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Abstract

High-performance interactive manipulations such as high-speed and
accurate endpoint regulations towards a dynamically uncertain target
in a large workspace by the robotic system are very attractive for
manufacturing industry. However, it has been rather challenging for
a traditional big industrial robot to accomplish such regulations, not
only due to the difficulty in building the real-time feedback system,
but also due to the mechanical defects like backlash as well as the
nonlinear dynamics, especially under high-speed motions, while most
of the commercial industrial robots are controlled without modeling
the complex dynamic models.

In order to deal with this problem, this thesis propose a dynamic
compensation concept. The dynamic compensation concept is real-
ized by fusing the high-speed visual feedback based on relative coor-
dinate information and a high-speed lightweight compensation actua-
tor (for fine regulation) to cooperate with the main traditional robot
(for coarse regulation). The methodology of the proposed concept is
that: the high-speed vision sensing in terms of task-space can inspect
the uncertain target as well as the dynamic uncertainties brought by
the main robot (the main plant) under high-speed motions, and by
the compensation actuator (the compensation plant), which is ca-
pable of high-speed response, the uncertainties can be compensated
based on the relative coordinate visual information between target,
main plant and compensation plant. Here, the high-speed visual feed-
back refers to 1000 Hz feedback of image features, and hereafter, the
robotic system developed based on the proposed concept is referred
as the dynamic compensation robotic system (DCRS). With experi-
mental evaluations of the dynamic compensation concept based on a
1-DOF DCRS prototype, the quantitative analysis of the two aspects
of the proposed concept is conducted. By exploiting the feature of
the DCRS, a simplified image-based visual servo (IBVS) approach is
proposed for control of the main robot arm, and a pre-compensated
proportional-derivative (PD) control method is proposed for the com-
pensation actuator.



As the basic application, the 1D dynamic picking for a flying object is
addressed by a 1-DOF DCRS. With the proposed pre-compensation
fuzzy logic control (PFLC) algorithm for compensation plant and the
cooperation algorithm for coordinating the big range coarse position-
ing (by main plant) and the accurate positioning within a small range
(by compensation plant), dynamic picking (catching) of a flying ob-
ject with small clearance is realized. After that, as the extension,
the application task - 3D peg-and-hole alignment with large position
and attitude uncertainty is addressed by the monocular approach and
binocular approach with the introduction of a high-speed active peg
as well as the high-speed visual feedback based on the dynamic com-
pensation concept. Both the 1D dynamic picking task and the 3D
peg-and-hole alignment task show that the system can realize high-
speed as well as accurate interactive manipulation without much cal-
ibrations and without modeling of the system’s dynamics. At last,
conclusions are summarized and a scenario for application in the near
future is presented to unveil the promising prospect of the proposed
dynamic compensation concept in manufacturing.
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Chapter 1

Introduction

1.1 The background

Robots have been employed in automation industry for several dozens of years.
With advantages such as good accuracy, big power, as well as good reliability
than human, they find applications in the so-called “4D tasks”, tasks that are
dangerous, dull, dirty or dumb [6]. As the human population ages and the number
of wage earners becomes a smaller fraction of our population, robots have already
been accelerating their process of filling in the labor for manufacturing. As an
example, in June 2011, Foxconn CEO Terry Gou announced plans to deploy one
million robots across factory assembly lines, as part of a company-wide effort to
adopt more automated manufacturing processes and cope with rising labor costs
[7].

Nowadays industrial robot has a good performance in doing autonomous ma-
nipulations in some structured environment and for instance, is capable of real-
izing accurate repetitive positioning even under high-speed motions. However,
robots would have far less impact in applications where the object placement and
the environment cannot be accurately controlled. For the realization of interac-
tive manipulations where the target as well as the environment is dynamically
uncertain, the difficulty in building the real-time feedback system, as well as the
mechanical defects like backlash and the nonlinear dynamics of the robot espe-
cially under high-speed motions are still blocking the way of robot’s applications
in lots of fields. In order to build the feedback system for interactive manipula-
tions, sensors for robot, target and environment should be configured, and sensor
integration has been supposed to be fundamental to increase the versatility and
application of robots. Among the many types of sensors, vision sensor is one of
the most important sensors which have been widely used in robotic control be-
cause of its many advantages such as non-contact sensing, safety, flexibility, full
of information and so on.

1
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1.1.1 Robotic control based on vision sensors

1.1.1.1 Traditional approaches

There are several categories for robotic control based on visual feedback, such
as the dynamic look-and-move approach, position-based visual servo (PBVS),
image-based visual servo (IBVS) [8]. The look-and-move approach is imple-
mented in a hierarchical way and holds two feedback loops as shown in Figure
1.1, an inner kinematic loop and an outer visual feedback loop, and still most
of the commercial robots adopt this approach for several reasons [8]. One of
the main reasons has been the great gap between the low sampling rates of the
vision loop (for instance, 30 Hz) and the high sampling rates of the joint level
feedback (for instance, 1000 Hz). Visual control algorithms have been developed
separately from the kinematic loop without considering the dynamic interactions
between these two loops. However, as has been pointed out in [9], this approach
may work well for slow robot motion, but not for high-speed manipulations where
the robot dynamics are not negligible.

The PBVS approach (shown in Figure 1.2) basically needs the recovering
of the 3D information from images and has a strict request on the accurate

2
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Table 1.1: Summary of three control approaches based on vision
sensor.

Look-and-move PBVS IBVS

Fit for uncertain kinematics × � �
Global optimal regulation © © ×
Less camera calibration × × ©
Robust to noise × � ©
High-speed regulation × � �
×: negative; �: possible ; ©: positive

calibration for cameras. Since the feedback is computed by reducing errors in
estimated pose space, it is possible to lose the image features during regulation
process by PBVS approach.

The IBVS approach (shown in Figure 1.3) is generally assumed to be much
more suitable for applications due to its robustness to calibration errors and easy
control for keeping the image features within the camera’s field of view. However,
IBVS has its own weaknesses, such as the interaction matrix being dependent on
the depth of feature points and thus not being directly available. An interac-
tion matrix built by current image features and estimated depth may involve
inadequate camera motion, leading to possible local minima or task singularities
(especially when point features are used) [10].

Features for these three approaches are summarized in Table 1.1. As for the
high-speed regulation issue, the PBVS and IBVS approach may be adoptable if
the dynamic model of the system is available. Besides, in order to realize the
smooth high-speed regulation, high-speed vision systems should be provided.

3
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Figure 1.4: Vision chip and its architecture [1]

1.1.1.2 High-speed vision systems

In the common knowledge, the feedback rate of a vision sensor is still far more
beyond the needs of real-time control, for instance, most CCD cameras are re-
stricted to the video frame rate (NTSC 30 Hz, PAL 25 Hz), and this is the main
reason for the two-loop design of the dynamic look-and-move approach for robotic
control as described above. However, high-speed vision system such as column
parallel vision (CPV) with 1KHz feedback rate has been introduced more than
ten years ago [1, 11]. As shown in Figure 1.4, the CPV system has a 128×128
PD array and an all parallel processor array connect to each other in a column
parallel architecture, thus high-speed image transfer was realized. High-speed vi-
sion system not only provides with the great possibility of real-time control based
on high-speed feedback information in terms of task-space, but also does good to
the image processing algorithm. Nowadays, high-speed vision systems with much
better performance are commercially available, such as EoSens system, and we
will introduce them in the next chapter.

1.1.1.3 Evaluation of robotic interactive manipulation

As a background for robotic interactive manipulation based on vision sensors,
we focus on several key aspects for evaluation as shown in Figure 1.5: accuracy,
speed, flexibility, workspace, in-dependency of models (dynamic models or kine-
matic models). For most commercially available industrial manipulators, their
control systems are treated as decoupled systems and dynamics are neglected
thereby known as non-model-based controllers [12]. Such approximation is ac-
ceptable for low-speed motion since Coriolis and centripetal torques are limited
due to powerful motors and high gear reductions [12, 13]. However, this approach

4
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can not apply for high-speed motions [14]. On the other hand, most of the indus-
trial manipulators are controlled highly dependent on their accurate kinematic
models. Besides, a majority of solutions for the automation of industrial robots
through the adoption of vision sensors are based on the strict calibrations of cam-
era and robot’s coordinate systems. These reasons have led to a poor flexibility
for robots, and they are limited to structured environments. Recently, by means
of high-speed visual feedback as well as high-speed dynamic manipulation strate-
gies, several fantastic manipulations and applications have been conducted in
Ishikawa Oku laboratory, the University of Tokyo. In [15, 16], with the adoption
of a high-speed active stereo vision system as well as a high-speed manipulator,
the batting action for a plastic ball with an initial velocity of about 6-8 m/s were
successfully realized for most of the time. In [17, 18, 19], high-speed tracking
and controlling of micro-organisms have been realized with satisfying accuracy
on a small work range XY-stage. As a summary, currently, most robotic manip-
ulations are realized with the trade-off among these five aspects. However, it will
be rather difficult to realize the robotic interactive manipulation that has good
scores in all of these five issues, because of issues such as backlash of mechanism,
nonlinear dynamics of large robots, calibration errors both on robot and sensors,
as well as the delay of the feedback for the dynamical unstructured environment.
Among these issues, the conflict between the motion speed and accuracy is a
great weakness for conventional heavy industrial robots because of the complex
nonlinear dynamics issue as well as the mechanical backlash. In order to reach
a good trade-off between these issues, the dynamic compensation is the main
approach to address it. Throughout of this thesis, we will focus on the dynamic
compensation approach in coping with the five issues of the robotic interactive
manipulation.

1.1.2 Traditional approaches for dynamic compensation

In order to deal with the nonlinear dynamics issue, the general approach is to re-
alize dynamic compensation by identifying the parameters of the dynamic model
which is known as the model-based approach [12, 20, 21]. However, the problem
is that the computation is too complex to realize real-time compensation, and
the physical values of the dynamic model are difficult to estimate and often not
known accurately. Moreover, these parameter values may change with robot ages
or robot configurations. Adaptive control methods (e.g., [22, 23, 24]) are thus
proposed to deal with uncertain parameters of dynamic models. The adaptive
approach attempts to ‘learn’ the uncertain parameters of the system, and it can
be applicable to a wider range of uncertainties. However, usually the computa-
tion for adaptive control is complex. Besides, the adaptive control exhibits poor
transient behavior and may result to the possible loss of exponential stability of

5
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the overall control system [25].
For the control of robots within a constraint space i.e., the end-effector are

in contact with the environment, dynamic compensation approaches based on
impedance control [26] have been conducted [27, 28]. The methodology of
impedance control is that the motion of the manipulator is governed by a spring-
like behavior, the control torques on the robot mimic a spring that is connected
between the end-effector and its desired position. The objective of the impedance
control is not to control force and position but to control their dynamic relation-
ship i.e., the desired impedance along each task-space direction.

There is another approach by mounting a small robot onto the robot arm
known as the macro-micro architecture [29, 30]. The macro-micro approach has
been proposed to apply to rigid manipulators for increasing system bandwidth, as
well as to flexible manipulators for suppressing bending vibrations and improving
dynamic tracking performance (e.g., [31, 32]). Since the micro-manipulator is
mounted on the macro-manipulator, the system is dynamically coupled, especially
for flexible manipulators [33, 34], and several complex control methods involving
the system’s dynamics have been proposed (e.g., [35]). Whereas, in real factory
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1. Introduction

and automation field, the simple control methods are much more practical for
implementation.

Usually, for a lightweight micro-manipulator, the coupling dynamic interaction
to the macro part is negligible as the inertia of the macro part is much greater
than that of the micro part [36, 37]. In [36], the dynamic effect of the macro
part to the micro part is represented by a disturbance force, and by choosing a
large proportional gain factor of the PD controller for the micro-manipulator, the
disturbance force can be reduced and the system stability can be proved. It should
be noted that this approach is model independent, and it represents a kind of
methods that don’t need to model the system’s dynamics. Although this approach
is very simple and easy for application in case of static positioning, it can hardly be
a general approach for dynamic positioning where the acceleration of the system
should be dynamically accommodated. In [35] and [38], the dynamic trajectory
tracking problems have been studied, and the dynamics of the system were taken
into account with a fine model including the macro-manipulator’s deformation.
In [35], a simple PD controller is assigned for the macro-manipulator, and a non-
linear dynamic compensating control law is applied to the micro-manipulator. In
[38], an oppose strategy is adopted by applying the PD control to the micro part,
and adopting the nonlinear controller for the macro part to damp out vibrations.
In both approaches the trajectory planner is needed for the macro-manipulator.
These approaches obtained good performance for dynamic compensation, yet the
modeling for the system’s dynamics is not easy.

1.2 Purpose of this research

The purpose of this research is to come up with a practical solution for realizing
high-speed, accurate endpoint interactive regulation towards an uncertain target
within an unstructured large workspace, and the simple robust control strategy
such as dynamic model independent control is favorable.

As shown in Figure 1.6, by using high-speed visual feedback based on relative
coordinate information and high-speed & lightweight compensation actuator, this
research presents a simple methodology of dynamic compensation for a traditional
robot arm to enable interactive regulations with high performance. In particular,
for robot arms of which the dynamic models are not accurately calibrated or
even not known, yet high-speed or fast position regulations are expected to be
realized with good accuracy, the proposed approach may be a highly practical
solution. Since the proposed dynamic compensation concept is based on modular
cooperation, and the main robot is only scheduled for coarse regulation, a great
number of tradition heavy robots that exhibit poor performance under high-speed
regulation or suffer from large regulation errors after long years of mechanical
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Figure 1.6: The purpose of this research

wear can be reformed to accomplish high performance regulations according to
the proposed concept. The developed system based on the proposed concept will
be referred as the dynamic compensation robotic system (DCRS) hereafter. In
order to evaluate the effectiveness of the proposed dynamic compensation concept,
a basic 1-DOF DCRS system will be designed to realize the 1D dynamic picking
of flying objects for evaluation. As the extension, the task of 3D peg-and-hole
alignment with large position and attitude uncertainty will be also addressed.

1.3 Overview of this thesis

As shown in Figure 1.7, this thesis is organized as follows:
In Chapter 2, the methodology of the proposed dynamic compensation ap-
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1. Introduction

proach will be introduced, and then the experimental systems used in this research
will be addressed. With experimental evaluations of the dynamic compensation
concept, the quantitative analysis on the two aspects of the proposed concept will
be discussed.

In Chapter 3, by exploiting the feature of the DCRS, a simplified IBVS ap-
proach is proposed for control of the main robot arm, and a pre-compensated PD
control method is proposed for the compensation actuator.

In Chapter 4, as the basic application, the 1D dynamic super picking for
a flying object will be addressed by a 1-DOF DCRS. By introducing the pre-
compensation fuzzy logic control (PFLC) algorithm for compensation plant and
the cooperation algorithm for coordinating the big range coarse positioning by
main plant and the accurate positioning by compensation plant within a small
range, dynamic picking (catching) of a flying object with small clearance will be
realized.

In Chapter 5, as the extension, the application task - 3D peg-and-hole align-
ment with large position and attitude uncertainty will be addressed based on
the dynamic compensation approach. Both monocular approach and binocular
approach will be realized by introducing a high-speed active peg as well as the
high-speed visual feedback.

In Chapter 6, conclusions are summarized and a scenario for application in
the near future is presented to unveil the promising prospect of the proposed
dynamic compensation concept in manufacturing.
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Chapter 2

The proposed dynamic
compensation concept

In this chapter, the concept of dynamic compensation through high-speed &
lightweight compensation actuator as well as high-speed visual feedback based on
relative coordinate is proposed. Quantitative experimental evaluations based on
a 1-DOF DCRS prototype will be addressed. The experimental systems involved
in this research will also be introduced.

2.1 The methodology

For high-speed operations, dynamic defects such as vibration due to large inertia
of the robot arm and the backlash, would reduce the performance. Suppose for a
general robot system as shown in Figure 2.1, there are some uncertainties about
the kinematics as well as uncertainties about the system’s calibrations (including
the calibrations for sensors). Besides, the backlash for the joints of the robot
also contribute to the systematic uncertainties. Now the robot is supposed to be
regulated to reach the target’s position with the high-speed visual feedback. The
high-speed camera inspects both of the robot’s tool point and the target point
(since here we are analyzing the dynamic compensation for the uncertainties
brought by robot itself, it is reasonable to assume the target to be motionless),
thus it follows the endpoint close-loop method (ECL) [8]. Let’s refer to the image
feature of the target and that of the robot’s tool to be ξT and ξr respectively
from the high-speed visual feedback, and the error e for the regulation can be
noted as:

e = ξr − ξT (2.1)

Assume the ideal accurate models for the interaction relationship (optical-
motion model) as well as the kinematic model to be J img and J r respectively,
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2. The proposed dynamic compensation concept

High-speed 

Target

Robot

Uncertainties
(kinematics/
calibrations)

Backlash,

camera

Figure 2.1: A general robot system with uncertainties

then we have

ξ̇r = J img · J r · θ̇ (2.2)

where θ̇ represents the joint velocity vector. Exponential convergence of the
regulation can be obtained if we apply the feedback control such as

θ̇ = −λ · J+
r · J+

img · e (2.3)

where λ is a positive-definite coefficient, while J+
img and J+

r represents the pseudo-
inverse of J img and J r respectively.

