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Chapter 1 

General Introduction 

 

1.1 Motivation: Descartes’ other error 

The question of how our movement is controlled is relevant to every person, particularly those who 

are involved in physical education, sports, and rehabilitation, including both trainers and trainees. 

How does the central nervous system (CNS) control and learn complex movements involving 

multiple body parts? The simple, but prevalent, approach to examining this question is to deconstruct 

movements into a set of elementary movements, such as those at the level of single joints or muscles, 

investigate each of them separately, and then reassemble them. This is known as reductionism
1
. The 

French philosopher René Descartes was one of the pioneers
2
 that introduced reductionism to 

Western society. In his book “Traité de l'homme” (1664), he attempted to explain how our body 

movements are controlled. According to his theory, muscle contraction was the result of spiritus 

animalis (animal spirits), which transferred into the muscle through the nerve fibers originating from 

the cerebral ventricle (Fig. 1.1).  

(Finch, 2004)  

                                                   
1
 Such a reductionistic approach is also common in sports training (Finch, 2004).  

2
 Although the idea of reductionism itself has existed since the ancient Greeks (e.g., Dēmokritos), 

Descartes was the first to formally state the idea in his book “Discours de la méthode” (1637). 
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Figure 1.1. An illustration of the eye muscles from Descartes’ own sketch. 

According to Descartes, descending animal spirits from the cerebral ventricles enter through the 

nerve fibers (b-F and c-G) and inflate and contract the muscles (D and E). The spirits can also 

transfer through shunts (D-G, and E-F). If the descending flow of the spirits through b-F is stronger 

than the shunting flow through E-F, the contraction of muscle D leads to a leakage of animal spirits 

from muscle E into muscle D, which thus relaxes (or lengthens) muscle E, and vice versa. As a 

consequence, the eye moves in a certain direction. Adapted from Descartes (1664). 

After proposing several explanations about the mechanism of simple muscle contraction (e.g., eye 

muscles), Descartes clearly stated
3
 the following: 

Now it is easy for you to apply what I have just said of nerve A and the two muscles D and E 

to all other muscles and nerves; and so to understand how the machine about which I am 

telling you can be moved in all the ways that our body can, solely by the force of the animal 

spirits which flow from the brain into the nerves [in Treatise of Man (Descartes and Hall, 

1972), p. 29]. 

                                                   
3
 Although we can find a description about the mechanism of more complex movement involving 

multiple muscles and joints, such as the nociceptive reflex, later in his text, Descartes did not 

describe the detail of how the contraction of each muscle should be coordinated in order to generate 

functional movement (possibly because he did not understand the complexity of multijoint 

movement, which I will describe later in this thesis). 
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From this statement, we are able to grasp that he thought that the mechanism of simple muscle 

contraction was sufficient to understand all movements that we can perform. However, human 

movement is much more complex than what Descartes thought. For instance, as pointed out by 

Bernstein, our body is redundant and has many degrees of freedom; thus, there is no unique solution 

for specifying the configuration of the contraction level for each muscle (or each joint angle) given 

the position of a fingertip in space alone (Bernstein, 1967). In addition, the motion of a particular 

joint causes unexpected motion in other joints by interaction torques, which are not present for 

single-joint movements (e.g.,Hollerbach and Flash, 1982). Furthermore, there are many other 

problems the CNS must solve to control multijoint movements, such as how different coordinate 

systems (e.g., Cartesian space and joint or muscle space) are associated with each other and in which 

coordinate system the movement is planned. These problems become evident only when we consider 

the movements that require the coordination of multiple joints. Therefore, at least for the control of 

movements, Descartes clearly made a significant error. 

 Nearly 350 years after Descartes, we still do not have a unified understanding of how the 

CNS controls our movement (Wolpert et al., 2011). In the following sections, I summarize the 

progress of our understanding of the neural control of coordinated movement since Descartes, which 

progressed from the level of the single-joint (or muscle) to multijoint-limb movement.  
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Figure 1.2. Spinal reflex circuit. 

Left: Flexion and crossed-extension reflex. Right: Stretch reflex and reciprocal inhibition of the 

antagonist muscle. Inhibitory interneurons are illustrated in blue. Adapted from Kandel et al. (2000), 

p. 716. (Kandel et al., 2000; Clarac, 2005a, b) 

 More than 200 years after Descartes
4
, Sir Charles Sherrington opened the door for 

studying the neural control of movement. With a series of electrophysiological recordings of the 

spinal circuit of decerebrated animals that included demonstration of the reciprocal inhibition of 

agonist and antagonist muscles around a single joint
5
 (Sherrington, 1906), he and his disciples 

revealed how stereotypic movements, such as reflexes, are controlled entirely within the spinal cord 

(Sherrington, 1965; Eccles, 1982) (Fig. 1.2). Since Sherrington’s study, numerous studies have 

focused on single joints or muscles in both humans and animals (Eldred et al., 1953; Rack and 

                                                   
4
 For a review of the history of reflex control from Descartes to Sherrington, see Clarac (2005a, b) 

5
 Interestingly, the reciprocal innervation of agonist and antagonist muscles was what Descartes had 

conceptually conjectured in his book (Descartes, 1664). 
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Westbury, 1969; Marsden et al., 1971, 1972; Nichols and Houk, 1973; Rack and Westbury, 1974; 

Marsden et al., 1976; Houk, 1979).  

 Although there were some practical and rational reasons for previous studies to focus on 

the movement control of single joints or muscles, there were inevitable criticisms. Studying the 

control of single joints or muscles was essentially insufficient, as I described above, for addressing 

the various problems that only arise during the coordination of multijoint movements (Hogan et al., 

1987). In addition, although some spinal reflexes, such as the scratch reflex, involve the sequential 

and well-coordinated contraction of multiple muscles that span more than one joint (Sherrington, 

1906), it is unclear if similar mechanisms also underlie the control of voluntary movements that are 

much more complex and flexible than reflexes.  

 In contrast to the first step made by neurophysiologists, the next step in the study of the 

control of complex multijoint movements was mainly made by robotic engineers. Because of the 

emerging demand for machines with limb-like structures in the 1980s, engineers had to face 

problems that are inherent in learning to control systems with multiple interacting limb segments 

(Shadmehr and Wise, 2005). Because of the synergistic interactions
6
 that occurred between 

neuroscientists and robotic engineers during the emergence of computational neuroscience (Marr, 

1983), studies of how the CNS controls and learns coordinated multijoint movements led to great 

                                                   
6
 Another good example is the theory of feedback control in engineering and the concept of 

homeostasis described by Claude Bernard during the 19th century.  
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progress in the examination of the voluntary control of reaching movements of a single upper 

extremity as a model system (Shadmehr and Wise, 2005; Green and Kalaska, 2011).  

 

Figure 1.3. The significance of interaction torques.  

Left: Experimental setup for the measurement of arm trajectories in a horizontal plane. T1 to T6: 

Targets for the reaching movement. Right: Simulated hand path from T3 to T6. Solid line: Measured 

trajectory. Dotted line: Simulated hand path after removing the contributions of all velocity terms. 

Dashed line: Simulated hand path after removing the contributions of all interaction terms. Adapted 

from Hollerbach and Flash (1982). 

 For instance, with both human psychophysical experiments and computational analyses, 

Hollerbach and Flash were the first to describe the significance of compensation of interaction 

torques during a two-joint reaching arm movement in a horizontal plane (Hollerbach and Flash, 

1982) (Fig. 1.3). Subsequently, Bastian and colleagues analyzed the reaching movement of patients 

with cerebellar ataxia and concluded that the cerebellum plays a crucial role in predicting and 

compensating for interaction torques (Bastian et al., 1996)
7
. Importantly, the findings of a recent 

study suggested that elite athletes utilize interaction torques to achieve good performances 

                                                   
7
 Therefore, the clumsiness often seen in the movements of these patients is, at least partly, due to 

their inability to predict and compensate for interaction torques; thus, from this perspective, 

Descartes’ hypothesis in which he naively extended the idea of single-muscle contraction to all other 

movements is completely wrong.  
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(Hirashima et al., 2008).  

 Besides these examples, there have been multiple lines of evidence on how the CNS 

controls and learns the reaching movement of a single arm from computational, neurophysiological, 

and psychophysical perspectives (Shadmehr and Wise, 2005). Among such studies, one influential 

idea of how the CNS controls movement is that the brain has flexible mapping between the desired 

movement and the motor commands sent to each muscle, and this is called the internal model 

(Atkeson, 1989; Kawato and Wolpert, 1998; Wolpert et al., 2011). This concept of an internal model 

of input-output mapping naturally includes the above discussion of interaction torques; the problem 

of noisy and delayed sensory feedback, which is inevitable in the biological control of movement; 

and, furthermore, adaptability to changes in the environment and/or physical properties of our bodies 

due to various reasons, such as fatigue, aging, or tool use (Franklin and Wolpert, 2011). 

 One of the most dramatic outcomes of the recent progress in motor control research is the 

application of neuroprosthetics, which are called brain–computer interfaces or brain–machine 

interfaces, in humans (Collinger et al., 2012; Hochberg et al., 2012) (Fig. 1.4). By recording and 

decoding neural activities from certain regions of paralyzed patients’ brains, these systems enable 

them to control a robotic arm in order to move objects, feed themselves, and communicate with the 

outside world (Green and Kalaska, 2011). Such technique is accomplished by the understanding 

where in the brain specific information for arm movement control, such as the desired movement 
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direction, is represented, and by the accumulation of knowledge in controlling the robotic arm to 

reproduce the intended movement in consideration of the various problems inherent to controlling 

the multijoint arm.  

 

Figure 1.4. Application of the brain–computer interface for a tetraplegic patient. 

The first successful trial of a participant trying to use a robotic arm to reach and grasp a bottle, bring 

it toward her mouth, drink from it, and place the bottle back on the table. Adapted from Hochberg et 

al. (2012). 

 However, even with our current understanding of motor control, the same criticism of the 

studies of single-joint motion from the standpoint of multijoint movement can be applied. There are 

many more actions that require the coordination of more than one limb under normal conditions
8
, 

and it is unclear if findings that have been acquired through research on the movement of a single 

arm can be extended to the coordinated movements of entire body parts.  

 In this thesis, I focused on the coordination between two arms (i.e., bimanual coordination) 

                                                   
8
 In Hochberg et al. (2012), a woman with tetraplegia controlled a robotic arm to reach and grasp a 

bottle and then moved it to her mouth to drink from a straw. However, the ability to unscrew the cap 

of the bottle with two neuroprosthetic arms remains impossible. 
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and sought to elucidate how the brain coordinates them. Reducing the problem of coordinated 

movements in general to the coordination of two arms addresses many important aspects that can be 

overlooked in single-limb movement studies. Rather, it serves as a good starting point for dealing 

with coordination in general. As will be described in the following sections, elucidating the problem 

of bimanual motor control can contribute to the basic theory of motor control, which strongly 

motivated us to study it. In the next section, I specify the problems to be addressed in the present 

thesis. 

 

1.2 Specification of the problem 

Temporarily and spatially coordinating the motion of two arms is an essential ability in our daily life, 

and it confers a number of abilities, such as playing musical instruments, opening a bottle of wine, or 

tool making. To successfully achieve these bimanual actions, a number of hierarchically organized 

problems need to be solved. First is the problem of task partitioning. Given a global task goal, such 

as playing a C major scale on a violin, the goal should be broken down into specific subtasks for 

both arms, such as moving a bow and holding down the specific location of a string. The second 

problem is role assignment. Each subtask should be appropriately assigned to each arm according to 

both internal and external constraints, such as the different abilities of the two arms (e.g., 

handedness), and the behavioral context. The final problem is the control of specific arm movements. 
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In this problem, each arm should simultaneously achieve each subtask, i.e., two unimanual 

movements that are performed together. Among these three classes of problems, I will address the 

last two problems of role assignment and the control of individual arm movements. 

 

1.2.1 Control of individual arm movements 

First, I start with the lowest level of the problem. The primary question is whether we can simply 

extend the knowledge of the control of single-arm movements to this problem. As expected, the 

answer is no. In the following section, I describe several reasons for this.  

 In this stage, each arm should be controlled by taking into account the motion of the 

opposite arm. Because both arms are physically linked through handheld objects and/or the body, 

each arm motion can be a perturbation of each other. This means that the same motion of one arm 

can be exposed to a potentially infinite number of mechanical perturbations that arise from the 

motion of the opposite arm. How does the motor system solve this problem? Interestingly, this 

problem poses an important challenge to the recent framework of motor control. 

 As described in the previous section, earlier works on single-arm reaching movements 

have suggested that the brain constructs a sensorimotor map between the desired motion and the 

motor command, called the internal model (Kawato and Wolpert, 1998; Bhushan and Shadmehr, 

1999). In addition, it has been suggested that the internal model consists of neural elements that 



11 

 

receive information about the desired motion of the relevant arm and transform it into a motor 

command (Poggio and Bizzi, 2004). The largest and most implicit assumption is that these neural 

elements only receive information about the desired motion of the relevant arm. However, during 

bimanual movements, such as the opening of a jar, interdependence exists between the two arms 

because they are mechanically coupled through the object and/or body. This fact indicates that the 

desired motor command that each controller needs to send to each arm is dependent not only on the 

desired motion of the controlled arm, but also on the desired motion of the other arm. Thus, the 

mapping of the internal model must mimic that between the desired movement of both arms and the 

motor command to an arm. This raises a serious problem: as long as we assume that the neural 

elements of the internal model only receive information about the desired movement of one arm, 

such mapping cannot be constructed. One solution is to assume that the internal model (or elements 

of it) for one-arm movement receives signals about the desired movements of both arms. However, 

almost no one has ever addressed this question.  

1.2.2 Role assignment for bimanual movements 

Once the global goal of a bimanual action is broken down into subtasks, the motor system needs to 

assign appropriate tasks to each arm, taking into account both external and internal constraints. 

Generally, we have a strong preference to use one arm over the other arm, and this is called 

handedness. This is also true, as we know very well, for bimanual movements; the dominant arm 
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often takes the leading role in a variety of tasks, such as pouring water from a bottle into a glass, 

whereas the nondominant arm takes a supportive role in those tasks, such as stabilizing the glass. 

However, depending on the situation, this role assignment may flip. For instance, most of us will 

hold the bottle with the nondominant hand and the cap with the dominant hand in order to remove it. 

Then, the subsequent motion will be pouring the bottle of water with the nondominant hand and 

holding the glass with the dominant hand. Thus, it seems that the two constraints are both taken into 

account when assigning a specific action to each arm.  

 The above examples are quite familiar to us. Indeed, many studies have shown that the 

dominant hand has superior ability over the nondominant hand, e.g., studies of movement accuracy 

(Woodworth, 1899). Nevertheless, many questions remain unanswered with regard to how the two 

arms are coordinated. The specific questions/problems are as follows. First, despite observations of 

hand dominance, we still lack a quantitative and mechanistic understanding of how these differences 

arise. In addition, whether the abilities of the dominant arm hold during bimanual movements is 

unclear because these observations were made in unimanual tasks (Annett, 1985; Goble and Brown, 

2008). Second, besides the above problems, we lack systematic knowledge of what constitutes the 

internal and external constraints that have enough power to affect the role-assignment process. Third, 

how these two constraints are considered in the motor system is still largely unknown. These 

problems are closely related to the problem of credit assignment or the division of labor in a 
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redundant and large degree-of-freedom system and, thus, coordinated movement in general 

(Berniker and Kording, 2008; White and Diedrichsen, 2010).  

 Taken together, as was stated in the previous section, an understanding of bimanual motor 

control would make a large contribution to the field of motor control. The studies described here 

sought to elucidate how the brain solves these problems. 

 

1.3 Overview of studies 

In this thesis, I investigate how the brain coordinates two arms. I experimentally examined the 

ability of each arm to control its movement interacting with the external environment in a variety of 

situations, such as when an external force is applied to the hands in a bimanual movement context. 

For this specific aim, I employed a robotic-based virtual-reality system. In this system, a human 

subject holds the handle of a robotic device called a manipulandum in each hand. Both position 

encoders and torque motors are implemented in the manipulanda, allowing us to both measure the 

state of the handle (e.g., position, velocity, force) and feedback the state to the subjects (e.g., 

applying force to the handle).  

 The question of how each arm achieves a specific task, taking the motion of the other arm 

into account, will be addressed in the first study (Chapter 3). I designed a series of experiments to 

reveal how the movements of both arms are jointly represented in the control process of each arm. 
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The two major findings of this study are as follows. (1) Information on the motion of both arms is 

multiplicatively represented in the control process of each arm. (2) Thanks to the multiplicative 

integration of motion information, human subjects were able to learn complex dynamics that 

nonlinearly depended on the movements of both arms. The results of this first study provide a 

convincing example of the motor system’s ability to integrate motion of different body parts in a 

mathematically plausible manner and contribute to an understanding of the process at the lowest 

level of bimanual movement control (control of individual arm movements), which was defined 

previously. 

 In the second study (Chapter 4), I address part of the question of the stage of role 

assignment, which was raised previously. A series of experiments was designed to uncover the 

lateralized ability of the two arms in a bimanual movement context and its possible mechanisms. The 

two major findings of this second study are as follows: (1) the control process for the nondominant 

arm encodes movement of the dominant arm in greater accuracy than vice versa and (2) this 

difference in the encoding of the opposite arm motion in the control process resulted in a greater 

ability of the nondominant arm to predict the effect of the other arm’s motion in bimanual 

movements. The results of this study demolish the conventional notion of the absolute superiority of 

the dominant arm and provide a concrete example of the internal constraint of the process of role 

assignment in bimanual movement control with a convincing mechanistic explanation.  
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 What follows in the next chapter (Chapter 2) is a brief summary of earlier studies on the 

computational approach of motor control and learning that provide a foundation for the present 

thesis and a short review of earlier studies on bimanual coordination. 
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Chapter 2 

Summary of Earlier Findings 

 

2.1 Introduction 

Suppose that you are playing a video game like Street Fighter
©
. Typically in these kinds of video 

games, a character’s actions (e.g., jumping, kicking, or punching) are controlled by pressing small 

number of buttons on a controller (e.g., ↑, A, or B buttons) or some combination of them (e.g., →↓↘ 

+ B button). Therefore, it is not surprising that these actions lack flexibility. If you want to more 

precisely control the character’s action, perhaps the most straightforward (and somewhat extreme) 

way is to independently associate each button with the movement of each joint (or muscle 

contraction). However, if that is the case, you would be stunned by the more than 300 (or 600) keys 

on your controller
9
 because the human body has ~350 joints (or ~640 muscles)! What makes 

matters much more complicated is the redundancy in our body. Thus, there is no unique solution to 

determine, for instance, the position of a fingertip in space. In addition, because the dynamics of a 

multijoint system are coupled, the motion of a particular joint causes unexpected motion in other 

joints depending on posture by an interaction torque (Hollerbach and Flash, 1982; Atkeson, 1989). 

Furthermore, what if there was noise and a delay between a button press and a joint motion (or 

                                                   
9
 A standard computer keyboard has ~100 keys. 
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muscle contraction)?  

 In the preceding example of the controller, though the resultant actions are somehow 

inflexible, the idea itself is not so bad; assuming a small number of elements that send appropriate 

commands to specific groups of muscles can largely reduce the redundancy in our body and release 

us from the complex task of controlling each muscle separately. Indeed, it has been revealed that 

relatively primitive animals, such as frogs, use this strategy (Bizzi et al., 2008). In addition, a recent 

study suggested that the same strategy is used for relatively automatic movements, such as 

locomotion, across a variety of species, including humans (Dominici et al., 2011). Therefore, 

considering that the nervous system is a product of an evolutionary process, our nervous system 

might take a similar approach for voluntary movement, but, probably does so in a much more 

sophisticated fashion to achieve greater flexibility. 

 In this chapter, I review studies on the computational approach in order to understand how 

the CNS controls voluntary movement. The specific aim of this chapter is to summarize the findings 

of previous studies on bimanual coordination in light of both the computational approach and 

specific problems in bimanual movements, which I proposed in the previous chapter. First, I briefly 

introduce Marr’s three levels of computational neuroscience (Marr, 1983) and review several general 

topics of motor control, such as the concept of the internal model and motor primitives, each of 

which lies within a separate level of Marr’s three levels. Then, I summarize the findings of earlier 
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studies on bimanual movements from the perspective of the above concepts. Finally, I discuss 

several unsolved issues for which the studies on bimanual movement presented in this thesis can 

account. 

 

2.2 Computational approach of motor control and learning 

In his memorial book “Vision,” David Marr (1982) broke down the computational approaches in 

neuroscience into the three following separate levels of problems: computational theory, 

representation and algorithm, and hardware implementation. The information processing problems 

that the brain needs to solve to achieve some specific task, how to solve the problems, and the 

physical mechanisms that are used to execute algorithms in the brain are described for each level. 

Marr proposed that although these three levels are loosely coupled with each other, they are 

relatively independent and can therefore be investigated separately. The aim of computational 

neuroscience is to understand how the CNS works in all of these levels. In this section, I will briefly 

summarize the issues of the internal model and motor primitive. 

2.2.1 Internal model for predictive motor control 

2.2.1.1 Internal model: General description 

The concept of the internal model belongs at the level of computational theory. For industrial 

machines that have much faster and less noisy sensory feedback, pure feedback control, such as 
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proportional–integral–derivative (PID) control, results in good performance without precise 

knowledge about the property of the controlled object, even if it is nonlinear (Bennett, 1993). In 

contrast, when faced with the fundamental problems of biological motor control, such as large noise 

levels and delays in sensory feedback signals, complex coordinate transformation, and highly 

nonlinear properties of our body, the brain needs an appropriate model of the physical properties of 

one’s own body and the external environment, and this is called the internal model (Atkeson, 1989; 

Kawato and Wolpert, 1998; Franklin and Wolpert, 2011) in the context of both feedforward and 

feedback control.  

 Feedforward control, in which the controller programs in advance a set of appropriate 

feedforward commands for the controlled object in order to achieve a desired outcome, is crucial, 

especially for rapid movements, such as a golf swing or throwing a baseball, because most of the 

movement is finished when sensory feedback signals become available. In such cases, an internal 

model is required to transform desired motion states into appropriate motor commands that can 

accomplish the desired motion states. Such a class of the internal model is called an inverse 

(dynamic) model (Kawato and Wolpert, 1998; Wolpert and Kawato, 1998). Feedback control, in 

which feedback sensory signals or differences between the desired and feedback sensory signals are 

transformed into control commands to the controlled object by the controller, is also essential for our 

movement. It is obvious that animals cannot deal with sudden unexpected disturbances, such as 
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encountering obstacles, by only using feedforward control. In addition, as described above, delays in 

feedback signals make the system with feedback control unstable (Hogan et al., 1987). To cope with 

this problem, it has been proposed that the brain may use the internal feedback that is generated 

through a forward model, which is similar to the Smith predictor in the engineering field (Miall et al., 

1993; Wolpert et al., 1998). The forward model transforms motor commands into predicted sensory 

states.  

 

Figure 2.1. Block diagram of motor control. 

Current scheme of motor control. Modified from Shadmehr and Krakauer (2008). 

 In summary, the inverse model, which is a crucial process for feedforward control, 

transforms the desired sensory states (i.e., result) into motor commands (i.e., cause), and the forward 

model, which is a crucial process for feedback control, transforms motor commands (i.e., cause) into 

predicted sensory states (i.e., result). Thus, in a broad sense, these internal models are regarded as 

mapping between the desired/predicted sensory state and the motor command. Another point to note 
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is that, although the two control schemes (i.e., feedforward and feedback control) have often been 

studied separately, both contribute to real movements in general (Fig. 2.1).  

2.2.1.2 Adaptability of internal models: Behavioral aspect 

Another important property required for the internal model is adaptability. The physical properties 

of our body are not static; rather, they change in various time scales. On shorter time scales, for 

instance, muscle fatigue changes input-output properties, and the use of tools or the holding of 

objects changes limb dynamics, whereas, On longer time scales, the size and mass of our body 

dramatically change as we grow from a small child to an adult.  

 The question of how the CNS constructs a new internal model or modifies the existing one 

has been studied behaviorally with reaching and pointing movements in various altered 

environments, such as those involving Coriolis forces (Lackner and Dizio, 1994), viscosity fields 

(Shadmehr and Mussa-Ivaldi, 1994), or prism glasses (Kitazawa et al., 1995) (for a comprehensive 

review of this topic, see Shadmehr & Wise, 2005). These studies have often used virtual-reality 

environments that use robotic devices. In this kind of system, a human subject holds the handle of a 

robotic arm called a manipulandum that incorporates a position encoder and torque motor, thus 

allowing experimenters to measure the state of the handle (e.g., position, velocity, and force), and to 

provide feedback regarding the state to the subjects (e.g., applying force to the handle and presenting 

visual cursors that represent the position of the handle) (Fig. 2.2).  
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Figure 2.2. Robotic manipulandum for motor research. 

Left: Schematic diagram (upper panel) and a picture (lower panel) of a human two-dimensional 

reaching experiment and the robotic manipulandum used by Shadmehr and Mussa-Ivaldi (1994). 

Right: Anatomy of a similar manipulandum that was developed by Howard et al. Upper: Side view. 

Lower: Top view. Adapted from Shadmehr and Brashers-Krug (1997) and Howard et al. (2009). 

 In their pioneering work with this kind of reaching paradigm, Shadmehr and Mussa-Ivaldi 

(1994) investigated how the internal model for arm reaching adapted to a novel force field that was 

applied through the handle and how subjects acquired the model of the robotic tool (Fig. 2.3). They 

instructed the subjects to move a visual cursor from a center position to eight peripheral targets. 

During the reaching movement, the robot generated a viscous force (i.e., the magnitude of the force 

was proportional to the velocity of the handle), the direction of which was perpendicular to the 

motion of the right handle. Before the force field was applied (baseline period), the reach trajectory 
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was almost straight. At the onset of the force field trials, subjects showed substantial lateral 

deviations in the reach trajectories because of perturbations that were applied through the handle. 

However, after a sufficient training period, the reach trajectory became relatively straight, suggesting 

that the subjects predictively compensated for the force. This was confirmed by catch trials, in 

which the perturbation force was unexpectedly turned off. If the subjects used another more effortful 

strategy, that is, co-contraction of muscles around the joints, the resultant trajectory showed no 

difference from that of the baseline period. However, the resultant trajectory was the mirror image of 

the perturbed one, suggesting modification of the feedforward motor command.  

 

 

Figure 2.3. Adaptation to novel force fields during reaching movements. 

