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Chapter 1. Introduction 

1.1   Background 

1.1.1   Targeted delivery 

Difficult diseases, such as cancer, cardiovascular illness, and genetic disorders, 

have always been the hottest spots in research and clinical fields. Through years, 

many new therapeutic drugs and medical devices related to gene therapy are invented 

and developed, aiming to cure these largest obstacles to a healthy human life [1] [2] 

[3] [4]. In conventional delivery systems, typically oral ingestion and intravascular 

injection, the medication is distributed throughout the body through the systemic 

blood circulation. For most therapeutic agents, only a small portion of the medication 

reaches the organ to be affected. Problems frequently occurring with many 

conventional drug delivery methods are [5]: poor solubility, insufficient in vitro 

stability (shelf life), too low bioavailability, too short in vivo stability (half-life), 

strong side effects, and lack of large scale production.  

As a result, the need of effective administration of these pharmaceutical agents 

targeted directly to the diseased area is becoming more and more urgent. Such a 

manner of site-specific delivery, termed targeted delivery, aims to prolong, localize, 

target and have a protected drug interaction with the diseased tissue. Many of the 

pharmacological properties of drugs can be improved through targeted delivery 

because both safety and efficacy are protected [6] [7]. Obviously drug targeting to 

specific sites in the body requires different delivery systems depending on the 

delivery route selected [8]. But commonly, there are several key requirements that a 

targeted delivery system must fulfill: retain, evade, target and release [6]. To be more 

specific, the characteristics required are listed [5]: 

1. Easy to produce 

2. Applicable to as many drugs as possible 

3. Physically stable 
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4. Being composed of well tolerated and simultaneously already regulatorily 

accepted excipients 

5. Being able to be produced on large scale 

6. Production lines should be able to be qualified and acceptable by regulatory 

authorities. 

Towards these requirements, many delivery systems as well as drug carriers, also 

called vehicles are developed. 

1.1.2   Delivery systems and vehicles 

Due to the many requirements needed to be fulfilled, targeted delivery is 

becoming a multidisplinary science consisting of physics, chemistry, biology and 

pharmacology. Based on their own experience of research, strides from various fields 

have been made by scientists and researchers. A number of approaches aiming for 

targeted delivery are developed over the past years. A list of them is shown in Table 

1.1 [9] [10] [11] [12] [13], classified basically on the main science which the method 

referred to. One thing needs to be pointed out here is that all these methods deliver 

drugs by means of manipulating drugs. Changing the size of therapeutic agents, such 

as reducing it to micro- or even nano-scale is not the topic here.   

Table 1.1  Targeted delivery methods 

Chemical methods Physical methods Others 

Liposome Direct injection  

Polymeric micelle Particle bombardment  

Biodegradable particle Electroporation  

Carbon nanotube [14] Magnetic sphere [15] Virus [16] 

Cell adhesion peptide [17] Microfluidics  

Antibody  Microneedles  

 Thermal poration  

 Ultrasound-mediated method  
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The applications of chemical methods are often very specific. A certain kind of 

delivery method can usually be applied to a certain kind of drug or they delivery is 

confined to a certain area or a certain disease.  

The category which ultrasound-mediated method belongs to is the physical 

group. Physical methods are more widely applicable compared to chemical methods. 

Each method has its own unique advantages and limitations; however, the 

ultrasound-mediated method, which was developed relatively recently [18], has 

several advantages over the other physical methods. Specifically, it is less invasive 

than the electroporation method since the ultrasound wave can propagate through soft 

tissue and reach the cells of internal organs [19] [20]. In addition, both spatial and 

temporal aspects of delivery can be controlled by adjusting the ultrasound parameters, 

transducers and acoustic waves, and in so doing, the desired area can be targeted and 

side effects can be reduced [19]. 

1.2   Ultrasound and acoustic cavitation 

1.2.1   Ultrasound induced bioeffects 

Ultrasound is a type of mechanical wave that has a frequency exceeding 20 kHz; 

it cannot be heard by human ears. The fundamental characteristic of the wave is that 

the particles of the medium oscillate about their equilibrium position, with the particle 

displacement from the equilibrium position. For fluids the displacement will be in the 

direction of propagation of the wave, so that the waves are longitudinal. The pressure 

amplitude of the longitudinal wave (also called compressional wave) is typically 

specified in Pascal, but kPa or MPa is more commonly seen in the medical field. 

Ultrasonic waves transport energy in the form of kinetic energy (particle motion) and 

potential energy (fluid compression). As a result ultrasonic waves can alternatively be 

characterized in terms of their energy density and the rate at which they transmit 

energy. The acoustic intensity of a sound wave (W/cm2) is defined as the average rate 

of flow of energy through a unit area normal to the direction of propagation and is 

proportional to the square of the pressure amplitude. Ultrasound is one of the most 

widely applied clinical diagnostic tools and most of the therapeutic effects of 
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ultrasound have been developed during the long period when ultrasound served as 

one of the most reliable diagnostic technique. These effects have included techniques 

such as ablation of tissue or cancer (by high intensity focused ultrasound, HIFU), 

sonophoresis, hemostasis, and vascular occlusion [21] [22].  

To better understand how ultrasound changes its role from diagnostic to 

therapeutic, the bioeffects induced by ultrasound: heating and cavitation, are 

introduced here. Heating and cavitation are the primary mechanisms of action 

underlying these therapeutic effects, all of which arise from the propagation of 

ultrasound waves in cells and tissues. Heating is a direct bioeffect induced by 

ultrasound and can be easily observed [23]. Energy is lost from the ultrasonic wave as 

it passes through tissue, largely as a result of visco-elastic absorption processes. Most 

of the acoustic energy so deposited is converted to heat, raising the tissue temperature 

and creating the thermal hazard under discussion. Although heating caused by 

ultrasound is highly localized, limited in extent to the region within, and immediately 

adjacent to, the ultrasound beam, the intensities and powers used in present-day 

diagnostic ultrasound scanners are sufficient to raise the temperature of tissues, 

locally, by a few degree Celsius, from the absorption of ultrasound alone. Such a 

temperature raise can easily cause cell death and especially when it comes to HIFU 

(high intensity focused ultrasound), the heating is so severe that it will ablate tissue or 

cancer cells if designated.  

Cavitation, compared to heating, is a much more complicated bioeffect and is 

stressed in the following section. 

Besides heating and cavitation, a number of secondary physical effects can also 

be generated by an ultrasonic field [24]. These result from the nonlinear nature of 

acoustic equations that describe the wave behavior. As these are secondary effects 

they tend to increase in proportion to intensity and are generally relatively small in 

magnitude. The first of the secondary effects is radiation pressure, a steady (for a 

continuous wave) small pressure exerted on surfaces or media interfaces and acting in 

the direction of propagation of the wave. The second is a bulk movement of fluid 

away from the transducer in the direction of propagation known as acoustic streaming. 

Since the intensity of sound wave applied in ultrasound-mediated delivery is usually 
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not so high, influences from these secondary effects are not as substantial as from 

heating or cavitation.  

1.2.2   Acoustic cavitation 

Acoustic cavitation is the most important bioeffect related to the delivery via 

ultrasound. Here a brief introduction to the very phenomenon is given and detailed 

bubble dynamics will be illustrated in the next chapter.  

When an ultrasound wave propagates in the liquid or liquid containing tissue, a 

mechanical strain is induced, where strain refers to the relative change in dimensions 

or shape of the body that is subjected to stress. The strain is significant near gas or 

vapor bubbles, hence the interest in ultrasound-induced cavitation. Acoustic 

cavitation, or to be more specific, ultrasonic cavitation, in a broad sense, refers to 

ultrasonically induced activity occurring in a liquid or liquid-like material that 

contains bubbles or pockets containing gas or vapor [25]. When a gas bubble in a 

liquid experiences the variations in pressure of an acoustic wave, its size is driven to 

change, expanding during the period of decreased pressure and contracting during the 

compression half-cycle of the wave. For low values of peak acoustic pressure, 

oscillations in bubble radius largely follow variations in pressure. As the peak 

acoustic pressure increases, a variety of different motions may be induced. Ultimately 

the bubble becomes unstable as it contracts, collapsing catastrophically under the 

inertia of the surrounding liquid. Consequently, there are two defined types of 

acoustic cavitation classified according to the bubble behavior: non-inertial and 

inertial [26]. Non-inertial cavitation, formerly called stable cavitation; occurs when a 

gas bubble in a liquid is forced to oscillate with only a relatively small to moderate 

increase and decrease of radius, when the pressure amplitude of the external acoustic 

field is not too high. So no matter what the name it is called, the most characteristic 

point of such a kind of cavitation is the oscillating of bubbles. Inertial cavitation, 

formerly called transient cavitation, occurs if the acoustic pressure amplitude is 

sufficiently high and above a threshold level. The bubble grows to its maximum 

radius and then collapse. Here again, no matter what the name this kind of cavitation 

it is called, the most characteristic point of inertial cavitation is the violent collapse of 
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the bubble after growth and oscillation. 

Oscillating bubble can generate small-scale and boundary-associated steady and 

direct current flow [27] [28]. To differ it from the acoustic streaming generated by the 

acoustic filed itself, this kind of acoustic streaming is termed as microstreaming. The 

bubble oscillations induce on the surface steady shear stress attributed to 

microstreaming. The amplitude of the shear stress is small but when the bubble is 

adjacent to a cell, this shear stress can also cause changes to the cell.  

Toward the end of the collapse of bubbles in cavitation, the predicted wall 

speeds and accelerations are high, and shock waves can propagate through the gas 

and be emitted into the liquid [24] [29]. Polytropic models of the collapse of a bubble 

containing homogeneous gas predict pressures in the range of hundreds of 

megapascals and temperatures in the range of thousands of degrees Kelvin when the 

volume is minimal [30]. These transient temperatures and the gas shocks are capable 

of generating free radicals by hydrolysis, which subsequently yield reactive chemicals. 

Electronically excited species, in turn, can cause the emission of a light flash, a 

phenomenon known as sonoluminescence. 

Either from the mechanisms in non-inertial cavitation or inertial cavitation, these 

microscopic phenomena are found to be manipulatable in research as well as clinical 

fields. Acoustic cavitation is thus responsible for, or at least strongly related to, many 

therapeutic applications of ultrasound.  

1.3   Sonoporation-mediated delivery 

1.3.1   Sonoporation 

The reason that ultrasound-mediated are capable of delivery therapeutic agents 

in cellular level is a phenomenon termed sonoporation, an effect of ultrasound on 

cells. Ultrasound-mediated gene delivery is considered to be closely related to 

acoustic cavitation. Cavitation and cavitation-induced activities can temporally 

increase cell membrane permeability through a process referred to as sonoporation; 

briefly, transient holes are induced in the phospholipid bilayer of the cell membrane, 

which allows large molecules to be transferred into the cell [20]. Ultrasound-mediated 
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delivery method is a very effective modality for drug delivery and gene therapy 

because energy that is non-invasively transmitted through the skin can be focused 

deeply into the human body in a specific location and employed to release drugs at 

that site [31].  

The most characteristic symbol of sonoporation is a small hole on cell membrane 

[32] (seen in Figure 1.1). Direct observation of such pores is of course the most 

effective evidence of sonoporation. Considering the difficulty in direct observation 

caused by the small size of such pores, sonoporation can also be indicated by trapping 

large fluorescent molecules inside the viable cells (the molecules are excluded by 

viable cells and leak out of nonviable cells), and is different from the commonly 

noted permeabilization indicated by trypan blue or propidium iodide stains, which 

stain lysed, nonviable cells. An example of intracellular drug delivery is shown in 

Figure 1.2 [33]. Confocal microscopy showed that all of the molecules were 

transported into the cytosol of living cells when present in the media during 

sonication. Another successful delivery of plasmid DNA to a cell line is shown as an 

example of intracellular delivery via sonoporation, seen in Figure 1.3 [34]. This 

transfection was shown 2 days after sonication, showing that the damage to cell 

membrane was not lethal and cells survived after sonoporation. 

As that listed in Table 1.1, another pore formation method using electrical field 

which is sometimes discussed together with sonoporation is electroporation, a 

significant increase in the electrical conductivity and permeability of the cell plasma 

membrane caused by an externally applied electrical field. Electroporation was first 

demonstrated by Neumann and colleagues in 1982 and has subsequently become a 

widely used technique. The voltage required for pore opening varies considerably and 

is dependent on cell size and shape, ranging from values of approximately 100 V/cm 

in large cells such as myotubes up to 1–2 kV/cm in small cells such as bacteria. [35]. 

Similarly as that in sonoporation process, the exact mechanism by which the plasmid 

enters the cell following electroporation is unclear. Technically electrodes are needed 

in electroporation and this method is thus invasive or sometimes mini-invasive while 

sonoporation is of course noninvasive. Mehier-Humbert has reviewed these two 

physical methods together and made a detailed comparison [36]. The efficiency of 
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electroporation is generally higher than sonoporation. For example for Jurkat 

lymphocytes (nonprimary cells) electroporation was superior to sonoporation in terms 

of transfection efficiency (15.83±3.5% vs 7.53±0.4%) [37]. However, for certain 

kinds of cells, the efficiency difference may be little. Toxicity and invasiveness from 

electrodes are limitations for electroporation while efficacy is the main limitation for 

sonoporation method. In sonoporation the cell viability usually drops with increasing 

efficiency, and in electroporation due to its nature of invasiveness such drop is even 

quicker [38].          

 

Figure 1.1 An atomic force microscopy image of pores on the cell membrane [32]  
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Figure 1.2 An example of intracellular delivery by ultrasound. (a) Confocal micrographs 
showing a nonsonicated DU 145 cell exposed to calcein (A1) and sonicated cells exhibiting 
uptake of calcein (A2), bovine serum albumin (A3) and 150 (A4), 500 (A5) and 2,000 kDa 

(A6) dextrans. Scale bars are 1 µm [33] 

 

Figure 1.3 An example of intracellular delivery of plasmid DNA via sonoporation [34]  
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1.3.2   Mechanism studies 

One of the earliest investigations on the use of ultrasound to enhance drug 

delivery was reported by Fellinger and Schmid in 1954 [39], when they enhanced the 

delivery of hydrocortisone ointment into inflamed tissue. In a more modern fashioned 

scientific research way, the studies on ultrasound enhanced uptake of drugs or gene 

expression dates back to as early as 1980s [40] [41]and gains more and more interest 

from 1990s [18] [42] [43]. Since then, a large variety of deliveries were achieved 

including, fluorescent markers [44], therapeutic drugs [45]especially anti-cancer 

drugs [46], short interfering RNAs [47], and plasmid DNAs [34]. Successful 

deliveries in vivo [48] implicated very good future of sonoporation-mediated method 

into a clinical application. Yet, a large obstacle to this advancement is the fact that till 

now the mechanism of sonoporation is not fully understood. 

The first matter to be considered is where sonoporation happens. As known to all, 

the biological cell membrane is mainly composed of lipids, ion channels, and proteins. 

Its framework consists of a double layer of phospholipids (lipid bilayer). The cell 

membrane consists primarily of a thin layer of amphipathic phospholipids which 

spontaneously arrange so that the hydrophobic "tail" regions are isolated from the 

surrounding polar fluid, causing the more hydrophilic "head" regions to associate 

with the intracellular (cytosolic) and extracellular faces of the resulting bilayer. Both 

molecular simulations [49] [50]and direct visualization of pores following ultrasound 

exposure in experiment results [32] [51]have proved that sonoporation takes place in 

the lipid bilayer, and may possibly somehow related to the self-assembly of 

hydrophobic and hydrophilic parts in the bilayer [49]. The membrane is also 

responsible for the controlled entry and exit of ions like sodium, potassium, calcium. 

Calcium transients were found during sonoporation by Deng’s group and their results 

indicate the formation of nonspecific pores in the cell membrane by 

ultrasound-stimulated microbubbles and the generation of calcium waves in 

surrounding cells without pores [52].     

The second matter here is how the pores on the biological membranes come into 

being. The current conception of the biological mechanism underpinning 

sonoporation is the formation of non-lethal and transient pores on the surface of cell 
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membranes in a manner that allows cell-impermeable molecules to enter the 

intracellular space, and subsequent resealing and/or repair of the pores. The formation 

of pores during sonoporation is strongly related to acoustic cavitation. The acoustical 

mechanisms underpinning sonoporation include effects associated with stable 

microbubble oscillation such as microstreaming [27] [28] [53] [54], and microbubble 

disruption in cavitation leading to the generation of shock waves [55]and microjets 

[56]. 

Steady oscillations of gas bubbles in liquid generate velocity gradients near a 

wall. The bubble oscillations induce on the surface steady shear stress attributed to 

microstreaming which may lead to sonoporation when cells are adjacent or attached 

to the wall. Models and methods for estimating acoustical microstreaming and the 

shear stress that is induced on a surface by the pulsations of a bubble have shown that 

the amplitude of the stress are in kilo Pascal order [28] [57] [58], relatively mild when 

compared to the value of shock waves from its inertial counterpart. Although the 

exact mechanism requires further investigation, shear stress on endothelial cells is 

likely to be translated into biological responses by interactions among the 

cytoskeleton, ion channels, and membrane receptors [59], thereby activating a chain 

of biochemical and genetic processes that allow the cells to adapt to flow, such as 

transients of calcium ions [60].  

Violent collapse of bubbles leads to severe physical phenomena such as shock 

wave and high speed jetting during inertial cavitation [61]. Sudden collapse of 

cavitation bubbles leads to the formation of shock waves that are capable of 

disrupting the tissues and enhancing drug transport and collapsing bubbles near a wall 

experience non-uniformities in their surroundings that results in the formation of 

high-velocity microjets. The microjet can penetrate into the tissue or generate 

secondary stress waves in the tissue. Structural details of membrane disruption are not 

completely clear. Molecular dynamics simulation shows an option of explanation on 

how pores come into being from shock wave or high speed microjets [49] [50] [62]: 

some amount of water molecules was injected to the hydrophobic region of 

phospholipid bilayer and then in several nanoseconds, the bilayer-water system can 

spontaneously develop into a water-filled pore structure without any mechanical and 
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electrical forcing from outside, when the initial number of water molecules in the 

hydrophobic region exceeds a critical value. 

1.3.3   Parametric studies 

Low delivery efficiency has always been one of the major issues of 

ultrasound-mediated delivery. The solution requires a thorough consideration because 

the complexity of an ultrasound-mediated delivery system comes from various 

aspects. The ultrasound wave, even from a commercial diagnostic system, itself has 

many parameters, such as intensity, the duration of exposure, and burst settings. 

Influences from gas bubbles, such as type and concentration also need to be 

considered. Since cavitation happens in liquids, the type of medium also counts. The 

types of cells and tissues surely matter. 

A number of studies have aimed at understanding the influence of parameters on 

sonoporation efficiency and cell viability and also optimizing parameters for a proper 

balance [44] [63] [64] [65] [66]. Similar results were found: with higher intensity and 

larger total energy exerted higher delivery efficiency and lower cell viability were 

expected. The relationship was not quite strict since plateau was found for almost 

each parameter examined. An example of our previous results is shown in Figure 1.4 

[34]. For the parameters studied, the overall trend for the data is that increases in 

transfection efficiency are associated with decreased cell viability. 

The criteria for a tradeoff between delivery efficiency and cell viability may 

differ by the cases applied. But the most basic rule is that higher efficiency and higher 

viability are preferred. Finding the optimized arrangement of parameters will not only 

enhance therapeutic effects but also reduces side effects.  
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Figure 1.4 An example of parametric studies on sonoporation efficiency and cell viability, 
PRF stands for pulse repetition frequency [34]   

1.4   Scope of this thesis 

Studies to date have proved sonoporation-mediated delivery method has a bright 

future as a targeted delivery tool, indicating further treatments for cancer, gene 

therapy and several other difficult diseases. To accelerate its applying to clinical 

process, more knowledge on sonoporation mechanism is needed, which will in turn 

gives instructions on how to improve the delivery efficiency.  

A sketch of the research topics of this dissertation is shown in Figure 1.5. 

Towards higher delivery efficiency from sonoporation, experimental studies from two 

sides were carried out. The overall aim is deeper understanding of sonoporation 

mechanism and thus methods to improve sonoporation efficiency.  

The first side deals with microbubble behavior. Understanding the oscillation 

and collapse from artificially added agents as well as cavities in the medium is the 

object of this part. Towards this end, bubble behavior under ultrasonic wave is studied 

from two aspects: concentration change and cavitation noise. Concentration changes 

indicate facts on bubble collapse while broadband noise analysis provides more facts 

on both bubble oscillation and explosion from both artificially added bubbles and 

cavities inside the medium.  
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The second side deals with intracellular delivery in the presence of artificially 

added microbubbles. Markers are delivered into cultured cell lines in vitro. Results of 

delivery efficiency and cell viability are obtained for cells irradiated both in 

attachment and suspension status.  

What’s more, because the experimental conditions for the two sides of studies 

are totally identical, the relationship between bubble behavior and intracellular 

delivery results can then be correlated. So with mechanism understanding of 

sonoporation from bubble radial motion, as the dissertation titled, experimental 

arrangements for high sonoporation efficiency is achieved. 

 

Figure 1.5 Sonoporation studied in this dissertation, mainly two parts: bubble behavior 
including concentration change and broadband noise, and cell behavior including marker 

uptake and cell viability  
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By chapters, chapter 1 is an introduction to the topic. It begins with backgrounds 

such as targeted delivery and acoustic cavitation, proceeds with the conception of 

sonoporation. Sonoporation related research is briefly reviewed, and finally ends with 

a guide of this dissertation. 

Chapter 2 and 3 are the experimental part on bubble behavior. Chapter 2 focuses 

on the bubble concentration change during irradiation. It begins with an introduction 

to bubble oscillation and collapse, proceeds with experimental methods and materials, 

which are also partly used in chapter 3, and finally ends with the experimental results 

and discussions. The results part includes the acoustic field measuring as well as the 

microbubble concentration change during cavitation. Chapter 3 focuses on the 

broadband noise from cavitating bubbles. It begins with an introduction to noise 

spectra and frequency domain analysis of cavitation, proceeds with data collecting as 

well as processing units and methods, and finally ends with the results and 

discussions. 

Chapter 4 is the experimental part on intracellular delivery, including an 

introduction to materials and methods and results and discussions of both delivery 

efficiency and cell viability and finally ending with the relationship between results 

from bubbles and cells. 

Chapter 5 concludes this dissertation and looks forward to future experimental 

topics.   
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Chapter 2. Change of microbubble concentration during 

ultrasound exposure 

2.1   Introduction 

2.1.1   Bubble oscillation and collapse  

As described in Chapter 1, sonoporation process is highly cavitation related. 

