
Deployable and Scalable
Information-Centric Networking

(展開性とスケーラビリティを備える
Information-Centric Networkingに関する研究

)
朱 韵成

ZHU, Yuncheng

(2011年度入学, 49-117402)

指導教員: 中尾 彰宏 准教授

東京大学大学院 学際情報学府 学際情報学専攻
総合分析情報学コース 中尾研究室

Abstract

The current Internet architecture has remained relatively unchanged since its in-

vention for end-to-end data communication. However, it is often posited today that the

information objects must be addressed by the information objects themselves, rather

than by where they are located in the network as it is done in the current Internet ar-

chitecture. That is to say, it is information itself that should be central in the network

architecture, because information consumers do not care where the information is lo-

cated, but which information they need. Such a research position has led the research

community to redesigning the Internet into so called information-centric networking

(ICN), where the network allows users to discover the information directly and not

addressed indirectly by which hosts possess it. However, the existing ICN studies leave

the following significant problems open, which hinders the deployment of ICN.

1. Functionality problem: The existing ICN proposals are most single-strategy,

which focuses on only the content retrieval. Hence, they fail to address the critical

importance of providing efficient service access, such as publishing user-generated

content.

2. Deployability problem: Most of the existing ICN proposals are clean-slate ap-

proaches hardly deployable in the Internet, as they require substituting the global

IP networks. Moreover, some of them are partial solutions still with major draw-

backs unresolved, regarding the capability requirements to individual network

devices.

3. Scalability problem: ICN’s key component, route-by-name scheme, brings a chal-

lenge to scalability because of a large number of information objects. Feasible and

efficient name resolution service is required, but none of the current literatures

provide sufficient solutions.

i

This thesis posits that solving the three problems unresolved by existing ICN re-

search, namely, functionality, deployability and scalability, are the key to the successful

migration to an ICN architecture from the current Internet. The benefits of such migra-

tion lie in two aspects: for end users, both efficient and fast content access and conve-

nient access to novel services can be provided, and for network providers, low upgrade

cost are required provide more values and network resources can be better utilized.

Our study reveals the possibility of improving the Internet in an information-centric

way by practically deploying ICN to operate over the current Internet infrastructure.

To be concrete, the problems are solved by studying three critical aspects of ICN:

caching policies, transport protocol and name resolution, and a new architecture for

deployable and scalable ICN is proposed.

First, caching policy is one of the most important research topics in ICN. We pro-

pose Upload Caching in Edge Networks (UCEN) to solve Problem 1. Our analysis

shows that this mechanism reduces upload tether time of 41% end users by more than

half and flattens the traffic peak for the access service provider by 49%. To address

Problem 2, we propose Content-Oriented Caching with In-Network Index (COCINI), a

caching scheme to exploit spare storage and bandwidth from end-systems to eliminate

redundant traffic and to enable efficient and fast access of contents. Our trace-driven

simulation indicates that COCINI can reduce up to 49% traffic volume and can cumu-

latively reduce about one fourth of the latency of content access.

Second, to resolve Problem 2, we propose Information-Centric Transport Proto-

col (ICTP), a transport layer protocol to support most features of ICN over current

Internet infrastructure. The protocol is compatible with current Internet Protocol

(IP) and can be incrementally implemented and deployed. In-network processing of

information-centric strategies can be benefited by the genuine connection-less feature

of the protocol.

Finally, to deal with Problem 3, we propose a simple and empirical Distributed

Resolution Service (DRS) scheme according to the time and space complexity models

we built. The proposed scheme can handle at least 1012 name entries using about 3,300

nodes with commodity hardware.

We propose a Deployable and Scalable Information-Centric Network Architecture

(DSINA), an innovative ICN architecture that incorporates novel route-by-name sys-

tem into the current Internet infrastructure with register-access-result model, which

ii

integrates all the technologies developed above and enables the migration to ICN from

the existing Internet. DSINA can handle not only content retrieval but also user-

generated content uploading, notification pushing and other applications. A prototype

of DSINA is implemented in C++ with Click programming model, and deployed on

the network testbed Emulab. Our evaluation experiments verifies the prototype system

works as expected, thus, shows it can be deployed in the real networks and all the func-

tions work correctly there, for example, can perform roughly 7 times more efficiently

for content delivery than it has been done in the existing Internet architecture, and is

self-scaling with less than 10% average throughput drop when multiple clients request

for the same piece of content.

The designs, implementations and evaluations prove that the three problems, func-

tionality, deployability and scalability, have been solved by our proposed technologies

and architecture. Our results enable ICN research to be implemented and deployed in

a large scale, and enable migration to ICN from the current Internet architecture.

iii

Acknowledgment

I would like to express my deepest appreciation and gratitude to my supervisor,

Associate Professor Akihiro Nakao for his outstanding and invaluable direction. He

continuously supports my research with attractive ideas and timely assistance through-

out the period of my Ph.D. study. He teaches me how to be a good researcher and

always encourages me to improve my skills and catch chances for a better academic

career. This thesis would not have been possible to be completed without his excellent

supervision.

I would like to thank comittee members, Professor Ken Sakamura, Professor Noboru

Koshizuka, Professor Jun Rekimoto, and Professor Satoshi Ohzahata (from the Uni-

versity of Electro-Communications) for their valuable suggestions on my research.

I would like to thank my colleagues, as well as research staffs and secretariats in

Nakao Laboratory, for their support and kindness during my study and life here. They

have been good companions who embrace the spirit of hard working.

I would like to thank Japanese Government Monbukagakusho (MEXT) Scholarship

for their finance support during my study as a Ph.D. student in the University of

Tokyo.

Finally, I thank to my family and to all my friends, who are always there when I

need them.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.2.1 Functionality Problem . 3

1.2.2 Deployability Problem . 4

1.2.3 Scalability Problem . 4

1.3 Thesis Statement . 5

1.4 Thesis Summary . 5

2 Related Work 7

2.1 Introduction . 7

2.2 Data-Oriented Network Architecture 7

2.3 Named Data Networking . 8

2.4 Pursuing a Pub/Sub Internet . 10

3 Upload Caching in Edge Networks 12

3.1 Introduction . 12

3.2 Related Work . 13

3.3 System Design . 13

3.3.1 Upload Time Shortening . 14

3.3.2 Scheduled Upload . 14

3.3.3 Server Delegation . 15

3.3.4 Coordination of Entities . 15

3.3.5 Typical Upload Processes . 16

3.4 Evaluation . 16

3.4.1 HTTP Cached-POST Implementation 18

v

3.4.2 Client Upload Acceleration . 19

3.4.3 Traffic Peak Reduction . 22

3.5 Summary . 23

4 Content-Oriented Caching with In-Network Index 25

4.1 Introduction . 25

4.2 Related Work . 26

4.3 System Design . 26

4.3.1 Scheme Overview . 27

4.3.2 Content-Oriented Redirection 28

4.3.3 Client Host Agent . 31

4.4 Evaluation . 32

4.4.1 Experiment Setup . 32

4.4.2 Result and Analysis . 34

4.5 Summary . 37

5 Information-Centric Transport Protocol 39

5.1 Introduction . 39

5.2 Related Work . 40

5.3 System Design . 40

5.3.1 Naming of Information Objects 40

5.3.2 Enabling In-Network Processing 42

5.3.3 Information Security . 43

5.4 Protocol Specifications . 44

5.4.1 Message Formats . 44

5.4.2 Fragmentation . 45

5.4.3 Transfer Control . 45

5.5 Summary . 47

6 Distributed Resolution Service 48

6.1 Introduction . 48

6.2 Related Work . 49

6.3 Characterization of Name Resolution 49

6.3.1 URI Properties . 49

vi

6.3.2 Space Complexity . 51

6.3.3 Time Complexity . 51

6.4 System Design . 52

6.4.1 Scheme Overview . 53

6.4.2 Key Components . 55

6.4.3 Comparison with Other Schemes 56

6.4.4 Fingerprint-Based Synchronization 57

6.5 Performance Enhancement . 58

6.5.1 Local Entry Caching . 58

6.5.2 Multiple Lookup Entries . 60

6.6 Summary . 61

7 A Deployable and Scalable Information-Centric Network Architec-

ture 62

7.1 Introduction . 62

7.2 Design Decisions . 63

7.2.1 Functionality . 63

7.2.2 Deployability . 64

7.2.3 Scalability . 64

7.3 Architecture . 65

7.3.1 Overview . 65

7.3.2 Name System . 66

7.3.3 Register-Access-Result Model 66

7.4 Applications . 68

7.4.1 Content Distribution . 68

7.4.2 User-Generated Content Publishing 69

7.4.3 Notification Push . 70

7.4.4 Information synchronization . 71

7.5 Implementation . 72

7.5.1 Prototyping with Click Modular Router 72

7.5.2 Deployment on Emulab . 74

7.5.3 Performance Evaluation . 76

7.5.4 Scalability Verification . 78

vii

7.6 Summary . 80

8 Conclusion 81

8.1 Summary . 81

8.2 Comparison with Other ICN Architectures 83

8.3 Future Work . 84

8.4 Future Directions . 85

A Data Preparation for Simulations 87

A.1 Introduction . 87

A.2 Data Source . 87

A.3 Data Preparation . 87

A.4 Data Profile . 89

viii

List of Figures

1.1 Comparison between packet forwarding in the current Internet and in ICN 3

2.1 RHs route a client-issued FIND message (dashed arrow) to a nearby copy 8

2.2 Content retrieval among three NDN nodes 9

2.3 Publication and Subscription in PURSUIT 10

3.1 Typical upload process with upload caching in edge networks 17

3.2 Complete HTTP upload procedures . 20

3.3 Cumulative frequency distribution of the reduction of client tether time 21

3.4 Traffic on the edge router before and after scheduling 22

3.5 Distribution of upload delay due to scheduled upload 23

4.1 COCINI messages and their delivery 28

4.2 Layout of a COCINI client host agent 31

4.3 Network topology used in experiment simulation 33

4.4 Traffic reduction ratio in two scenarios 34

4.5 Distribution of content sources in two scenarios 35

4.6 Reduction ratio of cumulated session time in two scenarios 36

5.1 An example of names owned by the publisher “iii.u-tokyo.ac.jp” 41

5.2 Message header fields of ICTP . 44

6.1 Popularity ranking for recorded URIs 50

6.2 CCDF plot for recorded URI length . 50

6.3 Memory usage with radix tree structure 52

6.4 Average time usage for name lookup 53

6.5 An example of name resolution in DRS 54

6.6 Key components of a DRS router . 55

6.7 An example topology of two DRS domains 58

ix

6.8 Local entry caching in the DRS scheme 59

6.9 Multiple lookup units in the DRS scheme 60

7.1 The overview of DSINA . 65

7.2 A typical scenario of content distribution in DSINA 69

7.3 An example publishing UGC to cloud service in DSINA 70

7.4 Notification push service in DSINA . 71

7.5 Overview of DSINA prototype implementation in Click 73

7.6 DSINA experiment deployed on Emulab 75

7.7 Overview of performance evaluation . 76

7.8 Results of performance evaluation experiments 77

7.9 DSINA scalability verification experiment 78

7.10 Results of scalability verification experiments 79

x

List of Tables

4.1 Basic primitives in COCINI . 29

5.1 Four transfer control instructions . 46

6.1 Comparison of resolution schemes . 57

8.1 Comparison with other architectures 84

A.1 Properties to be extracted for each HTTP session 88

A.2 Statistics of sessions with different request methods 89

xi

Chapter 1

Introduction

1.1 Background

The current Internet architecture has remained relatively unchanged since its in-

vention for end-to-end data communications, which dates back to about three decades

ago. The Internet protocol suite [1], commonly known as TCP/IP, emphasizes the

end-to-end principle — to put maintenance of state and overall intelligence at the

end-systems and to leave the network retaining no state and concentrated on speed

and simplicity. The two major routing schemes, unicast and multicast of the Internet

Protocol (IP) represent host-to-host and host-to-multiple-hosts transmission models

following it. The principle has worked well and has greatly propelled the wide spread

of the Internet.

On the other hand, the Internet has become one of the indispensable infrastructures

in people’s daily life, and as a result, it is facing the problems of the explosion of users

and huge traffic, as well as a great diversity of usages. Statistics [2] show that the

majority of today’s Internet traffic is associated with content retrieval applications

using Web or Peer-to-Peer (P2P), and the remaining is related to service access, such

as E-mail and online games. The end users do not care at which host the content or

service is located any more, but only focus on the information they need.

Since the misalignment between the host-centric architecture and the content-

centric usage of the current Internet results in inefficient content and service access,

Internet Service Providers (ISPs) try to improve the performance by deploying content

delivery networks (CDNs) [3] and proxy caches [4]. Although caching facilities greatly

improve content retrieve efficiency and thus are common nowadays, these intermedi-

ate elements are not integrated with routing and forwarding. As a result, they are

1

criticized to be indirect, expensive and sometimes conflicting with the interest of ISPs.

The rapid development of Information-Centric Networking (ICN) concepts in the

last few years is one of the significant results of a number of researchers are aiming at

redesigning the Internet from the information-centric perspective. In their clean-slate

designs [5, 6, 7], content delivery is directly central to the network architectures pro-

posed. Based on the ICN concepts, the principal communication paradigm is no longer

end-to-end data delivery between hosts, but focuses straight on retrieving information

objects securely, reliably, scalably and efficiently. Therefore, despite the differences

in architectural designs of the ICN proposals, all of them share the features such as

network devices forward the request for a specific piece of information to wherever the

content is available and carry the corresponding content towards the users requesting

it, as illustrated in Figure 1.1. In ICN, the most critical information in routers is no

longer what records the routes to networks and hosts, but the queries and the results,

that is, the information on the existence of the content.

In order to enable the network devices to process information objects, any infor-

mation object is associated with a unique name in ICN. Upon receiving a request for

a specific piece of information, the network device forwards the request according to

the locator information of the requested name, which is called “route-by-name.” Ef-

fectively naming information objects and forwarding requests and responses have been

the focus of ICN research efforts. Different designs employ different naming schemes

and thus have different route-by-name implementation.

ICN embraces significant advantages compared with the current Internet. First,

ICN matches the usage trend of the current Internet coherently and directly, which

results in a better utilization of network resources. Second, ICN enforces end-to-end

security, where information security is ensured by the information object itself, rather

than the channel it is transferred through. Finally, ICN adopts a more flexible forward-

ing scheme compared to IP, and thus facilitates user choice and competition among ISP.

Consequently, ICN is expected to address the network challenges that arise from the

increasing demands for highly scalable content distribution, from accelerated growths

of mobile devices, and from the deployment of Internet-of-Things (IoT).

2

SRC: 123.45.67.89
DST: 98.76.54.32

underlying transport

SRC: 98.76.54.32
DST: 123.45.67.89

underlying transport

overlaying applications

Client IP Router

IP Router Server

(IPN)

overlaying applications

(a) IP routers only access network headers of packets for forwarding

Access
/sample.com/demo_1.mp4

underlying transport

Result
/sample.com/demo_1.mp4

underlying transport

overlaying applications

Client ICN Router

ICN Router Server

(ICN)

overlaying applications

(b) ICN routers access names of information objects for forwarding

Figure 1.1: Comparison between packet forwarding in the current Internet and in ICN

1.2 Problem Statement

The existing ICN studies have pointed out a system-level direction to re-designing

the major functions of the current Internet. However, they leave the following signif-

icant problems open, which hinders the implementation and deployment of ICN. We

posit that there are three problems to be solved in order to achieve efficient content

and service access.

1.2.1 Functionality Problem

The first problem of existing ICN architectures is that it lacks in essential func-

tionalities such as publication of user-generated contents (UGC) and content cache

classification.

3

ICN ought to support a variety of content and service access, including but not

limited to efficient content distribution. Because popularity of mobile network devices

such as smartphones has been encouraging more and more people to produce contents

and publish them, publication of UGC is one of the features that must be supported by

ICN. However, most of the existing ICN proposals are single-strategy, which focuses on

only the content retrieval. Especially, the Interest-Data model that is widely used in

the existing proposals is not optimal for supporting content pushing. Hence, they fail to

address the critical importance of providing efficient service access, such as publishing

user-generated content.

Content caching is one of the most important features of ICN. In reality, caching

facilities can be classified into two categories, persistent storages, such as the ones

used in CDN, and transient caches, such as in-network caching and caches at client

hosts. These two sorts of caching are different in many aspects, such as the duration

of existence and the purposed scope of access. Therefore, they should be distinguished

in registration and propagation of content information, and different strategies should

be applied correspondingly.

1.2.2 Deployability Problem

The existing ICN proposals are mostly clean-slate approaches that are not compati-

ble with today’s Internet and could not be accepted without a transition process [8]. It

is especially unaffordable to replace the current IP with clean-slate ones, because this

would result in redesigning addressing, routing and forwarding for the global Internet,

which is desirable for neither end users nor network operators.

Besides the impossibility of substituting the global IP networks, some of the cur-

rent solutions are still with major drawbacks unresolved, regarding the capability re-

quirements to individual network devices. We address specifically two challenges, that

is, caching policy proposed requiring high cost for cache storage, and naming and re-

source management requiring expensive high speed searching hardware such as Ternary

Content-Addressable Memory (TCAM).

1.2.3 Scalability Problem

Network routing scalability issues have been driving new architecture designs, re-

cently. Route-by-name, the new mechanism adopted by ICN to forward packets accord-

4

ing to the names of the information objects they are requesting for, faces a scalability

challenge in term of the number of name entries, which is much more critical than it is

in the current Internet. The previous study [5] has revealed that the number of regis-

tered names is in the order of 1012 or more, even under the optimistic expectation, and

the requirement of lookup speed is also crucial, extrapolated from the HTTP request

rate in the Internet of today, i.e., about 20,000/Gb. These requirements are unlikely to

be resolved by a single network device and call for a feasible and scalable distributed

solution. However, none of the current literatures [5, 6, 7, 9, 10, 11] provide sufficient

solutions to this problem.