However, in the real case, due to the uncertainties of the system, there shall
be the unknown factor within the regulation error, and we note it as δ (although
there may be several uncertainties, it is reasonable to sum them by one factor as
the total effect on the regulation result of each step), then the error for the real
case of the regulation at time of k, for instance, is

Ek = ξkr + δk − ξT (2.4)
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2. The proposed dynamic compensation concept

In order to compensate for the uncertain part δk at time of k, we introduce a
compensation part ξk+1

c which is to be realized by a lightweight and high-speed
actuator at the next time cycle k + 1, then we have

Ek+1 = ξk+1
r + δk+1 + ξk+1

c − ξT (2.5)

Suppose ξkr − ξT ⇒ 0 always exists under the ideal accurate models of the
system, thus the value for the compensation part ξk+1

c can be obtained from the
visual feedback as

ξk+1
c = −Êk ⇒ −δ̂k

(2.6)

Since here, high-speed visual feedback is adopted, and the time gap between
two control cycle is sufficiently small, then it is reasonable to make the following
approximation as

δ̂
k .
= δk+1 (2.7)

With Equations 2.5, 2.6, 2.7, we have

Ek+1 = ξk+1
r − ξT ⇒ 0 (2.8)

From the analysis above, it can be seen that the system is still capable of
realizing stable convergence although there is the constant existing of the uncer-
tainty brought by many factors, thanks to the dynamic compensation. As well,
the proposed dynamic compensation concept involves three important issues as:

• The compensation actuator should be fast enough to response to the dy-
namic uncertain factor;

• The approximation involved in Equation 2.7 requires the time between two
control step to be small enough, or saying the feedback rate should be
high-speed;

• The value for the compensation part ξk+1
c in Equation 2.6 from the visual

feedback is the relative information towards the target position in image
coordinates, and it can be directly obtained.

Note that although we have assumed the target to be motionless in the analysis
above, it is reasonable to apply the same analysis to the general case where
the target is uncertain under the high-speed visual feedback based on relative
information between main plant, compensation plant and target. Since the time
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Figure 2.2: Concept of the proposed dynamic compensation

between two image frames is sufficiently small that we can ignore the target’s
motion.

Based on the analysis above, the proposed dynamic compensation concept
in this research is shown in Figure 2.2. The compensation actuator with small
inertia offers the necessary DOFs to compensate for the robot arm’s dynamical
uncertainties. The high bandwidth means it can realize quick response during the
robot arm’s dynamical converge, which is always realized in a very short time.
At the same time, high-speed cameras are adopted to provide with feedback
information of the relative information between main plant, compensation plant
and target. Since the compensation actuator can realize quick response with the
high-speed visual feedback, a simple PD control law may be adoptable, and the
dynamic model of the system is not needed.

It should be pointed out that, although the proposed concept is somehow
similar to the traditional macro-micro approach as has been described by the
related works [29, 30, 31, 32, 33, 34, 35, 39], there are several different issues
focused in this study as follows:

• High-speed visual feedback that offers the relative position information be-
tween robot and target is one important aspect of the proposed dynamic
compensation concept, whereas the traditional macro-micro system itself
doesn’t involve a global high-speed visual feedback;

• The traditional macro-micro systems have been proposed mainly for regu-
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2. The proposed dynamic compensation concept

lating flexible robotic systems such as the macro-micro manipulator (3M)
system. Whereas our concept is more focused on accomplishing the high-
speed and accurate interactive manipulations;

• In our dynamic compensation concept, rather than analyzing the compli-
cated dynamic models and dynamic couplings, we focus on developing a
simple control law that is easy for implementation. This is not only for
relief of the works in real applications, but also for the versatility issue to
adapt for much more applications;

• The relationship between visual feedback rate and compensation perfor-
mance;

• The relationship between the compensation performance and the difference
of bandwidth between robot arm and compensation actuator.

2.2 Experimental systems

In order to realize the proposed dynamic compensation concept, robots (including
big workspace robots that realize coarse motion and small high-speed lightweight
robot modules to realize dynamic compensation), high-speed vision sensors and
image processing, as well as the real-time computation system have been adopted.
We will address them one by one as follows.

2.2.1 Robots

5-DOF high-speed robot arm

A high-speed robot arm [2] as shown in Figure 2.3 is adopted. The maximum
velocity of the robot arm’s end-effector can reach 27.22m/s. The D-H parameters
and specifications for actuators of the high-speed robot arm is listed in Table 2.1
and Table 2.2 respectively.

2-DOF high-speed finger module

One finger module (Figure 2.4) of the high-speed hand [40] developed by our
laboratory is adopted in this research. The high-speed hand has been adopted
in several applications such as one of the hot topics of these days - the Janken
(rock-paper-scissors) Robot with 100% winning rate [41] and good performance
for high-speed dynamic manipulations has been demonstrated [42]. The finger
is lightweight and capable of high-speed motion, and it can close its joints at a
speed of 1800◦ / s. Its specification is listed in Table 2.3.
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2. The proposed dynamic compensation concept

Table 2.1: D-H parameters for the robot arm.

i ai−1 αi−1 di θi

1 0 π/4 367.7 θ1
2 0 -π/4 200 θ2
3 0 -π/2 360 θ3
4 0 π/2 -85 θ4
5 0 -π/2 175 θ5

Table 2.2: Specification of actuators of the robot arm.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Reduction ratio 50 50 50 50 50
Max. angular velocity (rad/sec) 9.42 11.73 9.42 5.23 5.23
Max. torque (Nm) 150 150 150 32.5 32.5

Table 2.3: Specification of high-speed finger module

Tip joint Root joint

Reduction ratio 30 50
Max. angular velocity (rad/sec) 30 30
Max. torque (Nm) 0.245 1.71
Peak power output (W) 8 53
Weight (g) 25 60
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Figure 2.3: High-speed robot arm
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Figure 2.4: High-speed finger module

1-DOF linear slider

1-DOF linear slider (GLM10-075-M-EP-C-NN-K-A-N-N) made by THK is adopted
as the main robot to realize high-speed coarse positioning. It has a motion range
of 0.75 m, with the maximum motion speed of 2.0 m/s and the maximum load
of 12 Kg. The photo of the slider is shown in Figure 2.5.

High-speed linear DC-servo motor

QUICKSHAFT Linear DC-Servomotor LM 1247 (Figure 2.6) made by FAUL-
HABER [3] is adopted in this research as the compensation actuator. It can reach
the maximum speed of 2.9 m/s, with the maximum acceleration of 148.5 m/s2.
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2. The proposed dynamic compensation concept

Figure 2.5: 1-DOF linear slider [2]

2.2.2 High-speed visual feedback

High-speed vision sensors

In this research, two EoSens MC1362 high-speed cameras (Figure 2.7) made by
Mikrotron [4] and one IDP-Express R2000 high-speed camera (Figure 2.8) made
by Photron [5] are adopted. Specifications for these cameras are listed in Table
2.4.

Image processing

Since the research has been focused on the visual servoing, light reflecting markers
are adopted to simplify the image processing algorithms. At first, binarization
based on a calibrated threshold for targets is implemented on the gray scale input
images. For each target, we apply the queue-linear flood fill algorithm [43] to
calculate the center of mass in image coordinates with the following method [44].
For the binary image B(x, y), the image position for the target’s center of mass
(x̄, ȳ) is calculated by
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2. The proposed dynamic compensation concept

Figure 2.6: High-speed Linear DC-Servomotor LM 1247 [3]

Table 2.4: Specification for the High-speed cameras.

EoSens MC1362 Photron IDP-Express R2000

Resolution 720×720 512×512
Frame rate 1000 1000
Sensor size 14μm× 14μm 10μm× 10μm
Output (bit) 8bit/10bit 8bit/24bit

[
x̄
ȳ

]
=

[
m10/m00

m01/m00

]
=

⎡⎢⎢⎢⎣
∑

x

∑

y
xB(x,y)

∑

x

∑

y
B(x,y)

∑

x

∑

y
yB(x,y)

∑

x

∑

y
B(x,y)

⎤⎥⎥⎥⎦ (2.9)

where, m00 represents the zeroth moment of the target, m10 and m01 represents
the first moment about x-axis and y-axis respectively.

In order to implement the queue-linear flood fill algorithm for each target in
every image frame, the seed point for growing should be detected first. Since high-
speed frame rate is provided here (1000 fps), there will be little change among two
continuous image frames, and it is reasonable to use the historical information
based detection as shown in Figure 2.9. The whole image is divided into several
search grids, with a sample point (refereed as global search point) for each grid.
For the first image frame, it will be scanned in terms of global search until meet
with the point within each of the target. After each target’s center of mass has
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Figure 2.7: High-speed camera EoSens MC1362 [4]

Figure 2.8: High-speed camera Photron IDP-Express R2000 [5]

been calculated, it is possible to implement the historical search method for the
coming images.

2.2.3 Real-time computation system

In order to responds to the environment that changes dynamically through the
feedback information of the sensors, it is necessary to implement the computa-
tions such as sensing, planning, servoing in terms of real-time. In our approach,
we intend to realize the feedback loop system with a cycle time of 1 ms, it is rather
important to adopt a control system that has a strong calculation capability as
well as the variable interfaces to accommodate with the high-speed robots and sen-
sors. We adopt the dSPACE flexible hardware systems, which are in widespread
use in the automotive industry and are also employed in drives, aerospace, and
industrial automation. The dSPACE system has high processor power, fast ac-
cess to I/O hardware as well as variety of I/O interfaces. The adopted dSPACE
system is of 1.0 GHz PowerPC-750GX, with 32ch 16bit-A/D inputs, 32ch 14bit-
D/A inputs, 15ch encoder counter as well as 192ch digital I/O interfaces. The
host computer (Intel Xeon: 2.33 GHz, memory: 3.0 GB) communicates with the
dSPACE system through Ethernet, thus we can send experimental commands and
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Figure 2.9: Image processing based on flood fill method

supervise the experimental results in real-time. Matlab Real-Time Workshop is
adopted to develop the control software, and kinds of simulation applications can
be incorporated within the experimental environment.

Based on all of the basic elements described above, the overall configuration
of the experimental system is shown in Figure 2.10. As for the communication
delay from sensing side (high-speed camera) to control side (dSPACE system), to
our testing, it has been around 2 to 3 ms. Thus there is no need to worry about
the issue that the communication delay will hinder the real-time feedback of the
high-speed vision sensor.
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Figure 2.10: Overall configuration of experimental system

2.3 Experimental evaluations of the concept

Dynamic compensations for the high-speed robot arm under point-to-point reg-
ulation and vibration motion were studied [45]. The point-to-point regulation of
a robot arm reflects its dynamic performance apparently, especially under rapid
motions, while compensation for vibration motion has been conducted to check
the compensation performance due to different working frequency. In order to
simplify the quantitative analysis, only the vertical motion realized by one joint
of the robot arm was conducted.

2.3.1 Compensation for point-to-point motion

The experimental setup of the 1-DOF prototype is shown in Figure 2.11. The
compensation actuator was realized by one link of the high-speed finger [40]. Two
light-reflecting markers,Md represented the position controlled by robot arm and
compensation actuator, while Mp referred to the position controlled only by the
robot arm. The high-speed camera was configured as 720×720 pixels with a
highest feedback rate of 1000 Hz.

Hereafter, the vertical component of ξd: vd, representing the dynamic per-
formance under compensation, was compared with the vertical component of ξp:
vp, representing the dynamic performance without compensation. Suppose the
vertical component of target image position for Md and Mp was v

′
d and v

′
p respec-

tively (see Figure 2.11). For point-to-point regulation with compensation, firstly
the robot arm was controlled to move from vp to v

′
p while the compensation actu-

ator was kept motionlessly, and consequently it would be moved from vd to vdp.
From vdp to v′d (assume within the motion range of the compensation actuator),
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a simple PD control law was applied to the compensation actuator as

τ = −Kv · q̇ −Kp · (vd − v′d) (2.10)

where τ was the input torque for the actuator, Kv and Kp were positive-definite
gain factors, q̇ was the joint velocity.

As for the robot arm, since we only wanted to trace its dynamic performance,
it was controlled to converge to the joint angle that recorded once it was moved
to v′p from vp. Different visual feedback rate ranging from 80 fps to 1000 fps was
examined to reveal the merits of high-speed visual feedback.

As shown in Figure 2.12, for simplification, suppose the target vertical position
v′d and v

′
p had the same value 400, the real-time response of vd and vp represented

the dynamic performance of the point-to-point regulation under compensation
and without compensation respectively. It could be seen that the dynamic per-
formance for the point-to-point regulation was improved greatly thanks to the
dynamic compensation. It also shows that the visual feedback rate had a great
effect on the quality of compensation. Within the limit of the compensation ac-
tuator’s response speed, a higher visual feedback gave the better performance.
For the case of 1000 Hz visual feedback, not only the settling time was reduced
greatly ( by setting the error band to be 15%, the settling time was reduced to
tsc= 73 ms from tso = 221 ms), but also the vibration amplitude (overshoot) was
compressed greatly.

2.3.2 Compensation for vibration motion

In the vibration compensation, the robot arm was controlled to follow a sin(·)
pattern motion in the vertical direction. In order to realize compensation by
the compensation actuator during the whole motion, the amplitude of the robot
arm’s motion was kept within the work range of the compensation actuator.
Consequently, the robot arm was controlled by the following motion

q =
π

40
sin(2πf

n∑
i=1

Δti) (2.11)

where q was the reference joint angle, f defined the frequency (the speed), and Δti
= 1 ms was the control cycle time. The compensation actuator was controlled to
keepMd in the image position v′d with the same PD control law as Equation (2.10)
while it was affected by the robot arm’s vibration motion (see Figure 2.11).

The robot arm was controlled to vibrate with a frequency ranging from 1 Hz to
6 Hz, and the compensation actuator was controlled with different visual feedback
rate ranging from 80 fps to 1000 fps. The average image error was calculated for
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Figure 2.11: Experimental setup for dynamic compensation evaluation (with only
vertical motion). The marker pointMd (with its image position ξd) represents the
check point under compensation, while marker point Mp (with its image position
ξp) represents the check point without compensation.
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Figure 2.12: Comparison of the dynamic performances for point-to-point com-
pensation.
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Table 2.5: Comparison of the dynamic performances Pc (%) under different mo-
tion speed of robot arm and different visual feedback rate.

Visual feedback rate (fps)

Speed
of robot arm (Hz) 80 120 160 200 250 300 500 1000

2 79.16 83.3 85.83 86.55 87.34 87.67 87.26 87.37
4 65.34 70.59 72.15 74.29 75.68 78.78 78.22 78.85
5 54.74 65.85 67.9 69.25 74.43 77.69 77.82 77.74
6 50.43 59.1 71.68 73.81 74.07 75.86 75.21 75.84

each trial, and then the compensation performance was evaluated by Pc as

Pc = [1−
1
n

∑
(| vd − v′d |)

1
n

∑
(| vp − v′p |)

] · 100% (2.12)

where n was the amount of sampled data. A larger Pc would represent the better
compensation performance.

Figure 2.13 shows the comparison between the dynamic response of the check
point with dynamic compensation and without compensation under the vibration
motion of the robot arm with 6 Hz. Figure 2.14 shows the dynamic response
of the check point with different motion speed of robot arm under the visual
feedback rate of 500 fps. Both show that with the dynamic compensation the
vibration was compressed greatly. Table 2.5 shows the compensation performance
Pc with different moving speed of robot arm and different visual feedback rate
for the compensation actuator. From Figure 2.13, Figure 2.14 and Table 2.5, we
can see that although with the speeding up of the robot arm’s motion speed,
the compensation performance became poor, the degrading rate under a higher
visual feedback rate was smaller than that under a lower visual feedback rate.
For the same motion of the robot arm, a higher visual feedback rate gave a better
compensation performance within a certain range, and here the boundary to the
stable compensation was at about 300 fps.

Table 2.6 shows the quantitative analysis for the compensation with different
motion speed of robot arm under a same visual feedback rate in accordance with
Figure 2.14. It shows that with the speeding up of the robot arm, the ampli-
tude of the check point became larger while no compensation was implemented.
Really three quarters of the vibration was reduced and the average error after
compensation was kept within a small range in the Cartesian space even for the
fastest motion.
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Figure 2.13: Comparison of the dynamic performances for vibration compensa-
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2. The proposed dynamic compensation concept

Table 2.6: Compensation performance with different speed of robot arm.

Speed of
robot arm

(Hz)

Average error
in image
(pixel)

Average error
in Cartesian

(mm)

Amplitude without
compensation

(pixel)
Pc (%)

1 ± 2.15 ± 0.792 68 91.28
2 ± 3.259 ± 1.201 70 87.26
3 ± 4.485 ± 1.652 72 82.59
5 ± 6.149 ± 2.265 78 77.82
6 ± 7.258 ± 2.674 91 75.21

2.3.3 Discussion

From the experimental analysis of the dynamic compensation described above,
the following conclusions can be drawn

1. With the high-speed dynamic compensation, the dynamic defects of robot
arm can be improved greatly, and the dynamic coupling issue between robot
arm and compensation actuator can be relieved;

2. Within the response limit of the compensation actuator, a higher visual
feedback rate could result to a better compensation performance;

3. The bigger difference between the response order of robot arm and com-
pensation actuator, the better compensation performance can be obtained.

As a matter of fact, based on the experimental analysis, we can give such a
hypothesis as shown in Figure 2.15, and accordingly, in order to make full use
of high-speed visual feedback or to further accelerate the moving speed of the
robot arm, a compensation actuator with much higher response speed can obtain
better dynamic performance.

