
Master’s thesis

Improving the Resource

Utilisation in MapReduce

（MapReduceにおけるリソース利用率の改善）

February 5th, 2015

Supervisor

Prof. Masaru Kitsuregawa

Department of Information and Communication Engineering

Graduate School of Information Science and Technology

The University of Tokyo

48-136444 Kun Liu

Abstract

MapReduce has gained in widespread popularity over recent years. It achieves

great scalability by subdividing jobs into tasks, distributing the tasks across the

cluster and executing them in parallel. Since the advent of MapReduce, various

effort has been made to improve the cluster resource utilisation. Current schedul-

ing methods mostly focus on the resource sharing policy amongst jobs. However,

resources in MapReduce are allocated to tasks rather than directly to jobs, yet

work from the task point of view is relatively lacking.

In this thesis, I review a few recent advances that delve into the resource allocations

on the task level. Despite their advantages, none of those approaches answer the

questions raised by various workload patterns, such as CPU-intensive and I/O-

intensive, in homogeneous environments. As such, I propose a Finer Grained CPU

Scheduler that effectively improves the CPU utilisation, yet does not over-stress

the CPU resources, by taking into account the diverse CPU requirements of tasks.

Experiments conducted on a Hadoop cluster demonstrate that compared to state-

of-art approach YARN, the Finer Grained Scheduler significantly improves the

throughput of CPU-intensive workloads without compromising the performance

of I/O-intensive ones.

Keyword: MapReduce, CPU, resource utilisation, scheduling

Acknowledgements

I would like to express my gratitude to my advisor Prof. Masaru Kitsuregawa,

who has been a mentor and inspiration to me. I would like to thank Dr. Daisaku

Yokoyama for his continuous support throughput not only the project but the

entire two years of my Master’s. Thanks to Dr. Miyuki Nakano for her valuable

advice on this research. Thanks to Prof. Masashi Toyoda, Dr. Nobuhiro Kaji,

Dr. Naoki Yoshinaga, Dr. Masahiko Itoh, and those who accompanied me in the

presentation exercises, who made helpful comments during the weekly meetings,

who joined me for regular discussions.

Thanks to Kitsuregawa Lab for providing a tremendous environment, with all

the facilities indispensable for researches, and the academic atmosphere where I

could be constantly motivated. Thanks to every member of Kitsuregawa Lab.

They welcomed me with open arms when I first got in here, and treated me with

nothing but kindness and consideration. Studying in a foreign country far away

from family was not easy, but they made me feel at home.

A special thanks to my family, who have been extremely supportive even in rough

times. Words cannot express how grateful I am to my parents, aunts and uncles.

Thanks to all of my friends who supported me during this thesis.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Background . 1

1.2 Resource Management in MapReduce 3

1.2.1 FIFO Scheduler . 5

1.2.2 Size-based Scheduler . 7

1.2.3 Capacity Scheduler . 7

1.2.4 Fair Scheduler . 8

1.3 The Structure of This Thesis . 9

2 Related Work 10

2.1 YARN . 10

2.1.1 Architecture . 11

2.1.2 Resource Model . 13

2.2 ThroughputScheduler . 15

2.2.1 Intuition . 15

2.2.2 Task Model . 16

2.2.3 Scheduling Policy . 18

3 Finer Grained Resource Allocation 19

3.1 CPU Under-utilisation in YARN . 20

3.2 Finer Grained CPU Resource Model 24

3.2.1 Parametrisation . 26

3.2.2 CPU Requirement Analysis 28

3.3 Implementation . 30

3.3.1 System Design . 30

iii

Contents

3.3.2 Scheduling Framework . 32

3.3.2.1 Job Submission . 32

3.3.2.2 Task execution . 34

3.3.2.3 Job completion . 36

4 Experiments 37

4.1 Environment . 38

4.2 Benchmarks . 39

4.3 Metrics . 41

4.4 Results . 42

4.4.1 Results under Balanced Pattern 42

4.4.2 Results under CPU-heavy Pattern 43

4.4.3 Results under I/O-heavy Pattern 44

5 Conclusion 46

Bibliography 48

List of Figures

1.1 Simplified MapReduce framework 3

1.2 Task slots in MapReduce . 4

1.3 Waiting time (s) of each job under FCFS algorithm 6

1.4 Hierarchical queues in MapReduce 8

2.1 JobTracker and TaskTrackers in classic MapReduce 11

3.1 CPU allocations in YARN . 21

3.2 CPU usage of the datanode in Test 4 (where 11 tasks executed in
parallel) . 22

3.3 Average MAP task time in each test (time in ms, lower is better; x
axis shows the total number of parallel tasks in each test) 23

3.4 CPU usage of the datanode in Test 0 24

3.5 CPU scheduling on a datanode: YARN vs. Finder Grained 27

3.6 Simplified workflow of Finer Grained CPU scheduling 33

4.1 Job execution times (in ms, lower is better) under balanced work-
load pattern . 43

4.2 Job execution times (in ms, lower is better) under CPU-heavy work-
load pattern . 44

4.3 Job execution times (in ms, lower is better) under I/O-heavy work-
load pattern . 45

v

List of Tables

1.1 Resource time (s) of three jobs . 5

3.1 Datanode specifications . 21

4.1 Experimental environment (per datanode) 37

4.2 dd test results (MB/sec) . 38

4.3 Per MAP/REDUCE task CPU requirement of each workload 41

4.4 Average MAP task time (in ms, lower is better) under balanced
workload pattern . 42

4.5 Average MAP task time (in ms, lower is better) under CPU-heavy
workload pattern . 43

4.6 Average MAP task time (in ms, lower is better) under I/O-heavy
workload pattern . 44

vi

Chapter 1

Introduction

1.1 Background

In this era of Big Data, distributed processing is becoming increasingly indispens-

able to processing a massive amount of data in a timely manner. It has motivated

numerous tools such as MapReduce, which by virtue of scalability, fault-tolerance

and simplicity, has become the de facto standard for large scale data analytics,

and is gaining great momentum from both academia and industry.

The basic workflow of MapReduce is straightforward. From the users’ perspective,

operations are performed through a variety of jobs. Once a job gets submitted

to the MapReduce framework, however, it is subdivided into MAP and REDUCE

tasks. In particular, the input of the job is split evenly into blocks, and a MAP

task is spawned for each block. When all MAP tasks finish, their outputs are

partitioned, often by a hash function, into REDUCE tasks, which then process

those outputs to yield the final results.

To MapReduce, a framework designed for executing multiple jobs and tasks in

parallel, resource sharing is of crucial importance. In MapReduce, multiple jobs

often need to compete for the cluster resources, and resources assigned to each job

are shared by its tasks. By distributing the tasks to a large number of datanodes

across the cluster and executing them in parallel, the execution time of a job could

be significantly reduced. This mechanism enables great scalability and lies at the

1

1.1 Background

heart of MapReduce. Back in 2008, Yahoo! reported that their Hadoop1 cluster

could scale out to 4,000 nodes [1]. In the same year, Hadoop sorted 1 terabyte

of data in 209 seconds, beating the previous record of 297 seconds in the annual

general purpose (Daytona) terabyte sort benchmark. It was the first time ever

that either a Java or an open source program had won [2].

The idea of resource sharing is not new. Long before the advent of MapReduce, it

had enabled multitasking in most modern operating systems. By sharing common

computing resources in the system, such as CPUs and disks, multiple tasks are

able to progress simultaneously. Take CPU resources for instance. On the very

bottom level, a CPU is only capable of carrying out one operation at a particular

time, but it constantly makes clever decisions to switch back and forth amongst

the runnable tasks. Each task thus gets a proportion of the CPU time. Since all

these are done under the hood, from the perspective of the user, it appears that

multiple tasks are running concurrently.

Compared to the simple example above, resource sharing in MapReduce is much

more complicated, with a few extra factors having to be considered

• Multiresource It is relatively straightforward to manage just one single

resource such as CPU. But in real world, most of the time several different

kinds of resources are shared at the same time. In addition, a task generally

requires more than one kind of resources, e.g., nearly all tasks require CPU

for computations, some need disks for reading or/and writing files, and some

even need network for transferring data remotely

• Diverse requirements Tasks achieve various objectives, therefore they

have diverse resource requirements. Based on the requirements, tasks could

be classified into CPU-bound, I/O-bound, memory-bound, etc. For a CPU-

bound task, its execution time is primarily determined by the speed of the

processor, which also implies that upgrading the CPU could possibly improve

the task performance. The same idea applies to other kinds of resources. In

this thesis, I only consider CPU-bound and I/O-bound tasks

• Distributed resources In a distributed environment like MapReduce, re-

sources are scattered across the cluster, adding to the complexity of resource

1Apache Hadoop is the open-source software framework that mainly consists of Hadoop Dis-
tributed File System (HDFS) and MapReduce.

2

1.2 Resource Management in MapReduce

Node 1

Job a

...

Node 2

Node 3

Node 4

Job b

USER Scheduler

Task

a1

Task

a2

Task

a3

...

Task

b1

Task

b2

...

Figure 1.1: Simplified MapReduce framework

management. Moreover, compared to non-distributed environments such as

a single machine, a cluster usually has an enormous amount of resources to

handle, which consequently raises the scalability concern, with the resource

management module being the bottleneck

1.2 Resource Management in MapReduce

To manage resources amongst multiple concurrent jobs and tasks, decisions have

to be constantly made on resource allocations. Cluster resources are limited com-

pared to the endless needs, therefore such decisions could have a huge impact on

the resource utilisation and the overall throughput of the cluster.

Resource management is mostly automatic and transparent, e.g., in the case of an

operating system, it usually rests with the kernel to make decisions on resource

allocations. Similarly in MapReduce, the scheduler module is in charge of resource

management. As illustrated in FIGURE 1.1, the user defines2 and submits his

jobs, and leaves the rest - subdividing each job into tasks, distributing the tasks

across the cluster, and executing them - to the MapReduce framework. This

characteristics, often referred to as “simplicity”, is one of the main advantages of

MapReduce. Preserving such simplicity is a vital principle in my work.

2A MapReduce job is usually defined by writing the Mapper and Reducer classes, which
specify the behaviour of the MAP and REDUCE tasks.