1.3 Thesis Statement

This thesis posits that solving the three problems unresolved by existing ICN re-

search, namely, functionality, deployability and scalability, are the key to the successful

migration to an ICN architecture from the current Internet. Generally speaking, the

benefits of such migration lie in two aspects. For end users, deployable caching strate-

gies make efficient and fast content access possible, and convenient access to fresh

services can be provided by new access models. For network providers, deployable

and scalable architecture reduces required upgrade cost to provide more values, and

network resources can be better utilized with novel transport. Our study reveals the

possibility of improving the Internet in an information-centric way by practically de-

ploying ICN to operate over the current Internet infrastructure. Our findings are not

constrained to some specific architecture proposal but they are expected to contribute

to many networks that adopt information-centric concepts.

1.4 Thesis Summary

Chapter 1 provides a general introduction of ICN and the problems it is facing.

Chapter 2 introduces three famous research efforts of ICN and analyzes the pros

and cons of the three architectures proposed.

Chapter 3 proposes Upload Caching in Edge Networks (UCEN). Our analysis shows

that this mechanism reduces upload tether time of 41% end users by more than half

and flattens the traffic peak for the access service provider by 49%.

Chapter 4 proposes Content-Oriented Caching with In-Network Index (COCINI), a

5

caching scheme to exploit spare storage and bandwidth from end-systems to eliminate

redundant traffic and to enable efficient and fast access of contents. Our trace-driven

simulation indicates that COCINI can reduce up to 49% traffic volume and can cumu-

latively reduce about one fourth of the latency of content access.

Chapter 5 proposes Information-Centric Transport Protocol (ICTP), a transport

layer protocol to support most features of ICN over current Internet infrastructure.

The protocol is compatible with the current IP and can be incrementally implemented

and deployed. In-network processing of information-centric strategies can benefit from

the genuine connection-less feature of the protocol.

Chapter 6 proposes a simple and empirical Distributed Resolution Service (DRS)

scheme according to the time and space complexity models we built. The proposed

scheme can handle at least 1012 name entries using about 3,300 nodes with commodity

hardware.

Integrating all the technologies developed above, Chapter 7 proposes A Deploy-

able and Scalable Information-Centric Network Architecture (DSINA), which incorpo-

rates novel route-by-name system into the current Internet infrastructure with register-

access-result model. DSINA can handle not only content retrieval but also user-

generated content uploading, notification pushing and other applications. Our pro-

totype implementation deployed on Emulab verifies the prototype system works as

expected, thus, shows it can be deployed in the real networks and all the functions

work correctly there.

Chapter 8 concludes this thesis and discusses its future work.

6

Chapter 2

Related Work

2.1 Introduction

ICN has been extensively studied, especially in cases of content-oriented network

architectures. Data-Oriented Network Architecture (DONA) [5] and Named Data Net-

working (NDN) [12] are two notable examples of clean-slate content-oriented network

architectures. Pursuing a Pub/Sub Internet (PURSUIT) [13] is another clean-slate

architecture based on the publish-subscribe communication paradigm. In this section,

the popular research efforts mentioned above are introduced and there pros and cons

are briefly discussed.

2.2 Data-Oriented Network Architecture

The Data-Oriented Network Architecture (DONA) proposed by Teemu Koponen

et al. [5] is the one of the earliest ICN attempts that argues a “clean-slate” technique

in naming and name resolution, aiming at providing persistence, availability and au-

thenticity in content access.

In DONA, an information objects is associated with a flat and self-certifying name

in the form P:L, where P is a cryptographic hash of the public key of a principal (i.e., a

registered information publisher) and L is a label chosen by the principal, who ensures

the names are unique. Based on the naming scheme, DONA proposes a route-by-name

paradigm for name resolution with two basic primitives, FIND and REGISTER, and

requires every network provider to own a resolution handle (RH). In DONA, principals

announce information objects and their locations using REGISTER messages sent to

RHs, while clients send FIND messages to resolve the names and initiate the transport

7

Copy Copy Client

RH RH

RH
RH

RH

RH

RH

Registration State in RH

Forwarding Route

Figure 2.1: RHs route a client-issued FIND message (dashed arrow) to a nearby copy

exchange, as shown in Figure 2.1. The packet exchanges that occur after a FIND

message reaching its target server are not handled by the proposed system but using

standard IP routing and forwarding.

Designed as a replacement to DNS naming resolution scheme, DONA is inadequate

in taking into account the scalability problem. It is neither possible to store nor to

resolve all unaggregated names for all the content available in the Internet for any

network device in a tier-1 network. Aggregation for flat names [9] requires publishers

to provide aggregation information, but it is hard to justify both incentives for such

scheme and its effectiveness. Moreover, only hosts authorized to serve an information

object with name P:L can send a REGISTER message to their local RHs in DONA.

This constrains the available benefit provided by the architecture to the same extent

of that is done by CDN, and hinders the architecture to serve user-generated contents

(UGC).

2.3 Named Data Networking

The Named Data Networking (NDN) project led by Lixia Zhang [12] is one of

the four projects under NSF’s Future Internet Architecture Project [14], which is also

known as Content-Centric Networking (CCN) [6]. The project proposes hop-by-hop

content-centric routing based on hierarchical content names.

One of the key contributions of NDN is the forwarding engine model. As described

in Figure 2.2, instead of host prefixes, content prefixes are stored in forwarding nodes

8

CCN
Node

CCN
Node

Content
Storage Pending

Interest
Table

Forwarding
Information

Base

CCN (Forwarding) Node

1

2

1'

2' 3

45

6

Interst Data

Figure 2.2: Content retrieval among three NDN nodes

in NDN. The forwarding engine consists of three components, Content Storage (CS),

Pending Interest Table (PIT) and Forwarding Information Base (FIB). When a for-

warding node receives an Interest message sent from another node, it (1) first compares

the requested content name against CS. If the content is cached in the local CS, the

node (2) transfers the content from CS to the requesting node directly. Otherwise, the

forwarding node (1’) checks the content name against PIT to make sure it is not a du-

plicated request and records the incoming interface, and then (2’) looks up the name

in FIB and (3) sends the Interest message to a neighboring node. A Data message

responded by a serving node is forwarded exactly in the reverse direction to reach the

client. When a forwarding node receives a Data message, it (4) looks up the content

name in PIT for any pending request to it. If there is any, it (5) puts the content to

the CS for caching and (6) sends the Data message to corresponding interfaces.

However, the architecture has difficulty in supporting data uploading, while user-

generated content is becoming popular nowadays [15, 16]. Since host locating informa-

tion is completely eliminated from the architecture, the architecture suggests a work-

around that asks a client to send an Interest message including the publishing name

for uploading data to trigger the server initiating another content retrieval process to-

wards the client itself. This requires the client announce the name for its uploading

data beforehand so that it is accessible from the server, while such behavior hampers

the aggregation of names and the mobility of client hosts. In addition, people doubt

the viability and efficiency in FIB units resolving a large number of content names

and in integrating CS into forwarding nodes in the networks, especially for the top-tier

network service providers.

9

(1)
 Pub

lish
 (R

Id,
 SId,

Meta
da

ta)

(2) Subscribe (RId, SId)

RN

USER A USER B

(3) Create Forwarding Topology

(4) Information is Forwarded from USER A to User B

Figure 2.3: Publication and Subscription in PURSUIT

2.4 Pursuing a Pub/Sub Internet

Pursuing a Pub/Sub Internet [13] is a FP7 EU project inheriting the vision and

results of their former project published as The Publish-Subscribe Internet Routing

Paradigm (PSIRP) by Nikos Fotiou et al. [7] that focuses on providing layered infor-

mation access control using rendezvous nodes.

In this architecture, the identifier of an information object has two parts, a ren-

dezvous identifier (RId) and a scope identifier (SId). RId is a flat global unique iden-

tifier such as it is in DONA, while SId specifies a specific scope within which the

information object is accessible. As illustrated in Figure 2.3, USER A sends a pub-

lish message containing RId, SId along with meta-data of the information object to

a correspondent rendezvous node (RN). A RN implements Rendezvous, Topology and

Forwarding (RTF) functions in the architecture. When someone having interest in such

information object, e.g. USER B, sends a subscribe message to the RN, the interest

is matched with actual publications in RN using rendezvous function. The topology

function monitors the network topology and detects changes, and finally the forwarding

function implements information object forwarding through creating a delivery path

from the publisher to the subscriber using an MPLS-like label switching protocol and

initiating the actual data transfer.

Nevertheless, this architecture does not specify how publish and subscribe messages

are forwarded to RN in charge of a specific scope, which is one of the critical challenges

to information-centric networking. Besides, adopting label switching for content for-

warding is impractical to be done in the whole Internet, because RN has to operate

network devices of other network providers when the subscription comes from an ex-

10

ternal network, which is the very same problem that Multiprotocol Label Switching

(MPLS) [17] has been facing when it comes to wide-area routing. Moreover, PURSUIT

shares a similar problem with NDN that users must own some constantly connected

servers so that they can get their content accessed with those servers.

11

Chapter 3

Upload Caching in Edge Networks

3.1 Introduction

The common argument for the current caching systems and the existing ICN propos-

als is that they aid end users within edge networks in retrieving content from always-on

servers, while little research has focused on uploading user-generated content (UGC).

Recent studies show that the traffic uploading UGC accounts for a large portion of the

current Internet traffic and brings new challenges in the Internet of today [15, 16].

In the light of this observation, we propose Upload Caching in Edge Networks

(UCEN), a new mechanism assisting upload of UGC of end users within edge networks.

In this mechanism, an end user will not directly upload his/her pieces of content to

the remote servers, but put them to a gateway server located within the same edge

network with the user. The gateway caches the received content and schedules its

delayed upload to the destination servers without incurring much extra delay in the

total elapsed time for the upload, without the involvement of the end user in the latter

step.

Deploying upload caches in edge networks brings benefit for both end users and ser-

vice providers. First, for end users, it shortens the duration while user must stay online

for uploading their generated content, thanks to the short round-trip time (RTT) and

ample bandwidth between users and gateway. In addition, from the service provider

point of view, traffic peak of the edge networks or the destination servers can be flat-

tened because the inter-network upload from the gateways to the destination servers

may be scheduled at later time. Finally, the cached piece of uploaded content may

be reused for populating download cache so that even the traffic of the first content

retrieval of the edge networks may be reduced.

12

3.2 Related Work

We recognize that a similar feature of proposed architecture can be achieved by

Delay-Tolerant Networking (DTN) Architecture [18], where routers take a “store and

forward” approach and data are incrementally moved and stored throughout the net-

work until they eventually reach their destination. However, our solution is different

from DTN in several aspects. At first, the assumption of underlying infrastructure is

different. DTN targets occasionally-connected networks where conventional approaches

are impractical, while our proposed architecture is based on the Internet today and the

current user behaviors. Furthermore, DTN introduces a new bundle layer overlay,

which requires routing functionality and persistent storage in all the nodes, while our

proposed solution is light-weight and stateless with only ephemeral cache placed on the

gateway and all functionalities implemented in a single layer.

3.3 System Design

Unlike the traditional content upload schemes where only a pair of client and server

is involved in an upload procedure, a gateway in the edge network plays an important

role in the proposed mechanism. In our proposal, an end user uploads its generated

content to the gateway located within the same edge network with the user. The

gateway caches the received content and uploads it to the corresponding destination

server.

There are two major goals of the proposed mechanism. The first goal is to shorten

the duration while an end user must stay online for uploading their generated content,

making use of the short RTT and ample bandwidth within the edge networks. The

second goal is to flatten the traffic peak in the network of service providers including

edge networks and the destination servers.

In this section, we introduce our design decisions to construct a full-fledged mech-

anism satisfying the goals, including upload time shortening, scheduled upload, server

delegation and coordination of entities. Finally, we present a typical upload process

following our design decisions.

13

3.3.1 Upload Time Shortening

Shortening the upload time of user-generated content for the end users is the first

goal of upload cache in edge networks. It is achieved by dividing the upload process

into two segments: uploading from the client to the gateway server in the same edge

network and upload from the gateway to the destination server.

The end users may note endure a long duration of time while they must stay online

for uploading their generated content in mobile environments. In this case, clients

can benefit from the edge networks usually having short RTT and ample bandwidth

compared to inter-network links. They can leave the network as soon as finishing

uploading their content to the gateway, which is often much faster than uploading it

to the destination server. The clients also provide enough auxiliary information to

the gateway server so that it may autonomously finish the remaining upload to the

destination server without the involvement of the end users.

3.3.2 Scheduled Upload

In most cases, end users do not need the instant availability of uploaded content.

In fact, instant availability is sometimes impractical to be provided, such as uploaded

video content usually need to be re-encoded to some specific formats. Therefore, we

can schedule the actual upload from the gateway to the destination server to a specific

time negotiated, rather than let the gateway upload the content to the destination

server as soon as it has received the complete content, so that we can avoid creating a

large amount of upload traffic when the edge network or the destination server already

has a high volume of network traffic.

There are two cases to consider regarding the trade-off between instant availability

and traffic control. Access service providers may choose to schedule actual upload to

flat the traffic peak for the edge network (that is, itself) or the destination servers (in

which case there should be some contract so that it also benefits the access service

provider). In the former case, the gateway asks the client for the deadline indicating

that the client can tolerate the actual upload process begins by that time, while it

accepts the content from the client, and then schedules the upload to sometime before

the deadline according to its traffic prediction. In the latter case, the client and the

destination server will negotiate for an upload deadline, usually proposed by the client,

14

and a recommended upload time, which is provided by the destination server and

must be earlier than the deadline suggested by the client. Consequently, when the

client uploads its piece of content to the gateway, it will also piggy-back the suggested

upload time, so that the gateway may begin the upload process to the destination

server according to the indicated time.

3.3.3 Server Delegation

In traditional caching systems, edge networks need to retrieve the content at least

once to populate the cache, which limits the efficiency of download cache in reducing

downstream traffic. In contrast, our proposed mechanism saves even the first content

retrieval by means of cache reuse.

With the proposed mechanism, after data of the content is uploaded to the destina-

tion server, the server can reply to the gateway with the publish address of the content,

such as the URI where the content will be accessible, if the content is cache-able. With

the publish address, the gateway can to respond to the requests to the cached content in

delegation of the destination server, or reuses the cached upload data for the download

caching system in the same edge network. As the past research [19] on the geographic

distribution of content request proves spatial locality in content references, the cache

reuse feature is highly effective in improving the efficiency of reducing downstream

traffic.

3.3.4 Coordination of Entities

Our proposed mechanism of upload cache in edge networks involves three entities,

clients operated by end users, gateways run by access service providers and servers

hosted by content service providers. In the current practice, an end user is authenti-

cated by the access service provider via access control and is authenticated by content

service provider by specific service application. However, there is generally no direct

relationship between access service providers and content service providers. Moreover,

end users are usually not willing to disclose their account information to their access

service providers for privacy reasons. Even if they would, it would become an overhead

for access service providers as they need to store authentication information of end

users in their gateways. The new mechanism providing upload cache in edge networks

solves this problem by introducing a temporary token in the service application.

15

In addition to the trust problem, in order to achieve such an indirect upload process,

the client also needs to know the availability of destination server supporting such a

feature and the existence and the location of the gateway in the same edge network.

The information on the servers and the gateways may be provided on the fly through

the access service provider or via an automatic configuration service such as Dynamic

Host Configuration Protocol (DHCP) [20].

3.3.5 Typical Upload Processes

With the necessary information on the destination server and the gateway, the

client can initiate a typical upload process with upload caching in edge networks, as

illustrated in Figure 3.1.

First, as shown in Figure 3.1(a), the client requests for an indirect upload token for

a piece of content from the destination server. It submits the length and a fingerprint

value (for example, the MD5 hash) of the specific content it wants to upload to the

destination server. The server authenticates the privilege of user uploading such content

and provides the token to the client that can be used for indirect upload only once and

for the specific content.

When the client has received the token, it communicates with the gateway to upload

the piece of content to the gateway, as shown in Figure 3.1(b). Besides the actual data of

the content, the client will also transfer both the destination of the upload and the token

received from the destination server to the gateway. However, no privacy information,

such as end user’s account or password on the destination server, is provided to the

access service provider.

Finally, the gateway verifies the token with the destination server. Once the indirect

upload is acknowledged by the server, the gateway uploads the temporary stored data

of the content to the server. This step, as shown in Figure 3.1(c), doesn’t involve the

client at all, so the client can leave the network as soon as it finishes uploading the

content to the gateway.

3.4 Evaluation

UCEN can be applied to a variety of network architectures including but not lim-

ited to ICN. In this section, we evaluate UCEN using a prototype implementation

16

Internet

Server

Edge Network

Client

Gateway

①
②

(a) client requests for token from server

Internet

Server

Edge Network

Client

Gateway

③

④

(b) client upload token and content to gateway

Internet

Server

Edge Network

Gateway

⑤
⑥

(c) gateway upload content to server

Figure 3.1: Typical upload process with upload caching in edge networks

17

of our proposed on top of Hypertext Transfer Protocol (HTTP) [21]. There are two

advantages of such a decision:

1. HTTP is one of the most utilized protocols in today’s Internet [22], thus we believe

that its extension bring a broad impact on the online applications without much

obstruction in deployment.

2. HTTP has many functionalities that have been proposed in the future Internet

architecture literature [23], so that we can expect the implementation on top of

HTTP to be migratable to other ICN architectures.

3.4.1 HTTP Cached-POST Implementation

Following the protocol specification of HTTP/1.1 [21], we propose an extension

to the protocol with a new type of request method, called Cached-POST (C-POST),

that implements upload caching in edge networks. The format of a C-POST request is

similar to that of a traditional POST request, and such requests also utilizes the most

of the message header fields as they are used in POST requests. However, as shown in

Figure 3.1, there are three steps for uploading a piece of content in the new mechanism,

thus C-POST requests are issued three times to complete content upload. Moreover,

there is additional information to be transferred during the indirect upload procedures,

such as the upload token. HTTP cookie, a standard type of message header fields, is

used to carry the additional information in the C-POST request headers.

In the first C-POST request issued by the client to the destination server, in contrast

to the traditional POST request, no message body is carried after the message header.

Instead, such a request always carries a Cookie that indicates the length and the

fingerprint of the specific content. If the end user is authenticated and the C-POST is

accepted, the server replies with a standard “202 Accepted” response. The response

messages always carries a Set-Cookie field that indicates the upload token with an

expiration time and sometimes another Set-Cookie field indicating the suggested upload

time if the scheduled upload feature is enabled.

