impacts heavily their performance, the authors in [20] have combined 2D and
3D views to visualize network traffic in order to explain and then optimize the performance
of large-scale applications on a supercomputer. CommGram [21] invented a new kind of visu-
alization to display network traffic data. It enhances bipartite graph style by replacing thin
straight arrows by fat colorful brushy curves to represent data flow between communication
nodes vividly.

Vampir Vampir [22] translates a trace file of an MPI program into a variety of graphical
visualizations. Its main visualization is a timeline view (Gantt chart) of the execution of the
parallel program. It simultaneously provides a statistical view that displays aggregate informa-
tion of a chosen time interval. It can also provide system activities at a particular point of time.
Iwainsky et al. [23] have used Vampir to visulize remote socket traffic on the Intel Nehalem-EX.

Jumpshot Jumpshot [24] is a scalable tool to visualize timelines. Task intervals of all workers
written in file in sslog log file format can be converted into slog2 format by a converting program
written by Prof. Taura. slog2 format can be read and visualized by Jumpshot. Jumpshot is
really a scalable tool that can zoom into tiny intervals but it is not that easy and quick for users
to perform zooming in/zooming out operations. One restriction of Jumpshot is that it can only
display up to 10 different categories which have different colors. It means that, for example, the
visualization can distinguish up to only 10 different task levels.

Paje Paje [25] provides timeline style visualization of parallel programs executing on multiple
nodes each of which contains dynamically running multiple threads. Paje supports click-back,
click-forward interaction semantics which mean that clicking visualization to show source code
and clicking source code to show visualization. Paje has several filtering and zooming function-
alities to help programmers to cope with large amount of trace information. These filterings give
users simplified abstract view of the data (statistical graphs showing aggregate information of
a chosen time slice). Users of Paje can also modify mapping between trace information entities
and visual elements (arrows, boxes, triangles) which makes the visualization flexible.

Jedule Jedule [26] is a tool to visualize schedules of parallel applications in timeline style. It
is built on Java. Users can adjust color style of Jedule’s visualization, can zoom in by selecting
a rectangular box, can export current view to images. Authors in [14] have used Jedule to
visualize a timeline view for analyzing the locality of a scheduling policy.

ThreadScope Wheeler and Thain [27] in their work have demonstrated that visualizing a
graph of dependent execution blocks and memory objects can enable identification of syn-
chronization and structural problems. They use existing tracing tools to instrument multi-
threaded applications, then transform result traces to dot-attributed graphs which are rendered
by GraphViz [28]. GraphViz tool is scalable up to only hundreds of nodes and very slow with
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large graphs of more than a thousand nodes because its algorithm [29] focuses on the aesthetic
aspect of graphs rather than rendering speed. And most of all, GraphViz is not interactive.

Aftermath Aftermath [30] is a graphical tool that visualize traces of an OpenStream [31]
parallel programs in timeline style. OpenStream is a dataflow, stream programming extension
of OpenMP. Although Aftermath is applied in a narrow context of OpenStream (subset of
OpenMP), it instead provides an extensive functionalities for filtering displayed data, zooming
into details and various interaction features with users. Aftermath is also built upon the GTK+
GUI toolkit [32] and Cairo graphics rendering library [33] like our work DAGViz.
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Chapter 3

DAG Visualizer

When dr dump() is called, DAG Recorder flattens the DAG which is stored hierarchically
in memory and write to file. DAGViz then reads the flattened DAG from file, reconstruct its
hierarchical structure but in a different way which is for the favor of a graphical representation.
DAGViz lays out the DAG in memory by calculating and assigning coordinates to its nodes
and then draws these nodes along with edges connecting them on screen. In this chapter, we will
describe the internal data structure of DAGViz, its layout algorithms, rendering algorithms,
animation mechanismsand other interesting aspects in design and implementation of DAGViz.

3.1 Internal Data Structure

A flattened DAG in file is called PIDAG (position-independent DAG) or simply P which is
defined as dv pidag t structure in DAGViz. Because one PIDAG may be very large by holding
millions of nodes and edges, it is not efficient to read the whole PIDAG into (physical) memory.
Or sometimes it’s even impossible to read it all at once when PIDAG’s size is up to gigabytes
exceeding memory’s capacity. Reading via a sream of the file every time we need to get data
from PIDAG is not efficient either. A better approach is that we map PIDAG into virtual
memory space by mmap() function, then needed parts of PIDAG will later get loaded into
physical memory automatically by hardware mechanisms when DAGViz accesses them. This
mapping approach is especially fit with arbitrary data-accessing pattern of DAGViz when users
tend to travel around the DAG toward interesting parts undeterminedly.

A P provides exactly information that DAG Recorder provides without anything related
to graphics rendering. So another structure is needed to hold the laid-out DAG which can be
rendered on screen. We call it DAG (from the perspective ofDAGViz) or simplyD. D is defined
in DAGViz by dv dag t structure. D is a collection of DAGViz’s nodes (as distinguished with
DAG Recorder’s nodes and PIDAG’s nodes) each of which holds coordinate information
necessary to render itself to screen. One node in D is associated with a node in P which is
the content source of the D’s node. So a D’s node carries a reference to a P’s node. D is like
a renderable version of P. D is the skeleton frame and P is the content. A D should have
had the same number of nodes corresponding to the number of nodes existing in P but due to
the constraint of memory capacity and also because displaying excessive number of nodes on
screen could make them unseeable or make users confused, we limit the size of D to a fixed-
size pool of nodes. Thus, a D does not reflect the whole P but only a part of it. In favor of
recycling unnecessary D’s nodes for newly accessed nodes when the pool gets empty, DAGViz
will purge unnecessary nodes in D and return them to the pool at runtime based on what need
to be displayed on screen as the user navigates/interacts on the GUI. Adding this node pool
mechanism provides us with a better control over the memory footprint of DAGViz.

A D mainly manages the DAG’s node pool, the DAG’s structure and interfaces with the
contents residing in P. D is not what the user can see physically. What the user see and
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conceive visually of a DAG is called views of the DAG. The way a user views a DAG can be
different based on different kinds of layouts that can be applied to the same DAG. Each view
can be considered as the result of applying a layout algorithm on a DAG to materialize it to
an actual form that the user can see. Therefore, we added another data structure dv view t
(V) to represent this view notion. Beside layout type information, a V also contains rendering
parameters which specify the user’s preferences in drawing a DAG, and interaction parameters
which stores the interaction activities that the user conducts on a DAG through that view.