3

1.2 Resource Management in MapReduce

MAP Slot

MAP Slot

MAP Slot

MAP Slot

REDUCE Slot

REDUCE Slot

MAP

REDUCE

Idle

Waiting

Figure 1.2: Task slots in MapReduce

In classic MapReduce, cluster resources are allocated as “task slots” [3, 4]. Each

datanode is configured with a fixed number of MAP slots and REDUCE slots,

each of which could be allocated to a MAP / REDUCE task. There are two key

shortcomings in this static slot approach

• Lack of flexibility In MapReduce, a MAP task cannot be executed in a

REDUCE slot, and vice versa. As a result, cluster resources could be wasted

in scenarios like FIGURE 1.2, where some REDUCE slots are left idle while

there are MAP tasks waiting to be scheduled, or the opposite

• Inefficient memory utilisation Memory is the inelastic resource in MapRe-

duce, i.e., without sufficient memory a task simply cannot be successfully

executed. Consequently, under the static slot strategy, the number of slots

per datanode is limited by the most memory-demanding tasks

Consider the following example of memory allocation in classic MapReduce. As-

sume that

1. Each datanode has 8 GB memory in total for executing MAP tasks

2. Job A requires 1 GB memory per MAP task

3. Job B requires 2 GB memory per MAP task

To provide the guarantee that tasks would never fail due to insufficient memory,

the number of MAP slots per datanode, i.e., the maximal number of parallel MAP

tasks per node is

MAP slots per node =
8GB

2GB
= 4

4

1.2 Resource Management in MapReduce

Job Resource Time
J1 30
J2 5
J3 5

Table 1.1: Resource time (s) of three jobs

i.e., every MAP task is presumed to require 2 GB memory. This assumption

leads to inefficient memory utilisation, but had the number of MAP slots per

datanode been set to a higher value, tasks could potentially fail due to insufficient

memory. e.g., assume each datanode is configured with 5 MAP slots. If a particular

datanode had been allocated 5 MAP tasks, 4 of which were from job B (and the

5th might come from job A or job B), then the actual memory requirements would

have been

Requirement ≥ 1GB + 2GB × 4 = 9GB > 8GB = Capacity

which would always exceed the memory capacity of the datanode, consequently

causing tasks to fail

Since multiple jobs often have to compete for the cluster resources, there needs to

be a policy to address the resource sharing amongst jobs. In particular, decisions

have to be constantly made on the selection of job to assign resources to next.

In the following subsections, I review some scheduling approaches that frequently

appear in MapReduce.

1.2.1 FIFO Scheduler

FIFO Scheduler in MapReduce closely resembles the FCFS (First-Come-First-

Served) policy that appears in many scheduling problems. Under the FIFO policy,

jobs are scheduled based strictly on the order of submission.

FIFO is straightforward, but it has the shortcoming of yielding long average re-

sponse time3 under certain circumstances. Consider an example of three jobs, as

shown in TABLE 1.1. For a particular job, its resource time refers to the amount

of time it needs to use the whole cluster to complete. Although resources in

MapReduce are scheduled to tasks rather than directly to jobs, here I make such

3The response time for a job refers to the difference between its submission time and com-
pletion time.

5

1.2 Resource Management in MapReduce

J1J2 J3

0 5 10

(a) J1 arrives last

J1J2 J3

0 5 35

(b) J1 arrives between J2 and J3

J1 J2 J3

0 30 35

(c) J1 arrives first

Figure 1.3: Waiting time (s) of each job under FCFS algorithm

simplifications to better illustrate the idea. Assume that the three jobs arrive at

the same time in a particular order

• If J1 arrives last, as illustrated in Gantt chart 1.3a, the average waiting time

is (0 + 5 + 10)/3 = 5s

• Had J1 arrived between J2 and J3, as illustrated in FIGURE 1.3b, the

average waiting time would have been (0 + 5 + 35)/3 = 13.3s

• The worst case is when J1 arrives first, as shown in FIGURE 1.3c, yielding

an average waiting time of (0 + 30 + 35)/3 = 21.6s

Having a short job like J2 or J3 wait for a duration much longer than the job itself

is by no means reasonable.

In an operating system, the FIFO (or FCFS) policy could cause the nasty “convoy

effect” [5], i.e., a long process holds the resources, blocking all the other processes.

It leads to poor utilisation of the other kinds of resources in the system, e.g.,

many I/O bound processes could get stuck behind one single CPU-bound pro-

cess, consequently leaving the I/O resources idle. Similar scenarios could occur

in MapReduce, where a CPU-intensive job hogs the cluster, preventing the I/O

resources from being efficiently utilised.

6

1.2 Resource Management in MapReduce

1.2.2 Size-based Scheduler

Proposed by Pastorelli Mario, et al. [6], the Size-based Scheduler is basically an

SRTF (Shortest-Remaining-Time-First) emulation on MapReduce. For a partic-

ular job, its size is the aggregation of estimated execution time of all its tasks.

Jobs with smaller remaining sizes are prioritised over those with bigger remaining

sizes. In particular, if a new job Jnew arrives with resource time shorter than the

remaining time of currently executing job Jcurrent, Jcurrent is preempted4.

SJF is theoretically one of the most efficient scheduling algorithms in terms of

average response time [7]. This is good for the resource utilisation - more jobs

could complete within the same time. However, it faces a critical challenge in

reality - the resource time of a newly arrived job is generally unknown. To tackle

this problem, Size-based Scheduler estimates the size of a new job based on its

first few tasks.

Furthermore, to prevent starvation of long jobs, SJF adopts the job aging ap-

proach, i.e., the remaining size of a waiting job virtually5 reduces - as if it were

actually progressing - the longer it waits, eventually small enough for the job to

be scheduled.

1.2.3 Capacity Scheduler

Developed by Yahoo!, the Capacity Scheduler [8] provides a solution for sharing

a large cluster securely amongst multiple tenants, by introducing the concept of

queues. Specifically, it forms hierarchical queues, as illustrated in FIGURE 1.4: all

queues descend from the root queue, which is granted the resources of the entire

cluster; for each queue, including the root, its resources are distributed amongst

its child queues recursively; jobs only run in the leaf queues, which cannot have

any child queues. Within each leaf queue, jobs are usually scheduled under the

FIFO policy.

In real world, typically each organisation has its private compute resources that

is able to satisfy its peak-time requirement. But this leads to poor utilisation on

4Strictly speaking, Size-based Scheduler does not allow pre-emption of tasks. The pre-emption
here simply means that ‘the next resource will be allocated to Jnew rather than Jcurrent’.

5In Size-based Scheduler, this is referred to as the virtual remaining time of a job.

7

1.3 Resource Management in MapReduce

Root queue

Queue A Queue B

Queue B2Queue B1

Queue B11 Queue B12

Non-leaf queue

Leaf queue

Job

Figure 1.4: Hierarchical queues in MapReduce

average. By sharing resources on a large cluster amongst organisations, the overall

utilisation could be largely improved.

1.2.4 Fair Scheduler

Developed by Facebook, Inc., Fair Scheduler [9] assigns resources to jobs such that

all jobs get, on average, an equal share of resources over time. It enables short

jobs to finish in reasonable time while not starving long ones. This is beneficial to

the utilisation of the cluster resources since it allows a better chance of running

mixed workloads, i.e., CPU-intensive jobs as well as I/O-intensive ones, therefore

leading to a more balanced utilisation of multiple resources.

If configured with the size based weight policy, Fair Scheduler is loosely akin to

the priority-based scheduling algorithm [10]. In fact, Size-based Scheduler could

also be viewed as a special case of priority-based algorithm, i.e., the smaller a job

is, the higher its priority.

Like Capacity Scheduler, Fair Scheduler supports hierarchical queues. In addition,

to provide increased flexibility, it allows every queue to customise its own resource

sharing policy, such as FifoPolicy, FairSharePolicy, etc.

8

1.3 The Structure of This Thesis

1.3 The Structure of This Thesis

Section 1.2 reviews some commonly adopted scheduling approaches. When it

comes to selecting the “best” scheduling method under particular circumstances,

various criteria need to be considered, therefore it is difficult to assert that one

scheduler is superior to another. Even the “problematic” FIFO is useful in some

situations, e.g., within a queue in the Fair Scheduler. However, as a rule of thumb

and a primary objective, a scheduler should always make good use of the cluster

resources. Improving the resource utilisation in MapReduce is thus the focal point

throughout this thesis.

Current scheduling algorithms mostly focus on the job level. They specify the

resource sharing policy amongst multiple jobs, or more specifically, the decision

making strategy on the selection of job to schedule resources to next. However,

resources in MapReduce are allocated to tasks rather than directly to jobs, yet

relatively speaking, researches on improving the resource utilisation from the task

point of view are lacking. In this thesis, I address the resource utilisation problem

by delving into the resource allocations to tasks, and improve the utilisation by

taking into account the diverse task requirements.

The rest of this thesis is organised as follows

• Chapter 2 introduces a few related researches on improving the resource

utilisation in MapReduce. They differ from the scheduling algorithms in this

chapter in that they focus on the resource allocations to tasks, rather than

resource sharing policy amongst jobs

• Chapter 3 describes the approach of my work - Finer Grained CPU Schedul-

ing. I firstly discuss the problem of CPU under-utilisation in MapReduce,

then propose a refined CPU resource model, and finally design and imple-

ment a scheduling system that puts the model into practical use

• Chapter 4 summarises the experiments for evaluating the Finer Grained

CPU Scheduling

• Chapter 5 concludes this thesis, and discusses future work, including a few

possible extensions on the Finer Grained CPU Scheduling

9

Chapter 2

Related Work

In this chapter I present related work that aims to improve the cluster resource

utilisation in MapReduce. Firstly, I walk through YARN (Yet Another Resource

Negotiator [11], developed by Yahoo!), which revolutionised the mechanism of re-

source allocations. Next, I introduce the ThroughputScheduler propose by Shekhar

Gupta et al. [12]. It learns the resource requirement profile of jobs, and schedules

resources accordingly. There are other researches that adopt a similar learning-

based approach, such as CASH (Context Aware Scheduler for Hadoop [13]), but

in this chapter I only cover the ThroughputScheduler as the representative work.

2.1 YARN

Section 1.2 describes the “static task slot” strategy for resource allocations in

classic MapReduce, which is rather inflexible and inefficient. The fundamental

problem is that from the perspective of the scheduler, every MAP task is treated

equally and so is every REDUCE task, regardless of their diverse resource re-

quirements. In addition, the strict task-slot mapping, i.e., the restriction that a

MAP task cannot be executed in a REDUCE slot and vice versa, leads to re-

source waste in scenarios like 1.2, where REDUCE slots are left idle while there

are waiting MAP tasks, or the opposite.