The second C-POST request that goes from the client to the gateway and the third

one that goes from the gateway to the destination server are almost identical to the

traditional POST requests except that the requests carry Cookie fields including the

token information the client has received from the destination server. The standard

18

successful response to these requests are “200 OK” as they are to the traditional POST

requests. The final response replied by the destination server may include a Content-

Location field to tell the gateway the publish location of the uploaded content to

support the cache reuse feature.

3.4.2 Client Upload Acceleration

As introduced above, one of the most important parameters in the upload cache

mechanism in edge networks is client tether time, which indicates the duration the client

has to keep online while uploading a piece of content. We analyze the client tether

time (including TCP establishment and deconstruction) according to the typical HTTP

upload procedures as illustrated in Figure 3.2.

Let τ1 denote the RTT between the client and the gateway and τ2 denote the RTT

between the gateway and the destination server. Assuming the piece of content to be

uploaded has size of L bytes, and the throughput between the client and the server

is b. Therefore, the client tether time in the traditional HTTP upload, as shown in

Figure 3.2(a), is

t1 = 3(τ1 + τ2) + L/b (3.1)

On the other hand, let the throughput between the client and the gateway be b′, the

client tether time in HTTP upload with C-POST, as shown in Figure 3.2(b), is

t2 = 2(τ1 + τ2) + L/b′ + 2τ1 (3.2)

In edge networks, we usually have RTT τ1 < τ2 and throughput b′ > b according to

the TCP throughput equation [24]. Thus, the client tether time is calculated according

to Eq. (3.1) and Eq. (3.2), that is

∆t = t1 − t2 = L(1/b− 1/b′) + (τ2 − τ1) (3.3)

As RTT can be simply probed, client decides whether utilize upload cache service or

not according to its estimation of throughput and the size of content with its own

criteria. For example, some clients may decide to use upload cache when ∆t ≥ t1/2,

while some will use it when ∆t is larger than some constant time.

Since the reduction of the client tether time is contributed from two parts, the

difference in throughput and RTT, we evaluate the reduction and examine effects of

19

client gateway server

TCP SYN
TCP SYN-ACK

HTTP POST

HTTP 200
TCP FIN

TCP FIN-ACK
t1

(a) traditional HTTP upload

client gateway server

TCP SYN 1
TCP SYN-ACK 1

HTTP C-POST 1
HTTP 202

TCP FIN 1
TCP FIN-ACK 1

TCP SYN 2 TCP SYN-ACK 2

HTTP C-POST 2

HTTP 200TCP FIN 2
TCP FIN-ACK 2t2

TCP SYN 3
TCP SYN-ACK 3

HTTP C-POST 3

HTTP 200
TCP FIN 3

TCP FIN-ACK 3

(b) HTTP upload with C-POST

Figure 3.2: Complete HTTP upload procedures

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
re

qu
en

cy

t2 / t1

b’ = 100Mbps
b’ = 1Mbps

b’ = b
b’ = 2b

Figure 3.3: Cumulative frequency distribution of the reduction of client tether time

these two factors on the result by replaying the actual traffic trace captured from a

campus network.1

In the evaluation, assuming the edge router playing the role of the gateway in

UCEN, from the captured traffic trace, we can profile both RTT values τ1 and τ2, as

well as the throughput between clients and servers b. However, we cannot infer the

throughput between the clients and the gateway, b′. Thus, we use different values of

b′ and the result distribution of the reduced tether time reduction compared to the

original time is illustrated in Figure 3.3.

Even if the throughput between clients and the gateway is the same as that between

clients and servers (in which case the system only benefits from the differences of RTT),

UCEN still provides a little benefit on client tether time. More than 10% of traffic

reduces its client tether time by 10% or more. Doubling the throughput, nearly half

of the traffic reduces its client tether time by 20% and the maximum reduction ratio

is about 50%.

If the throughput in edge networks is assumed to be constant, result shows curves

dissimilar from the two described above. If the throughput is 100Mbps, 41% of traffic

reduces their tether time by half, and even if it is 1Mbps, 34% of traffic reduces theirs

1Please refer to Appendix A for the details of data preparation, similarity hereinafter.

21

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

T
ra

ffi
c

(M
B

/s
)

Time (hour)

Original
Scheduled

Figure 3.4: Traffic on the edge router before and after scheduling

by half. The curve is flat and the maximum reduction ratio approaches to 1 in the

constant throughput case, which implies UCEN is beneficial for clients uploading their

contents to very slow servers.

3.4.3 Traffic Peak Reduction

We also evaluate the impact of flattening traffic peak for the gateway as we do not

have much information about the traffic at the server side. Let the deadline of delaying

the actual upload be an hour, we can have a simple heuristic algorithm on scheduled

upload. When the gateway has received a C-POST request from the client, it schedules

the actual upload to the time slot that has least scheduled traffic currently. Upload

scheduling simulation is done according to the captured traffic on 10-minute periods

with no background traffic assumed.

The result of scheduled upload is illustrated in Figure 3.4 and Figure 3.5. Without

upload scheduling, the highest traffic on the edge router is 2.14 MB/s. This peak, as

shown in Figure 3.4, is reduced by scheduled upload by 49% to 1.10 MB/s. The trade-

off results in delayed upload to the destination server. Figure 3.5 shows the distribution

of the delay, where the median delay is 48 minutes. Because only a simple heuristic

algorithm is used in the simulation, we can expect further reduction and less delay

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
re

qu
en

cy

Upload Delay (minute)

Figure 3.5: Distribution of upload delay due to scheduled upload

time resulting from the scheduled upload feature.

3.5 Summary

In this chapter, we have presented a new cache mechanism – Upload Caching in

Edge Networks (UCEN). UCEN utilizes light-weight in-network caching to assist pub-

lishing of user-generated contents (UGC), and achieves benefits for both end users

and service providers without exposing privacy information of the end users to access

service providers.

For end users, UCEN significantly shortens the duration while the end users must

stay online for uploading their generated content. For service providers, UCEN flattens

the traffic peak significantly (as much as half, as shown in our simulation) for the edge

networks or the destination servers. Such caching functionality is achieved by indirectly

uploading to the gateways in edge networks with the token retrieved from destination

servers and leaving gateways to complete the actual upload to the destination servers.

The gateway schedules its delayed upload to the destination servers without incurring

much extra delay in the total elapsed time for the upload, and without the involvement

of the end users. The gateway also delegates the destination server for serving the

uploaded content in the edge network, if it is cache-able.

23

Besides being a caching policy for ICN, this design can also be implemented as an

extension to HTTP request, called Cached-POST. In order to quantify the effectiveness

of the proposed architecture, we have conducted a series of simulations based on the

actual traffic trace. Our evaluation shows that 41% of upload traffic has the holding

time reduced by half by using C-POST method, so that users can leave a network

quickly after the uploading, and peak traffic is reduced by 49% via scheduling upload

time, thus, saves the capital expense for improving bandwidth.

Uploading support, including upload caching, is a functionality missing in the cur-

rent ICN architecture proposals. We believe the upload caching mechanism proposed,

UCEN, is an indispensable feature for meeting the requirements for today’s communi-

cation patterns, especially dealing with growing UGC traffic, and without this feature,

ICN would not be widely deployed as a future Internet architecture.

24

Chapter 4

Content-Oriented Caching with
In-Network Index

4.1 Introduction

In this chapter, we propose Content-Oriented Caching with In-Network Index (COCINI),

a deployable and self-scaling scheme exploiting spare storage and bandwidth from end-

systems, to eliminate redundant traffic and to enable efficient and fast access of content

in ICN. In contrast to the existing approaches lacking the perspective of deployability,

COCINI is designed to be incrementally implemented and deployed, for example (but

not limited to), from the edge of the Internet.

Also, In COCINI, while the content itself is cached on individual clients, the func-

tionalities of redirection and corresponding indexing are integrated into ICN routers.

This design eliminates the cost for storage space and the drawback of single-point-of-

failure, as observed in peer-to-peer’s self-scaling architecture: the more users donate

storage capacity, the more efficient the system becomes.

In a nutshell, while a COCINI-capable client issues the request for content to the

origin server as they usually do, the request is redirected to the nearest client that

holds the cache of the content if it exists, according to the index of COCINI-capable

routers. Since the redirection decision is made within the COCINI-capable routers, the

topology information they have already collected for forwarding traffic can be utilized

to optimize the decision. As a result of the proposed content-based redirection and

caching, COCINI can eliminate the redundant traffic and to enable faster access to the

cached content localized around the users.

25

4.2 Related Work

In response to the content-oriented trend of the modern usage of the Internet,

many research efforts have attempted to adjust and redesign our communication model.

However, we posit that the existing proposals are either a clean-slate approach hardly

deployable in a wide area and in a short term or a partial solution still with major

drawbacks unresolved, such as high cost for resource management. While the concepts

such as name-based routing [25] and hash-based addressing [26] have been proposed

earlier, several content-oriented schemes have been recently proposed [27, 28]. However,

it is hard to put such clean-slate thinking into practice in a large scale and in a short

period of time. The existing work also lacks the perspective for incremental deployment

of such clean-slate designs.

On the other hand, a large body of work has been proposed to remove redun-

dant traffic from the Internet through cache proxies such as web proxies [29], object

caches [30], packet caches [31, 32], wide-area content delivery networks [33, 3], and

etc. However, these techniques are typically developed for the sake of servers and their

deployment and administration are often in the hands of the servers or third parties

such as CDN providers, and not controlled by clients at the very edge of the network.

Thus, the existing work lacks the design for edge network operators to be able to deploy

effective elimination of redundant traffic by themselves.

4.3 System Design

One of the most important goals in COCINI is to enable clients to retrieve content

from the nearest possible location. We face two challenges in achieving this goal:

1. to make the content and its copies discoverable and retrievable for clients,

2. to realize the content retrieval as a deployable mechanism over the current Inter-

net infrastructure.

This part first describes the scheme for the content discovery and retrieval and then

introduces modifications required on both routers and clients for the COCINI design.

26

4.3.1 Scheme Overview

In COCINI, a piece of content is addressed by its globally unique name. An end

host is either a client end-point or a server end-point according to its role in the content

delivery. A server end-point is the host where the content is published, i.e., a principal

of the content or a public forwarder of the content. A client end-point is the host that

retrieves the content. A client end-point may, and must if no other host has, retrieve

some content directly from the server end-point as in the current Internet. After the

content is downloaded, its local copy is cached so that the client end-point may serve

it to other client end-points later. Thus, contents are delivered not only from a server

to a client, but also among clients.

When a local copy of some content exists, retrieval of the content is processed as

depicted in Figure 4.1. A client, without knowing there exists the local copy, sends a

request message towards the original server that holds the content. As the request is

being forwarded via the network, it traverses through several Content-Oriented Redi-

rectors (CRs). A CR looks up its local index table for the copies of content according

to the name carried in the request message. If it finds a local copy, as in Figure 4.1(a),

a redirect message is sent towards the client issuing the request, telling it the location

of the local copy. Meanwhile, the original request message is suppressed at the CR.

The client then follows the instruction of the CR, sending another request message

towards the identified local copy. Upon receiving this request, a response message is

generated and returned with the content. As described in Figure 4.1(b), the entire

process completes without the involvement of the server.

Since client may be disconnected from the network and cache entries may be get

evicted, the local copies of content may become unavailable. However, until the CR

gets notified, it still instructs clients to redirect their requests to the unavailable local

copies. In this case, the client that receives such requests sends unavailable messages

to both the requesting clients and CR, as shown in Figure 4.1(c). Upon receiving an

unavailable message or when none of the traversed CRs can redirect the message, the

request message sent by the client reaches the original server. As Figure 4.1(d) depicts,

the server processes the request and responds to the client with the requested content.

The reliability of content delivery in COCINI is no worse than that of the current

Internet, since CRs in COCINI fall back on the original server to look for the content.

27

Client A

Client B

CR

CR

CR ServerInternet

Cache

request redirect

(a) Client A sends a request to the server; CR instructs A to redirect this request
to client B

Client A

Client B

CR

CR

CR ServerInternet

Cache

request response

(b) Client A retrieves the content from client B

Client A

Client B

CR

CR

CR ServerInternet

request unavailable

(c) Cache on client B is announced as “unavailable” to CRs and clients

Client A

Client B

CR

CR

CR ServerInternet

request response

(d) Client A retrieves the content from the server as the last resort

Figure 4.1: COCINI messages and their delivery

To summarize, there are four basic primitives in COCINI, as shown in Table 4.1.

All the COCINI messages must carry names. The primitive request is the only one

that takes optional arguments to indicate whether this request is redirect-able and who

advises the redirection in case of a redirected request.

4.3.2 Content-Oriented Redirection

As described above, COCINI aims to work with the current Internet. As a result,

CRs are almost the same as the current IP routers except that they have a cache

index and are capable of processing COCINI messages. The goal of CRs is to provide

28

Table 4.1: Basic primitives in COCINI

message arguments

request name, (redirect flag), (redirect advisor)

redirect name, location

response name, content data

unavailable name

clients cache information in local network as precise as possible with limited cache

index capacity and computation overhead. The task of a CR may be divided into three

parts: index manipulation, cache redirection and implicit cooperation.

Index Creation and Removal

While the content cache itself is stored in clients, a CR needs to populate the index

of caches before advising clients to redirect. Storing only the index on CR saves storage

space, but even so the storage space may become scarce resources in routers. For this

reason, CRs should store only index entries useful to themselves.

When a response message traverses multiple CRs, those CRs infer that both the

source S and the destination D have cached the named content. For creation of a

cache index, a CR looks up routing information of S and D to calculate distances to

them, lS and lD. Usually, “AS PATH” length is applied as the distance metric. But

if both S and D are located in the same Autonomous System (AS) with CR, intra-

domain routing metric is used. Indices for the content on S and D are created with

the probability pS and pD, respectively,
pS =

lD
lS + lD

pD =
lS

lS + lD

(4.1)

If a new index entry is created while the index storage is full, some index entries

must be evicted. Replacement algorithms like Least Recently Used (LRU) [34] can be

adopted to achieve this. When an unavailable message is received, a CR also needs to

remove the corresponding index entry.

29

Cache Redirection

A CR’s decision on redirection to the cached content is necessary when a request

message traverses the CR and the CR holds some index entries to the requested content.

The target of redirection is selected from the set C = {C0 = D,C1, . . . , Cn}, where
D is the original destination and C1, . . . , Cn are hosts that have cached the requested

content according to the index of the CR. The selection algorithm is as follows,

1. Calculate AS PATH length, li, from Ci to the requesting client S.

2. If S is located in the same AS as CR, and min({li}) = 0, calculate hop count hi

for all Ci where li = 0, and define C′ = {Ci : hi = min({hj : lj = 0})}; otherwise,
define C′ = {Ci : li = min({lj})}.

3. If D ∈ C′, pick up D as the target; otherwise, randomly pick one from C′.

If the target is the original destination D, the CR simply forwards the request;

otherwise, the CR takes the request and sends a redirect message.

Implicit Cooperation

CRs work independently of each other. To be more precise, CRs do not explicitly

coordinate with each other except exchanging routing information just as conventional

routers do. This means CRs incur neither network nor computational overhead.

However, CRs implicitly cooperate in COCINI. A client does not specify which

CR to serve it but sends the request message towards the server through multiple CR.

When a CR receives the request, it can tell that none of CRs by far had a corresponding

index entry. Thus, different CRs never deal with the same request.

A response message may traverse multiple CRs as well. Different CRs populate

different indices according to different weight parameters set in their algorithms. Also,

the indices to the content may be distributed over different CRs according to the access

pattern to the content. For example, if a small group of clients, e.g., within the same

network send a request for some content and it is fulfilled by the CR closest to the

group, the CR keeps the index to the content but the other CRs beyond it do not

keep the index to the content. However, if a large group of clients distributed across

multiple networks requested for the content, the number of CRs that store the index

to the content may increase and their locations may vary.

30

Application 1 Application 2 Application N...

Client Host Agent

Operating System

Cache Files Socket Operations

Storage I/O Network Interface

Figure 4.2: Layout of a COCINI client host agent

4.3.3 Client Host Agent

A COCINI client host agent is installed in each client host to manage local cache

files and network communications. As described in Figure 4.2, the agent lies between

applications and operating systems.

As illustrated in Figure 4.2, all the requests to retrieve content, from whatever

application and via whichever protocol they come, e.g., HTTP, FTP, BitTorrent, eMule,

etc., go through the client host agent instead of directly invoking socket operations.

The client host agent first looks up the local cache files to see if the content data with

the same name is available. If a local copy is found, it is provided to the application,

finishing the transaction.

If the client host agent finds another pending request for the same content, it

provides the content as soon as the previous request is finished. If neither a local

copy nor a pending request exists, the client host agent encapsulates the request in a

COCINI-compatible format and sends it to the network.

When a response with content data arrives, the client host agent creates a new

cache file containing the payload of this response, while providing this response to the

corresponding application.

A request for content may also be issued by another COCINI client and be arriving

from the network. In this case, the client host agent only looks up its local cache files

for the corresponding content. If the requested content is available, a response message

is generated with its payload filled with the content data and is sent to the host that

has issued the quest; otherwise, an unavailable message is sent back.

31

A COCINI client host agent may be either implemented as a middle-ware like proxy

software for rapid deployment, or may be integrated as system-calls in operating sys-

tems. As opposed to the middle-ware design that takes over the control of network

protocols, the system-call approach benefits from not only the performance boost and

bandwidth saving, but also from simplifying network programming and removing ma-

nipulation of the proxy protocols.

4.4 Evaluation

We apply workload data from the real network to evaluate COCINI’s effectiveness,

measuring to what extent COCINI can reduce inter-network traffic and can improve

content delivery efficiency with reasonable deploy cost. We implement a session-level

simulator in C++ to achieve this and focus on Web contents although the COCINI

scheme is generic enough to extend to the other protocols.

4.4.1 Experiment Setup

For our simulation, we replay the real traffic trace captured at a campus network.

Besides the traffic behavior itself, the evaluation is also sensitive to the network topol-

ogy. We apply “traceroute” from a series of hosts outside of the campus to all recorded

clients and infer the network topology, finding 133 routers and inter-router links, as is

illustrated in Figure 4.3.