Cavitation typically begins with the formation of liquid-free zones, which is bubbles, 

and ends with the implosion of these bubbles, so better understanding of bubble 

dynamics is of vast importance to better comprehension and manipulation of 

sonoporation. The phenomenon of acoustic cavitation was introduced in Chapter 1, 

but cavitation was first noticed in hydrodynamic area, for example, flows through 

Venturi nozzles. Hydrodynamic cavitation is cavitation in flowing liquids and 

pressure change comes from the flow. The studies of bubble dynamics, including its 

radial movements and final collapse, during cavitation dated back to the same time as 

hydrodynamic cavitation was studied. The cavitation referred to in this thesis is 

another type of cavitation: acoustic cavitation, which occurs in a static or nearly static 

liquid [67]. The pressure change is artificially applied from an oscillating source. 

Though having different sources of pressure change, the bubble behavior during both 

two types of cavitation is much the same.  

A typical life cycle of a cavitating bubble consists of three periods: inception, 

oscillation and collapse [25]. Cavitation inception is not the topic of this chapter and 

thus not discussed here. In an acoustic field matter is alternately subjected to pressure 

and tension, so are bubbles formed. Behavior of bubbles under this alternate pressure 

change is quite complicated, so to make it easier to understand here the discussion 

begins from a single bubble case. The radial oscillation of a single bubble (Radius: R) 

during a pressure field is governed by the Rayleigh-Plesset equation, originated by 

Rayleigh in 1917 and developed by Plesset [68]. 
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Where 𝑝𝑖 is the pressure in the gas at the bubble wall; 𝑝∞ is the pressure at 

infinity; 𝜎 is the surface tension constant; and 𝜇 is the coefficient of the liquid 

viscosity. 

Although Rayleigh-Plesset is a very simplified model, it can still reveal basic 

facts of a bubble radial behavior under alternating pressure. In an acoustic field with 

low intensity the bubbles response in a relatively mild way, which may appear to be 

‘stable’. When bubbles expand and contract, without growing to the process of 

implosion, the activity is so called stable cavitation, or non-inertial cavitation [69].  

The counterpart of stable cavitation is transient cavitation, or inertial cavitation. The 

most characteristic point of inertial cavitation is the violent collapse of the bubble 

after growth and oscillation. The bubble undertakes several oscillations, expands to a 

maximum size, and then rapidly collapses. Such collapse is a high-energy event and 

can generate a wide range of destructive effects such as high pressure and 

temperature, shock wave.  

In experiments the real situation is that microbubbles with shells will behave 

under the acoustic field. Such bubble motion is much more complicated. Various 

works have showed how to add shell properties or other items to make the bubble 

radial motion more accurate [70]. Here a modified model from Prof. Ferrara’s group 

is briefly introduced and the detailed derivation should be found in reference [71]. 

With a conventional Rayleigh-Plesset style derivation, a shelled model is added and 

the model is Equation 2.2. Where the shell is denoted by the subscript s and liquid is 

denoted by l. The inner and outer of a shelled bubble are denoted by the subscript 

number 1 and 2, respectively. 𝑇𝑟𝑟 and t are radial component of the stress tensor and 

time respectively.  
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For ideal isothermal gas behavior assumption (the agent is filled with a 

high-molecular-weight perflurocarbon gas), denoting the equilibrium value with 

subscript 0, there is  

  𝑃𝑔(𝑅1, 𝑡) = 𝑃𝑔0 �
𝑅10
𝑅1
�
3𝜅

 ( 2-3 ) 

Combining Equation 2-2 and 2-3 and using the appropriate boundary conditions, 

a governing equation is obtained, expressed in terms of both the inner and outer radii. 

Such a governing equation is then soluble according to different shell properties. 

Gaussian or “almost Gaussian” weighted sound waves are used as driving sound 

field. Figure 2.1 and 2.2 are simulation result from this model. Figure 2.1 shows the 

radial oscillations of a 2.5 µm radius agent with a 500 nm triacetin shell irradiate with 

a seven-cycle pulse at 2.5 MHz, 1.6 MPa. Holding the other parameters fixed, except 

for the shell thickness that is reduced to 5 nm, the subsequent agent response is 

shown in Figure 2.2.  

In Figure 2.1, the maximum radial amplitude is 2.3 times of the equilibrium 

radius and the radial oscillation curve is relatively ‘smooth’. In Figure 2.2, the agent 

reaches a normalized radial maximum of 3.2, after the maximum positive pressure of 

the forcing pulse. The oscillation is more nonlinear with smaller secondary radial 

growth and collapse follows from the maximum. The influence of shell property on 
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bubble radial behavior is then obvious. 

  

Figure 2.1 The radial oscillations for a 2.5 µm agent with a 500 nm triacetin shell driven at 
1.6 MPa, 2.5 MHz [71] 

 

Figure 2.2 The radial oscillations for a 2.5 µm agent with a 5 nm triacetin shell driven at 1.6 
MPa, 2.5 MHz [71] 
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Bubble behavior becomes much more complicated when it comes to the case of 

a large amount of bubbles. The complexity comes from several aspects. The first one 

is the distribution of bubble radius [72]. It is impossible that all the bubbles have the 

same value of radius. Usually, a normal distribution or a distribution close to normal 

is expected. For a given driving frequency, diameters of some bubbles are close to the 

resonant size while others are larger or smaller than resonant size. For a given 

intensity, stable and inertial cavitation will happen simultaneously. As the bubbles 

randomly suspend in the liquid, the degree of freedom and uncertainty of cavitation is 

much larger than the case of a single bubble. The second one is the ultrasound 

propagation in a bubbly liquid [73] [74]. When bubble population is large, the void 

fraction of the medium through which sound wave propagates must be considered. 

Scattering and reflecting of sound wave on gas-liquid boundaries make the prediction 

of bubble behavior more difficult. The least but not the last one is the interaction 

between bubbles. This is a very complicated topic even when there are only two or 

three bubbles [75], and becomes extremely complicated for a large population of 

bubbles [76]. 

One more factor that will add much complexity to bubble radial dynamics is 

cavitation inception. Cavitation inception is a very complicated topic and till now 

there are still much unknown about it. In our study artificially made bubbles with 

lipid shells are used, but inception of cavities in the liquid is still important. The 

existence of shelled bubbles will make the liquid easier to be torn out and also the gas 

contained in the shelled bubbles will form new cavities after collapse. All these points 

count for sonoporation process and will be studied.     

Two aspects of bubble behavior are focused on in this dissertation: bubble 

concentration change due to bubble collapse and broadband noise emitted during 

cavitation. Here is this chapter; results of bubble concentration change are shown. No 

matter how complicated oscillation bubbles experienced, the collapse of bubbles with 

lipid shells will bring a drop to the total concentration since the lipid shell can’t repair 

itself, captured by a laser beam experimentally.  
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2.1.2   Ultrasound contrast agent (UCA) 

Gas containing bubbles are artificially added to liquid in all the experiments 

carried out in this thesis except for those control groups. The size of these gas-filled 

bubbles is usually less than 10 micrometers so they are often called microbubbles. 

Such microbubbles are originally developed for contrast in ultrasonography because 

the echogenicity difference between the gas in the microbubbles and the soft tissue 

surroundings of the body is immense. It is due to this echogenicity difference that 

these microbubbles are defined as ultrasound contrast agent (UCA). The UCA applied 

in this thesis is SonazoidTM (Daiichi Sankyo), a commercially available product in 

Japan. 

SonazoidTM consists of perfluorobutane gas (PFB, C4F10) microspheres stabilised 

by a membrane of hydrogenated egg phosphatidyl serine (HEPS). It is formulated as a 

powder for injection consisting of lyophilised sucrose entrapping HEPS stabilised 

PFB microspheres under a PFB headspace. The microbubble suspension sample was 

prepared according to the protocol provided by the manufacture by injecting 2 ml 

pure distilled water into each bottle of powder and then shaking for one minute. The 

stability of Sonazoid™ suspension solution after reconstitution is good, with no 

significant changes in physicochemical properties 2 h after reconstitution [77]. After 

preparation, a microscopic observation of microbubble solution is shown in Figure 

2.3. 

The microbubble diameters are no larger than 10 µm and the diameters differ. As 

mentioned before, the radius of microbubble is very important to its behavior in an 

acoustic field. The detailed measuring of diameters provided by the manufacturer is 

shown in following Figure 2.4.  
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Figure 2.3 A microscopic view of SonazoidTM suspension 

 

Figure 2.4 Number (open squares) and volume (filled squares) size distributions of 
SonazoidTM suspension, data from manufacturer, GE Health [77] 
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The microsphere volume concentration in Sonazoid™ reconstituted product is 

8.0 ± 0.6 µl. The spherical microspheres have a diameter typically ranged of 1 to 5 

µm. The volume median diameter is 2.6 ± 0.1 µm and the number mean diameter is 

2.1 ± 0.1 µm. Only less than 0.1% of the total number of microspheres has a diameter 

larger than 7 µm. 

Using high magnification microscopy, the count of bubbles is measured and its 

relationship between bubble volume concentrations is given in the Table 2.1. 

Table 2.1  Bubble volume concentration and density count 

Volume concentration (v/v %) Count of bubbles/mm2 

0 0 

0.1 2.0×103 

1 1.4×104 

10 1.7×105 

In the most of our irradiation experiments, the volume concentration is chosen at 

10%, corresponds to a density of 1.7×105/mm3.   

2.1.3   Light absorbance and concentration 

Most solutions absorb electromagnetic radiation of some wavelength. Light 

absorption occurs when atoms or molecules take up the energy of a photon of light, 

thereby reducing the transmission of light as it is passed through a sample. Apparently, 

the proportion of the light absorbed will depend on how many molecules it interacts 

with.  
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Figure 2.5 Diagram of Beer–Lambert absorption   

Let’s consider the case of a beam of light travels through a cuvette of width l in 

which the sample is contained, as shown in the Figure 2.5 [78]. In our experiments, 

the transmitted light is captured on the same light path as incident light, so light 

captured may come from two sources: single scattering and multi scattering.  

For the case of single scattering, absorbance of light A for liquids is defined as:   

  𝐴 = − log10 𝐼 𝐼0⁄  ( 2-4 ) 

where 𝐼0  and 𝐼  are the intensity (or power) of the incident light and the 

transmitted light, respectively. 𝐼 𝐼0⁄  is also called the transmission (or transmissivity) 

of light.  

Beer–Lambert law states that there is a logarithmic dependence between the 

transmission, T, of light through a substance and the product of the absorption 

coefficient of the substance, α, and the distance the light travels through the material 

(i.e., the path length), l. The absorption coefficient can, in turn, be written as a 

product of either a molar absorptivity (extinction coefficient) of the absorber, ε, and 

the molar concentration c of absorbing species in the material [79]. For liquids, the 

relations are written as: 

  𝑇 =
𝐼
𝐼0

= 10−𝜀𝜀𝜀 ( 2-5 ) 

This implies that the absorbance becomes linear with the concentration, which 

corresponds very well with the measured points Figure 2.9 without adding multi 
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scattering light item to the relationship. So in laser diode measuring the multi 

scattering light is very weak and omitted. 

  𝜀 =
𝑙𝑙
𝐴

 ( 2-6 ) 

Thus, if the path length and the molar absorptivity are known and the absorbance 

is measured, the concentration of the substance (or the number density of absorbers) 

can be deduced. 

2.2   Experimental materials and methods 

2.2.1   Ultrasound exposure system 

A schematic diagram of the US exposure apparatus is shown in Figure 2.6. The 

system was comprised of two arbitrary waveform generators (model WF1974 and 

WF1944A, labeled A) and B) in the figure, NF Corporation, Yokohama, Japan), a 50 

dB gain radio frequency amplifier (325LA, E&I, Rochester, NY, labeled C)), an 

oscilloscope (Wave Surfer 24 Xs-A, Lecroy, Chestnut Ridge, NY, labeled D)), and a 

custom-designed, single piezoceramic element plane transducer (13.5 mm diameter, 

Japan Probe, Yokohama, Japan, labeled E)) with a central frequency of 2 MHz.  

One of the two synchronized signal from two channels of WF1974 is used for 

the trigger of oscilloscope and the other one is used to trig another waveform 

generator, WF1944A. Signal from WF1944A is the burst that will be amplified and 

then drive the transducer to vibrate. The ultrasound signal and the trigger for 

oscilloscope are then synchronized. 

The E&I 325LA amplifier covers a frequency from 250 kHz to 150 MHz and its 

max linear power output is 25 W. The transducer is specially designed to fit the 

geometry of a commercial 24-well plate offered by BD Falcon (Bedford, MA, labeled 

F), the fit is shown in G)). The dimensions of the 24-well plate are depicted by six 

parameters, labeled from A to F. They are length, width, and height of the lid and 

plate. The values are 129.28, 85.14, 10.08, 127.63, 85.47, and 20.19 mm, respectively. 

The dimensions of a well, where the medium and bubbles are contained are shown in 

the following Table 2.2.  
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Figure 2.6 Diagram of ultrasound exposure system, all the pictures of instuments are 
provided by their manufacturers except for E) and G)   

Table 2.2  Dimensions of a single well in the 24-well plate 

Parameter  Value  

Top internal diameter 16.30 mm 

Bottom internal diamter 15.49 mm 

Depth  17.98 mm 

Bottom area 1.883 cm2 
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The oscilloscope saves signals as measuring units. It has 4 channels and 200 

MHz bandwidth. For each channel, the maximal sampling rate is 2.5 GS/s and 

maximal save depth is 5 Mpts. The data saving frequency for a single channel is kept 

at 25 Hz during all experiments but the sampling points of each datum differ 

according to the experiment.   

2.2.2   Burst wave and parameters   

In almost all experiments, “burst” mode of ultrasound was applied. Since a 2 

MHz transducer is used, the period of a cycle is 0.5 µs. A burst signal is composed of 

a mark component and a space component (both components are quantified by the 

number of cycles), as shown in Figure 2.7. The length of the mark component (also 

called pulse duration) divided by the total length of the pulse (pulse repetition period) 

is referred to as the duty ratio. The wave becomes continuous if there is only mark 

component. 

 

Figure 2.7 A chart of typical burst wave applied for most experimental cases    

Variations in ultrasound intensity, pulse repetition frequency, pulse duration, and 

microbubble volume concentration were tested. The intensity of ultrasound is 

represented by the peak to peak acoustic pressure measured by a needle hydrophone. 

A list of parameters and their ranges is shown in Table 2.3.    
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Table 2.3  Parameters and ranges applied 

Parameter  Range 

Intensity 0-1.2 MPa 

PRF 50-50k Hz 

Pulse duration 0-500 µs 

2.2.3   Laser diode system 

Laser diode system (670 nm, Beta-TX, Gwent, UK) was used to measure the 

change in concentration of microbubbles during irradiation. The laser beam goes 

through the 3-mm interval between transducer surface and well bottom surface and is 

then received by a diode sensor connected to an oscilloscope controlled by MatlabTM 

software in a PC. A sinusoidal wave with 1.1 kHz frequency was used for modulation 

to avoid noises. The laser emitting unit and the photo sensor are shown in the Figure 

2.8. In (A), the left part is the laser unit and the right part is the diode unit. 

As introduced the microbubble diameters are about 3 µm while the wavelength 

of red laser is 670 nm so naturally the microbubbles with lipid shells will reflect and 

scatter incident light. While cavity generated in the liquid are believed not to affect 

the light path based on two facts. One is the living cycle of a vapor cavity is short. It 

is difficult to capture any cavity information since the laser signal is modulated by a 

1.1 kHz signal. The microbubbles can last for several seconds while the cavity may 

just response to ultrasound wave in microsecond order. The second one is that the size 

of cavity. Although there is no measured data, cavity is much smaller than 

microbubble. In our experiments it is validated that there is no significant difference 

between the transmitted light of two cases that only air contained in the well and 

liquid without microbubbles in the well. So it is confirmed that the measuring results 

from laser diode will only show information on microbubbles with lipid shells.   
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(A) 

 
(B) 

Figure 2.8 Laser diode units used to measuring the voltage of transmitted light. (A) is a 
photo of laser and diode unit, in which the left one is laser unit and the right one is diode 

unit; (B) is a diagram showing the position of this laser diode system, the diameter of laser 
beam is about 3 mm. 
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The voltage of the signal captured by the oscilloscope represents the magnitude 

of the transmitted light. Because the incident light is kept at the same, the voltage is 

then linearly related to transmission and exponentially related to absorbance. 

The oscilloscope saves the signals from diode at a frequency of 25 Hz. The 

sampling frequency is set to be 500 kS/s and each datum contains 1 k sampling points, 

corresponds to a time length of 2 ms. Since the modulation frequency is 1.1 kHz, each 

saved datum contains 2 modulated cycles. 

The saved data are processed by MatlabTM. The peak to peak value of each saved 

2 ms signal is averaged from 2 cycles contained in the signal. This peak to peak 

voltage value is converted to concentration value according to the calibration curve.    

2.2.4   Exposure protocols   

SonazoidTM is mixed to Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% v/v fetal bovine serum (FBS) and 1% v/v antibiotics 

(Penicillin-Streptomycin and L-Glutamine) by pre-decided volume concentration (in 

most cases, 10% microbubble). 0.8 ml of such mixture is injected to a well of 24-well 

plate placed on a sheet of sound absorbing material. The transducer is then injected 

into this well and ultrasound exposure begins. After irradiation, the mixture is drawn 

out using a pipette and the well is rinsed with water for 2 times before next test.  

For control groups, the medium contains no microbubbles but only 0.8 ml 

DMEM medium. The exposure condition for each controlling case is identical as the 

corresponding test case.   

2.3   Results and discussions 

2.3.1   Calibration of concentration and light absorption 

The Beer-Lambert law indicates the linear relationship between absorbance and 

concentration of an absorber of electromagnetic radiation. The calculation of the 

coefficients related in the linear relationship is difficult and not necessary. Measuring 

the absorbance of several solutions with known concentration can calibrate the linear 

relationship between absorbance and concentration. The voltages correspond to a set 
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of volume concentration of microbubbles (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10%) 

were measured. The concentration-voltage dots plot is shown in Figure 2.9. The 

coefficients in Beer-Lambert law are then decided and the relationship curve is also 

drawn in the figure. All recorded voltage data can thus be converted to concentration 

data according to this calibrated curve.   

 

Figure 2.9 Fit curve of bubble concentration and intensity of transmitted light. Red dots are 
measured data with known concentration; blue curve is the fit curve calculated from 

Beer-Lambert law.   

2.3.2   Acoustic pressure  

The pressure field of the transducer was measured with a needle hydrophone 

(model 80-0.5-40, Imotec Messtechnik, Warendorf, Germany) at a fixed distance of 3 

mm from the transducer surface; the distance between the transducer and the 

well-bottom surface was also 3 mm. The pressure field (peak-to-peak value, 

maximum value, minimum value) was recorded at 0.2 mm increments over a 

15mm×15 mm surface perpendicular to the direction of beam propagation. The data 

in Figure 3A was obtained when the function generator output was 100 mV 

(peak-to-peak value). The measure acoustic pressure value is the peak positive value. 

Since the distribution is not very uniform, the intensity value was averaged over the 

circular transducer surface in all of the subsequent irradiation experiments. 
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Furthermore, because the plastic bottoms of plates could absorb and reflect 

incident waves, causing attenuation and reflection, and possibly forming a standing 

wave, measurements were done to confirm such absorption. First, the acoustic field 

was measured without plates and the hydrophone was placed 3 mm away from the 

transducer surface, as shown in right one of Figure 2.10. Then the needle hydrophone 

was positioned 3 mm away from plate bottom, which positioned between the needle 

hydrophone and transducer surface (6 mm away from the transducer surface), shown 

in the left one of Figure 2.10. The pressure field was recorded and shown in Figure 

2.11. In Figure 2.11(B), the focus is the difference between two different situations; 

the acoustic pressure was normalized by the maximum value in both 2 situations. 

Since the difference in the sound fields of the two cases was negligible, neither 

attenuation nor reflection was considered. 

 

Figure 2.10 Hydrophone position for measuring ultrasound wave absorption and reflection   
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(A) 

 

(B) 

Figure 2.11 Acoustic pressure field measured with needle hydrophone. (A) Hydrophone 
placed 3 mm away from the transducer. The unit is Mega Pascal and the total area is 

15mm×15 mm.  (B) Hydrophone placed 6 mm away from the transducer. +: 24-well plate 
positioned between the hydrophone and the transducer; –: no 24-well plate positioned 

between the hydrophone and the transducer. 
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2.3.3   Influence of intensity 

The influence of acoustic intensity on microbubble concentration was tested. 

The initial microbubble concentration is 0.1 (10% volume to volume, i.e. 0.08 ml 

microbubble solution and 0.072 ml DMEM). The concentration change details of 

microbubbles during irradiation of 8 intensities together with a control case were 

shown in Figure 2.12. The other parameters were set as: the irradiation time is 60s; 

PRF is 5 kHz and the pulse duration is 20 µs. Figure 2.12 (A) was the concentration 

change over time, (B) is the time took for each intensity case to reach a microbubble 

concentration of 0.015 (1.5%), and (C) is the minimum concentration reached for 

each intensity after 60 s irradiation.  

There was slight drop of concentration in control case. Buoyancy and natural 

dissolving may be the reason since the laser beam went through the lowest position of 

the well. The bubble concentration did not reach 0.015 even after 60 s and the 

minimum concentration was still very large (> 0.8).  Beginning with an intensity of 

0.1 MPa, ultrasound was applied. At 0.1 MPa, the bubble concentration behavior was 

very similar to the case of control. The sound wave was too weak to cause any 

physical changes to the medium as well as the bubbles inside the medium. At 0.2 

MPa, although the minimum concentration after irradiation was still larger than 0.015, 

indicating that majority of bubbles still existed after exposure, the microbubble 

concentration drop was larger than the control and 0.1 MPa case. So at 0.2 MPa, 

bubbles began to response to the compression and tension of sound wave and some 

bubbles which were unstable due to its large size of structure defects collapsed after 

exposure. 

Starting from 0.3 an intensity of MPa, the bubble concentration change became 

more obvious. At 0.3 MPa, it took more than 50 seconds for the bubble concentration 

to reach 0.015 and the minimum concentration was about this value. The 

concentration drop during all 60 seconds exposure was quite even. Most bubbles were 

believed to oscillate and bubbles with radii around the resonant radius of the driving 

sound wave experienced stronger oscillation that lead to collapse. Here in this chapter, 

only the slow or quick drop of bubble concentration can be seen, the activities 

underlying such concentration change will be shown in next chapter by noise 
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emission. In this dissertation, this pattern of concentration change is defined as 

oscillation dominant. 

The concentration changes of microbubbles from 0.4 MPa were again, 

dramatically different. At 0.4 MPa, the concentration dropped to 0.015 within less 

than 10 seconds and the minimum concentration at the end of exposure was about 

zero. The slope of the concentration change curve was very steep at the beginning 10 

seconds and became almost horizontal after the sharp drop. Such change of 

microbubble concentrations indicated quick and violent collapse of bubbles, which 

will also be further proved with noise emission results in next chapter. The oscillation 

of bubbles was highly nonlinear and within 10 seconds, the majority of bubbles 

collapsed. Strong concomitant effects such as shock wave and high speed jetting were 

then expected. In this dissertation, this pattern of concentration change is defined as 

collapse dominant. 