To overcome such shortcomings, Yahoo! designed and developed the next genera-

tion of Hadoop’s compute platform, YARN. In the following subsections, I firstly

10

2.1 YARN

MAP task M3

JobTracker

TaskTracker A

TaskTracker B

MAP task M1

Idle MAP slot

MAP task M2

Idle REDUCE slot

REDUCE task R1

Task

failed

Process

heartbeats

one by one

Rerun failed task M3;

1 idle REDUCE slot

1 idle MAP slot

Figure 2.1: JobTracker and TaskTrackers in classic MapReduce

compare the basic architecture of YARN with classic MapReduce, then describe

in details the resource management in YARN, and why it is more efficient.

2.1.1 Architecture

In classic MapReduce, all the scheduling decisions are made by the central Job-

Tracker, which usually runs along with the namenode1 on the dedicated master

node. Each slave node (datanode) runs a TaskTracker which manages the task

slots configured with it. Specifically, it starts JVM processes for tasks to run

within, monitors their status and progress, and provides crucial functionalities

such as fault-tolerance, i.e., when a task fails, the relevant TaskTracker would re-

quest the JobTracker for re-execution. It also notifies the JobTracker, typically

every few minutes, to reassure the JobTracker about its liveness. A TaskTracker

communicates with the JobTracker by sending periodic heartbeats, as illustrated

in FIGURE 2.1. Upon receiving a heartbeat, the JobTracker locks the scheduler

until the heartbeat is processed, i.e., it could process only one heartbeat at a

particular time.

1As opposed to the datanodes which store the actual data, the namenode is the coordinator
of the HDFS file system. It keeps the directory tree of all files, and tracks how these files are
divided into blocks and distributed across the cluster.

11

2.1 YARN

The classic MapReduce framework has the following problems

• Scalability Since the JobTracker listens to all TaskTrackers in the cluster,

this architecture raises the scalability concern - the workload of the Job-

Tracker is roughly proportional to the total number of TaskTrackers, conse-

quently as the cluster grows larger and larger, the JobTracker could readily

be overwhelmed by the sheer amount of information it needs to process

• Reliability In classic MapReduce, the JobTracker is the single point of

failure, i.e., if the JobTracker goes down, it would take the whole cluster

with it - all the running jobs would be lost, and it would take a herculean

effort to manually recover them. Furthermore, the fact that the JobTracker

handles the resource allocations all by itself and processes heartbeat updates

from all datanodes makes it even more vulnerable

To tackle these two issues, YARN decouples a part of the scheduling function

from the JobTracker. The new centrepiece is now called the Resource Manager

(RM). The name is self-explanatory: it is dedicated to resource management. In

particular, RM monitors the resource usage of the datanodes across the cluster; it

also receives resource requests from jobs, and informs them which datanode has

the requested resources.

The primary difference between YARN and classic MapReduce is the per-job Ap-

plication Master (AM), which coordinates the execution of the job in the cluster.

When a job gets started, the RM launches an AM for it, and leaves the job se-

mantics to the AM thereafter. In particular, the AM sends periodic heartbeats to

the RM to affirm the liveness of the job and requests resources for its task. Once

the AM receives a response from the RM that informs it which datanode has the

requested resources, it launches a task in the right place. In addition, the AM

monitors the status and progress of the tasks, and provides fault-tolerance, spec-

ulative execution2, etc. In classic MapReduce, all these are handled by the single

point of failure JobTracker. By delegating these responsibilities to the per-job

AM, the burden on the new centrepiece RM is tremendously reduced.

2For a particular job, as most of its tasks are coming to a close, the scheduler would spec-
ulatively re-executes the stragglers, i.e., tasks that are progressing more slowly than others, in
the hope that the speculative tasks would beat the original ones which are likely suffering poor
performance, therefore reducing the response time of the job [14].

12

2.1 YARN

This re-designed architecture achieves much greater scalability than classic MapRe-

duce, which was indeed one of the initial goals of YARN. Yahoo! claims that their

cluster could be extended by YARN to over 7,000 nodes, which is an astounding

advancement compared to 4,000 nodes, their largest cluster size before YARN.

More importantly, due to the largely reduced burden on the central RM, the cluster

is capable of handling a much bigger number of jobs and tasks at the same time.

Yahoo! reported the statistics on a 2,500 node cluster, in which the daily number

of jobs went from about 77k under classic MapReduce, to roughly 100k on YARN.

Similarly the daily number of tasks went from 4M to approximately 10M. This

implies that YARN significantly improves the resource utilisation of the cluster

and therefore yields much higher throughput.

2.1.2 Resource Model

Apart from the refined MapReduce framework, another valuable contribution of

YARN is its new resource model. As described in Section 1.2, classic MapReduce

completely ignores the diverse resource requirements of tasks, and allocates cluster

resources as static task slots, which is not only inflexible but inefficient. YARN

tackles such problems by introducing the concept of container.

In YARN, a container is a logical bundle of resources that could be allocated for a

task. Currently it models both memory and CPU. This resource model differenti-

ates from classic MapReduce mainly in two aspects, each of which corresponds to

one issue described in Section 1.2

• Increased Flexibility In YARN, there are no such concepts as “MAP

container” or “REDUCE container”. As long as the resources wrapped in

the container meet the requirements of the task, or more specifically, the

amount of memory and the number of CPU cores that the task requests, an

allocation could be arranged. As a result, the nasty resource waste problem

illustrated in FIGURE 1.2 could be completely avoided

• Improved Efficiency Before each job is submitted to the centrepiece RM,

it could configure its resource requirement per MAP task and per REDUCE

task. If no such configuration are made, default values3 are used instead. Un-

like classic MapReduce, this mechanism takes into consideration the diverse

3The default values for resource requirement per MAP/REDUCE task are also configurable.

13

2.1 YARN

resource requirement of tasks, and allows a dynamic per-job configuration,

which effectively improves resource utilisation

Memory is the inelastic resource in the cluster. Consequently, in practice the

memory request for a task normally needs to be set slightly higher than its actual

requirement, in order to guarantee that the task would not fail due to insufficient

memory. Furthermore, a task might “under-report” its memory requirement, acci-

dentally or intentionally. As a result, its memory usage exceeds the amount planed

for it by the RM. At best, the task itself fails; a worse case is that it drags other

tasks down with it. To address this problem, YARN comes with a memory moni-

toring feature, which keeps track of the memory usage of each task, and enforces

the killing of the task if its memory usage exceeds the request.

To illustrate the advantages of the resource model in YARN, consider such an

example in which

1. Each datanode has 16 GB memory in total for executing tasks

2. Job A requires 1 GB per MAP task, 2 GB per REDUCE task

3. Job B requires 2 GB per MAP task, 1 GB per REDUCE task

With the static task slot approach of MapReduce 1, an appropriate scheme is to

split the memory of each datanode evenly into two halves, one half for MAP tasks

and the other for REDUCE tasks. To guarantee that tasks would never fail due to

insufficient memory, the scheduler would have to presume that every task has the

same requirement as the most memory-demanding tasks. Therefore, the maximal

number of MAP/REDUCE task slots per datanode is

MAP slots =
16GB/2

2GB
= 4

REDUCE slots =
16GB/2

2GB
= 4

However, had any datanode been assigned a MAP task of job A, the memory of

that node would be wasted, as the actual memory usage of MAP tasks

MAP task memory usage ≤ 1GB + 2GB × 3 = 7GB < 8GB

14

2.2 ThroughputScheduler

is always smaller than the capacity. The same happens when the datanode is

assigned a REDUCE task of job B. In addition, as previously described, distin-

guishing between MAP and REDUCE slots could also cause nasty resource waste

problems.

With the new resource model of YARN, these kinds of waste could be effectively

alleviated. As long as a datanode has memory left, it is considered by the RM as

an option for task scheduling. If its remaining memory could satisfy a particular

task, an allocation could be arranged.

2.2 ThroughputScheduler

As described in Section 2.1, YARN significantly improves the resource utilisation in

MapReduce with its refined scheduling architecture and resource model. However,

while it does consider the resource requirement of tasks, such consideration is

largely limited to the inelastic memory resources. It does not answer the questions

raised by various job patterns of MapReduce.

In a typical MapReduce environment, normally a variety of jobs are mixed to-

gether. Some jobs are CPU-intensive, i.e., they spend a large proportion of the

time doing computations, and often need large amounts of memory to hold inter-

mediate results; others are I/O-intensive, i.e., they do not require much processing

power, but heavily rely on the disk performance of the datanodes. There are other

categories, but for this thesis I only consider CPU- and I/O- intensive jobs.

In the next few subsections I introduce the ThroughputScheduler, which improves

the cluster resource utilisation by actively matching job requirements to node ca-

pabilities, therefore reducing the overall job completion time. It is mainly targeted

at clusters with heterogeneous nodes, which is not the case in my environment.

Nevertheless, the idea of learning and utilising the resource requirement profile of

jobs is generic and inspirational.

2.2.1 Intuition

In recent years, heterogeneous environments are becoming increasingly common.

A typical example is virtualised data centres, such as Amazon’s Elastic Compute

15

2.2 ThroughputScheduler

Cloud (EC2), according to [14]. In such environments, nodes have different hard-

ware capabilities, e.g., some nodes may have relatively fast CPU but slow disks,

while others are the opposite. Assigning a CPU-intensive task to the latter is by

no means reasonable. The task performance would be degraded by the slow CPU,

and the fast disks would be left idle, which is a tremendous waste of valuable re-

sources. Unfortunately, MapReduce itself is not capable of distinguishing between

CPU-intensive and I/O-intensive jobs, nor does it have a mechanism to take into

account the node heterogeneity. ThroughputScheduler addresses such problems in

the following steps

• Node Capabilities To get the knowledge of the node capabilities, a few

probe jobs are executed. This is done offline, since hardware change is usually

infrequent. Then with the capabilities, the resource requirements of jobs

could be parametrised as well

• Job Requirements A MapReduce job is subdivided into many MAP and

REDUCE tasks4. For a particular job, its MAP tasks are uniquely defined

by a Mapper class, i.e., all its MAP tasks are in essence the same set of

operations performed on different inputs. In addition, for the same job, the

MAP tasks have nearly the same input data size, as each MAP task usually

processes one HDFS block, which is of the fixed size for a particular job.

Therefore, it is appropriate to assume that the MAP tasks that belong to

the same job are very similar. It is thus reasonable to estimate the resource

requirement of a job by analysing a small number of sample MAP tasks

• Active Matching With information obtained in the first two steps, Through-

putScheduler schedules tasks by optimally matching job requirements to

node capabilities. In particular, it assigns CPU-intensive tasks to nodes with

“relatively faster” CPU, and I/O-intensive tasks to nodes with “relatively

faster” disks

2.2.2 Task Model

To enable the ThroughputScheduler, node capabilities (CPU and disk) and job

requirements need to be translated into resource parameters. However, MapRe-

duce itself does not provide such mechanisms. The task model, which does such

4It is possible for a job to have no REDUCE tasks.