The capacity of index impacts the overall performance of CRs, directly affecting

the cache hit ratio. In our experiment, we choose index capacity from 10 entries to 109

at each CR to evaluate the performance of the COCINI scheme. We also compare the

case where all the 133 routers are COCINI-enabled (denoted as Multi-CR below) with

the case where only the upstream edge router is so (denoted as One CR below).

The simulator replays the sessions in the traffic trace by issuing requests for specific

content from the corresponding client nodes in exactly the same timing as recorded.

For each session, we examine whether its content is retrieved from a cache on a client or

from the server, how much inter-network traffic is generated, and also the time elapsed

to complete.

32

Internet 1

2

34

121

122

3

4

5

6

7

8

10

11

13

14

18

23

27

30

46

87

20

51

67

72

112

114

124

22

32

35

59

65

66

78

82

83

91

94

96

109

125

127

16

42

45

61

68

70

73

75

76

79

86

90

93

100

103

110

119

129

131

132

133

60

64

85

118

120

123

9

17

80

40

52

54

57

63

69

74

77

84

92

101

104

106

117

128

130

12

36

43

55

50

115

21

102

116

15

19

38

111

41

26

31

39

49

81

24

25

48

53

58

89

97

105

71

28

56

29

33

37

95

126

44

113

47

62

108

107

99

88

98

Figure 4.3: Network topology used in experiment simulation

33

 10

 15

 20

 25

 30

 35

 40

 45

 50

10 100 1K 10K 100K 1M 10M 100M 1G

R
ed

uc
tio

n
R

at
io

 (
%

)

CR Index Capacity

One CR
Multi-CR

Figure 4.4: Traffic reduction ratio in two scenarios

4.4.2 Result and Analysis

Figure 4.4 describes how much traffic for downloading content from outside of the

network is reduced as the index capacity of CRs increases. This result gives us two

observations.

First, index capacity is important to the traffic reduction ratio. Only less than 12%

traffic is reduced when a CR hosts up to 10 index entries, and the reduction ratio is

improved over 45% when the capacity increases to 109 entries. This explains how it

is significant to store only the index instead of the whole content in CRs that would

require much more storage capacity. An index can be accommodated within hundreds

of bytes while the average size of an HTTP object is measured 88 kbytes on average in

our trace. Therefore, a CR with 1 Gbyte memory can contain about 107 index entries,

while a cache server with the same storage can accommodate only 10,000 Web contents.

According to Figure 4.4, with the same 1 Gbyte storage, a cache server achieves a little

higher than 13% traffic reduction rate, which is 21% lower than a single CR case can

achieve.

Second, even though CRs perform their parts independently, without coordinating

with each other, Multi-CR can achieve obviously higher traffic reduction rate when the

index capacity is larger than 104. For example, Multi-CR with 107 entries at each CR

34

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 100 1K 10K 100K 1M 10M 100M 1G

C
on

te
nt

 S
ou

rc
e

(T
B

yt
e)

CR Index Capacity

Intra-Node
Inter-Nodes
from Server

(a) One CR scenario

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 100 1K 10K 100K 1M 10M 100M 1G

C
on

te
nt

 S
ou

rc
e

(T
B

yt
e)

CR Index Capacity

Intra-Node
Inter-Nodes
from Server

(b) Multi-CR scenario

Figure 4.5: Distribution of content sources in two scenarios

35

 12

 14

 16

 18

 20

 22

 24

10 100 1K 10K 100K 1M 10M 100M 1G

R
ed

uc
tio

n
R

at
io

 (
%

)

CR Index Capacity

One CR
Multi-CR

Figure 4.6: Reduction ratio of cumulated session time in two scenarios

works almost the same as one CR with 109 entries. Although complex coordination

among CRs is possible, this result verifies the effectiveness of our simple design of

COCINI without coordination in terms of reduction of redundant traffic.

We further explore the detail of the traffic reduction. As shown if Figure 4.5, besides

retrieving the content directly from the original server, there are two alternative ways:

a) retrieving the content from a client according to CRs’ advice (inter-node retrieval),

or b) using locally available cache (intra-node access).

Interestingly, Figure 4.5 shows that the contribution of the intra-node caching stays

constant about 5.5 Tbytes on average, and accounts for significant portion of the total

traffic reduction. This implies that we can eliminate this portion of traffic even from

the local network, since COCINI enables a client to access the content from itself and

there is no traffic generated outside. Also, if the index capacity at CRs increases,

the contribution of inter-node content retrieval becomes significant, e.g., as much as

4 Tbytes with 109 index entry capacity.

This result verifies the effectiveness of our COCINI design that every client may

delegate cache management and spare storage space. Furthermore, intra-node con-

tribution frees CRs from maintaining index entries that only a single host may be

interested in.

36

Not only network operators can benefit from COCINI through reducing redundant

traffic, the efficiency of content retrieval is also improved. As shown in Figure 4.6,

average content retrieval latency is reduced by from 12% to 23% with different in-

dex capacities in One CR and Multi-CR scenarios. This result verifies that COCINI

achieves efficient and fast access to the content.

4.5 Summary

In this chapter, we have presented Content-Oriented Caching with In-Network Index

(COCINI) that achieves a deployable and self-scaling solution for eliminating redundant

traffic and enabling efficient and fast access to content. Unlike traditional caching

mechanisms where both cache storage and index are located in the same node, COCINI

is innovative in the sense that it aggressively caches the content in the network to

reduce redundant traffic and to facilitate fast access to the content from the nearest

possible end systems, such as a client with the content cached, or an origin server of the

content. However, COCINI significantly differs from the caching policies in other ICN

in its deployable and self-scalable design as follows. COCINI only requires a minimal

change in a router, i.e., indexing the content accessed by the end-systems, thus, it

can be incrementally deployed, e.g., from the edge of the Internet. Also, COCINI

exploits spare storage on end-systems for caching the content and unused bandwidth

for accessing it so that a COCINI-enabled router (CR) intercepts the access to the

content and redirects it to the nearest end-system holding its cached copy. As a result,

COCINI is not just scalable but self-scaling in its nature — the more end-systems

enable COCINI, the more cache storage and network resources COCINI can utilize.

In order to quantify the effectiveness of the proposed scheme, we have conducted

a simulation using real-world traffic traces. Our evaluation shows that through apply-

ing COCINI to the real-world campus network environment, 12% Web traffic can be

reduced with index capacity of 10 index entries, and the reduction rate rises to 49%

when with index capacities of 109 index entries. The cumulative latency in accessing

content can also be shortened by about 20%. This means a significant reduction of

cost for bandwidth enhancement and implies the improvement of user experiences when

retrieving contents.

The result confirms the significance of the caching scheme introduced in COCINI

37

that separates the storage and index of in-network caching system. Efficient caching is

achieved in COCINI by exploiting spare storage and bandwidth from end-systems and

only storing cache index via minimal change in routers. That is to say, COCINI is a

require caching policy for an ICN architecture, without which content delivery would

not be achieved in a scalable manner.

38

Chapter 5

Information-Centric Transport
Protocol

5.1 Introduction

In this chapter, we propose Information-Centric Transport Protocol (ICTP), a

transport layer protocol to support most features of ICN over the current Internet

infrastructure by embracing following features:

1. ICTP is designed to be compatible with the current Internet Protocol (IP), with

the ability to be incrementally implemented and deployed.

2. ICTP is a protocol abandoning socket addresses. All operations in this protocol

are content-oriented and connection-less.

3. ICTP includes congestion control to be fair with existing transport protocols and

enable traffic engineering.

We posit that it is the current transport protocols that are based on socket addresses

(a tuple of an IP address and a port), that constrain the realization of information-

centric communication. For example, in COCINI scheme introduced in Chapter 4, CR

needs to suppress the request sent to the original server and advise the client to send

a new one (as depicted in Figure 4.1), because all the messages are expected to send

with socket addresses and are difficult to be redirected transparently to the client.

As far as we know, ICTP is the first transport protocol operable today that supports

a variety of ICN concepts.

39

5.2 Related Work

All transport protocols widely used nowadays, whether connection-oriented ones,

such as Transmission Control Protocol (TCP) [35] and Stream Control Transmission

Protocol (SCTP) [36], or connection-less ones, such as User Datagram Protocol (UDP)

[37], are operated based on Berkeley sockets [38]. Socket addresses, which are usually

presented as a tuple of an IP address and a port, are used as the identifiers of data

communication in these protocols. Thus, these communications are constrained to

local and remote socket addresses, which obviously leads to the current host-based

communication model.

Besides the constraint brought from using socket addresses, these protocols are

not in favor of supporting information-centric communication since they treat their

payloads as arbitrary byte flows. This behavior in these protocols has two problems.

First, the identity of information objects is excluded during transfer. Thus, information

transfer is opaque to the whole network it traverses except negotiating endpoints and

thus it is impossible for intelligent devices within network to advise a better location for

information access than the original destination. Second, the security of transfer relies

on untrustworthy connection information such as is done in Transport Layer Security

(TLS) [39], which ought to be placed in the transferred information object itself.

In the light of this observation, we come up with the design decision that a transport

protocol supporting information-centric transport should abandon Berkeley sockets and

identify the information object it is carrying.

5.3 System Design

In this part, we describe major design decisions we have made in designing ICTP

to realize information-centric transfer over current Internet infrastructure.

5.3.1 Naming of Information Objects

Just as socket addresses are the bases of today’s host-based communication, in-

formation objects will be the foundation of information-centric transport. A precise

definition of information object is required in designing the protocol.

A piece of information object is uniquely identified its name. ICTP adopts a human-

readable, hierarchical naming system, where a name is composed of two parts, the

40

iii.u-tokyo.ac.jp:icna/*

iii.u-tokyo.ac.jp:icna/arch/*

iii.u-tokyo.ac.jp:icna/arch/name

iii.u-tokyo.ac.jp:icna/arch/rar

iii.u-tokyo.ac.jp:icna/icol4 prefixes

names

Legend:

Figure 5.1: An example of names owned by the publisher “iii.u-tokyo.ac.jp”

publisher identifier and the publisher-dependent name. The former is a registered

global-unique identifier that is similar to a domain name today and corresponds to a

certificate issued by the registration organization so that content and services can be

signed and verified, while the latter is a segmented name that is arbitrarily specified

by the publisher to describe a specific piece of content or service provided by that pub-

lisher. The fact that publishers can arbitrarily specify the publisher-dependent name

brings two advantages. First, although network devices will treat names as flat ones

for faster processing, a publisher can still organize internal structure of naming (for

example, including some version information to update its information with the same

name) according to the actual requirement of the publisher or its applications inde-

pendent from other publishers. Second, different publishers can publish information

under the same name, which enables information access when the user has only the

information about the name but does not know or care who the publisher of some piece

of information object is. To represent a group of contents or services that share similar

features, publishers can use a prefix that is composed by the publisher identifier and

the prefix part of the publisher-dependent names. An example of names and prefixes

is shown in Figure 5.1.

Sometimes, it is not necessary to acquire the whole piece of information, especially

when it is very large, such as multimedia contents. ICTP supports the partial transfer

of content by defining partitions of a piece of information object as the minimum unit

in the content transfer. Except the last partition (or information objects with only

one partition), all partitions are in size of 2n bytes, which is assigned by the publisher

41

ranging from 1 kbyte to 1 Mbyte. In current prototype implementation, there may

be at most 32767 partitions in a piece of information object, that is, the maximum

length of any piece of information object is 32 Gbyte, sufficient for use because it is

even larger than a typical Blu-ray disk (with 25 Gbyte capacity).

5.3.2 Enabling In-Network Processing

One of the most essential things for supporting ICN architectures is that in-network

processing should be enabled by the transport protocol. That is to say, devices within

network should be able to know which piece of information object is being transferred

by some packet. Moreover, such information should be able to be acquired without

deep packet inspection (DPI) as it will bring devices high computation overhead and

thus harm the scalability of the architecture.

ICTP fulfills this requirement by carrying necessary information to identify a piece

of information object in packets. As a transport protocol, it is intuitive that ICTP sup-

ports incremental deployment as it carries all information in layer-4 headers. Network

devices that do not support ICTP (such as traditional IP routers) can simply forward

packet according to IP headers and ignore ICTP headers as they typical do with to-

day’s transport protocols. On the other hand, intelligent network devices supporting

ICTP can do shallow packet inspection (SPI) to acquire necessary information, and

this would not bring much overhead to those devices thanks to the information located

in ICTP headers with constant structure.

Despite that ICTP is a transport protocol that expects in-network processing to

assist information delivery procedure, the protocol does not specify the forwarding

strategy that should be adopted by network devices. Network operators, or network

users themselves if they are using slice-based network facilities, can decide the forward-

ing strategy network by network as long as it would not tamper the reliability of the

communication. That is, the forwarding strategies of ICTP must satisfy the following

two rules. First, we enforce forwarding to be loop-less. Second, fall-back forwarding

using IP header information ensures the reachability to a destination, not necessarily

the optimal one.

42

5.3.3 Information Security

Content-based security is adopted in most ICN architectures. That is to say, the

protection and trust of content is convinced by the transferred content itself, and not

by the transferring method or its endpoints. Information security in ICTP also follows

this concept, where all information objects are mandatorily authenticated with digital

signatures, and private information is optionally protected with encryption.

In contrast to TLS (and some ICN architectures), ICTP does not perform per-

packet signatures, but requires all partitions to be publicly authenticable instead. Each

partition transferred in ICTP carries a small amount of auxiliary data authenticating

the binding between the name of the piece of information object and the actual data

of the partition. For example, publisher can use standard public key signatures to

generate signed checksum for every partition and append it to the partitioned data.

Anyone that retrieved the partition with its signed checksum can verify the identifier-

data binding is signed by a specific key of the publisher. We will not elaborate how

to establish trust in keys as this issue is already discussed in the other literature, and

there are existing models, for example, Simple Public Key Infrastructure (SPKI) [40]

that can fulfill the content security requirements in ICTP.

The situation is more complicated if the ICN architecture allows clients to send

user-generated data with names registered by service providers. In this case, there

is a mismatch between the owner of the name (service provider) and the owner of

the data (end user). First, this may be considered a necessary trade-off for allowing

user-generated content pushing in ICN. The security threats, such as denial-of-service

attack, can be taken care of by other mechanisms. We also argue that such threats

cannot be completely eliminated even without the content uploading functions. Second,

although there is problem using SPKI in this case, adopting Certificate Authorities

(CA) approach of public-key infrastructure [41] resolves the validation problem without

introducing much additional complexity. In brief, the service providers play the role

of CA, signing and publishing the public keys bound to users they provide services, so

that ICTP routers can verify that an access message with data is sent by a valid user

of the designated service name in the message header.

43

PVER TYPE NAME_LEN TD_FIELD

NAME
(variable length)

0 16 31

Figure 5.2: Message header fields of ICTP

5.4 Protocol Specifications

ICTP is designed to operate on top of the current network layer protocols such as

IP and deliver information objects over the existing network infrastructures. This part

describes message formats and the detailed transfer processes of ICTP.

5.4.1 Message Formats

ICTP has four types of messages, which are registration, access, result and transfer

control. An end host sends registration messages to declare the availability information

of some piece of information object to neighboring hosts in edge networks. The desti-

nations of these messages are all the hosts on the same network (i.e., 224.0.0.1 in IPv4).

Users of a host, or their agent applications, can configure which pieces of information

objects are announced by the protocol. Access messages are sent in order to retrieve a

specified piece of information object, and result messages are sent in response to request

messages to provide a specified piece of information object. Transmission in ICTP is

conducted in unit of partitions. Hence, the transmission procedure of a partition may

span across several messages, as each message has to fit into a network layer packet.

The detail of fragmentation and transfer control message will be introduced later.

ICTP message header follows lower-layer header (e.g., IP header in the current

Internet) in network transport to facilitate information-centric in network processing.

Although ICTP has four primitives, message header processing is simplified by in-

troducing a common message header format for all types of messages. As shown in

Fig. 5.2, the message header includes four fixed-length fields and a variable-length field.

The first 4-bit field PVER has a constant value of 2, indicating that the following

message is an ICTP message. The second 4-bit field TYPE indicates the message type.

The 1-byte field following these is NAME LEN, which specifies length of the name carried

in the message. And the last fixed-length field is a 2-byte TD FIELD, a type-dependent

field. In register messages, the field carries attributes of registration and registered

44

names; in access messages, the field carries the access ID ; and in result messages and

transfer control messages, the field is used for explicit transfer control flags. The last

field in the message header is a variable-length field carrying the DSINA name, whose

length is specified in NAME LEN. This field finishes with the character “#” if it is a full

name and finishes with the character “*” if it is a prefix.

In one word, only necessary information for in-network processing is carried in

the message header. All the remaining information in the messages, for example, the

authentication information of the payload data, is contained in message body in the

format not specified by the transport protocol but the applications, to ensure the

extendibility of the architecture.

5.4.2 Fragmentation

Many ICN architectures support content partitioning to enhance content retrieval

flexibility and to refine the transfer unit. However, many of them fail to take the ne-

cessity of content data spanning various messages, and some architectures suppose the

size of a content partition fit into a single message. Considering packet size of the cur-

rent Internet, such design will result in significant overhead brought by authentication

information and so on. Therefore, it is necessary for ICTP to support fragmentation

in transferring bulk data.

The challenge of supporting fragmentation in ICTP is that routers have to guaran-

tee that fragmented messages for the same access request are forwarded to the same

content or service end-point, while at the same time to retain the information-centric

advantage that the forwarding should be independent of addresses and automatically

load-balanced. ICTP solves this problem using the access ID carried in the TD FIELD of

access messages. A client always send fragment messages for the same access request

with the same (name, access ID) tuple, and a router should always forward access

messages with the same (name, access ID) tuple to the same destination. In this way,

ICTP always transfer a series of fragmented access messages to the same content or

service end-points.

5.4.3 Transfer Control

The purpose of the transfer control in ICTP is two-fold, reliability assurance and

congestion avoidance. The former guarantees that recipient can retrieve content effi-

45

Table 5.1: Four transfer control instructions

instruction usage

feedback updates necessary information for congestion avoidance

jump skips to a specified fragment for retransmission or partial retrieval

stop terminates the current transmission

new addr resumes the current transmission to a new address

ciently while the latter prevents networks from congestion collapse. Both of the func-

tions are carried out in ICTP by the sender of result messages, by reacting to transfer

control messages sent by recipients of content data.

