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Chapter 1

General introduction

1.1 Background

1.1.1 Cell signaling

The cell is the fundamental unit of life, and contains molecular systems to
realize biological functions that are essential for living things to survive [1].
A unicellular organism performs all the functions required for proliferation,
for example, seeking food, avoiding toxin, etc. On the other hand, the cells
in a multicellular organism are organized by themselves and differentiate to
carry out specific functions required as muscle cell, neuron, and so forth.
For both cases, performing the proper functions requires spatial and tem-
poral orchestration of the molecular systems in the cell. To achieve it, the
biochemical systems called cell signaling systems are formed through the
evolutionary process. The cell signaling regulates the intracellular systems,
and perceives and responds to extracellular environment.

Molecular biology studies have identified molecular species involved in
the signaling systems such as controlling cell locomotion and cell cycle. In
parallel, these studies have also revealed interactions between the molecules;
the molecular species, as cell signaling components, activate/inactivate states
of other components such as phosphorylation level of protein. As a result,
the picture of a regulatory network consisting of the components and the
interactions as nodes and edges in which biological information transmits
on the pathways was developed [2]. Then, a scientific field called systems
biology arose to investigate collective properties of such a network.

Through the studies, investigating the dynamics of signaling is crucial to
understand cell behaviors. One reason for this is that cell signaling systems
are often demanded to process information on their continuously changing
environments. This aspect is clearly demonstrated by studies on a bacterial
signal transduction for motor control by which the cell performs chemotaxis
through temporal comparison of external chemical concentrations [3, 4, 5].
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In addition, there is another important reason. Even when environments
stay constant, we frequently observe that signaling systems exhibit temporal
variation. The circadian clock is a well-established example of the self-
sustained dynamics [6]. This oscillation is synchronized with the day-night
cycle through light stimulation but continues with a period similar to 24
hours even under constant darkness.

1.1.2 Dynamical systems approach

In order to deal with the dynamic nature of cell signaling, relevance of
dynamical systems to modeling such phenomena has been increasingly rec-
ognized [2,7]. A dynamical system is a mathematical concept where its rule
describes time evolution of a state of a system in the phase space. Various
phenomena ranging from climate change to chemical reactions have been
modeled extensively by dynamical systems [8, 9], because the dynamical-
systems approach enables us to reduce a huge set of data into a simple
description, and to predict the dynamics quantitatively, and to understand
the system of concern based on theoretical tools.

In applications to cell signaling systems, one of classical and best-known
examples is the Hodgkin-Huxley model that describes dynamics of electric
potentials in neurons [10]. The model was initially considered to explain
propagation of the potentials in the squid giant axon based on dynamics of
ion channels in cell membrane. Numerical calculations of the model repro-
duce neuronal excitability, in other words, sharp and transient activation of
the potentials underlying the propagation of electrical signal. Furthermore,
the study enabled us to understand neurons as electric circuits, and inspired
subsequent studies to explain other neuronal phenomena. The success over
decades shows power of dynamical systems modeling to understand cellular
dynamics, and encourages other attempts, down to this day.

Based on recent accumalation of experimental knowledge, we have come
to know how large and complicated signaling networks are. Then, mecha-
nistic models describing the biochemical networks have grown in size and
complexity [11, 12]. However, a full description of all details of the systems
is often impractical and not informative to elucidate underlying principles of
the evolutionary designs. Instead, simplified description by a small number
of variables is more useful for our comprehension. Neural cell biology gives
once again an illustrative example for this, the FitzHugh-Nagumo equations
that are derived from a simplification of the Hodgkin-Huxley model [13,14].
The aim of the FitzHugh-Nagumo equations is to extract fundamental math-
ematical properties of the original model to explain the neuronal excitability
that plays a key role in information propagation in the neurons. Analysis of
the equations leads to clear understanding of a core mechanism related to
the neuronal excitability based on a qualitative feature in the phase space.
Besides, the excitability appears as a universal concept that helps to con-
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struct models of other cell systems exhibiting similar behaviors [15], beyond
electrochemical systems.

Therefore, along with efforts of constructing detailed models, many at-
tempts have been made to extract simplified descriptions of the systems
that underlie the cell signaling dynamics. In those attempts, a technique
to reduce complexity of mechanistic models while keeping the dynamics is
required. To this end, adiabatic approximation, decreasing dimension of a
state vector by steady state assumption for components with fast dynamics,
is of common use [16,17]. The reduced models are analyzed with dynamical-
systems techniques. In particular, bifurcation theory has played a significant
role, characterizing qualitative changes of dynamics with a smooth variation
in the parameter values [18,19,20,21]. Many cell signaling processes, includ-
ing cell cycle control and neuronal firing, exhibit such qualitative changes
like oscillation onset in response to environmental and experimental per-
turbations. The way of change in system behavior upon parameter values,
that is, bifurcation, is considered as a basic property to be reproduced by
simplified models. Model simplification while keeping bifurcation types is
important to derive a simple model relevant to biological phenomena.