16

2.2 ThroughputScheduler

parametrisations, lies at the heart of ThroughputScheduler. The actual calcu-

lations in the model are highly complicated. For understandability, here I only

summarise the basics.

For a particular node n, the following capabilities are analysed

• Ωn: the overhead (time in seconds) to start a task on n

• κnc : the CPU capability of n

• κnd : the disk capability of n

The value of Ωn is estimated by executing a ‘unit’ MAP task that has an empty

map() function. It has zero CPU requirement and zero disk requirement, thus its

execution time could be an indicator of Ωn.

The values of κnc and κnd are calculated in such fashion

1. Run a base job on each node. Assume its CPU and disk requirement per

MAP task to be θc and θd respectively, then its average MAP task time on

a particular node i is

T i
1 =

θc
κic

+
θd
κid

+ Ωi (2.2)

2. Run another job on each node. This job does the exact same I/O operations

as the base job, but repeats the CPU computations for r times, therefore

its CPU and disk requirement per MAP task is rθc and θd respectively. The

average MAP task time of the new job on a particular node i is

T i
r =

rθc
κic

+
θd
κid

+ Ωi (2.3)

3. Solving Equation 2.2 and 2.3 yields

κic =
θc(r − 1)

T i
r − T i

1

(2.4)

where θc is still unknown

4. Choose an arbitrary node as the reference node. Assume κ1c = 1, then θc

becomes known, therefore θic for any i could be calculated by Equation 2.4

5. Calculate κd in the same fashion

17

2.2 ThroughputScheduler

Once the node capabilities become known, the resource profile of each job could

be estimated by a small number of sample MAP tasks, and expressed as multiples

of κ1c and κ1d, i.e., the capability of the reference node.

2.2.3 Scheduling Policy

ThroughputScheduler schedules tasks based on firstly the data locality, then the

optimal matching of job requirements and node capabilities. The data locality

refers to the vital principle that MapReduce tries to assign tasks to nodes where

the data to be processed is stored [15]. For each node n in the cluster, Through-

putScheduler does the following

1. If any data-local tasks could be scheduled, select a task from a job that

optimally matches the capabilities of node n

2. If any rack-local5 tasks could be scheduled, select a task from a job that

optimally matches the capabilities of node n

3. Schedule a remote task based on the optimal matching

The optimal matching is to assign CPU-intensive tasks to nodes with “relatively

faster” CPU, and I/O-intensive tasks to nodes with “relatively faster” disks. e.g.,

assume node n1 has κn1
c = 2 and κn1

d = 1; node n2 has κn2
c = 3 and κn2

c = 3; then

n1 has relatively faster CPU compared to its disk, despite the fact that n2 has

better CPU performance.

5Rack-local means that the input data is not on the node where the task is executed, but on
some node in the same rack.

18

Chapter 3

Finer Grained Resource

Allocation

Chapter 1

As described in Chapter 2, YARN revolutionises the mechanism of resource man-

agement in the cluster. It delegates a large part of the scheduling function to

the per-job AM, thus allowing the centrepiece RM to dedicate to the resource

management, and refines the resource model to enable flexible and more efficient

allocations. As a result, resource utilisation is significantly improved in YARN.

However, YARN does not take into account the actual CPU or disk resource re-

quirements of various workloads. At present, disk resources are not parametrised.

In addition, although YARN does model CPU resources, current CPU allocation

is very coarse.

ThroughputScheduler does consider the resource requirements of jobs, but it is

strictly limited the heterogeneous environments. It improves the resource util-

isation by assigning resources to tasks that need it most, i.e., faster CPUs to

CPU-intensive tasks and faster disks to I/O-intensive tasks. Unfortunately, this

logic does not apply to a homogeneous cluster.

In this chapter, I present my work, the Finer Grained Scheduler. It models the

resources in a homogeneous cluster in such a way that they reflect the node ca-

pabilities as well as the task requirements. In addition, to make use of the new

resource model, I design a practical scheduler, and implement its features into

Hadoop framework.

19

3.1 CPU Under-utilisation in YARN

I found disk resources difficult to parametrise at the moment. In particular, even

with only one I/O-intensive task, the disk bandwidth on the relevant datanode1

would be almost saturated. In practice, however, it would be too harsh to allow

only one or two I/O-intensive tasks on each datanode. Duggal et al. [16] reported

that in some environments, it had been set up to 300 tasks per node for very CPU-

light MAP tasks. Due to such reasons, I decided to focus on the CPU resources

in my work, and consider I/O as a future extension.

3.1 CPU Under-utilisation in YARN

As described in Section 2.1.2, resources in YARN are allocated as containers.

A container is a logical bundle of cluster resources, or more specifically, a cer-

tain amount of memory and an integer number of CPU cores. Each job is able

to dynamically configure its resource request per MAP task and per REDUCE

task before submitted to the RM. Memory resources are measured in megabytes,

therefore YARN allows a relatively flexible and fine grained memory allocation.

However, it is not the case for the CPU resources.

In YARN, CPU resources are allocated in the form of virtual CPU cores (vcore).

For each datanode, the vcore capacity is configured equal to its number of physical

cores. Each task requests exactly one vcore, i.e., every task is assumed to saturate

one physical core. This strategy is loosely akin to the static task slots in classic

MapReduce, which assumes that every task is equal, or more specifically, every

task requires the same resources as the most resource-demanding tasks.

If workloads are all compute intensive, i.e., every task nearly saturates one physical

core, the CPU scheduling of YARN works fine. In practice, however, there are both

CPU- and I/O intensive workloads [17]. For an I/O intensive task, assuming it

also saturates one physical core is not reasonable, as in fact the assigned CPU core

is idle for most of the task’s duration waiting for I/O operations. As illustrated

in FIGURE 3.1, for each physical core assigned to an I/O intensive task, a large

proportion of its processing power is left unutilised, which is a huge waste of

valuable CPU resources.

1The relevant datanode is not necessarily the one where the task is executed - in distributed
file systems such as HDFS, the data might be read from or written to another datanode in the
cluster.

20

3.1 CPU Under-utilisation in YARN

Core 1 Core 2 Core 3 Core 4

...

Under-utilised CPU cores

Core 5 Core 6

CPU-intensive

I/O intensive

Figure 3.1: CPU allocations in YARN

Hardware
CPU Xeon E5530, 2.40 GHz, 8 cores
Memory 24 GB
Disk 500 GB

Software
Hadoop 2.6.0
Framework YARN
Java Oracle 1.7.0 21

Table 3.1: Datanode specifications

I verify the problem of CPU under-utilisation in practice by performing a series

of tests on a Hadoop cluster with a single datanode. The hardware specifications

of the datanode are summarised in TABLE 3.1.

To resemble the real-world balanced workload pattern, I chose Pi and TeraGen

as the CPU- and I/O intensive workload respectively. Both workloads came from

the official Hadoop benchmark2. For each of the following tests, I would repeat

for 10 times to calculate the average, median, etc.

Firstly in Test 1, I strictly followed the CPU scheduling policy of YARN and

executed 2 jobs in parallel: a TeraGen job with 3 MAP tasks, each of which

2These workloads could be found in the hadoop-mapreduce-examples-〈version〉.jar shipped
with Hadoop. They are also available in [18]

21

3.1 CPU Under-utilisation in YARN

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81

C
P

U
 U

s
a

g
e

 (
%

)

Elapsed Time (s)

Figure 3.2: CPU usage of the datanode in Test 4 (where 11 tasks executed in
parallel)

generates 1 GB of data; a Pi job with 3 MAP tasks, each of which generates 1.5

billion points. Since the datanode has 8 physical CPU cores in total, the scheduler

would assume that the CPU resources were fully occupied by the 2 jobs (or more

specifically, 8 cores were saturated by 6 MAP tasks and 2 per-job AMs).

From Test 2, I set the vcore capacity of the datanode to a very high value, so that

current CPU policy would take no effect, thus more than 8 tasks were able to run

in parallel. In addition, I gradually tuned up the number of MAP tasks in the Pi

job. In particular, in Test 2 Pi contained 4 MAP tasks, in Test 3 Pi contained 5

MAP tasks, etc. The TeraGen job remained unchanged in every single test.

I monitored the CPU load of the datanode in each test. As illustrated in FIGURE

3.2, in Test 4 where 11 tasks were executed in parallel, the CPU load occasionally

hit 100%, but was not overstressed. Thus, I conjectured that the task performance

should not suffer significantly in Test 4.

As shown in box-and-whisker3 FIGURE 3.3a, there was no performance degrada-

tion in the MAP tasks of TeraGen. When running with 8 Pi tasks (where x =

13 in FIGURE 3.3a), the MAP tasks of TeraGen took on average 62,420 ms to

complete. Compared to the average value 62,113 ms in Test 1 (where x = 8 in

3A box-and-whisker contains the following statistics: minimal, maximum, median, the median
of the first half, and the median of the second half. The red spot within each box-and-whisker
shows the average value.

22

3.1 CPU Under-utilisation in YARN

37500

42500

47500

52500

57500

62500

67500

72500

8 9 10 11 12 13

(a) TeraGen

40000

45000

50000

55000

60000

65000

70000

75000

8 9 10 11 12 13

(b) Pi

Figure 3.3: Average MAP task time in each test (time in ms, lower is better;
x axis shows the total number of parallel tasks in each test)

FIGURE 3.3a), the change was negligible, well under 1%. This result was under-

standable since TeraGen is I/O intensive, thus less likely to be affected by CPU

resources.

FIGURE 3.3b shows the task performance of Pi. The average MAP time in

Test 4 (where x = 11) is not significantly longer than in Test 1, which verifies my

surmise that CPU was not yet overstressed by 11 tasks4. This result was somewhat

contrary to the assumption of YARN, according to which the CPU resources were

already saturated by 8 tasks in Test 1.

4I attributed this slight performance degradation to the overhead, such as context switch, of
running more tasks in parallel.

23

3.2 Finer Grained CPU Resource Model

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81

C
P

U
 U

s
a

g
e

 (
%

)

Elapsed Time (s)

Figure 3.4: CPU usage of the datanode in Test 0

To give a more direct view of CPU under-utilisation, I performed Test 0 which

executes a TeraGen job that contains 7 MAP tasks, each of which generates 512

MB of data. As shown in FIGURE 3.4, the CPU of the datanode was hardly satu-

rated by the 8 tasks (7 MAP tasks and the AM), with an average load of scarcely

60%. In terms of physical CPU cores, only approximately 5 cores were actually

saturated. Since MapReduce itself does not have a mechanism to distinguish be-

tween CPU- and I/O- intensive workloads, some datanodes could end up being

assigned many I/O-intensive tasks, which could be disastrous, since the scheduler

would still assume that the CPU resources of those datanodes are saturated.