Recipients provide required information for transfer control with four instructions

described in Table 5.1. The feedback instruction provides information for congestion

avoidance, such as the timestamp of the last fragment received, the transmission rate

estimated by the receiver, loss event rate, and so on. When the recipient wants to

terminate the transmission procedure as it has already held the whole partition or the

partition is no longer required, a control message with the stop instruction is sent to

indicate the termination of current transmission. Sometimes, out-of-order transfer and

packet loss happen in networks as ICTP operates on unreliable network layer proto-

cols. Control messages with jump instruction signify the occurrence of such incidents

and indicate the next expected fragment in the partition. Furthermore, the new addr

instruction is used to enable information delivery in mobile environments where the

addresses of clients change frequently.

Generally speaking, ICTP adopts TCP-Friendly Rate Control (TFRC) [42] to retain

the fairness of transmission between ICTP and other transport protocol. Thus, ICTP

can operate efficiently even when there is no network device supporting this protocol.

Moreover, borrowing ideas from explicit congestion notification (ECN) [43] and its

latest research work [44], ICTP utilizes explicit congestion level indication to allow

senders adaptively adjust sending rate according to different congestion levels on the

bottleneck routers. If the congestion level of a router is higher than that indicated

in the messages, the router will replace the congestion level value with that of local

status. In this way, the recipient of a result message will be aware of the status of the

most congested routers in the networks. The sender of result messages can accurately

46

estimate the congestion level with the existence of such indicator and will rapidly adjust

to the optimal sending rate.

5.5 Summary

Research efforts on ICN architectures are often in favor of clean-slate designs, which

consequently result in difficulty in the deployment in today’s Internet infrastructure.

In this chapter, we posit that it is the existing transport protocols that constrain the

development of content-oriented networks with current practice. Accordingly, we pro-

pose the Information-Centric Transport Protocol (ICTP) to support most features of

ICN architectures over the current Internet infrastructures. We have presented the

design decisions and the protocol specifications, showing that the proposed protocol is

compatible with the current IP and can be incrementally implemented and deployed.

In-network processing of information-centric strategies can be benefited from the gen-

uine connection-less feature of the protocol. Moreover, the protocol achieves a con-

gestion control mechanism that is fairness with the existing transport protocol, TCP,

which is a necessary feature to make the protocol co-exists with today’s Internet.

ICTP is the first transport protocol operable today that supports a variety of ICN

concepts. The protocol provides an indispensable “narrow-waist”, namely, fundamental

general transport mechanism for various kinds of ICN architectures that is deployable

in the current Internet infrastructure and satisfies the requirement to be TCP-friendly.

47

Chapter 6

Distributed Resolution Service

6.1 Introduction

In this chapter, we take a novel approach to the challenges of feasible and efficient

name resolution service. Because of the similarity between the naming scheme in ICN

and Uniform Resource Identifier (URI) [45], we evaluate the time and space complexity

of a typical data structure for lookup of ICN names using URIs collected from the traffic

trace of a campus backbone network. We propose a simple and empirical Distributed

Resolution Service (DRS) scheme according to the time and space complexity model.

Finally, we optimize the proposed distributed resolution service scheme with regard to

network performance.

Despite the differences in architectural designs of the ICN proposals, almost all of

them share the features of adopting names as globally available identifiers of infor-

mation and supporting the route-by-name scheme in the network, which means that

network devices should forward data according to the names rather than the destination

addresses as it is now.

However, such systems face feasibility and efficiency challenges, since the number

of information objects (and as a result, names) is large already and growing rapidly.

People propose that any of such systems should be prepared to handle at least 1012

entries [46], estimated by the current size of the Web. Moreover, the number may be

still conservative because of rapid proliferation of mobile devices and wide deployment

of Internet-of-Things (IoT).

48

6.2 Related Work

The existing research efforts dealing with this problem can be categorized into two.

One reduces the number of name entries in the world by aggregating entries, as in CCN

[6] and “deepest match” [9]. In such systems, names share similar characteristics are

combined in the Forward Information Base (FIB) to reduce the total entry number. The

other provides name resolution service in a distributed manner, especially, adopting an

improved form of Distributed Hash Table (DHT) [10, 11].

Both of these two kinds of research efforts reveal the correct directions of imple-

menting a scalable name resolution service, but it remains unclear how much cost is

required for distributed resolution service, as well as its impact to network performance.

Some preliminary assessments have been conducted [5, 10], but special equipment, e.g.,

data center and large-volume Solid State Disk (SSD), are assumed to be required.

6.3 Characterization of Name Resolution

To study the characteristics of name resolution without globally deployed ICN yet,

We elect to use Uniform Resource Identifier (URI) [45] as a substitution of name in

ICN not only because both URI and name in ICN specify information object, but also

because the generic URI syntax consists of components such as authority and path,

which is exactly the same as the structure of human readable names proposed for ICN

(e.g., that defined in Chapter 5 and also in NDN [6]). URI can also be transformed into

the self-certifying name form P:L (where P is a cryptographic hash of the principal’s

public key, and L is the label assigned by the principal) [5, 9], although it is out of

scope of this article because security mechanisms are orthogonal to the part of name

resolution and have no influence on it.

6.3.1 URI Properties

The popularity of recorded URIs, which represents that of Web content as has been

studied in Web proxy workloads [4], follows the “Zipf-like” distribution as follows

f = crβ (6.1)

where f is the frequency of occurrence and r is the relative rank. As illustrated in

Figure 6.1, the result of linear regression indicates β = −0.8304 for the recorded URIs.

49

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

Lo
g(

P
op

ul
ar

ity
)

Log(Rank)

popularity ranking
f(x)=-0.8304x+6.8091

Figure 6.1: Popularity ranking for recorded URIs

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 0.5 1 1.5 2 2.5 3 3.5

Lo
g(

P
[X

 >
 x

])

Log(URI Length)

ccdf
truncated pareto fit

Figure 6.2: CCDF plot for recorded URI length

50

The length of URI has significant impact on storage and lookup speed of URIs.

About 300 million URIs recorded in our measurement have an average length of 133.9

characters, and show that the length distribution is heavy-tailed with a nature upper

bound. Truncated Pareto distribution [47] can be adopted to fit this distribution model.

That is,

P (X > x) =
kα(x−α − u−α)

1− (k/u)α
, α > 0, 0 < k ≤ x ≤ u < ∞ (6.2)

The complementary cumulative distribution (CCDF) of recorded URI length is shown

in Figure 6.2, which follows the truncated Pareto distribution with parameters, tail

index α = 1.0433, lower truncation limit k = 32, and upper truncation limit u = 1460.

6.3.2 Space Complexity

One of the critical reasons for developing distributed resolution service is the ex-

cessive memory usage caused by a large number of names. Radix trees1 naturally

aggregate common parts at the beginning and are also used for address lookup nowa-

days. In our experiment, they are utilized to store and lookup names. Each node in a

tree contains a unique segment of a recorded name, a pointer to a specified forwarding

information (i.e., the out-bound interface or a locator for the next hop), and pointers

to parent and child nodes.

To reveal the relationship between the number of names and total space occupation,

we randomly choose a specified number of names and measure the memory usage of

generated radix tree. The result is shown in Figure 6.3, indicating the space complexity

of name storage is linearly proportional to the number of names. Because each name

costs about 204.4 bytes of memory, we extrapolate that at least 205 Tbytes of storage

space is necessary to store all 1012 name entries.

6.3.3 Time Complexity

Another critical reason for the necessity of distributed resolution service is the time

required for lookup with a large number of names. In the experiment, we measure the

average time elapsed or looking up every single name in a generated radix tree with a

specified number of names. 2

1A kind of space-optimized data structure for string lookup. Nodes in a radix tree are labeled with
subsequences so that a common prefix is stored for only once in a radix tree.

2The experiment is conducted on a server with Xeon X5570 processors and 192 Gbytes of memory
to avoid memory swap during lookup.

51

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

G
B

yt
e)

Number of Names (x106)

empirical data
f(x) = 0.2044x + 0.5637

Figure 6.3: Memory usage with radix tree structure

The result is shown in Figure 6.4, demonstrating that the time complexity of name

lookup follows the power function t = cnb, where t is the average time and n is the

number of name entries. The scaling factor c should vary with the computing capacity

of the PC or router used, but the exponent b, which determines the rate of growth, is

expected to be stable, i.e., b ≈ 0.35. In the case of our experiment result, the average

lookup time would be on the order of 0.7 msec if the amount of name entries were 1012,

which means a lookup capacity of roughly 1,500 requests per second. This lookup speed

is much lower than the average request rate in our sample traffic, which is about 2,300

requests per second. Of course, this performance is far from satisfying the requirement

of 20,000 requests per second that is expected to be generated by a fully-loaded Gbps

link [5].

6.4 System Design

The time and space complexity models of name resolution revealed above indicate

that it would be infeasible to deploy an ICN with uniform resolution services either

spatially or temporally. State-of-the-art data centers might be able to handle the mem-

ory and processing requirements, but such solution has high cost and lacks scalability.

In this part, we introduce a simple and empirical Distributed Resolution Service (DRS)

52

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

A
ve

ra
ge

 T
im

e
(u

se
c)

Number of Names (x106)

empirical data
f(x) = 4.902x0.3551

Figure 6.4: Average time usage for name lookup

scheme with regard to the established models.

6.4.1 Scheme Overview

With the DRS scheme, the name resolution service is usually carried out by all

DRS routers within a network service provider. That is to say, a DRS router handles a

specific fragment of the whole name space, and for any specified fragment of the whole

name space, there is always a router responsible for it within the local network. It is

also possible for several small-scale networks to share a DRS domain.

Each name is allocated into a DRS router in the DRS domain according to its hash

value. As shown in Figure 6.5(a), all routers in a DRS domain shares the same hash

table, where one or more entries of the hash table point to the local lookup unit, and

others provide locators of the responsible routers. When a DRS router identifies itself

as the responsible router for the name, it looks up the name in its local lookup unit,

which is usually a radix tree, as shown in Figure 6.5(b). The lookup unit provides the

next-hop information, which is a locator if the destination is in the same domain, or is

a network (domain) identifier otherwise.

53

Copy

Client

R04 R05

R02
R03

R01

R06

name = iii.u-tokyo.ac.jp/icna/drs
h(name) = 0xdcba

Hash Value
0x0000 ～ 0x2aaa

0x2aab ～ 0x5554

0x5555 ～ 0x7ffe

0x7fff ～ 0xaaa9

0xaaaa ～ 0xd553

0xd554 ～ 0xffff

Router
R01
R02
R03
R04
R05
R06

Hash Table in DRS Routers

Internet

(a) Names are distributed by a hash table shared in the domain

Copy

Client

R04 R05

R02
R03

R01

R06

name = iii.u-tokyo.ac.jp/icna/drs
h(name) = 0xdcba

Internet

iii

tube:http/* .u-tokyo.ac.jp/icna/

* drs namenexthop:A

nexthop:B nexthop:C nexthop:D

(b) The responsible router lookup the name in a radix tree

Figure 6.5: An example of name resolution in DRS

54

Lookup
Unit

Hash Table

Incoming
ICN

Packet

To
Responsible

Router

To
Information
Provider

Figure 6.6: Key components of a DRS router

6.4.2 Key Components

The key components of a DRS router include a hash table and a lookup unit, as

shown in Figure 6.6. The hash table maps names to routers responsible for them.

There is no constraint on the hash function to be used and the array size of result

slots can be determined by the numbers of routers in the system. For example, a DRS

domain can adopt the FNV-1a hash algorithm [48], which accepts multi-byte data (a

name in the case of DRS) as a hash key and generates a 32-bit or longer hash value. In

that case, each DRS router holds a hash table with 65,536 result slots, which only takes

up several kilo-bytes of memory and thus can be disregarded compared to the memory

cost of the lookup unit. The time complexity of looking up a responsible router for a

specific name is always O(1), because there is no collision in this hash table.

The capacity of a lookup unit, on the other hand, is determined according to storage

and computing capacity of the router using the established models. The lookup unit

provides the locator of information provider if it is located in the local network, or

the locator of the corresponding edge router that is connected to a network containing

the specified information object. In this way, a request packet is redirected in a DRS

domain twice at most, first time by the edge router connected to clients or other DRS

domains, and second time by the responsible router of the requesting name if the

responsible router is different from the edge router.

Assuming the same computing capacity with the machine used for modeling, de-

ploying a DRS scheme capable to store 1012 name entries and deal with a request rate

of 20,000 per second demands roughly 3,300 routers with 64 Gbytes memory each. This

55

is a reasonable requirement for a network service provider.

6.4.3 Comparison with Other Schemes

Compared to a centralized solution that requires state-of-the-art data centers, the

DRS scheme can achieve similar or better resolution performance with commodity

hardware. As described above, a DRS scheme demands roughly 3,300 routers with

64 Gbytes memory each, which is a reasonable requirement for a network service

provider compared to the centralized solution. Besides, there is neither single-point-of-

failure nor a bottleneck in the DRS scheme and overall capacity can be adjusted easily

by adding or removing DRS routers in the system.

A common category of name resolution services is Distributed Hash Table (DHT).

A DHT-based resolution service deployed per network shares most of the characteristics

with the DRS scheme, except that such systems usually have high lookup latency, i.e.,

O(log n) where n is the number of routers in a network, because their designs try to

keep only a small amount of node routing information on each node. However, we have

shown that computing storage cost of such information is negligible compared to name

routing information itself. There exists some efficient routing effort for DHT [49], but

we argue that the mechanism for dealing with churns adopted in most DHT schemes

is not necessary in our case, since routers rarely join or leave the network.

While DHT-based resolution services can be deployed locally, most such services are

proposed to be deployed globally, such as in hierarchical DHT systems. However, there

are several problems with such globally deployed DHT-based solutions. In the first

place, such solutions usually depend on globally routable underlying locators available

in the networks, which introduce the very problem that the current IP network faces

into ICN. Moreover, globally deployed DHT often causes indirections, i.e., resolution

requests may be forwarded over multiple long-latency hops. This not only results in

degradation of network performance but also raises problems in interest and policies

of network providers.

A brief summarization of the comparison can be found in Table 6.1, from which

one can tell that DRS is a reliable scheme with good feasibility and low latency.

56

Table 6.1: Comparison of resolution schemes

Scheme Feasibility Latency Other Problems

Centralized unlikely low bottleneck, single-point-of-failure

DHT (per network) good high –

DHT (global) good high requires global routable locators

DRS good low –

6.4.4 Fingerprint-Based Synchronization

As the scheme divides the whole network into DRS domains, it raises a problem of

how to exchange name information among these domains. We posit that this problem

can be resolved by using a fingerprint-based synchronization mechanism adopting the

existing technologies. To simplify the discussion, we focus on the fingerprint-based

synchronization between two DRS domains here.

Given two DRS domains, for example, domain #1 and #2 in Figure 6.7, there is

a primary transit link to exchange name information between them, and the DRS

routers at the two ends of the link are edge routers in charge of the fingerprint-based

synchronization between the two domains. Every DRS router maintains a fingerprint

(i.e., an MD5 hash value) of all the records in its lookup unit. Upon any new register

or withdraw of name information, the DRS router updates its fingerprint and sends it

to the edge router. The edge router collects all the fingerprints as a special information

object and registers it at the other edge router on the same transit link. Edge routers

retrieve fingerprint data from each other periodically to check whether synchronization

is necessary.

If synchronization is required, edge routers decide which pair of DRS routers to

exchange name information according to the differences of fingerprints. For example,

RA and RB in the figure are elected to conduct the exchange of the name information.

Such remote data synchronization problem has been studied well and one of the famous

solutions is the rsync algorithm and protocol [50]. Once the DRS routers get the differ-

ent entries, they resolve the conflict according to the register or withdraw timestamp

and/or other configured priority factors, and finally they should become synchronized.

57

Domain #1

Domain #2
ER1 ER2

Transit
Link

RA

RB

fingerprint transfer

remote data synchronization

Figure 6.7: An example topology of two DRS domains

6.5 Performance Enhancement

DRS proposed above is a simple and empirical scheme that fulfills the requirements

of name-based routing of ICN. In this section, we further examine the influence of the

DRS scheme on network performance and suggest enhancements on it according to the

analysis.

The lookup latency in the DRS scheme consists of three ingredients, time cost of

hash function th, time cost of transmitting to responsible router tp, and time cost of

lookup in radix tree tl. The average overall latency can be expressed by the equation

t = (2− α)th + (1− α)tp + tl (6.3)

where α is the probability of the name of a request can be resolved by the local router.

According to the equation, we can tell that the overall latency of the DRS scheme be

smaller with a higher hit ratio α.

6.5.1 Local Entry Caching

One way to optimize hit ratio is to make use of the characteristics of spatial locality

of the Internet access that has been revealed [51]. There are two kinds of information

objects that are likely to be accessed, a) information objects registered by a client in

the local network, and b) information objects recently accessed by a client in the local

network.

58

Lookup
Unit

Hash Table

Incoming
ICN

Packet

To
Responsible

Router

To
Information
Provider

Cache
Lookup

Unit

Figure 6.8: Local entry caching in the DRS scheme

Based on such observation, a cache lookup unit can be added for improving the hit

ratio in the DRS scheme, as illustrated in Figure 6.8. Cache lookup unit adopts the

same data structure with the main lookup unit, except that it has a fixed size that is

controlled by the cache replacement algorithm (e.g., Least Recently Used). If cache hit

ratio is β, the average lookup latency after optimization is

t′ = (2− α′ − β)th + (1− α′ − β)tp + (1− β)t′l + (1− α′)tc (6.4)

where tc is the lookup latency of the cache lookup unit, and α′ and t′l are the hit ratio

and lookup latency of the main lookup unit. Assuming the cache lookup unit and the

main lookup unit has the same size, and overall memory capacity remains the same,

hit ratio becomes α′ = 0.5α and lookup latencies become t′l = tc ≈ 0.81tl. As a result,

the reduction of lookup latency is

∆t1 = t− t′

= (β − 0.5α)(th + tp) + (0.81β + 0.41α− 0.62)tl,

0 < α ≪ β < 1 (6.5)

As a result of the transmitting latency tp usually dominates the total lookup la-

tency, the ∆t1 is positive, which means that the latency gets shortened. For example,

assuming tp = 20 msec, tl = 0.05 msec, and α = 0.03%, the total lookup latency would

be 20.04 msec without cache lookup unit according to Equation (6.3), and it would

be reduced to 18.07 msec, which means a 10% improvement, if the cache lookup unit

achieves a cache hit ratio of 10%, according to Equation (6.4). Obviously, the improve-

ment is sensitive to the cache hit ratio. The higher the cache hit ratio, the larger the

59

Incoming
ICN

Packet

To
Responsible

Router

To
Information
Provider

Hash Table

Lookup
Unit

Figure 6.9: Multiple lookup units in the DRS scheme

lookup latency reduction.