Left: Hand trajectories during force field trials. As training progressed (A to D), the curved 

trajectories returned to relatively straight ones, like those seen in null field trials. Right: Trajectories 

during catch trials. As training progressed (A to D), the subjects showed curved trajectories that were 

mirror images of the ones in early training (A in the left panels), suggesting modified feedforward 

commands to the arm. Adapted from Shadmehr and Mussa-Ivaldi (1994).   
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 Thus, with a relatively short training period, subjects acquired an internal model of the 

force field (i.e., internal model of the robotic arm) or adapted the existing model to the novel 

environment. A large number of studies have followed this paradigm to study how humans adapt 

their internal model to novel environments or construct a new one (Cothros et al., 2006) in various 

time scales (Smith et al., 2006) and how these memories consolidate across longer time periods 

(Brashers-Krug et al., 1996; Criscimagna-Hemminger and Shadmehr, 2008). A recent study by 

Izawa et al. (2011, 2012) demonstrated that both inverse and forward internal models change after 

adaptation to novel kinematic transformation (Izawa et al., 2012a; Izawa et al., 2012b). The results 

of these behavioral studies strongly suggest the existence of internal models in the brain and their 

modification through experience. Then, how are these processes implemented in the brain?  

2.2.1.3 Adaptability of internal models: Neural correlates 

Several studies have addressed the above question of where internal models are in the brain and how 

they are modified. Emillio Bizzi and his colleagues were the first to combine the above motor 

learning paradigm and electrophysiological recording in behaving monkeys to study how neural 

activation patterns around frontal motor areas change following the adaptation to novel dynamical 

environments. Through recording from various cortical areas, such as the primary motor (Gandolfo 

et al., 2000; Li et al., 2001), pre-motor (Xiao et al., 2006), supplementary motor (Padoa-Schioppa et 

al., 2002; Padoa-Schioppa et al., 2004), and cingulate motor cortices (Richardson et al., 2008), they 
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found that the population of neurons in these areas show altered activation patterns during both 

adaptation to the force field and re-adaptation to the original condition (called washout), and that 

there are several types of neurons whose activation patterns change in different phases of adaptation. 

For example, some group of neurons changed their activity only during the adaptation phase and did 

not return to the original activation pattern after the washout session, and other groups of neurons 

exhibited the opposite tendency: the activation pattern only changed during the washout session. 

These results suggest that the internal model of dynamics control is represented around these cortical 

areas.  

 Another line of studies has investigated the role of the cerebellum in motor control and 

learning. Computationally, the cerebellum was proposed to be an adaptive network, like a perceptron 

(for review, see Ito, 1989), and this structure was largely thought to contribute to motor control and 

learning (Wolpert et al., 1998). Several studies have demonstrated that the cerebellum is essential to 

the modification of simple reflexes and classical conditioning, like the vestibulo-ocular reflex (for 

review, see Kawato and Gomi, 1992) and eyelid response conditioning (e.g., Kitazawa, 2002). For 

voluntary movement control, Imamizu et al. demonstrated that the formation of a newly acquired 

internal model of a tool in the cerebellum (Imamizu et al., 2000). They recorded brain activity by 

functional magnetic resonance imaging (fMRI) while human subjects learned how to use an 

experimentally modified computer mouse; the mapping between the motion of the mouse and the 
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cursor was rotated by certain amount (e.g., 45º). It has also been reported that subjects with 

cerebellar ataxia show deficits in adapting to novel dynamics and kinematics depending on ataxia 

severity (Criscimagna-Hemminger et al., 2010; Izawa et al., 2012a), which supports the above 

notion.  

 In summary, both frontal motor areas and the cerebellum contribute to the process of 

motor adaptation. Then, one may be curious about which part of the brain is the neural correlate of 

the internal model. A recent hypothesis proposed that the internal model and its adaptation process 

are implemented within the network structure, including both of them (i.e., frontal motor areas and 

the cerebellum) and many other structures, such as the basal ganglia (Shadmehr and Krakauer, 

2008). 

2.2.2 Motor primitives: Building blocks for complex movement 

The concept of the motor primitive lies between the levels of algorithm and implementation. As 

described in the previous section, the concept of an internal model specifies the computation(s) that 

the brain needs to make in order to control voluntary movement, namely, to flexibly construct certain 

mapping between the desired/predicted sensory state and the motor command. This concept of the 

motor primitive is one of the candidates for the implementation of an internal model. Because of the 

complexity and nonlinearity of the dynamics of our body, this map should be highly nonlinear. For 
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instance, the equation of motion for a two-dimensional arm movement with two degrees of freedom 

(Fig. 2.4) can be described as follows: 
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where 𝜏1 and 𝜏2 are the joint torques, 𝑞1 and 𝑞2 are joint angles at the shoulder and elbow, 

respectively, 𝐼1 and 𝐼2 are inertial moments, 𝑚1 and 𝑚2 are masses, 𝑙1 and 𝑙2 are the lengths 

of the upper and lower arm segments, respectively, and the dots represent time derivatives. The 

compact expression of these complicated equations is the following: 

𝝉(𝑡) = 𝐷(𝒒𝑑(𝑡), 𝒒𝑑̇(𝑡), 𝒒𝑑̈(𝑡))   (2-2), 

where 𝒒𝑑 , 𝒒𝑑̇ , and 𝒒𝑑̈  are vectors of the desired (or predicted) trajectories of the joint angle, 

angular velocity, and angular acceleration, respectively. Thus, if we want to move this two-link arm 

along these desired trajectories, the brain needs to construct this complex, nonlinear mapping. How 

is this achieved?  
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Figure 2.4. Schematic for planer arm reaching. 

The system has two degrees of freedom (shoulder and elbow). 𝑙1 and 𝑙2: segment lengths for the 

upper and lower arms. (𝑞1, 𝜏1) and (𝑞2, 𝜏2): joint angle and torque at the shoulder and elbow. 

Circle with a plus sign: position of the center of mass of each segment. Each center of mass is 

assumed to be located at the center of each segment. 

 Computationally, the problem of learning (constructing) a map between inputs and outputs 

can be regarded as a function approximation (Poggio and Girosi, 1990). In this view, the original 

function 𝑓(𝑿) is approximated by the approximating function 𝐹(𝑾,𝑿), where 𝑿 is an input 

vector and 𝑾 is a parameter vector that is estimated (learned) through certain learning algorithms. 

One classical approximation scheme is the basic function approach, such as the following:  

𝐹(𝑾,𝑿) = ∑ 𝑊𝑖Φ𝑖(𝑿)
𝑚
𝑖     (2-3), 

where {Φ𝑖}𝑖=1
𝑚  is some suitable basic function. Importantly, these classical basic function 

approaches are closely related to multilayer neural networks (Poggio and Girosi, 1990) and, thus, 

have some biological plausibility when we think of how these function approximations are 

implemented in the nervous system. Indeed, in visual systems, there have been numerous examples 

of neurons that meet the criteria for such basic functions, a certain combination of which can 

reconstruct the retinal image (Olshausen and Field, 1996). Then, what about motor systems? 
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2.2.2.1 Motor primitives in the spinal cord 

Almost 100 years after Sherrington, a line of electrophysiological studies of the spinal cords of frogs 

and rats that was conducted by Bizzi and colleagues demonstrated that there are some modules in the 

spinal cord, the linear combination of which can generate purposeful multijoint leg movements (Fig. 

2.5). They have shown that microstimulation of interneuronal circuitry in the lumbar spinal cord of 

frogs and rats elicits some organized pattern of activity of multiple muscles (Giszter et al., 1993; 

Mussa-Ivaldi et al., 1994). They have further shown that a linear combination of activity patterns, 

each of which was separately obtained stimulating a single location of the spinal cord, was quite 

similar to that obtained by co-stimulating two sites (Mussa-Ivaldi et al., 1994).  

 

Figure 2.5. Motor primitives in frog spinal cord. 

Left: Experimental setup for the measurement of isometric forces in the lower leg of frogs. A force 

transducer was mounted on the ankle, and endpoint forces were measured in various different 

postures (indicated as arrows). Right: The costimulation of two different sites (indicated as &) 

evoked quite similar patterns of endpoint forces with linear summation (indicated as +) of the force 

fields that were evoked following the stimulation of single sites (indicated as SA or GA). Adapted 

from Giszter et al. (1993) and Mussa-Ivaldi et al. (1994). 
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 Thus, through the linear combination of these spinal primitives, the equation of motion for 

mapping can be approximated as the following: 

𝐷(𝒒𝑑(𝑡), 𝒒𝑑̇(𝑡), 𝒒𝑑̈(𝑡)) ≈ ∑ 𝑐𝑖Φ𝑖
𝐾
𝑖=1    (2-4), 

where 𝑐𝑖 represents a descending supraspinal command and Φ𝑖 is a primitive that is a nonlinear 

function of Eq. (2-3). With this scheme, Bizzi and colleagues were able to reproduce several 

kinematic features of experimentally observed human upper-limb movements (Mussa-Ivaldi and 

Bizzi, 2000). In addition, they have found that muscle activity patterns during naturalistic leg 

movements of behaving frogs and rats, such as swimming and jumping, can be linearly decomposed 

into a small number of basic patterns (i.e., muscle synergies) that are shared within various other 

movements (Tresch et al., 1999). Interestingly, the muscle activation patterns evoked by spinal cord 

microstimulation were qualitatively similar to these decomposed patterns, suggesting that what they 

found in the spinal cords of frogs and rats was actually a part of the computational building blocks 

that generate various types of motor actions in behaving animals in the natural environment (for 

review, see Bizzi et al., 2008). While it seems feasible that these motor primitives within the spinal 

cord are one of the crucial components of the internal model, there remain several unsolved 

questions. First, how the nervous system derives the appropriate descending commands to each 

spinal primitive (i.e., 𝑐𝑖) from a desired movement, which should definitely be generated in higher 

centers, such as the cerebral cortex, or at least higher than the spinal cord, is unknown. Second, how 
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these primitives are organized across multiple limbs to generate coordinated motion, in other words, 

how the activity of primitives that belong to the muscle activation patterns for one limb are adjusted 

according to the sensory state of other limbs, is unknown. 

2.2.2.2 Motor primitives in higher centers 

Similar to the spinal primitives, there have been many observations that neurons in motor-related 

areas in the cerebral cortex show certain patterns of activity during arm movement (Georgopoulos et 

al., 1982; Kalaska et al., 1989; Cisek et al., 2003; Cisek and Kalaska, 2005). For instance, 

Georgopoulos et al. (1982) used single-cell recordings of the primary motor cortex of behaving 

monkeys and identified a group of neurons that exhibited a characteristic firing pattern (Fig. 2.6).  

 

 

Figure 2.6. Neuronal activity in the primary motor cortex of monkeys during planar reaching 

movements. 

Left: Raster plots from an example neuron of the primary motor cortex as a monkey reached in 

different directions. Right: Average discharge rate of the same neuron plotted against the reach 

direction. The neuron showed clear cosine tuning (the preferred direction was calculated as 161º). 

Adapted from Georgopoulos et al. (1982).  

  



32 

 

 The firing frequencies of these neurons were well characterized by unimodal functions, 

such as the following cosine function: 

𝑟𝑖(𝜃) = 𝐴 cos(𝜃 − 𝜙𝑖) + 𝐵    (2-5), 

where 𝜃 is the direction of the reaching movement by the monkey; 𝑟𝑖  is the average firing 

frequency of a cell; 𝜙𝑖  is the direction of the reaching movement in which the cell mostly 

discharged, which is called the preferred direction (PD) and which was different for each neuron 

around 0–360º; 𝐴 and 𝐵 are constants; and 𝑖 is the cell number. They found that the direction a 

monkey is trying to reach can be reconstructed with the population activity of these neurons with the 

following equation: 

𝜃 = ∑ 𝒘𝑖𝑟𝑖(𝜃)
𝑁
𝑖     (2-6), 

where 𝜃 and 𝜃 are the estimated and original directions of the reaching movement, respectively, 

and 𝒘𝑖 is the unit vector corresponding to the PD of each neuron (Georgopoulos et al., 1986). They 

concluded that these neurons code the desired kinematics (e.g., movement directions) in a population, 

and this is called population coding (for a review, see (Pouget et al., 2000)). An important point is 

that cosine and other unimodal functions (e.g., Gaussian functions) can serve as basic functions to 

approximate nonlinear mapping. Thus, another possible interpretation is that neurons in the primary 

motor cortex and other areas that show basic function-like activities may serve as nodes to transform 

the information of desired movements into certain signals in order to organize spinal motor 
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primitives. In this sense, these neurons can be called cortical (or higher) motor primitives. Recently, 

Cheung et al. (2009) found that the muscle activation patterns that were decomposed from the arm 

movements (i.e., muscle synergies) of both the unaffected and affected sides of stroke survivors and 

found that they were highly similar to each other despite large differences in motor performances 

between the arms and the various lesion sizes and locations across patients (Cheung et al., 2009b).  

 Another issue is how the activities of these neurons actually relate to motor behavior. A 

quite straightforward approach to this question is to stimulate these neurons and see what happens. 

Typically, a short-duration (30 msec) intracortical microstimulation (ICMS) that consists of 10 

pulses at a frequency of 330 Hz evokes brief joint movement or muscle twitches, and this has been 

used extensively to map the somatotopic representations of the motor cortex (Asanuma and Rosén, 

1972; Burish et al., 2008). Using a longer duration of ICMS (500–1000 msec), Graziano and 

colleagues have reported interesting observations of monkey arm movements that were analogous to 

the example of spinal motor primitives by Bizzi et al. They observed that stimulations evoked robust 

arm movements toward specific end positions regardless of the initial arm posture (Graziano et al., 

2002; Graziano et al., 2005). In addition, Ethier and colleagues reported that costimulation of the 

motor cortex of anesthetized cats evoked the linear summation of separately evoked forelimb 

motions (Ethier et al., 2006). Finally, a recent work demonstrated that the electromyographic (EMG) 

patterns of hand muscles evoked by long ICMS of motor cortical areas of monkeys were 
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decomposed into a few basic synergies that showed high similarities to those found in voluntary 

movements (e.g., reaching and grasping) (Overduin et al., 2008), and these synergies were 

nonuniformly distributed over the cortical surface (Overduin et al., 2012)
10

. 

2.2.2.3 Generalization: Behavioral window for motor primitives 

The implementation of the internal model through the motor primitives provides a testable 

hypothesis in terms of motor adaptation. Mathematically, it can be easily shown in Eq. (2-3) that the 

pattern of learning in 𝑊𝑖 is proportional to Φ𝑖 under the assumption of a simple learning algorithm, 

such as that of a first-order gradient descent. In other words, the pattern of motor learning may 

reflect how the primitives, Φ𝑖 , represent various movement parameters (e.g., limb velocity and 

position). Thus, one can estimate the encoding scheme of Φ𝑖 by analyzing how the performance of 

𝐹 changes for new inputs around training data, and this is called generalization (Fig. 2.7).  

 

Figure 2.7. Generalization of motor learning and encoding of the motor primitive. 

The scheme that the internal models are constructed through the combination of the motor primitives 

predicts that, under the several assumptions, generalization of motor learning reflects the features of 

encoding function of the primitives. (Strick, 2002) 

                                                   
10

 While these studies have provided fascinating examples of cortical motor primitives that suggest 

that a complex arm movement can be evoked through the activity of a specific group of cortical 

neurons, the interpretation is still under debate. For example, because of the lack of understanding of 

the effects of a longer ICMS, one cannot conclude whether a small region of motor cortex or a wider 

network that included the motor cortex was activated through current spreading (Strick, 2002).  
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 By closely analyzing the pattern of how learning that is acquired with a specific movement 

generalizes to neighboring movement, Shadmehr and co-workers demonstrated how the primitives 

are tuned to different movement parameters (for a review, see Shadmehr, 2004). For instance, when 

using the same paradigm as that described in the previous section (Shadmehr and Mussa-Ivaldi, 

1994) and the system-identification approach, Donchin et al. (2003) investigated how adaptation to a 

novel velocity-dependent force field generalizes to different movement directions (Fig. 2.8). They 

found that the generalization patterns were robust to several different types of novel dynamics 

(Donchin et al., 2003), and they had similar tuning properties as cerebellar Purkinje cells (Coltz et al., 

1999) (Fig. 2.8).  

 

Figure 2.8. Similarity between the estimated encoding pattern of the motor primitive and 

neuronal discharge patterns. 

Left: Generalization pattern of adaptation to a novel force field. The horizontal axis indicates the 

difference in movement direction between a certain trial and the subsequent trial. The vertical axis 

indicates how the movement error in the trial affects the subsequent movement in a different 

direction. Middle: Estimated activation pattern of the motor primitive from the generalization data. 

Horizontal and vertical axes indicate the hand velocity in the x and y directions, respectively. Note 

that there is the second peak in the opposite direction of the first peak. Right: Discharge pattern of a 

cerebellar Purkinje cell from a monkey performing a planar arm movement with various velocities. 

Two activation peaks exist in opposite direction. Adapted from Donchin et al. (2003) and Coltz et al. 

(1999).   



36 

 

 Other studies have suggested that these primitives have similar tuning patterns as neurons 

in the primary motor cortex with respect to their tuning to arm posture and reach direction 

(Georgopoulos et al., 1984; Hwang et al., 2003).
11

  

 So far, in this section, I have briefly reviewed the findings of previous studies on the issues 

of the internal model and motor primitives. Importantly, how the motion states of other limbs affect 

the state of the internal model (or activity of primitives) for the movement of a particular limb has 

not yet been investigated because most of the studies reviewed here focused on the movement of a 

single limb. In the next section, I briefly review the findings of earlier studies on bimanual 

coordination from this point of view.  

2.3 Earlier studies on bimanual movements 

As mentioned in Chapter 1, bimanual movement control can be divided into the following three 

hierarchically organized problems: task partitioning, role assignment, and the control of specific arm 

movements. In this section, I briefly summarize the findings of earlier studies on bimanual 

movements according to the above classification, especially for role assignment and the control of 

specific arm movements, which I aim to investigate in this thesis. I begin with studies that addressed 

problems that belong to the stage of specific arm movement control. The concepts of the internal 

                                                   
11

 An important point to keep in mind is that, while this approach can explain and predict many 

aspects of the behavioral data regarding the adaptation to both novel dynamics and kinematics 

(Shadmehr, 2004; Tanaka et al., 2009), it has little power in localizing the primitives in the nervous 

system compared to electrophysiological approaches because, in principle, the generalization 

patterns can contain all possible effects of primitives in different hierarchies of the motor system. I 

will discuss this point in Chapter 5. 
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model and motor primitives that I reviewed in the previous section are also helpful in the 

interpretation of these studies. Then, I review some of the important findings of studies that 

addressed the problems related to role assignment.  

2.3.1 Controlling two arm movements simultaneously 

Similar to the control of unimanual movements, which have been intensively studied, bimanual 

movements are divided into the following two classes of control: feedforward and feedback. In the 

very beginning of movements, feedforward control is essential for counteracting the unavoidable 

noise and delays in sensory feedback signals (~50 msec) because sensory feedback is not available at 

this period. After sensory feedback is available, feedback control is necessary to counteract 

unexpected perturbations or environmental changes in some optimal way (e.g., minimizing motor 

errors and efforts and/or maximizing rewards). 

2.3.1.1 Feedforward control during bimanual movements 

Traditionally, the feedforward control of bimanual movement has been studied with a class of tasks 

called voluntary unloading/loading tasks, in which a subject is instructed to maintain the position of 

his or her arm while taking off (unloading) or putting on (loading) a load that is attached to the arm 

with the other arm, which is similar to placing a cocktail glass on/off a tray while keeping the tray 

and other glasses still. In these tasks, predictive muscle deactivations/activations are constantly 

observed in advance of the onset of unloading/loading and are not observed when the load is taken 
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off (or put on) by an experimenter (Massion, 1984; Johansson and Westling, 1988; Viallet et al., 

1992; Massion et al., 1999), even when the timing is highly predictable (Diedrichsen et al., 2003). 

These predictive controls are adaptive and are learned by experience (Massion et al., 1999; Morton 

et al., 2001; Schmitz and Assaiante, 2002; Schmitz et al., 2002). An important feature of this simple 

bimanual coordination task is that the motor output of one arm is dependent on the active motor plan 

of the other arm. This idea can be extended to a more mechanistic approach, such as motor control 

through an internal model. Several recent behavioral studies have begun to examine this point of 

view (Bays and Wolpert, 2006; Nozaki et al., 2006; Nozaki and Scott, 2009; Howard et al., 2010).  

 By using robotic devices similar to those used in a study by Shadmehr et al., Bays and 

Wolpert (2006) studied the acquisition of a novel relationship between two arms (Fig. 2.9). They 

mimicked a situation in which the subjects manipulate an object that is held in the left hand with the 

right arm. The goal of the task was to maintain the position of the left handle of the manipulandum 

within an area that was specified by a visual target presented on a horizontal screen while making 

out-and-back reaching movements in different directions with the right handle. During the reaching 

movement, the left robot generated a force with a magnitude that was proportional and perpendicular 

to the velocity of the right handle. Therefore, the perturbation that the left arm experienced was 

dependent on the motion state (i.e., speed and direction) of the right arm. Initially, the subjects 

showed substantial deviation in their left-arm position because of perturbation from the right-arm 
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motion. However, after about 40 trials of reach, the peak displacement of the left hand was reduced, 

albeit incompletely, suggesting that the subjects acquired this novel relationship between the motion 

of the right arm and the force to the left arm (i.e., internal model) and predictively compensated for 

the perturbation.  

 

Figure 2.9. Adaptation to a novel bimanual load compensation task. 

Left: Experimental setup. Motion of the right handle imposed a force on the left handle perpendicular 

to the motion of the right handle. The numbered arrows on the left handle indicate the direction of 

the force when the right handle was moving toward the corresponding target. Middle: Force profiles 

of the left handle perpendicular (top) and parallel (bottom) to the right-hand target direction. The 

dotted line indicates the mean force that was applied to the left handle in the perturbation trials. The 

mean force that was generated by the subjects is plotted as dashed lines (light gray: the first clamp 

trial, mid-gray: 1–10 clamp trials, dark gray: 11–30 clamp trials) and solid lines (31–60 clamped 

trials) with shaded area (±1 SE across subjects). Right: Aftereffect of the left arm averaged across all 

subjects. The arrows indicate the mean force vectors that were generated in the 31st–60th clamp 

trials averaged across subjects. The ellipses indicate 95% confidence intervals. Adapted from Bays 

and Wolpert (2006). 

 This was confirmed by clamp trials in which the perturbation force was unexpectedly 

turned off and the position of the left handle was clamped to the home position by a virtual spring 

that was stiff enough to measure the direction and amplitude of the force that the subjects’ left arm 

generated while constraining the handle to the initial position. They observed exactly the same 
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pattern of compensating force with the velocity of the right handle in the opposite direction to the 

expected perturbations. This kind of learned predictive compensation was also well modulated by 

the movement speed of the right arm (Jackson and Miall, 2008). Thus, the findings suggested that 

the CNS can learn a new internal model of perturbation for the passive left arm that depends on the 

motion state of the right arm, such as movement speed and/or direction. 

 At the same time as Bays and Wolpert (2006), Nozaki et al. (2006, 2009) also described 

this point using a different approach (Fig. 2.10). In their experiment, subjects learned the force field 

while unimanually reaching with their left or right arm. After training, they measured the amount of 

learning by the catch trial for both the unimanual and bimanual conditions and found that only 60–

70% of learning was observed in the bimanual condition compared to the unimanual condition. Thus, 

the motor learning acquired in the unimanual training incompletely transferred to the same arm that 

was reaching in a bimanual context. In addition, they showed that the opposite was true; the motor 

learning that was acquired in the bimanual training incompletely transferred to the unimanual 

context, confirming that the results in the first experiment were not simply due to an increase in 

attentional demand or caused by the additional motion of the opposite arm. Rather, their results 

implied that partially different motor memories (i.e., internal models) were involved in the reaching 

of the same arm depending on the motion state (reaching or not moving) of the opposite arm. 

Furthermore, they demonstrated that the subjects were able to simultaneously learn opposing force 
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fields with the same arm movement if they were associated with the two states of the opposite arm 

(i.e., unimanual or bimanual).  

 

 

Figure 2.10. Concurrent motion of the right arm modulates the control process for the left 

arm. 

Left: Schematics of unimanual (upper panel) and bimanual (lower panel) training. In unimanual 

training, subjects tried to reach their left arm in the presence of a force field (indicated as arrows) 

while maintaining the right arm still. In bimanual training, the subjects reached both arms while the 

force field was applied only on the left arm. Right: Aftereffects for both unimanual and bimanual 

catch trials for unimanual (upper panel) and bimanual (lower panel) training. Adapted from Nozaki 

et al. (2006). 

 These results were well explained by a computational model that introduced the similarity 

(i.e., overlap) in the internal states of the internal model between bimanual and unimanual reaches 

(Nozaki and Scott, 2009), suggesting that the contribution of the motor primitives in the internal 
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model to the motor output of the arm dramatically changed depending on whether the other arm was 

reaching or at rest. Similarly, Howard et al. (2010) have demonstrated that the opposing force fields 

can be learned by one arm if they are associated with different movement directions of the opposite 

arm during bimanual movement (Howard et al., 2010).  

 In summary, these studies suggest that the motion state of one arm has strong effects on the 

internal state of the internal model for the other arm, possibly through changing the activation 

patterns of the motor primitives. However, how the motion states of both arms are integrated in the 

internal model or in the motor primitives remains completely unknown.  

2.3.1.2 Feedback response during bimanual movements 

The ability for a rapid motor response to sensory input is necessary to counteract unexpected 

perturbations or sudden environmental changes. A recent theory of optimal feedback control in 

biological movement control posits that our nervous system transforms sensory inputs into motor 

output in an intelligent way to minimize effort and maximize the task goal or reward (Todorov and 

Jordan, 2002; Shadmehr and Krakauer, 2008; Diedrichsen et al., 2010). The findings of several 

studies have suggested that in bimanual movement control, similar to the above example of 

feedforward control, fast feedback responses for the one arm (or finger) can be flexibly triggered 

from the sensory inputs to the opposite arm (or finger) in a highly task-dependent manner (Ohki and 

Johansson, 1999; Ohki et al., 2002; Diedrichsen, 2007; Mutha and Sainburg, 2009; Dimitriou et al., 
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2012).  

 For instance, by using an arm reaching paradigm similar to that used by Bays and Wolpert 

(2006), Diedrichsen (2007) examined how subjects respond to a sudden mechanical perturbation to 

one arm while simultaneously reaching with both arms in different conditions while the two arms are 

controlling a single object or two separated objects (Fig. 2.11). In the one-cursor condition, a visual 

cursor was presented at the average position of the two handles, whereas two cursors were presented 

for each position of the handle in the two-cursor condition. He found that subjects corrected the 

movement with both arms in the one-cursor condition, whereas, in the two-cursor condition, the 

correction was only made for the perturbed arm. Bilateral correction was still observed when visual 

feedback was occasionally withdrawn, and it was made as early as 190 ms after movement onset, 

suggesting that proprioceptive input to one arm was sufficient to elicit a bilateral feedback correction. 