The results of the tests above imply that the CPU scheduling of YARN indeed

causes under-utilisation. In particular, the assumption that every task saturates

one CPU core breaks under workload patterns that contain I/O intensive jobs. To

solve this problem, the actual CPU resource requirement of workloads have to be

taken into consideration.

3.2 Finer Grained CPU Resource Model

The memory allocation in YARN gives an excellent example of flexible and fine

grained resource management

1. Each datanode has an amount of memory dedicated to MapReduce tasks

2. Each task requests a configurable amount based on its need

24

3.2 Finer Grained CPU Resource Model

3. In practice, the memory request for a task is slightly larger than its actual

requirement, so that the task would not fail due to insufficient memory

Most of these could be perfectly emulated by the CPU scheduling. Although I

have a different reason for 3. By slightly over-requesting CPU resources for a

each task, the actual CPU usage in the cluster is unlikely to exceed the capacity,

therefore this strategy could effectively avoid over-stressing the CPU resources.

In this section, I describe my CPU resource model that parametrises the CPU

resources, and adopts an analysing-based approach to learn the requirements of

various workloads. For the remainder of the thesis, if not otherwise specified, J

refers to a MapReduce job, T refers to a task, W refers to a workload, and R

refers to the CPU resource requirement of a job/task/workload. In addition, for

the purpose of clarification, the following conventions apply

1. For MapReduce job J , its

(a) Workload WJ refers to the definition of the job. In MapReduce, the

behaviour of the job is specified by its MAP and REDUCE tasks, or

more specifically, by its underlying Mapper and Reducer class defini-

tions. In programming language terms, WJ could be viewed as a class,

and J could be treated as a specific object of WJ . Two jobs belong to

the same workload iff they have the exact same Mapper and Reducer

class

(b) Resource Requirement refers to all the information about its: mem-

ory requirement per MAP task; memory requirement per REDUCE

task5; CPU requirement per MAP task; CPU requirement per RE-

DUCE task. All these should be dynamically configurable before J is

submitted to the RM. In particular, the CPU Requirement RJ refers

to the CPU-related configurations

2. For task T

(a) JT refers to the MapReduce job that contains T

(b) Its Workload WT refers to the workload of JT

5The per-REDUCE-task configurations apply iff the job contains any REDUCE tasks.

25

3.2 Finer Grained CPU Resource Model

3.2.1 Parametrisation

The first question that arises in my resource model is: Q1. How should the

CPU resources be parametrised? Clearly, this parametrisation should be able

to quantify the node capabilities and the task requirements in unified units. While

memory resources could simply be expressed as multiples of MB/GB/. . . , there

does not exist a natural way to do so for CPU resources6.

Since CPU consumption in practice is often expressed as percentage, I define the

capacity of each physical CPU core as 100, representing 100% of its processing

power. For each datanode, given the number of physical cores n, its CPU resource

capacity is

Capacity = n ∗ 100 (3.1)

For task T , its CPU resource requirement RT , which is an integer ranging from 1

to 100, has the meaning that “T saturates RT% of one physical core”. The CPU

allocation policy of YARN could thus be expressed as “every task requires 100

CPU resources, i.e., it always saturates one core”. I deprecate that assumption

with the exception of the following two cases

• The workload WT is “unknown”. As described in Section 3.2.2, I adopt an

analysing based approach to obtain the CPU resource requirement of WT .

Consequently, WT remains unknown until the analysis is completed

• T is too small. In practice, there are often tasks that finish in scant few

seconds. In this case, it is difficult to ensure the accuracy of the CPU re-

quirement analysis, as the overhead of task execution becomes non-negligible.

In addition, it is not worth the effort to concern over a very small task - it

would finish quickly and free up the CPU resources anyway

In either case, 100 CPU resources are requested for T by default. This is tanta-

mount to assuming that T would saturate one physical core, but it is necessary to

do so, as we do not know the amount of CPU resources that T actually requires.

Using the assumption of YARN might cause under-utilisation, but at least could

effectively avoid over-stressing. Fortunately, the first case occurs only when the

6YARN models CPU resources in terms of cores, but as discussed in Sections 3.1, this lacks
flexibility and efficiency, and is exactly what I are trying to be rid of

26

3.2 Finer Grained CPU Resource Model

Core 1 Core 2

CPU-intensive

I/O intensive

Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

Waiting tasks

(a) YARN

CPU-intensive

I/O intensive

CPU resource pool

100 50 50 100 50 100 100 50 100 100

(b) Finer Grained

Figure 3.5: CPU scheduling on a datanode: YARN vs. Finder Grained

first job of WT is executed, thus very infrequent7; the second case does not have

significant impact on the overall utilisation since the task is very short.

I refer to the above parametrisation as “Finer Grained”. The name is self-

explanatory. In my approach, the CPU resources are no longer viewed by the

scheduler as individual cores. Instead, each datanode is configured with a “pool

of CPU resources”, the capacity of which is defined by Equation 3.1. A task T

could then request a configurable amount, based on its requirement RT .

7In practice, we tend to execute the same workload again and again, on different inputs.

27

3.2 Finer Grained CPU Resource Model

FIGURE 3.5 illustrates the CPU scheduling on a single-node cluster. Assume

that the datanode has 8 physical cores; the cluster is mixed with CPU- and I/O-

intensive workloads; the CPU resource requirement of each CPU-intensive and I/O

intensive task is 100 and 50 respectively. As shown in FIGURE 3.5a, YARN allows

at most 8 parallel tasks, based on its assumption that each requires a whole core.

FIGURE 3.5b illustrates the Finer Grained CPU policy, which views the CPU

resources as a pool rather than individual cores, and makes scheduling decisions

according to the task requirements. As a result, it enables more tasks in parallel.

Although the disk utilisation is less likely to be significantly improved by more

parallel I/O-intensive tasks8, the Finer Grained scheduling takes full advantage of

the wasted proportion of CPU resources, thus effectively improving the utilisation.

3.2.2 CPU Requirement Analysis

With CPU resources parametrised in Section 3.2.1, the second question arises: Q2.

For a particular task T , how to calculate its CPU resource requirement

RT?

In my model, RT is estimated to be the “CPU intensity” of T . This CPU intensity

is opposed to I/O intensity, and is calculated as follows

RT =
CPU Time

CPU Time+ I/O Time
× 100 (3.2)

The intuition is that the more CPU-intensive T is, the more time T spends on

CPU computations compared to I/O operations, thus the higher the value of RT ,

e.g., if T is performing computations only throughout the entire course, RT is

estimated to be 100, meaning “T saturates one core”.

In Equation 3.2, the CPU time is relatively stable as it is roughly proportional

to the amount of calculations, which is almost fixed for a particular task. It is

also feasible to get the relatively accurate CPU time of the task JVM9. On the

contrary, it is difficult to directly get the I/O time. A good indication seems to be

I/O Time = Wall Clock T ime− CPU Time (3.3)

8As mentioned at the beginning of the chapter in page 19, running even one I/O-intensive
task would nearly saturate the disk bandwidth.

9The robust way is to get the process id of the task JVM, and then get the CPU time via
“/proc/[pid]/stat”. It is used by many Hadoop components.

28

3.2 Finer Grained CPU Resource Model

Using Equation 3.3 would substitute the denominator in Equation 3.2 with the

wall clock time of T . However, had RT been calculated using Equation 3.2 and

3.3, it would have violated a vital principle of my design - avoid over-stressing

the CPU resources. If a CPU-intensive job J had suffered uncommonly poor I/O

performance due to fierce contentions, its wall clock time would have been longer

than it should normally be, causing its CPU requirement to be underestimated.

Consequently, the scheduler would end up assigning more CPU-intensive tasks

than it ought to, potentially over-stressing the CPU of some datanodes.

To stick to the principle, I calculate I/O Time in Equation 3.2 based on the

total number of bytes read and written by T and the I/O rate of the datanodes.

Moreover, I pretend that T always had optimal I/O performance, i.e., the full

disk bandwidth of the relevant datanode. Typical implementations of MapReduce

such as Hadoop usually run on non-overlapping FileSystem10 and HDFS, therefore

I/O Time could be calculated as follows

I/O Time =
FileSystem Bytes Read

FileSystem Read Rate
+
FileSystem Bytes Written

F ileSystem Write Rate

+
HDFS Bytes Read

HDFS Read Rate
+
HDFS Bytes Written

HDFS Write Rate
(3.4)

and each task could be calculated by Equation 3.2 and 3.4.

In MapReduce, jobs have a-priori unknown resource requirements, therefore my

last question is: Q3. How do I know the CPU resource requirement of a

new job?

As Ren et al. [19] reported in their measure study on three Hadoop clusters for

research, the bulk of the use of Hadoop is in “repetitive transformations”, i.e., the

same workload tends to be repeatedly executed, on different inputs. Therefore

for each workload W , its CPU requirement RW could be analysed by executing a

sample job that contains a small number of tasks; once the analysis is completed,

future jobs of W could all benefit from it, thus the overhead of the small sample

job could be amortised over time.

For a sample job J , the CPU requirement per MAP/REDUCE task could be esti-

mated to be the average among all its MAP/REDUCE tasks. This is appropriate

due to the similarity amongst tasks in the same job11. To obtain the FileSystem

10FileSystem refers to the local file system of the datanode on which the task is executed.
11As indicated by Gupta et al. [12] in their ThroughputScheduler.

29

3.3 Implementation

and HDFS rate for Equation 3.4, a series of I/O tests need to be conducted. While

testing I/O rates, it is important to eliminate the factor of memory buffer cache.

Details on this matter are provided in Section 3.3.

Suppose J contains MAP tasks TM1, TM2, ..., TMm, and REDUCE tasks TR1, TR2,

..., TRn, the CPU requirement of workload WJ could be calculated as follows

RMAP
WJ

=

∑m
i=1RTMi

m
(3.5a)

RRED
WJ

=

∑n
j=1RTRj

n
(3.5b)

where RMAP
WJ

and RRED
WJ

represent the CPU resource requirement per MAP task

and per REDUCE task respectively. Equation 3.5b is ignored if WJ is MAP-only.

There are various considerations when analysing the CPU resource requirements

in practice. They are to be discussed in Section 3.3.

3.3 Implementation

This section presents a practical scheduling system that makes use of the resource

model proposed in Section 3.2. I firstly outline the system design, then provide

a few details of my implementations. To avoid reinventing the wheel, I build my

scheduler on top of Hadoop YARN due to already advanced memory management.