There can be multiple views based on the same DAG, as well as there can be multiple Vs
referencing the same D. DAGViz also supports multiple Ds for the same P too, each D explore
different parts of P independently. This kind of relationship between P, D and V are illustrated
in Figure 3.1.

Figure 3.1. P-D-V design

In the following paragraphs, I’m going to describe detailed structures of P, D, V.

Structure of P P’s definition is shown in Figure A.1. Beside number of nodes, number of
edges, the start clock of the execution, number of workers, a PIDAG holds a contiguous array
of PIDAG’s nodes (Figure 3.3) which reference to the same dr dag node info structures with
DAG Recorder’s nodes but have different linking structure between themselves as they are
flattened-down version of DAG Recorder’s DAG. PIDAG’s nodes also have 5 kinds, they are
create, wait, end, section and task (same as DAG Recorder’s node kinds) (Figure 1.4). section
and task are collective nodes which contain subgraphs inside them. All (direct) child nodes of
a collective node are arranged contiguously in a sub-array somewhere behind the node in the
array. So a section or a task would additionally hold two offset indexes (subgraphs begin offset,
subgraphs end offset) pointing to the beginning and the end of the sub-array where their child
nodes reside. A create node would additionally hold one offset index pointing to the task node
that it creates. Figure 3.2 illustrates how nodes of a DAG of fib(3) program would be arranged
in PIDAG. As we can see from the figure, child nodes of a task reside right behind it. Child
nodes of a section are put after the sub-array that that section belongs to. task node created
by a create node is inserted after the sub-array that contains that drcreate node.

Structure of D D structure’s definition is shown in Figure A.2. First of all, a D structure
holds a pointer to the P that it associates with. Then, the most important part of a D is its
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Figure 3.2. Flattened DAG Recorder’s nodes in PIDAG of fib(3) program

1 struct dr pi dag node {
2 dr dag node info info;
3 long edges begin; /* index of begining of edges from this node */

4 long edges end; /* index of end of edges from this node */

5 union {
6 /* for create node */

7 long child offset; /* offset to its created task */

8 /* for section or task node */

9 struct {
10 long subgraphs begin offset; /* offset to beginning of subgraphs */

11 long subgraphs end offset; /* offset to end of subgraphs */

12 };
13 };
14 };

Figure 3.3. PIDAG’s node

node pool. The pool is a fixed-size array of DAGViz’s nodes (Figure A.4). It consists of T,
To, Tsz, Tn member variables of the D. Its size stored in Tsz is currently set at one hundred
thoundsand. To (T occupied) is used to indicate if a node in the array T has been allocated for
the DAG. So To has the same number of elements as T does. Number of currently allocated
nodes of T is stored in Tn. The allocation and releasing mechanisms of node pool are provided
through following interfaces:

• dv dag node pool init(): initialize node pool’s variables to default values, allocate memory
for T array and To array.

• dv dag node pool is empty(): to check if the node pool is empty (occupied fully) or not by
comparing Tn with Tsz.

• dv dag node pool avail(): return the current number of available nodes in the pool (Tsz
− Tn).

• dv dag node pool pop(): return one pointer to an available node in the pool, set the flag
of that node as occupied in To. If the pool is empty, call the function dv dag clear shrin
ked nodes() to ask for D to release children of shrinked nodes in the DAG which are not
currently visible.

• dv dag node pool push(): used to return a node to the pool by reseting its occupied flag
in To, and incrementing Tn.
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• dv dag node pool pop contiguous(): used to pop a contiguous sub-array of nodes in T. The
purpose of this function is that if all child nodes of a section or a task in P are assigned
contiguous D’s nodes, it makes it easier for D to later locate all child nodes of a particular
node and release them to the pool when necessary.

Using these interfaces, D can acquire nodes from and return nodes to the pool in order to
build its DAG in memory. Reversely, D also provides an interface, dv dag clear shrinked no
des(), for the pool to initiatively ask D to return unnecessary nodes for it to supply for new
allocation requests when it has run out of available nodes. The mechanism in dv dag clear shrin
ked nodes() will be discussed in Section 3.2 when DAG’s structure based on the linking between
D’s nodes are described. Beside the node pool, a D also stores other parameters specifying its
relative position inside P such as its current depth (cur d), its current depth including nodes
that are extensible to but hidden (not visible) on screen (cur d ex ).

Structure of V A V is associated with one D. V’s full definition is shown in Figure A.3.
Its first member variable is a pointer to a D. V holds viewing parameters for the D that it
is associated with. These viewing parameters can be classified into 3 categories of appearance,
drawing and interaction parameters. Appearance parameters are:

• lt : layout type of the DAG
• et : edge type specifying how to draw edges
• edge affix : indicates if an affix segment of edge should be drawn at the contact of an edge

and a node
• nc: node color mode, indicate what to be represented by colors (worker, cpu, node kind

or source code location)

Drawing parameters are:

• vpw, vph: width and height of the main viewport that this V is displayed on. The notion
of viewport will be discussed in Section 3.6.1.

• x, y : position of the coordinate origin of the view in viewport, is changed when user pan
the DAG around screen.

• zoom ratio x, zoom ratio y : zoom ratios for cairo to magnify/shrink graphics horizontally
and vertically

• nd : number of nodes drawn on screen
• ndh: number of nodes drawn on screen plus number of collective nodes not drawn on

screen but needed to traverse through when drawing DAG

Interaction parameters are:

• focused : indicate if the view is focused or not so that hot keys would be effective to it
• cm: clicking mode, indicate what to do when user clicks a node
• drag on: indicate if a dragging operation is being conducted or not
• pressx, pressy : position where the user presses (clicking down)
• accdisx, accdisy : accumulated moving distance since the user pressed
• do zoom x, do zoom y : indicate to make cairo do zooming when the user scroll on the

view
• do scale radix, do scale radius: change the radix and/or radius then make DAGViz re-

layout and re-draw the DAG. This results in magnifying/shrinking the DAG by re-laying
out rather than the automatic cairo’s zooming.
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1 typedef struct dv dag node {
2 ...
3 /* linking structure */

4 struct dv dag node ∗ parent;
5 struct dv dag node ∗ pre;
6 dv llist t links[1];
7 struct dv dag node ∗ head;
8 dv llist t tails[1];
9 ...