The concept of signal-dependent noise in the motor command, the variance of which increased 

proportionally to the size of the command (Harris and Wolpert, 1998), predicts that it was more 

effective in the single-cursor condition for correcting movement error that was caused by the error 

from one arm than with both arms, likely because sending a larger corrective command to one arm 

may be subject to larger variability compared with smaller commands to both arms. Indeed, 

simulation with an optimal feedback control model closely matched the behavioral data.  
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Figure 2.11. Fast task-dependent feedback during bimanual movements. 

Upper: Subjects were asked to reach both arms to move visual cursors (presented as filled circles) to 

targets (presented as open circles). In the two-cursor condition, a visual cursor was presented for 

each hand. In the one-cursor condition, the cursor was presented at the averaged position of both 

hands. One of the hands was perturbed with either a leftward (red) or rightward (blue) force field. 

Lower: Hand paths for each condition (left: two cursor, right: one cursor). The black trajectories 

show the data for the unperturbed trial. Adapted from Diedrichsen (2007). 

 Several years later, findings of several studies that analyzed the muscle stretch reflex 

suggested that the type of motor response observed by Diedrichsen (2007) might be mediated by fast 

involuntary processes, such as reflexes. Mutha and Sainburg (2009) and Dimitriou et al. (2012) 

demonstrated that long-latency stretch reflexes are modulated in a similar manner to what was 

observed by Diedrichsen (2007); namely, it depends on whether subjects are controlling single 

objects or two independent objects with two arms. For example, in the recent work by Dimitriou et 

al. (2012), subjects were asked to maintain the position of two handles of robotic manipulanda in 

two conditions. In the first, the handles were linked through a virtual horizontal bar, and the task was 

to maintain the tilt of the bar, just like balancing a loaded tray (Fig. 2.12). In another (control) 
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condition, the subjects were asked to separately maintain the positions of two small bars for each 

handle. In the control condition, stretch reflexes were only elicited in the muscles of the perturbed 

arm. However, in the single-bar condition, long-latency reflexes were also elicited for the muscles of 

the unperturbed arm in the direction that compensated for the change in the orientation of the virtual 

bar, despite that the muscles of the unperturbed arm were not stretched at all. In addition, when 

perturbations were applied to both arms in the same direction, which did not change the orientation 

of the virtual bar, the amplitudes of the long-latency reflexes were attenuated compared to those 

observed for responses to the same perturbation in the control condition.  

 

Figure 2.12. The long-latency reflex of a limb is modulated by sensory input from the opposite 

limb and task constraint. 

Graphs: z-standardized EMG from the right upper arm muscles (biceps, brachioradialis, triceps 

longus, and triceps lateralis). Schematics: Subjects were asked to maintain the position of each 

handle. Mechanical perturbation (either extension or flexion) was applied to the left arm in randomly 

chosen trials. Upper panels: When two hands controlled separate objects, the right arm muscles were 

insensitive to left arm perturbation. Lower panels: In contrast, when two hands controlled a single 

object, the long-latency reflex of the right arm was elicited by left arm perturbation. Adapted from 

Dimitriou et al. (2012). 

 In summary, these results suggested that rapid motor responses (e.g., long-latency stretch 

reflexes) in one arm are intelligently controlled by integrating the sensory states of both arms and the 
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task variables. Recently, the long-latency reflex has been considered a candidate for the 

physiological foundation of the theory of optimal feedback control in biological movement (Scott, 

2003), which suggested that it is mediated by cortical circuits that involve the primary motor cortex 

(Pruszynski et al., 2011). How the sensory information for both arms is integrated in the forward 

internal model, which is considered a crucial component for feedback control, remains elusive.  

2.3.2 Assigning tasks between two arms 

Most of our daily bimanual movements are asymmetric, and the hands play complementary roles in 

achieving a common task goal. For example, even writing consists of two different roles: writing and 

holding/manipulating pages (Guiard, 1987). Compared to studies on the control of specific arm 

movements during bimanual movements, little attention has been paid to the process of role 

assignment during bimanual movement. In the following section, I briefly summarize the findings of 

studies related to this topic according to the basic constraints that constitute the process of role 

assignment during bimanual movements. 

2.3.2.1 Internal constraints for bimanual role assignment 

Differences in the abilities of two upper limbs (i.e., hands and arms) in various aspects of motor 

control is known as handedness, and it is a strong constraint on determining role assignment during 

bimanual movements. A common belief is that the dominant limb is more skilled than the 

nondominant limb in every aspect of sensorimotor ability, such as movement accuracy (Woodworth, 
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1899). Indeed, superiority of the dominant limb has been intensively studied with various manual 

tasks, including a peg-moving task (Annett, 1985), a dot-filling task (Tapley and Bryden, 1985), a 

finger-tapping task (Peters and Durding, 1978), an aiming task (Flowers, 1975; Todor and Kyprie, 

1980), and a maximum-grip force task (Petersen et al., 1989; Crosby et al., 1994; Armstrong and 

Oldham, 1999). A number of hypothetical mechanisms that account for the superiority of the 

dominant hand-hemisphere system in the manual performance of different tasks have been proposed, 

such as differences in the movement planning process (Todor and Kyprie, 1980; Carson et al., 1993; 

Elliott et al., 1995; Mieschke et al., 2001) or the utilization of sensory signals for correcting 

movement errors (Flowers, 1975; Todor and Doane, 1977; Todor and Cisneros, 1985; Carson et al., 

1993; Roy et al., 1994). In a recent study, Berniker and Kording (2008) proposed that, compared to 

the dominant arm, the nondominant arm has large uncertainties in the state estimation process 

(Berniker and Kording, 2008). From the perspective of Bayesian information integration, they 

argued that larger uncertainty in the nondominant arm clearly explains previous observations about 

the asymmetrical transfer of motor learning between the dominant and nondominant arms (Dizio and 

Lackner, 1995; Criscimagna-Hemminger et al., 2003; Wang and Sainburg, 2004). 

 In contrast, a recent approach by Sainburg and colleagues attempted to rethink the 

common master-slave perspective between dominant and nondominant hands/arms (for a review, see 

(Sainburg, 2010)). In a series of reaching paradigm experiments, they proposed that the two 
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arm-hemisphere systems are specialized for different aspects of the motor control process rather than 

for the absolute superiority of one side. For example, in a study by Duff and Sainburg (2007), 

subjects were asked to make fast center-out reaching movements with either the dominant or the 

nondominant arm (Duff and Sainburg, 2007). In certain trials, an inertial mass was attached to the 

arm as a perturbation. They found that the final position error was comparable between dominant 

and nondominant arms in late phases of the perturbation trials, while the initial direction error was 

significantly smaller in the dominant arm. Subsequent catch trials demonstrated that the dominant 

arm exhibited larger aftereffects than the nondominant arm, suggesting that the dominant arm 

adapted to the inertial mass and was therefore able to predictively compensate for intersegmental 

dynamics. However, it has also been suggested that the nondominant arm showed small adaptation 

to the inertial mass, and it had to make more of an effortful solution.  

 They concluded that the dominant arm-hemisphere system is more specialized for the 

coordination of limb dynamics, such as predictively compensating for interaction torques and 

achieving a less curved trajectory during movements, and that the nondominant arm-hemisphere 

system is more specialized for controlling limb impedance, such as maintaining the stable position of 

a limb and achieving similar end-point accuracies as the dominant arm. Similar results have been 

reported by others (Schabowsky et al., 2007). They argued that such a specialized ability of the 

nondominant arm for impedance control is beneficial for bimanual object manipulation, such as with 
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tool making (Sainburg, 2010). Furthermore, they argued that observations of the motor performances 

of unilateral stroke patients support this view, and the motor performance of limbs on the intact side 

show some impairments in abilities that are associated with the function of the lesioned hemisphere 

(Schaefer et al., 2007).  

 Taken together, it seems plausible that these differently specialized abilities between the 

two arm-hemisphere systems may contribute to the assignment of different roles (i.e., performing 

tasks and doing nothing) to the two systems, at least for unimanual tasks (i.e., hand selection). The 

remaining substantial question to be asked is whether these differences in the motor-control 

strategies between the two arm-hemisphere systems that were measured in unimanual tasks are also 

expressed during bimanual tasks. Considering that there are dense connections between both 

hemispheres through a large bundle of axons called the corpus callosum (CC), a simple linear 

summation (or pure parallel expression) of two specialized functions during bimanual movements is 

unlikely. 

2.3.2.1 External constraints for bimanual role assignment 

Although the internal constraints described above are likely to play a dominant role in most cases, 

role assignment may be a much more flexible process than we expect from the consistent, habitual 

assignment of two roles in daily life. A line of recent studies from Roland Johansson’s laboratory has 

demonstrated that these seemingly habitual role assignments can flip depending on the spatial 
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congruency between manual actions and their consequences (Johansson et al., 2006; Theorin and 

Johansson, 2007, 2010). In addition, they found that prefrontal and posterior parietal network 

activation was involved in this process, suggesting the requirement of higher cognitive processes to 

resolve competition between the two potential roles for both hands in bimanual object manipulation. 

The basic paradigm of their experiment is shown in Fig. 2.13.  

 

Figure 2.13. Flexible role assignment during bimanual object manipulation. 

Upper: Schematics for two-task mappings. Subjects were asked to track a visual target (not shown) 

moving randomly with a cursor (white dot). In the left-hand map, counterclockwise/clockwise torque 

on the left knob was translated as upward/downward motion of the cursor, and compressing/pulling 

force was translated as rightward/leftward motion of the cursor. This relationship was reversed in the 

right-hand map. Middle and Lower: Time courses of the hand asymmetry index (red: right-hand map, 

blue: left-hand map). +1 and -1 indicate complete left-hand and right-hand mapping, respectively. 

Adapted from Johansson et al. (2006). 
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 Subjects held small knobs that were attached to both ends of a custom-built manipulandum 

with the thumb and two fingers (index and middle finger) of both hands. Force transducers were 

implemented in the knobs, and longitudinal forces and twist forces were continuously monitored and 

transformed into the x and y positions of the visual cursor, respectively (i.e., pulling or pushing to 

move the cursor horizontally and twisting to move the cursor vertically). The subjects were asked to 

move the cursor and track a randomly moving target by maintaining the position of the 

manipulandum. Note that in order to maintain a stable position of the manipulandum, two 

complementary roles need to be assigned to the hands so that one hand is the prime actor that 

manipulates the position of the visual cursor while the other hand acts as a stabilizer with an output 

that matches the force that the prime actor produces but in the opposite direction. Each subject 

experienced two types of mapping according to the relationship between cursor motion and force 

direction, and these were presented in random order. In the right-hand map, the pulling force was 

converted to a rightward motion of the cursor and a clockwise twist force that was applied between 

the hands was converted to an upward motion of the cursor, which made it more congruent for the 

right hand to control the cursor. The left-hand map produced the opposite scenario, and it was more 

natural for the left hand to control the cursor. 

 Interestingly, although the subjects had no prior knowledge about the type of mapping, 

they selected the prime-actor hand for the movement, which was consistent with the mapping. The 
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hand that the subjects assigned as the prime actor was assessed by calculating the correlation 

coefficient between the applied force and the motion of the manipulandum and the EMG signals 

because larger and faster muscle activations of the prime-actor hand moved the manipulandum in a 

consistent way. This was also confirmed by the measurement of corticospinal excitability with 

transcranial magnetic stimulation (TMS) that was applied to each side of the primary motor cortex. 

The magnitude of the TMS-evoked EMG (MEP) of the hand muscles was consistent with the 

correlation analysis (i.e., MEP was larger in the muscles of the prime-actor hand) (Johansson et al., 

2006). These data suggested that the brain assigns an appropriate role to each hand to maximize task 

performance because spatial incongruency between visual stimuli and action deteriorates task 

performance, such as in the Simon task (Simon and Wolf, 1963) or the Eriksen flanker task (Eriksen, 

1995). 

 In an fMRI study, several brain regions areas, such as the right dorsolateral prefrontal 

cortex (dlPFC), the bilateral dorsomedial prefrontal cortices (dmPFC), the posterior parietal cortex 

(PPC), and the right inferior parietal lobule (IPL), have been shown to be engaged in the process of 

bimanual role assignment (Theorin and Johansson, 2010). Especially, the dlPFC and the IPL are 

known to have a functional connection with this activity (Fincham et al., 2002; Dosenbach et al., 

2006), and they constitute part of the executive control network (Seeley et al., 2007; Sridharan et al., 

2008; Habas et al., 2009), which is considered important in decision-making or response-selection 
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processes that are based on sensory information. Importantly, the prefrontal cortex, including the 

dlPFC, is considered crucial for resolving competition between potential action plans (Casey et al., 

2000; Egner and Hirsch, 2005; Cisek, 2008; Coulthard et al., 2008). Lesions in these areas affect the 

action-selection process (Cisek, 2008; Coulthard et al., 2008). A recent study that applied TMS to the 

PPC demonstrated the reversal of habitual hand choice during a unimanual reaching task (Oliveira et 

al., 2010). 

 Taken together, these results suggest that role assignment during bimanual movement is a 

dynamic decision process in which the optimal roles are selected for each limb from potential 

action/hand pairs that integrate both bottom-up (i.e., internal constraints) and top-down (i.e., external 

constraints) information, and brain networks involving the PPC and frontal cortex play an important 

role in this process.  

 

2.4 Summary 

In this chapter, I briefly summarized the findings of earlier studies on the computational approach to 

voluntary movement control and bimanual movement control. In order to cope with the fundamental 

problems of biological motor control, such as large noise levels and delays in sensory feedback 

signals, the brain constructs a map between the desired/predicted sensory state and the motor 

command. These internal models are highly adaptive to changes in the physical properties of both 
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the environment and one’s own body. The nervous system may implement this adaptive mapping 

through a flexible combination of the activity of a set of neural elements, called the motor primitive. 

The motor primitive may exist throughout the sensorimotor transformation pathway, which includes 

the cerebral cortex and the spinal cord. Such a scheme can predict that the generalization of motor 

learning may reflect the possible encoding of motor primitives, and, so far, there has been good 

agreement between predictive models and behavioral data.  

 With respect to the stage of the control of specific arm movements, several previous 

studies on bimanual movements have suggested that the internal model for an arm can utilize 

information about the motion of the other arm. When assigning two different roles to two arms, the 

brain selectively enhances the optimal hand/role pairs from competing choices by taking into 

account both internal constraints, such as handedness, and external constraints, such as the spatial 

congruence of motion. Recent ideas about handedness involve the view that two 

hand/arm-hemisphere systems are specialized for complementary functions, rather than the concept 

that the dominant hand/arm-hemisphere system has absolute superiority in all aspects of movement 

control. Dynamic interactions within the executive control network, including the prefrontal and 

posterior parietal cortices that flexibly coordinate these constraints may underlie the flexible 

role-assignment process during bimanual action.  
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 The remaining issues are as follows. First, although it has been suggested that the internal 

model for one arm is capable of utilizing the motion state of the other arm in order to learn about the 

mechanical perturbations, how this ability can be explained at the level of the motor primitive and 

how information about motion of the relevant arm and that of the other arm are integrated within the 

internal model (or primitives) is largely unknown. Second, whereas specialized motor control 

functions for two arm-hemisphere systems have been suggested, such observations were made in a 

unimanual context. Whether these characteristics of two arms are also expressed during bimanual 

movements is unclear. Third, how these specialized functions in two arms are explained at the level 

of the motor primitive is also unknown. These issues are addressed in the studies presented in this 

thesis. In Chapter 3, I address the first issue of how motion information from both arms is 

represented in the internal model. 
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Chapter 3 

Gain Field Encoding of the Kinematics of Both Arms in the 

Internal Model Enables Flexible Bimanual Action 

 

3.1 Abstract 

Bimanual action requires the neural controller (internal model) for each arm to predictively 

compensate for mechanical interactions resulting from movement of both that arm and its 

counterpart on the opposite side of the body. Here, we demonstrate that the brain may accomplish 

this by constructing the internal model with primitives multiplicatively encoding information from 

the kinematics of both arms. We had human participants adapt to a novel force field imposed on one 

arm while both arms were moving in particular directions and examined the generalization pattern of 

motor learning when changing the movement directions of both arms. The generalization pattern was 

consistent with the pattern predicted from the multiplicative encoding scheme. As proposed by 

previous theoretical studies, the strength of multiplicative encoding was manifested in the 

observation that participants could adapt reaching movements to complicated force fields depending 

nonlinearly on both arms’ movement directions. These results indicate that multiplicative neuronal 

influence of the opposing arm’s kinematics on the internal models enables the brain to control 
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bimanual movement by providing great flexible ability to handle arbitrary dynamical environments 

resulting from the interactions of both arms. 

 

3.2 Introduction 

One of the unsolved problems in motor control science is how the brain orchestrates the movement 

of multiple body parts as a unified action (e.g., bimanual movement). Previous studies of unimanual 

reaching movement have suggested that the brain accomplishes flexible movements by constructing 

an “internal model” of the dynamic properties of the body and the environment (Kawato, 1989; 

Bhushan and Shadmehr, 1999). It was also suggested that humans build these internal models 

through a flexible combination of motor primitives encoding the desired arm’s kinematics 

(Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Sing et al., 2009). However, this 

powerful scheme is not directly compatible with control of bimanual movement. When we perform 

bimanual movements such as manipulating an object, every movement of each arm disturbs the 

other arm because the dynamics of both arms are coupled through the object and the person’s body. 

Therefore, the desired motor command for each arm cannot be determined solely by the state of the 

arm itself, which may not be explained by the conventional scheme of primitives. One solution is to 

assume that an additional neuronal process adjusts the motor command by estimating the interaction; 
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however, this may create another question regarding how this additional process is implemented in 

the brain. 

An alternative is to assume, as we have done here, that the primitives of the internal 

model encode not only the desired kinematics of the relevant arm, but also those of the opposite arm. 

This proposal is based on recent reports that distinct internal models can be constructed depending 

on the opposite arm’s kinematics (Nozaki et al., 2006; Nozaki and Scott, 2009; Howard et al., 2010). 

According to this assumption, the process of constructing an internal model for one arm with 

primitives can be formulated as 𝑓 = 𝒘  (  ,  𝑙), where 𝑓 is a force output, 𝒘 = ( 1,  2, )
  is 

a weight vector, and  = ( 1(  ,  𝑙),  2(  ,  𝑙), )
  is a vector whose elements represent the 

output of each primitive;    and  𝑙 represent the kinematics of the right and left arm, respectively.  

 From this viewpoint, the brain’s ability to accomplish flexible bimanual movement can be 

regarded as the ability to construct flexible force output by combining the primitives. How, then, 

should the primitives encode both arms’ kinematics? Previous theoretical works (Pouget and 

Sejnowski, 1997; Salinas and Sejnowski, 2001) have provided a clue. They proposed that neurons 

encoding 2 inputs,  1 and  2, multiplicatively [ ( 1,  2); “gain-field” encoding (Andersen and 

Mountcastle, 1983; Andersen et al., 1985)] work as a set of basis functions enabling downstream 

neurons to construct the arbitrary output function  ( 1,  2) = 𝒘
  ( 1,  2)  This close similarity to 

the current problem led us to further hypothesize that multiplicative encoding of both arms’ 
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kinematics in the primitives enables the brain to create an arbitrary force output. We tested this 

hypothesis by examining the generalization pattern of motor learning (Shadmehr and Mussa-Ivaldi, 

1994; Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Hwang et al., 2003; Sing et al., 

2009), which should reflect the encoding structure in the primitives (Hwang et al., 2003; Wainscott 

et al., 2005). 

 

3.3 Materials and Methods 

Participants. Thirty-six healthy right-handed volunteers (aged 18–31 years; 12 women) participated 

in our study after providing written informed consent. All experimental procedures were approved 

by the ethics committee of the Graduate School of Education, The University of Tokyo. 

 

General task settings. The participants were asked to make simultaneous center-out bimanual 

reaching movements (Fig. 3.1A), with a movement amplitude of 8 cm and a duration of 400 ms, 

holding the handles of 2 robotic manipulanda (Phantom 1.5 HF; SensAble Technologies, Woburn, 

MA, USA). Throughout the experiment, the position of each handle was always visible as a white 

cursor (diameter = 6 mm) on a horizontal screen over the handles. The movements of the handles 

were constrained to a virtual horizontal plane implemented by a simulated spring (1.0 kN/m) and 

dumper (0.1 N/(m/s)). Wrist braces were used to reduce unwanted wrist movements. The 
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participants’ upper arms were supported by arm slings to reduce fatigue and allow maintenance of a 

constant arm posture. 

 Initially, the participants were required to move each cursor into its home position 

(diameter = 10 mm; the distance between the starting positions was 20 cm). After a 2-s holding time, 

a gray target (diameter = 10 mm) appeared for each hand in each position. The “go” cue, a color 

change and “beep” sound, was provided after a further random holding time (1–2 s). A warning 

message was presented on the screen if the movement speed of either handle was above 

(“Fast”) or below (“Slow”) a target range of 376 ± 56.4 mm/s. At the end of each trial, 

the handle of each manipulandum automatically returned to its home position. The 

motion data for each manipulandum were recorded at a sampling rate of 500 Hz. The data for the 

handle velocity and force were low-pass filtered using a fourth-order Butterworth filter with a cutoff 

frequency of 8 Hz.  

 

Evaluation of motor performance. We had participants adapt to a novel force field during bimanual 

reaching movements (Fig. 3.1B; see the following sections for further details). To quantify the 

degree of motor adaptation when changing movement directions of both arms (See Fig. 3.1B for the 

definition of “movement direction”), we employed the “error clamp” method (Scheidt et al., 2000; 

Smith et al., 2006; Sing et al., 2009). During error-clamped trials, the trajectory of the handle was 
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constrained to a straight line toward the target by a virtual “channel” (Fig. 3.1B) in which any 

motion perpendicular to the target direction was constrained by a 1-dimensional spring (2.5 kN/m) 

and damper (25 N/ms
-1

). This method enabled us to measure directly the lateral force exerted toward 

the “channel”; the difference between this lateral force at the peak velocity and that from the 

baseline session was used as the aftereffect of learning. To quantify performance in trials where the 

error-clamp method was not adopted (e.g., trials in the training phase), we quantified the lateral 

deviation of each handle trajectory at the peak velocity from a straight line between the starting 

position and target. 

 

Experiments 1 and 2. Experiments 1 and 2 (N = 8 apiece) were designed to investigate how the 

adaptation of one arm (left arm in Exp. 1 and right arm in Exp. 2) to a novel force field acquired 

while reaching both arms forward was transferred to the same arm when the movement directions of 

both arms were changed (8 directions for the trained arm, and 6 directions for the opposite arm, i.e., 

48 (= 8 × 6) combinations; Fig. 3.1C). Participants also performed unimanual reaching movements 

in 8 directions. 

 The experiment was composed of 280 trials in the baseline session, 80 trials in the training 

session, and 463 trials in the testing session. Experiments 3–5 also consisted of these 3 sessions 

(Table 3.1). During the baseline session, each pattern of 56 combinations of movement directions for 
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both arms (48 and 8 bimanual and unimanual movement patterns, respectively) was performed in a 

randomized order within each cycle; thus, every movement configuration was performed in a single 

cycle. The first 112 trials were composed of null force field trials, and the subsequent 168 trials were 

composed of error-clamped trials. During the training session, participants moved both arms forward 

and a velocity-dependent rotational force field was applied on one arm as  =   , where 

 = (𝑓 , 𝑓 )
  is the force to the handle of the trained arm ([N]),  = (  ,   )

  is the velocity of the 

handle ([ms
-1

]), and   is the viscosity matrix ([N/ms
-1

]). To cancel out the biomechanical effect of 

the force direction, the direction was reversed for half of the participants, as  = [0 -10; 10 0] 

or  = [0 10; -10 0]. During the testing sessions, besides the force field trials with both arms 

reaching forward, every other trial was a catch trial (error-clamped trials), allowing quantification of 

the aftereffects of the training trials. The order of the 56 movement patterns was randomized within 

each of the 4 cycles.  

 

Experiment 3. In Experiments 1 and 2, only one movement configuration was adopted for the 

training. Experiment 3 was designed to examine how participants adapt to a force field when they 

are trained at multiple movement configurations and how the learning effect can be generalized to 

the other movement configurations. We also used the data to evaluate how accurately the 

mathematical models identified in Exp. 1 (described later) can predict the aftereffects. 
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 Ten participants trained with the same force field used in Experiment 1 for 4 different 

movement combinations: (𝜃 , 𝜃𝑙) = (0º, 0º), (0, 180), (180, 0), and (180, 180) (Fig. 3.1D). The 

direction of the force field was reversed between the parallel [(𝜃 , 𝜃𝑙) = (0º, 0º), (180, 180)] and 

opposite [(𝜃 , 𝜃𝑙) = (180º, 0º), (0, 180)] movement patterns. The experiment consisted of 192 trials 

for the baseline session, 160 trials for the learning session, and 399 trials for the testing session (total 

= 751 trials). In the baseline session, 64 movement patterns (8 directions for each arm: 𝜃𝑙 = -135, 

-90, -45, 0, 45, 90, 135, 180 [º] and 𝜃 =-135, -90, -45, 0, 45, 90, 135, 180 [º]) were adopted. 

Subsequent to the 64 null force field trials, 128 error-clamped trials were performed for the baseline 

session (2 cycles). After the learning session of 4 movement patterns (40 cycles), in the testing 

session, the force field trials of the 4 movement patterns and catch trials (i.e., error-clamp trials) of 

the 64 movement patterns (Fig. 3.1D) were performed alternately (3 cycles). Movement patterns 

were performed in a randomized order within a single cycle for all sessions. 

 

Experiments 4 and 5. Experiments 4 and 5 were designed to investigate if participants could adapt 

their arm movements to more complicated dynamic force fields that change nonlinearly with the 

kinematics of both arms. The participants (N = 5 for each experiment) attempted to adapt their left 

arm movement to a velocity-dependent rotational force field, the magnitude of which depended 

nonlinearly on the movement directions of both arms as     4 = cos( 𝜃𝑙 − 𝜃 )   (Experiment 4) 
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and      = cos( 𝜃𝑙 + 𝜃 )   (Experiment 5). The direction of the force fields was reversed for 2 of 

5 participants. Regarding     4, the relative difference in the movement directions between both 

arms determines the direction of the force field. As long as the movement directions of both arms are 

the same in the extrinsic workspace, the direction of the force field to the left arm is identical; the 

force direction reverses when both arms move in the opposite direction. On the other hand, in      , 

as long as the movements of both arms are mirror symmetric (i.e., the same direction with respect to 

the joint or intrinsic workspace), the direction of force field to the left arm is identical; however, this 

force reverses direction when both arms move in the opposite direction in the intrinsic workspace. 