The same analysis can be applied for the case with more DOFs (or saying
dynamic compensation of a robot arm in more than one dimension), as long as the
compensation actuator has enough DOFs for compensating different direction’s
motion.
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Figure 2.15: Hypothesis of the compensation performance respected to the com-
pensation actuator’s response speed. For (a), suppose the robot arm’s motion
speed is constant. For (b), suppose the visual feedback rate is constant.

2.4 Extensibility of the proposed concept

Since the proposed dynamic compensation concept is independent on the system’s
dynamics, it is reasonable to extend this concept into multiple dimensions to
realize a much complex DCRS rather than 1-DOF. For instance, in order to form
a 3-DOF DCRS for positioning, we basically assemble it by three 1-DOF DCRSs,
and the same control method (whether simple or sophisticated) can be applied
in each dimension.

2.5 Summary of this chapter

In this chapter, the dynamic compensation concept as well as the resulted dy-
namic compensation robotic system (DCRS) have been introduced with quan-
titative experimental evaluations. The methodology of the proposed concept is
that: the high-speed vision sensing in terms of task-space can inspect the uncer-
tain target as well as the dynamic uncertainties brought by the main robot (the
main plant) under high-speed motions, and by the compensation actuator (the
compensation plant), which is capable of high-speed response, the uncertainties
can be compensated based on the relative coordinate visual information between
target, main plant and compensation plant.

Experimental systems including robots, vision systems as well as computation
systems have been also addressed. Evaluations based on the 1-DOF prototype
have been conducted and the merits of the proposed dynamic compensation con-
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2. The proposed dynamic compensation concept

cept such as independence of system models, good flexibility as well as compen-
sation capability under high-speed motion have been revealed. Through the eval-
uations, the high-speed visual feedback rate and the high-speed response order of
the lightweight compensation actuator have shown great effect on the compensa-
tion results. If we look back at the Figure 1.5 and 1.6 that have been illustrated
as the motivation of this research, basically the proposed dynamic compensa-
tion concept has shown the good performance or the potential capability in the
expected properties of robotic interactive manipulations.

Since the evaluations have been conducted with the simple PD control, there
may be a much better compensation performance by developing some sophisti-
cated control algorithms, and this issue will be addressed in the next chapter.
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Chapter 3

Improved algorithms based on
relative coordinate high-speed
visual feedback

As has been described in the last chapter, the high-speed visual feedback based
on relative coordinate is one important aspect in the proposed dynamic compen-
sation concept. In this Chapter, we want to introduce some improved visual servo
algorithms based on the relative coordinate high-speed visual feedback. These al-
gorithms have been developed with such objectives: robust to coarse kinematics,
less camera calibration, system dynamics independent and easy implementation
under the case of high-speed position regulation. Generally speaking, the main
robot in our DCRS mostly refers to the serial industrial robot arm, which has
been widely adopted in manufacturing. A simplified IBVS approach for robot
arm, which is depth-independent and easy for implementation, will be intro-
duced in section 3.1. Concerning with the better compensation performance by
the compensation actuator, a pre-compensated PD control approach will be ad-
dressed in section 3.2. Simulation and experimental evaluations will show the
effectiveness of these algorithms.

3.1 Simplified IBVS approach for robot arm

As described in section 1.1.1, from the perspective of feedback hierarchy, vision-
based robotic control can be categorized into two main types : the dynamic look-
and-move and direct visual servo approach, and the later one is supposed to have
better performance in dealing with non-linear dynamic forces while performing
high-speed manipulations with sufficiently high visual feedback frequency. Tra-
ditionally, due to the low sampling rate of the vision sensor, few systems have
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Figure 3.1: Image based position regulation (a represents the optimal trajectory,
and b represents the non-optimal trajectory under the two-step method).

adopted the direct visual servo approach [8, 9, 46, 47]. However, with the de-
veloping of the hardware system, the visual feedback frequency already reached
1 kHz several years ago [1], and it is no longer difficult to employ a high-speed
vision sensor for ordinary applications. With the high-speed visual feedback, we
propose a simplified IBVS approach that is suitable for the DCRS. Note that
in this research, we have mainly focused on the eye-in-hand configuration of the
camera relating to the IBVS approach.

3.1.1 IBVS approach

For the position regulation of one feature point based on the IBVS approach, the
classical IBVS approach has been greatly dependent on the optical-motion model.
As shown in Figure 3.1, the accurate optical-motion model provides the optimal
solution to regulate the point from the start position to the goal position, as it will
follow the line trajectory a in Cartesian. However, the accurate optical-motion
model is always difficult to obtain.

Suppose that an arbitrary point Pi ∈ R
3 with camera coordinates [x, y, z]

projects onto the image plane at the image position ξ ∈ Z
2: (u, v), and let

ṙ = [Tx, Ty, Tz, ωx, ωy, ωz]
T represents the velocity screw of the camera coordinates

(along with the end-effector). Then, we have the classical formulation [8]:

[
u̇
v̇

]
= J img · ṙ (3.1)

J img =

[
−f

z
0 u

z
uv
f

− (f2+u2)
f

v

0 −f
z

v
z

f2+v2

f
−uv

f
−u

]
, (3.2)
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where the interaction matrix J img is dependent on the current feature value ξ
and the depth information z, f is the focal length. Note that the depth z cannot
be obtained directly. From the kinematics of the robot, we have

ṙ = J r · θ̇ (3.3)

where θ̇ is the vector of the joint velocities. With Equation 3.2 and 3.3, we can
get the optical-motion model of the classical IBVS approach as

ξ̇ = J img · J r · θ̇ (3.4)

In order to realize the optimal trajectory regulation as shown in Figure 3.1, it
is necessary to calculate the depth z on-line for J img and the kinematic Jacobian
J r in real-time. Several methods adopted the depth estimation approach [48] to
roughly build the interaction matrix J img.

As a matter of fact, J img can be divided into the translation component J t
img

and the rotation component J r
img [49] as follows:

J t
img =

[−f
z

0 u
z

0 −f
z

v
z

]
,J r

img =

[
uv
f

− (f2+u2)
f

v
f2+v2

f
−uv

f
−u

]

It is obvious that the translation part J t
img is dependent on the current image

feature and the depth information, whereas the rotation part J r
img has no rela-

tionship with the depth information. On basis of this property, several partitioned
approaches have been proposed [49, 50, 51, 52]. Partitioning the degrees of free-
dom offers some advantages for these methods: they can reach global convergence,
and they do not need to perform depth estimation as a separate task for realiz-
ing the interaction matrix [49, 50]. Malis et al. [50] developed so-called 2-1/2-D
visual servoing by incorporating information of the homography matrix into the
control law. This achieved global stability, and in addition, depth information
for the interaction matrix could be obtained while solving the homography ma-
trix. Deguchi [49] also adopted the homography matrix solving method to realize
partitioned control of translation and rotation motions. However, because these
methods need a homography transformation calculation, they have the drawbacks
that the calculation is complex and they are not robust to noise [50, 52]. Corke
and Hutchinson [51] proposed a partitioned approach by decoupling the trans-
lation and rotation components towards the optical axis from the interaction
matrix, with the aim of tackling the camera retreat problem. In addition, several
depth-independent approaches have also been proposed [46, 47]. Wang et al. [47]
adopted a depth-independent interaction matrix with point and line features to
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linearly parameterize the interaction matrix, as well as the closed-loop dynamics
of the system.

As for the other aspect of the optical-motion model: the kinematic Jacobian
J r, usually it is calculated by calibrating the kinematic parameters. Besides, there
is another on-line Jacobian estimation approach that needs no calibration of the
system kinematics. In [53], a modified discrete-time Jacobian estimator and a
Jacobian estimator based on extended least squares algorithm was proposed. In
[54], the same on-line Jacobian estimation method was adopted to realize the 3D
ball catching task. In [55], an estimation method based on fuzzy adaptive kalman
filtering was proposed. Besides, Broyden’s method [56] as well as dynamic quasi-
Newton method with a recursive least squares (RLS) [57] estimation method have
been proposed.

Here in this research for the optical-model, we shall mainly focus on two
issues: one is to avoid the estimation of the depth information, the other is to
decouple the relation between Tx and Tz, as well as between Ty and Tz within
the velocity vector ṙ = [Tx, Ty, Tz, ωx, ωy, ωz]

T as the coupling is raised due to
the third column of J t

img. A bad estimation of the depth z with the coupling
issue may result in bad dynamic performance, especially under noisy estimation
of image features ξ. Therefore, we want to improve the classical optical-motion
model to realize a depth-independent approach in which Tx and Tz are decoupled
and Ty and Tz are decoupled. Since these two issues involve only the translation
component of the interaction matrix, in this study we only focus on translational
control and ignore pose control.

3.1.2 Simplified IBVS

In the following contents, we propose a direct visual servoing scheme based on a
simplified interaction matrix [58]. The motivation for simplifying the traditional
IBVS approach is not only for easy calculation to enable a high-speed visual
servoing, but also for easy implementation by adopting a coarse as well as depth-
independent interaction matrix, especially the absolute depth is difficult to obtain.
Note that for the kinematic Jacobian J r, we will adopt the calibration approach
rather than on-line estimation, as it is too complex to calculate and may be
unstable.

3.1.2.1 Convergence issue

In this section, we will try to analyze the problem such as whether the regula-
tion can still realize convergence if there are some uncertainties involved for the
interaction relationship brought by the simplification. The analysis will basically
follow the same method as illustrated in section 2.1. Suppose the uncertainty for
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the interaction matrix is −J e
img, then we have

ξ̇
′
r = J img · J r · θ̇ − J e

img · J r · θ̇
= J img · J r · θ̇ − δimg = ξ̇r − δimg

(3.5)

where J e
img · J r · θ̇ is replaced by the notation δimg.

The regulation error at time of k is

Ek = ξkr + (δk − δk
img)− ξT

= ξkr +Δk − ξT
(3.6)

where we have replaced δk − δk
img by the notation Δk.

Hereafter, we will conduct the same analysis for the compensation as

Ek+1 = ξk+1
r +Δk+1 + ξk+1

c − ξT (3.7)

With the estimation for the compensation part to be

ξk+1
c = −Êk ⇒ −Δ̂k

(3.8)

And the approximation to be

Δ̂
k .
= Δk+1 (3.9)

Then we can see that the regulation can still realize convergence as

Ek+1 = ξk+1
r − ξT ⇒ 0 (3.10)

As the analysis described above, the uncertainties brought by the simplifica-
tion of the interaction relationship will not affect the convergence of the regu-
lation. As a matter of fact, the same analysis above can also be applied to the
case where the robot’s kinematic model has some uncertainties, as the resulted
uncertainties will also be compensated by the compensation actuator based on
the high-speed visual feedback of the relative information between the two plants
and target. It means that the proposed dynamic compensation concept fits for
the coarse kinematics of the robot manipulator, thus we can still apply the sim-
plified IBVS approach addressed later even there is no accurate kinematic model
for the main robot.
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3.1.2.2 Methodology

Considering to regulate Pi’s image position to be in the center of the image
plane with the desired relative distance between the target position and camera
in Cartesian. Let Ḋdep be the rates of change of the image feature due to the
translation motion along the optical axis. This image feature could be set to
be the square root of the image area for the regulating target [51], and a linear
relation: Ḋdep = γ ·Tz (as we have adopted) or a nonlinear relation: Ḋdep = γ ·eTz

[52] could be assigned (γ is the scalar gain coefficient). With the camera’s focal
length f , the interaction relationship could be inherited from the traditional IBVS
as:

⎡⎣ u̇
v̇

Ḋdep

⎤⎦ =

⎡⎣f/z 0 −u/z
0 f/z −v/z
0 0 γ

⎤⎦⎡⎣TxTy
Tz

⎤⎦ (3.11)

Suppose this regulation is realized with a two-step method as shown in Figure
3.1: firstly to center Pi while maintaining the initial depth; then to regulate the
depth to be the desired value. Let the velocity vectors for these two steps be:
[Tx1, Ty1, Tz1]

T and [Tx2, Ty2, Tz2]
T respectively, with Tz1 = 0, Tx2 = 0, Ty2 = 0.

Then we will have:

⎡⎣ u̇
v̇

Ḋdep

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣f
z

0 −u
z

0 f
z
−v

z

0 0 γ

⎤⎦⎡⎣Tx1Ty1
Tz1

⎤⎦ (step1)

⎡⎣f
z

0 −u
z

0 f
z
−v

z

0 0 γ

⎤⎦⎡⎣Tx2Ty2
Tz2

⎤⎦ (step2)

(3.12)

Since Tz1 = 0, Tx2 = 0, Ty2 = 0 is defined under the two-step method in
default, and in the second step, the image coordinates (u̇, v̇) would be (0, 0) as
the target has been regulated to be in the image center, then we can change the
interaction relationship to be an equivalent form:

⎡⎣ u̇
v̇

Ḋdep

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
G1

⎡⎣1
z

0 0
0 1

z
0

0 0 1
z

⎤⎦⎡⎣Tx1Ty1
Tz1

⎤⎦ (step1)

G2

⎡⎣γ 0 0
0 γ 0
0 0 γ

⎤⎦⎡⎣Tx2Ty2
Tz2

⎤⎦ (step2)

(3.13)

where G1, G2 are constant gain coefficient matrices.
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With high-speed cameras, it is reasonable to think that this two-step reg-
ulation is equivalent to such a situation, that the centering regulation has the
priority over the depth regulation, and this could be achieved by choosing large
gain coefficients for centering regulation and relatively small gain factors for depth
regulation. The control formulation (the inverted form of the interaction relation-
ship) could be chosen as:

⎡⎣TxTy
Tz

⎤⎦ = C

⎡⎣ku 0 0
0 kv 0
0 0 kd

⎤⎦⎡⎣ u̇
v̇

Ḋdep

⎤⎦ (3.14)

where ku = e|u/u
∗−1|, kv = e|v/v

∗−1|, kd = e−(k2u·k2v) with the current image coordi-
nates ξ = (u, v) and the goal ξref = (u∗, v∗), C is the constant gain coefficient
matrix including the scale function as the camera’s focal length f . Equation
(3.14) shows a depth-independent and decoupled property, and the priority of
centering is maintained due to the elements of the interaction matrix (as shown
in Fig. 3.2, the element corresponding to the depth regulation kd becomes larger,
starting from zero, as the image position moves to the center). As a matter of
fact, we can go further by simply making the priority adjusting factors to be
constant values such as: k1 = k2 >> k3. Then we would have:

⎡⎣TxTy
Tz

⎤⎦ = C

⎡⎣k1 0 0
0 k2 0
0 0 k3

⎤⎦⎡⎣ u̇
v̇

Ḋdep

⎤⎦ (3.15)

Now, the interaction relation has been approximated to be a linearized form.
Both Equation (3.14) and Equation (3.15) approaches hold such merits as: free of
inverse calculation, depth independent and motion decoupled. Through simula-
tion conducted later, we will see that with the motion decoupling, the simplified
approach could have better dynamic performance than the traditional approach,
especially under noisy estimation of image features or with the camera’s param-
eters uncalibrated. Besides, we can simply suppress the depth regulation while
the target is at the edges of the image plane to keep the visibility of the target
for the eye-in-hand camera.

The analysis above is based on the regulation of centering the one target point
with translation control. As a matter of fact, for a general case of image-based set
point position regulation, we can also apply this simplified approach as long as we
keep the priority of the 2D image plane regulation over the depth regulation, and
we will show this in the simulation later by regulating the target point to a goal
position that is not the image center. On the other hand, the simplified approach
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Figure 3.2: Cross-sectional view (u=v) of the variation of the inverse interaction
matrix elements (image center [400,400]).

is nothing more than a simple trajectory planning method for one target point’s
regulation under high-speed visual feedback, and the regulation trajectory may
hardly be the optimal solution (as shown in Figure 3.1 and Figure 3.4). We adopt
it as the trade-off between the easy calculation as well as easy implementation
for the high-speed regulation and the optimal control. Moreover, it is difficult
to accurately estimate depth with one camera without good calibration. Equa-
tion (3.14) and (3.15) give two alternatives with different simplifying levels. For
convenience, we will refer to Equation (3.14) as the half simplified (HS) method
and Equation (3.15) as the full simplified (FS) method. We will examine the
performance of these two methods in comparison with the conventional method
through simulations.

Note that the control for keeping the image features within the camera field of
view becomes much easier with FS. Since the depth regulation is the only cause
of the lose of image features, we can simply suppress the depth regulation if the
image features reach the edges of the image plane.

We built a direct visual servo controller based on the HS and FS meth-
ods. Since there is a singularity problem originating from the kinematics of the
robot arm, we adopt the damped least squares (DLS) [59] technique to realize a
singularity-robust inverse (SRI). DLS involves a compromise between accuracy
and feasibility of the inverse kinematic solution. Let J r and J int be the kine-
matic Jacobian matrix and the simplified interaction matrix, respectively, and let
J t = J intJ r be the overall Jacobian. For joints q, the DLS gives

J∗ = (J t)
T (J t(J t)

T + αI)−1

q̇ = J∗ · [errξ, errd]T , (3.16)
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where α is the damping factor, and errξ and errd are the image feature errors
for the image plane position and the depth, respectively.

The control laws for the HS and FS methods are

τ = kp · J(q, ξ)∗ · [errξ, errd]T − kd · q̇ + g(q) (3.17)

τ = kp · J(q)∗ · [errξ, errd]T − kd · q̇ + g(q), (3.18)

where τ is the torque added to each joint, kp and kd are two gain coefficient
matrices, and g(q) is the gravity compensation vector.