6.5.2 Multiple Lookup Entries

As analyzed above, the size limit of a lookup unit is determined by both memory

and computing capacity. While computing capacity of a router is not upgradable, the

memory capacity is usually expandable. Consequently, we can consider optimizing

lookup latency using multiple lookup units when large memory is available.

In this solution, a router has several independent lookup units, which correspond to

the same number of slots in the hash table, as illustrated in Figure 6.9. Given number

of total name entries N , total memory size M and lookup time limit T , this turns a

router design into an optimization problem

minimize t′′ = (2−mα)th + (1−mα)tp + tl (6.6)

subject to α = n/N (6.7)

m(an+ d) ≤ M (6.8)

tl = cnb ≤ T (6.9)

where equations (6.8) and (6.9) come directly from the modeled spatial and temporal

constraints in the case of m lookup units.

With a constant α, which means a constant lookup unit size, the overall latency of

DRS becomes significantly reduced with larger number of lookup units, m. However, a

network provider should then consider the trade-off between lookup performance and

the cost of adding memory to routers.

60

6.6 Summary

In this chapter, we propose a simple and empirical Distributed Resolution Service

(DRS) for ICN that does neither require fancy hardware nor demand complex node

management as in DHT-based systems. This proposal is based on the analysis of URIs

as substitution for ICN names. Our analysis of URIs captured from the real traffic trace

shows the heavy-tail distribution of popularity and the length of URIs, which gives us

the good grounds for using URIs as substitution for ICN names. Further characteriza-

tion using URIs shows linear spatial complexity and power temporal complexity of a

typical lookup unit for name resolution services for ICN.

DRS distributes the name resolution tasks to all routers in a DRS domain by sharing

the same hash table which specifies a responsible router for a part of the name space.

When a DRS router identifies itself as the responsible router for the name, it looks up

the name in its local lookup unit, which is usually a radix tree and provides the next-

hop information to the destination. The proposed scheme can handle at least 1012 name

entries and satisfy a high resolution request rate of 20,000 per second using about 3,300

nodes with commodity hardware, proving a quantitative guideline for its deployment.

Two ways of improving the scheme, using a cache lookup unit and multiple lookup

units, are also discussed to further enhance the resolution performance.

In one word, we provides quantitative modeling of the complexity, and a practical

solution, DRS, that meets the challenge of the scalability of name resolution. DRS

makes it possible to deploy an ICN architecture with increasing information object

numbers.

61

Chapter 7

A Deployable and Scalable
Information-Centric Network
Architecture

7.1 Introduction

We have presented four technologies that provide information-centric networking

(ICN) features into the current Internet infrastructure in Chapter 3, 4, 5 and 6. All

these technologies discovered provides necessary building blocks for constructing an

integral architecture to migrate from today’s Internet to ICN. In this chapter, we inte-

grate all the technologies and propose a Deployable and Scalable Information-Centric

Network Architecture (DSINA), which incorporates novel route-by-name system into

the current Internet infrastructure. In the light of the host-to-host model in the tra-

ditional Internet protocol suite, we posit that the most appropriate abstraction for a

new architecture should be host-to-content or host-to-service. Therefore, not only con-

tent and service accessibility knowledge but also traditional host location information

is the critical information handled by network devices in DSINA. Integrating all the

technologies that have been developed in this article, we propose register-access-result

model to achieve content and client access, where data can be carried by both access

and result messages.

Compared to the existing proposals for future network architectures, DSINA can

handle not only content distribution as is done in existing ICN architectures, but also

other applications, such as user-generated content uploading, notification pushing and

information synchronization. Moreover, persistent data storage and transient caches

are separately used in DSINA and different strategies are employed to handle these

62

two sorts of cache storage.

Besides providing unique information-centric functionalities, our efforts have also

been put to enhance the deployability and scalability of the architecture. Considering

the deployability, DSINA is designed to operate over the current Internet infrastructure

and allow incremental deployment of new functionalities. Regarding the scalability of

inter-domain name propagation and resolution, DSINA adopts a hierarchical naming

system, and uses distributed service to enable quick name resolution. A prototype of

DSINA is implemented in C++ with Click programming model, and deployed on the

network testbed Emulab. Our evaluation experiments demonstrating a content distri-

bution application verify that the prototype system has correct and stable functionality

as well as valid deployability, and can outperform the traditional applications in the

efficiency of content delivery.

7.2 Design Decisions

According to the analysis in Chapter 1 of the existing ICN architectures, it is

obvious that there are three aspects to be improved in order to achieve efficient content

and service access. In this part, we propose design decisions in the three aspects,

functionality, deployability and scalability, that DSINA has to achieve.

7.2.1 Functionality

DSINA is designed to support a variety of content and service access, including but

not limited to efficient content distribution. There are two unique novel functionalities

employed in DSINA, user-generated content support and hierarchical caching scheme.

Upload of user-generated content, an emerging application of today’s Internet, is

one of the features that must be supported by DSINA. As analyzed in the previous

section, the interest-data model that is widely used in information-centric networks is

not optimal for supporting content pushing. Inheriting the idea developed in Chapter 3,

DSINA supports content pushing by enabling packets to carry payload data not only

as responses but also as requests. Caching and authentication mechanisms for data

uploading are also available as options provided by the architecture.

Content caching is one of the most important features of information-centric net-

works. In reality, caching facilities can be classified into two categories, persistent data

63

storages, such as the ones used in Content Delivery Networks (CDNs), and transient

caches, such as in-network caching and caching at client hosts. In DSINA, these two

sorts of caching are distinguished in registration and propagation of content informa-

tion, and different strategies are used correspondingly.

7.2.2 Deployability

Deployability is one of the distinctive features of DSINA compared to the existing

information-centric networks. Different from clean-slate designs, the design of DSINA

puts a lot of effort into incremental deployment from the edge networks. Operating

on the self-scaling transport protocol introduced in Chapter 5, the more servers and

routers are enabled with DSINA, the better the efficiency of content and service access

becomes. The architecture does not require routers in the core network to be upgraded

to make the whole network benefit from the new architecture.

Moreover, the difficulty in supporting new functionalities is reduced by separation

of cache storage and forwarding. Adopting the idea from Chapter 4, exploiting spare

storage and bandwidth from end-system, DSINA removes the limitation on locating

content storage only in forwarding nodes. This enables the existing routers to be able

to support the new architecture only by upgrading its software, without the cost to

attach storage devices to all the network devices.

7.2.3 Scalability

Network routing scalability issues have been driving new network architecture de-

signs, recently. Route-by-name, the new system adopted by information-centric net-

works, faces a scalability challenge that is much more critical than it is in the current

Internet.

DSINA employs a hierarchical and distributed route-by-name system, where glob-

ally available registration information is handled by the overlay system DRS introduced

in Chapter 6. An individual DSINA router only stores all locally registered names and

a fragment of foreign registered names, providing efficient resolution of frequently used

names. If a DSINA message carries a name that is not resolvable in some DSINA

router, it gets forwarded to the DRS. The names themselves are also hierarchical and

therefore aggregatable, so that high hit rate for resolution can be achieved with a

limited number of entries in DSINA routers.

64

Distributed
Resolution

Service

Distributed
Resolution

Service

Legacy
Router

DSINA
Router

Client
End-Point

Content/Service
End-Point

Authorized Register

Delegated Register

Access

Access w/ Data

Result

Result w/ Data

Content
Distribution

Notification
Push

UGC
Upload

A B J C D K

E L

Figure 7.1: The overview of DSINA

7.3 Architecture

The purpose of DSINA is to achieve efficient content and service access by incorpo-

rating novel route-by-name system into the current Internet infrastructure. According

to this objective and the design decisions stated above, this section first introduces the

overview of the architecture, followed by its naming system design, and then presents

the register-access-result model.

7.3.1 Overview

As illustrated in Figure 7.1, DSINA consists of three kinds of entities, client end-

points, content/service end-points and DSINA routers. Communications in DSINA are

abstracted as client-content/client-service asymmetric conversations. That is to say, in

DSINA, a client end-point is located by its address as it is done in the current Internet,

while a content end-point or a service end-point is located by a novel naming system.

Running above ICTP and the existing Internet infrastructure, DSINA does not require

all the routers to be migrated to benefit from the new architecture, especially the ones

in the core networks (those not in the dotted frames in the figure) that can remain

65

legacy ones. When a packet with DSINA name passes through a DSINA router, it

gets forwarded by the name and has its network layer locator (i.e. IP address in the

current Internet) modified correspondingly. While it passes through a legacy router, it

is simply forwarded according to its network layer locator.

7.3.2 Name System

DSINA adopts a human-readable, hierarchical naming system, as is defined in Chap-

ter 5. For each name or prefix, there are two essential attributes, delegation and for-

warding. The first attribute decides whether the content or services can be registered

by a third-party without the certificate of the publisher. Names that allow delegation

usually stand for the content that can be duplicated by anyone, while those that do

not allow delegation usually designate services end-points that can only be deployed

by the publisher and authorized partners. The second attribute, forwarding, specifies

whether an access request to it should be forwarded to any end-point satisfying the

request or all such end-points. An access message forwarded to all the end-points can

be duplicated only at necessary network devices and saves bandwidth. The detailed

usage of the attributes is described in the following parts.

7.3.3 Register-Access-Result Model

One of the major differences between DSINA and the existing ICN architectures is

that DSINA extends the Interest-Data model to a flexible register-access-result model.

The model corresponds to the three primitives of ICTP (and the remaining primitive,

transfer control, is taken care of by the transport protocol itself), and realize the

features proposed in the architecture design.

Register

Any content or service end-point must be registered first to be accessed in DSINA.

There are two kinds of registration, authoritative registration and delegated registra-

tion. The registration information and its propagation formulate the control plane of

DSINA.

Authoritative registration is done by a publisher or its authorized partners, such as

CDNs. The registrant provides Authoritative Registration Information (ARI), which

is composed by names, attributes and their locators with specific certificate of the

66

publisher, to its upstream router. The DSINA router that handles ARI also submits it

to the DRS of the local network. An individual DSINA router stores three kinds of ARI

records: all the locally registered ARI, a fragment of remote registered ARI that it is in

charge of in the local DRS, and an ARI cache of frequently accessed remote registered

ARI. The propagation of ARI among DRS is similar to that of today’s inter-domain

routing, except that the object is not an address prefix but ARI. A DRS receives

the ARI from its neighboring network, selects and aggregates appropriate candidates

according to its policy for forwarding, and sends them to other neighboring networks.

If a name is declared to be delegable in its ARI, any third-party can carry out

delegated registration of that name. The registrant provides Delegated Registration

Information (DRI), which is a tuple of a delegable name and its locators, to its upstream

router for the delegated registration. Different from authoritative registration, DRI is

usually not submitted to DRS and thus is not disseminated globally. Its propagation

depends on the policy of service provider. That is, the accessible scope of delegated

registration is limited, which not only preserves the scalability of global registration

table but also prevents malicious DRI polluting globally. This unique strategy with

ARI and DRI in DSINA is analogous to the caching scheme with stable storage (CDN)

and temporary caching (proxy) used in the current Internet.

Access

In DSINA, client end-points issue access messages to access desired content or

service. An access message always includes a message header that carries a DSINA

name specifying the content or service to be accessed as well as other information

necessary for the message being forwarded in the network. It can also optionally

contain access data that provides information to be processed at the content or service

end-point. For example, to access private data on remote file server, the client should

provide the authentication information of its account on the server in the access data.

One of the most distinctive differences between access messages in DSINA and

requests in other network architectures is that access data can also be used to upload

user-generated content to online services. For instance, a client can send an access

message to a video publishing service, embracing the whole video clip as the access

data in the message. This design avoids the additional round-trip communication to

trigger a request from the service end-point to the client end-point in data uploading

67

that is necessary in many other information-centric networks.

Result

Result messages are responses from content or service end-points to the access mes-

sages in DSINA. Similar to access messages, a result message includes a message header

describing which access request it responds to, and optionally result data that provides

additional information for the client end-points. Generally, if an access message re-

quests for some piece of content, the result data provide the piece of content, and if

the access message requests to execute some service operation, the result data provide

the status of the executed operation.

Because result messages are delivered to client end-points, rather than names, lo-

cators of client end-points, i.e., IP addresses, are used in forwarding the messages.

This saves the cost of route-by-name system from forwarding both access and result

messages, and is expected to enhance the scalability of the architecture.

7.4 Applications

In this part, we present several typical applications of information-centric networks.

DSINA is able to implement all these applications with its naming system and register-

access-result model.

7.4.1 Content Distribution

Content distribution is now provided by a variety of mechanisms, including HTTP,

FTP, P2P (e.g., BitTorrent), and so on. It becomes one of the most important and

popular functions provided by the network infrastructure in ICN. DSINA achieves

efficient content distribution through allowing delegated registration from clients that

have finished downloading a piece of content.

As shown in Figure 7.2, a piece of content is authoritatively registered by a content

end-point of its publisher, J. When the DSINA router receives an access message from

client end-point B, it forwards the message to content end-point J according to the

corresponding ARI. J serves the requesting client end-point with content data using

result messages. After B has received the content, it can register itself to its upstream

router if ARI of the content allows delegation. Once the delegated registration is carried

68

Distributed
Resolution

Service

A B J C

Authorized Register

Delegated Register

Access

Access w/ Data

Result

Result w/ Data

①

②

③④⑤

⑥

Figure 7.2: A typical scenario of content distribution in DSINA

out successfully, B becomes another content end-point for the specific piece of content

and can serve other requesting client end-point in the same edge network, i.e., A, in

turn.

Distributing contents from the same edge network reduces redundant traffic and

improves efficiency, as proved in Chapter 4. Moreover, DSINA is better in content

distribution than COCINI in that it does not require redirection messages and re-

sending requests because it is deployed on connection-less ICTP.

7.4.2 User-Generated Content Publishing

Publishing user-generated photos and videos has become a widely provided service

such as Flickr and YouTube, and it is expected to be more popular as content service

providers begin to adopt cloud storage as an infrastructure for mobile devices (e.g., as

done by Google+ and SkyDrive). Generally speaking, cloud services provide computa-

tion, data and other resources without requiring end users to know the location of the

infrastructure. A typical deployment of cloud service is usually composed by a series of

server clusters located at different places on the Internet. Existing ICN architectures

usually implements this by clients sending requests to trigger servers initiate a session

towards themselves. However, as illustrated in Figure 7.3, DSINA supports publishing

UGC to cloud service without additional round-trips.

69

D E

L K

Authorized Register

Delegated Register

Access

Access w/ Data

Result

Result w/ Data

①

②

③

Figure 7.3: An example publishing UGC to cloud service in DSINA

In Figure 7.3, service end-points K and L stands for a server cluster of a specific

cloud service, e.g., a video publishing service. Service end-points are usually not allowed

to be delegated registered, while different service end-points deployed by the publisher

or its partners can carry out authoritative registration to their neighboring routers, as

is done by K in the figure. Such ARI is propagated among routers by DRS, and each

router decides a (or a few, for load-balancing) nearest service end-point for the edge

network connected to it. Client end-points do not need to care which service end-point

they should send their access request to. As described in the figure, client end-point

D sends its data to the name registered by service end-point K using access messages

directly, carrying user-generated content data in the message payload. Such access

messages are forwarded according to corresponding ARI, and are processed by service

end-point K, producing an upload success reply using result message.

7.4.3 Notification Push

Notification push is a typical application of publish-subscribe (pub/sub) system,

where clients subscribe to interested information and publishers send messages without

the knowledge of clients. DSINA implements notification push using names that have

attributes of allowing delegated registration and specifying forwarding to all registrants.

This is an inverted usage of access messages, where service end-points send access

messages to client end-points, as illustrated in Figure 7.4.

70

C D K E L

Authorized Register

Delegated Register

Access

Access w/ Data

Result

Result w/ Data

①
②

③

②

Figure 7.4: Notification push service in DSINA

In order to realize notification push, the publisher first performs an authoritative

registration on a specific name from any of its service end-points (i.e., L in the figure).

The name is specified as allowing delegated registration and forwarding to all in its ARI.

Client end-points who have interest in such information (i.e., C and E in the figure)

then perform delegated registration to their upstream routers to become subscribers.

When there is a notification message to send, the service end-point sends it in an

access message. Routers receiving such a message duplicate and forward it to the

corresponding ports according to the DRI it has received. Bandwidth is saved as the

message is duplicated on routers when it is necessary.

7.4.4 Information synchronization

Server clusters of a cloud service need to synchronize information among each other

from time to time, and this application is also well supported by DSINA. The im-

plementation of information synchronization in DSINA is almost the same as that of

notification push, except that the names used are not allowed to be delegated regis-

tered.

Similar to the cloud service case, different service end-points deployed by the pub-

lisher or its partners execute authoritative registration to their neighboring routers,

71

using a special name that only allows authoritative registration and designates forward-

ing to all end-points. Thus, information that need to be synchronized, encapsulated by

access message, sent from any service end-point will be forwarded to all other service

end-points, achieving information synchronization among server clusters.

7.5 Implementation

In this part, we introduce the prototype implementation of DSINA. The prototype

system is implemented with Click modular router [52], and deployed on a network

testbed, Emulab [53]. Evaluations are also performed to verify the deployability of

DSINA.