The experiments consisted of 144 trials for the baseline session, 960 trials for the learning 

session, and 192 trials for the testing session (total = 1296 trials). Participants were asked to reach in 

16 movement configurations (𝜃𝑙 = -90, 0, 90, 180 [º] and 𝜃 = -90, 0, 90, 180 [º]) for all sessions. In 

the baseline session, the error-clamped trials were randomly conducted once every 3 trials (3 cycles). 

In the learning session (40 cycles), 16 movement patterns were randomly performed within each 

cycle; to effectively promote learning, the number of trials with force was twice that of trials with 

null force. In the testing session, in addition to the force field trials performed the same as in the 

training session, catch trials (error-clamped trials) were performed once in every 4 trials (3 cycles), 

and the order of the movement patterns was randomized within each cycle. 
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Theoretical background. We modeled the motor learning process using the state space model 

(Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Wainscott et al., 2005; Lee and 

Schweighofer, 2009; Nozaki and Scott, 2009), consisting of   primitives that encode the 

movement directions of both arms as  (𝜃 , 𝜃𝑙), where 𝜃  and 𝜃𝑙 are the movement directions of 

the right and left arms, respectively (Fig. 3.3A). The output force created by the internal model can 

be represented by a linear summation of the outputs of primitives as:  

 𝑓(𝑖) = [𝒘(𝑖)]
 
 (𝜃 

(𝑖)
, 𝜃𝑙
(𝑖)
) (3-1) 

where 𝑖  is the trial number, and  (𝜃 , 𝜃𝑙) = [ 1(𝜃 , 𝜃𝑙),  2(𝜃 , 𝜃𝑙), ,  𝑁(𝜃 , 𝜃𝑙)]
 and 𝒘 =

[ 1,  2, ,  𝑁]
  are column vectors whose elements represent the output and weight of each 

primitive, respectively. 

A state space model of the motor adaptation to the force field 𝑓 can be represented as: 

 𝑒(𝑖) = 𝑑(𝜃𝑙
(𝑖)
)(𝑓(𝑖) − 𝑓(𝑖)) (3-2) 

 𝒘(𝑖+1) = 𝛼𝒘(𝑖) + 𝑒(𝑖)𝐾 (𝜃 
(𝑖)
, 𝜃𝑙
(𝑖)
) (3-3) 

where 𝑒 is the movement error, 𝑑(𝜃𝑙) is the compliance that depends on the movement direction of 

the trained arm (here, we assumed that the left arm is trained), and 𝛼 and 𝐾 are constants 

representing, respectively, the spontaneous loss of memory and the update rate to the error.  

From Eqs. (3-1)-(3-3), the weight vector after sufficient training of a constant force field 

𝑓 is obtained as: 
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 𝒘 =
𝐾𝑑(𝜃𝑙)𝑓 (𝜃𝑟,𝜃𝑙)

𝑡

1−𝛼+𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

   (3-4) 

When movement directions of both arms are changed by ∆𝜃  and ∆𝜃𝑙, the force output (i.e., 

aftereffect) is represented as: 𝑓(𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) = 𝒘
  (𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙). Thus, the function 

of how the training effect is transferred from (𝜃 , 𝜃𝑙) to (𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) is represented by: 

 Φ(∆𝜃 , ∆𝜃𝑙) =
𝑓̂(𝜃𝑟+∆𝜃𝑟,𝜃𝑙+∆𝜃𝑙)

𝑓̂(𝜃𝑟,𝜃𝑙)
=
 (𝜃𝑟,𝜃𝑙)

𝑡 (𝜃𝑟+∆𝜃𝑟,𝜃𝑙+∆𝜃𝑙)

 (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

  (3-5) 

 

Decomposition of the generalization function. If the primitives encode the movement directions of 

both hands multiplicatively as:  𝑗(𝜃 , 𝜃𝑙) = 𝑟𝑗(𝜃 )𝑙𝑗(𝜃𝑙), when   is sufficiently large (  is 

assumed to be a square number), and 𝑙𝑗(𝜃𝑙) and 𝑟𝑗(𝜃 ) have translational symmetry with respect to 

𝑗  and are distributed uniformly on the (𝜃 , 𝜃𝑙) plane, then  (𝜃 , 𝜃𝑙)
  (𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) ≈

1

𝑁
∑ 𝑟𝑗(𝜃 )
√𝑁
𝑗=1 𝑟𝑗(𝜃 + Δ𝜃 )∑ 𝑙𝑗(𝜃𝑙)𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)

√𝑁
𝑗=1 . Thus, the transfer function is: 

 Φ(Δ𝜃 , Δ𝜃𝑙) = Φ(Δ𝜃 , 0)Φ(0, Δ𝜃𝑙).  (3-6) 

 On the other hand, if the primitives encode the movement directions of both hands 

additively as:  𝑗(𝜃 , 𝜃𝑙) = 𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙), then  

 (𝜃 , 𝜃𝑙)
  (𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙) = ∑ [𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙)]{[𝑟𝑗(𝜃 + Δ𝜃 ) + 𝑙𝑗(𝜃𝑙)] +

𝑁
𝑗=1

[𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)] − [𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙)]}. Thus, the transfer function is: 

 Φ(Δ𝜃 , Δ𝜃𝑙) = Φ(Δ𝜃 , 0) + Φ(0, Δ𝜃𝑙) − 1. (3-7) 

It should be noted that previous work
 
(Wainscott et al., 2005) obtained theoretically similar 
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relationships [Eqs. (3-6) and (3-7)] in the generalization function calculated from the trial-by-trial 

changes in the aftereffects. 

 

Estimating the function of the primitives. Here, we assume that the encoding function can be 

represented by a Gaussian function. In the case of multiplicative and additive encoding, the primitive 

can be represented, respectively, as: 

  𝑗(𝜃 , 𝜃𝑙) = {𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑏 } {𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏𝑙} (3-8) 

and 

  𝑗(𝜃 , 𝜃𝑙) = 𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏 (3-9) 

where 𝑎∙ and 𝑏∙ are constants, and 𝜑∙ indicates the preferred direction. 

 Substitution of Eqs. (3-8) or (3-9) into Eq. (3-5) yielded the theoretical transfer function  

 Φ(Δ𝜃 , Δ𝜃𝑙) =
{𝑎𝑟

2𝜎𝑟    [−
(Δ𝜃𝑟)

2

4𝜎𝑟
2 ]+2√2𝑎𝑟𝑏𝑟𝜎𝑟+2√𝜋𝑏𝑟

2}{𝑎𝑙
2𝜎𝑙    [−

(Δ𝜃𝑙)
2

4𝜎𝑙
2 ]+2√2𝑎𝑙𝑏𝑙𝜎𝑙+2√𝜋𝑏𝑙

2}

{𝑎𝑟
2𝜎𝑟 +2√2𝑎𝑟𝑏𝑟𝜎𝑟+2√𝜋𝑏𝑟

2}{𝑎𝑙
2𝜎𝑙 +2√2𝑎𝑙𝑏𝑙𝜎𝑙+2√𝜋𝑏𝑙

2}
 

(3-10) 

for the multiplicative encoding case, and  

 =
√𝜋𝑎𝑟

2
𝜎𝑟    [−

(Δ𝜃𝑟)
2

4𝜎𝑟
2 ]+√𝜋𝑎𝑙

2
𝜎𝑙    [−

(Δ𝜃𝑙)
2

4𝜎𝑙
2 ]+2𝑎𝑟𝑎𝑙𝜎𝑟𝜎𝑙+2√2𝜋𝑎𝑟𝑏𝜎𝑟+2√2𝜋𝑎𝑙𝑏𝜎𝑙+2𝜋𝑏

2

√𝜋𝑎𝑟
2
𝜎𝑟 +√𝜋𝑎𝑙

2
𝜎𝑙 +2𝑎𝑟𝑎𝑙𝜎𝑟𝜎𝑙+2√2𝜋𝑎𝑟𝑏𝜎𝑟+2√2𝜋𝑎𝑙𝑏𝜎𝑙+2𝜋𝑏

2
 

(3-11) 

for the additive encoding case.  

In order to estimate the parameters in the primitives (Eqs. (3-8) and (3-9)), the data of 
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motor learning transfer when changing the movement direction of one arm in Exp. 1 (i.e., Φ(Δ𝜃 , 0) 

and Φ(0, Δ𝜃𝑙)) were fitted by a Gaussian function: 

 Φ = 𝑐 exp (−
 𝜃2

2𝜎2
) + 𝑑, (3-12) 

using the method of least squares. Then, the parameters of the primitives (Eq. (3-8) or (3-9)) were 

estimated by comparing the parameters of Eq. (3-12) with Eq. (3-10) or (3-11). 

 

Estimating the parameters α and K. The trial-dependent changes in movement error when a constant 

force 𝑓 is imposed for only a particular movement combination (𝜃 , 𝜃𝑙) is: 

 𝑒(𝑛) =
𝐾[𝑑(𝜃𝑙)]

2𝑓 𝑡 

1−𝛼+𝐾𝑑(𝜃𝑙) 
𝑡 
[𝛼 − 𝐾𝑑(𝜃𝑙) 

  ](𝑛−1) +
(1−𝛼)𝑑(𝜃𝑙)𝑓

1−𝛼+𝐾𝑑(𝜃𝑙) 
𝑡 

, (3-13) 

where   is the abbreviation of  (𝜃 , 𝜃𝑙) . We estimated the values of 𝐾  by fitting the 

trial-dependent changes in the training phase with Eq. (3-13). The value of 𝛼 was set to 0.996 in 

advance, adopted for the slow process of motor learning (Smith et al., 2006). We ignored the 

contribution of the fast process because a relatively high number (500 - 1000) of training trials were 

performed in our experiments. 

 

Simulation of state space model. The simulations of Experiments 1, 3, 4, and 5 were performed 100 

times each using Eqs. (3-1)–(3-3) with the identified primitive [i.e., Eq. (3-8) for the multiplicative 
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model or Eq. (3-9) for the additive model]. The task schedule was randomized for the 100 

simulations, and the output data were averaged. The initial condition was 𝒘 =  .  

 

Statistics: Experiments 1 and 2. To determine the effect of the movement of the opposite arm on the 

aftereffects, a one-way repeated-measures ANOVA with factors of the opposite-arm movement 

direction (6 directions) was performed for the data obtained when the trained arm was moving in the 

original direction. A post-hoc multiple comparison test (Tukey-Kramer) was then performed to 

explore differences in the aftereffect among 6 movement directions of the opposite arm. 

 To test which encoding scheme, additive or multiplicative, was more likely, we compared 

the actual aftereffects and the artificial aftereffects constructed based on each encoding scheme. 

More specifically, to construct the artificial data of the generalization curve 𝑓̅(𝜃 , 𝜃𝑙) , the 

aftereffects obtained when only the movement direction of the trained arm was changed (8 data 

points, i.e., 𝑓(0, 𝜃𝑙) ) were shifted as 𝑓̅(𝜃 , 𝜃𝑙) = 𝑓(0, 𝜃𝑙) + 𝑓(𝜃 , 0) − 𝑓(0,0)  for additive 

encoding or multiplied as 𝑓̅(𝜃 , 𝜃𝑙) = 𝑓(0, 𝜃𝑙)𝑓(𝜃 , 0) 𝑓(0,0)  for the multiplicative encoding 

model. We used 13 aftereffects [i.e., 𝑓(0, 𝜃𝑙) and 𝑓(𝜃 , 0)] to predict the other 35 aftereffects 

using both multiplicative and additive models. Then, the sums of the squared residual errors between 

the predicted and actual aftereffects of those 35 data points were calculated for each participant; the 
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data of the multiplicative and additive models were subsequently compared using one-way 

repeated-measures ANOVA with factors of model type. 

 

Statistical analysis: Experiments 3, 4, and 5. To evaluate how accurately the model predicted the 

actual aftereffects, we performed linear regression between the aftereffects obtained experimentally 

(𝑓   ) and those predicted by the model (𝑓   ) as 𝑓   =  1 +  2𝑓    [the number of data was 

calculated as movement configurations × participants; i.e., 640 (64 × 10) for Exp. 3 and 80 (16 × 5) 

for Exp. 4 and 5]; the correlation coefficient ( 2), intercept ( 1), and slope ( 2) were also calculated. 

Since the  1 and  2 may differ by participant, we checked the validity of the regression by 

performing linear regression with a linear mixed model: 𝑓   =  1 +  2𝑓   + 𝑏1 + 𝑏2𝑓   +  , 

where the 𝑏1 and 𝑏2 are random effects (participant) of the intercept and slope, respectively. Since 

the inclusion of the random effects did not significantly improve the regression in Experiments 3–5 

(P > 0.05 by the likelihood-ratio test), we adopted a simple linear model. 
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3.4 Results 

Experiment 1: Effect of motor learning transfer when changing each arm’s movement 

direction 

This experiment was designed to investigate how the adaptation of the left arm to a novel force field 

acquired while reaching both arms forward was transferred to the same arm when the movement 

directions of both arms were changed (8 directions for the trained arm and 6 directions for the 

opposite arm, i.e., 8 × 6 = 48 combinations; Fig. 3.1C) and when the movement was performed 

unimanually (8 directions). With the training, the lateral deviation of the left handle at the peak 

velocity gradually decreased (Fig. 3.2A). After the 80 training trials, we performed catch trials at 

every other trial. The lateral movement deviation of trials immediately following the catch trials was 

not significantly different from those of the last 10 trials of the training phase (P = 0.5633 by t-test; 

Fig. 3.2A). This indicated that catch trials using the error-clamped method did not deteriorate the 

motor learning performance, and confirmed the validity of conducting the catch trials so frequently. 

The adaptation of the trained hand did not seem to influence the untrained hand. There was no 

significant lateral deviation throughout the experiment (Fig. 3.2B, t-test with Bonferroni correction 

for 4 bins of 20 trials), which is consistent with the results of recent studies showing that there is no 

influence of the perturbation to one arm on another hand when 2 cursors are appropriately presented 

for both arms (Diedrichsen, 2007). 
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 First, we demonstrated how the movement direction of each arm influenced motor learning 

transfer. Figure 3.2 indicates the aftereffects when the movement direction of the trained arm (Fig. 

3.2C) or the opposite arm (Fig. 3.2D) was changed while maintaining the movement direction of the 

other arm in the original trained direction. When the movement direction of the trained arm was 

altered, the aftereffect gradually decreased as the movement direction deviated more from the 

original direction, converging monotonically to 0 when the angular difference was greater than 90º 

(Fig. 3.2C, E). Figure 3.2E also shows the generalization pattern observed in the unimanual 

movement. The amplitude of the generalization function decreased during the unimanual movement, 

demonstrating the partial motor learning transfer from bimanual to unimanual movement, which was 

reported in previous studies (Nozaki et al., 2006; Nozaki and Scott 2009). In contrast to previous 

studies (Donchin et al., 2003), a bimodal generalization pattern was not observed; the aftereffects for 

an angular difference of 180º were not significantly different from those of 90º. 

 A similar decay pattern in the aftereffect was observed when the movement direction of 

the opposite arm was changed (Fig. 3.2D, F). However, unlike the pattern for the trained arm (Fig. 

3.2C, E), the aftereffects decayed to approximately 61.7 ± 16.5% (mean ± SD) of the aftereffect of 

the original direction (Fig. 3.2F). The movement directions of the opposite (right) arm significantly 

affected the aftereffect (F5,35 = 16.3, P < 0.001 by one-way repeated measures ANOVA), and a 

post-hoc test revealed significant differences for several movement directions (0º vs. [30º, ±60º, or 
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±180º], 30º vs ±180º, and -30º vs [±60º or ±180º]), indicating that the aftereffect was a smooth 

function of the movement direction of the opposite arm and that the movement direction of the 

opposite arm smoothly interferes with the internal model.  

 The generalization pattern is considered to reflect the possible encoding pattern of the 

kinematics in the primitives of the internal model (Thoroughman and Shadmehr, 2000; Donchin et 

al., 2003; Hwang et al., 2003; Poggio and Bizzi, 2004; Sing et al., 2009). The generalization pattern 

observed when changing the opposite-arm movement direction suggests that the primitives also 

encode neuronal information that changes smoothly with the kinematics of the opposite arm. 

 The generalization curves (Fig. 3.2E, F) were fitted well by the Gaussian function (Eq. 

(3-12)): The variance explained by this model was high (R
2 

= 0.85 and 0.94 for Φ(0,Δ𝜃𝑙) and 

Φ(Δ𝜃 , 0), respectively). From the estimated parameters (𝑐, 𝑑, and 𝜎) summarized in Table 3.2, we 

calculated the concrete encoding function for the additive and multiplicative encoding models [Eqs. 

(3-8) and (3-9)] (Fig. 3.3A, B). The parameters are also shown in Table 3.2. 

Experiment 1 and 2: Whole generalization pattern 

We trained the identified multiplicative and additive models with the task of Experiment 1. Both 

models exhibited almost identical generalization patterns in Φ(Δ𝜃 , 0)  and Φ(0, Δ𝜃𝑙)  but 

predicted completely different patterns of generalization when the movement directions of both arms 

were simultaneously changed (Fig. 3.3C, D). As expected from Eqs. (3-6) and (3-7), the 



74 

 

multiplicative encoding model predicted the change of the amplitude of the generalization curves, 

and the additive model predicted the upward or downward shift of the curves (Fig. 3.3C, D).  

 Although the additive model predicted negative learning transfer when the movement 

configurations were more different from the training configuration, this was not indicated in the 

actual data (Fig. 3.4A). In contrast, the actual data appear to support the prediction made using the 

multiplicative model (Fig. 3.4A). To statistically test which model explained the actual data more 

accurately, we predicted the aftereffect data of 35 movement configurations from those of 13 

movement configurations using both additive [Eq. (3-8)] or multiplicative [Eq. (3-9)] models. The 

residual sums of squares between the actual and predicted aftereffects of both models were then 

statistically compared by one-way repeated-measures ANOVA. We found a significant main effect of 

model (F1,7 = 21.96, P < 0.005) for Experiment 1. In Experiment 2 in which the right arm was 

trained, we also found a significant main effect of model (F1,7 = 9.03, P < 0.05, Fig. 3.4B), 

suggesting that the multiplicative model explains the data more accurately than the additive model. 

Experiment 3: Generalization of motor learning performed in multiple movement 

configurations 

In Experiments 1 and 2 in which only one movement configuration was used for the learning of a 

force field, the generalization patterns to the other movement configurations were not localized 

around the movement configuration for the training, but were elongated along the axis of the 
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opposite arm’s movement direction (Fig. 3.4). With this generalization pattern, when participants 

tried to learn different force fields simultaneously with different movement configurations, the 

training effects obtained with training movement configurations should influence each other and 

create a particular generalization pattern. Experiment 3 aimed to examine this issue and determine 

how accurately our multiplicative encoding model identified above in Exp. 1 (Table 3.2) could 

predict the global motor learning pattern. 

 Figure 3.5A shows the generalization pattern measured for 64 different combinations of 

movement directions (8 directions for each arm) when the training was performed at movement 

configurations of (0, 0), (0, 180), (180, 0), and (180, 180). The participants exhibited significant 

aftereffects at these 4 points (P < 0.001 by t-test with Bonferroni correction), and the training effect 

gradually decayed around the training configurations This pattern was quite similar to that predicted 

by the multiplicative model (Fig. 3.5B). Linear regression between the predicted and actual 

aftereffects produced an R
2
 value of 0.38 (P < 0.001); in addition, the intercept and slope of the 

regression line were close to 0 (-0.01 ± 0.03) and 1 (1.03 ± 0.05), respectively (mean ± SD). These 

results suggest that without altering the parameters of the multiplicative model identified in Exp. 1, 

the model accurately predicted not only the generalization pattern but also the size of the actual 

aftereffects even when the training was simultaneously performed at multiple movement 

configurations. In contrast, due to the nonlinear dependence of the force direction on the movement 
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direction, the additive model could not adapt to this force field at all (Fig. 3.5C), which sharply 

contrasts from the patterns of the aftereffects exhibited by the participants.  

Experiments 4 and 5: Construction of arbitrary force output by the internal model 

Experiments 4 and 5 were designed to investigate whether the participants could actually adapt their 

arm movements to a much more complicated force field that depended on the movement directions 

of both arms in a nonlinear fashion. The multiplicative model, whose predictions were already 

demonstrated to be very accurate, should enable the participants to learn such complicated force 

fields. As expected, the observed pattern of the aftereffects measured after a sufficient amount of 

training was similar to that with imposed force fields (Fig. 3.6A, B). These patterns were similar to 

those predicted by the multiplicative encoding model whose parameters were identified in Exp. 1 

(Fig. 3.6C, D). The same linear regression analysis as the one used in Experiment 3 showed that the 

R
2
 values between the predicted and actual aftereffects were significant (P < 0.001) for Exp. 4 (0.72) 

and Exp. 5 (0.76). In addition, the intercept and slope of the regression line of Exp. 4 and 5 were 

close to 0 and 1 (0.02 ± 0.05 and 1.08 ± 0.08 for Exp. 4; 0.17 ± 0.06 and 1.45 ± 0.09 for Exp. 5; 

mean ± SD). The slope was significantly greater than 1 in Exp. 5 (P < 0.05), while it was not 

significantly different from 1 in Exp. 4 (P > 0.05). Thus, although the actual aftereffects tended to be 

greater than the predicted aftereffects in Exp. 5, the multiplicative model was able to predict the size 

of the aftereffects without adjusting the parameters. In contrast, the additive model could not learn 
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the force fields due to the nonlinear dependence on the movement directions (Fig. 3.6E, F). These 

results indicate great flexibility in constructing internal models through the linear combination of 

primitives that multiplicatively encode the movement directions of both arms.  

 

3.5 Discussion 

Performing flexible bimanual movement requires the internal model for each arm to predictively 

compensate for mechanical interactions resulting from the movement of both arms. Thus, the 

internal model must integrate the kinematics information from the opposite arm in addition to the 

relevant arm. By examining the adaptation of reaching movements to novel force fields, we 

demonstrated that an internal model for each arm multiplicatively encodes the movement directions 

of both arms and that such multiplicative encoding provides us with a flexible ability to compensate 

for the mechanical interaction between arms.  

Encoding of opposite-arm kinematics in the primitives 

As demonstrated by previous studies using a bimanual task in which the position of one arm is 

maintained during a disturbance resulting from the movement of the opposite arm (Viallet et al., 

1992; Bays and Wolpert, 2006; Johansson et al., 2006; Jackson and Miall, 2008), the brain can 

predictively compensate for mechanical disturbance by utilizing information about the opposite 

arm’s movement. Recent studies suggest that the brain displays such an ability even during reaching 
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movements. Two distinct internal models for an arm movement can be constructed depending on 

whether the other arm is moving or stationary (Nozaki et al., 2006), and whether the other arm is 

moving in the same or opposite (or orthogonal) direction (Howard et al., 2010). Although it is highly 

difficult to evaluate the details of the encoding scheme from only these results, the data suggest the 

possibility that the primitives of the internal models do encode the kinematics of the opposite arm. 

Previous neurophysiological findings on the role of neurons in motor areas for motor 

learning also imply that the encoding of opposite-arm kinematics is very likely. Many neurons in the 

contralateral primary motor cortex (MI) are load sensitive (Evarts, 1968; Kalaska et al., 1989), and 

this load sensitivity emerges during motor learning (Gandolfo et al., 2000; Li et al., 2001; Arce et al., 

2010). The neurons of the supplementary motor area (SMA) (Padoa-Schioppa et al., 2002; 

Padoa-Schioppa et al., 2004) and the premotor area (Xiao et al., 2006) of the contralateral 

hemisphere are also involved in the adaptation to novel loads. Thus, the adaptation to a novel force 

field can be viewed as the development of a load representation in a population of neurons in these 

areas.  

 Interestingly, movement of the ipsilateral arm also modifies the activity of neurons in these 

motor areas (Donchin et al., 1998; Cisek et al., 2003; Ganguly et al., 2009). Therefore, when the left 

arm is adapted to a force field while the right arm is being moved in a particular direction, the 

representation of the force field is constructed specifically for the right-arm movement direction. As 
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such, when the movement direction of the right arm changes from this original direction, the 

neuronal influence of the right arm also changes, which should result in the degradation of left-arm 

motor learning. Furthermore, considering that the influence on the MI neuron response smoothly 

changes with ipsilateral arm movement direction during bimanual movement (Rokni et al., 2003), 

the degree of the interfering effects is also likely to change smoothly with movement direction. 

 Consistent with these speculations, we found that the influence of the opposite-arm 

movement direction on motor learning (i.e., aftereffects) smoothly changed with direction (Fig. 

3.2F). This indicates that the primitive encodes neuronal information that changes smoothly with the 

movement of the opposite arm. It also provides strong evidence against the view that the formation 

of distinct motor memories according to the kinematics of the opposite arm (Nozaki et al., 2006; 

Howard et al., 2010) can be explained by regarding the kinematics as cognitive cues (Osu et al., 

2004; Cothros et al., 2009); such a scheme would result in abrupt, not smooth, changes in the 

aftereffect. 

Gain-field encoding in the primitives 

Our next hypothesis was that the primitives integrate the movement directions of both arms 

multiplicatively rather than additively. Multiplicative neuronal integration, known as “gain fields”, 

was first reported for neurons in posterior parietal cortex (LIP and 7a) (Andersen and Mountcastle, 

1983; Andersen et al., 1985) and later found in many other areas in the brain, including subcortical 
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structures (Lal and Friedlander, 1990; Van Opstal et al., 1995; Boussaoud et al., 1998; Wang et al., 

2010). It has been theorized that such gain-field encoding is beneficial for sensorimotor 

transformation from multiple neuronal inputs (Pouget and Sejnowski, 1997; Salinas and Sejnowski, 

2001). More specifically, neurons with gain-field encoding work as a set of basis functions enabling 

downstream neurons to construct arbitrary outputs by flexibly and linearly combining them (Pouget 

and Sejnowski, 1997).  

 Similar to the above problem of creating a sensorimotor transformation mapping, the 

construction of internal models for arm movement can be regarded as a process of creating an 

arbitrary map from desired sensory states to a motor command for the relevant arm by flexibly 

combining primitives. Thus, if the gain-field encoding is equipped with the primitives, this property 

would give the brain great flexibility in constructing an arbitrary force output from the desired state 

of both arms to a motor command for each arm. 