10 } dv node coordinate t;

Figure 3.4. Node’s linking variables

Common linked list data structure DAGViz implements a common linked list data struc-
ture (dv llist t). This list structure provides such operations as add operation to add a new
item to the end of the list, pop operation to pop the first item out of the list, get operation to
get (but not remove) any item on the list using its index. The list element can store any kind of
pointer (void *) as its item. For example, this list data structure is being used to hold the list
of P’s nodes that have info tags to draw (P→itl), the list of D’s nodes having info tag (D→itl),
the list of DAGViz’s nodes that are in the middle of collapse/expand animation.

Automatic view coordination The fact that multiple Vs can reference the same D makes
these Vs coordinated automatically because any change that the user makes to the D through
anyV would propagate to otherVs too. The change can be some changing to the properties that
D structure has. It is the same that multiple Ds referencing the same P would be coordinated
on the properties that P structure holds too. Moreover, all Vs that reference different Ds but
their Ds reference the same P would be coordinated on the properties that P structure holds.

3.2 DAG Structure and Hierarchical Traversal Model

In this section, we will discuss about how DAG structure is constructed based on linking between
D’s nodes. DAGViz considers “child nodes” notion of a section wider than DAG Recorder.
Child node group of a section consists of not only create, section, wait nodes asDAG Recorder
does but also task nodes which child create nodes in the group create. Child nodes of a task
still consist of only section and end.

One node will hold five pointers or lists of pointers referencing to some other nodes related
to it: parent, pre, links, head and tails in which links and tails are lists of nodes (Figure 3.4.
These five variables can be described as below:

• parent: its parent node
• pre: the node right before it in the same group of child nodes of its parent. pre of a task

and continuation node is the create node that created the task.
• links: is a list of nodes that it links to. A node links to its next node in the same group

of child nodes. A create node links to the task that it created and its continuation node.
• head: the head one (or the first one) of its child nodes.
• tails: the last one of its child nodes and also all task nodes that its child create nodes

create.

Because the DAG is a hierarchical structure with many levels of layers stacked upon each
other, we can classify these variables as such that parent points to the higher layer, pre and
links point to nodes next to it in the same layer, head and tails point to child nodes in lower
layer (Figure 3.5).
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Figure 3.5. Hierarchical layout model

The “linked” relationship between nodes in DAGViz is a superset of the “contiguous”
relationship between code segments. It is true that two nodes of two contiguous code segments
are linked together but the reverse is not always true. For example, a create node and a task
node are linked but they are not contiguous in the application code.

A DAG begins with a single task node representing the whole original application. Beginning
from this root task we can traverse all nodes of the DAG recursively. A simplified version of this
traversal model is shown in Figure 3.6a. At each node, after processing itself, it calls recursively
its head node and then calls each of its linked (successor) nodes.

However, in some cases that simple traversal pattern is not enough because nodes sometimes
require to be processed before they are traversed, or sometimes some of their processing need
to be computed only after their inner subgraphs have been processed or after all their linked
successors have been processed. In those cases, a more complex traversal model generalized in
Figure 3.6b is needed.

At first, only the original task node is accessed in PIDAG (for it to be loaded into physical),
assigned a node in D’s node pool and rendered on the screen. This node and other child nodes
later would get accessed, loaded and rendered based on the user’s demand. So state transition
of a node can be systemized like this:

none → set → inner loaded

When a node has just been allocated from the pool and initialized, it has state none. When
the function dv dag node set() is called upon it, DAGViz would access its corresponding P’s
node in PIDAG, causing it to be loaded into physical memory if it is not yet, and evaluate if it
has any child node. If it has child node(s), it is considered a “union” node that can be expanded
further into subgraphs. Even a or node which has been collapsed by DAG Recorder is not
of “union” kind. A “union” node can move to the next state of inner loaded which indicates
that all its child nodes have been accessed and loaded into D. A node in inner loaded state is
switched between shrinked and expanded states which specifies if its inner subgraph should be
drawn on screen or “collapsed” (this is visual collapse conducted by DAGViz, not the physical
collapse done by DAG Recorder).

shrinked ↔ expanded

In summary, a D’s node would hold following flags to specify its possible state transitions
above, in which two flags of expanding and shrinking are used for the collapse/expand animation
mechanism (Section 3.5).

• set : 0 means none state and 1 means set state
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1 int traverse(dv dag node t ∗ node) {
2 /* Process individual */

3 visit(node);
4 /* Traverse inward */

5 if (node−>head) {
6 traverse(node−>head);
7 }
8 /* Traverse link-along */

9 for (next in node−>links) {
10 traverse(next);
11 }
12 }

(a) simple

1 int traverse(dv dag node t ∗ node) {
2 /* Traverse inward */

3 if (node−>head) {
4 /* Process head */

5 ...
6 /* Traverse */

7 traverse(node−>head);
8 /* Process node with inward */

9 ...
10 } else {
11 /* Process node without inward */

12 ...
13 }
14 /* Traverse link-along */

15 switch (node−>links.size()) {
16 case 0:
17 /* Process node without link-along */

18 ...
19 break;
20 case 1:
21 /* Process one next */

22 ...
23 /* Traverse */

24 traverse(next);
25 /* Process node with one link-along */

26 ...
27 break;
28 case 2:
29 /* Process two nexts */

30 ...
31 /* Traverse */

32 traverse(right next);
33 traverse(left next);
34 /* Process node with two link-alongs */

35 ...
36 }
37 }

(b) complex

Figure 3.6. DAG traversal model
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1 typedef struct dv node coordinate {
2 /* Process individual */

3 double x, y;
4 double xpre, xp;
5 double lw, rw, dw;
6 double link lw, link rw, link dw;
7 } dv node coordinate t;

Figure 3.7. Node’s coordinate variables

• union: specifies if this node is of union kind or not
• inner loaded : 1 if this node is at inner loaded state, its child nodes have been loaded to

D, ready to be rendered on screen
• shrinked : 0 means expanded state, and 1 means shrinked state
• expanding : indicates this node is in transition from state shrinked to state expanded
• shrinking : indicates this node is in transition from state expanded to state shrinked

The purpose of the state set is to control the access to P’s nodes because every access to it
would possibly cause the hardware system to fetch a page to physical memory. union kind is the
notion of terminal and collective nodes from DAGViz’s point of view. The inner loaded state is
for the sake of D’s node pool. If the pool gets empty, DAGViz would conduct a cleaning process
to purge inner subgraphs of an unnecessary union node, return it back to inner loaded=0. This
cleaning process is done by the function dv dag clear shrinked nodes().