From 0.6 MPa to 1.2 MPa, the concentration changes were all similar to that of 

0.4 MPa. The concentration dropped to 0.015 within less than 10 seconds and the 

minimum concentration at the end of exposure was about zero. The larger the 

intensity was, the less the time took for the concentration to reach 0.015. The slope of 

the concentration change curve was very steep at the beginning 10 seconds and 

became almost horizontal after the sharp drop. The larger the intensity was, the 

steeper the curve was at the beginning seconds. Still, quick and violent collapse of the 

majority of bubbles was believed to exist.  

From 0.3 MPa, cavitation activities such as oscillating and collapse of bubbles 

became obvious. However, even with clear evidence of cavitation, there was still a 

great difference between 0.3 MPa case and 0.4 MPa case. To elucidate this difference, 

minor intensity increments were tested between these two intensities and the result 

were shown in Figure 2.13.  

The concentration change of microbubbles at 0.32 MPa was quite close to that of 

0.3 MPa in a not so steep way of concentration drop and over a long exposure time 

covering almost all 60 seconds of irradiation, which is oscillation dominant. Change 

of microbubbles at 0.38 MPa was more close to that of 0.4 MPa, as well as 0.45 MPa, 

which is collapse dominant. The bubble concentration dropped to a very low value 
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very quickly and then kept almost changeless. The concentration change patterns of 

0.36 MPa and 0.38 MPa fell somehow between the former two. Such two different 

bubble concentration change patterns were also proved by the time took to reach 

0.015 concentrations and the minimum concentration after exposure, shown in Figure 

2.13 (B) and (C). 

It is believed here that there is a cavitation pattern shift of cavitation, from 

oscillation dominant to collapse dominant, between these two intensities. When 

acoustic intensity increases from 0.3 MPa to 0.4 MPa, the cavitation changes from an 

oscillating dominant type to a collapse dominant type. Such cavitation pattern shift 

will be further validated in next chapter.     
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(C) 

Figure 2.12 (A) Effects of ultrasound intensity on the microbubble concentration; (B) the 
time took for the microbubble to reach a concentration of 0.015; and (C) the minimum 

concentration of microbubbles during exposure. No ultrasound was applied in the case of 
control. The irradiation time is 60s; PRF is 5 kHz and the pulse duration is 20 µs. The data in 

(B) and (C) are averaged from three independent replicates and shown as the mean ± 
standard deviation.  
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(C) 

Figure 2.13( A) Effects of ultrasound intensity on the microbubble concentration with small 
intensity increments; (B) the time took for the microbubble to reach a concentration of 

0.015; and (C) the minimum concentration of microbubbles during exposure. No ultrasound 
was applied in the case of control. The irradiation time is 60s; PRF is 5 kHz and the pulse 
duration is 20 µs. The data in (B) and (C) are averaged from three independent replicates 

and shown as the mean ± standard deviation. 
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2.3.4   Influence of pulse duration 

The influence of pulse duration on microbubble concentration was tested at two 

different PRFs. The initial microbubble concentration is 0.1 (10% volume to volume). 

The concentration change details of microbubbles during irradiation of 4 pulse 

durations at 5 kHz PRF were shown in Figure 2.14. The other parameters were set as: 

the acoustic intensity is 0.8 MPa and the irradiation time is 60 s. At 5 kHz RPF, pulse 

durations of 5, 10, 20, and 50 µs correspond to duty ratios of 2.5, 5, 10, and 25%. 

Overall, in all the cases the bubble concentration dropped very steeply. Within 8 

seconds, the concentration reached or went even lower than 0.015, and the minimum 

concentration after exposure for all cases were around zero. With longer pulse 

duration, bubbles concentration dropped more quickly. It also took less time for 

bubble concentration to reach 0.015 with longer pulse duration. The minimum 

concentrations after exposure for all pulse durations were smaller with longer pulse 

duration, though the difference was minor since all these values are very small and 

close to zero.     

The concentration change details of microbubbles during irradiation of 6 pulse 

durations at 500 Hz PRF were shown in Figure 2.15. The other parameters were set 

as: the acoustic intensity is 0.8 MPa; the irradiation time is 60 s; and the initial 

microbubble concentration is 0.1 (10% volume to volume). At 500 Hz RPF, pulse 

durations of 5, 10, 20, 50, 200, and 500 µs correspond to duty ratios of 0.25, 0.5, 1, 

2.5, 10, and 25%. 

At 5 µs pulse duration, it took more than 15 seconds for the bubble concentration 

to reach 0.015 and the minimum concentration did not reach 0.015. The concentration 

drop during all 60 seconds exposure was quite even. Then the bubble behavior did not 

present a collapse dominated way. Most bubbles were believed to oscillate and 

bubbles with radii around the resonant radius of the driving sound wave experienced 

stronger oscillation that lead to collapse. From 50 µs, the bubble concentration 

dropped to a very low value very quickly and then kept almost changeless. Within 7 

seconds, the concentration reached or went even lower than 0.015, and the minimum 

concentration after exposure for all cases were around zero. The case of 10 and 20 µs 

were close to the cases after 50 µs. But the bubble concentration dropped to a very 
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low value relatively slowly and then kept almost changeless. It took longer time for 

these bubble concentrations in these two cases to reach to 0.015, or a value slightly 

larger than 0.015. Similarly, with longer pulse duration, bubbles concentration 

dropped more quickly. It also took less time for bubble concentration to reach 0.015 

with longer pulse duration. The minimum concentrations after exposure for all pulse 

durations were smaller with longer pulse duration, though the difference was minor 

since all these values are very small and close to zero. With a lower PRF, the 

cavitation may not be collapse dominant when the pulse duration is too short even 

with an intensity of 0.8 MPa because there is not sufficient total energy.        
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(C) 

Figure 2.14 (A) Effects of pulse duration on the microbubble concentration, the data after 25 
seconds were not shown; (B) the time took for the microbubble to reach a concentration of 
0.015; and (C) the minimum concentration of microbubbles during exposure. The acoustic 
intensity is 0.8 MPa; PRF is 5 kHz and the irradiation time is 60 s. The data in (B) and (C) 

are averaged from three independent replicates and shown as the mean ± standard deviation. 
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(C) 

Figure 2.15 (A) Effects of pulse duration on the microbubble concentration with smaller 
PRF; (B) the time took for the microbubble to reach a concentration of 0.015; and (C) the 

minimum concentration of microbubbles during exposure. The acoustic intensity is 0.8 MPa; 
PRF is 5 kHz and the irradiation time is 60 s. The data in (B) and (C) are averaged from 

three independent replicates and shown as the mean +/- standard deviation. 
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Obviously changes in pulse length result in changing in the rest time of the wave. 

Here in the 2 series, with the same pulse length, the rest time are different as two 

series have different PRF values. To understand whether the pulse length or rest time 

counts for the bubble concentration change, a pulse scale comparison was carried out. 

Take the 5 µs case for example, the case with 5 kHz PRF will have ten times totaled 

number of wave pulses of the case with 500 Hz PRF. If the first 6 seconds of 5 kHz is 

picked out, the total number of waves will then be the same with the case with 500 Hz 

PRF during all 60 seconds irradiation. The comparison is then made based on the 

same total number of ultrasonic waves of 4 different pulse durations at 2 different 

PRFs, shown in Figure 2.16. The horizontal axis is scaled time. For the groups with 

longer rest time, the axis is the real time. But for the groups with shorter rest time, the 

axis is an enlarged and pulse scaled time, in other words, the 6 seconds real time is 

divided into 60 equal parts.  

It is found that at 5 µs pulse duration, the difference in rest time causes 

difference in bubble concentration change: the case with shorter rest time has quicker 

bubble concentration loss. Beginning from 10 µs, there is no difference from rest time, 

even for the case of 50 µs pulse duration where the rest time multiplies by 13 times 

for two different PRFs. The reason is that during 5 µs ultrasound wave irradiation, the 

contrast agent may be still oscillating and the wave is not long enough to collapse the 

bubbles. The coming 5 µs irradiation will continue to act on the same bubbles so 

there is a gain like pattern of bubble behavior. While for pulse duration no shorter 

than 10 µs, the bubbles collapsed during one cycle. The next cycle will have no effect 

and only act on new bubbles. As a result, for bubbles, there is no memory of former 

pulse shot. Thus the difference from rest time is not found.  

Then it is concluded that the bubble concentration loss comes from effect of 

pulse duration rather than rest time. What’s more, as discussed, beginning from 

certain pulse duration, the bubble concentration loss pattern becomes the same which 

is quick collapse dominant. So for contrast agent, the influence from pulse duration is 

not as strong as that from intensity.  
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Figure 2.16 Pulse number scaled concentration change from different pulse lengths. The 
details of the waves are shown by the legend with µs unit. The acoustic intensity is 0.8 MPa; 

the duty cycle is kept at 10%; and the irradiation time is 60 s.  

2.3.5   Influence of PRF 

Burst settings, as introduced in Part 2.2.2, including pulse duration and pulse 

repetition frequency (PRF). Different burst settings have different total ‘on’ time of 

ultrasound and thus have different total energy. 

The influence of PRF on microbubble concentration was tested. The initial 

microbubble concentration is 0.1 (10% volume to volume). The concentration change 

details of microbubbles during irradiation of 8 PRF values together with continuous 

wave case were shown in Figure 2.17. The other parameters were set as: the acoustic 

intensity is 0.8 MPa; the duty cycle is kept at 10%; and the irradiation time is 60 s 

except for the continuous case where the irradiation time is 20 s. 

Overall, in all the cases the bubble concentration dropped very steeply. At an 

intensity of 0.8 MPa and 10% of duty ratio, in all cases within 4 seconds the 

concentration reached or went even lower than 0.015, and the minimum concentration 

after exposure for all cases were around zero. The difference between different PRFs 
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was not distinct, although as PRF decreased the concentration slightly dropped more 

quickly. So for all the PRF cases tested, violent collapse was here believed to be the 

dominant behavior. The majority of bubbles collapsed very quickly and fiercely. The 

further details of the influence of PRF on bubble radial dynamics will be discussed by 

their noise emission results. 
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(C)  

Figure 2.17 (A) Effects of PRF on the microbubble concentration, the data after 20 seconds 
were not shown; (B) the time took for the microbubble to reach a concentration of 0.015; 

and (C) the minimum concentration of microbubbles during exposure. The acoustic intensity 
is 0.8 MPa; the duty cycle is kept at 10%; and the irradiation time is 60 s. The data in (B) 
and (C) are averaged from three independent replicates and shown as the mean ± standard 

deviation. 
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2.4   Summary 

Sonoporation is highly cavitation related so the study on sonoporation begins 

with bubble behavior in this dissertation. An ultrasound exposure system with full 

control over parameters was used to irradiate sound wave to microbubble containing 

liquid in a 24-well commercial plate. Using a laser diode unit, the concentration of 

microbubbles was measured during various exposure conditions. The influences of 

ultrasonic parameters, including intensity and burst settings, on change of 

microbubble concentration during irradiation were studied. The following 

conclusions are made: 

 

• The plastic plate does not affect the propagation of sound wave. 

Reflection and absorption of waves from the plate are negligible for the 

following experiments. The planar distribution shows that the 

distribution of sound wave is not very uniform and the intensity for 

experiments is averaged value. 

 

• There are two different patterns of bubble concentration change during 

irradiation: oscillation dominant and collapse dominant. For intensities 

less than 0.3 MPa, the bubble behavior is oscillation dominant; for 

intensities larger than 0.4 MPa, the bubble behavior is collapse dominant. 

There is a pattern shift of bubble behavior between these two intensities.   

 

• For oscillation dominant bubble behavior, bubble oscillation and collapse 

coexist during all irradiation time while for collapse dominant bubble 

behavior, microbubble collapsed to a concentration near zero with in less 

than half of the irradiation time, differing from the settings. 
 

• The influence of total energy related parameters are clear. With larger 

intensity and longer pulse duration, bubbles concentration dropped more 

quickly and the final concentration is smaller. With pulse duration 

changing, the influence from rest time is not obvious.  
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• With pulse durations no shorter than 10 µs, pulse duration rather than the 

rest time is the leading factor in a burst for its influence on bubble 

behavior. 
 

• The influence of PRF on bubble concentration change is not as straight 

as intensities. With longer pulse duration, bubbles concentration dropped 

slightly more quickly. 
 

• With 0.8 MPa acoustic intensity, all the burst setting cases tested present 

collapse dominant bubble behavior, which here means that the bubble 

concentration drops to less than 0.015 within less than 10 seconds, except 

for only one case with short pulse duration (5 µs, PRF=500 Hz).  
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Chapter 3. Bubble behavior analysis from cavitation noise 

The oscillation and collapse of microbubbles are introduced. Chapter 2 deals 

with the concentration change of microbubbles due to the collapse while this chapter 

focuses on the signals emitted while bubbles experience radial oscillation and violent 

collapse, aim at deeper understanding of the cavitation process and its relationship to 

further delivery process. With such understanding and summarizing the results 

together with that obtained in Chapter 2, bubble behavior with experiment settings for 

sonoporation delivery is summarized here . 

3.1   Cavitation noise 

3.1.1   Broadband noise source 

As a bubble oscillates, itself becomes a sound source and emits sound waves. 

Such signals can be recorded and analyzed to obtain information on bubble radial 

dynamics. This tool is very effective since no matter what type of cavitation is 

bubbles experience radial oscillation or collapse. As shown in Figure 2.1 and Figure 

2.2, the radial oscillation as well as the violent collapse of microbubbles will emit 

sound signals. A source list of emitted signals is shown in Figure 3.1 [80]. Bubble 

oscillation may show different patterns with different nonlinearity, which results a 

difference in emitted signal.  

If the driven power is low, then the bubble simply pulsates in an approximately 

linear manner and the emitted signal is simply at the insonation frequency. However, 

the spectrum of the acoustic signal generated by bubbles cavitating in more powerful 

acoustic fields may contain broadband signals. Such type of emitted signal is often 

called broadband cavitation noise. An example of such broadband emission is shown 

in Figure 3.2 [81]. The driving frequency is 1 MHz, driving amplitude is 0.1 MPa, 

and the initial radius is 1.7 µm. The upper one shows a typical nonlinear bubble 

radius oscillation curve, and due to the oscillation the bubble in turn becomes a sound 
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source and emits signals, shown in the middle one. Changing the signals in the 

middle one from time domain to frequency domain, oscillation characteristics is 

shown in the lower one. Many frequency peaks can be seen since the oscillation is 

highly nonlinear. Such peak dotted spectrum represents harmonics, subharmonics and 

ultraharmonics of the insonation frequency [82]. A typical acoustic emission spectrum 

consists of peaks at specific frequencies that are harmonics or subharmonics of the 

driving ultrasound frequency, and broadband noise that spans the full frequency 

domain. 

 

 

 

 

 

 

 

Figure 3.1 Sources of acoustic emission [80]   
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Figure 3.2 An example of broadband noise [81]. The upper one is the radius time curve, the 
middle one is the corresponding emitted sound signal due to the radial oscillation, and the 

lower one is the frequency domain characteristics of the signals. 

3.1.2   Noise spectrum 

Identifying the relationship between these emissions and cavitation dynamics are 

usually discussed separately based on whether the cavitation is stable or inertial, in 

other words, whether the bubbles keep oscillating or collapse, though realistically 

these two types often entangle with each other. In our research since direct measuring 

of bubble radius is not possible, they details of cavitation will be revealed by the 

analysis on the acoustic emissions during cavitation process.  
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Frequencies of both the harmonic (nf) and ultraharmonic ((2n+1)f/2) of the 

fundamental driving frequency ‘f’ are generally believed to be related to stable 

cavitation; while frequencies of the subharmonic (f/n) and frequencies over a large 

range, in other words, broadband signals are somehow related to inertial cavitation 

[80] [82]. It is suggested that the broadband noise arises due to the emissions from 

rapidly changing bubble radii, whereas the subharmonic emissions originate from the 

prolonged expansion phase and a delayed collapse of oscillating bubbles. Both types 

of emissions have been reported in the case of transient cavitation, but there is 

growing support for using broadband noise as an indication of the onset of violent 

collapse in cavitation [83] [84] [85]. Here in this study, a frequency interval excluding 

any subharmonics or ultraharmonics is chosen to indicate details of inertial cavitation. 

As the oscillation goes more nonlinear, the frequency domain becomes more 

complicated since half or even quarter of the frequencies will come out [86]. To make 

this total harmonics analysis easier to understand, Lauterborn gave a plot method 

showing the so called ‘visible noise’ [87], as shown in Figure 3.3. As intensity 

increased, the noise signal spectrum covered large range of frequencies. In other 

words, the spectrum changed from a peak lined style to a broadband style. The 

frequencies evolving process over other parameters, such as intensity, can be shown 

over time. Such evolving plot gives information on cavitation type transition as well 

as influences from parameters on cavitation. To understand more on cavitation and 

influences from parameters, similar plots are shown in this thesis. 
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Figure 3.3 An example plot of ‘visible noise’ [87]   

3.1.3   Two ‘phases’ of cavitation 

As introduced in Chapter 2, gas bubbles with shell are added in all experiments. 

The collapse of these shelled bubbles resulted in the concentration drop, which is 

recorded by the laser diode method. However; even after the majority of shelled 

bubbles had collapsed, cavitation activities are still to be expected since there are 

cavities inside the medium. Here these two different phenomena are defined as two 

‘phases’ of cavitation: shelled bubble cavitation phase and cavity cavitation phase. 

The latter escapes from the laser diode measuring and its details are analyzed with 

noise spectrum in this chapter. 

The two ‘phases’ are discussed separately because the bubble oscillation and 

collapse behavior are different. Surface tension is a fundamental property of a fluid 

interface between gas and liquid phases. A newly formed cavity without 

encapsulation will dissolve spontaneously and nearly instantaneously as a 

consequence of surface tension at the gas-liquid interface. While to make a contrast 
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agent stable during circulation, the microbubble shell must be solid to eliminate 

surface tension and impart a significant permeation resistance. 

Artificially added microbubbles no longer exist, or drop to a negligible 

concentration after violent collapse. The situation of cavities without shells is more 

complicated. Cavities may come into being during the rarefaction phase of the 

pressure wave. The collapse of shelled bubbles can also result in fragmentation of the 

bubble into smaller bubbles and/or dissolution of the encapsulated gas. 

The details of difference between these two ‘phases’ are reviewed by Klibanov 

[88] and Ferrara [89]. In this chapter the focus is to prove the existence of such 

difference and correlates it to future different cell behavior.   

No matter what analyzing methods are adopted, cavitation noises are studied 

here to relate the biological effects of ultrasound to both subharmonic and broadband 

emissions. Relationships between broadband noise levels and biological effects were 

discussed and correlation was proved [90] [91]. The cavitation noise results here 

discussed in our study will also be compared later to the intracellular delivery 

behavior of cells.   

In this chapter, broadband noise were captured with the exact experimental 

conditions as done in Chapter 2 in order to obtain knowledge of bubble oscillations 

before or on the collapse process. Strong broadband signals emitted during collapse 

also give explanations to the collapse of artificially added contrast agents as well as 

cavities inside the medium. 

3.2   Experimental methods 

3.2.1   Data collecting unit 

The exposure system is the same as introduced in part 2.2.1. To record the 

cavitation noise, the 24-well is partly immersed to water in a tank, and a focused 

hydrophone is placed near the transducer to collect signals, as indicated in Figure 4. 

The water inside the tank is degassed for more than 4 hours before experiment and a 

water bath unit keeps the temperature at 37 °C.  

The focused hydrophone is customized by ELEMECH Electronics (Niigata, 
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Japan). Its central frequency is 2 MHz and responds flatly to a frequency range from 

100 kHz to 10 MHz. The vibrating part is a PVDF membrane and the radius is 50 mm. 

The focal length is 45 mm. Signals from this hydrophone is amplified by an AG-2010 

amplifier (ONDA, Seattle, WA) and then connected to the oscilloscope where these 

signals are saved, as shown in Figure 3.4. The hydrophone and the transducer are 

aligned in such a way that the highest points of the piezo material of the transducer 

and the PVDF membrane of the hydrophone are at the same height, and that the 

distance between two center points is the focus length of the focused hydrophone, 

which is, 45 mm. 

The frequency of data saving to oscilloscope is 25 Hz. The sampling frequency 

is set to be 20 MS/s and each datum contains 1 k sampling points, corresponds to a 

time length of 50 µs. 
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(A) 

 
(B) 
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(C) 

Figure 3.4 Experimental setup for cavitation noise recording system. (A) is the diagram plot; 
(B) is a photo of the system; and (C) is a photo of focused PVDF hydrophone and 

preamplifier, in which the lower unit is the focused hydrophone, the middle unit is the 
preamplifier, and the upper unit is the power supply for the preamplifier.    
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3.2.2   Data processing 

For each datum, the sampling frequency is 20 MHz and each datum has a time 

length of 50 µs. The data is saving at 25 data per second. When pulse duration is 20 

µs and PRF is 5 kHz, the datum contains the full mark part of the burst cycle for 

almost all cases, shown in Figure 3.5, A typical time domain signal shown in Figure 

3.5 (A) which is recorded by the focal hydrophone and saved by the oscilloscope is 

then transformed to frequency domain by a FFT operation in MatlabTM. Since the 

sampling frequency is 20 MHz, the frequency domain includes a range from 0 to 20 

MHz. Dividing this range by the total number of sampling points, so the frequency 

increment is 20 kHz. Here the driving frequency is 2 MHz, any frequencies larger 

than 10 MHz are out of interest as they reveal little on bubble radial movements, and 

then here a frequency domain plot within 10 MHz is shown in Figure 3.5 (B). 

Figure 3.5 (B) shows a typical frequency domain pattern. The scattering of the 

driving ultrasound signal makes the driving frequency, 2 MHz, the highest peak. To 

obtain more information of harmonics as well as broadband noise signals, limited 

magnitude of frequencies is also applied, indicated by the horizontal line. For 

example, here in Figure 3.5 (B) the maximum power value is 12.95 and in most cases 

a range of power less than 0.6 is shown. 

Representative frequency values as well as intervals of frequencies are then 

chosen to show cavitation details. For example, harmonics frequencies such as 2, 4, 

and 6 MHz, intervals such as 0 to 1 MHz, and 2 to 3 MHz are plotted. For intervals 

there are 50 frequency values inside this interval and the averaged power magnitude 

is calculated. This averaged value represents the cavitation noise level for the very 

interval chosen. In 60 s irradiation, a total number of 1500 data were obtained for one 

case and the spectrum covers from 0 to 20 MHz. In some cases the data were 

averaged over time while in some other cases, the data were averaged over the 

frequency range. 
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(A) 

 
(B) 

Figure 3.5 Noise spectrum processing method. The time domain signal (A) is obtained and 
then transformed to frequency domain in (B). 
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3.2.3   Irradiation protocols 

For tested group, SonazoidTM is mixed to Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% v/v fetal bovine serum (FBS) and 1% v/v 

antibiotics (Penicillin-Streptomycin and L-Glutamine) by pre-decided volume 

concentration (in most cases, 10% microbubble). 0.8 ml of such mixture is injected to 

a well of 24-well plate placed on a sheet of sound absorbing material. The transducer 

is then injected into this well and ultrasound exposure begins. After irradiation, the 

mixture is drawn out using a pipette and the well is rinsed with water for 2 times 

before next test.  