3.3.1 System Design

To analyse the CPU resource requirement of a workload, firstly I should to be able

to analyse individual tasks. To calculate a particular task, firstly the information

on the FileSystem and HDFS I/O rate is necessary. Those I/O rates could be

obtained by conducting a series of I/O tests. While on the tests, it is important

to eliminate the factor of memory buffer cache, i.e., it is vital to ensure that

For reading tests, the data is actually read from disk

This could be done by writing a dummy file larger than the size of the

memory before each test to flush out the buffer cache, so that later in the

actual test, the data is directly read from disk

30

3.3 Implementation

For writing tests, all the data is written to disk

For local FileSystem, a call of fsync() could provide this guarantee. As

for HDFS, since currently none of the stable releases of Hadoop implements

hsync() as its real expected semantics, which should be “posix fsync equiva-

lent” [20], a workaround is to switch on the “dfs.datanode.sync.behind.writes”

configuration12 so that the datanode would instruct the operating system to

enqueue all written data to the disk immediately after it is written [3]

To analyse a particular task T using Equation 3.2 and 3.4, five more values are

essential - the total CPU time; the total number of FileSystem bytes read; the total

number of FileSystem bytes written; the total number of HDFS bytes read; the

total number of HDFS bytes written. In practice, task execution incurs overhead,

but I want to focus on the task itself. Therefore, I calculate the five values in two

steps

• Obtain Starting Values I obtain the values of the five parameters at the

very beginning of T , ideally at the point when T has not performed any

actions, and store them as the starting values

• Calculate Totals At the very end of T , ideally when T has finished all its

operations and is just about to exit, I obtain the values again. By subtracting

the starting values, the total CPU time spent by T , the total number of

FileSystem bytes read by T , etc., could all be calculated

For each workload W , I analyse its CPU resource requirement by executing a

sample job J that contains a small number of tasks. Once all tasks finish, they are

put together to calculate the average, as described in Equation 3.5. Assume the

two calculated values are RMAP
W and RRED

W , then future jobs of W could configure

their per MAP CPU requirement as RMAP
W , and per REDUCE requirement as

RRED
W , respectively. When analysing workload W with sample job J , a few extra

considerations are given to ensure the reliability of the results

• If a particular task T has more than one attempts, only the successful at-

tempt is involved in the final calculations of RW in Equation 3.5. In MapRe-

duce, T could have multiple task attempts if: (a) the initial attempt(s) failed;

12This feature is normally used as an optimisation for some workloads by smoothing the I/O
operations. HDFS-related properties could be set in the “hdfs-site.xml” configuration file.

31

3.3 Implementation

(b) T was speculatively executed13. Speculative execution is off in my ex-

periments, but it is a useful feature and might be desired elsewhere. Since

my system is meant for practical use, I do consider the possible impact of

speculative executions

• The analysis results are written for future use iff J is successful. It makes

sense not to trust the statistics of a failed job

3.3.2 Scheduling Framework

This section describes the implementation of Finer Grained CPU scheduling. A

rule of thumb in my design is to preserve the simplicity of MapReduce, as described

in Section 1.2. Ideally, I want to avoid asking for any extra effort from the Hadoop

user, but that is difficult in practice as my system requires at least testing I/O

rates. Fortunately, those tests only need to be conducted once every time the disk

hardware in the cluster changes, which is rather infrequent. The tested I/O rates

could be placed in one of the built-in XML configuration14 files so that they could

be conveniently loaded.

To avoid tedious manual configurations, I build my features into Hadoop frame-

work so that the user could write his jobs as usual, leaving the cumbersome CPU

requirement analysis to Hadoop. In the following subsections, I briefly review the

work-flow of a MapReduce job. In each step, I firstly present my objective, and

then describe relevant implementations. I strive to make my system portable, i.e.,

independent of any specific Hadoop release. FIGURE 3.6 shows the simplified

workflow, with Finer Grained CPU Scheduling built in. To distinguish with the

Hadoop framework, I use a different colour for my features.

3.3.2.1 Job Submission

To start a MapReduce job J , J needs to be configured and submitted to the RM.

During the configurations, the CPU resource requirement per MAP/REDUCE

task could be specified. As described in Section 3.3.1, I analyse workloads by

executing sample jobs, and store the results for future scheduling. Therefore,

13More explanations on speculative execution are given in footnote 2 on page 12.
14Hadoop includes 4 built-in configurations XML files: “core-site.xml”, “hdfs-site.xml”,

“mapred-site.xml”, and “yarn-site.xml” [3].

32

3.3 Implementation

User

Submit job JCheck analysis logs

Set per MAP/REDUCE

CPU requirement

Start tasks

......

Obtain starting values

Other setups

Task execution

Other cleanups

Calculate RT

Calculate CPU

requirement of WJ

Write analysis logs if

WJ is unknown

Delete temp working space;

create _SUCCESS

Job succeeds

Other job setups

Submit J to RM

Figure 3.6: Simplified workflow of Finer Grained CPU scheduling

33

3.3 Implementation

if the workload of J is “known”, i.e., WJ has already been analysed, J could

configure its per task CPU requirement according to the previous analysis results.

Otherwise, J acts like a sample job, and its per task CPU resource requirement

is set to the default 100. As described in Section 3.2, this default setting is a

mechanism to avoid over-stressing the CPU resources in the cluster.

In Hadoop, there are two interfaces for submitting job J

• submit() submits J and returns immediately

• waitForCompletion() submits J and polls for progress (if the user desires

so) until J is complete, then returns

Both methods eventually go through the submit() method, at the beginning of

which J has not been actually submitted, thus extra configurations could be made.

To enable Finer Grained CPU scheduling, I check the HDFS folder cpustat where

the analysis results are stored, and configure the CPU resource requirement if there

is a log for WJ ; otherwise, this step is skipped and J keeps the default setting.

3.3.2.2 Task execution

When job J is accepted by the RM, its AM is launched, and the task execution

begins. As described in Section 3.3.1, to analyse a particular task T , I need to

obtain the values of five parameters, one time at the very beginning of T , another

time at the very end. Once RT is calculated using Equation 3.2 and 3.4, the value

needs to be stored in a robust and efficient way15, so that when J completes, all

its tasks could be put together to calculate the job requirement RJ .

In MapReduce, every MAP/REDUCE task is defined by a Mapper/Reducer

class, which eventually inherits a base Mapper/Reducer class16. For the purpose

of clarification, I refer to those two base classes as MapperBase and Reducer-

Base respectively for the remainder of this thesis. The features for calculating RT

15Storing RT in a local file does not meet the requirement of putting together tasks scattered
across the cluster, and using an HDFS file is by no means efficient - the overhead of connecting
to the datanode, opening and closing file, etc. is very likely more significant than the cost of the
I/O operation itself.

16The user could choose to write a Mapper/Reducer from scratch, but it would be unwise
to reinvent the wheel.

34

3.3 Implementation

are implemented within MapperBase and ReducerBase so that they would be

inherited to every MAP/REDUCE task.

Section 3.3.1 indicates when to obtain the values of five parameters for calculating

RT . In MapReduce, before the actual execution of T starts, the setup() method

is called for task set-ups. When T finishes, it invokes cleanup() before exit. The

very beginning of setup() and the very end of cleanup() are the exact two points

when I need to obtain the values.

Once RT is calculated using Equation 3.2 and 3.4, I store the value robustly and

efficiently via Hadoop counters. I keep counters Map Num / Red Num for the

total number of MAP / REDUCE tasks, and Map Cpu / Red Cpu for the total

CPU requirements of MAP / REDUCE tasks respectively, so that when all tasks

finish and counters are aggregated, I would have everything needed to analyse WJ

using Equation 3.5.

To ensure the reliability of the calculation results, I take the following measures

• Increment counters iff T is successful

• Increment the right counters. Careful considerations are given on this mat-

ter due to the commonly adopted optimisation Combiner, which performs

“local” REDUCE-like functions within MAP tasks. In ReducerBase, I in-

sert statements before incrementing counters to ensure that Red Num and

Red Cpu are incremented only by a true REDUCE task, not a Combiner

within a MAP task

The workflow of a task T , with my analysing features built-in, is as follows

1: function setup(context)

2: startCPUTime← current CPU time of task JVM

3: Obtain startFSRead, startFSWrite, startHDFSRead, startHDFSWrite

4: Other task set-ups (optional)

5: end function

6: for all split in inputSplits do

7: if T is MAP task then

8: Do map() on split

9: end if

10: if T is REDUCE task then

35

3.3 Implementation

11: Do reduce() on split

12: end if

13: end for

14: function cleanup(context)

15: Other task clean-ups (optional)

16: totalCPUTime← the CPU time of task JVM - startCPUTime

17: Calculate totalFSRead, totalFSWrite, totalHDFSRead, totalHDFSWrite

18: if T is not successful then

19: return

20: end if

21: if T is MAP task then

22: Increment MAP NUM and MAP CPU

23: end if

24: if T is REDUCE task then

25: Increment RED NUM and RED CPU

26: end if

27: end function

3.3.2.3 Job completion

When all tasks of job J finish, the CPU resource requirement of workload WJ could

be calculated using Equation 3.5. As described in Section 3.3.1, the analysis results

should be written iff J is successful. I provide this guarantee by writing the results

at the end of the commitJob() method, due to the fact that commitJob() is

called iff J completed successfully17.

In addition, before writing results, I check if an analysis for WJ already exists.

If that is the case, the newly analysed results are discarded. To re-analyse WJ ,

the old logs have to be explicitly cleared using my script. This strategy resembles

many real-world MapReduce applications - the job does not overwrite existing

paths/files.

17If J failed, abortJob() is called instead.

36

Chapter 4

Experiments

In this chapter, I conduct a series of experiments to evaluate the Finer Grained

CPU Scheduler proposed in Chapter 3. The objective of my work is to effectively

improve the utilisation of CPU resources in the cluster. In particular, under the

mixed workload pattern, more tasks should be able to run in parallel without

over-stressing the CPU resources in the cluster.

As mentioned at the beginning of Chapter 3, at the moment I are not considering

the optimisation on the I/O-intensive workloads. Nevertheless, I do pay attention

to their performance - the improvement on the CPU-intensive workloads should

not come at the price of degraded I/O resource utilisation.