Based on interactions with the GUI, the user can order DAGViz to load inner subgraph(s)
and expand one or all leaf nodes which are of union kind in the current DAG. The user can
also order DAGViz to collapse (visually) unnecessary nodes so that he can get a cleaner view
on screen optionally.

3.3 Layout Algorithms and Views

A node has coordinate variables shown in Figure 3.7 in which x, y are absolute coordinates of
the node, xpre is the relative x coordinate based on its predecessor node, xp is the relative x
coordinate based on its parent node. lw, rw and dw which stand for left width, right width
and down width (distances from point x, y to the left, right and down) describe the bounding
box covering itself and all its expanded child nodes. link lw, link rw and link dw describes the
bounding box covering its self, its subgraph, all successor nodes reached when traversing along
the links, and their subgraphs too.

A layout algorithm traverses the DAG (with the described hierarchical traversal model) and
sets values to these varibales of each node.

Basic topologies that a task can expand to are shown in Figure 3.8b. Basic topologies of a
section are shown in Figure 3.8a.

We currently have implemented four layout algorithms which produce four kinds of views.
They are DAG with round nodes, DAG with long nodes, timelines and parallelism histogram.
The appearance of these four kinds of views applied to Sort application are shown as a demon-
stration in Figure 3.9.

3.3.1 DAG View with Round Nodes

The algorithm consists of two phases. In the first phase, it sets values for each node’s xpre, y,
lw, rw, dw and link lw, link rw, link dw (Figure B.1). In the second phase, it sets values for xp
and x of every node. In both phases, it traverses nodes based on the complex traversal model
(Figure 3.6b).
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(a) Section’s topology (b) Task’s topology

Figure 3.8. Section and Task’s topology
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(a) DAG round
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(b) DAG long
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(c) Timeline
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(d) Parallelism histogram

Figure 3.9. Four kinds of view

3.3.2 DAG View with Long Nodes

The algorithm is similar with that of DAG view with round nodes, also including two phases,
setting xpre, y, lw, rw, dw and link lw, link rw, link dw first then setting xp and x, but there is a
different point that it calculates dw and link dw differently. The height of a node is not constant
anymore but based on work time of the node. Because nodes’ work time varies tremendously
as there are nodes that are as small as some hundred of nanoseconds and nodes that are as
large as some hundred of milliseconds, if node height is set proportionally with work time, one
node can be millions of times longer than another. Therefore, we have implemented a scale-
down functionality for this view. The scale-down degree can be of linear, logarithmic or power
functions of adjustable radixes (Figure 3.10). These radixes can be changed via GUI.

3.3.3 Timeline View

Timeline view (Gantt chart) is a popular visualization adopted by many visualization tools. In
timeline view, the x-axis is the time flow and y-axis includes a number of rows each of which

29



1 double
2 dv dag calculate vresize(dv dag t ∗ D, double val) {
3 double ret;
4 switch (D−>sdt) {
5 case 0:
6 ret = log(val) / log(D−>log radix);
7 break;
8 case 1:
9 ret = pow(val, D−>power radix);

10 break;
11 case 2:
12 ret = val / D−>linear radix;
13 break;
14 default:
15 dv check(0);
16 break;
17 }
18 return ret;
19 }

Figure 3.10. Scale down

corresponds to one worker thread. The rows contain boxes representing works that worker were
doing at specific points of time.

There is a bug in cairo graphics library that it can not zoom into too tiny boxes. When
being zoomed in too much the rendering gets failed, a part of the surface gets painted by
one color. This bug origins from the 24.8 fixed-point format used by cairo’s device backend. In
cairo’s device-space, coordinates are stored in 24.8 fixed point format (24 bits for integer number
before the point, and 8 bits for real number after the point), they have a limit of maximum
value at around 8 million (223). When zooming in too largely the coordinates passed to the
device-space (= user-space coordinates × zoom ratio) will surpass this limit causing wrong
drawing.

The solutions we used to overcome this bug are two as following:

• cairo clip() function: this function provided by cairo instructs cairo to draw only things
inside a predefined box, and ignore others outside. However, using this function alone is
not enough. Because when there is a shape stretching from inside the clipping box out to
the outside, crossing the limit point, rendering still malfunctions.

• DAGViz does clipping itself : DAGViz cuts down parts of a shape that cross the
clipping box when drawing nodes.

With these two solutions, DAGViz can now zoom into the thinnest box in timeline view.

3.3.4 Parallelism Histogram View

By traversing the DAG hierarchically and drawing the according parallelism profile, DAGViz
can produce more flexible parallelism profile that the statistical images rendered by Gnuplot.
We also make DAGViz draw a timeline view sticking to the bottom of the histogram.

Figure 3.11 shows the parallelism profile of Sort application down to depth 1. Figure 3.12
shows that down to depth 5. And Figure 3.13 shows that down to depth 10.

There are some shortcomings of current implementation of this view:

• slow, not scalable: currently it can deal with up to 10 thoundsand nodes within 1-2 seconds
but gets very slow when there are more nodes. The reason is because the time x-axis is
divided into too many entries.
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Figure 3.11. Sort’s parallelism profile at depth 1
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Figure 3.12. Sort’s parallelism profile at depth 5

3.4 Rendering

The DAG is drawn on a drawing surface. The drawing functionality is provided by cairo library
which is also used as the base rendering system in gtk+.

DAGViz traverses the DAG and draws each node based on its coordinates. It then traverses
and draws edges connecting related nodes later.

3.5 Animation

DAGViz supports two kinds of animations. They are collapse/expand animation and motion
animation.