To coordinate the studies on simplified models from mechanistic descrip-
tions, abstract models designed to reproduce specific biological functions are
constructed and studied. The model is expected to present a fundamental
mathematical property that is required for the specific function; the ab-
stracted property becomes a minimal representation of a core mechanism
of the function and helps a model simplification process by advising the
destination.

In addition to those approaches focusing mainly on features in phase
spaces, an approach focusing on network topologies has also proven as a
powerful tool to extract simplified principles. This approach defines net-
work motifs, a set of small simple networks with a few components, which
are considered as building blocks of the biological networks [2]. The concept
of network motifs is originally motivated by the fact that specific substruc-
tures appear in transcriptional networks more often than expected in random
networks, and the frequent occurrences of the specific patterns are inferred
to be caused by functional advantage of the patterns. Then, relationships
between the network motifs and the functions are investigated. The func-
tions include, for example, pulse generation, response acceleration, and so
forth. Note that, since the concept of the network motifs is based only on
the structures, we can define them for other biological networks in the same
way. In fact, network motifs are found later in neural networks, metabolic
networks, and so on.

The approaches focusing on a simplified phase space and a network motif
to investigate a biological function are clearly not exclusive. Combination of
these approaches provide a common language to elucidate design principles
of an architecture of cell signaling system across diverse organisms.
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1.1.3 Measuring live-cell dynamics

Recently, advances in experimental techniques such as fluorescent probes for
live-cell imaging clarify molecular activities in cell systems at unprecedented
spatiotemporal resolutions [22, 23, 24]. The high resolutions enable us to
measure localization and dynamics of proteins involved in a signaling system
inside a single cell. Since correct regulations of the spatiotemporal dynamics
are prerequisite for proper functioning, systems biology on the cell signaling
receives huge benefits from the high resolutions.

Another important point of such imaging methods is that it allows us to
obtain time-series data on dynamics at a single-cell level, not a population
level. A key reason why data analysis at a single-cell level is required is that,
based on the analysis, we can reveal dynamics hidden by averaging over
cell population. For example, such an approach is important to elucidate
oscillatory dynamics, as is demonstrated by sequential works on expression
of a cancer suppressor gene [25, 26]. These single-cell time series exhibit
a sustained oscillation that previously appeared as damped oscillation in
assays measuring dynamics of a cell population where the cells have different
oscillatory phases because of noise.

Therefore, the observations reveal quantitative dynamics of information
transmission in the cell signaling system. Then dynamical-systems approach
is expected to elucidate how cellular behaviors are generated from the inter-
nal molecular systems more efficiently than ever.

However, it has been also revealed that signaling dynamics in a single
cell is highly stochastic, and the stochasticity blurs the observed data and
its interpretation. The stochasticity is considered to originally come from
finiteness of the signaling molecules, and it has been elucidated how this
noise is amplified and propagates through transcriptional and translational
processes [27, 28,29].

Furthermore, measurement noise, partial observation, and a low con-
trollability are still problematic for modeling biological systems. Indeed,
measurement processes are also highly stochastic, only a few components in
a system are observable, and only a small number of experimental conditions
can be examined. The incompleteness in data is an obstacle in model con-
struction from experimental observations on the molecular systems. Thus,
instructive criteria and practical methods are required for deriving model
equations by systematically integrating the information in the data.

1.1.4 Statistical inference from biological time series

Statistics has developed powerful methods to estimate models under incom-
pleteness in data. In particular, for analyzing dynamics, a method focusing
on time-series data is required. This demand has accelerated researches on
statistical machine learning to estimate dynamical systems. The commonly-
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used modeling framework is called a state space model, which is composed
of state equations (a dynamical system) and observation equations that de-
scribe system dynamics and observation process, respectively (Fig. 1.1).
We can consider both system and observation noises explicitly. The model
representation is originally investigated in control theory, but nowadays it
has a wide range of applications.

In statistical machine learning, likelihood is the basic function to be
maximized by choosing model parameter values in order to estimate them.
The likelihood represents probability that a model reproduces observations,
which gives a standard measure of goodness of fit. A big advantage of using
the statistical concept is that it enables model selection based on information
criteria. The criteria give a solution to the problem of trade-off between
goodness of fit and model complexity. It is helpful for studying cell signaling
dynamics for which there is, in general, a variety of candidate models with
different sets of components and interactions. In addition to the likelihood
maximization approach, we can consider prior distributions for models and
parameters, and posterior distribution of them in Bayesian approach. By
setting prior distributions, information from other sources is included; by
calculating posterior distributions, we can obtain reasonable estimation even
when the amount of data is insufficient to determine a unique solution.