3.1.2.3 Simulation study

Simulations were conducted with the Robotics Toolbox and Machine Vision Tool-
box [60]. We compared the conventional method, the HS method, and the FS
method using the same conditions.

A six-joint PUMA560 robot was modeled, and the initial joint angles were set
to be [0, -pi/4, pi/4, 0, 0, 0]. The image plane was projected by a simulated Pulnix
camera with focal length f = 0.0078 m, and image center (u, v) = (274, 210). The
image range was set to be (0–548, 0–420). We chose a static target point with the
initial image position (452, 373) to be regulated to the goal position (120, 140)
(note that this is not the center of the image plane), and the relative distance
between the target point and the camera was initialized to be 0.7 m. These
parameters basically were chosen randomly within the robot arm’s workspace.
However, for better understanding and to give more convincing results, we chose
the initial and goal coordinates of the target point so as to be slightly far away
from each other. For each method, we chose the gain coefficients that allowed the
robot to reach the convergence point quickly with stable and smooth movement.
In order to examine the performance of the three methods with different depth
regulations, two settings were defined: small regulation with the goal depth set
to be 0.5 m, and large regulation with the goal depth set to be 0.2 m. For
both settings, four rounds of simulation with the same conditions were carried
out for the three methods. As for the noise added to both the image position
and the depth estimation, we added two zero-mean Gaussian random variables
ranging from -2.5 to 2.5 pixels for u and v, respectively, and a zero-mean Gaussian
random variable ranging from -0.05 to 0.05 m for the depth information. For
judging convergence, we set accuracies of ± 3 pixels and ± 0.005 m for the image
position error and depth error, respectively.

We used a parameter called sum of feature distance (SFD) to evaluate the
global concentration during the convergence process. The SFD is calculated as:∑

(| errξ | + | errd |). Convergence iterations and SFD were compared for the
two settings, as shown in Table 3.1 and Table 3.2.
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Table 3.1: Comparison results with small depth regulation.

Simulation round Traditional Method HS Method FS Method

1
iteration 50 176 59
SFD 4.4697e+003 2.1655e+003 2.1510e+003

2
iteration 342 46 52
SFD 6.0408e+003 1.4112e+003 2.2360e+003

3
iteration 107 39 97
SFD 4.6377e+003 1.4292e+003 2.6390e+003

4
iteration 112 43 74
SFD 5.1475e+003 1.2532e+003 2.2772e+003

ave.
iteration 152.7 76 70.5
SFD 5.0740e+003 1.5647e+003 2.3258e+003

Table 3.2: Comparison results with large depth regulation.

Simulation round Traditional Method HS Method FS Method

1
iteration 205 44 33
SFD 1.5637e+004 1.7710e+003 1.8066e+003

2
iteration 384 97 89
SFD 1.7449e+004 1.9504e+003 2.5003e+003

3
iteration 408 145 223
SFD 1.7530e+004 1.9912e+003 3.1532e+003

4
iteration 200 212 31
SFD 1.6239e+004 2.2913e+003 1.8507e+003

ave.
iteration 299.2 124.5 94
SFD 1.6714e+004 2.0001e+003 2.3276e+003

Both the HS and FS methods had a smaller SFD than the traditional method
in the two regulations, which shows that they had better performance in global
concentration during the convergence process. On average, the traditional method
needed more iterations for convergence, especially with large depth regulation, as
shown in Table 3.2.

Fig. 3.3 shows the contrast performance of the three methods for large depth
regulation (goal depth: 0.2 m). From the velocity vector, we could see that Tx
and Ty in the HS and FS methods had large values at the start of regulation and
then varied slightly around zero due to the depth regulation. In contrast, with the
traditional method, Tx and Ty started with small values and then varied greatly.
We think this was the reason for its larger SFD value, and has been resulted from
the coupling between Tx and Tz as well as the coupling between Ty and Tz in the
interaction matrix. With the HS method, the feature point moved to the goal
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position very quickly right at the start of regulation, and Tz kept a small value at
the start, whereas Ty showed an overshoot. Comparing the HS and FS methods,
HS showed a small SFD value, whereas FS had a relatively stable convergence
speed for the two regulations. Considering all of these issues, we adopted the
FS method in the experiments for ball tracking described in the following section
3.1.2.4.

As a summary, the proposed simplified approach has the following properties:

• There is no need to estimate the depth information in building the interac-
tion relation;

• It is easy for calculation of the inverse matrix, since the simplified “inter-
action matrix” is a diagonal matrix;

• The motion between Tx and Tz, as well as the motion between Ty and Tz
in the velocity screw realize decoupling;

• It is based on the high-speed visual feedback and fits for high-speed regu-
lation for its simple calculation (it has much faster convergence speed than
the classic IBVS model-based approach);

• As shown in Figure 3.4, the regulation trajectory for simplified approach
can hardly be the optimal one, yet it has a better dynamic performance
during the convergence process than the classic IBVS model-based approach
under noisy estimation of image features or depth as shown in simulation
(the classic IBVS model-based approach has a much bigger SFD). Although
in the ideal case, the classic IBVS model-based approach is supposed to
follow the optimal trajectory in most of the time, it is easily affected by the
estimation noise due to its depth-dependent feature and the coupling issue
within the optical-motion model.

3.1.2.4 High-speed tracking experiment

Experimental Setup

We adopted the high-speed robot arm and one Eosens vision system (refer to
section 2.2) with an image resolution of 800×800 and a sampling rate of 1000 fps.
A ball with a diameter of 0.05 m was used for tracking. The robot was controlled
to keep the ball’s geometric center in the center of the image with a constant
distance between the ball and the camera.

When the robot reached the ready position, we moved the ball manually to
follow a circle-like trajectory with a radius of about 0.3 m, and we also tried to
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change the distance between the ball and the camera. First, we moved the ball
with a moderate speed (about 0.8 rad/s), and then much faster (about 2.2 rad/s).

In order to prevent a sudden impact at the beginning of tracking (resulting
from the large image error when the target was first moved into the field of view),
we set a damping factor β (0 < β ≤ 1) in the controller to avoid a starting shock.
We gradually increased β to 1 as the target moved to the center of the image:

β =

{
1(if | merrξ |≤ S)

1/(| merrξ | −S)(if | merrξ |> S)
(3.19)

where | merrξ |= max(| erru |, | errv |), and S is the threshold. Then, the control
law for FS can be written as

τ = kp · β · J(q)∗ · [errξ, errd]T − kd · q̇ + g(q). (3.20)

Experimental Result

The tracking was controlled to start at 5 s and end at 15 s. Fig. 3.6 shows the
process of ball tracking. With the high-speed visual servoing, the robot moved
the end-effector rapidly while attempting to keep the target in the center of the
image.

Fig. 3.5 shows the time response of image features of the target and the robot
arm’s joints while tracking. Fig. 3.5 (a) and (b) show the u and v coordinate
responses, respectively, and (c) shows dynamic regulation of the depth. From 5 s
to 8 s, the gain factor β reduced the image error, and the camera moved gradually
to place the target in the center of the image. From 8 to 15 s, the robot quickly
tracked the moving ball in terms of position and distance.

Also, the image features of the target showed obvious oscillation during the
reciprocating motion, and did not ideally keep in a line. This may have been
partially due to the robot arm’s dynamics and the fact that we moved the ball
outside of the workspace of the robot arm, and the robot could not reach the goal
position as we moved the ball too far away.
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Figure 3.6: Continuous images of ball tracking process.
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3.2 Pre-compensated PD control for compensa-

tion actuator

In this section, concerning with the control issue of the compensation actuator,
a pre-compensated PD approach is proposed under the context of DCRS.

3.2.1 The problem

As the analysis for the dynamic compensation concept has shown, the approxi-
mation in Equation 2.7 and 3.9 is supported with the high-speed visual feedback.
As a matter of fact, we can make the approximation much more reliable by de-
veloping some pre-compensation algorithm for the compensation actuator.

As shown in Figure 3.7, it is reasonable to take the interaction force from the
compensation actuator to the main robot τ im to be negligible, since the compen-
sation actuator is lightweight and its applied force τm is much smaller than the
applied force τM on the main robot. However, the interaction force τ iM would
bring great impact on the compensation actuator, and it may make the approxi-
mation in Equation 2.7 and 3.9 not reliable. Although the simple PD control can
realize dynamic compensation to some extent as have described in section 2.3,
advanced control algorithms that can resist the non-linear interaction force τ iM
should be developed.

xc

τM

τm

Regulation
point

Target
point

x
y

xm

xM

Σ

τm
i τM

i

Figure 3.7: The problem for compensation actuator

3.2.2 A simple cart model

A simplified cart model consisting the lower main plant and the upper compen-
sation plant is shown in Figure 3.8. The system only conducts horizontal motion.
Assume the compensation plant could not move off from the main plant, and the
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Figure 3.8: A simplified cart model for the 1-DOF DCRS.

compensation plant’s mass is m2, which is far more lighter than the main plant’s
mass m1 (m2 � m1). The camera’s focal length and scaling factor (pixel/meter)
is f and α respectively, and the constant distance between the camera and robotic
system is z (z > 0). Hereafter, we will refer to the regulation point’s position as
xc, and the main plant’s position as xM in the world coordinate Σ. The regu-
lation point is initialized at xs, and the target position is at xd. Assume during
the whole motion range, both of the regulation point and the target point are
within the field of view of the high-speed camera. Since the system only conducts
horizontal motion, we can make the projection from world position x to the image
position ξ by

ξ =
fα

z
x = λx (3.21)

Dividing the regulation of xc from xs to xd into two phases, firstly to regulate
the system to move as a whole from xs to xp, and secondly, to regulate the
compensation plant from xp to xd. xp is the separation position for dividing these
two phases. Assume the constant distance from xp to xd to be δx (δx ≥ 0),
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and it is smaller than the stroke of the compensation plant. Let ec = ξc − ξd
represents the image error between the regulation point and the target, and ep =
ξc−ξp represents the image error between the regulation point and the separation
position.

For the general case, suppose the control law for the first phase is the simple
proportional-derivative (PD) control as

τ ′ = −Kv · ėp −Kp · ep (3.22)

where Kv, Kp are the positive gain factors, and τ ′ is the force applied on the
main plant to drive the whole system. While the image error ep firstly reaches
zero, the system’s control moves into the second phase. As for the dynamics of
the system, we have:

m1 · ẍM +m2 · ẍc = τM + τm (3.23)

Where τM , τm are applied forces for main plant and compensation plant respec-
tively.

For the robot’s main plant that is supposed to stop around ξp, in order to
keep the flexibility of the proposed approach, we keep the PD control law for the
main plant as

τM = −Kv · ėM −Kp · eM (3.24)

where eM = ξM − ξp.
Note that during the second phase, ec is the projection of the combination of

several motions, including the main plant’s motion, the relative motion between
the main plant and the compensation plant, and the target’s motion if for a
general case.

3.2.3 Pre-compensated PD approach

As have been described in section 2.3, a naive PD control law can be applied for
the compensation actuator to realize the dynamic compensation. However, it is
rather difficult for the linear PD controller to accommodate with the nonlinear
dynamic impact brought from the lower main plant. Taking into the considera-
tion of the main plant’s motion impact, we develop the pre-compensated control
law based on the conventional PD control. The block diagram of the dynamic
compensation controller is shown in Fig.3.9.

The control law is as follows:

τm = um − τM +m1 · ẍM (3.25)
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Figure 3.9: Block diagram of the pre-compensated PD control

Where um is:

um = −Km
v · ėc −Km

p · ec (3.26)

where, Km
v , K

m
p are positive-definite gain factors, ec = ξc − ξd, and ẍM is the

second order information of the main plant, which is obtained from the high-
speed camera’s images. With Equation (3.23), Equation (3.24) and Equation
(3.25), the closed-loop system is:

ẍM ·m1 + (ẍm + ẍM) ·m2 = um +m1 · ẍM (3.27)

= −Km
v · ėc −Km

p · ec +m1 · ẍM
In order to proof the stability of the control law by Equation (3.25), a positive-

definite Lyapunov function candidate can be defined as:

V (e, ė) =
1

2
m2 · ė2 + 1

2
Km

p · λ · e2 (3.28)

where e = ec = ξc − ξd. Evaluating the derivative of V : V̇ with the closed-loop
system, we have

V̇ (e, ė) = m2 · ė · ë+Km
p · λe · ė (3.29)

= −Km
v · λ · ė2

Since Km
v , λ are all positive-definite, hence V̇ is globally negative semi-definite,

and ξ = ξd, ė = 0 is a stable equilibrium point. It is not difficult to conclude that
the point ξ = ξd, ė = 0 is also asymptotic stable with the Lasalle’s theorem [61].
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Figure 3.10: Transient compensation performance

The advantage of the control law by Equation (3.25) is that the main plant’s
motion pattern is always taken into the consideration for generating the output
force for the compensation plant, and thus the dynamic impact from the main
plant to the compensation plant can be suppressed. However, it is not the best
way to incorporate the acceleration information that obtained by differentiating
from the image frames. Besides, it is a trivial work to tuning the gain coefficients
in Equation (3.25) in order to realize the perfect regulation. As the experimental
evaluation for transient compensation (same experimental settings as that in
section 2.3) shown in Fig.3.10, comparing with the conventional PD approach,
the proposed pre-compensated PD approach shows a slightly improved dynamic
performance in terms of the compressed overshot. In Fig.3.11, it can be seen
that the pre-compensated PD has a better compensation performance since the
compensated error has been smaller than that of the simple PD control.
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3.3 Summary of this chapter

In this chapter, under the high-speed visual feedback based on relative coordinate,
a simplified IBVS approach that is depth-independent for robot arm’s regulation
as well as a pre-compensated PD approach for compensation actuator have been
proposed. The proposed algorithms fit for the situation of many uncertainties in
controlling the main plant as well as the compensation plant and make the pro-
posed dynamic compensation approach much more flexible in realizing accurate
and high-speed manipulations.

Although the simplified IBVS approach can hardly be the optimal solution
for position regulation, it is easy for implementation, robust to noise and flex-
ible for application. As will be addressed in Chapter 5, the simplified IBVS
approach is adopted to realize the set point regulation of the robot arm in doing
the 3D peg-and-hole alignment task. The pre-compensated PD approach has a
better compensation performance than the simple PD control as it takes into
consideration of the dynamic impact brought by the main robot. Although there
are some trivial tuning task involved in this approach, the methodology of pre-
compensating the compensation actuator with the supervised motion pattern of
the main robot is instructive to the much more sophisticated approach applied in
the 1D dynamic super picking task which will be addressed in the next chapter.
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Chapter 4

1D positioning: dynamic super
picking

In this chapter, the proposed dynamic compensation concept will be applied to
1D positioning, which is the basic form of the DCRS’s applications. In order
to realize the better compensation performance by the compensation actuator,
a pre-compensation fuzzy logic control (PFLC) method is proposed by further
exploiting the properties of the 1-DOF DCRS. Simulation and experimental eval-
uations for the PFLC method show its effectiveness in counteracting the dynamic
impact from the main plant. Since the effective cooperation between the big range
coarse motion by main plant and the accurate motion by compensation plant
within small range is very important, an efficient cooperation algorithm based
on gain adjusting is proposed. Finally, dynamic super picking task is realized
with good performance based on the PFLC approach as well as the cooperation
algorithm.

4.1 Background

Robots capable of catching dynamic flying objects have been investigated previ-
ously. The flying object catching task requires high-speed and high accuracy for
image processing, as well as motion control within the very short time. It has
been adopted as a challenging benchmark task for almost 20 years to develop and
test robotics technologies.

Among the related works, most of the approaches have employed the stereo
vision systems to realize the 3D position reconstruction and prediction for catch-
ing targets [62, 63, 64, 65, 66, 67], and then with the motion planning algorithms,
the robot is guided to the catch configuration, where the catch point has been
determined based on the predicted trajectory of the target. In [64], the target
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4. 1D positioning: dynamic super picking

position was tracked and predicted by using an Extended Kalman Filter (EKF),
with the consideration of the air drag. Since the target’s trajectories may cover
large workspace, the calibration of the stereo cameras needs samples (3D po-
sition and the corresponding image positions) of the target covering the whole
workspace. In order to get the high precision calibration, “Calibration by Do-
ing” procedure has been adopted to get the samples. As for the results, it is
said that about 2/3 of the 100 trials was successful in catching the ball, with
the clearance of 4.5 cm (the picking net has the diameter of 16 cm, and the ball
with the diameter 7 cm). In their later work [66], a robotic ball-catching system
built from a multipurpose 7-DOF lightweight arm (DLR-LWR-III) and a 12-DOF
four-fingered hand (DLR-Hand-II) was developed. The grasping of the ball was
realized by formulating the decision of where, when and how to catch the ball as
an unified nonlinear optimization problem with nonlinear constraints. With the
same experimental settings and EKF method, the success rate of catching was
about 80% and the main failures had been resulted from the prediction errors and
lose of ball tracks by the vision systems [66]. As the further work in [67], they
extended the ball catching task to the wheeled humanoid robot Rollin’s Justin
and instead of using the static stereo cameras, two cameras have been mounted on
the robot’s shaking head. In order to compensate for the shaking of the cameras
along with the robot head while the robot moves, a 6-DOF inertial measurement
unit (IMU) has been adopted. Multi-Hypothesis Tracker (MHT) with an Un-
scented Kalman Filter (UKF) is applied for predicting the target’s trajectories.
The catch-rate of about 80% was realized with a ball (8.5 cm diameter) thrown
from about 5-7 m away towards the robot.