3.5.1 Collapse/Expand Animation

Animation duration is set as 400 milliseconds, and animation step is set as 30 milliseconds at
default.
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Figure 3.13. Sort’s parallelism profile at depth 10

GLib is a low-level system library providing common data structures and basic mechanisms
that other libraries and applications need to be built upon. Gtk+’s non-GUI-specific code is
based on GLib. Among various things, GLib particularly provides a timeout mechanism that we
used to make the animation in DAGViz. The mechanism works as that we register a function
to GLib for it to call regularly after a predefined period of time. The first call to the function
will be at the end of the first interval, GLib keeps calling the function repeatedly until it returns
FALSE. The mechanism is provided through g timeout add(interval, function, data) interface
in which interval is the time in milliseconds between two consecutive calls to the function who
is pointed by the function pointer function and accepts variable data of type gpointer as the
only parameter and should return a boolean value of type gboolean.

Every node who is on animation is set its start time in its member variable (started). Using
this start time, current time and the predefined duration of the animation, we can calculate the
ratio of the progress of the animation. But this ratio is linear, and linear animation does not
look very natural and beautiful. So we transform this linear-progressing ratio into some other
form like polynomial-progressing rate based on simple mathematical formula.

If the node is expanding:

rate = ratio −→ rate = 1− (1− ratio)2

Or if the node is shrinking:

rate = 1− ratio −→ rate = (1.0− ratio)2

The differences between these linear and polynomial scale can be seen visually by graphs in
Figure 3.14.

Following is the formula for calculating reverse rate when a node who is expanding is ordered
to switch to shrinking:

reverse rate = 1−
√
rate

And below is the formula for calculating reverse rate when a node who is shrinking is ordered
to switch to expanding:

reverse rate = 1−
√
1− rate
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Figure 3.14. Animation’s rate

A shrinking/expanding union node would be drawn with alpha to express that it is fading
in or fading out. These alphas are calculated based on following formula:

alphafading out = 1− ratio2

alphafading in = ratio2

Its visual progress is shown in Figure 3.15.
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Figure 3.15. Rate of alpha for fading out/in

The interfaces to the animation mechanism are listed here:

• dv animation init(): initialize variables of the V’s dv animation t structure.
• dv animation tick(): is the function to be called at regular intervals to adjust the DAG’s

layout and request to re-draw the DAG on screen.
• dv animation start(): calls g timeout add() to initiate the timer and register dv animation tick()

to be called regularly.
• dv animation stop(): simply modifies dv animation t structure as that the animation

stopped. It would be called by the last occurence of dv animation tick().
• dv animation add(): to add a new node to be on animation
• dv animation remove(): to remove a node from animation
• dv animation reverse(): to reverse the collapse/expand animation of a node
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3.5.2 Motion Animation

Motion animation is like an automatic pan operation. It moves the view to a specific point
gradually. This motion animation is used when user searches for a node, and the view moves
to makes that node into the user’s vision. Its mechanism is like that of the collapse/expand
animation.

• dv motion init(): initializing function
• dv motion tick(): called regularly to adjust the rendering
• dv motion start(): start the motion animation
• dv motion stop(): stop the motion animation
• dv motion reset target(): reset target to move towards

3.6 External Appearance

3.6.1 GUI

We use gtk+ library to make the GUI of our visualizer. gtk+ also provides mechanisms to
control interactive actions from users such as mouse clicks, mouse moving, key pressing.

Viewport’s hierarchical division

Screen is divided into nested viewports through an dialog that the user can adjust based on
their preferences.

3.6.2 Interaction

Layout and draw make DAG visible on the screen. Users then must need to interact with this
DAG visualization to explore details such as moving DAG around, zooming to parts of interest
to view better. We have implemented some basic interaction features in this prototype:

• Pan: users drag visualization around to view hidden parts
• Zoom: users manify or shrink the visualization to specific parts to view better
• Info tag: displays full information associated with a particular node, at least for correctness

checking purpose.
• Collapse/expand animation: collapse sub-DAGs to aggregate nodes (section, task) to hide

details, providing a more general view.

DAGViz is implemented an ability for user to choose what it should do when the user does
mouse scrolling: zoom horizontal & zoom vertical separately, scale radius (y-axis) & scalle
radix (x-axis). This feature is convenient to change size of the visualization without distorting
text.

3.6.3 Exporting Views

DAGViz is equipped with the ability to export views to png/eps file format. The produced eps
image is much more beautiful than one that is converted from PrintScreen image.
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Chapter 4

Case Studies

4.1 BOTS: Barcelona OpenMP Task Suite

Execution environment stack are shown in Table 4.1.

Compiler gcc 4.4.7

Task parallel library MassiveThreads

OS CentOS 6.4 (Linux 2.6.32-x86 64)

#cores 64

CPU AMD Opteron 6380 2.5GHz

Table 4.1. Environment

Benchmark applications are originally from the Barcelona OpenMP Task Suite (BOTS)
which is a collection of applications used to evaluate tasking layer implementation of the run-
time system (Table 4.2).

Name Summary

Alignment aligns sequences of proteins

FFT computes a Fast Fourier Transformation

Fib computes Fibbonaci number

Floorplan computes the optimal placement of cells in a floorplan

Health simulates a country health system

NQeens finds solutions of the N Queens problem

Sort uses a mixture of sorting algorithms to sort a vector

SparseLU computes the LU factorization of a sparse matrix

Strassen computes a matrix multiply with Strassen’s method

UTS computes the number of nodes in an Unbalanced Tree

Table 4.2. Benchmark applications

Experiment parameters used to run BOTS’s applications are shown in Table 4.3.
Experiment results of the benchmark applications, DAG file size and numbers of nodes are

shown in Table 4.4.
Running results of BOTS’s ten applications by DAGViz’s DAG views with round nodes

long nodes are gathered in Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6,
Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10.
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Table 4.3. Summary of benchmarks settings. They are all the applications in Barcelona
OpenMP Task Suites.