For control groups, the medium contains no microbubbles but only 0.8 ml 

DMEM medium. The exposure condition for each controlling case is identical as the 

corresponding test case. 

Totally 23 experiment conditions were carried out for both control and test 

groups. The irradiation time for all cases is 60 seconds and the other details of each 

condition are shown in Table 3.1. Case 1 to case 8 together are defined as the 

intensity series; case 9 to case 15 together are defined as PRF series; case 16 to case 

18 together are defined as pulse duration series at 5 kHz PRF; and case 19 to case 23 

together are defined as pulse duration series at 500 Hz PRF. 
  



Chapter 3. Bubble behavior analysis from cavitation noise 

67 

Table 3.1  Experiment conditions 

Case number Intensity (MPa) PRF (kHz) 

 

Pulse duration (µs)  Space (µs) Duty ratio (%) 

1 0.1 5 20 180 10 

2 0.2 5 20 180 10 

3 0.3 5 20 180 10 

4 0.4 5 20 180 10 

5 0.6 5 20 180 10 

6 0.8 5 20 180 10 

7 1.0 5 20 180 10 

8 1.2 5 20 180 10 

9 0.8 50 2 8 10 

10 0.8 20 5 45 10 

11 0.8 10 10 90 10 

12 0.8 2 50 450 10 

13 0.8 1 100 900 10 

14 0.8 0.5 200 1800 10 

15 0.8 0.05 2000 18000 10 

16 0.8 5 5 195 2.5 

17 0.8 5 10 190 5 

18 0.8 5 50 150 25 

19 0.8 0.5 5 1995 0.25 

20 0.8 0.5 10 1990 0.5 

21 0.8 0.5 20 1980 1 

22 0.8 0.5 50 1950 2.5 

23 0.8 0.5 500 1500 25 
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3.3   Results and discussions 

3.3.1   Visible noise 

The sources of emission may be oscillation and collapse of shelled bubbles as 

well as cavities. Since the horizontal axis is time which covers a full range of 

irradiation, the contour provides information of evolvement of the frequency 

spectrum. As introduced, collapse is a temporal behavior lasting for only a short time 

while oscillation can last for longer time, or even over all the 60 s. To identify 

different sources of emission, in other words, different bubble behaviors, the spectra 

of both control and tested results for a single case are shown in Figure 3.6 and 3.7, by 

putting all the 1500 time steps’ noise spectrum together. The experimental settings for 

the case shown are: case 15, 0.8 MPa intensity, 0.05 kHz PRF, and 10% duty ratio.  

Figure 3.6 shows contour plots for control and tested cases while Figure 3.7 

shows the value of frequency powers averaged over frequency intervals. To capture 

more details of spectra, the range of power magnitude in contour plot in Figure 3.6 

does not include all the whole value range. In both Figure 3.6 (A) and Figure 3.7 (A), 

three broadband peaks around 1, 14, and 42 second are temporal, in other words, the 

broadband frequency power value increases and then decreases and after the peak the 

frequency power values restore after several seconds. Such pattern of change in 

frequency power shows that collapse of cavity happened in control case, without 

adding any contrast agents. Horizontally stable signals, such as strong signals around 

3 MHz and 6 MHz last over all the 60 seconds, showing that oscillation of cavity also 

happened.  

Adding of contrast agents brings large difference to noise spectra. The two later 

peaks appeared in both Figure 3.6 (A) and Figure 3.7 (A) disappeared after adding 

microbubbles into the medium, shown by Figure 3.6 (B) and Figure 3.7 (B). A peak 

appeared within the first 2 seconds. In Chapter 2, it has been shown that the bubble 

concentration drops to nearly zero within 2 seconds. So here the collapse signal in 

Figure 3.6 (B) also proves that the concentration drops measured by the laser diode 

unit in Chapter 2 are due to the collapse of bubbles. What’s more, strong horizontally 

stable signals at more frequency values appear with microbubbles added, indicating 
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that stronger oscillation even with extremely low bubble concentration compared to 

control case. 

For tested case, as shown by laser diode results, almost all of the bubbles 

collapsed after 2 seconds. However, there are dramatic differences between (A) and 

(B) in both Figure 3.6 and Figure 3.7 during 2 and 60 seconds. So the fact of adding 

microbubbles will influence bubble radial dynamics not only when they are in the 

medium but also after they have collapsed. Such influence may come from two 

factors. The first one is the collapse of shelled microbubbles will emit the gas 

contained within the shell, which will serve as new cavitation nuclei, making 

oscillation or collapse of cavity easier to happen. The other one is that debris of 

collapsed lipid shells will add impurity to the medium, which may also serve as 

nuclei.  

One more thing shown in both Figure 3.7 (A) and Figure 3.7 (B) is that the 

majority of emitted signals fall into the frequency interval of 1.5 to 2.5 MHz. This 

frequency interval is chosen to compare emission levels between different cases in the 

follows sections. 
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(A) 

 

(B) 

Figure 3.6 Cavitation noise spectrum contour of case 15 over the whole irradiation time. (A): 
control case without microbubbles; (B): tested case. The irradiation time is 60s; PRF is 0.05 
kHz and the duty ratio is 10%. Color bar is the value of the power of frequencies after FFT 

with limited value range. 
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(A) 

 

(B) 

Figure 3.7 Averaged emission level of case 15 over the whole irradiation time. (A): control 
case without microbubbles; (B): tested case. The value of frequency power is averaged value 
over a frequency interval, indicating by the legend. The irradiation time is 60s; PRF is 0.05 

kHz and the duty ratio is 10%.  
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3.3.2   Parametric influence on noise emission 

Part 3.3.1 shows the noise spectra for a single case during whole irradiation time 

of 60 seconds. As listed in Table 3.1, there are total 23 cases tested, divided into 3 

different series. The details of results are shown and discussed series by series in the 

following sections.  

3.3.2.1   Intensity series 

In intensity series, 8 intensities from 0.1 MPa to 1.2 MPa were tested. The PRF 

is 5 kHz, the duty ratio is 10%, and the irradiation time is 60 seconds. At 0.1 MPa of 

intensity, no bubble activities are found by laser diode results. So here beginning from 

0.2 MPa, noise spectra for 7 tested cases are shown in Figure 3.8. 

Figure 3.8 (A) and Figure 3.8 (B) are contour plots of all 7 intensities, where 

Figure 3.8 (A) shows the first 10 seconds, i.e. from 0 to 10 seconds and Figure 3.8 

(B) shows the third 10 seconds, i.e. from 30 to 40 seconds. Figure 3.8 (C) shows 

averaged emission level of 7 intensities represented by the interval of 1.5 to 2.5 MHz 

over all the 60 seconds irradiation time. Figure 3.8 (D) shows the frequency 

magnitude of 5 selected intensities, from 0 to 10 MHz, averaged over all the 60 

seconds irradiation time. 

In Figure 3.8 (A) during the first 10 seconds, no clear emission signals of either 

collapse of oscillation are captured in 0.2 MPa and 0.3 MPa cases. Beginning from 

0.4 MPa, emission signals become apparent: from 6 second weak collapse signals and 

harmonics at 2f0 and 3 f0 (f0 is the driving frequency, i.e. 2 MHz) can be found. 

Beginning from 0.6 MPa, peaks of broadband frequency due to collapse, as well as 

horizontally stable frequencies of harmonics due to oscillation become clear. 

Ultraharmonic signals at 3/2 f0 appear and then disappear from 1.0 MPa. Beginning 

from 1.0 MPa, the emissions become much broadband like, especially under the 

frequency of 4 MHz. 

In Figure 3.8 (B), beginning from 0.4 MPa, horizontally stable frequency signals 

due to oscillation dominate the spectra. Similarly, ultraharmonic signals at 3/2 f0 are 

apparent at only 0.6 MPa and 0.8 MPa. Beginning from 1.0 MPa, the emissions 

become much broadband like, especially under the frequency of 3 MHz. Under the 
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intensity of 1.0 MPa, there are only horizontal stable style emissions indicating that 

cavities are oscillating. Beginning from 1.0 MPa, the noise like broadband signals 

appear together with horizontally stable emissions, though with weak values, showing 

the happening of weak collapse of cavities.  

As introduced in Figure 3.7, the main emission of noise falls into the frequency 

interval of 1.5 MHz to 2.5 MHz. In Figure 3.8 (C), the emission level increases as 

intensity increases only that the emission level of 1.2 MPa is smaller than that of 1.0 

MPa. From 1.0 MPa, after 10 seconds, the emission curve is more jigsaws like, in 

other words, there are alternating increases and decreases. 

In Figure 3.8 (D), both harmonic and ultraharmonic signals become much larger 

when intensity increases from 0.3 MPa to 0.4 MPa or larger. From 0.4 MPa, the the 

changes of harmonic signals at the frequencies of 2f0, 3f0, and 4 f0 are not significant 

while ultraharmonic signals or broadband signals between harmonic frequencies 

increase as intensity increases.  
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(C) 

 
(D) 

Figure 3.8 Influence of intensity on cavitation noise, (A) frequency contour during the first 
10 seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 30 to 40 
second) of irradiation; (C): the noise emissions averaged over frequency interval of 1.5 to 
2.5 MHz; (D): the noise emission spectra averaged over 30 to 40 second. The irradiation 

time is 60s; PRF is 5 kHz and the duty ratio is 10%. Color bar is the value of the power of 
frequencies after FFT with limited value range. 
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To discuss the influence of intensity on bubble behavior, the results from laser 

diode measuring will also be used. 

Firstly, the difference between 0.3 MPa and 0.4 MPa is confirmed that shelled 

bubble changes from weak oscillation dominant to collapse dominant. For 0.2 MPa 

case and 0.3 MPa case, former threshold research has shown that the microbubble 

will begin to response with oscillations [92]. The results measured by laser diode 

have shown that at 0.3 MPa it takes more than 50 seconds for the bubble 

concentration to reach 1.5% while at 0.4 MPa the value is less than 10 seconds. Here 

in Figure 3.8 (A) and (B) the noise recorded at 0.3 MPa have only a peak frequency at 

driving frequency during both the first and third 10 seconds while the noise at 0.4 

MPa show both collapse and oscillation behavior. The huge noise level difference 

between 0.3 MPa and 0.4 MPa in Figure 3.8 (C) also proves the change from weak 

oscillation dominant to collapse dominant.    

Secondly, the intensity of collapse of shelled bubbles increases as intensity 

increases from 0.4 MPa. Beginning from 0.4 MPa, the concentrations of contrast 

agents drop to 1.5% within 10 seconds in all the cases. It has been prove that dramatic 

change of emission level comes from collapse behavior. In Figure 3.8 (C), it can be 

found that when intensity is above 0.4 MPa there are peaks of emission levels. While 

in Figure 2.12 (A), there are also extremely sharp drops of concentration. Since the 

sharp drop of bubble concentration comes from collapse, high level emission is 

expected. If the time when sharp drop of bubble concentration is labeled, then we can 

find the emission level peaks around this time. Such a peak of emission level can be 

used to evaluate the intensity of collapse process. The collapse behavior can be 

evaluated by the time it takes for bubbles or cavities collapse and the mount of 

emission during collapse. In other words, the quick the collapse is and the larger the 

emission is, the more violent the collapse is. Since the intensity of collapse mainly 

reveal itself by the quickness of collapse and the value of peak emission signal, to 

examine the difference in intensity of the collapse process, here a comparison 

between the collapse times as well as the peak emission signal value is done. In the 

first 10 seconds, the peaks of emission signals are the highest values of the emission 

while the emission level is still increasing sharply compared to afterwards, as 
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indicated by circles in Figure 3.9. The x coordinate value is the time it took to reach 

the peak emission level, the y coordinate value is the emission level value of the peak, 

and the values are compared in Table 3.2. As intensity increases, it takes less time for 

the emission from collapse of microbubbles to reach to the peak value and the peak 

value increases. The higher the intensity is, the more violent the collapse of shelled 

bubbles is. But the speed of increase decreases as intensity increases, in other words, 

such increase of collapse intensity plateaus gradually. The one exception here is the 

case of 1.2 MPa case. The time took to reach the peak is about the same as the 1.0 

MPa case, showing that the intensity of 1.0 MPa is strong enough to collapse the 

microbubbles in extremely short time.        

 

Figure 3.9 Peak emission level and time, the peaks of collapse emission are indicated by 
circles. 

Table 3.2  Time and value of peak emission of intensity series 

Parameter  0.4 MPa 0.6 MPa 0.8 MPa 1.0 MPa 1.2 MPa 

Time of peak 6.36 s 1.64, 1.12, 0.56 s 0.48, 0.36 s 0.16 s 0.20 s 

Peak value 0.2803 1.248, 0.7496, 0.7816 1.46, 1.402 2.681 2.852 

Thirdly, after 10 seconds, emissions come from cavity behavior. The emission 

level increases until 1.0 MPa, and then there is a drop when the intensity increases 
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from 1.0 MPa to 1.2 MPa, which can be easily found in Figure 3.8 (C). With higher 

acoustic pressure, the amplitude of oscillation is higher so the emission level is higher. 

The reason that the emission of 1.2 MPa is lower than 1.0 MPa is that 1.2 MPa is too 

strong to collapse most of the cavities rather than let them experience stable 

oscillation, which can be proved by the noise like emission signals around 4 MHz and 

1 MHz. Since the emission level is averaged between 1.5 MHz and 2.5 MHz, lack of 

oscillation activities will reduce the total amount of emission. The second thing about 

cavity behavior is that there are significant increases in nonlinearity of oscillation of 

cavities when intensity increases from 0.4 MPa to 0.8 MPa. Especially for 

ultraharmonic emission frequencies, such as 1, 3, and 5 MHz, the increase can be 

easily found in the contour in Figure 3.8 (B). Such increase of ultraharmonic 

emissions stops when intensity reaches 1.0 MPa, and ultraharmonic signals are even 

close to disappear at 1.2 MPa. Here again, the collapse of cavities, though weak, is 

the reason. So collapse of cavities appears when intensity increases from 0.8 MPa to 

1.0 MPa, and oscillation of cavities become weaker when intensity reaches 1.2 MPa. 

By looking into Figure 3.8 (D), such change in cavity behavior is more obvious. 

When intensities are above 0.4 MPa, the frequency peaks are about the same. Only at 

9 MHz, the ultraharmonic signal comes out at 0.6 MPa and 0.8 MPa, indicating a 

slightly increased nonlinearity in cavity oscillation. However, such nonlinearity 

disappears after 1.0 MPa.  

3.3.2.2   Pulse duration series 

Two pulse duration series were tested at different PRF frequencies of 5 kHz and 

500 Hz. The pulse duration series at 500 Hz was chosen here. In pulse duration series, 

5 pulse durations from 5 µs to 500 µs were tested. The intensity is 0.8 MPa, the 

irradiation time is 60 seconds, and the PRF is 500 Hz. The results are shown in Figure 

3.9. 

Figure 3.10 (A) and Figure 3.10 (B) are contour plots of all 5 pulse durations, 

where Figure 3.10 (A) shows the first 10 seconds, i.e. from 0 to 10 seconds and 

Figure 3.10 (B) shows the third 10 seconds, i.e. from 30 to 40 seconds. Figure 3.10 

(C) shows averaged emission level of all 5 pulse durations represented by the interval 
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of 1.5 to 2.5 MHz over all the 60 seconds irradiation time. Figure 3.10 (D) shows the 

frequency magnitude of 5 pulse durations, from 0 to 10 MHz, averaged over all the 

60 seconds irradiation time. 

In Figure 3.10 (A), collapse signals can be seen in all 5 cases. The case of 5 µs is 

different from the other 4 cases because the collapse signal is weaker. The laser diode 

results show that after 10 second the microbubble concentration, though dropping 

with time, is still high so the collapse behavior is weak. The case of 10, 20, 50 µs are 

similar with a collapse signal and harmonic emissions at 4, 6 MHz. The case of 500 

µs shows much noise like emissions and ultraharmonics.  

In Figure 3.10 (B), except for the 5 µs case, the microbubble concentrations for 

other 4 cases are negligible. During 30 to 40 second, the case of 5 µs is still has high 

microbubble concentration so the emissions still show weak collapse signal. The case 

of 10, 20, 50 µs show stable harmonic emission signals at 2f0, 3f0. The case of 500 µs 

still shows clear collapse signals and very strong emissions at both harmonic and 

ultraharmonic frequencies.  

The emission level shown in Figure 3.10 (C) is different from that of intensity 

series in Figure 3.9 (C). During the collapse of microbubbles, there are still peaks 

after sharp increasing. For cavities behavior after the collapse, the difference among 

10, 20, 50 µs is little and the emission levels for all these 3 cases are stable but the 

case of 500 µs is totally different: the emission level changes dramatically, i.e. there 

are alternative increases and decreases.  

Figure 3.10 (D) also shows that the case of 5 µs has only weak harmonic 

emissions. The cases of 10, 20, 50 µs are quite similar, showing strong harmonic 

emissions but the ultraharmonic emission of 50 µs case is stronger than the other 2 

cases. The case of 500 µs has the strongest emissions among all 5 cases, no matter at 

harmonic, ultraharmonic or even broadband signals. With increasing pulse duration, 

more frequencies are coming out. 
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(C) 

 
(D) 

Figure 3.10 Influence of pulse duration on cavitation noise, (A) frequency contour during 
the first 10 seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 

30 to 40 second) of irradiation; (C): the noise emissions averaged over frequency interval of 
2 to 3 MHz; (D): the noise emission spectra averaged over 30 to 40 second. The intensity is 
0.8 MPa; the irradiation time is 60s; and the PRF is 0.5 kHz. Color bar is the value of the 

power of frequencies after FFT with limited value range. 
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Similarly, to discuss the influence of pulse duration on bubble radial behavior, 

the results from laser diode measuring will also be used. 

For shelled bubble behavior, the case of 5 µs is totally different from other cases, 

where weak oscillation of shelled bubbles dominates cavitation activity. For all other 

4 cases, violent collapse of microbubbles happens. Using the same method described 

by Figure 3.9, the time when peak emission appears and the value of the peak 

emission are listed in Table 3.3. As pulse duration increases from 10 µs to 50 µs, the 

time when peak emission appears decreases and the peak emission value increases, 

which means that the intensity of collapse increases. The collapse of microbubbles in 

500 µs case is extremely quick while the peak emission level is smaller than 50 µs 

case. So for shelled bubbles, as pulse duration increases, the intensity of collapse also 

increases but similarly as what intensity series has shown, such increase gradually 

plateaus. 

Table 3.3  Time and value of peak emission of pulse duration series 

Parameter  10 µs 20 µs 50 µs 500 µs 

Time of peak 2.52 s 1.12 s 0.88 s 0.16 s 

Peak value 1.059 1.677 2.073 1.855 

For cavity behavior, from 10 µs to 50 µs, the changes in emission level or 

emission pattern is not significant, all the 3 cases only show horizontally stable 

emission from oscillation. But from 50 µs to 500 µs, the change is dramatic. Firstly, 

the nonlinearity of oscillation increases, showing by the appearance of strong 

emission from both harmonic and ultraharmonic signals. It is also very clear that 1 

MHz signal appears in 500 µs case. As that introduced in Figure 2.2, with increasing 

pulse duration, the response of cavity radius becomes more and more nonlinear. 

Within one ultrasound wave cycle, the cavity neither collapse nor drops to its 

minimum size. So in the coming next wave cycle, the cavity continues to response 

with a large radius, so emissions at half driving frequency, in other words, 

subharmonic signals, come out. Also in Figure 3.10 (D), the 1 M Hz signal showing 

only in the 500 µs case results in combination frequencies of further ultraharmonic 
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frequencies, such as 7 MHz and 9 MHz. Such an increase in frequency values is 

shown in Figure 3.11. The first 5 seconds of 50 µs case show weak signals of 

harmonics while the last 5 seconds of 500 µs case show strong signals of emission of 

both harmonics and ultraharmonics. One more point about the 500 µs is that collapse 

of cavities, indicated by the jigsaw like pattern emission level curve in Figure 3.10 

(C), appears only in this case. To make the case of 500 µs more special, such strong 

collapse of cavities is not found in either case in intensity series.   

 

Figure 3.11 Increase in emission frequency when pulse duration changes from 50 µs to 500 
µs. From 30 to 35 second belongs to the case of 50 µs and from 35 to 40 second belongs to 

500 µs 

3.3.2.3   PRF series 

In PRF series, 8 intensities from 50 Hz to 50 kHz were tested. The intensity is 

0.8 MPa, the duty ratio is 10%, and the irradiation time is 60 seconds. The noise data 

are shown in Figure 3.12. 

Figure 3.12 (A) and Figure 3.12 (B) are contour plots of all 7 PRFs, where 

Figure 3.12 (A) shows the first 10 seconds, i.e. from 0 to 10 seconds and Figure 3.12 

(B) shows the third 10 seconds, i.e. from 30 to 40 seconds. Figure 3.12 (C) shows 

averaged emission level of 5 selected PRFs represented by the interval of 1.5 to 2.5 

MHz over all the 60 seconds irradiation time. Figure 3.12 (D) shows the frequency 

magnitude of 5 selected PRFs averaged over all the 60 seconds irradiation time. 
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Figure 3.12 Influence of PRF on cavitation noise, (A) frequency contour during the first 10 
seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 30 to 40 

second) of irradiation; (C): the noise emissions averaged over frequency interval of 2 to 3 
MHz; (D): the noise emission spectra averaged over 30 to 40 second. The intensity is 0.8 
MPa; the irradiation time is 60s; and the duty ratio is 10%. Color bar is the value of the 

power of frequencies after FFT with limited value range. 
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Strong microbubble collapse signals can be seen in all 7 cases shown in Figure 

3.12 (A). For all 7 cases, the collapse speed is very fast. The intensity of collapse is 

compared using the same method as described by Figure 3.9. The time when peak 

emission of collapse appears and the peak emission level for 7 PRF cases are shown 

in Table 3.4. The difference of the time when peak emission comes among 7 cases are 

small except for the case of 20 kHz, where the microbubbles collapse, although very 

fast, a little bit slower than other 6 cases. For peak emission values, the cases of 50 

kHz, 50 kHz, and 10 kHz have smaller peaks than other 4 cases, indicating that longer 

pulse duration, though with the same constant energy, can collapse microbubbles 

more violent.  