Hardware
CPU Xeon E5530, 2.40 GHz, 8 cores
Memory 24 GB
Disk 500 GB
Network 10 Gbps

Software
Hadoop 2.6.0
Framework YARN
Java Oracle 1.7.0 21

Table 4.1: Experimental environment (per datanode)

37

4.1 Environment

Block Size Read Rate Write Rate
8k 73.8 72.5
16k 73.4 72.6
32k 73.3 72.6
64k 73.8 72.8
128k 73.8 73.1

Table 4.2: dd test results (MB/sec)

4.1 Environment

The experiments were conducted in an 8-node cluster. The hardware specifications

of each datanode are summarised in TABLE 4.1. Each of my datanode has 8

physical CPU cores, which according to the resource model of YARN limits the

number of parallel tasks per node to 8, but by my standard defines the per-node

CPU resource capacity as 8 ∗ 100.

In practice, the Hadoop daemons on each datanode do consume CPU resources,

especially when HDFS is performing a lot of I/O operations, the relevant DataN-

ode processes could have very high CPU usage1. Due to this consideration, on

each datanode I reserve one physical core for Hadoop daemons and the operat-

ing system, leaving a 7*100 per-node CPU capacity for MapReduce tasks. This

strategy resembles memory allocation in YARN: it is good practice to reserve a

proportion of memory for the system on each node and leave the rest for actual

tasks.

I performed a group of tests to obtain the I/O rates of the FileSystem

1. dd test [21] TABLE 4.2 summarises the test results under different block

sizes. The block size actually had little impact on the performance

(a) I firstly used the dd command to write 120 GB of data, which was much

larger than the memory size (24 GB) so that the buffer would have little

effect; in addition, I set the fdatasync flag to do a “complete” sync once

before exit, so that all the data was actually written to the disk before

the rate was calculated

(b) Next I wrote a large dummy file, which was of size of the memory, to

flush out the buffer

1I observed 100% load on one CPU core in my environment.

38

4.2 Benchmarks

(c) Finally I used the dd command to read the file written in step (a). Since

I did (b), I had the guarantee that the data was directly from the disk

2. C I/O test This was in essence an emulation of the dd test. The only

difference was that in step (a), I did a POSIX fsync() to force a sync. The

results were rather consistent with the dd test as well, ranging between 73.1

MB/sec and 73.8 MB/sec for both reading and writing

As emphasized in Section 3.2, a vital principle of my scheduler is to avoid over-

stressing the cluster CPU resources. In practice, I provide this guarantee by always

using the optimal I/O rates in Equation 3.4. As such, for the FileSystem in my

environment, I take the ceiling value of the test results

FileSystem Read Rate = 74MB/sec (4.1a)

FileSystem Write Rate = 74MB/sec (4.1b)

The HDFS I/O rates were tested using the Java APIs in the same fashion. I only

give the results here

HDFS Read Rate = 65MB/sec (4.2a)

HDFS Write Rate = 65MB/sec (4.2b)

4.2 Benchmarks

To evaluate the Finer Grained CPU Scheduler under the mixed workload pattern,

I chose Pi and Bbp as the CPU-intensive workloads, and TeraGen as the repre-

sentative I/O-intensive workload [18]. In addition, I built my own I/O-intensive

benchmark ETL. The details for each workload is as follows

• Pi The program that estimates π using the Quasi-Monte Carlo method2

• Bbp This job computes x exact digits of π using the Bailey-Borwein-Plouffe

formula. x is configurable, and the calculations are evenly distributed to all

MAP tasks

2This is to be distinguished with the package org.apache.hadoop.examples.pi, which computes
π using the distributed Bailey-Borwein-Plouffe method.

39

4.2 Benchmarks

• TeraGen In this job, each MAP task is specified to write 2 GB of random

data to HDFS

• ETL I constructed this highly I/O intensive workload. Each MAP task

reads an HDFS block of plain text, converts it to XML, and writes the

result back to HDFS. This resembles many real-world Expand-Transform-

Load applications used for preprocessing in Big Data

I conducted 3 groups of tests, which resemble 3 real-world workload patterns

1. Balanced Pattern A CPU-intensive job runs along with an I/O-intensive

job. Each CPU-intensive job contains 70 MAP tasks; each MAP task of

Pi processes 2 billion points; Bbp calculates 180,000 digits in total. Each

I/O-intensive job contains 31 tasks, so that under the CPU policy of YARN,

it would roughly take half of the cluster with its 31 MAP tasks and the AM

(the whole cluster is able to run 64 parallel tasks under YARN)

2. CPU-heavy Pattern Each test contains 3 jobs: Pi, Bbp and one of the

I/O-intensive workloads. Each CPU-intensive job contains 50 tasks; each

MAP task of Pi processes 2 billion points; Bbp calculates 150,000 digits in

total. Each I/O-intensive job contains 20 tasks

3. I/O-heavy Pattern Each test contains 3 jobs: one of the CPU-intensive

workloads, TeraGen, and ETL. Each CPU-intensive job contains 50 tasks;

each MAP task of Pi processes 2.5 billion points; Bbp calculates 180,000

digits in total. Each I/O-intensive job contains 20 tasks

I tuned the input sizes of jobs in each pattern such that under the scheduling

policy of YARN, jobs in each test would have similar execution times (it would be

unfair to assess the performance of a very large job and a tiny one, since the latter

would have little impact). For each test, I would repeat for 10 times to calculate

the average, standard deviation, etc.

Before proceeding to the performance evaluation, I made use of the features de-

scribed in Section 3.2 to analyse CPU resource requirement of the workloads. Each

workload was analysed with a sample job that contained 16 tasks.

When running sample jobs, I stuck to the default per-task CPU request 100, since

at this point workloads were “unknown”. In addition, some tasks are extremely

40

4.4 Metrics

Workload MAP REDUCE
Pi 100 Default

Bbp 100 100
TeraGen 49 N/A

ETL 47 N/A

Table 4.3: Per MAP/REDUCE task CPU requirement of each workload

short-lived, e.g., Pi contains a single REDUCE task that finishes in scant few

seconds. For this kind of tasks, it is difficult to guarantee the accuracy of resource

requirement analysis as the overhead of task execution becomes non-negligible.

Thus I ignored the analysis results and changed them to “default”. As explained

in Section 3.2.1, this default setting is a safe option to avoid over-stressing the

cluster CPU resources.

The CPU requirements of the workloads are summarised in TABLE 4.3. For

MAP-only jobs, the REDUCE column is left N/A.

4.3 Metrics

I assess the performance of each job in two aspects

• Job execution time The objective of Finer Grained CPU scheduling is to

make the most of CPU resources to enable more tasks in parallel. Although

more parallel I/O-intensive tasks are unlikely to significantly improve the

disk utilisation, CPU-intensive jobs could benefit from higher parallelism

without their individual performance being compromised, due to my vital

principle that avoids over-stressing the CPU resources. As a result, I expect

a reduction on the execution time of CPU-intensive jobs, and unaffected

performance on the I/O-intensive jobs

• Average MAP task time The caveat of higher parallelism is the potential-

ity of over-stressing the cluster resources, which would severely compromise

per-task performance. Therefore, I assess the average execution time of MAP

tasks in each job as an indicator of task performance. All the workloads

have very small REDUCE tasks or none, thus comparing their performance

is meaningless in my experiments

41

4.4 Results

Test Workload YARN Finer Grained Degradation

Pi+TeraGen
Pi 78,186 78,066 N/A

TeraGen 196,997 177,502 N/A

Pi+ETL
Pi 78,563 78,039 N/A

ETL 225,515 198,143 N/A

Bbp+TeraGen
Bbp 90,937 90,981 0.05%

TeraGen 220,322 212,706 N/A

Bbp+ETL
Bbp 90,489 90,875 0.04%
ETL 271,150 233,420 N/A

Table 4.4: Average MAP task time (in ms, lower is better) under balanced
workload pattern

4.4 Results

I compared my Finer Grained CPU Scheduler with the state-of-art YARN sched-

uler. Since I was running mixed workloads, there needed to be a policy for memory

sharing amongst jobs. I chose Fair Scheduler since it allows jobs in each test to

progress simultaneously.

4.4.1 Results under Balanced Pattern

In each test I selected one CPU-intensive job and an I/O-intensive job, and exe-

cuted them together, therefore under the balanced workload pattern there were 4

different tests.

Firstly, compared to YARN, the Finer Grained CPU Scheduling does not degrade

the individual task performance in any test. As shown in the “degradation” column

in TABLE 4.4, in most cases the task performance is even slightly better than

YARN (marked as N/A since there is no degradation); even when Finer Grained

does increase the task time, the change is well under 1%, therefore completely

negligible.

Secondly, as shown in FIGURE 4.13, under Finer Grained CPU scheduling, the

execution time of the CPU-intensive workload in every test was significantly re-

duced, by 18% up to 23%. This improvement is rather understandable since the

Finer Grained approach enables more CPU-intensive tasks in parallel yet does not

3In each of the graphs, red colour and blue colour represent the CPU- and I/O-intensive
job(s) respectively. The solid fill shows the results under YARN, while the pattered fill shows
the results under Finer Grained CPU Scheduling.

42

4.4 Results

0

100000

200000

300000

400000

500000

600000

700000

Pi / Bbp

TeraGen / ETL

Workload

YARN

Finer Grained

Approach

Figure 4.1: Job execution times (in ms, lower is better) under balanced work-
load pattern

Test Workload YARN Finer Grained Degradation

Pi+Bbp+TeraGen
Pi 78294 78224 N/A

Bbp 87,525 87,585 0.07 %
TeraGen 98,731 94,548 N/A

Pi+Bbp+ETL
Pi 77,822 78,179 0.46%

Bbp 86,890 87,399 0.59%
ETL 117685.9 110685.664 N/A

Table 4.5: Average MAP task time (in ms, lower is better) under CPU-heavy
workload pattern

over-stress the CPU resources, therefore does not compromise the individual task

performance. In addition, the execution time of I/O-intensive jobs were not af-

fected. This verifies that the improvement on the CPU utilisation does not come

at the price degraded I/O resource utilisation.

4.4.2 Results under CPU-heavy Pattern

Under such pattern, in each test I selected one I/O-intensive workload, and ran it

along with both CPU-intensive jobs, therefore there were 2 different tests: Pi +

Bbp+ TeraGen and Pi+Bbp+ ETL.