App stack cut off other args

Alignment 220 - -f prot.100.aa

FFT 215 - -n 224

Fib 215 manual -n 47 -x 19

Floorplan 217 manual -f input.20 -x 7

Health 214 manual -f medium.input -x 3

Nqueens 214 manual -n 14 -x 7

Sort 215 manual -n 227 -a 512 -y 512

Sparse LU 214 - -n 120 -m 40

Strassen 214 manual -n 4096 -x 7 -y 32

UTS 214 - -f tiny.input

Name DAG file size #nodes (materialized)

Alignment 3.9M 9,904

FFT 18.0M 47,438

Fib 4.0M 10,636

Floorplan 8.6M 22,415

Health 6.7G 17,796,837

NQeens 8.2M 21,360

Sort 11M 27,710

SparseLU 117M 302,920

Strassen 6.0M 15,692

UTS 1.1G 2,761,694

Table 4.4. Experiment results

d=2/2np=9904/9904-50000, n=9902/9904, d=2/2np=9904/9904-50000, n=9902/9904, 

Figure 4.1. Alignment

d=2/3np=123/47438-50000, n=44/49, d=3/4np=765/47438-50000, n=98/123, 

Figure 4.2. FFT
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d=6/6np=65/10636-50000, n=45/65, d=6/6np=65/10636-50000, n=45/65, 

Figure 4.3. Fib

d=4/4np=104/22415-50000, n=98/104, d=4/4np=104/22415-50000, n=98/104, 

Figure 4.4. Floorplan

d=2/2np=27012/17796837-50000, n=26646/27012, d=2/2np=27012/17796837-50000, n=26646/27012, 

Figure 4.5. Health

d=3/3np=60/21360-50000, n=44/60, d=3/3np=60/21360-50000, n=44/60, 

Figure 4.6. NQueens
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d=5/5np=231/27710-50000, n=174/231, d=5/5np=231/27710-50000, n=174/231, 

Figure 4.7. Sort

d=2/2np=50000/302920-50000, n=49897/49914, d=2/2np=50000/302920-50000, n=49897/49914, 

Figure 4.8. SparseLU

d=5/5np=235/15692-50000, n=170/235, d=5/5np=235/15692-50000, n=170/235, 

Figure 4.9. Strassen

d=2/2np=4004/2761694-50000, n=4002/4004, d=2/2np=4004/2761694-50000, n=4002/4004, 

Figure 4.10. UTS
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Chapter 5

Evaluation

5.1 DAG Recorder

Figure 5.1 shows overhead of DAG Recorder. Except for particular cases of Health and UTS
programs, for all others, DAG Recorder is feasible.

5.2 DAGViz’s Scalabilty

Memory-surpassing sizes Practical task-parallel programs can produce very big DAGs
which do not fit into the memory. If the visualizer ignores this problem and behave as if
there was no memory overload, thrashing, the phenomenon where the OS constantly exchang-
ing data in memory for data on disk, would occur, causing unstable state for the visualizer
application and even the whole machine.

Figure 5.2 illustrates an easy-to-view picture of size ranges that a DAG file can have.
“Memory-overwhelming” indicates these cases of sizes that surpass physical memory size. Ob-
viously, a countermeasure for this situation is to make the visualizer not to read all data at
once but to read only necessary parts that are needed for displaying currently visible sub-DAG
on screen. Considering a big DAG file as a very long stick, for one time the memory can hold
only one continual fragment of that stick. The parts of DAG that are in that fragment can be
displayed and explored very quickly. But if the user navigates out of these parts, which requires
loading another fragment, the speed would get much slower because it involves exchanging
memory pages.

Users commonly want to navigate the visualization geographically along four directions of
up, down, right and left. If those parts that are geographically nearby are placed near to each
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Figure 5.2. DAG size’s ranges

other in the file so that they can be likely loaded together to memory by one read, it would be
helpful for the visualizer’s performance.

DAG has a hierarchical structure which enables users to navigate semantically vertical di-
rection by collapsing/expanding sub-DAGs. This is convenient because users can get general
information of a branch of the DAG before going to its detail, as well as they can compare
two branches before deciding which one to explore further. Obviously aggregate data of nearby
sub-DAGs should be placed near to each other, and their detailed data can be far from each
other.

All of the work of in-file placement of DAG data we discussed so far can be summarized to
one word of file format. A DAG file can be of binary type which stores original in-memory
data structures of nodes/edges. The thing that matters here is the way these structures are
placed in the file. They must be placed so that the arrangement supports the best for the
visualizer’s operations, resulting in the best possible performance.

Layout-surpassing sizes For DAG sizes that are sustainable for the memory there is another
problem. Layout is an essential component of a visualizer, which determines the positions of
nodes and edges of a graph so that latter components of the visualizer can draw them onto
screen. Because the layout computation is usually the most costly part of a visualizer, it can
be said that a visualizer performs fast or slow depending on how efficient its layout process can
work.

Moreover, to maintain the responsiveness of a visualizer, its layout process must not run
longer than a desired time limit. If not, users would get uncomfortatble and stick to the feeling
that the tool is uncomplete, which is obviously not what we want.

In Figure 5.2, “layout ability” denotes the DAG size upper bound within which the layout
process can finish no longer than the desired time limit. All DAG sizes that are under the
memory size but above the “layout ability” bar are considered as “layout-overwhelming”. To
address DAGs with layout-overwhelming sizes, we can have the visualizer do layout and drawing
work on only a part of the DAG loaded in the memory. One intuitive way to limit parts to do
the layout is to draw only the part that are currently visible to the user. This ability involves
the work of organizing the DAG’s internal data structure so that the size and position of a
sub-DAG can be understood rightaway when the traversal reaches that sub-DAG without going
deeper into it.

Raising layout-ability bar One more point we want to discuss here is techniques to raise
the layout ability bar in Figure 5.2. They are recursion elimination and parallelization.
For traversals of all nodes of the DAG whose data structure is quite complicated, recursion must
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be the first best choice. However, when the visualizer’s layout computation has been proved to
be correct, some efforts should be given in replacing recursion by other more efficient methods
such as using self-organized stack instead. At least, a self-organized stack can help to avoid the
overhead of a large number of function calls incurred in the traversal with recursive manner.

As of the era of multicore where even a commodity computer can have more than one pro-
cessing cores, parallelizing an application can expose the potential to accelerate its performance
up to several times according to the available number of cores. More specifically, traversing
and processing each node of the hierarchical DAG structure are fit to task-parallel models. Be-
sides, by separating layout process from the visualizer’s main thread, its responsiveness can be
improved considerably. The visualizer can inform users about current state, or terminate the
on-going layout process if it takes too long.
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Chapter 6

Conclusions and Future Work

Conclusions

We have built a visualizer that displays the DAG on screen, provides interaction functionalities
for the user to explore the DAG. The DAG can be visualized by many kinds of views such
as DAG form with round nodes which is useful in helping users conceive structure of the task
parallel program, DAG form with long nodes which helps users in comparing size of nodes at a
glance, timeline view which is a traditional and popular visualization in distinguishing worker
threads and parallelism profile view which is new to us and useful for showing available and
actual parallelism in the course of the execution time.