Besides, there are also several approaches that employ no information to re-
construct 3D space from the 2D images. In [68], a GAG (Gaining Angle of Gaze)
motion strategy was proposed to realize the trajectory control method for catch-
ing a ball flying in 3D space. In their approach, hand-eye configured monocular
vision system was adopted and it didn’t need for the 3D reconstruction for the
target. Only the vertical optical angle was required to be observed for the GAG
model. By keeping the value of the vertical optical angle gaining in a finite rate
of change, it was resultantly possible for the hand to track and catch the target.
In [69], a novel concept called the goal-oriented just-in-time visual servoing was
proposed to realize the ball catching task by robot arm. In their approach, the
Jacobian was estimated on-line to combine the image motion and 3D motion of
the robot arm without the prior knowledge of the arm and camera structures for
hand-eye and camera calibrations. Rather than one camera, two or more cameras
with different viewing points were adopted to interpret the 3D space catching in
2D images by the following way: the ball should reach the catch point on the
robot arm’s end-effector at the same time from different cameras’ images, and
it did not necessarily mean the success of the catching if only in one image the
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ball met the catch point. However, as pointed by the authors, the weakness of
their approach was that they cannot guarantee the fulfillment of the given task
completely in time. The most important reason was that the low sampling rate of
the cameras (30 fps) can hardly satisfy the control frequency of the image-based
estimation and regulation.

Unlike the prediction approach described above, perceptions of targets during
dynamic catching manipulations [15, 70, 71, 72, 73] conducted in our laboratory
have been mainly relied on the high-speed visual feedback. Since the tracking
or prediction through algorithms based on the past states of the target would
inevitably involve much larger errors than the errors brought by the sensor noise.
Besides, with the high-speed visual feedback, not only the computation time can
be saved (no need for complex filtering algorithms), but also the image processing
algorithms become easier for implementation and the target detection can be
much more accurate. Instead of realizing catching based on the 3D information
reconstruction from the high-speed vision sensors, this study will focus on the
high-speed visual feedback based on relative coordinate information, which means
that the calibration works for camera will be greatly reduced. And we intend to
realize a much better performance in catching accuracy either in space or in time.
In order to simplify the problem of dynamic catching task, here the simplest form:
1D dynamic picking (catching) is to be conducted.

4.2 System design

In accordance with the dynamic compensation concept, a 1-DOF DCRS is de-
signed as shown in Figure 4.1. The system includes a main robot (refer to Figure
2.5) that has a large work space and has been originally designed for slow & ac-
curate motion. It has a bad dynamic performance while adopted for high-speed
motion. The compensation actuator (refer to Figure 2.6) is capable of high-speed
motion with a small work range. Hereafter, we will refer to the main robot as
the main plant, and the compensation actuator as the compensation plant. Spec-
ifications for the testbed is shown in Table 4.1. A 1000 Hz high-speed camera
(refer to Figure 2.8) observes both the target point and the regulation point. The
position of picking net (the net has a inner diameter of 15 mm) is detected in
images by a LED light fixed in the center position of the net, and the target is
a light-reflective plastic ball with a diameter of 12 mm. Thus the clearance for
catching (picking) is 1.5 mm. In order to limit the target’s drop position within
the workspace of the picking net (with only 1-DOF), a narrow space for passing
through the target is formed by two transparent plastic boards.
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Figure 4.1: System designed for dynamic picking task in 1-DOF

Table 4.1: System specification for the testbed.

Main plant Compensation plant

Max velocity (m/s) 2.0 2.9
Max acceleration (m/s2) 3.0 148.5
Stroke (mm) 80 750

4.3 Algorithms for realizing dynamic super pick-

ing

In order to realize the accurate picking of the target under dynamical flying
motions, the effective control for the compensation plant that will be constantly
affected by the dynamic impact of the main plant is quite important. Besides,
the cooperation between these two plants is also critical for picking a target that
is flying within a big range. A pre-compensation fuzzy logic control (PFLC)
algorithm [74] is proposed for the compensation plant. After that, a cooperation
algorithm based on simple gain adjusting will be addressed.
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4.3.1 Pre-compensation fuzzy logic control (PFLC) for
compensation actuator

4.3.1.1 Methodology

Although the pre-compensated PD control approach shows better compensa-
tion performance than the simple PD control as has been described in section
3.2, it involves trivial tuning task for implementation. Here, based on the pre-
compensated PD approach’s methodology of taking into consideration of the main
plant’s motion impact, we further propose a pre-compensation approach based
on the fuzzy logic control.

Fuzzy logic method is able to simultaneously handle numerical data and lin-
guistic knowledge. It differs from classical logic in that statements are no longer
black or white, true or false, on or off. In traditional logic an object takes on a
value of either zero or one. In fuzzy logic, a statement can assume any real value
between 0 and 1, representing the degree to which an element belongs to a given
set. Comparing with the classical model-based approach, it needs no intricate
mathematical models, only a practical understanding of the overall system be-
havior. The Fuzzy logic control method have been successfully applied in fields
such as automatic control, data classification, decision analysis, expert systems,
and computer vision [75, 76].

Back to the motion analysis based on the simple cart model (refer to the
Section 3.2.2), let’s check the differential of ec (ėc) at a particular time, saying
for the time of k + 1,

ėk+1
c = λ(vk+1

c − vk+1
d ) (4.1)

where vk+1
c , vk+1

d refers to the velocity of the regulation point and the target
point at time of k+1 respectively. Suppose at time of k, the output force for the
compensation plant and main plant to be τ km, τ

k
M respectively, for the velocity of

the regulation point, we have

vk+1
c = vkc + (

τ km
m1

+
τ kM

m1 +m2

)Δt (4.2)

where, Δt is the control cycle time. Similarly, we have the velocity of the main
plant at time of k + 1 as

vk+1
M = vkM +

τ kM
m1 +m2

Δt (4.3)
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Combine Equation (4.2) and Equation (4.3), we have

ėk+1
c = λ[(vk+1

M − vk+1
d ) + (vkc − vkM) +

τ km
m1

Δt] (4.4)

Change Equation (4.4) to be

ėk+1
c = ėk+1

M + (ėkc − ėkM) + λ
τ km
m1

Δt (4.5)

Equation (4.5) shows that at the time of k + 1, the change of the error ec has
relations to three aspects, namely the change of the error eM at time k + 1, the
difference between ėc and ėM at time k, as well as the force for the compensation
plant at time k.

If we apply the simple PD control for the compensation plant as

τm = −Kv2ėc −Kp2ec (4.6)

where Kv2, Kp2 are positive gain factors. Note that in the PD approach, the
input force τm at time of k is a function of ėkc and e

k
c . For the reason ėc is not only

affected by the compensation plant’s regulation as illustrated above, the simple
PD control law above can hardly be a good approach, since the regulation of the
compensation plant by Equation (4.6) would be greatly affected by the dynamics
of the main plant, such as the part ėkc − ėkM in Equation (4.5) while performing
high-speed motions.

Combining the feature of the fuzzy logic method and the concrete task of
regulating the compensation plant under the high-speed visual feedback, a con-
ventional fuzzy logic control system that takes ėkc and ekc as the input and τ km as
the output at the time of k can be developed. Comparing with the simple PD
control illustrated above that basically fit for the linear system, the conventional
fuzzy logic approach may be a suitable approach to handle the nonlinear behavior
of high-speed motion compensation system. But the same problem as have illus-
trated for the PD method also exists for the conventional fuzzy logic approach
since it will be dynamically affected by the main plant’s motion.

Back to the Equation (4.5), we could see that at the time of k, ėkc − ėkM is
of known. And in order to have a better control of ėc at the coming time of
k + 1, we can actually take the factor ėkc − ėkM into consideration for generating
the output force τm at the time of k rather than only a function of ėkc and ekc .
In another word, we can realize pre-compensation for the compensation plant by
using ėkc − ėkM to counteract the dynamic impact from the main plant. On base
of the conventional fuzzy logic method, the pre-compensation fuzzy logic control
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(PFLC) approach is proposed. The block diagram of the proposed PFLC is shown
in Figure 4.2. Comparing with conventional fuzzy logic control, the innovation
point of the proposed method is that it also takes into consideration of the main
plant’s motion in a cascade fuzzy logic model. Through the feedback information
of the main plant’s motion, nonlinear dynamic effect on the compensation plant
can be compensated simultaneously while the compensation plant is regulated
to the target position. The proposed PFLC method is a direct regulator to the
plant rather than a gain tuner that has to be combined with some other control
laws as in [77, 78], thus it is much more easier for implementation.

The PFLC includes two cascade fuzzy inference systems (FIS), one is for pre-
compensation (referred as FIS 1 hereafter) and the other is for error regulation
(referred as FIS 2). The FIS 1 is actually to combine the velocity information of
the main plant and compensation plant through high-speed visual feedback. The
output of FIS 1 then be taken as one input to the FIS 2 to generate the output
force for driving.

Main plantExisting
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xm

xM

High-speed camera
ξc

ξM

ξd

Offset
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0

ec

eM

|ec| < |ξd - ξp|Fuzzy logic
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Figure 4.2: Block diagram of the proposed pre-compensation fuzzy logic control
(PFLC) method.

4.3.1.2 Implementation of PFLC

The implementation of a fuzzy logic control system basically includes the steps
of fuzzification, rule evaluation and defuzzification. For both FIS 1 and FIS 2,
the universe of discourse for each input is partitioned into seven fuzzy sets as NL
(‘negative large’), NM (‘negative medium’), NS (‘negative small’), ZE (‘zero’),
PS (‘positive small’), PM (‘positive medium’) and PL (‘positive large’). Both
FIS 1 and FIS 2 has two input variables and one output variable. For FIS 1,
the two input variables are ėM and ėc, representing for the image error’s velocity
information relating to the main plant and the compensation plant respectively,
the output is referred as ėcom . For FIS 2, the input variables are the image error

57



4. 1D positioning: dynamic super picking

ec and the output of FIS 1. The fuzzification is to map each crisp input over all
the qualifying membership functions required by the fuzzy rules. In order for the
easy implementation, the simplest triangular membership function is adopted for
the input ėM , ėc and ec as shown in Figure 4.3. The universe of discourse for each
input variable has been roughly calibrated.

After the step of fuzzification, the fuzzy rules are designed for FIS 1 and FIS 2.
Under the ‘zedeh AND’ fuzzy combination operator, the designed fuzzy associate
memory matrix (FAMM) for FIS 1 and FIS 2 are shown in Table 4.2 and Table
4.3 respectively. Each element of the FAMM refers to one If-Then rule statement.
For instance, for the element FAMM-1(1,1): NL, it means that:

‘If ėM is NL AND ėc is NL Then output is NL’
As for the output variables in FIS 1 and FIS 2, the universe of discourse

is partitioned into seven fuzzy sets with each attribute being described by the
singleton membership functions as shown in Figure 4.4. The seven fuzzy sets
are same as the input fuzzy sets. Thus the developed fuzzy system falls into the
so-called Sugeno-type fuzzy inference [76]. Because of the linear dependence of
each rule on the input variables of FIS 1 and FIS 2, it is fairly proper and easy for
implementation to adopt the Sugeno fuzzy inference system here as it smoothly
interpolate the linear gains that would be applied across the inputs space.

The firing strength of the (i,j)-th element in FAMM-1 of FIS 1 is computed
as

μβij
(ėcom) = μi(ėM) · μj(ėc) (4.7)

where μβij
(ėcom) means that the degree of the fuzzy set β(ėcom) fired by μi(ėM)

and μj(ėc). β is among the output fuzzy sets {NL, NM, NS, ZE, PS, PM, PL}.
Evaluation of all the rules leads to

μβ(ėcom) = sqrt(Σμ2
βij
) (4.8)

The defuzzification strategy adopted is a simplified version of the ‘center of
gravity method’ as

ėcom =
ΣCβ · μβ

Σμβ

(4.9)

where Cβ is the constant value for the fuzzy set β defined by the output member-
ship function. The fuzzification, rule evaluation as well as defuzzification process
for FIS 2 is the same as FIS 1. The surface view of output for FIS 1 and FIS 2
is shown in Figure 4.5.
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Table 4.2: FAMM-1

ėM
ėc NL NM NS ZE PS PM PL

NL NL NL NL NL NM NS ZE
NM NL NL NL NM NS ZE PS
NS NL NL NM NS ZE PS PM
ZE NL NM NS ZE PS PM PL
PS NM NS ZE PS PM PL PL
PM NS ZE PS PM PL PL PL
PL ZE PS PM PL PL PL PL

Table 4.3: FAMM-2

ec
ėc NL NM NS ZE PS PM PL

NL PL PL PL PL PL PM PM
NM PL PL PL PM PM PS PS
NS PL PL PM PS ZE NS NM
ZE PL PM PS ZE NS NM NL
PS PM PS ZE NS NM NL NL
PM NS NS NM NM NL NL NL
PL NM NM NL NL NL NL NL
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Figure 4.3: Membership functions for the input variables.

4.3.1.3 Simulation study

The simulation is done with the Matlab’s fuzzy logic toolbox [79]. In order to
exam the dynamic performance of the dynamic compensation algorithm, both
point-to-point regulation and high-speed vibration compensation have been con-
ducted by using the simple cart model illustrated above. The mass for main
plant and compensation plant is set to be 28 kg and 2 kg respectively. Since we
only implement the horizontal motion, the variance of the image position for the
system along vertical direction is perceived as zero.
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Figure 4.4: Membership functions for the output variables.

Point-to-point regulation

The start position and target position in image is set to be ξs = −200 and ξd = 0
respectively. From the start position, the whole system is controlled to move as
a whole by the main plant’s non-optimal controller, and here suppose it to be
a common PD controller. At the image position of ξp = −5, the compensation
plant is activated to perform the relative motion under the conventional fuzzy
logic control and the proposed PFLC method. As shown in Figure 4.6, the
system shows a longer settling time if there was no compensation motion involved.
Comparing with the conventional fuzzy logic control, the proposed PFLC method
shows the improvement of compressing the overshot and shorting the settling
time.
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Vibration compensation

In order to check the system’s compensation performance under high-speed mo-
tion, we let the target point to follow a sin(·) reciprocating motion as follow:

ξd = 200 + 80sin(2πf
n∑

i=1

Δti) (4.10)

where ξd is the reference image position, f = 8 Hz defines the frequency, and
Δti = 1 ms is the control cycle time. The reason for choosing the frequency f =
8 Hz is that as will be shown later in the point-to-point experimental evaluation,
the main plant of the testbed has the oscillation frequency of about 8 Hz while
performing point-to-point positioning. Thus hereafter, we will choose f = 8 Hz as
the evaluation frequency for vibration compensation. As shown in Figure 4.7, the
system could hardly follow the target point’s trajectory without the compensation
plant’s motion. Both the conventional fuzzy logic method and the proposed PFLC
method realized perfect tracking of the target’s high-speed vibration motion. The
tracking error is shown in Figure 4.8. It clearly shows that the proposed PFLC
method had a smaller tracking error than the traditional fuzzy control, and that
was exactly the result of the pre-compensation from the feedback information of
the main plant’s motion. The applied force to the compensation plant is shown in
Figure 4.9. It is quite interesting to see that the PFLC method actually applied
a smaller force than the conventional fuzzy control method on average during
the tracking process, which also tells the better efficiency of the proposed PFLC
method.

4.3.1.4 Experimental evaluations

In accordance with the analysis for PFLC approach, several assumptions are set
for the experimental system as follows:

• The friction between the main plant and the compensation plant is large
enough, and there will be no relative motion between the main plant and
the compensation plant if the compensation plant is not activated.

• The interaction force from the compensation plant to the main plant is
small enough and is negligible.

• The motion patterns of the main plant and the compensation plant can
both be detected.

It is not difficult to realize the assumptions above. A suitable friction force can be
obtained between the main plant and the compensation plant by assembling these
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two appropriately. By adding some extra weight on the main plant to increase
the inertia, the interaction force from the compensation plant can be taken as
small disturbance and is negligible. As for the third assumption, the eye-to-hand
configured high-speed camera can easily detect the two plants’ motion patterns
by a fixed marker (here two LEDs were adopted) on each of them.

Point-to-point regulation

The point-to-point regulation for the main plant was conducted to check the com-
pensation performance in terms of transient behavior. Firstly the whole system
was regulated towards the target position in images by the main plant’s rough PD
controller from the start position ξs = −200 in images. The compensation plant’s
motion was triggered once the regulation point reached ξp = 0. During the exper-
iment, for sake of comparison, we simplified the regulation by letting ξd = ξd = 0.
Thus once the compensation plant was triggered at the time t0 = 2.15 s when
it reached ξp, both the main plant and the compensation plant were regulated
to stay at ξp. The results for three methods applied to the compensation plant
are shown in Figure 4.10. It can be seen that the main plant of the testbed
exhibited a 8 Hz oscillation before converged to the target position. The results
show that comparing with PD control and conventional fuzzy logic control, the
proposed PFLC method compressed the image error during the whole regulation
process. For the 10% error band, the settling time was reduced gradually from
ts4 to ts3, ts2 and ts1, representing the point-to-point regulation without compen-
sation, compensation under PD control, compensation under conventional fuzzy
control and the proposed PFLC method respectively. The PFLC method had the
smallest settling time for the same point-to-point regulation.