 We tested these multiplicative and additive encoding schemes in the primitives by 

investigating the generalization function of motor learning (Hwang et al., 2003; Wainscott et al., 

2005). Multiplicative or additive encoding predicts, respectively, multiplicative or additive 

generalization functions [Eqs. (3-8) and (3-9)]. Our results clearly indicate that multiplicative 

encoding is more likely (Fig. 3.3 and 3.4), which is consistent with our speculation based on 

previous theoretical work.  
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 The strength of multiplicative encoding was exemplified by Experiments 4 and 5, in which 

participants adapted their left-arm movements to force fields that nonlinearly depended on the 

movement directions of both arms (Fig. 3.6). We used 2 different force fields with magnitudes that 

depended on the directional difference between the arms in either an extrinsic or intrinsic workspace 

(Fig. 3.1E, F). Due to the nonlinear dependence of the force fields on the movement directions of 

both arms, the additive encoding model cannot adapt to them (Fig. 3.6E, F), indicating that the 

motor learning system of bimanual movement is unlikely to place special emphasis on bimanual 

movement patterns, such as mirror-symmetric, parallel movements. Rather, any meaningful 

association between the force field and the movement patterns of both arms (Ahmed et al., 2008) 

may arise as a consequence of the greater flexibility in motor learning offered by multiplicative 

encoding of primitives. 

Possible scheme of bimanual movement control 

On the basis of the present results, we can speculate about a possible scheme of bimanual movement 

control that compensates for the mechanical interaction between both arms (Fig. 3.7). This scheme 

assumes that the information regarding the desired movement of the opposite arm, the efference 

copy from the opposite arm’s movement controller, or both multiplicatively influences the internal 

model of each arm. The assumption that the contribution of sensory input is negligible can be 

justified by the results of a recent study demonstrating that distinct internal models cannot be 
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established when the opposite arm is passively moved (Howard et al., 2010). We also assume that 

the contribution of the efference copy is relatively weak, because the trajectory of the right arm was 

not affected by the adaptation of the left arm (Fig. 3.2B). The adaptation to the force field should 

change the efference copy, which should influence the controller of the opposite arm. 

 It is well known that bimanual neuronal interactions exist when bimanual actions are 

performed (Swinnen, 2002; Rokni et al., 2003; Swinnen and Wenderoth, 2004; Carson, 2005). 

However, the functional role of such neuronal interactions remains unclear. In fact, such interactions 

are often considered to be a source of bimanual interference that needs to be overcome (Swinnen, 

2002). The results of the current study provide a novel interpretation of how these neuronal 

interactions may play a crucial role in the flexible control of bimanual movements (Fig. 3.7). 

Without such multiplicative interfering effects, the neural control process for the movement of an 

arm is unable to take movement of the other arm into account to compensate for the mechanical 

interaction between both arms’ movements. The present study provides, to our knowledge, the first 

behavioral example that gain-field encoding is essential for flexible bimanual movement control and 

provides a possible clue to how the brain orchestrates the movements of multiple body parts into a 

single unified action.  
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Figure 3.1. Experimental setup.  

A, The participants made simultaneous bimanual reaching movements from the starting point toward 

a peripheral target for each arm presented on a horizontal screen. B, A force field was applied to the 

participants’ trained arm for the training (top panel). Error-clamped trials were alternated with 

standard trials in order to test the degree of motor adaptation (bottom panel). The movement 

direction toward a forward target was defined as 0º, and the movements in clockwise (CW) and 

counterclockwise (CCW) directions were positive and negative, respectively. C–F, Movement 

configurations for the training and testing trials. The diamonds indicate the movement configurations 

used for the training, while the open circles indicate the movement configurations for which the 

training effect was tested. For example, in Experiments 1 and 2 (C), participants learned the force 

field for the trained arm while moving both arms forward, as indicated by the diamond 

[(𝜃       ,  𝜃        ) = (0, 0) ]. This training effect was then tested at the other movement 

configurations represented by open circles [e.g., (𝜃       ,  𝜃        ) = ( 0,  0)]. In panels D–F, 

the color of the diamonds indicate the kind of force field: blue and red indicate CW and CCW force 

fields, respectively (the direction of force field was reversed for half of participants), and green 

diamond indicates a null force field. It should be noted that several tested configurations are plotted 

twice [e.g., (180, 180) and (-180, -180) in (C), and (-90, -90) and (270, 270) in (D)]. It should also 

be noted that unimanual movements were also tested in Experiments 1 and 2, but these movements 

are not displayed in B.  
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Figure 3.2. Generalization pattern of motor learning of the left arm with the movement 

direction of each arm (Experiment 1).  

A, B, Learning curves for the trained left arm (A) and untrained right arm (B). The data from all 

participants were averaged (error bars indicate SE). Filled red circles indicate trial-by-trial values of 

lateral hand deviation at the peak movement speed. Open red circles indicate within-session 

averaged values. Open green squares indicate within-session averaged values of lateral hand 

deviation during the error-clamp trials. Averaged lateral deviation of the left hand across the last 10 

trials during the training session (grey shaded area) and within-session averaged values during the 

test session (open red circle in the test session) were not significantly different (P > 0.05 by t-test, A). 

It should be noted that no significant lateral deviation was observed for the right arm throughout the 

experiments (P > 0.05 by t-test with Bonferroni correction, B). C, D, Each peripheral plot displays 

the time-dependent profile of lateral force exerted by the trained left arm during the error-clamp 

trials before (pre-adaptation; red) and after (post-adaptation; green) the training session. The data 

were averaged over all participants and shaded areas indicate the SE. The location of each plot 

corresponds to the movement direction of the left (C) and right (D) arms, as illustrated by the center 

panel. E, F, Generalization patterns when the movement direction of the left (E) and right (F) arms 

was changed while the movement direction of the other arm was fixed (mean ± SE). Each point 

indicates the aftereffect of the trained left arm. Open diamond at the center indicates the data for the 

trained movement. The solid line is a Gaussian function fitted to the data.  
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Figure 3.3. State space model for motor learning.  

A, We assumed that the internal model for the left arm was composed of N primitives ( =

( 1,  2,  ,  𝑁) ) for motor learning that receive the signals of desired movement directions of both 

arms (𝜃 , 𝜃𝑙). The contribution of each primitive (𝒘 = ( 1,  2,  ,  𝑁)) to net output (𝑓) was 

updated trial-by-trial according to the movement error (𝑒). B, The response of a primitive with 

multiplicative (left) or additive (right) encoding predicted from the data shown in Fig. 3.2D, E. C, D, 

Simulated generalization patterns for multiplicative encoding (C) and additive encoding (D). Bottom 

left, contour plot of the generalization pattern. The color bar indicates the magnitude of the model 

output (i.e., aftereffect). White dots indicate the movement configurations at which the aftereffects 

were measured. Top left, generalization curve (aftereffect vs. 𝜃𝑙). Bottom right, generalization curve 

(aftereffect vs. 𝜃 ).  
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Figure 3.4. Gain modulation of the generalization pattern.  

The whole structure of the generalization pattern for the trained left (A) and right (B) arms when 

reaching each arm in different directions after the training at 𝜃 = 𝜃𝑙 = 0. Bottom left, contour plot 

of the generalization pattern averaged across all participants. The color bar indicates the magnitude 

of the lateral force at the peak movement velocity. White dots indicate the movement configurations 

at which the aftereffects were measured. Top left, generalization curve (aftereffect vs. the movement 

direction of the trained arm). Bottom right, generalization curve (aftereffect vs. the movement 

direction of the opposite arm). Each point represents the aftereffect averaged across all participants 

(error bar indicates SE). 
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Figure 3.5. Generalization pattern when training was performed at multiple movement 

configurations.  

A, Contour plot of the aftereffects in Experiment 3 (upper panel). The training was performed at 4 

movement configurations [(𝜃𝑙 , 𝜃 ) = (0, 0), (0, 180), (180, 0), (180, 180)], and the aftereffects were 

measured at 64 movement configurations (8 movement directions for each arm) represented by the 

white dots. The lower panel indicates the relationship between the aftereffects and movement 

direction of the trained left arm for each movement direction of the untrained right arm (mean ± SE). 

B, C, The generalization pattern predicted by the multiplicative (B) and additive models (C).   
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Figure 3.6. Simultaneous adaptation to complicated force fields. A, B,  

The upper panel shows the contour plot of the aftereffects for the trained left arm for Experiments 4 

(A) and 5 (B). The white dots represent the training and tested movement configurations (4 

movement directions for each arm). The lower panel shows the relationship between the aftereffects 

and movement direction of the trained left arm for each movement direction of the untrained right 

arm (mean ± SE).  C–F, The aftereffects predicted by the multiplicative (C, D) and additive models 

(E, F).  
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Figure 3.7. A possible feed-forward control scheme for the flexible bimanual movement 

deduced from our experimental results.  

In bimanual movement, the internal model for each arm must compensate for the mechanical 

interactions resulting from movements of the other arm. Neuronal signals reflecting planned 

movements (broken lines) and/or efference copy of the other arm (dashed-dotted lines) may be 

multiplicatively integrated within the internal model of each arm. This multiplicative integration in 

the primitives contributes to construct a flexible output from each controller depending on the 

kinematics of both arms.   
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Table 3.1. Experimental conditions 

Experiment 
Trained 

arm 

Movement configuration  Trial number 

Training Baseline/Test  Baseline Training Test 

Exp 1 (N = 8) Left  
1 48 

 
280 80 463 

Exp 2 (N = 8) Right   

Exp 3 (N = 10) Left  4 64  192 160 399 

Exp 4 (N = 5) Left 
16 16 

 
144 960 192 

Exp 5 (N = 5) Left  

 

 

Table 3.2. Parameter estimates of generalization functions and primitives 

 𝑐 𝑑 𝜎 [º]  2 

Φ(0, Δ𝜃𝑙) 0.955 0.045 29.9 0.849 

Φ(Δ𝜃 , 0) 0.377 0.623 38.5 0.940 

Multiplicative 
𝑎  𝑏  𝜎  [º] 𝑎𝑙 𝑏𝑙 𝜎𝑙 [º] 

1.00 0.318 27.2 1.00 0.0158 21.1 

Additive 
𝑎  𝜎  [º] 𝑎𝑙 𝜎𝑙 [º] 𝑏 

0.553 27.2 1.00 21.1 -0.252 

Common 

  𝛼 𝐾 𝑑(𝜃𝑙) 

100 0.996 0.00724 
10 (𝜃𝑙 = 0, 1 0) 

  5 (𝜃𝑙 =  0, 2 0) 

 

  



93 

 

Chapter 4 

Uncovered Hidden Functional Advantage of Non-dominant 

Arm For Flexible Bimanual Action 

 

4.1 Abstract 

The presumed inferiority of the non-dominant arm is so profound that the word “left” is often 

associated with negative concepts such as sickness, poverty, and evil in many cultures (Wilson; 

Beidelman, 1961; Needham, 1967). While it is often assumed that the dominant and non-dominant 

arms possess different inherent capabilities, recent studies have proposed distinct and specialized 

control strategies for both arms (Serrien et al., 2006; Sainburg, 2010). However, the functional role 

and mechanisms of this laterality are not well understood. Here, we demonstrate that the 

non-dominant arm has a superior ability that is uncovered only during the execution of bimanual 

movements. Participants performed bimanual reaching movements while the non-dominant hand 

was subjected to a force field. When the movement direction of the opposite arm differed from the 

trained direction, we found that the adaptation of the non-dominant arm was more poorly 

generalized. Applying our proposed theory presented in the previous chapter (Yokoi et al., 2011) to 

the generalization data revealed that the poorer generalization originated from a difference in 

parameters characterizing the motor memory; the motor memory of the non-dominant arm was more 
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strongly influenced by the kinematics of the opposite arm. We built a computational model that 

implemented this lateralized memory organization strategy. Remarkably, this model predicted that 

the non-dominant arm would demonstrate greater adaptability to the force fields associated with the 

opposite arm’s movement, consistent with our experimental results. We conclude that the secondary 

supporting role often played by non-dominant arm in bimanual actions reflects its specialization 

rather than its inferiority.  

 

4.2 Introduction 

The motor learning system enables humans to perform limb movements and manipulate tools, even 

in the face of changing environmental constraints. This ability has been extensively investigated 

using an experimental paradigm in which a novel force field is imposed during a reaching movement 

(Shadmehr and Mussa-Ivaldi, 1994; Thoroughman and Shadmehr, 2000; Nozaki et al., 2006; 

Howard et al., 2012). Using this paradigm, previous studies have suggested that adaptation to a force 

field, 𝑓, is accomplished by the brain’s ability to construct an internal model. This is accomplished 

through the flexible combination of the motor primitives, as 𝑓 = 𝒘  , where  =

( 1,  2,   ,  𝑁)
  and 𝒘 = ( 1,  2,   ,  𝑁)

  are vectors comprised of motor primitives and weighting 

parameters, respectively (Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Gonzalez Castro 

et al., 2011) (𝑡 indicates transpose). In Chapter 3, it was demonstrated that   encodes not only the 
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kinematics of the relevant limb, but also those of the opposite limb (Yokoi et al., 2011). In other 

words,   is function of both arms’ kinematics.  

 From this perspective, the laterality in motor learning between dominant and 

non-dominant arms, if any, should be reflected as a difference in how   encodes the kinematics of 

both arms. In particular, flexible bimanual action depends on how   is altered by the kinematics of 

the opposite arm. Thus, we first investigated whether there was any difference between arms in the 

dependence of   with the movement direction, 𝜃, of the opposite arm (i.e., the shape of  (𝜃)). To 

this end, we examined the generalization function, Φ(Δ𝜃). This function describes how the 

adaptation of 1 arm to a force field is generalized when the movement direction of the opposite arm 

changed by Δ𝜃. 

 

4.3 Materials and Methods 

Participants. A total of 45 healthy right-handers and 12 left-handers participated in this study. They 

participated in the current study after providing written informed consent. All experimental 

procedures were approved by the ethics committee of the Graduate School of Education, The 

University of Tokyo. Basic information [age, sex, and Laterality Quotient (L.Q.)] of participants for 

each experiment are summarized in the following table. 
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General task settings. The participants were instructed to make center-out reaching movements 

(amplitude: 10 cm, duration: 400 ms) both bimanually or unimanually holding the handles of 2 

robotic manipulanda (Phantom 1.5 HF; SensAble Technologies, Woburn, MA, USA; Fig. 4.1A). The 

position of each handle was fed back as a white cursor (diameter, 6 mm) on a horizontal screen 

placed over the participants’ arms (thus, they could not see their arms directly). The movements of 

the handles were constrained to a virtual horizontal plane by a simulated spring (1.0 kN/m) and 

dumper [0.1 N/(m/s)]. In order to reduce unwanted movement components, participants wore a wrist 

brace on each hand and the trunk was strapped to the chair. To reduce fatigue and allow maintenance 

of a constant arm posture, the upper arms were supported by slings. 

 Task flow. Initially, participants were instructed to move each cursor into its starting 

position (diameter = 10 mm; the distance between the starting positions for both arms was 16 cm). 

After a 2-s holding time, a gray target (diameter = 10 mm) appeared for each hand peripherally (10 

cm) from each starting position. In the unimanual trial, only 1 target appeared and participants were 

instructed not to move the handle for the non-target side. After a further random holding time (1-2 s), 

the “go” cue was provided as a color change of the target. A warning message was presented on the 

screen if the movement speed of either handle was above (“Fast”) or below (“Slow”) a target range 

(399.5 ~ 540.5 mm/s). At the end of each trial, the handle of each manipulandum automatically 

returned to its starting position.  



97 

 

 Force field. In each experiment, velocity-dependent force fields were generated to affect 

the handle’s movement (Fig. 4.1B). The force is represented as  =   , where  = (𝑓 , 𝑓 )
  [N] is 

the force to the handle,  = (  ,   )
  [ms

-1
] is the velocity of the handle, and   [N/ms

-1
] is the 

viscosity matrix. For clockwise (CW) force field,  = [0 − 10 10 0], and for counter-clockwise 

(CCW) force field,  = [010 −10 0].  

 Error clamp. To quantify motor adaptation, we employed the “error clamp” method 

(Scheidt et al., 2000; Smith et al., 2006; Sing et al., 2009). During error-clamped trials, the trajectory 

of the handle was constrained to a straight line toward the target by a virtual “channel” (Fig. 4.1B), 

in which any motion perpendicular to the target direction was constrained by a 1-dimensional spring 

(2.5 kN/m) and damper (25 N/ms
-1

). This method enabled us to measure directly the lateral force 

exerted against the “channel”. Post-experimental interview confirmed that only 1 out of 61 

participants was aware of the presence of the channel during experiment. The data from this 

participant was excluded from the analysis. 

 

Experiment 1. Experiment 1 was designed to examine laterality in the generalization of motor 

learning. That is, we investigated how the motor learning acquired while moving both arms forward 

is transferred when the movement direction of the opposite arm was changed. Participants (n = 24) 

were divided into 2 groups according to the arm used for training [group 1 (right arm, n =12); group 
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2 (left arm, n = 12)]. The experiment consisted of 135 trials for the baseline session, 100 trials for 

the training session, and 90 trials for the generalization session.  

 Baseline session. The participants began by performing bimanual movements under a null 

force field condition. The target for the trained arm was always presented at the forward position (i.e. 

0º) and that for the untrained opposite arm was presented pseudo-randomly at 1 of 8 different 

positions (0º, 45º, …, 315º; Fig. 2A). Before the baseline session, participants performed 90 trials for 

practice. The error-clamped trials were also randomly interleaved once in 3 trials to obtain the lateral 

force against the channel for the baseline condition. 

 Training session. A CW (or CCW for a half of subjects) force field was imposed to one of 

the arms while the opposite arm was not subjected to the force field. Participants learned to move 

both cursors forward toward the targets simultaneously [i.e., the targets for both arms were always 

presented at 0º (Fig. 2A)]. To evaluate how the motor learning developed with the training, 

error-clamped trials were randomly interleaved once in 5 trials to quantify the lateral force against 

the channel.  

 Generalization session. The participants continued the training while moving both arms 

forward. Error-clamped trials were interleaved in every other trial to quantify how the lateral force 

against the wall was influenced by the movement direction of the opposite arm. Thus, in the 
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error-clamped trials, the target for the untrained arm was presented pseudo-randomly at 1 of 8 

positions (0º, 45º,.., 315º; Fig. 4.2A). 

In order to make a precise evaluation of the generalization of learning, we discarded the 

data from subjects who did not attain at least 80% adaptation to the imposed force field (one-sample 

t-test on last 10 channel trials). As a result, 8 subjects were excluded from analysis and 16 out of 24 

subjects remained for further analysis (8 participants for each group). For group 1, 5 participants 

learned CW force field. In group 2, 4 participants learned CW field. 

 

Experiments 2 and 3. These experiments were designed so that the same forward reaches of the 

left/right arm were exposed to conflicting (both CW and CCW) force fields associated with different 

movement directions of contralateral arm [i.e., (0º: CW), (90º: CCW), (180º: CW), (270º: CCW)] 

(Fig. 4.4A). The order of the 4 movement configurations was randomized. It should be noted that the 

movement direction for the trained arm was fixed to the forward direction. The experiment consisted 

of 340 trials: 60 trials for the baseline session, and 280 trials for the training session. The error clamp 

trials were randomly interleaved in 1 of 3 trials for the baseline session, and 1 of 7 trials for the 

training session. Thus, each movement was performed for 10 trials in the baseline session, and 60 

trials for the training session. Twenty participants were divided into 2 groups (Exp 2; n = 10 each). 

For group 1, training was performed with the left arm, while subjects in group 2 learned the force 
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field with the right arm. The association between the force field direction and the movement 

direction was reversed for a half of subjects in each group [i.e., (0º: CCW), (90º: CW), (180º: CCW), 

(270º: CW)].  

 The same task described in experiment 2 was performed by left-handed participants (Exp 

3; n = 12). Half of participants were assigned to the left arm learning group. The rest were assigned 

to the right arm learning group.  

 

Data analysis. All data shown are baseline-subtracted values. The motion data for each 

manipulandum were recorded at a sampling rate of 500 Hz. The data for the handle velocity and 

force were low-pass filtered using a fourth-order Butterworth filter with a cutoff frequency of 8 Hz. 

For the index of adaptation, we calculated the learned viscosity coefficient, which was the lateral 

force, 𝑓, during the error-clamped trial measured at the time 𝑡   of peak movement velocity,  , 

divided by the velocity as, 𝐵̂ = 𝑓(𝑡  )  (𝑡  )⁄  [N/(m/s)]. The deviation of this value from that 

measured in baseline sessions was defined as “aftereffect”. The performance of the trials in which 

the error-clamp method was not adopted (e.g., trials in the training session) was evaluated by the 

lateral deviation of each handle trajectory from a straight line between the starting position and 

target measured at the peak movement velocity. The data were then averaged across participants for 
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each experiment. The sign of the aftereffect from those who adapted to CCW force field were 

flipped before averaging.  

 

Statistics. For Experiment 1, two-way ANOVA with factors of group (group 1 and group 2) and 

epoch (baseline, early, mid, and late) was performed on the aftereffect data. Epoch was defined as 

average values of 1-st to 5-th (baseline), 6-th and 7-th (early), 9-th and 10-th (mid), and 21-st to 

25-th (late) channel data. For Experiments 2 and 3, two-sample t-tests were performed on the 

aftereffect data averaged across the last 5 channel trials. Effect size (Choen’s d) was also calculated. 

For two-sample t-tests, if the variance of 2 groups were significantly different (by F-test), a 

Greenhouse–Geisser correction was applied to adjust for the appropriate degree of freedom. We 

applied either the Wilcoxon rank sum test or Fisher’s exact test on the basic data (age, L.Q., and sex) 

of subjects whose data were used for subsequent analysis. The significance level was set at P < 0.05.  

 

Parameter estimation and simulation.  

 State-space model. The force output of the internal model, 𝑓, at the i-th trial is assumed to 

be represented by a linear combination of the activity of primitives [6, 9-11] as 

 𝑓(𝑖) = [𝒘(𝑖)]
 
 (𝜃(𝒊)), (4-1) 

where 𝜃  is the movement direction of the opposite arm, and  (𝜃) =

[ 1(𝜃),  2(𝜃), ,  𝑁(𝜃)]
 (Fig. 4.3A) and 𝒘 = [ 1,  2, , 𝑁]

  are column vectors whose 
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elements represent the output and weight of each primitive, respectively. Here,   should be a 

function of the movement directions not only of the opposite arm, but also of the trained arm. 

However, we considered only the dependence on the opposite arm since the movement direction of 

the trained arm was fixed in our experiment.  

We assumed that the weighting parameter 𝒘 is updated with the trials according to the 

movement error, 𝑒. This process can be represented as the state space model: 

 𝑒(𝑖) = 𝑑(𝑓(𝑖) − 𝑓(𝑖)), (4-2)

 𝒘(𝑖+1) = 𝛼𝒘(𝑖) + 𝑒(𝑖)𝐾 (𝜃(𝑖)), (4-3) 

where 𝑓 is the imposed force field, 𝑑 is the compliance of the trained arm, and 𝛼 and 𝐾 are 

constants representing, respectively, the spontaneous loss of memory and the learning rate.  

 Estimation of parameters for the motor primitive. After sufficient training with the 

movement direction 𝜃 of the opposite arm, the force output should reach a plateau level. The 

generalization function  Φ(∆𝜃) is defined as the relative value of the force output when the 

movement direction of the opposite arm is changed by ∆𝜃. We previously demonstrated the 

generalization function can be represented [11] as: 

    Φ(∆𝜃) =
 (𝜃)  (𝜃+∆𝜃)

 (𝜃)  (𝜃)
    (4-4) 

Further, we assume that each component of  (𝜃) is represented by a Gaussian-like function [6, 9-11, 

14, 15] as: 



103 

 

    𝑗(𝜃) = 𝑎 exp [−
(𝜃−𝜑𝑗)

2

2𝜎2
] + 𝑏,   (4-5) 

where 𝑎, 𝑏, σ, and 𝜑𝑗  are amplitude, offset, tuning width, and the preferred direction of the 

primitives (without loss of generality, we set 𝑏 = 1 − 𝑎). When the preferred directions are assumed 

to be distributed uniformly, the generalization function can be simply represented as [11]: 

    Φ(∆𝜃) = 𝑐 exp {−
 𝜃2

4𝜎2
} + 𝑑,    (4-6) 

where  

   𝑐 =
𝑎2𝜎 

𝑎2𝜎 +2√2𝑎𝑏σ+2√2𝑏2
,    (4-7) 

 

   𝑑 =
2√2𝑎𝑏σ+2√2𝑏2 

𝑎2𝜎 +2√2𝑎𝑏σ+2√2𝑏2
    (4-8) 

We fit the generalization data (Fig. 4.2C, D) with Eq. (4-6), and then obtained 𝑎, 𝑏, and 𝜎 using 

Eqs. (4-7, 4-8). To increase the estimation accuracy, we pooled the data from the current experiment 

(Experiment 1) and the data from our published work (the data in Experiment 1 and 2 in Chapter 3 

[11] were re-analyzed to the same form as used in the current study). 

 Calculation of parameters distributions. We estimated the distributions of parameter sets 

(a and 𝜎) by bootstrapping (5000 re-samplings). First, Eq. (4-6) was fitted to the pooled data (here, 

this fitted function is referred as the estimated model), and the residual vector [size: {72 (the number 

of data points obtained in the current experiment) + 56 (the number of data points obtained in our 

previous experiment [11])} × 1] was obtained. Next, 5000 bootstrap residual vectors (size of each 
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vector: 128 × 1) were generated by randomly re-sampling from the original residual vector. Then, 

5000 bootstrap data sets were generated by adding bootstrap residual vectors to the estimated model. 

By fitting Eq. (4-6) with the 5000 bootstrap data sets, we obtained 5000 bootstrap parameters. 

Finally, the density distributions of parameters were estimated by 2-dimentional kernel density 

estimation using Matlab kde2d function (Botev et al., 2010). 

 Simulation of motor learning. We wished to quantify the effect of the difference in the 

parameters for both arms on the adaptation to force field caused by the opposite arm’s motion. To 

accomplish this, we simulated Experiment 2 with the state space model [Eqs. (4-1 - 4-3)] using the 

5000 sets of bootstrapped parameters. For other parameters [𝛼, d, and K in Eq. (4-3)], we used the 

same values for both arms because we did not observe a significant difference in initial error 

between groups (two-sample t-test, P > 0.05) or the amount of learning (two-way ANOVA, see 

Statistical analysis) in Experiment 1. Parameter values are summarized in the following table 4.2. 