Future Work

In future work, we would like to combine the sampling method with DAG Recorder to get a
more complete observation of long running intervals. DAG Recorder currently records only
time metrics, we intend to enhance it to recorder other hardware performance counters [34] as
well in order to get more thorough measures to reason about the performance. DAGViz is
an indispensable tool to convey insights to the users, so we also need to develop it to display
new data about performance counters, sampling samples that DAG Recorder provides. Be-
sides, to compare two isomorphic DAGs to analyze the work stretch factor is a very potential
direction of DAGViz.
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Appendix A

DAGViz’s Data Structures

1 typedef struct dv pidag {
2 long n; /* length of T */

3 long m; /* length of E */

4 long start clock; /* absolute clock time of start */

5 long num workers; /* number of workers */

6 dr pi dag node ∗ T; /* all nodes in a contiguous array */

7 dr pi dag edge ∗ E; /* all edges in a contiguous array */

8 dr pi string table S[1];
9 char ∗ fn; /* dag file name */

10 struct stat stat[1]; /* file stat structure */

11 dv llist t itl[1]; /* list of pii’s of nodes that have info tag */

12 } dv pidag t;

Figure A.1. P data structure
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1 typedef struct dv dag {
2 /* PIDAG */

3 dv pidag t ∗ P;
4

5 /* DAG’s skeleton */

6 dv dag node t ∗ T; /* array of all nodes */

7 char ∗ To;
8 long Tsz;
9 long Tn;

10

11 /* DAG’s content */

12 dv dag node t ∗ rt; /* root task */

13 int dmax; /* depth max */

14 double bt; /* begin time */

15 double et; /* end time */

16

17 /* expansion state */

18 int cur d; /* current depth */

19 int cur d ex; /* current depth of extensible union nodes */

20

21 /* layout parameters */

22 int sdt; /* scale down type: 0 (log), 1 (power), 2 (linear) */

23 double log radix;
24 double power radix;
25 double linear radix;
26 int frombt;
27 double radius;
28

29 /* other */

30 dv llist t itl[1]; /* list of nodes that have info tag */

31 dv histogram t ∗ H; /* structure for the paraprof view (5th) */

32 char tolayout[DV NUM LAYOUT TYPES];
33 } dv dag t;

Figure A.2. D data structure
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1 typedef struct dv view status {
2 // Drag animation

3 char drag on; /* currently dragged or not */

4 double pressx, pressy; /* currently pressed position */

5 double accdisx, accdisy; /* accumulated dragged distance */

6 // Node color

7 int nc; /* node color: 0->worker, 1->cpu, 2->kind, 3->last */

8 // Window’s size

9 double vpw, vph; /* viewport’s size */

10 // Shrink/Expand animation

11 dv animation t a[1]; /* animation struct */

12 long nd; /* number of nodes drawn */

13 int lt; /* layout type */

14 int et; /* edge type */

15 int edge affix; /* edge affix length */

16 int cm; /* click mode */

17 long ndh; /* number of nodes including hidden ones */

18 int focused;
19

20 /* drawing parameters */

21 char do zoomfit; /* flag to do zoomfit when drawing view */

22 double x, y; /* current coordinates of the central point */

23 double basex, basey;
24 double zoom ratio x; /* horizontal zoom ratio */

25 double zoom ratio y; /* vertical zoom ratio */

26 int do zoom x;
27 int do zoom y;
28 int do scale radix;
29 int do scale radius;
30

31 /* moving animation */

32 dv motion t m[1];
33 } dv view status t;
34

35 typedef struct dv view {
36 dv dag t ∗ D; /* DV DAG */

37 dv view status t S[1]; /* layout/drawing attributes */

38 dv view interface t ∗ I[DV MAX VIEWPORT]; /* interfaces to viewports */

39 dv viewport t ∗ mainVP; /* main VP that this V is assosiated with */

40 } dv view t;

Figure A.3. V data structure
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1 typedef struct dv dag node {
2

3 /* task-parallel data */

4 //dr_pi_dag_node * pi;

5 long pii;
6

7 /* state data */

8 char f[1]; /* node flags, 0x0: single, 0x01: union/collapsed, 0x11:

union/expanded */

9 int d; /* depth */

10

11 /* linking structure */

12 struct dv dag node ∗ parent;
13 struct dv dag node ∗ pre;
14 dv llist t links[1]; /* linked nodes */

15 struct dv dag node ∗ head; /* inner head node */

16 dv llist t tails[1]; /* list of inner tail nodes */

17

18 /* layout */

19 dv node coordinate t c[DV NUM LAYOUT TYPES]; /* 0:grid, 1:bbox, 2:

timeline, 3:timeline2 */

20

21 /* animation */

22 double started; /* started time of animation */

23

24 } dv dag node t;

Figure A.4. DAGViz’s node
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Appendix B

Layout Algorithms
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1 void dv view layout glike node(dv dag node t ∗ node) {
2 if (node−>head) {
3 node−>head−>xpre = 0.0;
4 node−>head−>y = node−>y;
5 /* Traverse inward */

6 dv view layout glike node(node−>head);
7 node−>lw = node−>head−>link lw;
8 node−>rw = node−>head−>link rw;
9 node−>dw = node−>head−>link dw;

10 } else {
11 node−>lw = RADIUS;
12 node−>rw = RADIUS;
13 node−>dw = 2 ∗ RADIUS;
14 }
15 /* Traverse link-along */