Table 3.4  Time and value of peak emission of PRF series 

Parameter  50 kHz 20 kHz 10 kHz 2 kHz 1 kHz 500 Hz 50 Hz 

Time of 
peak 

0.4 s 0.76 s 0.44 s 0.44 s 0.32 s 0.24 s 0.4 s 

Peak value 1.04 0.8742 1.294 2.228 2.432 2.47 1.848 

    The difference of cavity behavior shown in Figure 3.10 (B) is clearer. The cases 

of 50 kHz and 20 kHz show very weak oscillation signals; the case of 2 kHz shows 

harmonic emissions; and from 2 kHz to 50 Hz, strong emission signals at both strong 

harmonic and ultraharmonic frequencies are shown. The time-averaged emission 

level shown in Figure 3.10 (D) also indicates that only low PRF cases with long pulse 

durations have strong emissions at ultraharmonic frequencies. For shelled bubble 

behavior, the difference among all 7 cases is very small, while the difference between 

cavity behaviors is easier to be seen. Especially in Figure 3.12 (C), the shapes of 

different emission level curves are clearly different. The jigsaw shape becomes more 

obvious as PRF decreases. To better compare such difference, the time period 

beginning from 30 s ending at 40s when for all 7 cases the microbubble concentration 

can be negligible is taken out and the emission level for all 7 cases are plotted in 

Figure 3.13. The changes in values of emission level become clearer as PRF 
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decreases. To evaluate such changes in emission levels, the mean value and standard 

deviation of emission level of all 7 cases during 30 to 40 second are listed in Table 

3.5. It can be found that the emission level falls into two groups: the three high PRF 

cases have relatively lower emission level while the 4 low PRF cases have relatively 

higher emission level and that unlike the emission level the standard deviation 

increases as PRF decreases. In intensity series and pulse duration series, only one 

case of 500 µs has shown similar dramatic changes in emission level during the same 

period. The mean value and standard deviation of 500 µs case calculated by the same 

method are 2.9257, 0.5641 respectively. The standard deviation of this 500 case is 

thus the largest.     

 

Figure 3.13 The emission level of all 7 PRF cases during 30 to 40 second 

Table 3.5  Emission level comparing during 30 to 40 second of PRF series 

Parameter  50 kHz 20 kHz 10 kHz 2 kHz 1 kHz 500 Hz 50 Hz 

Mean 1.5074 1.1432 1.1672 2.578 1.9553 2.8721 1.5931 

Standard 
deviation 

0.0452 0.0286 0.0487 0.094 0.1352 0.1818 0.2279 
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3.4   Summary of bubble behavior 

The influences of intensity, pulse duration and PRF on bubble radial dynamics 

are examined by measuring the concentration change of microbubbles using laser 

diode unit, and also by recording the noise from cavitation using focused hydrophone. 

The parametric differences are summarized from two parts: on artificially added 

microbubbles with lipid shells and on cavities generated in the liquid itself. 

One part is influence of parameters on microbubbles. 

Parametric influence on shelled bubbles can be very straightly seen. The first 

kind is weak oscillation pattern dominant where bubbles collapse very slowly and the 

concentration remains high after 10 seconds. The other kind is quick collapse pattern 

dominant, where most of the microbubbles collapsed within 10 seconds. For such a 

kind of collapse, the differences are discussed by comparing the collapse time and 

peak emission signal from collapse. 

When intensity increases from 0.3 MPa to 0.4 MPa, the microbubbles behavior 

changes from weak collapse and oscillation to violent collapse. As intensity increases, 

microbubbles collapse quickly and more violent, but such increase gradually plateaus 

when intensity reaches the value of 1.0 MPa. 

The influence of pulse duration on microbubbles behavior is somehow similar to 

that of intensity. At 5 µs length pulse duration, weak oscillation and collapse happen 

and as pulse duration becomes longer, violent collapse dominants. In a short range of 

10 µs to 50 µs, the collapse process does not change much but when the pulse 

duration becomes long enough such as 500 µs, the microbubbles collapse extremely 

quickly.  

The influence of PRF on microbubble behavior is not very directly output since 

in all 7 cases, collapse dominants and the collapse processes are all very quick and 

violent. 

The other part is influence of parameters on cavities. 

Parametric influences on cavities are discussed by both the amplitude of 

emission and the nonlinearity from emission. The total emissions amount averaged 

from the frequency interval of 1.5 MHz to 2.5 MHz have been discussed one 

parameter by one parameter. Here to compare together, frequencies values of 1 MHz 
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to 7 MHz from all 3 parameter series averaged between 30 to 40 second are plotted in 

Figure 3.14. The values of ultraharmonic signals, such as 1 MHz, 3 MHz, and 5 MHz 

reflect the nonlinearity of cavity oscillation; especially the 1 MHz signal also partly 

reflects the cavity collapse.  

 

Figure 3.14 Frequency power of 1 to 7 MHz signal of all 3 parameters averaged between 30 
to 40 second 

As intensity increases, the oscillation amplitude of cavities increases until 1.0 

MPa. The nonlinearity of oscillation of cavities increases until 0.8 MPa. For the 1.0 

MPa and 1.0 MPa cases, weak collapse of cavities can be seen.  

When pulse duration is less than 50 µs, the difference of oscillation of cavities 

are not very clear but when pulse duration increases to 500 µs, the nonlinearity 

increases dramatically and strong collapse of cavities can be found. 

With the same intensity and energy, lower PRF cases with longer pulse duration 

show stronger oscillation signals. As PRF decreases, the changes of the intensity of 

bubble behavior, either oscillation or collapse, becomes clearer.   
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Chapter 4. Ultrasond-mediated delivery in vitro: parametric 

studies on sonoporation efficiency 

4.1   Introduction 

4.1.1   Delivery via sonoporation in vitro 

The pores created during sonoporation have long been used for the delivery of 

drugs as well as genes. Since the ultrasound-mediated delivery technic still has a long 

way to go before going clinical, as introduced in Chapter 1 much work has been done 

both in vitro and in vivo. In vivo experiments with animals would be more close to 

clinical reality, but it is time consuming and usually has relatively lower productivity. 

Here we focus on mechanism and parametric influence of sonoporation, requiring 

much experimental work, so the delivery experiments in this study are carried out in 

vitro. To show successful accomplishment of sonoporation, fluorescent markers with 

large molecular weight which won’t be internalized unprompted were delivered into 

cultured cells. Various parameter arrangements that are identical to experiments done 

with bubble behavior are tested on their influences on the delivery efficiency as well 

as the cell viability. 

4.1.2   Difference between cell statuses 

The mechanisms involved in sonoporation include shear stress and 

microstreaming induced by stable cavitation and shockwave and jetting induced by 

inertial cavitation. These mechanisms are affected to parameters, to make the effects 

of these mechanisms more clear, the cells were irradiated in both attachment and 

suspension status in this chapter. The reason why the same cell type was irradiated in 

two different statuses is that the behaviors of cells will be different when subjected to 

either stable or inertial cavitation whether they are free in liquids or attached to a rigid 

wall. The difference mainly comes from two factors. The first one is the mechanical 

factor. When cells are in a suspension status, they are free. Liquid won’t hold shear 
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stress, so does the cells suspending in it. For a cell suspending in the medium, shear 

stress and microstreaming will have few effects on it since it will translate in the 

liquid when subjected to such stress. Such comparison can then help understanding 

not only the parametric influence but also mechanisms on sonoporation process. The 

second one is the bubble factor. Cells suspending in liquid will have much more 

contrast agents, as well as cavities in the liquid around them since they are immersing 

into liquid and have larger volume of liquid around them than the cells attached to the 

bottom of the plate.   

4.2   Materials 

The ultrasound exposure system is the same one as that used for microbubble 

behavior study. The medium in wells of the 24-well plate changed and cultured cells 

were applied as an in vitro model. FITC-Dextran is chosen as the marker for 

sonoporation.   

4.2.1   Cell line 

Mouse embryonic fibroblast cells (NIH3T3), adherent, were incubated as 

monolayer at 37°C under a humidified atmosphere of 5% CO2 in 55 cm2 tissue 

culture dishes containing Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% v/v fetal bovine serum (FBS) and 1% v/v antibiotics 

(Penicillin-Streptomycin and L-Glutamine). All of the reagents were purchased from 

Invitrogen (Carlsbad, CA). The double time of cells is 18 h and to avoid completely 

confluent of cells subcultures (also called passage) are needed. The passage of cells is 

carried out every three days. During passage, the cells are detached using trypsin and 

parts of them are transferred to a standard commercial 24-well plate and left to grow 

to ~ 90% confluence before being irradiated. 

A view of NIH3T3 cells cultured is shown in Figure 4.1. NIH3T3 cells have a 

long and narrow morphology and turn to form cluster by adhering to each other. The 

main body is less than 20 µm in size for most cells.  
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Figure 4.1 Appearance of cultured NIH3T3 cells   

4.2.2   FITC-Dextran 

Sonoporation is characterized by pores on the cell membrane and the pores are 

validated by the uptake of large molecules which usually can’t be internalized by the 

cell itself. The indicator of internalization used is FITC (Fluorescein isothiocyanate) –

Dextran, purchased from Sigma-Aldrich (St. Louis, MO). 

Dextran is a complex, branched glucan (polysaccharide made of many glucose 

molecules) composed of chains of varying lengths (from 3 to 2000 kilo Daltons), 

shown in Figure 4.2 (A). FITC is the original fluorescein molecule functionalized 

with an isothiocyanate reactive group, replacing a hydrogen atom on the bottom ring 

of the structure. The coupled dextran with FITC is shown in Figure 4.2 (B).  

The molecular weight of FITC-Dextran used in this study is 20 kDa. It appears 

to be a yellow powder. It is dissolved in phosphate buffered saline (PBS), giving a 

yellow solution. The concentration of the solution is set to be 5 mg/ml. In the solution, 

the approximate Stokes’ radius for FITC-dextran with a MW of 20 kDa is 33 

Angstroms. 

Toxicity of FITC-Dextran to cells is considered to be negligible. In studies in 
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mice, FITC-dextrans were found to be tolerated well when injected intravenously or 

intraperitoneally in doses up to 6g/kg bodyweight. Their toxicity patterns follow those 

of the parent dextrans (tested by the manufacturer).   

The excitation maximum of FITC-dextran is 490 nm. The emission maximum is 

520 nm. 

 

(A) 

 
(B) 

Figure 4.2 Structural formulas of dextran (A) and FITC-Dextran (B). The data are offered by 
the manufacturer, Sigma-Aldrich.   



Chapter 4. Ultrasound-mediated delivery in vitro: parametric studies on sonoporation efficiency 

95 

4.3   Methods 

4.3.1   Irradiation protocol of attachment status 

The ultrasound exposure system is the same one with that used in bubble radial 

movements study.  

During passage, cells were transferred to 24-well pates with a density of 

1×105/cm2. The plates were incubated for 24 h and then the cells were exposed to 

ultrasound. The cells reached approximately 100% confluent when irradiated. 

For a single well in the 24-well plate, a total volume of 0.8 ml of mixed medium 

is injected. The mixed medium contains 0.08 ml of SonazoidTM, 0.72 ml of DMEM, 

and 8 µl of FITC-dextran solution. The volume concentration of microbubbles is 10%, 

corresponds to a count of 1.7×105/ml. The density of FITC-Dextran is 50 µg/ml. The 

medium is pre-mixed and then injected to wells one by one. 

Before irradiation, the plate was taken out from the incubator. DMEM in wells 

were piped out and the cells were rinsed once by PBS. The mixture of microbubbles, 

FITC-Dextran and DMEM was then injected to wells and cells were exposed to 

ultrasound at various configurations. After exposure, the plate was placed back to the 

incubator and incubated for 10 min without changing the medium inside the wells. 

Then the plate was taken out again for analyzing. The mixture inside wells was piped 

out and the cells were rinsed twice by a mixture of PBS and anti-dye (A889, 

Invitrogen, Carlsbad, CA). A volume of 0.1 ml of Trypsin-EDTA was then injected to 

each well to detach cells. The plate was incubated for 2 min to allow full detachment 

of cells. A volume of 0.9 ml of DMEM was then injected to each well and was 

carefully pipetted for three to five times. The total volume of 1 ml mixture in each 

well was transferred to a 1.5 ml tube. A volume of 10 µl out of the 1 ml mixture was 

transferred to another 1.5 ml tube for viability analysis. The tubes containing 1 ml 

mixture were centrifuged for 5 min at 2000 rpm and 4 °C. After centrifugation, the 

cells deposited to the bottom of the tubes and the upper medium was piped out. A 

volume of 0.4 ml of PBS was then injected to each tube and careful pipetting was 

carried out for three to five times to make sure all the cells in the tube will suspend 

into PBS. The cell suspended PBS was then injected to a tube with mesh and flowed 
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in a cytometer. All the manipulations were carried out in a clean bench except for 

centrifuge. 

4.3.2   Cell preparing for suspension status 

NIH3T3 is natural adherent cells. During passage, a portion of cells were 

transferred to 24-well plates and were then irradiated in attachment status. At the 

same passage, cells were transferred to dishes with the same density of 1×105/cm2. 

After incubation for 24 h, the cells in the dishes were harvested by trypsin-EDTA and 

transferred to plates and then soon irradiated while they were suspending in the 

medium.  

Since the medium for culture are the same, identical proliferation is expected 

after 24 h. The area of a single well in 24-well plate and a dish is 1.883 and 55 cm2, 

respectively. In order to make sure that cells in a single well irradiated in two statuses 

have an identical population, (188.3/55) % of cells in the dish were transferred to a 

well in a new 24-well plate. In this new plate, cells were irradiated in suspension 

status. The volume of medium inside a dish is 5 ml in all passages, so the volume of 

cell suspension that will be transferred to a single well is thus 5 × (188.3/55) % ml, 

which is, 171.2 µl. 

4.3.3   Irradiation protocol of suspension status 

For a single well in the 24-well plate, a total volume of 0.8 ml of mixed medium 

is injected.  The mixed medium contains 0.08 ml of SonazoidTM, 171.2 µl of cell 

suspension from dishes, 0.55 ml of DMEM, and 8 µl of FITC-dextran solution. The 

medium is pre-mixed and then injected to wells one by one. 

The cells were immediately irradiated after they were injected to the well. After 

irradiation, a volume of 0.2 ml mixture of PBS and anti-dye was injected to each well.  

The total volume of 1 ml of the mixture of cells and medium in the well were 

transferred to a 1.5 ml tube after careful pipetting. The tubes were centrifuged for 5 

min at 2000 rpm and 4 °C. After centrifugation, the cells deposited to the bottom of 

the tubes and the upper medium was piped out. A volume of 1 ml of DMEM was then 

injected to each tube and careful pipetting was carried out for three to five times to 
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make sure all the cells in the tube will suspend into DMEM. A volume of 10 µl out of 

the 1 ml mixture was transferred to another 1.5 ml tube for viability analysis. The 

tubes were then again centrifuged for 5 min at 2000 rpm and 4 °C. After 

centrifugation, the cells deposited to the bottom of the tubes and the upper medium 

was piped out. A volume of 0.4 ml of PBS was then injected to each tube and careful 

pipetting was carried out for three to five times to make sure all the cells in the tube 

will suspend into PBS. The cell suspended PBS was then injected to a tube with mesh 

and flowed in a cytometer. All the manipulations were carried out in a clean bench 

except for centrifuge.   

4.3.4   Flow cytometry and viability analysis 

The confirmation of FITC-dextran delivery to cells was done by flow cytometer 

(FACS Verse, BD, Franklin Lakes, New Jersey). Flow cytometry is a laser based 

technology employed in cell counting, sorting, and biomarker detection, by 

suspending them in a stream of fluid and passing them by an electronic detection 

apparatus. Cells in suspension pass laser beam one by one and excitation signals are 

recorded. 

In our test, forward scatter (FSC), side scatter (SSC) and FITC signals were 

applied. FSC and SSC signals were used to gate cells out from dirt and other 

impurities in the suspension. After the cells were labeled out, FITC signal was used to 

gate the cell with FITC-Dextran inside out from all the cells.  

The delivery rate is then defined as  

  Delivry rate =
Number of FITC- Dextran positive cells

Number of total cells
 ( 4-1 ) 

For a single well, at least 10, 000 cells were counted. 

The cell viability is measured by TC10™ Automated Cell Counter (BIO-RAD, 

Hercules, CA), shown in Figure 4.3. It is an automated device that provides a total 

count of mammalian cells and a live/dead ratio in one step.  
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Figure 4.3 TC10™ Automated Cell Counter, picture from the manufacturer   

A volume of 10 µl of trypan blue dye was added into the 10 µl suspension in the 

1.5 ml tube and mixed carefully by pipetting for about 10 times. A small portion of 

the mixture was then loaded to the slide, and the slide was then inserted into the 

automated counter where the total number of cells as well as the viability will be 

obtained.  

As described in the irradiation protocol, the cells irradiated in attachment status 

were rinsed before cytometry test. So dead cells floating in the medium were rinsed 

out, which would add inaccuracy to the viability data. To compensate this inaccuracy, 

a well with cultured cells was used. The medium inside this well was unchanged 

during the whole process so influence from ultrasound and mixed medium was absent. 

The cell viability of a tested well for cells irradiated in attachment is define as 

  

Cell viability = 

Total numer of cells in the tested well
Total numer of cells in the cultured well

× viablity of the tested well 
( 4-2 ) 

For cells irradiated in suspension status, the cell viability is just the viability 

measured by the cell counter.  

All the data of delivery rate and cell viability are averaged from three 

independent replicates (12 samples) and shown as the mean +/- standard deviation. 
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4.4   Results and discussions 

4.4.1   Influence of intensity 

The influence of acoustic intensity on both delivery rate and cell viability was 

studied. The cell behaviors of 8 intensities together with a control case were shown in 

Figure 4.4 (A). The initial microbubble concentration is 0.1 (10% volume to volume). 

The other parameters were set as: the irradiation time is 60s; PRF is 5 kHz and the 

pulse duration is 20 µs.  

The delivery rate increases while cell viability decreases as intensity increases. 

No delivery was found in control case without ultrasound irradiation, which agrees 

with literature very well [51] [34]. The increase trend of delivery rate is slow under 

0.3 MPa, becomes quicker between 0.3 and 0.8 MPa and turns to plateau from 0.8 

MPa. The increase in sonoporation efficiency from 0.3 MPa to 0.4 MPa is extremely 

sharp. There are large drops of cell viability when intensity increases from 1.0 MPa to 

1.2 MPa.      

There is a pattern shift of shelled bubble behavior between 0.3 MPa and 0.4 MPa, 

as shown in Chapter 3. To test the influence of this pattern shift on delivery rate and 

cell viability, minor intensity increments on both delivery rate and cell viability were 

tested between these two intensities and the results were shown in Figure 4.4 (B). The 

other parameters were set as: the irradiation time is 60 s; PRF is 5 kHz and the pulse 

duration is 20 µs. 

Still, the delivery rate increases while cell viability decreases as intensity 

increases. There is obvious increase of delivery rate when intensity increases from 

0.32 MPa to 0.34 MPa. For cell viability, the decrease appears to be in a gradual way. 
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(A) 

 
(B) 

Figure 4.4 Effects of ultrasound intensity on the delivery rate and cell viability for cells 
irradiated in both attachment and suspension statuses. (B) is done with small increment. DR 

is short for delivery rate; CV is short for cell viability; and A, V indicate attachment and 
suspension status, respectively.  No ultrasound was applied in the case of control. The 

irradiation time is 60s; PRF is 5 kHz and the pulse duration is 20 µs. The data is averaged 
from 4 independent replicates (12 samples) and shown as the mean +/- standard deviation. 
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To discuss parametric influence on sonoporation, the results of parametric 

influence on bubble radial movements will be applied. In Chapter 3, the influence of 

intensity on bubble behavior has been summarized from two sides. 

The first one is on microbubbles: when intensity increases from 0.3 MPa to 0.4 

MPa, the microbubbles behavior changes from weak collapse and oscillation to 

violent collapse. As intensity increases, microbubbles collapse quickly and more 

violent, but such increase gradually plateaus when intensity reaches the value of 1.0 

MPa. The other one is on cavities: as intensity increases, the oscillation amplitude of 

cavities increases until 1.0 MPa. The nonlinearity of oscillation of cavities increases 

until 0.8 MPa. For the 1.0 MPa and 1.0 MPa cases, weak collapse of cavities can be 

seen. 

Here the sharp increase in sonoporation efficiency when intensity increases from 

0.3 MPa to 0.4 MPa is the result of the change in cavitation pattern. Figure 4.4 (B) 

further shows that such a pattern shift happens when intensity increases from 0.32 

MPa to 0.34 MPa. Beginning from 0.4 MPa to 0.8 MPa, the reason of the rise in 

sonoporation efficiency cannot be clearly concluded here since the intensity of 

microbubble collapse and cavity oscillation both increases. Beginning from 0.8 MPa, 

the reason of the plateau in sonoporation efficiency is interesting. In Table 3.2, it has 

been shown that the microbubble collapse at 1.0 MPa and 1.2 MPa is more violent 

than that of 0.8 MPa. In Figure 3.8 (C), it has been shown that the cavity oscillation is 

stronger than that of 0.8 MPa. The limited increase in sonoporation efficiency from 

0.8 MPa to 1.0 MPa indicates that cavitation behavior at 0.8 MPa, either from shelled 

bubbles or cavities, is strong enough to sonoporate cells. Further increase in 

cavitation intensity will not result in the increase in sonoporation efficiency but the 

decrease in cell viability. But still, the reason for such a plateau can comes from either 

microbubbles or cavities. From 1.0 MPa to 1.2 MPa, the drop in sonoporation 

efficiency for cells irradiated in suspension is due to the sharp decrease in cell 

viability. Even sonoporated, the death of cell causes the breakdown of cell membrane 

and the fluorescent markers will such flow out of the cell. 

As for cell viability, the trend is much easier. The increase in either microbubble 

collapse intensity or cavity oscillation intensity will cause decrease in cell viability. 
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One more thing needed attention is that the difference between two statuses. This 

topic is not a main point of this thesis and further arrangements of experiments are 

needed to come to any conclusions. However, here the reason for such difference is 

briefly discussed. For all cases tested, both the sonoporation efficiency and cell 

viability of cells irradiated in suspension status are higher than those irradiated in 

attachment status. Since the cell population and microbubble density are identical for 

both statuses, it is obvious that when cells are suspending in the mixture there are 

more microbubbles around them. Besides when cells are attached to the bottom only 

parts of their surface area are open to microbubbles. Adding these two points together, 

the possibility that cells in attachment status be influenced by microbubble cavitation 

activities is lower than the cells in suspension status. What’s more, as introduced in 

section 4.3, the preparation methods are different for two different statuses. The time 

that cells are out of incubator is different for two statuses which may result in a 

difference in the cells themselves. Such difference may be the difference in cells 

capability of keeping its intactness or even the difference in cells viability.   

4.4.2   Influence of irradiation time 

The influence of irradiation time on both delivery rate and cell viability was 

studied. The cell behaviors under 6 different time lengths of 3 different cases together 

with a control group were shown in Figure 4.5. The initial microbubble concentration 

is 0.1 (10% volume to volume). The other parameters were set as: the acoustic 

intensity is 0.8 MPa; PRF is 5 kHz and pulse duration is 20 µs (case 6) for (A); PRF 

is 0.05 kHz and pulse duration is 2,000 µs (case 15) for (B); and the acoustic intensity 

is 0.8 MPa; PRF is 0.5 kHz and pulse duration is 500 µs (case 23) for (C).  