43

4.4 Results

0

100000

200000

300000

400000

500000

600000

700000

 Pi&Bbp + TeraGen Pi&BBp + ETL

Pi + Bbp

TeraGen / ETL

Workload

Approach

YARN

Finer Grained

Figure 4.2: Job execution times (in ms, lower is better) under CPU-heavy
workload pattern

Test Workload YARN Finer Grained Degradation

Pi+TeraGen+ETL
Pi 95,941 95,761 N/A

TeraGen 177,151 176,626 0.07 %
ETL 194,363 192,373 N/A

Bbp+TeraGen+ETL
Bbp 86,114 87,932 2.1%

TeraGen 178,407 175,259 N/A
ETL 192,785 189,189 N/A

Table 4.6: Average MAP task time (in ms, lower is better) under I/O-heavy
workload pattern

Firstly, as shown in TABLE 4.5, there is no performance degradation in individual

tasks. However, the job performance is almost identical compared to YARN, as

shown in FIGURE 4.2. The reason is that under such workload pattern, i.e., where

most of the tasks are CPU-intensive, the proportion of CPU resources wasted by

YARN is very limited, therefore there is not so much room for improvement.

4.4.3 Results under I/O-heavy Pattern

There were 2 different tests under this pattern: Pi+ TeraGen+ETL and Bbp+

TeraGen+ ETL.

44

4.4 Results

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

TeraGen&ETL + Pi TeraGen&ETL + Bbp

Pi / Bbp

TeraGen + ETL

Workload

Approach

YARN

Finer Grained

Figure 4.3: Job execution times (in ms, lower is better) under I/O-heavy
workload pattern

TABLE 4.6 shows the average MAP task time. Although Bbp in the second

test suffers a slight degradation (2.1%), the overall task performance under Finer

Grained is not worse than YARN.

The improvements on the job performance, as shown in FIGURE 4.3, is consistent

with the results under balanced workload pattern. I/O-intensive jobs are not com-

promised, and the execution time of CPU-intensive jobs in two tests are reduced

by 17% and 22%, respectively.

To sum up the 3 groups of tests

• Under CPU-heavy workload pattern where most of the tasks indeed satu-

rate one CPU core, the benefit of Finer Grained CPU Scheduling is limited.

Nonetheless, it does not degrade the resource utilisation or the job perfor-

mance

• Under balanced and I/O-heavy pattern, the CPU assumption of YARN

causes under-utilisation, therefore the Finer Grained approach becomes very

useful. It effectively increases the CPU utilisation and therefore the job

performance of CPU-intensive workloads, without compromising the I/O

utilisation in the cluster

45

Chapter 5

Conclusion

Many commonly used scheduling methods for MapReduce work on the resource

sharing policy amongst jobs, or more specifically, the decision making strategy

on the selection of job to schedule resources for at any particular moment such

that jobs achieve, on average, better performance. For a cluster with a particular

resource capacity, improving the overall performance of jobs running in it is also

beneficial to the resource utilisation.

Strictly speaking, however, resources are allocated to tasks rather than directly to

jobs in MapReduce. Consequently, much could be done on the task level to further

improve the resource utilisation, yet such work is relatively lacking. In this thesis,

I discussed the efficiency of resource allocation in two aspects

A1. Avoid over-stressing but alleviate waste

This is what YARN has been trying to achieve in its refined resource model.

By taking into account the memory requirement of each task, memory util-

isation in YARN is significantly improved

A2. Consider various workload patterns

In practice, there are CPU- and I/O- intensive workloads. However, YARN

assumes the same CPU requirement for every task, and the logic of Through-

putScheduler does not apply to a homogeneous environment

As such, I proposed a Finer Grained CPU Scheduler, which alleviates the problem

of CPU resource waste in the state-of-art approach YARN. In particular, by esti-

mating the CPU requirement of each task, CPU- and I/O- intensive workloads are

46

Chapter 5 Conclusion

differentiated, and the wasted proportion of CPU resources are effectively utilised.

In addition, I avoid over-stressing the CPU resources by slightly over-estimating

the task requirements, like YARN does with memory allocation. To sum up, the

Finer Grained CPU Scheduler achieves both [A1] and [A2] as mentioned above.

I always kept in mind that MapReduce is meant for practical use. Therefore I

built my scheduler into the Hadoop framework. My CPU scheduling does require

a set of I/O tests when the cluster hardware changes, but that is rather infre-

quent. The cumbersome CPU requirement analysis and allocations are left to the

Hadoop framework, and the user could write his jobs as usual, i.e., the simplicity

of MapReduce is well preserved.

At present I am not ready to model the disk resources, not are most implemen-

tations of MapReduce. Had I defined the I/O capacity like the memory or CPU

resources, in practice it would have been over-stressed almost the entire time. In

my environment, even a single I/O-intensive task would nearly saturate the disk

bandwidth of the relevant datanode. As such, the above-mentioned [A1] does

not seem appropriate for disk resources. Future extension on the I/O could be

based on the idea of “assign resources to where they are needed most”. In par-

ticular, when assigning disk resources, jobs that are more I/O-intensive could be

prioritised. Alternatively, the priority could be based on the remaining size of I/O

operations of each job.

47

Bibliography

[1] KV Shvachko and AC Murthy. Scaling hadoop to 4000

nodes at yahoo! world wide web, http://developer. yahoo.

net/blogs/hadoop/2008/09/scaling hadoop to 4000 nodes a. html, 2008.

[2] Owen O’Malley. Terabyte sort on apache hadoop. Yahoo, available online at:

http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pages 1–3, 2008.

[3] Apache hadoop, . URL http://hadoop.apache.org/.

[4] Tom White. Hadoop: The Definitive Guide. 2012.

[5] Martin Rinard. Operating systems lecture notes, August 1998. URL http:

//people.csail.mit.edu/rinard/osnotes/h6.html.

[6] M. PASTORELLI, A. Barbuzzi, D. Carra, M. Dell’Amico, and P. Michiardi.

Hfsp: Size-based scheduling for hadoop. In Big Data, 2013 IEEE Interna-

tional Conference on, pages 51–59, Oct 2013.

[7] Edward W. Davis and James H. Patterson. A comparison of heuristic and

optimum solutions in resource-constrained project scheduling. Management

Science, 21(8):944–955, 1975.

[8] Matei Zaharia. Job scheduling with the fair and capacity schedulers. Hadoop

Summit, 9, 2009.

[9] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy,

Scott Shenker, and Ion Stoica. Delay scheduling: A simple technique for

achieving locality and fairness in cluster scheduling. In Proceedings of the 5th

European Conference on Computer Systems, EuroSys ’10, 2010.

[10] Alan Burns. Preemptive priority-based scheduling: An appropriate engineer-

ing approach. In Advances in Real-Time Systems, chapter 10, pages 225–248.

Prentice Hall, 1994.

48

http://hadoop.apache.org/
http://people.csail.mit.edu/rinard/osnotes/h6.html
http://people.csail.mit.edu/rinard/osnotes/h6.html

Bibliography

[11] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,

Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another

resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud

Computing, SOCC ’13, 2013.

[12] Shekhar Gupta, Christian Fritz, Bob Price, Roger Hoover, Johan De Kleer,

and Cees Witteveen. Throughputscheduler: Learning to schedule on hetero-

geneous hadoop clusters. In ICAC, pages 159–165, 2013.

[13] K. Arun Kumar, Vamshi Krishna Konishetty, Kaladhar Voruganti, and

G. V. Prabhakara Rao. Cash: Context aware scheduler for hadoop. In Pro-

ceedings of the International Conference on Advances in Computing, Com-

munications and Informatics, ICACCI ’12, 2012.

[14] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion

Stoica. Improving mapreduce performance in heterogeneous environments.

In Proceedings of the 8th USENIX Conference on Operating Systems Design

and Implementation, OSDI’08, pages 29–42, 2008.

[15] Ibm - what is the hadoop distributed file system (hdfs), . URL http://

www-01.ibm.com/software/data/infosphere/hadoop/hdfs/.

[16] Puneet Singh Duggal and Sanchita Paul. Big data analysis: Challenges and

solutions. In International Conference on Cloud, Big Data and Trust 2013,

Nov 13-15, RGPV, 2013.

[17] Typical workloads patterns for hadoop, . URL http://docs.hortonworks.

com/HDPDocuments/HDP1/HDP-1.3.7/bk_cluster-planning-guide/

content/typical-workloads.html.

[18] Hadoop example jar, . URL https://github.com/apache/hadoop/tree/

trunk/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/

main/java/org/apache/hadoop/examples.

[19] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill Howe. Hadoop’s

adolescence: An analysis of hadoop usage in scientific workloads. Proc. VLDB

Endow., 6(10), August 2013.

49

http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/
http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.7/bk_cluster-planning-guide/content/typical-workloads.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.7/bk_cluster-planning-guide/content/typical-workloads.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.7/bk_cluster-planning-guide/content/typical-workloads.html
https://github.com/apache/hadoop/tree/trunk/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples
https://github.com/apache/hadoop/tree/trunk/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples
https://github.com/apache/hadoop/tree/trunk/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples

Bibliography

[20] Hadoop jira: Support hsync in hdfs, . URL https://issues.apache.org/

jira/browse/HDFS-744.

[21] Use dd to benchmark your disk or cpu, . URL https://romanrm.net/

dd-benchmark.

50

https://issues.apache.org/jira/browse/HDFS-744
https://issues.apache.org/jira/browse/HDFS-744
https://romanrm.net/dd-benchmark
https://romanrm.net/dd-benchmark

Publications

1. Kun Liu, Daisaku Yokoyama, Masashi Toyoda, Masaru Kitsuregawa. An

Improvement on Hadoop Scheduling by Utilising Analysed CPU Resource

Demands. The 7th Forum on Data Engineering and Information Manage-

ment (DEIM 2015). (to appear)

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Resource Management in MapReduce
	1.2.1 FIFO Scheduler
	1.2.2 Size-based Scheduler
	1.2.3 Capacity Scheduler
	1.2.4 Fair Scheduler

	1.3 The Structure of This Thesis

	2 Related Work
	2.1 YARN
	2.1.1 Architecture
	2.1.2 Resource Model

	2.2 ThroughputScheduler
	2.2.1 Intuition
	2.2.2 Task Model
	2.2.3 Scheduling Policy

	3 Finer Grained Resource Allocation
	3.1 CPU Under-utilisation in YARN
	3.2 Finer Grained CPU Resource Model
	3.2.1 Parametrisation
	3.2.2 CPU Requirement Analysis

	3.3 Implementation
	3.3.1 System Design
	3.3.2 Scheduling Framework
	3.3.2.1 Job Submission
	3.3.2.2 Task execution
	3.3.2.3 Job completion

	4 Experiments
	4.1 Environment
	4.2 Benchmarks
	4.3 Metrics
	4.4 Results
	4.4.1 Results under Balanced Pattern
	4.4.2 Results under CPU-heavy Pattern
	4.4.3 Results under I/O-heavy Pattern

	5 Conclusion
	Bibliography