 To mimic Experiment 2, in which 10 participants participated, we first randomly sampled 

10 parameter sets from bootstrapped estimates of tuning parameters and then simulated Experiment 

2. Simulated learning curves were then averaged across these 10 parameters sets. This process was 

iterated 1000 times to obtain 95% confidence intervals of simulated learning curves. 
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4.4 Results 

Sixteen right-handed participants adapted to a velocity-dependent force field (FF) imposed on either 

the left or right arm (n = 8 for each) while they moved the handles of the manipulanda bimanually in 

the forward direction (Fig. 4.1A). The amount of motor learning was quantified by randomly 

interspersing probe trials. The force that the participants exerted against the virtual force channel 

(i.e., aftereffect) was directly measured (Gonzalez Castro et al., 2011) both during the training and 

generalization sessions (Fig. 4.1B and 4.2A, see Materials and Methods).  

 Previous studies have reported that the dominant arm exhibits a greater ability to adapt to 

novel dynamics during unimanual reach (Duff and Sainburg, 2007; Schabowsky et al., 2007). 

However, for the training session in the present study, the trial-dependent changes in the aftereffect 

(i.e., learning curves) were almost indistinguishable between the groups trained with right and left 

arms (two-way ANOVA, no significant main effect of group; F(1, 14) = 1.5, P = 0.240, Fig. 4.2B). 

Therefore, we observed no substantial difference between dominant and non-dominant arms in the 

ability to adapt limb movements to a novel dynamics during bimanual reach. 

 The generalization of motor learning was evaluated by changing the movement direction 

of the untrained arm (8 different target directions, Fig. 4.2A). As was observed in our previous study 

(Yokoi et al., 2011), the aftereffect for the trained arm decayed as the movement direction of the 

opposite, untrained arm deviated from the original trained direction (Fig. 4.2C). Notably, the shape 



106 

 

of the generalization function, Φ(Δ𝜃), had different amplitudes between both arms; the amplitude 

[i.e., {Φ(0 ) − Φ(1 0 )}  100] was significantly greater for the left arm (43.7 ± 15.9 %) than for 

the right arm (28.6 ± 8.7 %) (t(14) = 2.35, P = 0.03). 

 These results indicate that when the movement direction of the opposite arm changes from 

the original training direction, the motor learning of 1 arm during bimanual movement is more 

fragile for the non-dominant left arm than for the dominant right arm. In other words, the interfering 

effect from the right arm to left arm was stronger than vice versa, showing the dominance of the 

right arm.  

 The lateralized generalization patterns indicate that how the primitives encode opposite 

arm motion differs between the right and left arms. Based on our previous paper, we estimated the 

function of primitives,  (𝜃) , from the generalization function Φ(Δ𝜃)  using the theoretical 

relationship Φ(Δ𝜃) =  (𝜃)  (𝜃 + Δ𝜃) { (𝜃)  (𝜃)}. In particular, when we assume that each 

primitive is expressed as a Gaussian-like function,  𝑗(𝜃) = 𝑎 exp {−
(𝜃− 𝑗)

2

2𝜎2
} + 𝑏 (Thoroughman 

and Shadmehr, 2000; Gonzalez Castro et al., 2011; Ingram et al., 2011; Yokoi et al., 2011; Brayanov 

et al., 2012), where 𝑎 + 𝑏 = 1 without loss of generality, and that the preferred direction 𝜙𝑗 is 

distributed uniformly, the generalization function can be also expressed by a Gaussian-like function: 

Φ(Δ𝜃) = 𝑐 exp {−
( 𝜃)2

4𝜎2
}+𝑑. 
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 We began by fitting the data of the generalized pattern with the function Φ(Δ𝜃). Then, 𝑎 

and 𝑏 were obtained from the 𝑐, 𝑑, and 𝜎 using the theoretical relationship between Φ(Δ𝜃) and 

 𝑗(𝜃). To investigate the possible distribution of the parameters 𝑎 (tuning depth) and 𝜎 (tuning 

width) of the primitive, we repeated the estimation procedure for 5000 bootstrapping samples from 

the pooled data of the present experiment and that obtained in Experiment 1 and 2 of previous 

Chapter (Yokoi et al., 2011).  

 The distributions of estimated parameters for each arm were clearly dissociated (Fig. 4.3B). 

The probability of overlapping area between 2 density distributions (i.e., optimal Bayes error rate 

(Duda et al., 2001)) was smaller than 0.05. The values of 𝑎 and 𝜎 were 0.73 ± 0.03 and 37.2° ± 

12.1° for the left arm and 0.64 ± 0.03 and 45.0° ± 14.0° for the right arm (mean ± SD of the 

bootstrapping samples). Such greater tuning depth 𝑎 and narrower tuning width 𝜎 for the left arm 

indicate that the primitives for the left arm are more sharply tuned with the opposite arm’s 

movement direction. As was already argued in the generalization function, such sharper modulation 

with the opposite arm’s movement direction suggested the dominant influence of the dominant right 

arm; the primitives of the non-dominant left arm were more strongly influenced by the dominant 

right arm. 

 The stronger influence from the opposite arm contributes to the steeper decay of Φ(Δ𝜃) 

with the change in the movement direction, Δ𝜃 (i.e., poorer generalization; Fig. 4.2C). However, 
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this does not necessarily have adverse effects. From the opposite viewpoint, poorer generalization 

leads to weaker interference in learning when moving the opposite arm in different directions. 

During bimanual action, mechanical interactions between the 2 arms can be mediated by the body 

and/or objects. Thus, the same motion of 1 arm could be exposed to various perturbations caused by 

the opposite arm’s motion. Therefore, the successful control of bimanual action largely relies on the 

ability of neural controllers to predictively compensate for mechanical interactions arising from the 

motion of the opposite arm.  

 The poorer generalization (or equivalently, smaller interference) implies that a greater 

amount of motor memory is available when the opposite arm’s motion changes. Thus, the sharper 

encoding of the opposite arm’s motion could provide the non-dominant arm with a beneficial ability 

to adapt more flexibly to dynamics caused by the opposite arm’s motion. Experiment 2 was designed 

to test this ability of the non-dominant arm. Twenty right-handed participants performed 

simultaneous bimanual reaching movements under the presence of FFs to 1 arm. Half of participants 

adapted to FFs applied to the right arm, while the others adapted to FFs applied to the left arm. The 

direction of the FF was switched between clockwise (CW) or counterclockwise (CCW) every time 

the movement direction of the opposite arm was changed by 90° [e.g., (0°: CW), (90°: CCW), (180°: 

CW), (270°: CCW), Fig. 4.4A]. The directions of the FFs were counterbalanced. Each of the 4 

movement directions for the opposite arm was performed once within each cycle in a random order. 
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Many previous studies have shown that adaptation of limb movement to such conflicting force fields 

is extremely difficult (Gandolfo et al., 1996; Osu et al., 2004; Nozaki et al., 2006; Yokoi et al., 2011; 

Hirashima and Nozaki, 2012; Howard et al., 2012). The degree of motor learning was evaluated by 

interleaving probe trials, as was done in Experiment 1. 

 Before performing the experiment, we investigated how the amount of learning depended 

on the parameters 𝑎 and 𝜎 of the primitives by simulation with a state-space model (Thoroughman 

and Shadmehr, 2000; Donchin et al., 2003; Lee and Schweighofer, 2009; Yokoi et al., 2011). The 

amount of motor learning was evaluated by averaging the compensatory force output of the model 

over 1 cycle (i.e., 4 movement directions). The simulated result indicates that deeper tuning 

amplitudes and narrower tuning widths are associated with increased adaptation (Fig. 4.4B). The 

simulation also predicts that the non-dominant left arm should demonstrate almost two-fold greater 

learning than the dominant right arm (Fig. 4.4C, D). 

 Figure 4.4C shows the experimental changes in the aftereffects averaged over the 4 

movement directions. The aftereffects gradually increased with the training, but as the computational 

model predicted, the participants trained with the left arm exhibited significantly greater aftereffects 

than those trained with the right arm (one-tailed t-test, t(16.33) = 3.01, P < 0.005, Cohen’s d = 1.42 

± 8.78). Furthermore, these behavioral data were quite similar to the predicted values with respect to 

not only the amount of adaptation, but also the trial-dependent change of the learning curve (Fig. 
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4.4C). These results indicate that the observed laterality in learning ability between the right and left 

arms resulted from the laterality of the tuning parameters of the motor primitives. 

 We also had 12 left-handed participants perform the same task (Experiment 3). Half of 

participants trained with the dominant left arm, and another half with the non-dominant right arm. 

The superior left-handed motor learning observed in the right-handed participants disappeared in the 

left-handed participants, and the amount of adaptation did not differ significantly between groups (P 

> 0.05; Fig. 4.4E, F).  

 

4.5 Discussion 

It has been thoroughly reported that the dominant arm exhibits superior motor function in terms of 

movement accuracy, muscle strength, etc. (Woodworth, 1899; Annett, 1985; Elliott and Roy, 1996; 

Armstrong and Oldham, 1999; Duff and Sainburg, 2007). Popular beliefs about the absolute 

inferiority of the non-dominant arm have led numerous societies to associate the left hand with 

weakness, evil, or negativity (Wilson, 1891; Beidelman, 1961; Needham, 1967). However, recent 

several studies have focused on the lateralized function of each arm instead of emphasizing the 

superiority of the dominant arm. For example, Sainburg and colleagues have demonstrated that the 

dominant arm has a more specialized ability to control limb dynamics, while the non-dominant arm 

is more specialized for limb impedance control (Sainburg, 2010). However, evidence of superior 
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functional abilities of the non-dominant arm is not always apparent. In addition, the neuronal 

mechanisms behind the laterality remain poorly understood. 

 When performing bimanual actions, the movement of 1 limb may exert mechanical 

influences on the opposite limb. Therefore, it would be advantageous for a motor control system to 

generate appropriate motor commands considering these influences. We propose the following 

motor learning mechanism to accomplish this: the primitives of motor learning encode not only 

movement of the relevant arm, but also that of the opposite limb. This mechanism enables the 

controller of each arm to flexibly adapt to mechanical influences depending on the kinematics of the 

opposite arm. Importantly, this adaptability is determined by how the primitives of the motor 

learning system encode both arms’ kinematics. Considering the possible supporting role of the 

non-dominant arm in bimanual action (Guiard, 1987; Johansson et al., 2006), we speculated that the 

lateralized ability of each arm, if any, could be more visible during bimanual movement. We further 

predicted that the laterality should be manifested as a difference in shape of the primitives function. 

 As expected, our experiment revealed a superior ability of the non-dominant arm that 

could only be observed while performing bimanual actions. The non-dominant arm has a greater 

capacity to adjust motor commands in dynamical environments resulting from opposite arm 

movement. This advantage is occluded when observing adaptation to a single FF, which only 

depends on the motion of the relevant arm during both bimanual (Experiment 1, Fig. 4.2B) (Tcheang 
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et al., 2007) and unimanual movements (Duff and Sainburg, 2007; Schabowsky et al., 2007; 

Tcheang et al., 2007). However, this effect emerges when faced with a complicated FF that depends 

on the motion of the opposite arm (Experiment 2, Fig. 4.4C, D), which is a characteristic of 

bimanual actions. Furthermore, we have also showed that this hidden advantage of non-dominant 

arm (Experiment 2) was well explained from the laterality of the primitives encoding the kinematics 

of the opposite arm (Fig. 4.3B). 

 Although the neural substrates for the primitive of motor learning are not fully elucidated, 

neurons in frontal motor areas, posterior parietal cortex, and cerebellum are thought to be involved 

(Li et al., 2001; Della-Maggiore et al., 2004; Padoa-Schioppa et al., 2004; Xiao et al., 2006; 

Mandelblat-Cerf et al., 2011; Donchin et al., 2012). For example, the neurons in primary motor 

cortex (MI) or premotor cortex (PM) that are tuned with the movement direction of the reaching 

hand (Georgopoulos et al., 1982; Cisek et al., 2003) change their tuning properties (e.g., preferred 

direction) after adaptation to a force field (Li et al., 2001; Xiao et al., 2006). This suggests that 

neurons in these motor areas are constituents of the primitives of motor learning. These neurons also 

receive the neuronal input from the contralateral hemisphere that depends on the kinematics of the 

opposite arm (Cisek et al., 2003; Rokni et al., 2003; Ganguly et al., 2009). In addition, neurons 

within the parietal reach region (PRR) show tuned activity for bilateral limb movement (Chang and 
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Snyder, 2012). Such interhemispheric neuronal influences on motor cortices have been also reported 

in humans using fMRI (Diedrichsen et al., 2012). 

 These previous findings led us to hypothesize that the motor memory formed with a 

particular movement pattern of bimanual movement could be deteriorated when the movement of the 

opposite arm changes, which is consistent with the results of the current and previous experiments 

(Yokoi et al., 2011). From this perspective, the laterality observed in the tuning pattern of the 

primitives (i.e., tuning depth and width) can be interpreted as the difference in the strength of the 

neuronal influence from the opposite arm, possibly through the corpus callosum (Franz et al., 2000). 

We suspect that the strength of this influence should be greater from dominant to non-dominant 

hemisphere than vice versa. It is well known that the sensory-motor areas in dominant hemisphere 

have greater influence over the non-dominant hemisphere than vice versa in both fMRI (Hayashi et 

al., 2008; Diedrichsen et al., 2012) and electrophysiological studies (Netz et al., 1995; Ziemann and 

Hallett, 2001; Duque et al., 2007). Such asymmetrical interhemispheric interaction is a possible 

neural substrate for the lateralized tuning in the primitives of motor learning. 

 One could argue that another possible factor for the lateralized primitive is a difference in 

attentional load. Reaching with the non-dominant arm to different directions may be more 

demanding than reaching with the dominant arm, which might contribute to a different motor 

generalization function shown in Fig. 4.2C. However, we consider this possibility to be unlikely, 
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because a large difference in attentional load would be expected to deteriorate motor learning. 

Consequently, we would expect to see the opposite of the results observed in Experiment 1 (Fig. 

4.2C); the right arm should have exhibited greater decay than the left arm because of the greater 

attentional load associated with the motion of the left arm. In addition, a previous study has reported 

that simultaneous reaching of the second arm in different directions had no effect on the motor 

learning of the perturbed arm for both dominant and non-dominant arms (Tcheang et al., 2007). 

Taken together, the lateralized tuning property of motor primitive gives a more plausible explanation 

for the current results (Fig. 4.3B and Fig. 4.4C, D).  

 In conclusion, our results provide novel evidence that the functional advantage of the 

dominant arm does not extend to all aspects of motor planning (Annett, 1985; Elliott and Roy, 1996; 

Serrien et al., 2006). Further, the functional advantages of the non-dominant arm can be 

mechanistically explained by the concept of a motor primitive. We speculate that this functional 

asymmetry of the 2 arms during bimanual actions contributes to the sophisticated bimanual action by 

assigning the appropriate functional role for each arm (Guiard, 1987; Stout et al., 2008), but concrete 

evidence for this is still lacking. Furthermore, it remains unknown whether such laterality in the 

primitive is innate or emerges with development. We also do not understand how laterality is 

modified by extensive training, such as with musical instruments (Schlaug et al.; Fujii et al., 2010). 
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Future comparative studies using both behavioral and physiological approaches may provide some 

insight into these questions.  
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Figures and Tables 

 

 

 

Figure 4.1. The basic description of experiment. 

A, Participants were instructed to make center-out reaching movements holding the handles of 2 

robotic manipulanda (Phantom 1.5 HF). The position of each handle was fed back as a white cursor 

on a horizontal screen over the participants’ arms (thus, they could not see their arms directly). 

Movement of each handle was constrained to a virtual horizontal plane by a simulated spring. 

Participants wore a wrist brace on each hand, and the upper arms were supported by slings (not 

illustrated). The trunk was strapped to the chair. B, In each experiment, velocity-dependent force 

fields were generated by manipulanda. The force is represented as  =   , where  = (𝑓 , 𝑓 )
  

[N] is the force to the handle,  = (  ,   )
  [ms

-1
] is the velocity of the handle, and   [N/ms

-1
] is 

the viscosity matrix. For clockwise (CW) force fields,  = [0 − 10  10 0] , and for 

counter-clockwise (CCW) force fields,  = [0 10 −10 0]. C, To quantify the motor adaptation we 

employed the “error clamp” method. During error-clamped trials, the trajectory of the handle was 

constrained to a straight line toward the target by a virtual “channel”, in which any motion 

perpendicular to the target direction was constrained by a 1-dimensional spring. This method 

enabled us to measure directly the lateral force exerted toward the “channel”. Aftereffect was 

defined as the difference between the pre and post training data measured at peak movement speed.   
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Figure 4.2. Experiment 1. 

A, Subjects adapted to a force field (FF; either CW or CCW) applied to either the left or the right 

arm while making forward reaching movements with both arms. Then, the generalization was 

assessed by using the channel trial changing the movement direction of the unperturbed arm. Note 

that the illustrated case shows learning CW FF with the left arm. B, Trial-by-trial profile of 

aftereffect (lateral force at peak movement speed divided by the speed) measured at randomly 

introduced channel trials for baseline and training sessions averaged across subjects (mean ± SE). 

Purple: Data for the group 1 subjects (learning with the left arm). Gold: Data for the group 2 subjects 

(learning with the right arm). The data within the shaded area were averaged and used for 

subsequent statistical analysis. C, Generalization patterns for all subjects in both groups (left: group 

1, right: group 2) plotted with our previous data (Experiment 1 and 2 in Chapter 3; (Yokoi et al., 

2011)). Vertical axis and the color code are the same as in (B). These data were fitted with Gaussian 

functions (solid lines).  
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Figure 4.3. Estimated parameters for the motor primitive.  

A, Activity of each primitive ( 𝑖) was assumed to be a Gaussian-like function. Each primitive has its 

own preferred direction (PD) of opposite arm motion. Note that 𝜃 indicates the movement direction 

for the opposite arm. We assumed that the PD was uniformly distributed on [0°,   0 ] space. Free 

parameters are the tuning width (𝜎), and the amplitude (a). B, Estimated density distributions of 

tuning parameters for the right and the left arms were clearly dissociated from each other. 

Two-dimensional Gaussian kernel was applied on 5000 bootstrapped estimates of parameters 

estimated from the generalization data. Color code indicates the density.  

  



119 

 

 

 

Figure 4.4. Experiment 2 (and 3). 

A, The direction of force field (FF) to the perturbed arm was changed depending on the movement 

direction of the unperturbed arm (CW or CCW). The perturbed arm reached in the same direction 

throughout the experiment. The case of the left arm learning group (group 1) is illustrated. B, 

Simulation of Experiment 2 in various combinations of a and σ. Color code indicates the amount of 

the aftereffect averaged across the late phase of motor learning (11-15-th channel trials, C). C, 

Learning curve averaged across all movement directions of the unperturbed arm for both groups, 

displayed with simulated result. Color codes are the same as in Fig. 4.2. Thick lines: observed data 

(mean ± SE). Dotted lines: simulated data using the parameter set estimated from the behavioral data. 

Filled areas around dotted lines: 95% confidence interval for the simulated aftereffects. Shaded area 

indicates the data used for subsequent statistical testing (11-th to 15-th channel trial). D, The left arm 

showed significantly larger learning (**: P < 0.005) than the right arm. The data of the last 5 channel 

trials (specified by the shaded area in C) were averaged within each subject. E and F, The results for 

the left-handed participants. The display is the same as in (C) and (D). 
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Table 4.1. The basic information of participants whose data were used for analysis. 

 

 Experiment 1 (N = 16) Experiment 2 (N = 20) Experiment 3 (N = 12) 

Trained 

arm 
Age Sex L.Q. Age Sex L.Q. Age Sex L.Q. 

Left 
22.4 

(2.6) 

M 9 

F 7 

86.9  

(10.8) 

21.8  

(1.0) 

M 7 

F 3 

92.8 

(8.3) 

23.2 

(2.5) 

M 5 

F 1 

-66.4 

(26.4) 

Right 
24.0 

(3.7) 

M 9 

F 7 

85.0  

(21.1) 

23.1 

 (1.4) 

M 7 

F 3 

91.0 

(10.8) 

21.5 

(1.4) 

M 5 

F 1 

-70.9 

(33.4) 

 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

 

Wilcoxon rank sum tests were performed on Age and L.Q. data [mean (SD)]. Fisher’s exact test was 

performed on Sex data (M, Male; F, Female). α was set to 0.05. 

 

 

 

Table 4.2. Common parameters for model simulation. 

 

  𝛼 𝐾 𝑑 𝜑 

100 0.996 0.00724 8 
Uniform distribution 

 [0°, 360°] 
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Chapter 5 

General Discussion 

 

In this thesis, I investigated the possible neural mechanism of the flexible control of bimanual 

movement. In the experiments presented in this thesis, I asked how the information of movement of 

both arms is jointly represented in the control process by using human psychophysics and 

computational modeling. In this chapter, I summarize the results of these experiments and discuss 

directions and implications for future studies. 

 

5.1 Summary of findings 

In the first study (Chapter 3), I designed a series of experiments to elucidate how the movements of 

both arms are represented together in motor primitives in the internal models for each arm. With a 

combined approach of behavioral and computational analyses, I revealed the following findings:  

1. The pattern of generalization revealed that information about the kinematics of both arms is 

multiplicatively encoded in the internal model of each arm (Experiments 1 and 2). 

Multiplicative encoding of neural signals is known as “gain fields” (Andersen et al., 1985) and 

is considered as a computational foundation to construct arbitrary input-output mapping 

(Pouget and Sejnowski, 1997). 
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2. Indeed, the subjects easily adapted to complex dynamics that depend nonlinearly on the 

movements of two arms (Experiments 3–5). Furthermore, our computational model, the 

parameters of which were tuned by using the data of Experiment 1, was able to predict how 

well subjects adapt to these complex dynamics without additional tuning of parameters, 

suggesting that multiplicative encoding of the movement of both arms is a robust feature of the 

motor system. 

In the second study (Chapter 4), I examined laterality in the encoding pattern of the movement of the 

opposite limb in the motor primitives. The two major findings of this second study are as follows:  

1. As reflected in the generalization pattern, we demonstrated that the motor primitives of the 

nondominant arm encode the motion of the dominant arm more sharply than the opposite 

scenario (Experiment 1). That is, motor primitives of the nondominant arm had a smaller tuning 

width and greater amplitude of tuning function than those of the dominant arm.  

2. The most striking finding of this study was that the difference in the tuning property of the 

motor primitives predicted a greater ability of the nondominant arm in compensating for 

mechanical perturbation from the other arm’s motion in bimanual movement, and this 

prediction was experimentally supported. Right-handed subjects who experienced a force field 

that was imposed on the nondominant arm and depended on the motion of the opposite arm, 

showed ~200% greater adaptation than subjects who experienced a force field with the 
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dominant arm (Experiment 2). In contrast, both arms showed comparable adaptation to an 

ordinary force field that only depended on the motion of the relevant arm (Experiment 1), 

despite the fact that previous studies on unimanual reaching reported the superiority of the 

dominant arm in adapting to novel dynamics (Duff and Sainburg, 2007; Schabowsky et al., 

2007). 

 These findings are summarized in Fig. 5.1. The results of the first study provided 

convincing evidence that the motor system integrates the motion of different body parts in a 

mathematically plausible manner for flexible movement control. Such integration may be a 

foundation for the problem of controlling individual arm movements in bimanual movements. In 

addition, the results showed concrete evidence of the functional role of neural interactions between 

hemispheres that were previously regarded as a source of interference (Swinnen, 2002; Swinnen and 

Wenderoth, 2004). The results of the second study clearly countered the conventional notion of the 

absolute superiority of the dominant arm. Considering that bimanual coordination requires that the 

neural controller for each arm anticipate the consequence of the motion of its counterpart, 

asymmetry in this ability would be a critical constraint when assigning different roles to each arm.  
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Figure 5.1. A hypothetical scheme of bimanual movement control proposed in the present 

thesis. Red arrows and text show the contribution of the present thesis. 
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5.2 Perspectives 

5.2.1 Possible neural substrates 

As noted in Chapter 2, compared to the neurophysiological approach, the behavioral approach that 

was taken in this thesis lacks the power to localize the responsible neural sites. For instance, there is 

accumulating neurophysiological evidence about motor primitives implemented in the relatively 

lower part of the CNS, e.g., spinal cord. However, it is noteworthy that like previous models, the 

present one captures some important aspects of the motor system; specifically, it was able to 

explain/predict important features of the behavioral data. In addition, while there have been 

extensive neurophysiological studies on various parts of the cerebral cortex during arm movement, 

we still lack the conclusive view of how motor primitives are implemented within the cerebral cortex. 

Thus, it would be fruitful for future behavioral and electrophysiological studies to advance previous 

and present findings. 

 According to the studies summarized in Chapter 2, it is conceivable that the process of 

sensorimotor transformation (i.e., the internal model) is implemented by two main types of motor 

primitives. One type includes the motor primitives implemented within the spinal cord (Giszter et al., 

1993; Mussa-Ivaldi et al., 1994) and brainstem (Roh et al., 2011). Their activation causes contraction 

of certain groups of muscles, and the pattern is highly similar to the set of basic patterns decomposed 

from naturalistic behaviors (i.e., muscle synergy) (Tresch et al., 1999). In the following discussion, I 
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refer to these as lower primitives, for convenience.  

 It would be natural, then, to speculate that what constitutes the descending signals to 

activate these lower primitives would be the primitives implemented within cerebral cortices 

(Holdefer and Miller, 2002). For convenience, I term them higher primitives. The finding that 

muscle synergies are still preserved in stroke patients with different lesion sites supports the view 

that these rather fixed lower primitives are driven by descending signals from frontal motor cortices 

(Cheung et al., 2009b). Another weak line of support for this view is that the activation coefficients 

of muscle synergies extracted during arm reaching in humans (d'Avella et al., 2006; d'Avella et al., 

2011) or postural tasks in cats (Ting and Macpherson, 2005) show clear directional tuning that is 

similar to the activity of neurons in cortical motor areas (e.g., the primary motor and premotor 

cortices) (Georgopoulos et al., 1982; Kalaska et al., 1989; Cisek et al., 2003). In addition, the 

activation coefficient of the muscle synergies of frogs changed under altered load conditions, while 

the extracted synergies were robust across loaded/unloaded conditions (Cheung et al., 2009a). 

Therefore, it is conceivable that the output of corticospinal neurons in these areas is comprised of the 

flexible combination of higher primitives located upstream of these areas.  

 To summarize, the mathematical expression of these process is represented as: 

𝒎 ≈ ∑ 𝑐𝑖𝚽𝑖
𝐾
𝑖=1      (5-1) 

𝑐𝑖 ≈ ∑  𝑖𝑗 𝑗( 𝑑,  ̇𝑑 ,  )
𝑁
𝑗=1 ,    (5-2) 
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where 𝒎  is the vector of the muscle activation pattern, 𝑐𝑖  is the activation coefficient (or 

descending signals to spinal cord) for the i-th lower primitive 𝚽𝑖,  𝑖𝑗 is the connection weight 

between the i-th corticospinal unit sending commands to the i-th lower primitive and the j-th higher 

primitive  𝑗,  𝑑 and its derivatives are the vector of desired limb states and its derivatives, and 𝐾 

and   are the numbers of lower and higher primitives, respectively. I speculate that these higher 

primitives are what the present experiments and other studies have extracted from the generalization 

pattern of motor learning. 