For all 3 cases: the delivery rate increases while cell viability decreases as 

irradiation time increases. Within 20 s, the delivery rate reaches more than 50% of the 

value of 60 s. In Figure 4.5 (A), the increase trend of delivery rate is obvious under 30 

s and plateaus after that. The decrease of cell viability presents a gradual style over all 

irradiation time lengths. While in Figure 4.5 (B) and (C), the increase trend of 

delivery rate is still obvious under 30 s but unlike in Figure 4.5 (A) the plateau does 

not appear: the delivery rate keeps increasing as irradiation time increases, though the 
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speed of increasing is slower than the speed of under 30 s. The cell viability, similarly 

as that shown in Figure 4.5 (A), decreases as irradiation time increases.    
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(C) 

Figure 4.5 Effects of total irradiation time on the delivery rate and cell viability for cells 
irradiated in both attachment and suspension statuses. DR is short for delivery rate; CV is 

short for cell viability; and A, V indicate attachment and suspension status, respectively. No 
ultrasound was applied in the case of 0 s. The acoustic intensity is 0.8 MPa. PRF is 5 kHz 

and pulse duration is 20 µs (case 6) for (A); PRF is 0.05 kHz and pulse duration is 2,000 µs 
(case 15) for (B); and The acoustic intensity is 0.8 MPa; PRF is 0.5 kHz and pulse duration 
is 500 µs (case 23) for (C). The data is averaged from 4 independent replicates (12 samples) 

and shown as the mean +/- standard deviation. 
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To understand the difference between the irradiation series of 3 cases, the 

method used in discussion in Part 3.3.2 is applied. The emission levels averaged over 

the frequency interval of 1.5 MHz to 2.5 MHz and the noise spectra of 3 cases tested 

are shown in Figure 4.6. The most obvious difference among these 3 cases is the 

irregularity of the curve, especially for the curve after 10 seconds. The curve of case 6 

is smooth; the curves of case 15 and 23 are serrate while the saw tooth in case 23 is 

sharper and deeper. To evaluate the difference quantitatively, as described in Part 

3.3.2.3, the mean value and standard deviation of the emission level values during 30 

to 40 second are listed in Table 4.1. The mean level difference between case 6 and 15 

is minor but the deviation difference is large while both the mean level and deviation 

of case 15 are far larger than case 6 and 15. The spectra figure shows that for 3 cases 

most of the frequencies from emission are the same only that the values are different: 

the emission from 500 µs case is stronger. So here such values shown in Table 4.1, in 

other words the stableness of emission level, as well as the level of nonlinearity of 

oscillation can both be applied to judge the cavity behavior. The difference is that the 

frequency spectrum is a time averaged result so it lacks information from the collapse 

of cavities which is transient while the ‘stability’ of emission level is a combination 

since all the emissions are recorded together. In Figure 3.10 (B), it is found that 

collapse of cavities also happened in the 500 µs case. Here the ‘unstableness’ values 

in Table 4.1 count oscillation and collapse together.     

The results from laser diode have shown for all these 3 cases, the microbubble 

concentrations after 10 s are negligible. So during first 10 seconds, using the same 

method as described in Part 3.3.2.1, the intensity of microbubble collapse of 3 cases 

is compared in Table 4.2. The main difference between case 6 and 15 is the peak 

emission value while the main difference between case 15 and 23 is the time took to 

reach peak emission. 
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(A) 

 

(B) 

Figure 4.6 Cavitation noise of 3 case, (A) Noise emissions averaged over frequency 
intervals; (B) the noise emission spectra averaged over 30 to 40 second. The acoustic 

intensity is 0.8 MPa, PRF is 5 kHz and pulse duration is 20 µs (case 6); PRF is 0.05 kHz and 
pulse duration is 2,000 µs (case 15); and PRF is 0.5 kHz and pulse duration is 500 µs (case 

23).  
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Table 4.1  Emission level comparing during 30 to 40 second of 3 cases 

Parameter  Case 6 Case 15 Case 23 

Mean 1.6193 1.5931 2.9257 

Standard 
deviation 

0.0766 0.2279 0.5641 

Table 4.2  Time and value of peak emission of 3 cases 

Parameter  Case 6 Case 15 Case 23 

Time of peak 0.48 s 0.4 s 0.16 s 

Peak value 1.46 1.848 1.855 

The influence of irradiation time on sonoporation efficiency is discussed within 

one case as well case by case. 

In the first 10 seconds that microbubbles collapse violently, the sonoporation 

efficiency of case 6, 15, 23 are 3.45%, 3.66%, and 3.65% for attachment status, and 

5.61%, 6.55%, and 6.54% for suspension status. Within 40 seconds, the sonoporation 

efficiency of case 6, 15, 23 are 5.12%, 5.36%, and 6.03% for attachment status, and 

9.52%, 9.32%, and 10.41% for suspension status. In the first 10 seconds, 

sonoporation efficiency in case 23 is about the same with case 15, a little bit larger 

than case 6. But after 40 seconds, the efficiency in case 23 is much larger than both 

case 6 and case 15. So the difference happens while cavity behavior dominates 

cavitation.  

To find the difference from cavity behavior, the discussion is done within one 

case. In case 6, the sonoporation efficiency increase from 20 s to 30 s is smaller than 

that from 10 s to 20 s. From 30 s, the sonoporation efficiency plateaus. But in case 15 

and 23, from 30 s, although the increase is not as large as that within 30 s, the 

sonoporation efficiency is still increasing as irradiation time increases. And the 

increase is more obvious in case 23 than that of case 15. Together as that shown in 

Figure 4.6, the deeper and sharper saw tooth causes such increase while smooth curve 
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is not capable. In other words, the alternatively changes in emission from cavity 

behavior is much more effective than stable emission in sonoporating cells. Since 

such alternative change in emission is caused either by collapse of cavities or 

changing in nonlinearity of cavity oscillation while stable emission is caused by 

stable oscillation of cavity, collapse of cavity is much more effective in sonoprating 

cells than stable oscillation of cavity.  

One more thing is that for all 3 cases, the increase of sonoporation efficiency in 

first 20 seconds is quicker than the increase from 20 s to the end. Majority of 

sonoporated cells are caused by the collapse of shelled bubbles. In other words, the 

collapse of shelled bubbles is more effective in sonoporating cells than the collapse of 

cavity.          

4.4.3   Influence of pulse duration 

The influence of pulse duration on both delivery rate and cell viability was tested 

at two different PRFs. The results during irradiation of 4 pulse durations at 5 kHz 

PRF and during irradiation of 6 pulse durations at 0.5 kHz PRF were shown in Figure 

4.7. The initial microbubble concentration is 0.1 (10% volume to volume). The other 

parameters were set as: the acoustic intensity is 0.8 MPa and the irradiation time is 30 

s. At 5 kHz RPF, pulse durations of 5, 10, 20, and 50 µs correspond to duty ratios of 

2.5, 5, 10, and 25%. At 500 Hz RPF, pulse durations of 5, 10, 20, 50, 200, and 500 µs 

correspond to duty ratios of 0.25, 0.5, 1, 2.5, 10, and 25%. 

For both PRFs, the delivery rate increases while cell viability decreases as pulse 

duration increases. At 5 kHz PRF, the increase trend of delivery rate is obvious under 

20 µs and becomes slower after that. The decrease of cell viability presents a gradual 

style over all irradiation time lengths. At 500 Hz PRF, the increase trend of delivery 

rate is more gradual. The cell viability decreases slightly when pulse duration is less 

than 200 µs and suddenly drops largely at 500 µs.  
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(A) 

 
(B) 

Figure 4.7 Effects of pulse duration on the delivery rate and cell viability for cells irradiated 
in both attachment and suspension statuses. PRF of (A) and (B) is 5 kHz, and 500 Hz, 

respectively. DR is short for delivery rate; CV is short for cell viability; and ‘A’, and ‘V’ 
indicate attachment and suspension status, respectively. The acoustic intensity is 0.8 MPa; 

and the irradiation time is 30 s. The data is averaged from 4 independent replicates (12 
samples) and shown as the mean +/- standard deviation. 
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The 2 pulse duration series at 5 kHz and 0.5 kHz PRF are similar and the 

discussion will use the series of 0.5 kHz which contains more cases. 

The case of 5 µs is the same type as cases in intensity series when intensity is 

smaller than 0.3 MPa where weak oscillation of microbubbles dominates. From 10 µs 

to 50 µs, the intensity of microbubble collapse increases as shown in Table 3.3 in Part 

3.3.2.3. But at the same time, the difference in cavity behavior among these 3 pulse 

durations is extremely small as shown in Figure 3.10 (C). So the reason of the 

increase in sonoporation efficiency is the increase in the intensity of shelled bubble 

collapse. The case of 500 µs shows violent collapse of shelled bubbles, strong 

nonlinearity in cavity oscillation and collapse of cavity can also be found. Since all 

these 3 behaviors are strong, the sharp drop of cell viability is thus understandable.  

4.4.4   Influence of PRF 

Burst settings, as introduced in Part 2.2.2, including pulse duration and pulse 

repetition frequency (PRF). Different burst settings have different total ‘on’ time of 

ultrasound and thus have different total energy. 

The influence of PRF on both delivery rate and cell viability was tested. The cell 

behaviors during irradiation of 8 PRF values together with continuous wave case 

were shown in Figure 4.8. The initial microbubble concentration is 0.1 (10% volume 

to volume). The other parameters were set as: the acoustic intensity is 0.8 MPa; the 

duty cycle is kept at 10%; and the irradiation time is 30 s except for the continuous 

case where the irradiation time is 20 s. 

There is no clear trend of increase of decrease for either delivery rate or cell 

viability as PRF changes. Delivery rates of continuous case, 20 kHz and 50 kHz are 

smaller than other 6 cases. Cell viability of continuous case, 50 Hz, 20 kHz and 50 

kHz are lower than other 5 cases. 
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Figure 4.8 Effects of PRF on the delivery rate and cell viability for cells irradiated in both 
attachment and suspension statuses. DR is short for delivery rate; CV is short for cell 

viability; and A, V indicate attachment and suspension status, respectively. The acoustic 
intensity is 0.8 MPa; the duty cycle is kept at 10%; and the irradiation time is 30 s. The data 
is averaged from 4 independent replicates (12 samples) and shown as the mean +/- standard 

deviation. 

The results from bubble radial dynamics have proved that for shelled bubbles, 

there is little difference in the intensity of collapse among all PRF cases. For cavity, 
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been proved to cause sonoporation. However, the irradiation time is only 30 s and 

within 30 s, as discussed in Part 4.4.2, the increase in sonoporation efficiency comes 

mainly from shelled bubble behavior. So for all cases, the sonoporation efficiency 
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can be given. But one possible explanation is the happening of resonant vibration of 

cells (http://www.ccmr.cornell.edu/education/ask/index.html?quid=734). The PRF is 

high enough to cause cells vibrate mechanically and further disruption of cell 

membrane resulting in the cell death.   

4.5   Correlation between bubble and cell behaviors 

As known, cavitation activities are believed to play very important role in 

sonoporation. The results in Chapter 2 and 3 have shown the parametric influence on 

bubble behavior and here in Part 4.4 such influence on cell behaviors is discussed. 

Since cell behaviors are the results of cavitation of bubbles, to get a more 

comprehensive understanding on such relationship, the correlation between bubble 

and cell behaviors will be discussed together here based on the parametric influences 

on both bubble and cell behaviors.  

It must be noticed that size of the cell we used, NIH3T3, is around 30 µm while 

the averaged diameter of the contrast agents are around 3 µm. Cell is a much larger 

object compared to contrast agent, which is also true for human cells whose size are 

around 30-100 µm. Weak action of cavitation bubbles does not destroy the intactness 

of the membrane while strong action causes cell lysis and disintegration. Here what is 

focused in sonoporation is the sublethal damage to the cell membrane which opens 

the membrane structure for a short time while keeps the cell itself alive.  

The relationship between bubble and cell behavior is complicated by the fact that 

several kinds of bubble behaviors can cause cell behaviors that also have two sides, 

repairable pores and death.  

The first kind of bubble behavior is oscillation or collapse of cavities generated 

in the medium itself. One point to be carefully mentioned here is that such cavity 

behavior is the after phase of contrast agents, in other words, after the shelled bubbles 

have collapsed to a negligible concentration. Stable oscillation of such cavities is too 

weak to cause sonoporation behavior even at very high ultrasound intensity, as shown 

in Figure 4.5 (A) after 30 seconds. And surprisingly, here the effect of oscillation 

comes not from the amplitude but from the nonlinearity. With higher nonlinearity, 
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sonoporation and cell death both increase from cavity behavior. Then it is 

understandable that collapse of cavities which is naturally high nonlinear, causes both 

repairable pores as well as cell death. For oscillation of cavity, the parameters are 

more burst settings dependent than intensity. Either high duty ratio or long pulse 

duration is needed to reach a high nonlinear move of cavities. Since in none of the 

cases tested, continuous collapse of cavities is achieved, there is no clear conclusion 

on the parameters settings that causes collapse of cavities. But it is obvious that as the 

oscillation goes more and more nonlinear, the collapse of cavities will finally take 

place. So for cavity behavior, the threshold for causing damage on cells is much 

higher than that of contrast agent behavior.  

For contrast agents, the results on bubble radial dynamics have shown that 

beginning from 0.2 MPa the shelled bubbles begin to response to ultrasound by 

starting to oscillate and from around 0.34 MPa they begin to collapse. At 0.2 MPa, 

both repairable pores and cell deaths are significant, which indicate relatively low 

thresholds for membrane damage. It also proves that stable oscillation of shelled 

bubbles, unlike that of cavities, is also able to cause cell behavior. This ability, 

however, is quite weak compared to collapse of shelled bubbles since beginning from 

0.3 MPa the increase of sonoporated cells and decrease of dead cells both become 

much sharper. This is understandable because the population of contrast agents 

around a cell is large and the possibility of cell behavior is surely higher than that 

from cavities. At 0.4 MPa the cavitation of contrast agents is collapse dominant but 

cell behaviors are still far from its maximum intensity. The number of sonoporated 

cells nearly doubles and the dead cells also increases as intensity goes to 0.8 MPa. 

Since increase in intensity causes more violent collapse of contrast agents, with the 

same amount of shelled bubbles around a cell, stronger activities of individual 

bubbles cause stronger cell behavior. Stronger activities result in larger pores, as well 

as longer opening time [93] and thus benefit the internalization process. But such 

increase partly stops when intensity reaches 0.8 MPa: the cell death continues while 

sonoporation nearly stops, indicating that there is a number limit of the total effective 

contrast agents. Considering that a cell has only limited area and also can only bear 

limited area of pores otherwise it dies, the existence of intensity plateau is natural. 
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The only question is to what intensity the pores can last for the longest time without 

causing cell death. This self-sealing time is studied to be only a few seconds [94] for 

pores caused by shear stress at a very low intensity. For high intensity shock wave 

caused pore cases and a large number of cells, the time may be longer. As seen for 

most cases, the violent collapse of shelled bubbles stops within 10 seconds, but the 

rapid increase lasts till 30 s. The self-sealing time is here believed to be no shorter 

than 10 seconds. 

The results shown in Figure 4.5 compare the difference between cell behaviors 

caused by cavity and shelled bubbles very well. Even with high nonlinear oscillation 

and occasional collapse in Figure 4.5 (C), cavity activities is still much weaker 

compared to shelled bubble activities.            

4.6   Therapeutic ratio 

The delivery rate and cell viability for all cases including cells irradiated in both 

attachment and suspension status are shown in Figure 4.9. The data from 8 series 

discussed above, including intensity, irradiation time for 3 different settings, PRF, 

pulse duration for 2 different settings are presented as a scatter plot. The legends in 

italic font indicating hollow markers are for cells irradiated in suspension. The overall 

trend for both cells irradiated in attachment status and suspension status is that 

increases in transfection efficiency are associated with decreased cell viability. With 

similar cell viability, the delivery rate of cells irradiated in suspension is higher than 

that of cells irradiated in attachment status. 

For attachment status, the highest delivery rate obtained is 7.39%. The 

experiment condition for it is: 0.8 MPa intensity, 60 s irradiation time, 0.5 kHz PRF, 

and 500 µs pulse duration. The cell viability at this condition is 78.7%.  

For suspension status, the highest delivery rate obtained is 12.03%. The 

experiment condition is the same as that in attachment status. The cell viability at this 

condition is 82.5%. 
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Figure 4.9 Delivery efficiency and cell viability of all cases for both cells irradiated in 
attachment and suspension status. The filled markers are for attachment status, and the blank 

markers with italic font legend are for cells irradiated in suspension. 

To quantitatively assess delivery rate and cell viability together, the therapeutic 

ratio [44] (defined as the ratio of delivered cells to dead cells) for all cases including 

cells irradiated in both attachment and suspension status are shown in Figure 4.10. 

For cells irradiated in both statuses, the delivery rate of case 15 and case 23 in 

irradiation time series are clearly higher than other series. However, the therapeutic 

ratios for both 2 cases are not very high due to the lower cell viability. 

For attachment status, there are two close therapeutic ratio peak values. One is 

0.78. The experiment condition for it is: 0.8 MPa intensity, 60 s irradiation time, 2 

kHz PRF, and 50 µs pulse duration. The delivery rate at this condition is 5.24% and 

the cell viability is 93.3%. The other one is 0.73. The experiment condition for it is: 

0.8 MPa intensity, 10 s irradiation time, 5 kHz PRF, and 20 µs pulse duration. The 

delivery rate at this condition is 3.45% and the cell viability is 95.3%. 

For cells irradiated in attachment status, the highest therapeutic ratio comes from 

the combination of delivery rate and cell viability while the second highest 

therapeutic ratio comes mainly from the high cell viability. 

For suspension status, there are also two close therapeutic ratio peak values. One 

is 2.55. The experiment condition for it is: 0.8 MPa intensity, 10 s irradiation time, 5 
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kHz PRF, and 20 µs pulse duration. The delivery rate at this condition is 5.61% and 

the cell viability is 97.8%. The other one is 2.45. The experiment condition for it is: 

0.8 MPa intensity, 60 s irradiation time, 2 kHz PRF, and 50 µs pulse duration. The 

delivery rate at this condition is 9.55% and the cell viability is 96.1%. 

For cells irradiated in suspension status, the highest therapeutic ratio comes 

mainly from the high cell viability while the second highest therapeutic ratio comes 

from the combination of delivery rate and cell viability. 
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(A) 

 
(B) 

Figure 4.10.Therapeutic ratio for all cases. (A) is the result for cells irradiated in attachment 
status and (B) is the result for cells irradiated in suspension status.  
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4.7   Summary 

FITC-dextran was delivered to cultured NIH3T3 cells via sonoporation in the 

presence of microbubbles. Influences of ultrasonic parameters, including intensity, 

irradiation time, PRF and pulse duration, on both delivery rate and cell viability were 

studied. The cells were irradiated in both attachment and suspension status. 

As intensity increases, sonoporation efficiency increases but cell viability 

decreases. The difference in increasing between 0.3 MPa and 0.4 MPa is large. The 

increase of efficiency plateaus from 0.8 MPa but cell viability keeps decreasing. 

As irradiation time increases, sonoporation efficiency increases but cell viability 

decreases. For case 6, the increase of sonoporation plateaus from 30 s. As pulse 

duration increases, sonoporation efficiency increases but cell viability decreases. The 

cell viability of 500 µs case is very low. The difference in sonoporation efficiency 

among different PRF values is small. The cell viability at 50 Hz, 20 kHz, and 50 kHz 

is lower than other cases.  

As for the correlation between cavitation behavior and sonoporation efficiency: 

weak oscillation of shelled bubbles can cause sonoporation but is very ineffective; 

stable oscillation of cavity does not sonoporate cells; collapse of both shelled bubbles 

and cavities are effective in sonoporating cells while the first one is more effective. 

The self-sealing time of cells is around 10 seconds. 

The highest delivery rate obtained is 7.39%, 12.03% for attachment and 

suspension status, respectively. The corresponded cell viability is 78.7%, 82.5%, 

respectively. The experiment condition is: 0.8 MPa, 60 s irradiation time, 0.5 kHz 

PRF, and 500 µs pulse duration. For attachment status, there are two close therapeutic 

ratio peaks. One is 0.78. The experiment condition is: 0.8 MPa, 60 s irradiation time, 

2 kHz PRF, and 50 µs pulse duration. The delivery rate at this condition is 5.24% 

while the cell viability is 93.3%. The other one is 0.73. The experiment condition is: 

0.8 MPa, 10 s irradiation time, 5 kHz PRF, and 20 µs pulse duration. The delivery 

rate at this condition is 3.45% while the cell viability is 95.3%. For suspension status, 

there are also two close therapeutic ratio peaks. One is 2.55. The experiment 

condition is: 0.8 MPa, 10 s irradiation time, 5 kHz PRF, and 20 µs pulse duration. The 

delivery rate at this condition is 5.61% while the cell viability is 97.8%. The other one 
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is 2.45. The experiment condition is: 0.8 MPa, 60 s irradiation time, 2 kHz PRF, and 

50 µs pulse duration. The delivery rate at this condition is 9.55% while the cell 

viability is 96.1%.  



Chapter 5. Conclusions and future directions 

121 

Chapter 5. Conclusions and future directions 

Towards higher delivery efficiency from sonoporation, experimental studies 

from two sides were carried out. The overall aim is deeper understanding of 

sonoporation mechanism and thus methods to improve sonoporation efficiency. 

Totally 23 experiment conditions were carried out for both bubble behavior and 

delivery of markers into cells with identical settings. Ultrasonic parameters’ influence, 

including intensity, pulse duration, PRF on both bubble radial dynamics and cell 

behaviors are discussed. The bubble behavior is separately discussed on both 

oscillation and collapse of both cavities generated in the liquid itself and artificially 

added contrast agents from the results of laser diode concentration test and cavitation 

noise analysis. The cell behaviors including the sonoporation and cell death measured 

by flow cytometry and automated counter are listed by parameters.  

The results of bubble behavior are very briefly listed as following. Shelled 

bubble oscillations appear at low intensities and dominant bubble behavior under 0.3 

MPa. Between 0.3 MPa and 0.4 MPa, oscillation and collapse of shelled bubbles 

coexist. From 0.4 MPa, collapse of shelled bubble dominates and collapse becomes 

quicker as intensity and pulse duration increase. There is a threshold intensity of 0.34 

MPa, where microbubble behavior changes from oscillation dominant to collapse 

dominant. For shelled bubbles, pulse duration is leading influencing factor rather than 

rest time when pulse duration is longer than 10 µs. Pulse duration and PRF also 

influence cavity behavior. With longer pulse duration, the oscillation of cavity 

becomes more nonlinear. At high PRFs oscillations of cavities are stronger. Collapses 

of cavities are obvious at high pulse durations and low PRFs. 