The estimation procedures are, with a sufficient amount of data, easy
in linear dynamics, linear observation equations, and Gaussian noises. On
the other hand, in practical problems, it is often necessary to estimate non-
linear systems. Such an estimation is rather difficult because, through the
nonlinearity, probability distributions to be estimated, for example, state
distributions, turn out to be non-Gaussian and cannot be handled analyti-
cally. However, as computational resources grew, a variety of techniques for
numerical approximation of the general distributions has been developed for
practical use. This is critical for applications to the cell signaling systems
that show complex dynamics.

In application to cell signaling systems, the statistical framework of state
space models has been effective for inference of transcriptional networks by
using gene expression data from microarray experiments [30, 31, 32]. The
earlier studies mainly focused on the estimation of causal, not mechanistic,
relation between levels of mRNA molecules, aiming at drawing the struc-
tures of transcriptional regulatory networks. Simple model representations
enable estimation of the networks without detailed biochemical knowledge,
while the quantitative accuracy of models and the interpretability of pa-
rameters are limited. On the other hand, some of recent studies tried to
handle rather mechanistic models such as Michaelis-Menten equation and
to estimate biochemical parameters [33, 34]. Such methods are indispens-
able for quantitative analysis of biochemical systems with a large number
of components, because the complicated models inevitably contain many
uncertain parameters whose values are difficult to be measured directly. In
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addtion, non-parametric approach was also examined to model complicated
equations flexibly [35].

In contrast to data obtained by biochemical techniques, the application
of estimation from live-cell imaging data is just beginning at present [36,37].
However, the high temporal resolution of the live-cell imaging techniques
seems to be suitable for estimating dynamical systems, and then fruitful
applications are expected in future.

In particular, it is pointed out that such applications are helpful espe-
cially for single-cell dynamics [36]. The primary reason is that the statistical
framework provides a way to estimate noise in system dynamics, separately
from measurement noise, which is difficult without employing statistical ap-
proaches. The intrinsic noise in biochemical kinetics at a single-cell level
often requires stochastic modeling to quantitatively explain heterogeneity
of cells that appears even in a clonal population [38]. At least in some
cases, the stochasticity underlying the heterogeneity is considered to have
biological roles, for example, facilitation of evolutionary processes [39]. To
elucidate biological functions of the heterogeneity, the statistical approach
will be hopeful.
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Figure 1.1: Schematic representation of the statistical learning of a state
space model. Time-series data of the molecular activities in a cell system
are obtained from measurements under a given input level. System and
observation equations are then trained to reproduce the time-series data.
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1.2 Reconstruction of human-understandable dy-
namical systems

We hope to promote the understanding of cell signaling dynamics based on
the dynamical systems approach especially with the use of simplified phase
space. The approach requires a mechanistic model to be reduced. However,
such a description of a system is hard to be reliable in detail, not only with
regard to parameter values but also to model equations themselves.

To overcome the difficulty, we employ the statistical machine learning
techniques to construct a simple, low-dimensional, human-understandable
model of a system directly from data, not through a detailed mechanistic
description. Such a simplification has often been made implicitly without
statistical framework, but without standard measure to evaluate simplified
models from incomplete data, it is difficult to justify them and to select
a better model. The employment of the statistical framework provides a
reasonable solution to the problem.

To this end, we propose to set dynamical-systems models that are not
directly based on realistic biochemistry but are suitable to extract simpli-
fied principles such as bifurcation type and network motif. In other words,
our models, to be estimated, are chosen appropriately for analysis by sys-
tems biology terms. In this thesis, we combine dynamical-systems analysis
and statistical machine learning, aiming to facilitate understandings of cell
behaviors based on the signaling systems.