16 switch (node−>links.size()) {
17 case 0:
18 node−>link lw = node−>lw;
19 node−>link rw = node−>rw;
20 node−>link dw = node−>dw;
21 break;
22 case 1:
23 next−>xpre = 0.0;
24 next−>y = node−>y + (node−>dw + DV VDIS);
25 dv view layout glike node(next);
26 node−>link lw = max(node−>lw, next−>link lw);
27 node−>link rw = max(node−>rw, next−>link rw);
28 node−>link dw = (node−>dw + DV VDIS) + next−>link dw;
29 break;
30 case 2:
31 right next−>y = node−>y + (node−>dw + DV VDIS);
32 left next−>y = node−>y + (node−>dw + DV VDIS);
33 dv view layout glike node(right next);
34 dv view layout glike node(left next);
35 right next−>xpre = right next−>link lw − RADIUS + DV HDIS;
36 if (right next−>links.size() == 2)
37 right next−>xpre = − right next−>links[left next]−>xpre;
38 left next−>xpre = right next−>link lw − RADIUS + DV HDIS;
39 node−>link lw = − left next−>xpre + left next−>link lw;
40 node−>link rw = right next−>xpre + right next−>link rw;
41 node−>link dw = (node−>dw + DV HDIS) + max(right next−>link dw,

left next−>link dw);
42 break;
43 }
44 }

(a)

Figure B.1. DAG with round nodes’s layout algo phase 1
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1 void dv view layout glike node 2nd(dv dag node t ∗ node) {
2 if (node−>head) {
3 node−>head−>xp = 0.0;
4 node−>head−>x = node−>x;
5 /* Traverse inward */

6 dv view layout glike node 2nd(node−>head);
7 }
8 /* Traverse link-along */

9 switch (node−>links.size()) {
10 case 0:
11 break;
12 case 1:
13 next−>xp = next−>xpre + node−>xp;
14 next−>x = next−>xp + next−>parent−>x;
15 dv view layout glike node 2nd(next);
16 break;
17 case 2:
18 right next−>xp = right next−>xpre + node−>xp;
19 right next−>x = right next−>xp + right next−>parent−>x;
20 left next−>xp = left next−>xpre + node−>xp;
21 left next−>x = left next−>xp + left next−>parent−>x;
22 dv view layout glike node(right next);
23 dv view layout glike node(left next);
24 break;
25 }
26 }

(a)

Figure B.2. DAG with round nodes’s layout algo phase 2
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1 void dv view layout bbox node(dv dag node t ∗ node) {
2 if (node−>head) {
3 node−>head−>xpre = 0.0;
4 node−>head−>y = node−>y;
5 /* Traverse inward */

6 dv view layout glike node(node−>head);
7 node−>lw = node−>head−>link lw;
8 node−>rw = node−>head−>link rw;
9 node−>dw = node−>head−>link dw;

10 /* some processes for enhancing expand/collapse animation*/

11 ...
12 } else {
13 node−>lw = RADIUS;
14 node−>rw = RADIUS;
15 node−>dw = dv view calculate vsize(node);
16 }
17 /* Traverse link-along */

18 switch (node−>links.size()) {
19 case 0:
20 node−>link lw = node−>lw;
21 node−>link rw = node−>rw;
22 node−>link dw = node−>dw;
23 break;
24 case 1:
25 ugap = dv view calculate vgap(node−>parent, node, next);
26 next−>xpre = dv layout node get last tail xp r(V, node);
27 next−>y = node−>y + node−>dw + ugap;
28 dv view layout bbox node(next);
29 node−>link lw = max(node−>lw, next−>link lw − next−>xpre);
30 node−>link rw = max(node−>rw, next−>link rw + next−>xpre);
31 node−>link dw = node−>dw + ugap + next−>link dw;
32 break;
33 case 2:
34 ugap = dv view calculate vgap(node−>parent, node, u);
35 vgap = dv view calculate vgap(node−>parent, node, v);
36 u−>y = node−>y + node−>dw + ugap;
37 v−>y = node−>y + node−>dw + vgap;
38 dv view layout glike node(u);
39 dv view layout glike node(v);
40 u−>xpre = u−>link lw − RADIUS + DV HDIS;
41 if (u−>links.size() == 2)
42 u−>xpre = − u−>links[1]−>xpre;
43 v−>xpre = u−>link lw − RADIUS + DV HDIS;
44 if (v−>links.size() == 2)
45 v−>xpre += u−>link lw − RADIUS − u−>xpre;
46 node−>link lw = − v−>xpre + v−>link lw;
47 node−>link rw = u−>xpre + u−>link rw;
48 node−>link dw = node−>dw + max(ugap + u−>link dw, vgap + v−>

link dw);
49 break;
50 }
51 }

(a)

Figure B.3. DAG with long nodes’s layout algo phase 1
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1 void dv view layout bbox node 2nd(dv dag node t ∗ node) {
2 if (node−>head) {
3 node−>head−>xp = 0.0;
4 node−>head−>x = node−>x;
5 /* Traverse inward */

6 dv view layout bbox node 2nd(node−>head);
7 }
8 /* Traverse link-along */

9 switch (node−>links.size()) {
10 case 0:
11 break;
12 case 1:
13 u−>xp = u−>xpre + node−>xp;
14 u−>x = u−>xp + u−>parent−>x;
15 dv view layout bbox node 2nd(u);
16 break;
17 case 2:
18 u−>xp = u−>xpre + node−>xp;
19 u−>x = u−>xp + u−>parent−>x;
20 v−>xp = v−>xpre + node−>xp;
21 v−>x = v−>xp + v−>parent−>x;
22 dv view layout glike node(u);
23 dv view layout glike node(v);
24 break;
25 }
26 }

(a)

Figure B.4. DAG with long nodes’s layout algo phase 2

57



1 void dv view layout timeline node(dv dag node t ∗ node) {
2 node−>lw = RADIUS;
3 node−>rw = RADIUS;
4 node−>dw = dv view calculate vresize(V, pi−>info.end.t − D−>bt) −

dv view calculate vresize(V, pi−>info.start.t − D−>bt);
5 int worker = pi−>info.worker;
6 node−>x = V−>D−>radius + worker ∗ (2 ∗ V−>D−>radius + DV HDIS);
7 node−>y = dv view calculate vresize(V, pi−>info.start.t − D−>bt);
8 if (node−>head) {
9 /* Traverse inward */

10 dv view layout bbox node 2nd(node−>head);
11 }
12 /* Traverse link-along */

13 switch (node−>links.size()) {
14 case 0:
15 break;
16 case 1:
17 dv view layout bbox node 2nd(u);
18 break;
19 case 2:
20 dv view layout glike node(u);
21 dv view layout glike node(v);
22 break;
23 }
24 }

(a)

Figure B.5. Timeline’s layout algo
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