Vibration compensation

The vibration compensation was conducted to confirm the tracking capability for
the compensation plant under different control methods. In another words, we
want to check that how well the regulation point could keep aligned with the
target point for different control methods while it always dynamically affected by
the reciprocating motion of the main plant. Similarly to the simulation settings,
we let the main plant to follow a sin(·) reciprocating motion as

ξd = 210 + 40sin(2πf
n∑

i=1

Δti) (4.11)

and let the frequency f = 8 Hz, where Δti = 1 ms is the control cycle time.
Three methods including the simple constant gain PD control, the conventional
fuzzy logic control and the proposed PFLC method were adopted to conduct the
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comparison. Note that for the PD method, the gain coefficients have been tuned.
For both the conventional fuzzy logic method and the proposed PFLC, there were
fewer works concerning parameter tuning, but we have tried several groups of the
membership functions, especially for the output membership functions of FIS 1
and FIS 2.

As shown in Figure 4.11, the proposed PFLC method realized perfect tracking
of the target’s high-speed vibration motion, while the conventional fuzzy logic
control had a less good performance and the PD method was the worst. The
tracking error is shown in Figure 4.12. It clearly shows that the proposed PFLC
method had a smaller tracking error than the other two methods. In another
words, the regulation point could keep well aligned with the target point if we
take into consideration of the reciprocating motion of the main plant that have
been dynamically affecting the regulation process. Figure 4.13 shows the output
of the FIS 1 that combined the error changing information between the regulation
point and the target point, as well as the velocity information of the main plant.
It can be seen that during the ‘Active adjusting phase’, the compensation plant’s
motion ėc had a major effect on the output of the FIS 1, while during the ‘Stable
tracking phase’, the main plant’s motion ėM held the major effect on the output
ėcom. This implies the functioning of the pre-compensation.

The applied force to the compensation plant is shown in Figure 4.14. It also
tells the same phenomenon that the PFLC method actually applied a smaller
force than the conventional fuzzy control method on average during the tracking
process, which also can be perceived as the ‘passive advantage’ thanks to the pre-
compensation from the main plant’s motion. As for the PD method, it always
tried to drive the compensation plant with the maximum force in order to realize
the high-speed tracking, yet a time lag was constantly existed as shown in Figure
4.14 and Figure 4.11. The video for vibration compensation with the proposed
PFLC method can be found on the website [80].

We also tried to realize the vibration compensation for several different motion
speed of the main plant. The results for a frequency of 4 Hz, 6 Hz and 8 Hz are
shown in Figure 4.15 and for a random frequency is shown in Figure 4.16, which
tells the image error of different control methods. For the PD method, the image
error basically becomes larger along with a higher speed motion of the main plant.
The same trend can also be seen for the conventional fuzzy logic method except
that the changing rate was small. For the proposed PFLC method, we could see
that the image error almost kept the same range for different motion speed of the
main plant, all in a quite small quantity.
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4.3.2 Cooperation algorithm for two plants

The main plant is scheduled to perform the coarse positioning, and the accurate
positioning is realized by the compensation actuator. The motion planning for
these two plants with good efficiency is very important, under the constraint that
the compensation actuator has a small work range (stroke). A simple cooperation
algorithm based on gain adjusting is proposed as shown in Figure 4.17. The
methodology is that through adjusting the gain coefficient KcM for the main
plant and Kcm for the compensation plant, the two plants realize the cooperative
motion. Since the main plant is controlled based on simple PD with the output
τM , and the compensation actuator is controlled by the PFLC method with the
output τm, the inputs for two plants are τ ′M and τ ′m respectively, with

τ ′M = KcM · τM (4.12)

τ ′m = Kcm · τm (4.13)

As shown in Figure 4.17, KcM and Kcm is decided by trapezoid membership
functions. If the target is out of the work range of the compensation plant, the
compensation plant will be inactive by setting Kcm to be zero while the main
plant will be controlled to move to the center position (“C”) by PD method with
KcM = 1. If the target goes into the work range of the compensation plant,
the motion of the main plant will be suppressed until to stop motion within the
“Dead zone” which is between “D1” and “D2”, whereas the compensation plant
will be active with the PFLC control method.

It should be pointed out that in order to judge the relative position between
the target and the two plants, the rough calibrations for the positions of “L,
D1, C, D2, R” in terms of offset from the separation point in images should be
conducted.

In order to show the better efficiency of the proposed dynamic compensa-
tion concept over traditional method, it is reasonable to compare the tracking
performance of a random vibration target by main plant (with PD control) and
by the proposed compensation approach with two plants (with PFLC algorithm
and cooperation algorithm). We checked the performance of tracking under the
uncertain dynamics property of the main plant by adding an extra load. The
result for tracking a target with random vibration motion from 1 Hz to 4 Hz
is shown in Figure 4.18. It is obvious that the tracking error has been greatly
dependent on the dynamics property under the main plant’s tracking, and that’s
the reason for tunning the gain coefficients for the PD controller under different
dynamics property of the main plant. However, the tracking error under the two
plants approach has been greatly reduced and turns out to be less effected by the
uncertain dynamics property of the main plant.
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Figure 4.5: Surface view of the output for fuzzy inference. (a): FIS 1; (b): FIS 2.
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Figure 4.6: Simulation result of image error for point-to-point compensation.
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Figure 4.18: Image error for random vibration compensation with extra load.
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4.4 Experimental evaluations for dynamic super

picking

4.4.1 Experimental settings

Three types of experimental evaluations were conducted to check the performance
of the dynamic super picking. Firstly, the main plant was controlled to vibrated
with 5 Hz and 8 Hz, with the amplitude smaller than the stroke of the compen-
sation plant, and the target was dropped vertically from a random position that
was within the work range of the compensation plant. This was to evaluate the
dynamic compensation performance of the compensation plant under the pro-
posed PFLC method. Secondly, the target was dropped vertically from a random
position that was out of the compensation plant’s work range, and this was to
evaluate the picking performance based on the cooperation algorithm and PFLC
algorithm. Finally, as a more general case, the target was flying with a initial
speed both in horizontal and vertical direction. In order to keep the target flying
within the work range of the main plant, a blocking mechanism with the curve
shape was configured. Since the initial speed and flying direction was randomly
configured, the target would form a random trajectory during flying.

4.4.2 Experimental results

The target can be successfully picked by the compensation plant in most of the
time although the main robot was exhibiting high-speed vibrations. Figure 4.19
shows the dynamic picking of two targets (they have been dropped from random
positions) with the main plant vibrated under the frequency of 8 Hz.

The target dropped from a random position can be mostly picked by the
system, and Figure 4.20 shows the result for one trial. There was only about
190 ms for the system to realize the picking, and thanks to the cooperation
motion between the main plant (referred to the curve “u of separation point”)
and the compensation plant (referred to the curve “u of regulation point”), the
target can be caught in time with sufficient accuracy. After evaluations of the
free-fall target from different height and different horizontal position (within the
camera’s field of view), the target can be picked by the system with a success
rate of over 90%. Figure 4.24 shows the continuous images of picking the free-fall
target from a random height and position.

As shown in Figure 4.22, in order to obtain large field of view by one camera,
the camera has been configured in such a way that an angle (about 50◦) was
formed between its optical axis and the picking net’s motion trajectory. A LED
marker was adopted to represent the position for the picking net with a small
offset from the net center, and the offset would be slightly different in images as
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Figure 4.19: Image features for dynamic super picking of two targets (main plant
vibrates with 8 Hz).

it was projected from different horizontal positions. Since it is another issue not
concerning with the proposed concept for realizing the picking task, we have only
conducted a rough calibration for compensating this offset, and obviously this
has resulted to the few failure cases of the picking task. A much more accurate
calibration or adopting several cameras to enlarge the field of view can solve this
problem and further improve the success rate.

As for the evaluations on a flying target, the result for one trial is shown in
Figure 4.21. The target was flying with a initial velocity of about 4.3 m/s in
horizontal direction, and there was only about 55 ms for the system to realize
the picking. After several trials, the success rate for picking a flying object was
around 50%, and the failures have been partially resulted from the same reason
as above, as well as the reason that the clearance for picking the flying target has
become smaller (shown in Figure 4.23). Figure 4.25 shows the continuous images
of picking the flying target.
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Figure 4.20: Image features for dynamic super picking of a free-fall target.
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Figure 4.21: Image features for dynamic super picking of a flying target.
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Figure 4.22: Configuration of the camera and the resulting different offset between
marker (LED) and net center.

Figure 4.23: Clearance for picking the flying target becomes smaller.
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Figure 4.24: Snapshots for dynamic super picking of a free-fall target.
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Figure 4.25: Snapshots for dynamic super picking of a flying target.
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4.5 Summary of this chapter

In this chapter, the 1D dynamic super picking task realized by the proposed
dynamic compensation approach is addressed. The catching or picking a flying
target with small clearance is not easy for that not only because of the space
accuracy, but also due to the time limitation. With the exploiting of the 1-
DOF DCRS, a pre-compensation fuzzy logic control (PFLC) approach has been
proposed to realize the better compensation performance by the compensation
actuator. With a simple gain adjusting algorithm for two plants, the cooperation
between two plants is effectively realized. Through simulation and experimental
evaluations, the effectiveness of the PFLC as well as the cooperation algorithm
has been verified. It is worthwhile to point out that comparing with the related
works based on 3D space information, the proposed approach in this work is all
image-based regulation and makes full use of the relative coordinate information
between target, compensation plant and main plant. Thus the calibration works
for the camera has been greatly reduced, and the performance is much more
stable as it is not so dependent on the calibration as the traditional approaches.

Again, if we look back at the Figure 1.5, from the performance of the 1D
dynamic super picking task, it is obvious that an excellent score of robotic ma-
nipulation has been reached thanks to the dynamic compensation approach.

Here only 1D positioning task has been addressed, in the next chapter we
would like to extend the evaluation of the dynamic compensation concept into
3D position as well as attitude regulation. The classical peg-and-hole alignment
with large pose uncertainty is a good task for this kind of evaluation.
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Chapter 5

3D position and attitude
regulation: peg-and-hole
alignment

In this chapter, another concrete evaluation task: 3D peg-and-hole alignment
with large position and attitude uncertainty will be addressed. In accordance
with the dynamic compensation concept, a high-speed active peg will act as the
compensation plant to cooperate with the robot arm, which suffers from the
dynamics issue under high-speed manipulations. Both the monocular approach
and the binocular approach for fast alignment problem will be analyzed.

5.1 Background and problem formulation

Peg-and-hole alignment is a well-addressed topic for autonomous assembly con-
trol. There are two issues for realizing a general peg-and-hole alignment, the posi-
tion alignment and the attitude alignment. Consider a cylindrical peg and a cylin-
drical hole in the work space T = SE(3), let ϕ and ψ represent the heading angle
and the pitch angle as shown in Fig.5.1, and if we set the position and attitude
of the peg and the hole to be P (x, y, z),H(x, y, z) and P (ϕ, ψ),H(ϕ, ψ) respec-
tively, the alignment problem is the minimization: min{| P (x, y, z)−H(x, y, z) |
+ | P (ϕ, ψ)−H(ϕ, ψ) |}. As can be seen, the coupling between the position
alignment and attitude alignment exists as a challenging issue for the fast con-
vergence of the alignment process.

Traditionally, peg-and-hole alignment is usually realized by using mechanical
compliance (force control) after realizing contact regulation (position control).
Force control can be done by passive approaches such as the Remote Center of
Compliance (RCC) [81], or active approaches with force/torque sensors [82].

81



5. 3D position and attitude regulation: peg-and-hole alignment

Hole
Peg

Pitch angle ψ

Heading angle ϕ

H(x,y,z)

P(x,y,z)

x
y

z

Figure 5.1: Peg-and-hole alignment problem with position and attitude uncer-
tainty

Peg-and-hole alignment realized by visual feedback control also holds many
advantages, such as flexibility, compensation for uncertainties of system and
workspace, and good tolerance to calibration error. Lately several works ad-
dressed the problem of micro peg-and-hole alignment (e.g., [83, 84]). Since micro-
assembly requires high accuracy within a small workspace, a globally fixed con-
figuration of cameras is favorable. But in macro assembly with big workspaces
and more dynamic uncertainties, the eye-in-hand configuration holds the advan-
tages of higher flexibility, higher accuracy and occlusion avoidance. Yoshimi et al.
[85] proposed an eye-in-hand approach for peg-and-hole alignment. They showed
that rotational invariance could be incorporated into the strategy of peg-and-hole
alignment, and an image Jacobian estimation method enables the system to be
free of calibration. Their approach holds the drawback that the alignment process
was complicated and time consuming. Furthermore, they mainly focused on the
position alignment; the attitude alignment between peg and hole was not studied.

Morel et al. [86] proposed a strategy for peg-in-hole manipulation with the
combination of visual tracking and force compliance control. Their control scheme
involves a position based impedance controller with force feedback, and a visual
feedback loop to provide the reference trajectory to the impedance controller.
The impedance controller and the vision-based controller can be designed sepa-
rately, and the latter alone can represent the classical image-based visual servoing
method for the peg-and-hole alignment problem. However, as the experimental
results shown in [86], the modeling error and calibration error would affect the
alignment results greatly, and thus the force feedback was needed to compensate
for the forces undesirably generated by the 2D visual servoing.

The macro peg-and-hole alignment with position and attitude uncertainty is
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a challenging problem not only due to the coupling issue, but also due to the
dynamic defects of the robot arm while realizing alignment, especially under
high-speed manipulation. In order to tackle this problem, rather than the high
accuracy issue as most traditional works have addressed, the issue of convergence
speed would be focused in this study. Particularly, the alignment problem to be
addressed in this study would only refer to the position control, and we will only
adopt the vision sensor to realize it since it won’t involve the contact regulation.

As shown in Fig.2.2, the concept of our approach is to compensate for the
robot arm’s dynamics (or the dynamical effects for interacting with the target)
through two aspects. The first aspect is to add a lightweight high-speed actuator
to the end of the robot arm. The second aspect is using high-speed cameras to
provide with task-space feedback information of the relative pose between robot
and target. This concept is useful in cases where the dynamic model of the robot
arm is not available while high-speed manipulation is expected.

In the following contents, we try to solve the alignment problem with two
approaches: the monocular approach [87], and the binocular approach [45, 88].

5.2 Monocular approach

The purpose of this study is to realize macro peg-and-hole alignment with position
and attitude uncertainty through one camera active visual servoing approach. We
wish to realize the alignment with easy implementation, less camera calibration
and fast convergence. To realize it, we propose a motion separation strategy with
adoption of a high-speed active peg as well as a high-speed eye-in-hand camera.

5.2.1 System design

We take the strategy of motion separation and introduce a high-speed 3-DOF
active peg. The active peg is controlled to cooperate with the robot arm with
the following stipulations:

• The position alignment is realized by the robot arm’s image-based set point
regulation.

• The accommodating for the attitude in heading direction ϕ is realized by
the robot arm’s image-based regulation.

• The active peg is to realize an image-based high-speed attitude adjustment
(accommodating for the pitch angle ψ) but with less position change in
images.
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As noted above, the robot arm’s motion is separated into set point position
regulation (by robot arm’s joint 1 - joint 3 as shown in Fig. 5.2) and attitude reg-
ulation for the heading angle (by robot arm’s joint 4). The robot arm’s set point
control is realized by a simplified image-based visual servoing (IBVS) approach,
which is depth-independent, easy to calculate and suitable for high-speed regu-
lation. For the control of robot arm’s joint 4, a new image feature is introduced
for regulation.

In accordance with our concept shown in Fig.2.2, we designed the system for
peg-and-hole alignment study as shown in Fig.5.2. The system consists of a 4-
DOF high-speed robot arm, an active peg and one high-speed cameras. One high-
speed Eosens vision system is configured as eye-in-hand with an image resolution
of 720×720 pixels and a feedback rate of 1000 Hz. An angle of about 20◦ is
configured between the heading direction of the peg and the eye-in-hand camera
on the horizontal plane. The high-speed camera is configured to observe both
the hole and the peg, thus the system falls into the endpoint closed-loop (ECL)
category [8]. The lightweight active peg is realized by a high-speed 3-DOF (two
rotational and one prismatic joints) finger with the peg attached to it, and with
a weight of about 0.17 kg. The two rotational joints are for attitude alignment,
and the prismatic joint is for the insertion after alignment.

5.2.2 Motion planning

For the high-speed vision, since the interval time between two image frames is
very small, the image features in these two images differ little for a given target.
This is useful for image processing and for feedback control.

5.2.2.1 Set point regulation for the robot arm

The set point regulation of the robot arm is realized with the simplified IBVS
approach as have described in Chapter 3 (please refer to section 3.1). Note that,
in doing position alignment, the depth error should be estimated. We estimate
depth error by taking advantage of the scale invariant property of features in
images. That is, after the peg and hole alignment finishes, the ratio between
peg’s length and hole’s length in images is almost the same as the physical one.
Let the length for peg and hole in images to be ξlp, ξ

l
h respectively. With our

active peg (which performs attitude alignment very sensitively) we estimate the
depth error errdep (with the reference to be ξdref ) as:

errdep = ξdt − ξdref = km · (ξ
l
h

ξlp
− ratio) (5.1)
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Figure 5.2: System configuration

Where km is the normalizing factor and ratio is the physical ratio between hole’s
length and peg’s length which are measured ahead of time.

It should be pointed out that in the simplified IBVS approach described above,
we only use a coarse kinematic model of the eye-in-hand camera, whereas the
depth estimation method of an eye-in-hand camera through motions needs an
accurate kinematic model.