 The main reason for this speculation is that the time scale for learning-induced plasticity is 

markedly different between the cerebral cortex and spinal cord. Behaviorally, adaptation to a novel 

force field during reaching tasks is nearly completed within a few hours of training (Lackner and 

Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994; Thoroughman and Shadmehr, 1999; 

Criscimagna-Hemminger et al., 2003; Donchin et al., 2003; Nozaki et al., 2006; Smith et al., 2006; 

Wagner and Smith, 2008; Yokoi et al., 2011). Neurophysiological evidence suggests that plastic 

change in the activation pattern of neurons in the frontal motor areas of monkeys performing these 

tasks also occurs during this time period (Gandolfo et al., 2000; Li et al., 2001; Padoa-Schioppa et al., 

2002; Padoa-Schioppa et al., 2004; Xiao et al., 2006; Richardson et al., 2008; Arce et al., 2010). 

Moreover, a number of studies have shown that the activity pattern of neurons in these areas exhibits 

rapid change within hours following operant conditioning training of single-cell activity (Fetz, 1969), 
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patterns of cell and muscle activities (Fetz and Finocchio, 1971), brain–computer interface training 

(Moritz et al., 2008; Ganguly and Carmena, 2009, 2010; Ganguly et al., 2011), and adaptation to a 

new decoder (Jarosiewicz et al., 2008). These activation pattern changes are thought to be mediated 

by synaptic plasticity in these areas, e.g., synaptogenesis or synaptic potentiation (Buonomano and 

Merzenich, 1998; Adkins et al., 2006). A recent study demonstrated rapid formation of new dendritic 

spines (a site for receiving synaptic input) in the motor cortex contralateral to the trained forelimb of 

rats within an hour of reach-and-grasp training, which consisted of 30 reaches and also caused 

selective stabilization of these spines (Xu et al., 2009).  

 In contrast, although little is known about the contribution of the spinal cord to motor 

learning compared to cerebral cortex, growing evidence suggests that it takes more than 1 day to 

induce plastic changes within the spinal cord (Wolpaw and Tennissen, 2001; Guertin, 2008). For 

example, in the operant conditioning task to up- or downregulate the spinal stretch reflex or H-reflex, 

both of which are indices for spinal excitability, it requires a few days to weeks of training to induce 

stable behavioral changes in rats, primates, and humans (Wolpaw and O'Keefe, 1984; Wolpaw, 1987; 

Wolpaw and Lee, 1989; Chen et al., 2007; Thompson et al., 2009; Chen et al., 2011; Thompson et al., 

2012) and to detect increases in synaptic terminals on spinal motor neurons in rats (Wang et al., 

2009). For more naturalistic tasks, weeks of backward walking training induced a progressive 

decrease in the soleus H-reflex in the mid-swing phase (Ung et al., 2005; Meunier et al., 2007). 
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Therefore, although we still lack direct comparisons within the same learning paradigm, the 

timescale of training-related plasticity in the spinal cord seems to be much longer than that in the 

motor cortices. Assessing the timescale of plasticity following motor learning within both the cortex 

and spinal cord by using the same behavioral task during prolonged training periods will be the next 

major challenge in motor neuroscience.  

 Taken together, it is unlikely that the lower primitive changed within a few hours of a 

training session. Therefore, it is suggested that the adaptation-related change in motor output 

observed in previous reaching studies and ours is predominantly mediated by changes in descending 

signals from cortical motor areas, 𝑐𝑖 in the Eqs. (5-1) and (5-2). Thus, generalization of the motor 

adaptation to a novel force field is more likely to reflect the activity of higher primitives.  

 The next topic is the responsible sites for synaptic plasticity. According to Eq. (5-2), 

adaptation to a novel force field changes  𝑖𝑗, which represents the synaptic connection between 

output units within cortical motor areas
12

 and higher primitives. Unfortunately, with the current 

knowledge, it would be difficult to determine exactly where plasticity occurs during adaptation 

because of the loop structure of the motor system, which includes frontal motor cortices, the 

                                                   
12

 The reason why I used the word “output unit” is as follows. In addition to corticospinal neurons, 

there are also inhibitory interneurons and lateral/recurrent connections among these types of neurons 

(Landry et al., 1980; Ghosh and Porter, 1988; Jackson et al., 2002). Thus, it is more appropriate to 

suppose that a certain group of neurons within the same area act as a functional unit to transmit 

signals from higher to lower primitives. For example, Jackson et al. (2002) found that some neurons 

in the monkey motor cortex that project to the same muscles tend to fire synchronously. The same 

discussion is applied to the organization of lower and higher primitives. 
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posterior parietal cortex, cerebellum, basal ganglia, and thalamus. This may be part of the reason 

why the activation patterns of higher primitives that were behaviorally estimated using 

generalization of learning, contain many reported characteristics of neurons in different brain regions 

(Georgopoulos et al., 1982; Georgopoulos et al., 1984; Andersen et al., 1985; Coltz et al., 1999) 

depending on the types of tasks, e.g., force field adaptation (Donchin et al., 2003) or visuomotor 

adaptation paradigms (Tanaka et al., 2009).  

 One possible approach to this problem is twofold: First, operationally define higher 

primitives and output units as regions that do or do not change their activation patterns following 

motor adaptation; then, identify them during an adaptation paradigm. Practically, it is nearly 

impossible to electrophysiologically record neural activities in these areas simultaneously in 

behaving animals. Potential approaches to this question are large-scale electrocorticogram recordings 

of behaving animals or human fMRI study.  

 An electrocorticography, also called intracranial electroencephalography, is a technique 

that measures postsynaptic potentials (local field potentials) from electrodes placed directly on the 

cortical surface; thus, it offers the same temporal resolution (~0.5 ms) and much higher spatial 

resolution (~1 cm) compared to electroencephalography. Recent works have demonstrated that this 

technique provides rich information to reconstruct arm movements, e.g., reaching, grasping, or 

individual finger movements, for both humans (Kubánek et al., 2009; Yanagisawa et al., 2011; 
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Pistohl et al., 2012; Yanagisawa et al., 2012) and chronic recording in monkeys (Chao et al., 2010; 

Shimoda et al., 2012). Combining this technique with simultaneous recordings from deep brain 

structures (Feingold et al., 2012) might allow us to monitor neural activities across global cortical 

and subcortical structures during short- and long-term motor adaptation. 

 It would also be possible to monitor activity changes in whole brain structures during 

relatively short-term motor adaptation by using fMRI. Recent human imaging studies have 

demonstrated successful extraction of directional-selective activation patterns in motor areas 

(Eisenberg et al., 2010, 2011), visual areas (Kamitani and Tong, 2005; Miyawaki et al., 2008), 

individual finger representation in both cortical sensorimotor areas and cerebellum (Wiestler et al., 

2011; Diedrichsen et al., 2012), and the signature of motor adaptation (Diedrichsen et al., 2005; 

Donchin et al., 2012; Schlerf et al., 2012). In addition, a recent fMRI study by Diedrichsen et al. 

(2012) showed multiplicative representations of finger movements in both hands in the caudal 

premotor and anterior parietal cortices (Diedrichsen et al., 2012). Because the task in the study by 

Diedrichsen et al. (2012) was simple isometric finger pressing and did not include adaptation, 

extending the results of their work directly to our case of motor adaptation during arm movement 

might be too speculative. However, it is likely that we could also identify neural substrates for higher 

primitives that show multiplicative encoding of the motion of both arms in these areas.  

(Landry et al., 1980; Ghosh and Porter, 1988; Jackson et al., 2002) 
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5.2.2 Interhemispheric interaction and motor primitives 

Another outstanding question is how arm motion information is transmitted to the internal model for 

the opposite arm. Although there are many interconnections between the right and left sides of the 

CNS, including cortical, subcortical, and spinal levels (Bloom and Hynd, 2005; Carson, 2005), the 

CC is considered as a primary contributor toward bimanual coordination (Soteropoulos et al., 2011; 

Diedrichsen, 2012). For example, callosotomy patients, in whom the CC was surgically transected to 

treat severe epilepsy, exhibit reduced intermanual coupling and are unable to acquire new bimanual 

skills (Franz et al., 2000; Kennerley et al., 2002) 

 For sensorimotor areas, it is widely accepted that the primary function of transcallosal 

interaction is inhibition (Asanuma and Okuda, 1962; Perez and Cohen, 2009; Soteropoulos and 

Perez, 2011), even though a relatively weak excitatory pathway also exists (Ugawa et al., 1993; 

Hanajima et al., 2001). Such an inhibitory interhemispheric interaction, known as interhemispheric 

inhibition (IHI), is considered important for bimanual coordination. It has been intensively studied 

using noninvasive transcranial magnetic stimulation in humans and direct recording in animals. For 

instance, a short conditioning transcranial magnetic stimulation pulse over either M1 reduces the 

subsequent motor evoked potential induced by a test pulse over the same area on the opposite 

hemisphere after certain interstimulus intervals ranging from around 10 to 40 ms (Ferbert et al., 
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1992; Di Lazzaro et al., 1999; Chen, 2004)
13

. As expected, these inhibitory effects are known to be 

reduced or abolished in patients with agenesis of the CC (Meyer et al., 1995).  

 In addition to IHI between homologous areas, e.g., the left and right M1, it also occurs 

across several motor-related areas, e.g., between M1 and dorsal/ventral premotor areas, 

somatosensory areas, and the dorsolateral prefrontal cortex within the contralateral hemisphere 

(Mochizuki et al., 2004a; Mochizuki et al., 2004b; Ni et al., 2009). In addition, the magnitude of IHI 

is dependent on both muscle grouping (e.g., IHI during wrist flexion of the conditioned side has less 

effect on wrist extension of tested side) and the kinematic information of the movement (Duque et 

al., 2005). Importantly, evidence suggests that there is interaction between transcallosal inhibition 

and both intracortical inhibition and facilitation within the contralateral hemisphere (Chen, 2004; 

Avanzino et al., 2007; Lee et al., 2007; Udupa et al., 2010).  

 IHI is thought to be mediated through a combination of transcallosal input from excitatory 

glutamatergic pyramidal neurons, which release glutamate as neurotransmitter, and the 

gamma-aminobutyric acid (GABA)ergic local inhibitory interneurons within the contralateral 

hemisphere, which release GABA as neurotransmitter (Chen, 2004; Avanzino et al., 2007; Lee et al., 

2007). Both pharmacological modulation with a GABAB receptor agonist (baclofen) and direct 

recording of cells in the rat somatosensory cortex support this view (Irlbacher et al., 2007; Palmer et 

                                                   
13

 IHI with shorter ISI (~10 ms) is called short-interval IHI (SIHI), and IHI with longer ISI (~40 ms) 

is called long-interval IHI (LIHI).  
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al., 2012). Notably, these GABAergic inhibitory interneurons are ubiquitous throughout the cortex, 

and the lateral or recurrent connection mediated by these interneurons determines the shape of neural 

response functions (Yajima and Hayashi, 1990; Crook et al., 1991; Crook and Eysel, 1992; Crook et 

al., 1998; Oswald et al., 2006). 

 Importantly, IHI is known to be affected by hand dominance; the dominant hemisphere 

more strongly inhibits the nondominant counterpart than vice versa (Netz et al., 1995; Ziemann and 

Hallett, 2001; Duque et al., 2007). Such asymmetrical inhibition has also been reported in a human 

fMRI study that employed bimanual finger tapping tasks (Hayashi et al., 2008) and in a human scalp 

electroencephalogram study that utilized bilateral isometric force production tasks (Oda and 

Moritani, 1995).  

 In summary, I think that the interaction between intracortical processing and 

interhemispheric inhibition at M1 or higher areas (e.g., premotor or possibly posterior parietal 

cortex) might be a neural substrate of multiplicative modulation of the activity of the motor 

primitives, which I have shown in this thesis (Chapter 3). Greater GABA-mediated inhibition from 

dominant to nondominant hemispheres is consistent with the laterality in the tuning pattern of the 

primitives (Chapter 4). Considering the ability of a balanced background excitatory and inhibitory 

synaptic input to create gain modulation of neuronal activity (Chance et al., 2002; Ingham and 

McAlpine, 2005; Beck et al., 2011; Louie et al., 2011), this would be one possible scenario. 
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Combining the application of our paradigm to the IHI study and using a pharmacological approach 

to block/enhance GABA activity would provide some evidence for this conjecture. Other than 

pharmacological modulation, one easy-to-apply method is transcranial direct current stimulation, 

which can noninvasively downregulate cortical GABA activity with relatively higher regional 

selectivity compared to the pharmacological approach (Nitsche et al., 2005; Stagg et al., 2009; Stagg 

et al., 2011a; Stagg et al., 2011b).  

5.2.3 Extension to the feedback control process 

Although the present thesis focused primarily on the adaptation and, hence, the representation of a 

feed-forward control process (e.g., inverse model) during bimanual movement, the result can be 

leveraged for future research to investigate the mechanism of how the feedback control process (e.g., 

forward model) flexibly integrates the information of the motion of both arms.  

 In general, there are two types of approaches to investigate the organization of a feedback 

control process. The first approach is to investigate the feedback response itself and involves both 

the effect of the feedback controller and the forward model (Fig. 2.1). As reviewed in Chapter 2, it is 

already evident that the feedback control process for one limb is capable of using the sensory input 

for the other limb (Ohki and Johansson, 1999; Ohki et al., 2002; Diedrichsen, 2007; Mutha and 

Sainburg, 2009; Dimitriou et al., 2012). The next questions would be how such a process is 

organized (e.g., possibly through population coding) and how the feedback control process adapts to 
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a novel environment. Indeed, for the single-arm reaching paradigm, several recent studies have 

demonstrated an alteration in the feedback response following adaptation of the feed-forward control 

process (Wagner and Smith, 2008; Ahmadi-Pajouh et al., 2012; Franklin et al., 2012). In addition, 

other reports have suggested that the feedback response to unexpected perturbation is also well 

described by a small set of muscle activation patterns (e.g., muscle synergies) shared with the 

feed-forward control of voluntary motion (Ting and Macpherson, 2005; d'Avella et al., 2011). 

Nevertheless, how the feedback control process integrates sensory inputs and motor commands from 

both limbs and how learning-induced changes are generalized across various movement parameters 

remain open questions. 

 The second approach to investigate the feedback control process is to analyze the forward 

model, which is one of the crucial components of the feedback control loop (Shadmehr and Krakauer, 

2008), by quantifying its output. There have been two approaches to quantify the output of the 

forward model. Considering that the forward model transforms motor commands (i.e., cause) into 

the predicted sensory states (i.e., result), the most primitive approach would be to ask subjects to 

visually localize the position of their hand after termination of the movement without visual 

feedback (e.g., Wolpert et al., 1995). Several recent studies have addressed the adaptation of the 

forward model and its generalization to untrained movements using the above approach (Izawa et al., 

2012a; Izawa et al., 2012b).  
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 Another approach makes use of the fact that output of the forward model is considered to 

be used for cancelling out sensory feedback that results from our own movement (called re-afferent 

signal) from the total sensory input (Bays and Wolpert, 2007). This mechanism is thought to be a 

reason why we cannot tickle ourselves (Blakemore et al., 2000) and why the game of tit-for-tat often 

escalates endlessly (Shergill et al., 2003). In the context of bimanual coordination, previous studies 

have demonstrated that the subjective measure of ticklishness when subjects tickle their left arm 

using a robotic device controlled by their right arm, showed directional tuning. The amount of 

attenuation gradually decreased as the movement direction of the robotic device (consequence) 

deviated from that of the right hand (action) (Blakemore et al., 1998; Blakemore et al., 1999). 

Interestingly, the amount of attenuation was also modulated as a function of a delay between action 

and its consequence (Bays et al., 2005). These results may reflect how the motion of the right hand is 

represented in the forward model and suggest that the forward model for the left hand receives the 

motor command from the right hand. This is consistent with the view presented in this thesis. 

 Taken together, it is highly likely that the feedback control process, including the forward 

model and feedback controller, is implemented through the motor primitives. Thus, the experimental 

paradigm presented in this thesis seems to be readily applicable to investigate how the feedback 

control process is organized. It is possible to design an experiment to study how the feedback control 

process or forward model for an arm integrates the motion of the opposite arm by analyzing how an 
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adapted change in this process generalizes to the concurrent motion of the other arm with various 

movement parameters (e.g., direction).  

5.2.4 Encoding time lag between the motion of both arms in the primitives 

Both arms are coordinated spatially and temporally during bimanual action. This thesis revealed how 

the internal model for one arm integrates spatial information (i.e., kinematics) of two arms when they 

are moving simultaneously. Toward a more general understanding of flexible bimanual coordination, 

future studies can extend our paradigm by introducing an additional dimension (i.e., lag between 

each arm’s motion) to the generalization function. Although there have been only a few studies on 

this topic, several have addressed this issue in part. As was previously described, bimanual sensory 

attenuation is also tuned to the lag between the motion of one arm and the consequence to the other 

arm (Bays et al., 2005). It has also been shown that subjects could learn to predictively compensate 

for the force perturbation to their left arm caused by the motion of the right arm, even when there 

was a time delay (Jackson and Miall, 2008). A recent study on single-arm reaching movement 

demonstrated that a recent movement can affect motor adaptation to a novel force field during the 

subsequent movement if the time lag between the two movements is less than 600 ms (Howard et al., 

2012). Therefore, considering the results of this line of studies, it is likely that both inverse and 

forward models (and primitives) for arm movements encode motion information for both arms, as 

well as the time lag between them. These signals may also be multiplicatively integrated in the 
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internal model. 

5.2.5 Postural control: Control of multiple body parts 

One possible direction in which to extend our results is posture control, which is a good example for 

whole-body coordination. The CNS continuously maintains postural stability during any voluntary 

motor action both reactively (i.e., response to external perturbations) and proactively (i.e., predictive 

compensation of the effect of one’s own motion). This latter kind of predictive (feed-forward) 

postural control accompanied with voluntary actions is called “anticipatory postural adjustment 

(APA)” (Massion, 1984; Bouisset and Zattara, 1987). The easiest example can be observed when we 

raise our arm forward in front of our body. To prepare for the shift in the center of mass that 

accompanies the arm motion, consistent activation of postural muscles around the ankle, knee, and 

hip joints precedes arm movement onset by around 50 ms. In addition, the amplitude of muscle 

activation is modulated by movement parameters, such as voluntary movement speed (Crenna and 

Frigo, 1991). Other than movement speed, APAs are modulated by the direction of motion, current 

position of the center of pressure, and even by instructions given to subjects (for a review, see 

Bouisset and Do, 2008). Therefore, APAs are controlled by taking the motor command for the 

relevant movement, current state of body, and task goal into account. 

 Importantly, bimanual coordination, which I dealt with in this thesis, shares several critical 

features with APAs. First, the feedforward motor output for the particular effector (i.e., postural 
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muscles) depends on the motion state of other body parts (i.e., voluntarily controlled body parts). 

Second, as described above, it is modulated by movement (e.g., motion speed and direction). Third, 

these predictive controls are adaptive and learned by experience (Haas et al., 1989; van der Fits et al., 

1998; Schmitz et al., 2002; Diedrichsen et al., 2003). Therefore, our findings on bimanual 

coordination might be extended to research on how APAs are organized. For instance, the 

experimental paradigm presented in this thesis would help to investigate how the postural controller 

integrates the motion signals of various body parts by experimentally introducing a novel 

action-posture association, for example, associating the lateral motion of a platform with the forward 

raise of arms and thoroughly examining the pattern of generalization.  

5.2.6 Extension to natural movement: Manipulating single objects 

The studies presented in this thesis dealt with bimanual movement in which two separate visual 

cursors and goals were assigned to two arms. Whether the controlled object is single or separated 

(and hence whether there is a single goal or separate goals) seems to have little effect on the lowest 

level of the problem (i.e., control of individual arm motion) under the assumption of the three 

different problems for bimanual coordination, which were defined in the first chapter. However, 

several points should be noted in order to extend the present results to more general bimanual 

coordination. For example, how a single goal is broken down into two concrete arm movements is 

largely unknown. 
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 Another important issue is how the information of movement error or task performance in 

a global sense is assigned to each individual arm movement. As reviewed in Chapter 2, an error 

observed when participants were controlling a single cursor is corrected by the arm receiving 

perturbation and by the other arm not receiving perturbation (Diedrichsen, 2007) (Fig. 2.11). Such 

assignment of single error information to both arm movements in the context of controlling a single 

object also occurs in trial-by-trial adaptation of the internal model, even when subjects explicitly 

understand the source of the error (Kasuga and Nozaki, 2011). On the other hand, when participants 

controlled two separate cursors, such “cross-talk” of error was not observed for feedback correction 

or trial-by-trial adaptation in previous studies (Diedrichsen, 2007; Kasuga and Nozaki, 2011) or in 

the present thesis (Fig. 3.2B). Thus, although the present results were not influenced by such an 

effect, this problem should be considered when dealing with more general bimanual coordination. A 

recent study suggested that the process of such credit assignment in redundant motion follows a 

Bayesian framework; thus, the more “uncertain” arm tends to correct and adapt more (White and 

Diedrichsen, 2010). 

5.2.7 Laterality and bimanual skills: General perspectives 

Lateralization of the nervous system and behavioral asymmetry are common phenomena in both 

vertebrates, such as fish (Miklosi and Andrew, 1999), birds (Hunt et al., 2001; Brown and Magat, 

2011), and primates (Hopkins, 1996; Hopkins and Russell, 2004), and invertebrates, including 
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nematodes (Hobert et al., 2002), insects (Letzkus et al., 2006; Rogers and Vallortigara, 2008), and 

even octopi (Byrne et al., 2006b, a). While a tight link across genetic, structural, and functional 

levels of asymmetry has been revealed in some systems (Hobert et al., 2002; Kawakami et al., 2003; 

Aizawa et al., 2005; Wu et al., 2005; Bianco et al., 2008; Nakano et al., 2011; Shinohara et al., 2012), 

such a thorough systems-level approach would be difficult to apply in more complex animals, such 

as primates or humans. This is one of the reasons why most human investigations have been biased 

toward too macroscopic or microscopic studies (Toga and Thompson, 2003; Swinnen and 

Wenderoth, 2004; Sun and Walsh, 2006; Goble and Brown, 2008) and why we still lack a unified 

viewpoint to consolidate them. In addition, unfortunately, the computational neuroscience 

community has not paid much attention to this topic. My second study presented in Chapter 4 

provided concrete evidence of lateralized motor ability during bimanual movement and the 

mechanistic description of such ability upon different levels of hierarchy. Notably, the present 

approach of analyzing the generalization pattern is applicable to systems other than the motor 

system; for example, it could be used to assess laterality in how stimuli are represented during a 

visual perceptual learning task (Poggio and Bizzi, 2004; Fahle, 2005; Solgi et al., 2013) or an 

associative learning task in animals (Ghirlanda and Enquist, 2007). However, it is important to note 

that the present results cannot answer the questions of the origin of lateralized tuning of motor 
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primitives or the origin of lateralization itself. To answer such nature-or-nurture questions would 

require cross-sectional and/or longitudinal studies on the developmental process of motor primitives.  

 As described in Chapter 2, the superior ability of the nondominant arm should facilitate the 

process of role-assignment during bimanual actions by providing strong information for the decision 

process. This is consistent with the notion that lateralization may enable efficient information 

processing and biological fitness (Vallortigara, 2006; Magat and Brown, 2009). Thus, it might be the 

case that strong laterality in motor primitives might promote the ability of sophisticated bimanual 

skills, e.g., tool use and/or tool making, in our species, because individuals with a consistent 

role-assignment would improve such skills faster than those with an inconsistent role-assignment. 

Analysis of prehistoric stone artifacts suggests that our ancestors held the stone core in the left hand 

and struck off flakes with the right hand; thus, handedness may have existed even then (for review, 

see Bradshaw and Rogers, 1996). I speculate that strong lateralization in humans might have allowed 

such skilled bimanual actions and played an important role in facilitating the future development of 

higher cognitive processes, e.g., belief of cause and effect (Wolpert, 2003) or strategic motor 

planning (Frey, 2008; Stout, 2011; Stout and Chaminade, 2012), which are necessary for more 

sophisticated tool use and tool-making. Further comparative studies in different species would 

provide some insight into this question. 
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5.2.8 Bimanual movement control and pathology 

It is of note that abnormal morphology of CC is seen in patients with several psychiatric or 

developmental disorders, such as schizophrenia, bipolar disorder, borderline personality disorder, 

autism, attention-deficit and hyperactivity disorder (ADHD), etc. (van der Knaap and van der Ham, 

2011). It is widely acknowledged that the size or integrity of the CC correlates with the performance 

or learning of bimanual coordination task. For example, Johansen-Berg et al. (2007) reported that, in 

normal subjects, there was high correlation between the integrity of white matter in the anterior part 

of CC mediating supplementary motor and cingulate motor areas and performance on a bimanual 

tapping task (Johansen-Berg et al., 2007). Similarly, a recent work by Sisti et al. (2012) reported that 

the integrity of anterior CC microstructure can predict the amount of learning of a novel bimanual 

visuomotor coordination task (Sisti et al., 2012). Notably, the common feature of CC in the above 

types of patients is smaller size of the anterior body of CC (van der Knaap and van der Ham, 2011). 

Therefore, performance and/or learning of bimanual tasks might be affected in these pathologies. For 

example, it has been suggested that abnormal serotonin (5-HT) type 2A receptor (5-HT2A) 

expression in the neo cortex is a key factor of schizophrenia (Williams et al., 1996). A recent finding 

in mouse medial prefrontal cortex demonstrated that some of the callosal projection neurons in these 

areas show 5-HT2A-dependent excitation, suggesting that there is an imbalance between excitatory 

and inhibitory input through CC in patients with schizophrenia (Avesar and Gulledge, 2012). As 
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previously mentioned, the balance between background excitatory and inhibitory synaptic inputs 

may be related to gain modulation (Chance et al., 2002), and performance of bimanual actions that 

require multiplicative integration (i.e., gain modulation) of movement of both arms, such as object 

manipulation, could be a behavioral marker for this pathology, possibly in the very early stages.  

