
論文の内容の要旨

A Study on a Single Construct for Events, Aspects, and Behaviors

（イベント、アスペクト、ビヘイビアのための単一言語機構に関する研究）

氏名 莊 永裕

Programming paradigms are so important that a lot of research activities are devoted to the

support for them. How to support the implementation of paradigms can be classified into three

types of approaches: by design patterns, by dedicated constructs, and by generic constructs.

However, none of them are sufficient. Design patterns can be used to implement most paradigms

but not all. Furthermore, without language support the code tends to scatter and tangle.

Dedicated constructs greatly improve the modularity of code, but also increase the number of

constructs in a language supporting multiple paradigms; a large number of constructs complicates

the language design. Generic constructs can be considered as a potentially good approach, but the

number of supported paradigms in current research is quite limited; existing generic constructs

are not flexible enough to support more paradigms.

To overcome the problem that existing generic constructs are not flexible enough, this thesis

proposes a new generic construct, method slots, based on our observation of the common ground

among the implementations of three important paradigms in the real world: OOP, the event-

handler paradigm (event-driven programming), the aspect paradigm (aspect-oriented

programming). The common ground has never been noticed before this thesis since the dedicated

constructs for these paradigms were individually developed from the beginning. The observation

on the similarities motivates us to extend the methods in JavaScript to method slots, which can be

used as methods, events, and advices. To demonstrate how method slots can be used in practice,

a Java-based language named DominoJ is proposed with a compiler implementation. We then

evaluate DominoJ by comparing with existing languages, running benchmarks for it, and rewriting

programs as case studies.

The concept of method slots is very simple and easy to extend. To support this argument, we

demonstrate how to extend method slots by taking the example of the reactive paradigm

(functional-reactive programming). We first compare the reactive paradigm with the most similar

one in the paradigms supported by method slots: the event-handler paradigm. We find that the

major difference between them is whether the event composition is automatic or not. Then we

discuss the definitions for event composition in existing event mechanisms, and get the conclusion

that existing event mechanisms lack an inference-based definition to automatically select events

for a higher-level event. This thesis proposes such an inference-based definition by adding only one

more operator for method slots. How the operator can be used for the reactive paradigm is

presented with a feasible implementation and discussed in detail to clarify the limitations.