5.2.2.2 Regulation of attitude in the heading direction

The robot arm’s joint 4 (as shown in Fig. 5.2) is adopted to fit for the arbitrary
heading angle of the hole. Let’s refer to this joint as the attitude accommodating
joint.

In order to regulate the attitude accommodating joint, we introduce a new
image feature ξhead ∈ Z

1, which is defined as the ratio between hole’s length
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Figure 5.3: Tests of ξhead under different configurations of the hole

ξhl ∈ Z
1 and its attitude value ξhatt ∈ Z

1 in images:

ξhead = ξhl /ξ
h
att (5.2)

where ξhl is defined by the Manhattan distance between the hole’s two endpoints
in images, and ξhatt is defined as

ξhatt = δv/δu (5.3)

with δv, δu the image coordinate differences between the hole’s two endpoints in
ξ.

Let us check the new image feature ξhead under different pose of the hole.
With the condition that the pitch angle as well as 3D position alignment between
peg and hole has been calibrated, we rotate the attitude accommodating joint.
As Fig. 5.3 shows, with the attitude accommodating joint’s rotation, the hole’s
attitude changes in images and a different pose of the hole will need a different
rotation angle for alignment. When the attitude for peg and hole reaches the same
value, the corresponding value of the new image feature is recorded. We could
see that in three situations, the value of ξhead is 74, 73 and 73 (with normalized
unit). As a matter of fact, after we conducted more tests with different heading
directions of the hole, we still found that ξhead varied around 73 with small errors.
Although here we will omit the strict deviation of this approximately invariant
parameter, we adopt ξhead as the image feature for the regulation of the attitude
accommodating joint to deal with different heading direction of the hole. However
calibration for ξhead is needed.

5.2.2.3 visual servoing for active peg

The peg’s attitude alignment is referred to the pitch angle ψ as shown in Fig. 5.1,
and the heading angle ϕ of the hole is accommodated by the arm’s joint 4. Due to
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the configuration of the camera (Fig. 5.2), as the two rotational joints of the active
peg rotate, the horizontal movement of the peg’s endpoint would be scaled by
sin(20◦) in images. This arrangement is in accordance with the alignment strategy
of controlling the peg to adjust the attitude in the pitch direction rapidly and
with less position change in images.

The position of peg’s endpoint and the peg’s attitude on image plane are
defined as ξ1 = (ξx, ξy)

T , ξ2 = ξatt, and the Cartesian position of the peg’s
endpoint is defined as x = (x, y, z)T , and let θ be the joint angles. Using the
perspective projection function f(·), we have ξ1 = f1(x) and ξ2 = f2(θ). With
the kinematics of the finger structure, we write an expression for the tip of peg
as x = g(θ).

By differentiating,

ξ̇1 =
∂f1
∂x

∂g

∂θ
θ̇ ≡ Jθ̇ (5.4)

Here J is the Jacobian matrix. Then the visual servoing control strategy is to
solve the problem of min{| ξatt − ξrefatt | + | ξy |} for the given reference attitude

ξrefatt . We solve this problem by applying a gradient step approaching method with
inverse kinematics. That is, for a step motion δξx, the change of the attitude in
images with the condition of δξy equals zero would be:

ξ̇2 =
∂f2
∂θ

J−1[δξx, 0]
T (5.5)

Since we adopt a recursive step approaching method, we needn’t to know
the actual model of the perspective projection f1 or f2, and instead of the actual
Jacobian matrix, we use the kinematic Jacobian Jk for calculation, then the input
would be J−1

k [δξx, 0]
T for each adjusting step. After adjusting, we compare with

the hole’s attitude in images to judge whether the attitude adjustment process
has converged or not with the set accuracy.

The attitude adjustment procedure above has been realized with an open loop.
Taking into account of the dynamics of the mechanism system, we take the error
Δξy induced by the last step into the next adjustment to form a closed loop. The
regulation would be:

ξ̇2 
 J−1
k [α · δξx,−(1− α) ·Δξy]T (5.6)

where α is a gain factor which can vary between 0 and 1. The algorithm for
visual servoing control of the active peg is summarized in Algorithm1.
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Algorithm 1: Visual Servoing For Active Peg

StepSize← δξx;
ξatt ← getPegImageAngle();
Initial ←| ξatt − ξrefatt |;
θ ← getJointAngle() ;
θ ← θ + J−1

k · [α · StepSize, 0]T ;
ξatt ← getPegImageAngle();
if | ξatt − ξrefatt |> Initial then

StepSize ← −δξx;
end

while | ξatt − ξrefatt |> ACCURACY do
Δξy ← getPegImagePosition();
θ ← getJointAngle() ; θ ← θ + J−1

k · [α · StepSize,−(1− α) ·Δξy]T ;
ξatt ← getPegImageAngle();

end

5.2.2.4 peg-and-hole alignment

A two-step alignment algorithm

On basis of the motion separation strategy, we use a two-step visual servoing
procedure for the alignment in order to realize a fast convergence.

As shown in Fig. 5.4, the first step is to control the arm to center the hole
in images. Meanwhile, the peg adjusts the attitude to be aligned with the hole’s
pitch angle for the initial phase. We start with peg’s endpoint (in a ready position)
in the upper side of images, which enables the next step of position and attitude
alignment to be done within a relatively small range.

Also, since the peg’s regulation for the attitude alignment will change the peg’s
length in images, we will limit the peg’s adjustment during the depth regulation
to avoid unnecessary oscillations. We adopt a threshold value Hd for the depth
error errdep. After the peg and the hole have realized attitude alignment for the
initial phase, the peg’s regulation will be disabled until errdep becomes smaller
than Hd, and this will also trigger the alignment process to enter into the next
step.

In the next step, the hole’s position is regulated to reach the peg’s endpoint.
Note that during this step, the attitude regulation by the active peg and the reg-
ulation of the 3D position due to the robot arm will operate simultaneously, and
the active peg is more sensitive than the arm. As for the 3D position regulation,
in order to avoid the overlaid between peg’s marker and hole’s marker in images
before converge, we take a balance between depth regulation and image plane
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Figure 5.4: The two-step peg-and-hole alignment algorithm

regulation with the following constraint:

errposi = ξ − (ξ1 + ke· | errdep |) (5.7)

where, errposi is the position error, ξ is the hole’s image position, ξ1 is the peg’s
image position, and ke is a gain factor (ranging from 0 to 1) to control the static
error. With this constraint, the depth regulation and image plane regulation
realize convergence at the same time.

Convergence criterion

In summary, we use four image features to judge whether the alignment between
peg and hole can converge. These are: the image position error errposi, the depth
error errdep, the attitude error of the pitch angle erratt, and the attitude error of
the heading angle errhead regulated by the attitude accommodating joint. All of
these image feature errors are regulated with PD control. When all of these four
image feature errors enter the convergence range, the active peg’s insertion into
the hole will be triggered.
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5.2.3 Experimental evaluations

The active peg’s outside diameter was 10 mm, and the hole’s inner diameter was
14 mm. We set the stroke of the insertion for the peg into the hole to be 20 mm.
For both peg and hole, two markers made of light-reflecting material were fixed on
the end part, and the image processing algorithm calculated the moment feature
for each marker to generate peg’s and hole’s image position, tilt angle, and the
length information in image coordinates. We set the length for hole and peg to
be 40 mm and 24 mm respectively; the ratio of the two was about 1.67. We fixed
the hole’s pitch angle ψ without knowing its physical value and then put the hole
to be an arbitrary heading angle and position within the robot arm’s workspace.

As Fig. 5.4 shows, the converge time for alignment is defined from the ready
pose to alignment realized. The preparation time to reach the ready pose from
the initial pose was set to be 5 s and the insertion time was 1 s.

Fig. 5.6 shows the process of the peg-and-hole alignment for one configuration
of the hole with two different point of view. The position and attitude alignment
was realized at 1.75 s (excluding the preparation time), and the insertion realized
at 1.81 s.

As shown in Fig. 5.5(a), the peg’s position realized alignment with the hole’s
position in image coordinates, and as Fig. 5.5(d) shows, the depth control was
also converged to the reference value that we have set to be the ratio between
the hole’s length and the peg’s length. Fig. 5.5(b) shows the attitude regulation
for the pitch angle realized convergence. Fig. 5.5(c) shows the regulation of the
heading attitude, it also reached the reference value.

Fig. 5.5(e) shows the trajectory of both peg and hole during the alignment
process in images. Both in Fig. 5.5(a) and Fig. 5.5(e) show that with the ac-
tive peg’s regulation, the peg’s attitude could realize alignment with its position
changing within a small range, which contributed to the position alignment’s
convergence.

In the experiment, for the unknown configured hole, the success rate of the
alignment (insertion of the peg into the hole successfully conducted) was about
65%, with an average time within 2 s.

5.2.4 Discussion

During the experiment, we found that the depth regulation for the robot arm
was a key aspect for resulting. The depth information represented by the ratio
between hole’s length and peg’s length in images is relatively vulnerable to the
noise, as could be seen in Fig. 5.5(d), and most of the failed cases were due to
the misalignment of robot arm’s set point control in the depth regulation. As a
matter of fact, the simple ratio we have adopted would be an invariant under the
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affine transformation, whereas in our case, the camera model could hardly fit for
the affine model. Since during the experiment, we didn’t change the pitch angle
of the hole too much, we still can make use of it to get a relatively stable result.
In order to improve the success rate, we can take the method of modifying the
ratio value through the off-line calibration, or combine with another sensor to
make the accurate inspection of the depth error.

From the experiment, we also found that during the alignment process, the
regulation step1 always took a longer time than step2. For example, as for the
alignment in Fig. 5.6, the first step was finished at about 1.25 s, and step2 only
consumed 0.5 s. We think this may be partially attributed to the set point regu-
lation algorithm for the robot arm, since it did not follow an optimal trajectory.
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Figure 5.5: Image features of alignment process
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5.3 Binocular approach

Compared to the monocular approach described above, we propose a much more
compact binocular approach by exploiting a visual compliant motion strategy for
the fast peg-and-hole alignment problem (with large initial errors). Of course,
we follow the dynamic compensation concept by adopting of a high-speed 3-DOF
active peg cooperating with the robot arm, which is the same as the monocular
approach.

Inspired by the so-called visual compliance control [89], this approach fo-
cus on the realization of fast macro peg-and-hole alignment with position and
attitude uncertainty through visual feedback only, without the position compen-
sation from force-feedback control, and of course without the computation of the
insertion trajectory in advance. Castano et al. [89] proposed the task-level visual
compliance control with a hybrid vision/position control structure. Visual com-
pliance is analogous to physical compliance, as the robot’s end-effector maintains
contact with a visual constraint surface, and visual compliant motion moves the
end-effector along a projection ray that passes through the focal center of the
camera.

5.3.1 System design

The designed system for binocular approach is almost the same as the monocular
as shown in Fig.5.2, except that one more eye-to-hand high-speed camera is con-
figured to provide more information between the peg and the hole. For the better
clarify, hereafter we will refer to the eye-in-hand camera’s frame as Σci with its
image plane ξ, and the eye-to-hand camera’s frame as Σct with the image plane
ζ.

5.3.2 Alignment methodology

Consider a static hole with position and attitude uncertainty, the robot should
guide the peg to realize the alignment with the hole’s position and attitude. As
for the conventional methods of peg-and-hole alignment, since the peg is a fixed
tool on the robot arm, it’s not easy to realize a fast and accurate alignment.
Not only do the dynamics of the robot arm cause unwanted effects, but also, the
adjustment of the position and attitude are coupled, which is not good for fast
convergence.

In this study, we present a visual compliance strategy with adoption of a 3-
DOF high-speed active peg to deal with this problem, and we intend to realize a
fast peg-and-hole alignment manipulation. There are three visual constraints to
effect the corresponding visual compliant motions:
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• Co-point constraint in images (eye-in/to-hand camera) for the peg and the
hole. This visual compliant motion is effected on the robot arm. Hereafter
we define the word “Co-point” as: two points located on the same image
plane with a sufficiently small distance. As shown in Fig.5.7(a), the hole’s
endpoint H(x, y, z) and the peg’s endpoint P (x, y, z) should be controlled
to be aligned on ξend ∈ Z

2 in image plane ξ. Since during the first stage of
the alignment, the peg will be motionless, and this constraint is actually to
effect the visual compliant motion for the robot arm along the projection
ray formed by H(x, y, z) and ξend.

• Line-parallel constraint in images (eye-in-hand camera) for the peg and the
hole, which corresponds to the plane parallel constraint in Cartesian space.
This visual compliant motion is effected on the robot arm. As shown in
Fig.5.7(a), the active peg moves within the plane of σ. The center line of
the hole in Cartesian and in image form the plane of π, and the center line
of the peg in Cartesian and in image form the plane of μ. In order to keep
μ and π to be parallel, the center line of the hole and the peg should be
parallel in the image plane. This constraint actually realizes the alignment
in the direction of the heading angle ϕ as illustrated in Fig.5.1. The robot
arm’s joint4 (Fig.5.2) will be controlled by this visual constraint to effect
the visual compliant rotational motion.

• Co-point constraint in images (eye-to-hand camera) for the peg and the
hole. This visual compliant motion is effected on the active peg. As shown
in Fig.5.7(b), once the hole’s endpoint H(x, y, z) and the peg’s endpoint
P (x, y, z) reach the same position ζend ∈ Z

2 in the eye-to-hand camera’s
image plane ζ, the active peg should be controlled to keep on the position
ζend and looks like “motionless” while the robot arm is still moving under
the other two visual constraints. This is to accommodate for the hole’s
pitch angle ψ (Fig.5.1).

5.3.3 Visual compliant motion control

For clarifying how the visual compliant motion control is realized for the robot
arm and the active peg, we will look into them one by one in the order illustrated
above. Finally, the alignment algorithm for combining all of these motions will
be addressed.

Co-point constraint (eye-in/to-hand camera)

In [89], a hybrid Jacobian matrix Jvc is adopted, with the first two rows cor-
responding to vision-based control, and the third row corresponding to position
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Figure 5.7: Visual constraints for effecting visual compliant motion

based control. In this study, we adopt vision-based control only.
Let ṙe represent the velocity screw of the end-effector relative to the end-

effector’s frame Σe, and ṙci be the velocity screw of the eye-in-hand camera re-
spected to the camera’s frame Σci.

eW ci is the transformation matrix between
ṙe and ṙci. From the differential motion relationship between two frames [90], we
have

ṙe =
eW ciṙci (5.8)

with

eW ci =

[
eRc S(etc)

eRc

0 eRc

]
(5.9)

where eRc,
etc are the rotational matrix and translational vector between the end-

effector frame and the camera frame Σci, and suppose they have been calibrated
ahead. S(etc) represents the skew-symmetric matrix associated with etc.

Let ξ = (u, v)T be a point in image plane ξ, projected from the point [X, Y, Z]T

in the frame Σci. Let ṙci = [Tx, Ty, Tz, ωx, ωy, ωz]
T , then we have

ξ̇ = Jimgṙci (5.10)

where Jimg is the classical image Jacobian matrix [51],

Jimg =

[
f
Z

0 − u
Z

−uv
f

u2+f2

f
−v

0 f
Z
− v

Z
−v2+f2

f
uv
f

u

]
(5.11)
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where f is the camera’s focal length, and Z is depth information.
Follow the method of the partitioned approach for image-based visual servoing

approach [51], we change Eqn.(5.10) to be

ξ̇ = JtzTz + Jref ṙref (5.12)

where ṙref = [Tx, Ty, ωx, ωy, ωz]
T , Jtz is the third column of Jimg, and Jref is

formed by the rest five columns of Jimg. Then we have

ṙref = J+
ref (ξ̇ − JtzTz) (5.13)

where, J+
ref represents the pseudo-inverse for Jref . The camera’s z−axis transla-

tional control is given by

Tz = γ[α(mdis(ζh
end − ζp

end)) + (1− α)(ζhatt − ζpatt)] (5.14)

where γ is a scalar gain factor, ζh
end = (u′h, v

′
h)

T ,∈ Z
2 refers to the hole’s endpoint,

and ζp
end = (u′p, v

′
p)

T ,∈ Z
2 represents the peg’s endpoint, ζpatt ∈ Z

1 is for the peg’s
attitude and ζhatt ∈ Z

1 for the hole’s attitude, α (0 < α < 1) is a scalar normalizing
factor. mdis(·) represents the Manhattan distance calculation defined as

mdis(ζh
end − ζp

end) =| u′h − u′p | + | v′h − v′p | (5.15)

Note that the image features related to Eqn.(5.14) are all from the eye-to-hand
camera’s image plane ζ. Here we only care about the one direction regulation
to avoid the local minimum of Tz, which means α(mdis(ζh

end − ζp
end)) and (1 −

α)(ζhatt − ζpatt) have the same sign. The attitude for the peg ζpatt is defined as

ζpatt = δv′/δu′ (5.16)

with δv′, δu′ the image coordinate differences between the peg’s two endpoints in
image plane ζ. ζhatt is defined by the same method.

With Tz and ṙref we then reconstruct the camera’s motion vector ṙci =
[Tx, Ty, Tz, ωx, ωy, ωz]

T , and with Eqn.(5.8) we can obtain the end-effector’s ve-
locity screw ṙe. After that, with the robot arm’s forward kinematics and its
Jacobian matrix, we can further calculate the corresponding joint angles.