5.2.9 Structural and functional changes in the brain after prolonged training 

From the viewpoint of physical education, elucidating the relationship between motor primitives and 

experience-induced changes in brain structures following prolonged training is an attractive issue 

(Zatorre et al., 2012). Musicians are ideal subjects in whom to investigate such a relationship 

because highly sophisticated bimanual coordination is required for professional musical 

performances. For instance, Schlaug et al. (1995) reported that highly skilled musicians who had 

started musical training before the age of 7 had larger CCs compared to control subjects and other 

musicians who had started training later (Schlaug et al., 1995). This is consistent with the fact that 

CC myelination finishes around the age of 10 (Rakic and Yakovlev, 1968), which is the age around 

which children start to show skilled bimanual control (Jeeves et al., 1988). Interestingly, the 

magnitude of IHI is known to decrease in these groups of subjects (Ridding et al., 2000). Possibly, 

the overall balance between excitation and inhibition of transcallosal input might be improved and/or 

interhemispheric interaction asymmetry might decrease. A recent study by Fujii et al. (2010) 

reported that professional drummers with around 20 years of experience showed clearly reduced 
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laterality in tapping performance compared to control subjects who had never played the drum (Fujii 

et al., 2010). Thus, it is likely that the motor primitives in these musicians might encode the 

movement of the opposite arm with equal sharpness and high efficiency.  

 Another important issue is acquisition of motor primitives following prolonged training or 

during the developmental process. One example is the lower primitives involved in locomotion, 

which is another example of inter-limb coordination. Recently, Dominici et al. (2011) compared the 

muscle synergies extracted during the stepping reflex of neonates and those extracted during walking 

of toddlers, preschoolers, and adults and found that some basic patterns in neonate stepping are 

preserved and incrementally augmented through development (Dominici et al., 2011). They have 

also reported that similar basic patterns are found in rats, cats, monkeys, and birds, suggesting that 

such patterns were acquired on a phylogenetic time scale. Another example might be related to 

higher primitives that are involved in dexterous finger coordination, such as violin playing. Gentner 

et al. (2010) reported that the TMS-evoked hand kinematics of skilled violinists contained some 

basic patterns that were specialized for creating violin playing motions through their flexible 

combination (Gentner et al., 2010). Their findings suggest that prolonged musical training forms 

some specialized primitives that normal people do not have within the functional network involving 

M1 and the spinal cord (Gentner et al., 2010). These examples clearly demonstrate the 

experience-dependent organization of the motor primitives. However, we still know very little about 
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how such processes proceed. Elucidating how existing primitives are modified and how new ones 

are formed depending on experience are open for future study. 

 

5.4 Conclusion  

The question of how we learn and control our body movements is relevant to every person, 

especially those who are involved in physical education, sports, and rehabilitation. Previous studies 

have progressively accumulated evidence of how the CNS controls our movements. In general, this 

progress has proceeded from simple to complex, e.g., regulation of a single muscle contraction 

toward the control of voluntary limb movements. It is currently possible to control a robotic arm by 

reading out the neural signals of behaving animals, including humans; however, we have not reached 

the level of simultaneously coordinating two robotic arms, let alone entire body parts.  

 With the goal of elucidating the neural mechanism of flexible bimanual movement, I 

investigated how the motor system flexibly integrates information about simultaneous movement of 

both arms when performing bimanual movements. Because no previous study has directly addressed 

this point, the work presented in this thesis achieved a large conceptual advance. These results 

provide a possible clue to understand how our nervous system orchestrates the movement of multiple 

body parts into unified actions.   
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Appendix 

 

Appendix 1 

Theoretical relationship between the generalization function and the 

primitives 

 

A.1.1 State-space model and trial-dependent adaptation to a constant force field 

We assumed that the output force is constructed by a linear summation of the output of primitives as: 

 𝑓(𝑖) = [𝒘(𝑖)]
 
 (𝜃 

(𝑖)
, 𝜃𝑙
(𝑖)
) (A1) 

where 𝑖  is the trial number, and  (𝜃 , 𝜃𝑙) = [ 1(𝜃 , 𝜃𝑙),  2(𝜃 , 𝜃𝑙), ,  𝑁(𝜃 , 𝜃𝑙)]
 and 𝒘 =

[ 1,  2, ,  𝑁]
  are column vectors whose elements represent the output and weight of each 

primitive, respectively. 

A state space model of the motor adaptation to the force field 𝑓 can be represented as: 

 𝑒(𝑖) = 𝑑(𝜃𝑙
(𝑖)
)(𝑓(𝑖) − 𝑓(𝑖)) (A2) 

 𝒘(𝑖+1) = 𝛼𝒘(𝑖) + 𝑒(𝑖)𝐾 (𝜃 
(𝑖)
, 𝜃𝑙
(𝑖)
) (A3) 

where 𝑒 is the movement error, 𝑑(𝜃𝑙) is the compliance that depends on the movement direction of 
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the trained arm (here, we assume that the left arm is trained), and 𝛼  and 𝐾  are constants 

representing, respectively, the spontaneous loss of memory and the update rate to the error. 

From these equations, we can obtain the trial-dependent changes in the movement error 

when a constant force 𝑓 is imposed for only a particular movement combination (𝜃 , 𝜃𝑙) as: 

 𝑒(𝑛) =
𝐾[𝑑(𝜃𝑙)]

2𝑓 𝑡 

1−𝛼+𝐾𝑑(𝜃𝑙) 
𝑡 
[𝛼 − 𝐾𝑑(𝜃𝑙) 

  ](𝑛−1) +
(1−𝛼)𝑑(𝜃𝑙)𝑓

1−𝛼+𝐾𝑑(𝜃𝑙) 
𝑡 

 (A4) 

where   is the abbreviation of  (𝜃 , 𝜃𝑙). 

From Eqs. (A1)-(A3), the weight vector after sufficient training of a constant force field 

𝑓 is obtained as: 

 𝒘 =
𝐾𝑑(𝜃𝑙)𝑓 (𝜃𝑟,𝜃𝑙)

𝑡

1−𝛼+𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

   (A5) 

Therefore, the output force can be represented as: 

 𝑓(𝜃 , 𝜃𝑙) =
𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)

𝑡 (𝜃𝑟,𝜃𝑙)

1−𝛼+𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

𝑓. (A6) 

When movement directions of both arms are changed by ∆𝜃  and ∆𝜃𝑙, the force output (i.e., 

aftereffect) is represented as: 

 𝑓(𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) = 𝒘
  (𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) 

 =
𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)

𝑡 (𝜃𝑟+∆𝜃𝑟,𝜃𝑙+∆𝜃𝑙)

1−𝛼+𝐾𝑑(𝜃𝑙) (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

𝑓. (A7) 
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Thus, the function of how the training effect is transferred from (𝜃 , 𝜃𝑙) to (𝜃 + ∆𝜃 , 𝜃𝑙 + ∆𝜃𝑙) is 

represented by: 

 Φ(∆𝜃 , ∆𝜃𝑙) =
𝑓̂(𝜃𝑟+∆𝜃𝑟,𝜃𝑙+∆𝜃𝑙)

𝑓̂(𝜃𝑟,𝜃𝑙)
=
 (𝜃𝑟,𝜃𝑙)

𝑡 (𝜃𝑟+∆𝜃𝑟,𝜃𝑙+∆𝜃𝑙)

 (𝜃𝑟,𝜃𝑙)
𝑡 (𝜃𝑟,𝜃𝑙)

  (A8) 

A.1.2 Decomposition of the generalization function: Multiplicative encoding 

If the primitives encode the movement directions of both hands multiplicatively as:  𝑗(𝜃 , 𝜃𝑙) =

𝑟𝑗(𝜃 )𝑙𝑗(𝜃𝑙), then  

 ∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1 = ∑ 𝑟𝑗(𝜃 )

𝑁
𝑗=1 𝑙𝑗(𝜃𝑙)𝑟𝑗(𝜃 + Δ𝜃 )𝑙𝑗(𝜃 + Δ𝜃𝑙) 

 = ∑ 𝑟𝑗(𝜃 )
𝑁
𝑗=1 𝑟𝑗(𝜃 + Δ𝜃 )𝑙𝑗(𝜃𝑙)𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)  (A9) 

When   is sufficiently large (  is assumed to be a square number), and 𝑙𝑗(𝜃𝑙) and 𝑟𝑗(𝜃 ) have 

translational symmetry with respect to 𝑗 and are distributed uniformly on the (𝜃 , 𝜃𝑙) plane, then  

 ∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1  

 ≈
1

𝑁
∑ 𝑟𝑗(𝜃 )
√𝑁
𝑗=1 𝑟𝑗(𝜃 + Δ𝜃 )∑ 𝑙𝑗(𝜃𝑙)𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)

√𝑁
𝑗=1 . (A10) 

Thus, the transfer function is: 

Φ(Δ𝜃 , Δ𝜃𝑙) =
∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1

∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 , 𝜃𝑙)
𝑁
𝑖=1

 

=
∑ 𝑟𝑗(𝜃 )
√𝑁
𝑗=1 𝑟𝑗(𝜃 + Δ𝜃 )∑ 𝑙𝑗(𝜃𝑙)𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)

√𝑁
𝑗=1

∑ 𝑟𝑗(𝜃 )
√𝑁
𝑗=1 𝑟𝑗(𝜃 )∑ 𝑙𝑗(𝜃𝑙)𝑙𝑗(𝜃𝑙)

√𝑁
𝑗=1

 



151 

 

 = Φ(Δ𝜃 , 0)Φ(0, Δ𝜃𝑙). (A11) 

A.1.3 Decomposition of the generalization function: Additive encoding 

If the primitives encode the movement directions of both hands additively as:  𝑗(𝜃 , 𝜃𝑙) = 𝑟𝑗(𝜃 ) +

𝑙𝑗(𝜃𝑙), then  

 ∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1  

 = ∑ [𝑟𝑗(𝜃 )
𝑁
𝑗=1 +𝑙𝑗(𝜃𝑙)][𝑟𝑗(𝜃 + Δ𝜃 ) + 𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)] 

 = ∑ [𝑟𝑗(𝜃 )
𝑁
𝑗=1 +𝑙𝑗(𝜃𝑙)]{[𝑟𝑗(𝜃 + Δ𝜃 ) + 𝑙𝑗(𝜃𝑙)] 

 +[𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙 + Δ𝜃𝑙)] − [𝑟𝑗(𝜃 ) + 𝑙𝑗(𝜃𝑙)]}. (A12) 

Thus, the transfer function is: 

 Φ(Δ𝜃 , Δ𝜃𝑙) = Φ(Δ𝜃 , 0) + Φ(0, Δ𝜃𝑙) − 1. (A13) 

It should be noted that a previous work
 
(Wainscott et al., 2005) has obtained theoretically similar 

relationships (Eqs.(A11) and (A13)) in the generalization function calculated from the trial-by-trial 

changes in the aftereffects.   
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A.1.4 Special case: Gaussian encoding 

Here, we assume that the encoding function can be represented by a Gaussian function. In the case 

of multiplicative and additive encoding, the primitive can be represented, respectively, as: 

  𝑗(𝜃 , 𝜃𝑙) = {𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑏 } {𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏𝑙} (A14) 

and 

  𝑗(𝜃 , 𝜃𝑙) = 𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏 (A15) 

where 𝑎 and 𝑏 are constants, and 𝜑 indicates the preferred direction. 

Multiplicative case: The numerator of Eq. (A8) can be represented as:  

 ∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1  

 = ∑ {𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑏 } {𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏𝑙}

𝑁
𝑗=1  

 {𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟− 𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑏 } {𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙− 𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏𝑙}. (A16) 

If   is sufficiently large and the preferred directions are uniformly distributed, 

 ≈ ∑ {𝑎 exp [
−(𝜑𝑟𝑗−𝜃𝑟)

2

2𝜎𝑟
2 ] + 𝑏 } {𝑎 exp [

−(𝜑𝑟𝑗−𝜃𝑟− 𝜃𝑟)
2

2𝜎𝑟
2 ] + 𝑏 }

√𝑁
𝑗=1

  ∑ {𝑎𝑙exp [
−(𝜑𝑙𝑗−𝜃𝑙)

2

2𝜎𝑙
2 ] + 𝑏𝑙}

√𝑁
𝑗=1 {𝑎𝑙exp [

−(𝜑𝑙𝑗−𝜃𝑙− 𝜃𝑙)
2

2𝜎𝑙
2 ] + 𝑏𝑙}, (A17) 
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then each summation in Eq. (A17) can be expanded as:  

 ∑ {𝑎 exp [
−(𝜑𝑗−𝜃)

2

2𝜎2
] + 𝑏} {𝑎 exp [

−(𝜑𝑗−𝜃− 𝜃)
2

2𝜎2
] + 𝑏}√𝑁

𝑗=1  

 = 𝑎2∑ exp {−
(𝜑𝑗−𝜃)

2+(𝜑𝑗−𝜃− 𝜃)
2

2𝜎2
}√𝑁

𝑗=1  

 +𝑎𝑏∑ [exp {
−(𝜑𝑗−𝜃)

2

2𝜎2
} + exp {

−(𝜑𝑗−𝜃− 𝜃)
2

2𝜎2
}]√𝑁

𝑗=1 + √ 𝑏2. (A18) 

The first term of the right side of Eq. (A18) can be rewritten as: 

 exp {−
(𝜑𝑗−𝜃)

2+(𝜑𝑗−𝜃− 𝜃)
2

2𝜎2
} = exp {−

(𝜑𝑗−
2𝜃+Δ𝜃

2
)
2

𝜎2
} exp {−

( 𝜃)2

4𝜎2
}  (A19) 

If   is sufficiently large, the summation of Eq. (A19) can be approximated by the integral of the 

Gaussian function, 

 ∑ exp {−
(𝜑𝑗−

2𝜃+Δ𝜃

2
)
2

𝜎2
}√𝑁

𝑗=1 =
√𝑁

2𝜋
∫ exp {−

(𝜑−
2𝜃+Δ𝜃

2
)
2

𝜎2
} 𝑑𝜑 =

√𝑁𝜎

2√𝜋
  (A20) 

Similarly, the summations in the second term on the right-hand side of Eq. (A18) can be obtained 

from the following equation: 

 ∑ exp {
−(𝜑𝑗−𝜃)

2

2𝜎2
}√𝑁

𝑗=1 = ∑ exp {
−(𝜑𝑗−𝜃− 𝜃)

2

2𝜎2
}√𝑁

𝑗=1  

 =
√𝑁

2𝜋
∫ exp {−

(𝜑−𝜃)2

2𝜎2
} 𝑑𝜑 =

√𝑁𝜎

√2𝜋
. (A21) 

Therefore, 

 ∑  𝑗(𝜃 , 𝜃𝑙) 𝑗(𝜃 + Δ𝜃 , 𝜃𝑙 + Δ𝜃𝑙)
𝑁
𝑗=1  
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 = {𝑎 
2 𝜎𝑟

2√𝜋
 exp [−

( 𝜃𝑟)
2

4𝜎𝑟
2 ] + 2𝑎 𝑏 

𝜎𝑟

√2𝜋
+ 𝑏 

2} {𝑎𝑙
2 𝜎𝑙

2√𝜋
 exp [−

( 𝜃𝑙)
2

4𝜎𝑙
2 ] + 2𝑎𝑙𝑏𝑙

𝜎𝑙

√2𝜋
+ 𝑏𝑙

2}, 

  (A22) 

And, consequently,  

 Φ(Δ𝜃 , Δ𝜃𝑙) =
∑ 𝑔𝑗(𝜃𝑟,𝜃𝑙)𝑔𝑗(𝜃𝑟+ 𝜃𝑟,𝜃𝑙+ 𝜃𝑙)
𝑁
𝑗=1

∑ 𝑔𝑗(𝜃𝑟,𝜃𝑙)𝑔𝑗(𝜃𝑟,𝜃𝑙)
𝑁
𝑗=1

 

 =
{𝑎𝑟

2𝜎𝑟    [−
(Δ𝜃𝑟)

2

4𝜎𝑟
2 ]+2√2𝑎𝑟𝑏𝑟𝜎𝑟+2√𝜋𝑏𝑟

2}{𝑎𝑙
2𝜎𝑙    [−

(Δ𝜃𝑙)
2

4𝜎𝑙
2 ]+2√2𝑎𝑙𝑏𝑙𝜎𝑙+2√𝜋𝑏𝑙

2}

{𝑎𝑟
2𝜎𝑟 +2√2𝑎𝑟𝑏𝑟𝜎𝑟+2√𝜋𝑏𝑟

2}{𝑎𝑙
2𝜎𝑙 +2√2𝑎𝑙𝑏𝑙𝜎𝑙+2√𝜋𝑏𝑙

2}
.  

  (A23) 

 

Additive model case: Similar to the case of the multiplicative encoding model under the assumption 

that   is sufficiently large and the preferred directions are uniformly distributed, additive encoding 

(Eq.(A15)) predicts Φ(Δ𝜃 , Δ𝜃𝑙) as:  

Φ(Δ𝜃 , Δ𝜃𝑙) =
√𝜋𝑎𝑟

2
𝜎𝑟    [−

(Δ𝜃𝑟)
2

4𝜎𝑟
2 ]+√𝜋𝑎𝑙

2
𝜎𝑙    [−

(Δ𝜃𝑙)
2

4𝜎𝑙
2 ]+2𝑎𝑟𝑎𝑙𝜎𝑟𝜎𝑙+2√2𝜋𝑎𝑟𝑏𝜎𝑟+2√2𝜋𝑎𝑙𝑏𝜎𝑙+2𝜋𝑏

2

√𝜋𝑎𝑟
2
𝜎𝑟 +√𝜋𝑎𝑙

2
𝜎𝑙 +2𝑎𝑟𝑎𝑙𝜎𝑟𝜎𝑙+2√2𝜋𝑎𝑟𝑏𝜎𝑟+2√2𝜋𝑎𝑙𝑏𝜎𝑙+2𝜋𝑏

2
. 

  (A24) 
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Appendix 2 

Effect of the spatial location of visual cues on adaptation to force field 

 

The experiments presented here were designed to reject the contribution of possible confounding 

effect of visual (spatial) information. If the spatial location of the target itself have some effect to 

modulate the control process, subjects could simultaneously adapt the same arm movement to 

different dynamics each of which is consistently associated with the spatial location of the visual 

cue. 

 

A.2.1 Materials and Methods 

Participants. Sixteen right-handed healthy volunteers (age, 20–26 years; 12 males, 4 females) 

participated in our study after providing written informed consent. All experimental procedures were 

approved by the ethics committee of the Graduate School of Education, The University of Tokyo. 

General task setting. Participants were asked to simultaneously move the handles of 2 robotic 

manipulanda (Phantom 1.5 HF; SensAble Technologies, Woburn, MA, USA) from their starting 

positions toward targets presented on a horizontal screen (movement distance, 10 cm) with a peak 

velocity of 0.47 ± 0.045 m·s
−1

 (Fig. A.2.1A). The velocity was calculated using the minimum-jerk 

theory (Flash and Hogan, 1985) with a movement distance of 10 cm and duration of 0.4 s. Before 
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each trial, participants were required to move each cursor into its starting position (1-cm diameter). 

After a 2-s holding time, a gray target (1-cm diameter) appeared for each handle 10 cm from the 

starting position. After a further 1-s holding time, the target color changed to magenta, indicating 

that participants were permitted to begin the reaching movement. During the reaching movement, 

participants were instructed to fixate on the left target. A warning message was presented on the 

screen if the movement velocity of either handle was above (‘Fast’) or below (‘Slow’) the targeted 

range described above. Participants could not see their arms directly, and the position of each handle 

was indicated with a white cursor. Handle movements were constrained to a virtual horizontal plane 

generated by the manipulanda. Wrist braces were used to reduce unwanted wrist movements. Arm 

slings supported participants’ upper arms to reduce fatigue and allow them to maintain a constant 

arm posture. 

Experiment A1. Eight participants performed 80 trials without a force field (baseline session), 320 

trials with a force field (learning session), and 160 trials without a force field (washout session). In 

each of the sessions, 8 different movement configurations of the right arm (ranging from 0º to 315º 

at 45 intervals; Fig. A.2.1B) were performed in randomized order. The movement direction of the 

left arm was always forward. 

 In the learning session, we applied force fields to the left arm that were dependent on the 

velocity of the right hand as follows: f
L
 = B1v

R
, where f

L
 is the force on the left arm (N), B1 is a 
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viscosity matrix (0, 10; 0, 0) (N·s·m
−1

), and v
R
 is the velocity of the right handle (m·s

−1
). Again, 

force fields were applied to the left arm only. We set B1 so that the forward-backward component of 

f
L
 was always zero, to simplify evaluation of the movement error (i.e., the lateral deviation of the 

handle at peak velocity). To cancel out the biomechanical effect of the force direction on the lateral 

deviation of the movement of the left hand, the direction of the force field was reversed for half of 

the participants so that B1 = (0, −10; 0, 0) (N·s·m
−1

). The sign of the movement error due to this 

reversed force field was reversed, and the results were then averaged across all 8 participants. The 

relationship between the magnitude of the force field to the left arm and the movement direction of 

the right arm is shown in Fig. A.2.1B. 

Experiment A2. Eight participants attempted to adapt to multiple force fields similar to those of 

Experiment A1 while always moving both arms forward (i.e., 0º in Fig. A.2.1B). A square was 

presented as a visual cue for the force fields associated with the 8 different positions of the right arm 

used in Experiment A1, but the participants were asked to move both arms forward. The force field 

was derived as follows: f
L
 = B2v

R
, where B2 = (0, 10sinθc; 0, 0) (N·s·m

−1
) and θc is the direction of 

the cue for the force field. As in Experiment A1, the direction of the force field was reversed for half 

of the participants by setting B2 = (0, −10sinθc; 0, 0) (N·s·m
−1

). The relationship between the 

magnitude of the force field to the left arm and the spatial position of the visual cue is shown in Fig. 

A.2.1B. 
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Data acquisition. Data on the motion of the manipulanda were recorded at a sampling rate of 500 Hz. 

Handle velocity data were low-pass filtered using a 4
th

-order Butterworth filter with a cutoff 

frequency of 8 Hz. The lateral deviation of each handle trajectory at the peak velocity from a straight 

line between the starting position and target was quantified, and the difference between this value 

and that of the baseline session was used as the movement error.  

Statistical tests. In Experiments A1 and A2, the error reduction from the early (1
st
–5

th
) to the late 

(36
th
–40

th
) learning trials and the aftereffects in the 1

st
–5

th
 washout trials was tested for each 

movement direction using a paired t-test with Bonferroni’s correction. The significance level was set 

to P <0.05. 
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A.2.2 Results and Discussion 

Participants moved their left arm to a single forward target while moving their right arm to 1 of 8 

peripheral targets presented randomly (Fig. A.2.1B). Thus, the same left arm movement was exposed 

to varying force fields depending on the movement direction of the right arm. The entire results of 

Experiment A1 are shown in Fig. A.2.2A. As expected, movement error gradually decreased in the 

presence of the force fields. In 5 of 6 force-field directions, the reduction in errors from the early 

(1
st
–5

th
 trials) to the late (36

th
–40

th
) trials was significant (P < 0.05). In addition, the aftereffect was 

modulated by the movement direction of the right arm. Significant aftereffects were also observed in 

all 6 directions (P < 0.05). Additionally, in the remaining 2 directions in which no force field was 

applied, no significant aftereffect was observed. Thus, at least 3 different force fields were actually 

learned in Experiment A1. 

 To further examine whether the aftereffect was a smooth cosine function of right arm 

movement direction θ or a categorical function of 2 conflicting and null force fields, we compared 

the goodness of fit between the following two models: a cosine function (aftereffect = a cosθ + b) 

and a signum function (aftereffect = a sgn(cosθ) + b). The adjusted R
2
 calculated for each model 

using the bootstrap technique (1,000 bootstrapped samples were synthesized for each model) was 

significantly larger (P < 0.001 by Wilcoxon rank sum test) for the cosine model (R
2
 = 0.807) than for 
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the signum model (R
2
 = 0.795), indicating that the cosine tuning of the aftereffect was more 

plausible. 

 Movement of the right arm could be argued to function as a strong cognitive cue to switch 

internal models. Indeed, despite some debate (Gupta and Ashe, 2007), several studies have shown 

that different motor memories can be constructed using cognitive cues (Osu et al., 2004; Cothros et 

al., 2009). If this has occurred in the present study, participants could also adapt to multiple force 

fields without overt movement of the opposite arm toward different directions. Contrary to this 

expectation, another 8 participants who attempted to adapt to similar multiple force fields while 

moving both arms forward with visual cues for each force field (Experiment A2) did not show 

evidence of simultaneous learning (Fig. A.2.2B). These results cannot be explained by the difference 

in the kinematics of the left hand (see Fig. A.2.3).  

 Taken together, spatial location of visual cue itself is unlikely to explain the result of the 

present experiment, as well as the result of studies presented in the main body of this thesis (Chapter 

3 and 4). 
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Figures  

 

 

Figure A.2.1. Motor learning task with concurrent movement of the opposite arm.  

A, Bimanual reaching task in which participants were trained to adapt a reaching movement with the 

left arm to a velocity-dependent force field while concurrently moving the right arm. The left arm 

always moved in the forward direction, while the movement direction of the right arm varied in 

Experiment A1. B, The amplitude of the force field to the left arm was modulated in a cosine fashion 

according to the movement direction of the right arm θ (Experiment A1) or the direction of visual 

cue θC (Experiment A2). Note that the right arm always made the same forward movement in the 

visual cue condition (Experiment A2). Forward direction corresponds to 0º. 
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Figure A.2.2. Simultaneous adaptations to multiple force fields.  

A, B, Trial-dependent profiles of the movement error of the left arm for Experiments A1 (A) and A2 

(B). Data are presented as mean values ± SE. Peripheral plots represent the trial-dependent error 

profiles (force field trials are shown as red circles and null-force-field trials as blue circles). The 

positions of the panels correspond to the 8 movement directions of the right arm (A) and the visual 

cue direction (B). The center panel indicates the relationship between the aftereffect error in the 1
st
–

5
th
 washout trials and the movement direction of the right arm (A) and the visual cue direction (B). 

The asterisks in the peripheral panels and center panels indicate, respectively, a significant reduction 

of the movement error (1
st
–5

th
 trials vs. 36

th
–40

th
 trials) and a significant aftereffect (P < 0.05). 
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Figure A.2.3. Kinematics of Reaching Movements 

Velocity profiles of the left and right handles under all experimental conditions of the baseline 

session are shown (Experiments A1, A2). The velocity profiles were averaged across all participants 

for each experiment and aligned with the movement onset time as time zero. The color of the lines 

indicates the movement direction of the right arm. A two-way ANOVA performed using the arm (left 

or right) and the movement direction of the right arm as factors revealed that there was no significant 

effect of the arm on the movement onset time (defined as the time at which the movement velocity 

of the hand first exceeded 10% of its peak value from the Go cue) (P > 0.05) and that there was no 

significant effect of the movement direction of the right arm on the peak velocity of the left arm   

(P > 0.05).   
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