7.5.1 Prototyping with Click Modular Router

Click [52] is a software programming model for building flexible and configurable

routers programmed in C++. In Click programming model, network functions are

divided into modules called “elements.” Click makes it possible to add a new network

protocol without recompiling the kernel or even rebooting the operating system. Bor-

rowing its feature of modular and easy to extend, the prototype system of DSINA is

implemented with Click for not only DSINA routers but also content/service and client

end-points. That is to say, similar to that in NDN, all nodes share the same modular

structure, which simplifies the implementation and deployment.

As illustrated in Figure 7.5, the prototype implementation includes 6 DSINA ele-

ments and several example applications, which works over the current protocol stack

including ordinary MAC and IP processing. 1

The MessageDispatcher element handles packets from network layer (i.e., IPv4

processing elements in Click), examines the ICTP message headers (as illustrated in

Figure 5.2), and dispatches them to corresponding handling logic elements. If the

DSINA host works as a router, all messages are dispatched to the RouteAgent element

regardless of their types; otherwise, the TYPE fields in message headers are examined and

message are dispatched to the ServerLogic or ClientLogic elements, correspondingly.

Content and service end-points handle access messages using the ServerLogic ele-

ment. All content and service applications register themselves as Server elements to

1Several built-in Click elements are omitted from the figure for simplicity and clarity.

72

FromDevice

Classifier

CheckIPHeader

MessageDispatcher

ServerLogic ClientLogic RouteAgent

MessageWrapper

LinuxIPLookup

ARPQuerier

ToDevice

ContentManager
ContentManager

Notificator

FileServer

Receiver

FileClient

MAC

IP

DSINA

Applications

DSINA
Elements

Built-in
Elements

Incoming
Packets

Outgoing
Packets

Information
Exchange

Figure 7.5: Overview of DSINA prototype implementation in Click

the local ServerLogic element. The ServerLogic element maintains a list of registered

Server elements, examines the NAME field of access message headers, and sends the

access request as well as access data, if there are any, to the Server element registered

with the same information object name. The content/service applications process ac-

cess requests and provide the process result to ServerLogic element. If it is a request to

some piece of content, the result contains the requested content data; if it is a request

to a specific service, the result contains the status information of the request being

processed. The ServerLogic also includes a Sender sub-element to process transfer

control messages and transmit the result data smoothly.

Client end-points have a similar structure formulated by the ClientLogic element

73

and Client application elements. The Client application elements register themselves

(optionally, with access data) to issue access requests, and retrieve result data from

the ClientLogic element. Just like that is done in TCP, fragment re-ordering and

retransmission for packet loss are handled by a Buffer sub-element in the ClientLogic

element.

Message forwarding in DSINA router is handled by the RouteAgent element, which

communicates with several ContentManager elements. Comparing to Figure 6.6, the

RouteAgent primarily implements the hash table function in DRS, and the Content-

Manager realizes a lookup unit including a radix tree. The separation of RouteAgent

and ContentManager elements makes it possible to compose a DSINA router with

different performance requirements (e.g., by adding caching lookup unit or multiple

lookup units, or by changing the internal data structure of lookup units from radix

trees) without much difficulty.

All messages sent by ServerLogic, ClientLogic and RouteAgent elements are wrapped

by the MessageWrapper element to be sent to the underlying network layer.

7.5.2 Deployment on Emulab

Emulab [53] is a network testbed that provides a time- and space-shared platform

for distributed systems and networks. It provides an experimentation facility that inte-

grates network emulators, network simulators and live networks, allowing researchers to

configure and access networks composed of emulated, simulated, and wide-area nodes

and links. Researchers can access to hundreds of geographically-distributed nodes by

specifying a virtual topology graphically or via an ns script, causing Emulab to au-

tomatically deploy a physical topology. The bandwidth, latency, loss and queuing

behavior of virtual links are regulated, and any run-time dynamics can be executed on

virtual nodes that are able to run any specified operating system.

As shown in Figure 7.6, the DSINA experiment on Emulab is formed by 17 virtual

hosts, including 5 client end-points (client-1 to client-5), 3 content/service end-points

(server-11 to server-13), 6 DSINA routers (droute-21 to droute-26) and 3 legacy (IP)

routers (lroute-31 to lroute-33). This experiment topology reproduces the topology

shown in Figure 7.1, which is chosen because it can demonstrate major functionalities

in one compact topology.

Three kinds of links are defined in the experiment,

74

Figure 7.6: DSINA experiment deployed on Emulab

1. access links are duplex links connecting a client or content/server end-point to

an edge DSINA router with 100 Mbps bandwidth and 0 msec transmission delay,

2. transit links are duplex links connecting an edge DSINA router to its uplink

DSINA or legacy router with 10 Mbps bandwidth and 2 msec transmission delay,

and

3. core links are duplex links connecting the 4 core routers (droute-25, lroute-31 to

lroute-33) together with 10 Mbps bandwidth and 10 msec transmission delay.

On start-up (called “swap in” in Emulab), legacy routers automatically load corre-

sponding IP routing tables from an external controller, and DSINA routers automat-

75

droute-24

client-1

server-12
droute-25 droute-23 droute-21

client-2

HTTP client (wget)

HTTP client (wget)

DSINA Traffic

HTTP Traffic (over TCP)

Figure 7.7: Overview of performance evaluation

ically execute pre-installed Click with proper router configuration. Experiments such

as file transfer and message broadcasting are conducted on Emulab, which verifies that

the prototype system of DSINA deployed has the correct functionality. In the next

step, we evaluate the performance benefit of the deployed system.

7.5.3 Performance Evaluation

We focus on content distribution functionality in performance evaluation so that

we can best demonstrate the benefit of DSINA. Briefly speaking, the evaluation ex-

periment reproduces the scenario illustrated in Figure 7.2 with Emulab nodes client-1,

client-2 and server-12. According to the topology shown in Figure 7.6, DSINA routers

droute-21, droute-23, droute-24 and droute-25 are also involved in the experiment. In

order to show that DSINA benefits applications in the real world, we choose to retrieve

a video file in a HTTP client, which emulates the popular video playback web service,

as the application to be compared in the experiment. As shown in Figure 7.7, we

run two server daemons at the server concurrently at the server providing the same

44 Mbyte video file, the SimpleHTTPServer which provides HTTP service over TCP,

and the FileServer which provides it over DSINA. At the client side, we use a console

HTTP client wget [54], which can provide throughput statistics information. We com-

pare the performance of the retrieval directly from the HTTP server over TCP, and

that through a ProxyServer running at the same client node, which converts the HTTP

76

 0

 10

 20

 30

 40

 50

 60

 70

TCP-only DSINA-only concurrent client-2

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
DSINA

Figure 7.8: Results of performance evaluation experiments

request into a DSINA one and vise versa, thus underlying communication is performed

in DSINA.

The evaluation experiment is divided into 4 steps. In step 1 and step 2, client-1

retrieves the video file from server-12 using HTTP over TCP and DSINA, respectively.

In step 3, client-1 retrieves the video file from server-12 using the two methods concur-

rently. And after both retrieval procedures are finished, client-2 tries to retrieve the

same video file using both method concurrently in step 4. Each step in the experiment

is repeated for 10 times. The throughputs in each step are calculated and plotted in

Figure 7.8. When running separately, the throughput of HTTP over TCP and DSINA

are 9.06 Mbps and 8.18 Mbps, respectively. When both applications retrieve content

from server-12 to client-1, the performances are 5.94 Mbps and 5.21 Mbps. Finally,

when client-2 tries to retrieve the contents, DSINA router redirects the DSINA access

message to client-1, while HTTP over TCP still goes to server-12 for the content. Thus,

a dramatic difference appears in the throughput, which for TCP is 8.76 Mbps and for

DSINA is 63.1 Mbps.

The evaluation result clarifies two characters of DSINA. First, DSINA shows good

fairness with TCP in all circumstances, which means the traffic generated by DSINA

end hosts shares the bandwidth close to equally with TCP flows. The differences in

77

Figure 7.9: DSINA scalability verification experiment

independent and concurrent cases are 9.7% and 12.3%, and the tiny deviation also

shows good stability of ICTP used by DSINA, which is acceptable as a TCP-friendly

transport protocol. This ensures that DSINA can be deployed into today’s Internet

without any problem because it is compatible with the current Internet infrastructure

and the existing transport protocols. Second, step 4 shows excellent efficiency of DSINA

when there are multiple requests for the same piece of content from the same edge

network. Not only the throughput of DSINA is increased to roughly 7 times because

client-2 retrieves the content from client-1 in the same edge network, but also that

of TCP is also increased by almost 50% because the TCP session can occupy the

bottleneck transit link exclusively.

7.5.4 Scalability Verification

In Chapter 4, we have proved that COCINI is both deployable and self-scaling.

To verify that the self-scaling property is valid in DSINA that adopts COCINI as its

78

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 5 10 20

T
hr

ou
gh

pu
t (

M
bp

s)

Number of clients

TCP
DSINA

Figure 7.10: Results of scalability verification experiments

caching policy for content delivery, a scalability verification experiment is conducted.

As shown in Figure 7.9, the edge network under the edge router droute-21 is extended

to a network attaching 20 clients, and routers and hosts that are not concerned with

content delivery are omitted from the topology. In the experiment, client-1 to client-n

retrieve the same content that is published by the server in succession with a speci-

fied interval distribution that is sampled from the actual Web access trace, and the

throughputs of content retrieval of client-2 to client-n is recorded. Each experiment

with the same value of n is repeated for 10 times.

Figure 7.10 shows the average throughput of all clients retrieving a 100 Mbyte

content except client-1 in the cases of n = 2, 5, 10 and 20. It is obvious that the

throughput does not fall much as the number of clients increases, as the difference

between the throughput with 20 clients and the one with 2 clients is only 10%. The

reduction is logarithmic so that it can be calculated that the reduction is less than

30% even if there are 1000 clients in the edge network requesting for the same content.

Compared with the case over TCP as in the traditional networks that the average

throughput will reduce by the number of requesting clients, the result illustrates that

DSINA is self-scaling with regarding to content delivery, because the content is stored

not in the router but in end-hosts and the requests for it are distributed in the same

79

way.

7.6 Summary

In this chapter, we have proposed a Deployable and Scalable Information-Centric

Network Architecture (DSINA), a novel architecture incorporating route-by-name sys-

tem into the current Internet infrastructure by integrating all technologies developed in

previous chapters, such as Chapter 3, 4, 5 and 6. DSINA not only provides the original

information-centric functionalities, but also enhances the deployability and scalabil-

ity of ICN. In DSINA, both name information and the traditional host location are

handled by network devices.

With the register-access-result model, DSINA allows client end-point to send data

with access requests, and allows access requests to be sent to multiple end-points. As

a result, DSINA can not only handle content distribution and user-generated content

(UGC) publishing, which are two of the popular applications of today’s Internet that

generate most traffic, but also other information-centric applications, such as notifica-

tion pushing and information synchronization.

In order to demonstrate the utility of DSINA, we choose one application, content

distribution, using our prototype DSINA implementation. The prototype of DSINA is

implemented in C++ with Click programming model. Our prototype implementation

deployed on the network testbed, Emulab, verifies the feasibility and the correctness

of functionality of DSINA in the first place. Second, the performance evaluation shows

DSINA is TCP-friendly (guaranteeing fairness with TCP) with no more than 15%

difference in throughput, and can perform as many as roughly 7 times in the efficiency

of content delivery comparing to the traditional applications. Finally, the scalability

verification experiment proves that DSINA is self-scaling, because contents are provided

by all clients having cached copies, so that the average throughput drops by only 10%

when 20 clients in an edge network request for the same piece of content, and it can

be calculated that the reduction is less than 30% even if there are 1000 clients.

80

Chapter 8

Conclusion

8.1 Summary

This thesis identifies four new technologies in three key aspects, namely, caching

policy, transport protocol and name resolution, to solve the three significant open

problems in the existing ICN architectures, i.e., inadequate functionality, deployability

and scalability that hinder the implementation of ICN, for successful migration to an

ICN architecture in the current Internet. Combining all these pieces of technologies

together, this thesis propose a new architecture for deployable and scalable ICN.

First, caching policy is one of the most important research topics in ICN. In order

to solve the problem of lack of functionality in efficient service access, such as not sup-

porting publishing user-generated content (UGC), Upload Caching in Edge Networks

(UCEN) is proposed. Taking advantage of gateway located close to end users in the

edge network, UCEN allows end users to upload their contents to the gateway with

token retrieved from destination servers and schedules the gateway to upload them to

the destination servers without the involvement of the end users. The gateway also

delegates the destination server for serving the uploaded content in the edge network.

Trace-based simulation based on the HTTP extension implementation of UCEN shows

that deploying UCEN brings benefit for both end users and service providers. For

end users, it significantly shortens the holding time for 41% of uploading by half, so

that people can leave a network quickly after the uploading. For service providers, it

flattens the traffic peak for the edge network by 49% via scheduling upload time, so

that capital expense for improving bandwidth can be saved.

To address deployability problem, Content-Oriented Caching with In-Network In-

dex (COCINI), a deployable and self-scaling caching scheme exploiting spare storage

81

and bandwidth from end-systems, is proposed to be incrementally implemented and

deployed. Unlike the existing caching schemes such as caching proxies and NDN, the

content itself is cached on individual clients in COCINI, while the functionalities of redi-

rection and corresponding indexing are integrated into routers. This design eliminates

the cost for storage space and the drawback of single-point-of-failure. The trace-driven

evaluation quantifying the effectiveness of COCINI shows that COCINI benefits both

network providers and end users. For network providers, 12% to 49% Web traffic can

be reduced, which is up to 21% more than the existing schemes and can reduce a

significant amount of cost for bandwidth enhancement; as a side effect for end users,

the cumulative latency in accessing content can be shortened by about 20%. The re-

sult confirms the significance of the index capacity in a router and storage cache on

end-systems, in order for COCINI to be deployable and scalable.

Second, Information-Centric Transport Protocol (ICTP) is proposed also to resolve

the deployability problem. ICTP is designed to provide a fundamental common trans-

port mechanism for ICN architectures, by supporting names of information objects

and information security over the current Internet infrastructures. The design decision

and the protocol specifications show that the protocol is compatible with the current

IP and can be incrementally implemented and deployed. In-network processing of

information-centric strategies can be benefited by the genuine connection-less feature

of the protocol. Moreover, congestion control mechanism that achieves fairness with

the existing transport protocols is included in the protocol so that ICN architectures

can focus on the strategy design. Our implementation of ICTP also shows no more

than 20% difference of throughput with TCP and tiny deviation, which proves that

ICTP is acceptable as a TCP-friendly transport protocol.

Finally, to deal with the scalability problem of route-by-name scheme, a simple

and empirical Distributed Resolution Service (DRS) scheme is proposed. By using

URIs as substitution for ICN names, characterization of a typical lookup unit for name

resolution implementing radix tree shows linear spatial complexity and power temporal

complexity. According to the analysis, DRS propose to distribute the name resolution

service to be carried out by all DRS routers within a network service provider, by

including a hash table and a lookup unit as key components of a DRS router. Assuming

the same computing capacity used for modeling, deploying a DRS scheme capable to

store 1012 name entries and deal with a request rate of 20,000 per second demands

82

roughly 3,300 routers with 64 Gbytes memory each, which is a deployable requirement.

Two ways to optimize the average lookup latency, a cache lookup unit and multiple

lookup units, are also discussed.

Combining the proposed technologies to migrate to ICN from the existing Inter-

net, a Deployable and Scalable Information-Centric Network Architecture (DSINA) is

proposed. Integrating all the technologies that have been developed, DSINA is an in-

novative ICN architecture that incorporates the novel route-by-name system, UCEN

and COCINI caching policies into the current Internet infrastructure. ICTP is used

as the transport protocol and DRS is embraced as the primary name resolution ser-

vice. DSINA not only provides abundant information-centric functionalities, but also

enhances the deployability and scalability of ICN. In DSINA, both DSINA name in-

formation and traditional host location are handled by network devices. With the

register-access-result model, DSINA can handle content distribution as well as UGC

publishing, notification pushing and other information-centric applications. A proto-

type of DSINA is implemented in C++ with Click programming model, and deployed

on the network testbed Emulab. Our evaluation experiments verifies the prototype

system works as expected, thus, shows it can be deployed in the real networks and all

the functions work correctly there, for example, can perform roughly 7 times more effi-

ciently for content delivery than it has been done in the existing Internet architecture,

and is self-scaling with less than 10% average throughput drop when multiple clients

request for the same piece of content.

8.2 Comparison with Other ICN Architectures

We compare our proposed DSINA with three major existing ICN architectures,

Data-Oriented Network Architecture (DONA), Named Data Network (NDN) and the

Pursuing a Pub/Sub Internet (PURSUIT) in Table 8.1.

Regarding information-centric functionalities, all the ICN architectures support

content distribution, but UGC publishing is not supported in DONA and NDN be-

cause both of them adopt only pull method in communications. PURSUIT allows

UGC publishing by making use of rendezvous nodes, while notification push is not

enabled because it also asks recipients to initiate the communications. All of the three

major functionalities are supported by DSINA with its register-access-result model that

83

Table 8.1: Comparison with other architectures

DONA [5] NDN [12] PURSUIT [13] DSINA

content distribution OK OK OK OK

UGC publishing NG NG OK OK

notification push NG NG NG OK

deployability OK NG NG OK

scalability NG NG OK OK

enables access messages to carry content data.

On the subject of deployability, neither NDN nor PURSUIT is likely to be de-

ployable over the current Internet infrastructure because the forwarding scheme is

completely incompatible with the current one and additional network elements (e.g.,

content storage in forwarding nodes and label switching) are necessary all over the

global network. On the other hand, DONA and DSINA can expect a smooth migra-

tion from the current Internet architecture to the ICN architecture. DONA requires

every network provider to own a resolution handle to handle name resolution, while

DSINA allows DSINA routers to be deployed incrementally, which can be done without

hardware upgrade necessity.

Last but not least, neither the flat naming scheme proposed by DONA nor the

aggregatable one proposed by NDN is scalable considering the large amount of possible

names. PURSUIT handles the scalability problem by dividing the name space into

multiple scopes and distributing the name resolution task to different rendezvous nodes,

although that requires all the clients to know which rendezvous node to resolve a specific

name. DSINA develops simple and empirical Distributed Resolution Service to handle

the scalability problem of name resolution with commodity hardware.