The results of cell behavior are briefly listed as following. Sonoporation 

efficiency increases but cell viability decreases when intensity increases. The 

difference in increasing between 0.3 MPa and 0.4 MPa is large. The increase of 

efficiency plateaus from 0.8 MPa but cell viability keeps decreasing. Sonoporation 

efficiency increases but cell viability decreases when pulse duration increases. As 



Chapter 5. Conclusions and future directions 

122 

pulse duration increases, sonoporation efficiency increases but cell viability decreases. 

The cell viability of 500 µs case is very low. The difference in sonoporation 

efficiency among different PRF values is small. The cell viability at 50 Hz, 20 kHz, 

and 50 kHz is lower than other cases. The sonoporation efficiency reaches more than 

60% of its final value at 60 s during first 20 seconds. After 20 seconds, the increasing 

in efficiency is small. But such small increase is more obvious with an unstable 

emission level. 

The relationship between cavitation behavior and sonoporation efficiency is 

quite complicated and is briefly listed as following. Weak oscillation of shelled 

bubbles can cause sonoporation but is very ineffective; stable oscillation of cavity 

does not sonoporate cells; collapse of both shelled bubbles and cavities are effective 

in sonoporating cells while the first one is more effective. The self-sealing time of 

cells is around 10 seconds. 

One continuing work is refilling of microbubbles. Since the collapse of shelled 

bubbles is most effective and happens very quickly, refilling of bubbles would 

improve sonoporation efficiency directly. Even with the same amount of bubbles, 

rupture them step by step is a better choice. Further future work may include two 

parts. The first one is to carry out sonoporation experiments in a more microscopic 

way. For example, to observe the pores directly will help to form theory on pore 

formation process which is now one of the most difficult topics in sonoporation 

research. The other one is to apply the parametric influence to in vivo cases. Delivery 

with animal experiments applying the conclusions in this study is very necessary 

before clinical settings of sonoporation delivery therapy. 



Bibliography 

123 

Bibliography 

 

[1]  A. I. Freeman and E. Mayhew, "Targeted drug delivery," Cancer, vol. 58, no. S2, pp. 
573-583, 1986.  

[2]  T. Friedmann and R. Roblin, "Gene therapy for human genetic disease?," Science, vol. 175, 
pp. 949-955, 1972.  

[3]  T. Friedmann, "Progress toward human gene therapy," Science, vol. 244, pp. 1275-1281, 
1989.  

[4]  R. C. Scott, D. Crabbe, B. Krynska, R. Ansari and M. F. Kiani, "Aiming for the heart: 
targeted delivery of drugs to diseased cardiac tissue," Expert Opinion on Drug Delivery, vol. 
5, no. 4, pp. 459-470, 2008.  

[5]  R. H. Muller and C. M. Keck, "Challenges and solutions for the delivery of biotech drugs – a 
review of drug nanocrystal technology and lipid nanoparticles," Journal of Biotechnology, 
vol. 113, no. 1-3, p. 151–170, 2004.  

[6]  J. K. Mills and D. Needham, "1275-1281," Expert Opinion on Therapeutic Patents, vol. 9, 
no. 11, pp. 1499-1513, 1999.  

[7]  T. M. Allen and P. R. Cullis, "Drug Delivery Systems: Entering the Mainstream," Science, 
vol. 303, pp. 1818-1822, 2003.  

[8]  Y. H. Bae and P. K, "Targeted drug delivery to tumors: Myths, reality and possibility," 
Journal of Controled Release, vol. 153, no. 3, p. 198–205, 2011.  

[9]  O. Pillai, A. B. Dhanikula and R. Panchagnula, "Drug delivery: an odyssey of 100 years," 
Current Opinion in Chemical Biology, vol. 5, p. 439–446, 2001.  

[10]  V. P. Torchilin, "Drug targeting," European Journal of Pharmaceutical Sciences, vol. 11, no. 
S2, p. S81–S91, 2000.  

[11]  L. R, "New Methods of Drug Delivery," Science, vol. 249, pp. 1527-1533, 1990.  

[12]  Y. Li, F. Chen, M. M. Cona, Y. Feng, U. Himmelreich, R. Oyen, A. Verbruggen and Y. Ni, "A 
review on various targeted anticancer therapies," Targeted Oncology, vol. 7, pp. 69-85, 2012.  

[13]  M. R. Prausnitz, S. Mitragotri and R. Langer, "Current status and future potential of 
transdermal drug delivery," Nature Reviews Drug Discovery, Vols. 115-124, p. 3, 2004.  

[14]  A. Bianco, K. Kostarelos and M. Prato, "Applications of carbon nanotubes in drugdelivery," 
Current Opinion in Chemical Biology, vol. 9, no. 6, p. 674–679, 2005.  

[15]  J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Development Research, vol. 67, 
no. 1, pp. 55-60, 2006.  



Bibliography 

124 

[16]  N. A. Kootstra and I. M. Verma, "Gene therapy with viral vectors," Annual Review of 
Pharmacology and Toxicology, vol. 43, pp. 413-439, 2003.  

[17]  A. L. Dunehoo, M. Anderson, S. Majumdar, N. Kobayashi, C. Berkland and S. T. J, "Cell 
Adhesion Molecules for Targeted Drug Delivery," Journal of Pharmaceutical Sciences, vol. 
95, no. 9, pp. 1856-1872, 2006.  

[18]  C. M. Newman, A. Lawrie, A. F. Brisken and D. C. Cumberland, "Ultrasound gene therapy: 
on the road from concept to reality," Echocardiography, vol. 18, pp. 339-347, 2001.  

[19]  D. L. Miller, S. V. Pislaru and J. F. Greenleaf, "Sonoporation: mechanical DNA delivery by 
ultrasonic cavitation," Somatic Cell and Molecular Genetics, vol. 27, pp. 115-134, 2002.  

[20]  W. G. Pitt, G. A. Husseini and B. J. Staples, "Ultrasonic drug delivery-a general review," 
Expert Opinion on Drug Delivery, vol. 1, pp. 37-56, 2004.  

[21]  G. R. ter Haar and C. C. Coussios, "High intensity focused ultrasound: past, present and 
future," International Journal of Hyperthermia, vol. 23, pp. 85-87, 2007.  

[22]  G. R. ter Haar and C. C. Coussios, "High intensity focused ultrasound: physical principles 
and devices," International Journal of Hyperthermia, vol. 23, pp. 89-104, 2007.  

[23]  F. A. Duch, "Hazards, risks and safety of diagnostic ultrasound," Medical Engineering & 
Physics, vol. 30, no. 10, p. 1338–1348, 2008.  

[24]  V. F. Humphrey, "Ultrasound and matter—Physical interactions," Progress in Biophysics and 
Molecular Biology, vol. 93, pp. 195-211, 2007.  

[25]  C. E. Brennen, Cavitation and Bubble Dynamics, New York: Oxford University Press, 1995.  

[26]  S. Barnett, "Nonthermal issues: cavitation—its nature, detection and measurement," 
Ultrasound in Medicine and Biology, vol. 24, p. S11–S21, 1998.  

[27]  J. Wu and W. L. Nyborg, "Ultrasound, cavitation bubbles and their interaction with cells," 
Advanced Drug Delivery Reviews, vol. 60, pp. 1103-1116, 2008.  

[28]  J. Wu, "Theoretical study on shear stress generated by microstreaming surrounding contrast 
agents attached to living cells," Ultrasound in Medicine and Biology, vol. 28, no. 1, pp. 
125-129, 2002.  

[29]  D. Willian and J. O'brien, "Ultrasound–biophysics mechanisms," Progress in Biophysics and 
Molecular Biology, vol. 93, p. 212–255, 2007.  

[30]  W. Lauterborn, T. Kurz, R. Geisler, D. Schanz and O. Lindau, "Acoustic cavitation, bubble 
dynamics and sonoluminescence," Ultrasonics Sonochemistry, vol. 14, pp. 484-491, 2007.  

[31]  H.-D. Liang, J. Tang and Halliwell, "Sonoporation, drug delivery, and gene therapy," 
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in 
Medicine, vol. 224, pp. 343-361, 2010.  

[32]  Y. Zhao, Y. Luo, C. Lu, J. Xu, J. Tang, M. Zhang, Y. Zhang and H. Liang, 
"Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane 



Bibliography 

125 

cultured in vitro," Journal of Drug Targeting, vol. 16, no. 1, pp. 18-25, 2008.  

[33]  R. K. Schlicher, H. Radhakrishna, T. P. Tolentino, R. P. Apkarian, V. Zarnitsyn and M. R. 
Prausnitz, "Mechanism of intracellular delivery by acoustic cavitation," Ultrasound in 
Medicine and Biology, vol. 32, no. 6, pp. 915-924, 2006.  

[34]  Y. Zhang, R. Tachibana, A. Okamoto, T. Azuma, A. Sasaki, K. Yoshinaka, Y. Tei, S. Takagi 
and Y. Matsumoto, "Ultrasound-Mediated Gene Transfection in vitro: Effect of Ultrasonic 
Parameters on Efficiency and Cell Viability," International Journal of Hyperthermia, vol. 28, 
no. 4, pp. 290-299, 2012.  

[35]  D. J. Wells, "Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in 
vivo," Cell Biol Toxicol, vol. 26, pp. 21-28, 2010.  

[36]  S. Mehier-Humbert and R. H. Guy, "Physical methods for gene transfer: Improving the 
kinetics of gene delivery into cells," Advanced Drug Delivery Reviews, vol. 57, no. 5, pp. 
733-753, 2005.  

[37]  J. Pepe, M. Rincón and J. Wu, "Experimental comparison of sonoporation and 
electroporation in cell transfection applications," Acoustics Research Letters Online, vol. 5, 
no. 2, pp. 62-67, 2004.  

[38]  P. J. Canatell, J. F. Karr, J. A. Petros and M. R. Prausnitz, "Quantitative Study of 
Electroporation-Mediated Molecular Uptake and Cell Viability," Biophysical Journal, vol. 
80, no. 2, pp. 755-764, 2001.  

[39]  K. Ng and Y. Liu, "Therapeutic ultrasound: Its application in drug delivery," Medicinal 
Research Reviews , vol. 22, no. 2, pp. 204-223, 2002.  

[40]  M. Fechheimer, C. Denny, M. F. Murphy and D. L. Taylor, "Measurement of cytoplasmic pH 
in Dictyostelium discoideum by using a new method for introducing macromolecules into 
living cells," European Journal of Cell Biology, vol. 40, no. 2, pp. 242-247, 1986.  

[41]  M. Fechheimer, J. F. Boylan, S. Parker, J. E. Sisken, G. L. Patel and S. G. Zimmer, 
"Transfection of mammalian cells with plasmid DNA by scrape loading and sonication 
loading," Proceedings of the National Academy of Sciences, vol. 84, no. 23, pp. 8463-8467 , 
1987.  

[42]  S. Bao, B. D. Thrall and D. L. Miller, "Transfection of a reporter plasmid into cultured cells 
by sonoporationin vitro," Ultrasound in Medicine and Biology, vol. 23, no. 6, p. 953–959, 
1997.  

[43]  H. J. Kim, J. F. Greenleaf, R. R. Kinnick, J. T. Bronk and M. E. Bolander, 
"Ultrasound-mediated transfection of mammalian cells," Human Gene Therapy, vol. 7, pp. 
1339-1346, 1996.  

[44]  R. Karshafian, P. D. Bevan, R. Willams, S. Samac and B. P. N, "Sonoporation by 
ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on 
cell membrane permeability and cell viability," Ultrasound in Medicine and Biology, vol. 35, 



Bibliography 

126 

pp. 847-860, 2009.  

[45]  L. C. Phillips, A. L. Klibanov, B. R. Wamhoff and J. A. Hossack, "Localized ultrasound 
enhances delivery of rapamycin from microbubbles to prevent smooth muscle proliferation," 
Journal of Controlled Release, vol. 154, no. 1, p. 42–49, 2011.  

[46]  J. M. Escoffre, J. Piron, A. Novell and A. Bouakaz, "Doxorubicin Delivery into Tumor Cells 
with Ultrasound and Microbubbles," Molecular Pharmaceutics, vol. 8, no. 3, p. 799–806, 
2011.  

[47]  M. Kinoshita and K. Hynynen, "A novel method for the intracellular delivery of siRNA using 
microbubble-enhanced focused ultrasound," Biochemical and Biophysical Research 
Communications, vol. 335, p. 393–399, 2005.  

[48]  L. Reslan, J.-L. Mestas, S. Herveau, J.-C. Béra and C. Dumontet, "Transfection of cells in 
suspension by ultrasound cavitation," Journal of Controlled Release, vol. 142, pp. 251-258, 
2010.  

[49]  K. Koshiyama, T. Yano and T. Kodama, "Self-Organization of a Stable Pore Structure in a 
Phospholipid Bilayer," Physical Review Letters, vol. 105, no. 1, p. 018105 (4), 2010.  

[50]  A. Choubey, M. Vedadi, K. Nomura, R. K. Kalia, A. Nakano and P. Vashishta, "Poration of 
lipid bilayers by shock-induced nanobubble collapse," Applied Physics Letters, vol. 98, p. 
023701(3), 2011.  

[51]  S. Mehier-Humbert, T. Bettinger, F. Yan and R. H. Guy, "Plasma membrane poration induced 
by ultrasound exposure: Implication for drug delivery," Journal of Controlled Release, vol. 
104, p. 213–222, 2005.  

[52]  Z. Fan, R. E. Kumon, J. Park and C. X. Deng, "Intracellular delivery and calcium transients 
generated in sonoporation facilitated by microbubbles," Journal of Controlled Release, vol. 
142, pp. 31-39, 2010.  

[53]  P. Marmottant, M. Versluis, N. de Jong, S. Hilgengeldt and D. Lohse, "High-speed imaging 
of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved 
acoustic streaming," Experiments in Fluids, vol. 41, no. 2, pp. 147-153, 2006.  

[54]  A. van Wamel, K. Kooiman, M. Harteveld, M. Emmer, F. J. ten Cate, V. Michel and N. de 
Jong, "Vibratingmicrobubblespokingindividualcells: Drugtransfer into cellsviasonoporation," 
Journal of Controlled Release, vol. 112, no. 2, pp. 149-155, 2006.  

[55]  Z. Y, K. Yang, J. Cui, J. Y. Ye and C. X. Deng, "Controlled permeation of cell membrane by 
single bubble acoustic cavitation," Journal of Controlled Release, vol. 157, pp. 103-111, 
2012.  

[56]  C.-D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius and D. Lohse, 
"Sonoporation from Jetting Cavitation Bubbles," Biophysical Journal, vol. 91, pp. 
4285-4295, 2006.  

[57]  B. Krasovitski and E. Kimmel, "Shear stress induced by a gas bubble pulsating in an 



Bibliography 

127 

ultrasonic field near a wall," IEEE Transactions on Ultrasonics, Ferroelectrics and 
Frequency Control, vol. 51, no. 8, pp. 973-979, 2004.  

[58]  J. Collis, R. Manasseh, P. Liovic, P. Tho, A. Ooi, K. Petkovic-Duran and Y. Zhu, "Cavitation 
microstreaming and stress fields created by microbubbles," Ultrasonics, vol. 50, pp. 273-279, 
2010.  

[59]  P. F. Davies, "Flow-mediatedendothelialmechanotransduction," Physiological Reviews, vol. 
75, no. 3, pp. 519-560, 1995.  

[60]  J. Park, Z. Fan and C. X. Deng, "Effects of shear stress cultivation on cellmembrane 
disruption and intracellular calcium concentration in sonoporation of endothelial cells," 
Journal of Biomechanics, vol. 44, pp. 164-169, 2011.  

[61]  S. Mitragotri, "Healing sound: the use of ultrasound in drug delivery and other therapeutic 
applications," Nature Reviews Drug Discovery , vol. 4, pp. 255-260, 2005.  

[62]  K. Koshiyama, T. Kodama, T. Yano and S. Fujikawa, "Structural change in lipid bilayers and 
water penetration induced by shock waves: molecular dynamics simulations," Biophysical 
Journal, vol. 91, pp. 2198-2205, 2006.  

[63]  S. Y. Chen, R. V. Shohet, R. Bekeredjian, P. Frenkel and P. A. Grayburn, "Optimization of 
ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic 
acid by ultrasound-targeted microbubble destruction," Journal of the American College of 
Cardiology, vol. 42, pp. 301-308, 2003.  

[64]  V. G. Zarnitsyn and M. R. Prausnitz, "hysical parameters influencing optimization of 
ultrasound-mediated DNA transfection," Ultrasound in Medicine and Biology, vol. 30, pp. 
527-538, 2004.  

[65]  H. D. Liang, Q. L. Lu, S. A. Xue, M. Halliwell, T. Kodama, D. O. Cosgrove, H. J. Stauss, T. 
A. Partridge and M. K. Blomley, "Optimisation of ultrasound-mediated gene transfer 
(sonoporation) in skeletal muscle cells," Ultrasound in Medicine and Biology, vol. 30, pp. 
1523-1529, 2004.  

[66]  A. Rahim, S. L. Taylor, N. L. Bush, G. R. ter Haar, J. C. Bamber and C. D. Porter, "Physical 
parameters affecting ultrasound/microbubblemediated gene delivery efficiency in vitro," 
Ultrasound in Medicine and Biology, vol. 32, pp. 1269-1279, 2006.  

[67]  J.-P. Franc and J.-M. Michel, "Fundamentals of Cavitation," Fluid Mechanics and Its 
Applications, vol. 76, pp. 1-306, 2005.  

[68]  M. S. Plesset and A. Prosperetti, "Bubble dynamics and cavitation," Annual Review of Fluid 
Mechanics, vol. 9, pp. 145-185, 1977.  

[69]  W. P. Mason, Physical Acoustics, Vol. 1-B, New York: Academic Press, 1964.  

[70]  T. Faez, M. Emmer, K. Kooiman, M. Versluis, A. van der Steen and N. de Jong, "20 Years of 
Ultrasound Contrast Agent Modeling," IEEE Transactions on Ultrasonics, Ferroelectrics and 
Frequency Control, vol. 60, no. 1, pp. 7-20, 2013.  



Bibliography 

128 

[71]  J. S. Allen, D. J. May and K. W. Ferrara, "Dynamics of therapeutic ultrasound contrast 
agents," Ultrasound in Medicine and Biology, vol. 28, no. 6, pp. 805-816, 2002.  

[72]  M. Ashokkumar, J. Lee, S. Kentish and F. Grieser, "Bubbles in an acoustic field: An 
overview," Ultrasonics Sonochemistry, vol. 14, p. 470–475, 2007.  

[73]  M. Liebler, T. Dreyer and R. E. Riedlinger, "Modeling of interaction between therapeutic 
ultrasound propagation and cavitation bubbles," Ultrasonics, vol. 44, p. e319–e324, 2006.  

[74]  A. H. Lo, O. D. Kpipfgans, P. L. Carson and J. B. Fowlkes, "Spatial control of gas bubbles 
and their effects on acoustic fields," Ultrasound in Medicine and Biology, vol. 32, no. 1, p. 
95–106, 2006.  

[75]  A. A. Doinikov and S. T. Zavtrak, "On the mutual interaction of two gas bubbles in a sound 
field," Physics of Fluids, vol. 7, no. 8, pp. 1923-1930, 1995.  

[76]  É. S. Nasibullaeva and I. S. Akhatov, "Dynamics of a bubble cluster in an acoustic field," 
Acoustical Physics, vol. 51, no. 6, pp. 705-712, 2005.  

[77]  P. C. Sontum, "Physicochemical Characteristics of Sonazoid™, A New Contrast Agent for 
Ultrasound Imaging," Ultrasound in Medicine & Biology, vol. 34, no. 5, pp. 824-833, 2008.  

[78]  J. D. Ingle and S. R. Crouch, Spectrochemical Analysis, New Jersey : Prentice Hall, 1988.  

[79]  P. Misra and M. Dubinskii, Ultraviolet Spectroscopy and UV Lasers, New York: CRC Press, 
2002.  

[80]  T. G. Leighton, The acoustic bubble, San Diego: Academic Press, 1994.  

[81]  松本洋一郎 , 吉澤晋, “気泡の非線形振動,” 機械の研究, 第 巻 54, 第 1, pp. 108-113, 
2002.  

[82]  E. A. Neppiras, "Acoustic cavitation," Physics Reports , vol. 61, pp. 159-251, 1980.  

[83]  A. J. Walton and G. T. Reynolds, "Sonoluminescence," Advances in Physics , vol. 33, no. 6, 
pp. 595-660, 1984.  

[84]  K. Negishi, "Experimental Studies on Sonoluminescence and Ultrasonic Cavitation," Journal 
of the Physical Society op Japan, vol. 16, pp. 1450-1465, 1961.  

[85]  S. Paliwal and S. Mitragotri, "Ultrasound-induced cavitation: applications in drug and gene 
delivery," Expert Opinion on Drug Delivery, vol. 3, no. 6, pp. 713-726, 2006.  

[86]  V. Kamath and A. Prosperetti, "Numerical integration methods in gas‐bubble dynamics," The 
Journal of the Acoustical Society of America, vol. 85, pp. 1538-1548, 1989.  

[87]  W. Lauterborn, "Cavitation bubble dynamics - new tools for an intricate problem," Applied 
Scientific Research, vol. 38, pp. 165-178, 1982.  

[88]  A. L. Klibanov, "Microbubble contrast agents: targeted ultrasound imaging and 
ultrasound-assisted drug-delivery applications," Investigative Radiology, vol. 41, no. 3, pp. 
354-362, 2006.  

[89]  K. Ferrara, R. Pollard and M. Borden, "Ultrasound microbubble contrast agents: 



Bibliography 

129 

fundamentals and application to gene and drug delivery," Annual Review of Biomedical 
Engineering, vol. 9, pp. 415-447 , 2007.  

[90]  D. M. Hollow, A. D. Mahajan, T. E. McCutchen and M. R. Prausnitz, "Measurement and 
correlation of acousticcavitation with cellular bioeffects," Ultrasound in Medicine and 
Biology, vol. 32, no. 7, pp. 1111-1122, 2006.  

[91]  Y. Qiu, Y. Luo, Y. Zhang, W. Cui, D. Zhang, J. Wu, J. Zhang and J. Tu, "The correlation 
between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA 
transfection with polyethylenimine (PEI) in vitro," Journal of Controlled Release, vol. 145, 
pp. 40-48, 2010.  

[92]  W. S. Chen, T. J. Matula, A. A. Brayman and L. A. Crum, "A comparison of the 
fragmentation thresholds and inertial cavitation doses of different ultrasound contrast 
agents," Journal of the Acoustical Society of America, vol. 113, no. 1, pp. 643-651, 2003.  

[93]  D. L. Miller and J. Quddus, "Lysis and sonoporation of epidermoid and phagocytic 
monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies," Ultrasound 
in Medicine and Biology, vol. 27, no. 8, pp. 1107-1113, 2001.  