It should be pointed out, in order to construct the image Jacobian Jimg, the
depth Z should be known. Here, we roughly estimate it from the eye-to-hand
camera’s images by

Ẑ = Lp
| ζp

end − ζh
end |

ζpl
+Kcp (5.17)

where Lp is the peg’s length which is known, ζpl ∈ Z
1 is the length of the peg in

ζ, and | ζp
end − ζh

end | represents the distance from the peg to the hole. Kcp is the
compensation part due to the offset from the peg to the eye-in-hand camera.
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Line-parallel constraint (eye-in-hand camera)

Like the monocular approach, the robot arm’s joint4 (as shown in Fig.5.2) is
adopted to fit for an arbitrary heading angle of the hole by visual compliant
motion. In fact, in order to realize line parallel constraint motion considering the
peg’s motion, the easiest way is to configure the eye-in-hand camera in such a way
that the vertical plane passing through the optical axis of the camera is coincide
with the plane σ (Fig.5.7(a)). Thus we simply adjust the hole’s attitude in images
to be vertical to keep the constraint, since the peg’s attitude in images is always
the same whether it moves or not. This actually requires the camera to be set
in the center of the end-effector with strict accuracy relative to the peg’s pose,
whereas it is usually difficult to realize due to limited physical space and assembly
error. In our case, the eye-in-hand camera and the peg are configured with an
angle, and the same new image feature ξhead as described before is adopted to
realize the regulation of joint4 (please refer to the former section 5.2.2.2). During
the experiments, we will see that this new image feature could work very well for
the alignment. The control law for this visual compliant motion is

τhead = −Kp
head(ξhead − ξ∗head)−Kd

headq̇ + g (5.18)

where, Kp
head, K

d
head are positive gain factors, τhead is the input torque for the

attitude accommodating joint, ξ∗head is the calibrated value of ξhead for alignment,
q̇ is the joint velocity, and g is the gravity compensation mainly due to the camera
(the active peg is lightweight). Note that, the value of ξ∗head is mainly affected by
the external parameters of the eye-in-hand camera.

Co-point constraint (eye-to-hand camera)

As have been defined above, the attitude of peg and hole in the eye-to-hand cam-
era’s images are ζpatt, ζ

h
att respectively. These two are mainly reflecting the pitch

angle ψ (Fig.5.1). Suppose the attitude angle of the peg is initially smaller than
the hole’s, under the robot arm’s visual compliant motion, the hole’s endpoint
H(x, y, z) and the peg’s endpoint P (x, y, z) reach the same point ζend = (u′0, v

′
0)

T

in image plane ζ. Since the robot arm is still moving, the peg’s endpoint will gen-
erate a small displacement Δζend = (Δu′,Δv′)T from ζend in images. With the
resolved-rate control, the active peg is controlled to eliminate the displacement,
and as a result, the pitch angle of the peg becomes larger until the regulation
finishes, and the adjusting process acts like the physical compliant motion. The
control law for the active peg is

τ peg = −Kp
pegJ

T (
Lp

ζpl
Δζend)−Kd

pegq̇p + g (5.19)
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where, Kp
peg, K

d
peg are positive-definite coefficient matrices, τ peg are input torques

for the active peg’s two rotational joints, and q̇p is the peg’s joint velocity, Lp/ζ
p
l

acts as a scale factor, g is the gravity compensation, and JT is the transpose
of the active peg’s Jacobian matrix. More details for the task-space PD control
could be found in [91].

It should be noted that this simple approach fits for our high-speed visual
feedback and the high-speed active peg which has big friction forces for the joints,
thus the dynamic effects from the robot arm could be transferred to the endpoint
of the peg, and visual compliant motion can be realized.

5.3.4 Peg-and-hole alignment

The peg-and-hole alignment is realized with the combination of the three visual
compliant motions described above. The algorithm flow is shown in Fig.5.8.

To summarize, we have four convergence criteria from the two cameras for
judging whether the alignment realized or not. They are: errξ

end = ξpend−ξhend, the
error between the peg and the hole’s endpoint in image plane ξ; errξhead = ξhead−
ξ∗head, the error input for the line-parallel compliant motion; errζatt = ζpatt−ζhatt, the
attitude error between peg and hole in image plane ζ; and errζd =| ζp

end−ζh
end |, the

distance between peg and hole’s endpoint. The convergence time for alignment is
defined as the time between the start of phase 1 and the end of phase 2 (Fig.5.8).
Once the position alignment for hole’s endpoint H(x, y, z) and peg’s endpoint
P (x, y, z) from the eye-to-hand camera’s images is realized, the peg-and-hole
alignment process moves from phase 1 into phase 2. After both the position and
attitude alignment for peg and hole have been realized judging by both cameras,
the alignment process moves out of phase 2, and active peg will then implement
the insertion behavior.

During the phase 2 (Fig.5.8), since the active peg will be regulated to realize
visual compliant motion, ξpend would change, whereas the robot arm takes ξpend as
the target position for regulation. Since we want to realize a fast manipulation for
the robot arm, a group of relatively large proportional gain factors is adopted.
The high-speed active peg’s motion may bring sudden changes of ξpend, which
would cause unwanted effects for the robot arm’s dynamic performance. In order
to deal with such problem, as well as to prevent the sudden impact from the
right start of the regulation due to the initial large visual errors, a shunting
model [92] filter is adopted to modify the visual error errξ

end = ξpend − ξhend. The
shunting model is a neural-dynamics model and a typical shunting equation can
be described as

dxi
dt

= −Axi + (B − xi)Se
i (t)− (D + xi)S

i
i(t) (5.20)
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where xi ∈ �1 is the neural activity of ith-neuron. A,B and D are nonnegative
constants describing the passive decay rate, the upper and lower bounds of xi
respectively. Se

i and Si
i are the excitatory input and the inhibitory input to the

neuron respectively. The shunting model has the properties of automatic gain
control, the state response bounded to the finite region [−D,B], and smooth
outputs even with inputs having sudden stimulus. Let the upper and lower bounds
B = D, then the steady-state solution of Eqn.(5.20) is given by

xi = xi
B

A+ | xi | , B = D (5.21)

Then we have

errξ
end = errξ

end

B

A+ | errξ
end |

(5.22)

Note that the parameter B decides the bounds, and A affect the duration
time to reach the steady state.

5.3.5 Experimental evaluations

For both peg and hole, two markers made of light-reflecting material were fixed
on the end part to indicate the endpoints (binary images for markers from two
cameras are shown in Figure 5.9). The image processing algorithm calculated
the moment feature for each marker to generate peg’s and hole’s image position
(ξpend, ξ

h
end in image plane ξ; ζp

end, ζ
h
end in image plane ζ), attitude angle (ξhatt in

ξ; ζpatt, ζ
h
att in ζ), and the length information (ξhl in ξ; ζpl in ζ).

The hole was fixed on a pan-tilt platform with 50 mm offset from the plat-
form’s center, thus the hole’s position H(x, y, z) and its attitude H(ϕ, ψ) could
be set to different configurations. In the experiments, three different configura-
tions were set randomly for the hole, and then three alignments were realized
continuously. For the first alignment, from 0 - 5.0 s is for moving the active peg
and the hole to the preparation pose. Here, we have set the preparation pose
to be 5.0 s simply for the convenience of our experimental settings and it has
no relation to the alignment process. For the second and third alignment, the
preparation time takes 0.7 s. The insertion takes 0.5 s for each alignment (if
alignment succeeds).

During the experiment, the coarse kinematic model of the robot arm as well as
the active peg has been calibrated. Since the robot arm and the active peg have
big reduction ratio for each rotational joint that adopts the harmonic gearbox, and
the gravity compensation due the weight of the camera in Equation (5.18) and the
weight of the active peg in Equation (5.19) has been ignored. As the experimental
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Table 5.1: Average alignment performance.

Pose Converge time (s) Success rate (%)

1 0.39 85
2 0.68 90
3 0.53 85

results show later, this omission doesn’t affect the convergence performance of the
alignment.

Figure 5.11, 5.12, 5.13 show the process of the peg-and-hole alignment for
three different configurations of the hole with two different point of view. The
position and attitude alignment for the three times was converged at 0.366 s,
0.714 s, 0.456 s respectively (excluding the preparation time and insertion time),
and then the insertions were triggered.

As shown in Figure 5.10(a), from the view of the eye-in-hand camera, the
peg’s position realized alignment with the hole’s position for the three times, and
as Figure 5.10(b) shows, for the regulation of the heading attitude by the image
feature ξhead, also reached the reference value for each time. From the view of the
eye-to-hand camera, as Figure 5.10(c) shows, the attitude regulation for the pitch
angle realized convergence for each time; in Figure 5.10(f), the image distances
between the peg and hole’s endpoint when alignment converged for three times
was almost the same. From Figure 5.10(e), we can see that while the active peg
conducted the visual compliant motion, the peg’s endpoint could be kept within
a small range although affected by the arm’s motion and its dynamics. Finally,
Figure 5.10(d) shows the image trajectory for the hole and the peg’s endpoint
during the first alignment.

Table 5.1 shows the average convergence time, success rate of the hole’s three
different pose for 20 trials.

In the experiment, for three configurations of the hole, the success rate of the
alignment (insertion of the peg into the hole successfully conducted) was about
85%, with an average time of about 0.7 s (excluding the preparation time). Since
in the experiment, we set the peg’s outside diameter and the hole’s inner diameter
to be 10 mm, 14 mm respectively, the tolerance error for the insertion is ±2 mm
(the attitude was always well aligned). The videos of the experiment can be found
on the website [93].
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5.3.6 Discussions

As shown in Figure 5.14, the misalignment means that the peg’s converged po-
sition was not in the clearance range. It can be seen that the error range along
the horizontal direction - u had been exceeded the clearance range, while along
the direction of v had been smaller than the clearance range. This means that
the misalignment had been caused by the robot arm’s dynamics in the directions
along the horizontal axis of the image plane ξ during the phase 2 (Figure 5.8).
As a matter of fact, currently the active peg can only conduct 2D motion due
to the limited DOFs, and the dynamic compensation as proposed in our con-
cept (Figure 2.2) could only be realized in the direction along the projection ray
formed by H(x, y, z) and ξend (Figure 5.7(a)). In order to compensate for the
dynamic effects along the horizontal axis of the image plane ξ brought by the
robot arm, corresponding DOFs need to be added in the future work. On the
other hand, the effectiveness of the proposed dynamic compensation concept thus
becomes obvious thanks to the comparison of the failures. The other big reason
for the failure lay in the fact that the insertion mechanism (the prismatic joint of
the active peg) has been assembled very poorly, and it exhibits great vibrations,
especially along the horizontal direction during the alignment task.
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Figure 5.8: Algorithm flow of peg-and-hole alignment
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Figure 5.9: Binary images for markers
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5.4 Summary of this chapter

Concerning with the 3D peg-and-hole alignment problem, the monocular ap-
proach and the binocular approach based on the dynamic compensation concept
have been proposed. Although the accuracy level for the peg-and-hole alignment
in our experiments can not be competitive compared with the traditional ap-
proaches that adopt the force/torque sensor, peg-and-hole alignment based on
high-speed visual servo under the compensation concept can be realized much
faster than the traditional approaches. For instance, in [86], they realized the
alignment with 0.1 mm clearance, whereas it took 13 s for the alignment pro-
cess. Besides, as described in section 5.3.6, the accuracy level actually has the
potential for improvement with the modification of the hardware system. What’s
more, since in the proposed vision-based alignment approaches, there is no need
for contact between the peg and the hole throughout the whole process, it can be
applied to some special manipulations where no contact is allowed between the
peg and the hole while performing their alignment.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, in order to realize the high-speed and accurate interactive manip-
ulation in a large workspace based on the vision sensor without modeling system
dynamics, a dynamic compensation concept by adoption of high-speed lightweight
compensation actuator as well as the high-speed visual feedback based on relative
coordinate has been proposed. Unlike traditional approaches where the accurate
models of the robot system as well as fine calibration works for robot and sen-
sors are needed, the proposed approach fully takes advantages of the high-speed
task-space vision sensing in compensating for the many uncertainties to realize
accurate interactive positioning regulation under high speed.

Firstly, with the introduction of the background for robotic technology, the
difficulties concerning with high-speed and accurate interactive manipulation with
simple control approaches were summarized. Although there have been some
related works in tackling these difficulties from the approach of compensation, no
general and practical method is available. On the other hand, the vision-based
robotic control has become much popular and critical in nowadays, especially
with the application of high-speed vision systems which have been commercially
available several years ago. The great advantage of the high-speed vision sensing
is that it can provide with the task-space feedback information in high frequency
and is not dependent on the kinematics, whereas the traditional joint-level sensing
usually needs the conversion to the task-space through accurate kinematic models
(mechanical backlash may bring great errors into this conversion). By fusing the
high-speed visual feedback and a high-speed lightweight compensation actuator,
it may be possible to realize high-speed and accurate interactive manipulation
without considering the system dynamics. With this consideration, the dynamic
compensation concept as well as the resulted dynamic compensation robotics
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system (DCRS) is proposed.
Secondly, experimental systems in accordance with the dynamic compensation

concept are introduced. In order to illustrate the importance of the two aspects of
the dynamic compensation concept, namely the compensation actuator and the
high-speed visual feedback, experimental evaluations based on a 1-DOF DCRS
prototype have been conducted. Fast response order of the compensation actuator
as well as high-speed frequency of the visual feedback have shown great effect on
compensation performance through the evaluations.

The third, improved positioning-oriented algorithms based on relative coordi-
nate high-speed visual feedback are proposed for the DCRS. The simplified IBVS
approach for robot arms is depth-independent and is easy for implementation, al-
though it can hardly be the optimal trajectory planner. The effectiveness of this
approach is verified through numerical simulations and experimental high-speed
tracking. As for the compensation actuator, a pre-compensated PD approach
is proposed with the consideration of the dynamic impact from the main robot.
Experimental evaluations show the better performance of the proposed approach
compared with the simple PD control.

As the basic application task, the 1D positioning with the name of dynamic
super picking is demonstrated by the developed 1-DOF DCRS. A much more so-
phisticated algorithm - pre-compensation fuzzy logic control (PFLC) is proposed
by exploiting the motions for the 1-DOF linear DCRS. The PFLC is easy for
implementation and proper for the high-speed compensation. Experimental eval-
uations for PFLC comparing with some other approaches, as well as the dynamic
super picking task showed satisfying results.

After that, the application task is extended from 1D positioning into 3D po-
sition and attitude regulation, and the challenging task - fast peg-and-hole align-
ment with large position and attitude uncertainty is addressed. The difficulties
for the fast alignment is not only due to the coupling between position alignment
and attitude alignment, but also due to the dynamics of the robot arm. An active
peg with accordance to the dynamic compensation concept is designed to cooper-
ate with the robot arm. Two approaches, monocular and binocular are proposed
to realize the fast alignment. In the monocular approach, the motion separation
based on simplified IBVS for robot arm and step approaching visual servo for
active peg enables the convergence for alignment within 2 s on average with 65%
success rate. A visual compliance method is exploited for the binocular approach,
and the convergence for alignment can be realized within 0.7 s on average with
85% success rate.
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6.2 Into the application - a scenario in the near

future

Ever since the first industrial robot the Unimate was installed in 1959, the key
technologies of robotics have been greatly developed as the needs for robotic
manipulation in manufacturing kept upgrading. Today industrial robots are key
components of automotive industry, and it is said that more than 1.1 million
industrial robots and robotic systems are operating in the factories all over the
world [94], with the functioning such as:

• Improving quality of work for employees;

• Increasing production output rates;

• Improving product quality and consistency;

• Increasing exibility in product manufacturing;

• Reducing operating costs.

Nevertheless, since the cost for employing a robotic system is still not cheap ,
we may reasonably ask questions such as could these specialized robotic systems
meet with much more dexterous manipulations in a much more dynamical envi-
ronment? Or in another word, can they fit for much more flexible applications?
Especially, high-speed manipulations with great environmental uncertainties are
of great needs in real applications. Concerning with such issues, we think that
the method of alteration based on modular assembly would be a good way for
lowing the cost and improving the flexibility, and the main issue addressed this
study is such kind of attempt as to improve the performance of the main robot
(which is maybe old enough for retiring) by adopting the dynamic compensation
concept. Let’s consider such a scenario, which may happen in the near future:

A factory making engines for aircraft owns 50 old type industrial robot arms,
which had been equipped several dozens of years ago for doing the task of auto-
motive bolts fastening (refer to the Figure 6.1). The task of the bolt-fasten has
been a rather critical procedure in assembling this certain type of engines. These
arms experienced years of mechanical wear, and one day they can no longer be
applied for this accurate manipulation, especially under high-speed motion, which
had been the key aspect of making these arms outstanding in terms of high pro-
ductivity and quality in the past years. In the usual way, they shall be retired
and be replaced with the new ones. However, the managers of the factory feel a
little bit of troublesome cause this obviously need a big budget, which would make

113



6. Conclusions

Part-A
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Nut

Bolt

Figure 6.1: The bolt-fastening task.

the company’s financial situation much worse under the background of worldwide
depression of these days. At this time, a robot company comes up with a solu-
tion, and claims that it will only cost approximately 1/6 to 1/10 of the budget
to recover these robot arms’ production capacity. Their solution is based on the
modular assembly and dynamic compensation concept. By adding a modularized
compensation actuator as well as high-speed cameras onto the old robot arm , the
dynamic defects of the old robot arm thus be compensated, and there will be no
need for modification of the controller of the robot arm. With this approach, not
only the production capacity has been recovered, but also the flexibility has been
improved, and finally the factory realizes this updating with a very low cost.
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