8.3 Future Work

There are still open problems and some room for further improvement that can be

carried out throughout the consequent research and develop process.

First, off-path caching on end systems, i.e., making use of caching storages on end

systems which are not on the path of the request sent to the original server, is conducted

84

in COCINI. Although the caching policy has been proved to be effective, it is possible

to improve COCINI with a systematic study on in-network content caching considering

the combination of on-path and off-path caching, and caching storage on routers and

end systems. Moreover, adopting selective caching [55, 56, 57], which computes the

benefit of caching an object, is also a possibility for enhancing the cache performance,

especially when requests consist of frequent but isolated references to a set of objects.

Second, information security, which has been briefly discussed in ICTP, needs to

be studied thoroughly. Although the security mechanism is satisfactory theoretically,

the details of content-based security, including the transactions of SPKI and CA ap-

proaches, can be further examined. Thus, we plan to implement signature authen-

tication modules in the DSINA implementation and to evaluate the overhead of the

verification.

Third, we also recognize difficulties to be solved before bringing the DRS into the

reality. First, the churn in information object registration may cause flooding traffic due

to frequent inter-domain synchronization or delayed reachability if the synchronization

interval is large. Second, the reliability and redundancy of DRS can also be further

enhanced by distributing the name information over several DRS routers, while the

states to be stored and synchronized would be increased. The degree of trade-off in

both cases should be determined carefully through more research.

Finally, DSINA has been designed to be adopting a wide variety of environments

and applications. It is still possible to extend this architecture in different cases. For

example, we plan to study the potential of the architecture specifically applied in

wireless and mobile systems. We also intend to embrace more emerging applications,

such as content streaming, into the prototype implementation of DSINA.

8.4 Future Directions

To the best of our knowledge, this is the first research attempt to propose an ICN

architecture that takes the serious approach towards “deployability” over the current

Internet. In this thesis, we initiate a new research area that aims at enabling “deploy-

able” ICN architectures, by identifying four technologies and proposing an architecture

for deployable and scalable ICN. Unlike existing ICN studies that make “clean-slate”

ICN designs from scratch, the thesis investigates necessary information-centric improve-

85

ments and integrates them into an integral architecture to migrate the current Internet

into ICN. Our research should change people’s mindset and put forth the study of

deployable ICN further, and also opens more opportunities for creating applications

and services adopting information-centric features.

The future directions of deployable and scalable ICN should be the large-scale

deployment and verification of the migrating to ICN. First, as the functionality of

DSINA has been validated within testbed environment, it can be deployed in some

edge networks locally to enable fresh ICN features. After that, the architecture can

also be deployed in some datacenter networks so that existing applications and services

can migrate to ICN gradually without loosing the availability in the current Internet

architecture, since incremental deployment feature is provided in the architecture. Fi-

nally, ICN will become globally available as more and more client end-points and

content/service end-points has migrated into this architecture.

86

Appendix A

Data Preparation for Simulations

A.1 Introduction

Trace-driven simulations based on real-world traffic are used for evaluation exper-

iments in Chapter 3, 4 and 6 of this thesis. All these simulations use a common data

set prepared from the same traffic source. In this appendix, we introduce the source of

the traffic used, the method of data preparation and the basic profile of the prepared

data.

A.2 Data Source

The source traffic is captured from one of the edge link of the campus network of the

University of Tokyo during the period of May 16 06:01:51 2011 to May 19 21:41:57

2011 in local time. The about-88-hour captured data are filtered to be Web traffic only,

including 26.7 billion packets and 21.5 Tbytes. Because the tendency of Web access

usually repeats with a period of 24 hours, this data source is representative for Web

access analysis.

A.3 Data Preparation

The object for data preparation is to extract useful information from the 13,693

libpcap [58] files that store the traffic data packet by packet. Because the evaluation

experiments use the session-level information rather than the packet-level one, HTTP

sessions are restored by the data processor to obtain the 21 properties for each session

as shown in Table A.1.

To deal with the large amount of traffic data, the data processor is programmed

87

Table A.1: Properties to be extracted for each HTTP session

Item Description

time syn Timestamp of the TCP SYN packet sent by HTTP client

time synack Timestamp of the TCP SYN-ACK packet sent by HTTP server

time cfirst Timestamp of the first packet including HTTP request

time clast Timestamp of the last packet including HTTP request

time sfirst Timestamp of the first packet including HTTP response

time slast Timestamp of the last packet including HTTP response

sockaddr c Socket address (IP address and TCP port) of HTTP client

sockaddr s Socket address of HTTP server

packet c Total number of packets sent by HTTP client

packet s Total number of packets sent by HTTP server

traffic c Total number of bytes sent by HTTP client

traffic s Total number of bytes sent by HTTP server

method Method of HTTP request

host Host of HTTP request

uri URI of HTTP request

length c Length of HTTP request body

code Code of HTTP response

range Range of HTTP response

cache HTTP cache control instructions

auth HTTP authentication instructions

length s Length of HTTP response body

in C++ to support multi-threading. The processor can be started with n (n > 2)

threads as specified by the user, where 2 threads reads the libpcap input files and write

text output files respectively, and n− 2 worker threads process packet trace data. The

input thread reads packet information from specified libpcap input files, and sends the

packet into the buffer queue of a worker thread according to the hash value of the

source and destination IP addresses. A worker thread distinguishes a session under

processing into 5 stages: TCP handshaking, sending request header, sending request

body, sending response header and sending response body. Different operation is done

on the incoming packet for the session according to the different stage, for example,

88

Table A.2: Statistics of sessions with different request methods

Request method Number of sessions

GET 613,037,426

POST 42,704,685

HEAD 2,064,421

PUT 183,477

OPTIONS 48,244

DELETE 10,777

CONNECT 4,162

TRACE 953

if a session is in sending request header stage, the packet content will be examined to

extract useful header field, while if a session is in sending response body stage, only

packet length will be counted. When a TCP session is closed or a new HTTP request

is sent in the same session, the current information of this session will be sent to the

output thread.

A.4 Data Profile

The prepared data include 658,054,147 HTTP sessions, Table A.2 shows the distri-

bution of request methods. “POST” sessions are used for evaluation in Chapter 3 and

“GET” sessions are used in Chapter 4. In Chapter 6, all sessions are used regardless

of the method.

The sessions include 300 million unique HTTP documents, among which are 245

million HTTP documents that are accessed only once. That is to say, one-timers take

up 81% of all unique documents. The smallest file size is 0 byte while the largest one

is 59 Gbytes, and the mean and median are 25 kbytes and 1.0 kbytes respectively.

Comparing the profile of our data set and that of other research efforts (e.g., in [4]),

we can tell that (1) our data set embrace the desired statistical characteristics of Web

access, including the long tail distribution, and (2) although the our data set shares

the same distribution with previous ones, the parameters, such as the maximum file

size, change as the usage model and contents are changed over time. Both of these

conclusion show that it is necessary and effective to use our data set.

89

References

[1] R. Braden, editor, “Requirements for Internet Hosts – Communication Layers,”

IETF RFC 1122, Oct 1989.

[2] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian,

“Internet Inter-Domain Traffic,” in Proceedings of ACM SIGCOMM 2010, New

Delhi, India, Aug 2010.

[3] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson, “Reliability and Security

in the CoDeeN Content Distribution Network,” in Proceedings of USENIX 2004

Annual Technical Conference, Boston, MA, USA, Jun 2004.

[4] M. Busari and C. Williamson, “ProWGen: A Synthetic Workload Generation Tool

for Simulation Evaluation of Web Proxy Caches,” Computer Networks, vol. 38,

no. 6, pp. 779–794, 2002.

[5] T. Koponen, N. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and

I. Stoica, “A Data-Oriented (and Beyond) Network Architecture,” in Proceedings

of ACM SIGCOMM 2007, Kyoto, Japan, Aug 2007.

[6] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard,

“Networking Named Content,” in Proceedings of ACM CoNEXT 2009, Rome,

Italy, Dec 2009.

[7] N. Fotiou, D. Trossen, and G. C. Polyzos, “Illustrating a Publish-Subscribe Inter-

net Architecture,” Telecommunication Systems, Special Issue on “Future Internet

Services and Architectures: Trends and Visions”, 2011.

[8] D. Joseph, N. Shetty, J. Chuang, and I. Stoica, “Modeling the Adoption of new

Network Architectures,” in Proceedings of ACM CoNEXT 2007, New York, NY,

USA, Dec 2007.

90

[9] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in

Content-Oriented Architectures,” in Proceedings of the ACM SIGCOMM Work-

shop on Information-Centric Networking (ICN’11), Toronto, ON, Canada, Aug

2011.

[10] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT: A Hierarchi-

cal Name Resolution Service for Information-Centric Networks,” in Proceedings of

the ACM SIGCOMM Workshop on Information-Centric Networking (ICN ’11),

Toronto, Canada, Aug 2011.

[11] H. Liu, X. D. Foy, and D. Zhang, “A Multi-Level DHT Routing Framework

with Aggregation,” in Proceedings of the 2nd ACM SIGCOMM Workshop on

Information-Centric Networking (ICN ’12), Helsinki, Finland, Aug 2012.

[12] Named Data Networking (NDN) Project Team, “Named Data Networking

(NDN),” http://www.named-data.net/.

[13] PURSUIT FP7 Project, “Pursuing a Pub/Sub Internet,” http://www.fp7-

pursuit.eu/.

[14] National Science Foundation, “NSF Future Internet Architecture Project,”

http://www.nets-fia.net/.

[15] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I Tube, You Tube,

Everybody Tubes: Analyzing the World’s Largest User Generated Content Video

System,” in Proceedings of the ACM SIGCOMM Conference on Internet Measure-

ment (IMC ’07), San Diego, CA, USA, Oct 2007.

[16] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting Cacheability in

Times of User Generated Content,” in Proceedings of 13th IEEE Global Internet

Symposium 2010, San Diego, CA, USA, Mar 2010.

[17] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Archi-

tecture,” IETF RFC 3031, Jan 2001.

[18] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and

H. Weiss, “Delay-Tolerant Networking Architecture,” IETF RFC 4838, Apr 2007.

91

[19] M. F. Arlitt and C. L. Williamson, “Internet Web Servers: Workload Characteri-

zation and Performance Implications,” IEEE/ACM Transactions on Networking,

vol. 5, no. 5, pp. 631–645, 1997.

[20] R. Droma, “Dynamic Host Configuration Protocol,” IETF RFC 2131, Mar 1997.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, “Hypertext Transfer Protocol – HTTP/1.1 ,” IETF RFC 2616, Jun 1999.

[22] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On Dominant Character-

istics of Residential Broadband Internet Traffic,” in Proceedings of the 9th ACM

SIGCOMM Conference on Internet Measurement Conference (IMC ’09), Chicago,

IL, USA, Nov 2009.

[23] L. Popa, A. Ghodsi, and I. Stoica, “HTTP as the Narrow Waist of the Future

Internet,” in Proceedings of 9th ACM SIGCOMM Workshop on Hot Topics in

Networks (Hotnets ’10), Monterey, CA, USA, Oct 2010.

[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A

Simple Model and its Empirical Validation,” in Proceedings of ACM SIGCOMM

1998, Vancouver, Canada, Sept 1998.

[25] M. Gritter and D. Cheriton, “An Architecture for Content Routing Support in

the Internet,” in Proceedings of 3rd USENIX Symposium on Internet Technologies

and Systems (USITS ’01), San Francisco, CA, USA, Mar 2001.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network,” in Proceedings of ACM SIGCOMM 2001, San

Diego, CA, USA, Aug 2001.

[27] A. Carzaniga and A. Wolf, “Forwarding in a Content-Based Network,” in Proceed-

ings of ACM SIGCOMM 2003, Karlsruhe, Germany, Aug 2003.

[28] M. Demmer, K. Fall, T. Koponen, and S. Shenker, “Towards a Modern Com-

munications API,” in Proceedings of 6th Workshop on Hot Topics in Networks

(HotNets-VI), Atlanta, GA, USA, Nov 2007.

92

[29] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy, “On

the Scale and Performance of Cooperative Web Proxy Caching,” in Proceedings of

17th ACM Symposium on Operating Systems Principles (SOSP ’99), Charleston,

SC, USA, Dec 1999.

[30] M. Hefeeda, C.-H. Hsu, and K. Mokhtarian, “pCache: A Proxy Cache for Peer-to-

Peer Traffic,” in Proceedings of ACM SIGCOMM 2008, Seattle, WA, USA, Aug

2008.

[31] A. Anand, V. Sekar, and A. Akella, “SmartRE: An Architecture for Coordinated

Network-wide Redundancy Elimination,” in Proceedings of ACM SIGCOMM

2009, Barcelona, Spain, Aug 2009.

[32] N. T. Spring and D. Wetherall, “A Protocol-Independent Technique for Elim-

inating Redundant Network Traffic,” in Proceedings of ACM SIGCOMM 2000,

Stockholm, Sweden, Aug 2000.

[33] Akamai Technologies, “Akamai CDN,” http://www.akamai.com/.

[34] S. Dar, M. Franklin, B. Jónsson, D. Srivastava, and M. Tan, “Semantic Data

Caching and Replacement,” in Proceedings of 22nd Int’l Conf. on Very Large

Data Bases, Mumbai, India, Sept 1996.

[35] J. Postel, editor, “Transmission Control Protocol,” IETF RFC 793, Sept 1981.

[36] R. Stewart, editor, “Stream Control Transmission Protocol,” IETF RFC 4960,

Sept 2007.

[37] J. Postel, “User Datagram Protocol,” IETF RFC 768, Aug 1980.

[38] J. M. Winett, “The Definition of a Socket,” IETF RFC 147, May 1971.

[39] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.2,” IETF RFC 5246, Aug 2008.

[40] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “SPKI

Certificate Theory,” IETF RFC 2693, Sept 1999.

93

[41] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas, “Internet X.509

Public Key Infrastructure: Certification Path Building,” IETF RFC 4158, Sept

2005.

[42] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly Rate Control

(TFRC): Protocol Specification,” IETF RFC 5348, Sept 2008.

[43] S. Floyd, “TCP and Explicit Congestion Notification,” ACM SIGCOMM Com-

puter Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[44] R. Diana and E. Lochin, “ECN Verbose Mode: a Statistical Method for Net-

work Path Congestion Estimation,” in Proceedings of IEEE INFOCOM 2010, San

Diego, CA, USA, Mar 2010.

[45] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI):

Generic Syntax,” IETF RFC 3986, Jan 2005.

[46] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Rajahalme,

“Information-Centric Networking: Seeing the Forest for the Trees,” in Proceedings

of the 10th ACM Workshop on Hot Topics in Networks (HotNets-X), Cambrige,

MA, USA, Nov 2011.

[47] I. B. Aban, M. M. Meerschaert, and A. K. Panorska, “Parameter Estimation for

the Truncated Pareto Distribution,” Journal of the American Statistical Associa-

tion, vol. 101, no. 473, pp. 270–277, 2006.

[48] Landon Curt Noll, “FNV Hash,” http://www.isthe.com/chongo/tech/comp/fnv/index.html.

[49] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient Routing for Peer-to-Peer Over-

lays,” in Proceedings of 1st Symposium on Networked Systems Design and Imple-

mentation (NSDI ’04), San Francisco, CA, USA, Mar 2004.

[50] A. Tridgell, “Efficient Algorithms for Sorting and Synchronization,” Ph.D. disser-

tation, Australian National University, 2000.

[51] B. N. Padmanabhan and L. Qiu, “The Content and Access Dynamics of a Busy

Web Site: Findings and Implications,” in Proceedings of ACM SIGCOMM 2000,

Stockholm, Sweden, August 2000.

94

[52] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click

Modular Router,” ACM Transactions on Computer Systems (TOCS), vol. 18,

no. 3, pp. 263–297, 2000.

[53] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar, “An Integrated Experimental Environment for Dis-

tributed Systems and Networks,” in Proceedings of 5th Symposium on Operating

Systems Design and Implementation (OSDI ’02), Boston, MA, USA, Dec 2002.

[54] Free Software Foundation, Inc., “GNU Wget,”

http://www.gnu.org/software/wget/.

[55] S. Hosseini-Khayat, “Improving Object Cache Performance Through Selective

Placement,” in Proceedings of the 24th IASTED Int’l Conf. on Parallel and Dis-

tributed Computing and Networks (PDCN ’06), Innsbruck, Austria, Feb 2006.

[56] Z. Miao and A. Ortega, “Scalable Proxy Caching of Video Under Storage Con-

straints,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, pp.

1315–1327, 2002.

[57] H. R. Oh and H. Song, “Scalable Proxy Caching Algorithm Minimizing Client’s

Buffer Size and Channel Bandwidth,” Journal of Visual Communication and Im-

age Representation, vol. 17, no. 1, pp. 57–71, 2006.

[58] Lawrence Berkeley Laboratory, “TCPDUMP/LIBPCAP Public Repository,”

http://www.tcpdump.org/.

95

Publications

International Conference Papers (peer-reviewed)

[1] Y. Zhu, and A. Nakao, “Content-Oriented Transport Protocol.” In Proceedings of

the 7th Asian Internet Engineering Conference (AINTEC ’11, ACM In-Cooperation

Conference), Bangkok, Thailand, Nov 2011.

[2] Y. Zhu, and A. Nakao, “Upload Cache in Edge Networks.” In Proceedings of 26th

IEEE International Conference on Advanced Information Networking and Applica-

tions (AINA ’12), Fukuoka, Japan, Mar 2012.

[3] Y. Zhu, and A. Nakao, “A Deployable and Scalable Information-Centric Network

Architecture.” In Proceedings of IEEE International Conference on Communica-

tions 2013 (ICC ’13), Budapest, Hungary, Jun 2013.

[4] Y. Zhu, and A. Nakao, “A Practical Study on Distributed Resolution Service for

ICN.” In Proceedings of 1st IEEE International Workshop on Future Internet Tech-

nologies (IWFIT ’13), Kyoto, Japan, Jul 2013.

International Conference Posters

[5] Y. Zhu, and A. Nakao, “A Deployable and Scalable Information-Centric Network

Architecture.” In Poster Session on AsiaFI 2012 Summer School, Kyoto, Japan,

Aug 2012.

96