[94]  F. Yang, N. Gu, D. Chen, X. Xi, D. Zhang and J. Wu, "Experimental study on cell 
self-sealing during sonoporation," Journal of Controlled Release, vol. 131, no. 3, pp. 
205-210, 2008.  

 





List of Figures 

131 

List of Figures 

Figure 1.1 An atomic force microscopy image of pores on the cell membrane [32] ....................... 8 
Figure 1.2 An example of intracellular delivery by ultrasound. (a) Confocal micrographs showing 
a nonsonicated DU 145 cell exposed to calcein (A1) and sonicated cells exhibiting uptake of 
calcein (A2), bovine serum albumin (A3) and 150 (A4), 500 (A5) and 2,000 kDa (A6) dextrans. 
Scale bars are 1 µm [33] .................................................................................................................. 9 
Figure 1.3 An example of intracellular delivery of plasmid DNA via sonoporation [34] ................ 9 
Figure 1.4 An example of parametric studies on sonoporation efficiency and cell viability, PRF 
stands for pulse repetition frequency [34] ..................................................................................... 13 
Figure 1.5 Sonoporation studied in this dissertation, mainly two parts: bubble behavior including 
concentration change and broadband noise, and cell behavior including marker uptake and cell 
viability .......................................................................................................................................... 14 
Figure 2.1 The radial oscillations for a 2.5 µm agent with a 500 nm triacetin shell driven at 1.6 
MPa, 2.5 MHz [71] ........................................................................................................................ 20 
Figure 2.2 The radial oscillations for a 2.5 µm agent with a 5 nm triacetin shell driven at 1.6 MPa, 
2.5 MHz [71] ................................................................................................................................. 20 
Figure 2.3 A microscopic view of SonazoidTM suspension ............................................................ 23 
Figure 2.4 Number (open squares) and volume (filled squares) size distributions of SonazoidTM 
suspension, data from manufacturer, GE Health [77] .................................................................... 23 
Figure 2.5 Diagram of Beer–Lambert absorption .......................................................................... 25 
Figure 2.6 Diagram of ultrasound exposure system, all the pictures of instuments are provided by 
their manufacturers except for E) and G) ...................................................................................... 27 
Figure 2.7 A chart of typical burst wave applied for most experimental cases .............................. 28 
Figure 2.8 Laser diode units used to measuring the voltage of transmitted light. (A) is a photo of 
laser and diode unit, in which the left one is laser unit and the right one is diode unit; (B) is a 
diagram showing the position of this laser diode system, the diameter of laser beam is about 3 
mm. ................................................................................................................................................ 30 
Figure 2.9 Fit curve of bubble concentration and intensity of transmitted light. Red dots are 
measured data with known concentration; blue curve is the fit curve calculated from 
Beer-Lambert law. ......................................................................................................................... 32 
Figure 2.10 Hydrophone position for measuring ultrasound wave absorption and reflection ....... 33 
Figure 2.11 Acoustic pressure field measured with needle hydrophone. (A) Hydrophone placed 3 
mm away from the transducer. The unit is Mega Pascal and the total area is 15mm×15 mm.  (B) 
Hydrophone placed 6 mm away from the transducer. +: 24-well plate positioned between the 
hydrophone and the transducer; –: no 24-well plate positioned between the hydrophone and the 
transducer. ...................................................................................................................................... 34 



List of Figures 

132 

Figure 2.12 (A) Effects of ultrasound intensity on the microbubble concentration; (B) the time 
took for the microbubble to reach a concentration of 0.015; and (C) the minimum concentration 
of microbubbles during exposure. No ultrasound was applied in the case of control. The 
irradiation time is 60s; PRF is 5 kHz and the pulse duration is 20 µs. The data in (B) and (C) are 
averaged from three independent replicates and shown as the mean ± standard deviation. .......... 39 
Figure 2.13( A) Effects of ultrasound intensity on the microbubble concentration with small 
intensity increments; (B) the time took for the microbubble to reach a concentration of 0.015; 
and (C) the minimum concentration of microbubbles during exposure. No ultrasound was 
applied in the case of control. The irradiation time is 60s; PRF is 5 kHz and the pulse duration is 
20 µs. The data in (B) and (C) are averaged from three independent replicates and shown as the 
mean ± standard deviation. ............................................................................................................ 41 
Figure 2.14 (A) Effects of pulse duration on the microbubble concentration, the data after 25 
seconds were not shown; (B) the time took for the microbubble to reach a concentration of 
0.015; and (C) the minimum concentration of microbubbles during exposure. The acoustic 
intensity is 0.8 MPa; PRF is 5 kHz and the irradiation time is 60 s. The data in (B) and (C) are 
averaged from three independent replicates and shown as the mean ± standard deviation. .......... 45 
Figure 2.15 (A) Effects of pulse duration on the microbubble concentration with smaller PRF; 
(B) the time took for the microbubble to reach a concentration of 0.015; and (C) the minimum 
concentration of microbubbles during exposure. The acoustic intensity is 0.8 MPa; PRF is 5 kHz 
and the irradiation time is 60 s. The data in (B) and (C) are averaged from three independent 
replicates and shown as the mean +/- standard deviation. ............................................................. 47 
Figure 2.16 Pulse number scaled concentration change from different pulse lengths. The details 
of the waves are shown by the legend with µs unit. The acoustic intensity is 0.8 MPa; the duty 
cycle is kept at 10%; and the irradiation time is 60 s. .................................................................... 49 
Figure 2.17 (A) Effects of PRF on the microbubble concentration, the data after 20 seconds were 
not shown; (B) the time took for the microbubble to reach a concentration of 0.015; and (C) the 
minimum concentration of microbubbles during exposure. The acoustic intensity is 0.8 MPa; the 
duty cycle is kept at 10%; and the irradiation time is 60 s. The data in (B) and (C) are averaged 
from three independent replicates and shown as the mean ± standard deviation. ......................... 51 
Figure 3.1 Sources of acoustic emission [80] ................................................................................ 56 
Figure 3.2 An example of broadband noise [81]. The upper one is the radius time curve, the 
middle one is the corresponding emitted sound signal due to the radial oscillation, and the lower 
one is the frequency domain characteristics of the signals. ........................................................... 57 
Figure 3.3 An example plot of ‘visible noise’ [87] ........................................................................ 59 
Figure 3.4 Experimental setup for cavitation noise recording system. (A) is the diagram plot; (B) 
is a photo of the system; and (C) is a photo of focused PVDF hydrophone and preamplifier, in 
which the lower unit is the focused hydrophone, the middle unit is the preamplifier, and the 
upper unit is the power supply for the preamplifier. ...................................................................... 63 
Figure 3.5 Noise spectrum processing method. The time domain signal (A) is obtained and then 
transformed to frequency domain in (B). ....................................................................................... 65 



List of Figures 

133 

Figure 3.6 Cavitation noise spectrum contour of case 15 over the whole irradiation time. (A): 
control case without microbubbles; (B): tested case. The irradiation time is 60s; PRF is 0.05 kHz 
and the duty ratio is 10%. Color bar is the value of the power of frequencies after FFT with 
limited value range. ....................................................................................................................... 70 
Figure 3.7 Averaged emission level of case 15 over the whole irradiation time. (A): control case 
without microbubbles; (B): tested case. The value of frequency power is averaged value over a 
frequency interval, indicating by the legend. The irradiation time is 60s; PRF is 0.05 kHz and the 
duty ratio is 10%. ........................................................................................................................... 71 
Figure 3.8 Influence of intensity on cavitation noise, (A) frequency contour during the first 10 
seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 30 to 40 second) 
of irradiation; (C): the noise emissions averaged over frequency interval of 1.5 to 2.5 MHz; (D): 
the noise emission spectra averaged over 30 to 40 second. The irradiation time is 60s; PRF is 5 
kHz and the duty ratio is 10%. Color bar is the value of the power of frequencies after FFT with 
limited value range. ....................................................................................................................... 75 
Figure 3.9 Peak emission level and time, the peaks of collapse emission are indicated by circles.77 
Figure 3.10 Influence of pulse duration on cavitation noise, (A) frequency contour during the 
first 10 seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 30 to 40 
second) of irradiation; (C): the noise emissions averaged over frequency interval of 2 to 3 MHz; 
(D): the noise emission spectra averaged over 30 to 40 second. The intensity is 0.8 MPa; the 
irradiation time is 60s; and the PRF is 0.5 kHz. Color bar is the value of the power of frequencies 
after FFT with limited value range. ............................................................................................... 81 
Figure 3.11 Increase in emission frequency when pulse duration changes from 50 µs to 500 µs. 
From 30 to 35 second belongs to the case of 50 µs and from 35 to 40 second belongs to 500 µs 83 
Figure 3.12 Influence of PRF on cavitation noise, (A) frequency contour during the first 10 
seconds of irradiation; (B): frequency contour during the 3rd 10 seconds (from 30 to 40 second) 
of irradiation; (C): the noise emissions averaged over frequency interval of 2 to 3 MHz; (D): the 
noise emission spectra averaged over 30 to 40 second. The intensity is 0.8 MPa; the irradiation 
time is 60s; and the duty ratio is 10%. Color bar is the value of the power of frequencies after 
FFT with limited value range. ........................................................................................................ 85 
Figure 3.13 The emission level of all 7 PRF cases during 30 to 40 second ................................... 87 
Figure 3.14 Frequency power of 1 to 7 MHz signal of all 3 parameters averaged between 30 to 
40 second ....................................................................................................................................... 89 
Figure 4.1 Appearance of cultured NIH3T3 cells .......................................................................... 93 
Figure 4.2 Structural formulas of dextran (A) and FITC-Dextran (B). The data are offered by the 
manufacturer, Sigma-Aldrich. ....................................................................................................... 94 
Figure 4.3 TC10™ Automated Cell Counter, picture from the manufacturer ............................... 98 
Figure 4.4 Effects of ultrasound intensity on the delivery rate and cell viability for cells irradiated 
in both attachment and suspension statuses. (B) is done with small increment. DR is short for 
delivery rate; CV is short for cell viability; and A, V indicate attachment and suspension status, 
respectively.  No ultrasound was applied in the case of control. The irradiation time is 60s; PRF 



List of Figures 

134 

is 5 kHz and the pulse duration is 20 µs. The data is averaged from 4 independent replicates (12 
samples) and shown as the mean +/- standard deviation. .............................................................100 
Figure 4.5 Effects of total irradiation time on the delivery rate and cell viability for cells 
irradiated in both attachment and suspension statuses. DR is short for delivery rate; CV is short 
for cell viability; and A, V indicate attachment and suspension status, respectively. No ultrasound 
was applied in the case of 0 s. The acoustic intensity is 0.8 MPa. PRF is 5 kHz and pulse duration 
is 20 µs (case 6) for (A); PRF is 0.05 kHz and pulse duration is 2,000 µs (case 15) for (B); and 
The acoustic intensity is 0.8 MPa; PRF is 0.5 kHz and pulse duration is 500 µs (case 23) for (C). 
The data is averaged from 4 independent replicates (12 samples) and shown as the mean +/- 
standard deviation. ........................................................................................................................105 
Figure 4.6 Cavitation noise of 3 case, (A) Noise emissions averaged over frequency intervals; 
(B) the noise emission spectra averaged over 30 to 40 second. The acoustic intensity is 0.8 MPa, 
PRF is 5 kHz and pulse duration is 20 µs (case 6); PRF is 0.05 kHz and pulse duration is 2,000 
µs (case 15); and PRF is 0.5 kHz and pulse duration is 500 µs (case 23). ...................................107 
Figure 4.7 Effects of pulse duration on the delivery rate and cell viability for cells irradiated in 
both attachment and suspension statuses. PRF of (A) and (B) is 5 kHz, and 500 Hz, respectively. 
DR is short for delivery rate; CV is short for cell viability; and ‘A’, and ‘V’ indicate attachment 
and suspension status, respectively. The acoustic intensity is 0.8 MPa; and the irradiation time is 
30 s. The data is averaged from 4 independent replicates (12 samples) and shown as the mean +/- 
standard deviation. ........................................................................................................................ 110 
Figure 4.8 Effects of PRF on the delivery rate and cell viability for cells irradiated in both 
attachment and suspension statuses. DR is short for delivery rate; CV is short for cell viability; 
and A, V indicate attachment and suspension status, respectively. The acoustic intensity is 0.8 
MPa; the duty cycle is kept at 10%; and the irradiation time is 30 s. The data is averaged from 4 
independent replicates (12 samples) and shown as the mean +/- standard deviation. .................. 112 
Figure 4.9 Delivery efficiency and cell viability of all cases for both cells irradiated in 
attachment and suspension status. The filled markers are for attachment status, and the blank 
markers with italic font legend are for cells irradiated in suspension. .......................................... 116 
Figure 4.10.Therapeutic ratio for all cases. (A) is the result for cells irradiated in attachment 
status and (B) is the result for cells irradiated in suspension status. ............................................. 118 



List of Tables 

135 

List of Tables 

Table 1.1  Targeted delivery methods ............................................................................................ 2 
Table 2.1  Bubble volume concentration and density count ........................................................ 24 
Table 2.2  Dimensions of a single well in the 24-well plate ........................................................ 27 
Table 2.3  Parameters and ranges applied .................................................................................... 29 
Table 3.1  Experiment conditions ................................................................................................ 67 
Table 3.2  Time and value of peak emission of intensity series ................................................... 77 
Table 3.3  Time and value of peak emission of pulse duration series .......................................... 82 
Table 3.4  Time and value of peak emission of PRF series ......................................................... 86 
Table 3.5  Emission level comparing during 30 to 40 second of PRF series ............................... 87 
Table 4.1  Emission level comparing during 30 to 40 second of 3 cases ....................................108 
Table 4.2  Time and value of peak emission of 3 cases ..............................................................108 





Biography 

137 

Biography 

Yiwei ZHANG (张 祎伟) was born on February 15th, 1986 in the Province of 

Hubei, China. He graduated from the first high school in Xiaochang, Xiaogan, Hubei 

in 2003, and started study in the Department of Thermal Engineering in Beijing 

Jiaotong University in Beijing, China in the same year. He graduated with a 

Bachelor’s degree in July, 2007 and then from September began graduate study in 

Tsinghua University in Beijing, China. He was under the supervision of Professor 

Shuhong LIU and Yulin WU in the Department of Thermal Engineering, and focused 

his research on lithotripsy. He graduated from Tsinghua University in 2009 with a 

Master’ degree, and then flied to Japan to do his PhD research. His research work was 

supervised by Prof. Yoichiro MATSUMOTO in the Department of Bioengineering in 

The University of Tokyo, and was sponsored by a Japanese Government Sponsorship 

from the Ministry of Education, Culture, Sports, Science and Technology of Japan. In 

2010 he went for a two month internship to the Prof. Charles Lin’s group in the 

Wellman center for photomedicine, Massachusetts General Hospital.





Publications 

139 

Publications 

Journal articles 

1. Y. Zhang, R. Tachibana, A. Okamoto, T. Azuma, A. Sasaki, K. Yoshinaka, K. 

Osada, K. Kataoka, S. Takagi, and Y. Matsumoto, “Ultrasound-Mediated Gene 

Transfection In vitro: Enhanced Efficiency by Complexation of Plasmid 

DNA”, Japanese Journal of Applied Physics, vol. 51, no. 7, pp. 07GF29, 1- 5, 

2012. 

2. Y. Zhang, R. Tachibana, A. Okamoto, T. Azuma, A. Sasaki, K. Yoshinaka, Y. 

Tei, S. Takagi, and Y. Matsumoto, “Ultrasound-Mediated Gene Transfection in 

vitro: Effect of Ultrasonic Parameters on Efficiency and Cell Viability”, 

International Journal of Hyperthermia, vol. 28, no. 4, pp. 290-299, 2012.  

3. K. Yoshinaka, Y. Zhang, A. Okamato, R. Tachibana, T. Azuma, A. Sasaki, S. 

Takagi, Y. Tei, and Y. Matsumoto, “Microbubble-Mediated Gene Transfection 

by Ultrasound (マイクロバブルを用いた超音波遺伝子導入)”, Ultrasonic 

Technology (超音波テクノ), vol. 23, no. 5, pp. 85-90, 2011. (in Japanese) 

 

Conference publications 

1. Y. Zhang, T. Azuma, K. Yoshinaka, A. Sasaki, S. Takagi, and Y. Matsumoto, 

“Effect of ultrasonic parameters on microbubble concentration during 

irradiation,” 2012 International Society for Therapeutic Ultrasound 

Symposium, Heidelberg, 2012, No. A-329. 

2. Y. Zhang, T. Azuma, K. Yoshinaka, A. Sasaki, S. Takagi, and Y. Matsumoto, 

“Complex Micelles Applied Ultrasound-Mediated Gene Transfection,” 32nd 

Symposium Ultrasonic Electronics, Kyoto, 2011, No. 3E5-5. 

3. Y. Zhang, A. Okamoto, K. Yoshinaka, A. Sasaki, S. Takagi, and Y. Matsumoto, 

“Ultrasound-Mediated Gene Transfection: a Comparison between Cells 

Irradiated in Suspension and Attachment Status,” 2011 International Society 

for Therapeutic Ultrasound Symposium, New York, 2011, No. 1569401685.





Acknowledgements 

141 

Acknowledgements 

In last three years’ research in The University of Tokyo as a PhD student, I 

worked together with several laboratories and many people. All of these people have 

kindly helped me to shape this thesis, and here I would like to express my thanks to 

all of them. There are also a few people that I would thank particularly.  

First of all, I would thank my professor Dr. Yoichiro MATSUMOTO for giving 

me this great chance to come to Japan and pursue a doctoral degree. From the oversea 

video interview when I was still in China, he has always been so kind to me, and his 

smile has always been an encouragement.  

Opinions from Professor Dr. Shu TAKAGI are always instructive. I would like 

to thank him for giving useful suggestions during my presentation in the weekly 

laboratory meeting and during many discussions.  

I would like to thank my two daily supervisors. The first one is Dr. Kiyoshi 

YOSHINAKA. He guided me to the area of sonoporation, and had given me many 

detailed tips when I began to do experiments. Even after he has left the university, he 

kept discussing with us weekly and helping our research. The second one is Dr. 

Takashi Azuma, who came in 2011. His rich experience in research helped me a lot in 

my experiments, and I also benefited from frequent discussions with him. He also 

helped me in many detailed aspects such as preparing of presentation. 

My thanks also go to Rie TACHIBANA and Akio OKAMOTO, two graduated 

master students who had been work together with me on the same topic. I also thank 

master student Koudai HIROSE and Kenji TAKEHARA who are current working 

with me for helping me doing experiments. 

My grateful thanks go to Naoki SENOO for so much help on my everyday life 

when I first arrived in Tokyo. I would also like to thank Yunqiao LIU for always 

being kind to offer help. I here thank Kazuyasu SUGIYAMA, Shintaro TAKEUCHI, 

Ikuya KINEFUCHI, Nobuya MIYOSHI, Yuta, YOSHIMOTO, Teruyuki 

NISHIHARA, Taiga KOMATSU, Wataru BABA, Hiroyuki USHIJIMA, and all other 



Acknowledgements 

142 

past and current members in our lab that have been together with me as well as two 

administrative members for being so kind to an international student.  

I then thank Professor Dr. Kazunori KATAOKA and his group, especially Dr. 

Kensuke OSADA for helping us make polymers and for reviewing and correcting our 

manuscripts. 

I also thank Prof. Ichiro MANABE and his group in The University of Tokyo 

Hospital for providing facilities for our in vitro and animal experiments. Many thanks 

go to Jack WANG, Sahohime MATSUMOTO, Michiko HAYASHI, and Ayami ONO, 

who not only gave lessons on cell passage and cytometry but also gave so many 

suggestions dealing with cells from their years’ experience. Especially I would like to 

thank Jack WANG who carried out animal experiment together with me for checking 

the grammar of our manuscripts. 

I would like to express my thanks to CNBI (Center for NanoBio Integration) in 

The University of Tokyo, which provided facilities for our experiments. 

Sincere thanks to my family in China. I was sorry for going home only once in 

three years. While my two elder sisters and elder brother shouldered my parents, I 

was not responsible for my part. I wish an easier and happier life for all of them.   

Finally, I would express my special thanks to wife Yun YANG for love and 

understanding. I hope we have a better future together.  

 


	Chapter 1. Introduction
	1.1   Background
	1.1.1   Targeted delivery
	1.1.2   Delivery systems and vehicles

	1.2   Ultrasound and acoustic cavitation
	1.2.1   Ultrasound induced bioeffects
	1.2.2   Acoustic cavitation

	1.3   Sonoporation-mediated delivery
	1.3.1   Sonoporation
	1.3.2   Mechanism studies
	1.3.3   Parametric studies

	1.4   Scope of this thesis

	Chapter 2. Change of microbubble concentration during ultrasound exposure
	2.1   Introduction
	2.1.1   Bubble oscillation and collapse 
	2.1.2   Ultrasound contrast agent (UCA)
	2.1.3   Light absorbance and concentration

	2.2   Experimental materials and methods
	2.2.1   Ultrasound exposure system
	2.2.2   Burst wave and parameters  
	2.2.3   Laser diode system
	2.2.4   Exposure protocols  

	2.3   Results and discussions
	2.3.1   Calibration of concentration and light absorption
	2.3.2   Acoustic pressure 
	2.3.3   Influence of intensity
	2.3.4   Influence of pulse duration
	2.3.5   Influence of PRF

	2.4   Summary

	Chapter 3. Bubble behavior analysis from cavitation noise
	3.1   Cavitation noise
	3.1.1   Broadband noise source
	3.1.2   Noise spectrum
	3.1.3   Two ‘phases’ of cavitation

	3.2   Experimental methods
	3.2.1   Data collecting unit
	3.2.2   Data processing
	3.2.3   Irradiation protocols

	3.3   Results and discussions
	3.3.1   Visible noise
	3.3.2   Parametric influence on noise emission
	3.3.2.1   Intensity series
	3.3.2.2   Pulse duration series
	3.3.2.3   PRF series


	3.4   Summary of bubble behavior

	Chapter 4. Ultrasond-mediated delivery in vitro: parametric studies on sonoporation efficiency
	4.1   Introduction
	4.1.1   Delivery via sonoporation in vitro
	4.1.2   Difference between cell statuses

	4.2   Materials
	4.2.1   Cell line
	4.2.2   FITC-Dextran

	4.3   Methods
	4.3.1   Irradiation protocol of attachment status
	4.3.2   Cell preparing for suspension status
	4.3.3   Irradiation protocol of suspension status
	4.3.4   Flow cytometry and viability analysis

	4.4   Results and discussions
	4.4.1   Influence of intensity
	4.4.2   Influence of irradiation time
	4.4.3   Influence of pulse duration
	4.4.4   Influence of PRF

	4.5   Correlation between bubble and cell behaviors
	4.6   Therapeutic ratio
	4.7   Summary

	Chapter 5. Conclusions and future directions
	Bibliography
	List of Figures
	List of Tables
	Biography
	Publications
	Acknowledgements