1.3 Overview of this thesis

This thesis is organized as follows: In Chapter 2, we focus on a basic fea-
ture of dynamical systems called bifurcation that characterizes qualitative
changes of the dynamics. A statistical machine-learning method is designed
to derive low-dimensional models with bifurcation from partial observations
of noisy high-dimensional dynamical systems. The method is tested by
using artificial data generated from two cell-cycle control models that ex-
hibit different bifurcations, to demonstrate that the learned systems inherit
the bifurcation types. We also discuss the relevance of this procedure to
model reduction and compare with a standard method, adiabatic approxi-
mation. In Chapter 3, we extend the proposed approach to include sparse
regularization. The extension enables us to start from a complicated model
equation that contains many possible terms, and to extract an appropri-
ate sub-model by eliminating unnecessary terms to reproduce observations.
The performance of the algorithm is demonstrated by using artificial data
from chaotic dynamics and those from adaptive dynamics. In Chapter 4,
we analyze a signaling system that underlies cell-cell communication of a
social amoeba. Measurements at a single-cell level have characterized quan-
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titatively the adaptive dynamics, and revealed an invariance property, called
FCD. Aiming to explain multicellular dynamics from the single-cell level, we
examined two strategies. First, based on elementary analysis, we attempt
to draw conclusions only from the FCD property. The analysis indicates
that a symmetry property required for FCD achieves robustness in multi-
cellular dynamics to cell-density fluctuation. Second, we perform statistical
learning of a model by using live-cell imaging data on the signaling system.
As a result, we obtain a model that reproduces quantitatively the input-
output characteristics of the system. Furthermore, we extract a simplified
core system from the model based on a sparse optimization. In Chapter 5,
based on the model of the social amoeba at a single cell level, we construct
a reaction-diffusion model of the multicellular dynamics in development.
The quantitative predictions from the reconstructed model are evaluated
in comparison with experimental observations. Other models based on toy
models of the signaling system are also constructed and discussed. This
thesis concludes in Chapter 6 with summary and discussions towards the
understanding of cellular dynamics, and perspectives on future.
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Chapter 2

Reduction of dynamical
systems with bifurcation

2.1 Introduction

2.1.1 Bifurcation methodology in systems biology

Cell signaling systems often exhibit qualitative changes in the dynamics
like oscillation onset, as the environmental conditions are varied. Different
modes of signaling dynamics are considered to cause different schemes of cell
behaviors that are suitable for the corresponding environments.

In dynamical systems theory, such a change in dynamics is characterized
and classified by a mathematical concept, bifurcation. Bifurcation gives a
pattern of topological change of flow in the phase space, with a smooth vari-
ation of control parameters interpreted as biological conditions. Because of
the topological nature, such characterizations are valuable to understand
the underlying mechanism of biological functions that are insensitive to bio-
chemical details [18, 19, 20,21].

The independence from the detailed biochemical mechanisms makes the
type of bifurcations to be a basic property that is reproduced by simplified
models and provides a criterion to select a better model. In the simplified
models, we can see clearly what mathematical properties in the models are
responsible to produce behaviors of the original detailed models or experi-
mental observations. In addition, an elemental low-dimensional dynamical
system with a correct bifurcation type is useful to obtain a collective behav-
ior of an ensemble of the elements. For example, in neuroscience, elemental
single neuron models are employed to simulate large-scale brain dynamics.
Those elemental models being simplified while keeping bifurcations are con-
sidered to achieve a balance between biological relevance and computational
efficiency [20]. Therefore, identification of low-dimensional model systems
that inherit the original bifurcation type is a crucial step in understanding
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the dynamics in systems biology.

2.1.2 Determining bifurcation types from observations

If a mechanism underlying observed dynamics is not known, we are required
to determine a bifurcation type only from experimental data. The determi-
nation from data is a common problem not only in cellular dynamics, but in
ecological population dynamics, chemical kinetics, and etc. The commonly-
used method is to focus on asymptotic behavior of a system near the point
of bifurcation [41]. For example, to justify a supercritical Hopf bifurcation,
a most frequent type of oscillation onset with a variation of a parameter,
we check whether amplitude of the oscillation increases in proportion to
square root of absolute deviation of the parameter from the bifurcation
point. However, the precise control of parameter and the accurate measure-
ment of system behavior are impractical for cell signaling systems in many
cases, unfortunately. Because of difficulties in control and measurement on
molecular systems in the cell, the traditional methodology is inapplicable.
Then, we need an alternative.

To solve the problem, we employ statistical machine-learning techniques
to automatically derive low-dimensional models with bifurcations from data
at a few conditions. Various sophisticated techniques for learning nonlin-
ear dynamical systems from observations on dynamics, that is, time-series
data, have been developed especially in the case of noiseless system dynam-
ics [42, 43, 44, 45]. Although theoretical ground of learning from stochastic
dynamics is weaker, several methods are proposed in the framework of sta-
tistical theory recently [34, 46,47,48].

However, at present it is not yet examined whether such a statistical
framework can be used to estimate a model with a bifurcation. Here we
adopt statistical techniques to obtain a model with correct type of bifurca-
tion, through approximation of flow in the phase space by abstract dynam-
ical systems, rather than aiming to fit the mechanistic model parameters to
the observations. To this end, the Expectation-Maximization (EM) algo-
rithm and particle smoother [49,50,51] are combined as was suggested to be
applicable for nonlinear and stochastic dynamical systems [52]. To deal with
fluctuation in likelihood evaluation coming from Monte-Carlo procedure in
particle smoother, we adopt the stochastic approximation EM (SAEM) al-
gorithm [53]. The employment of the statistical framework enables us to
utilize information from noisy time-series data fully, not only from a specific
feature like oscillation amplitude as in the traditional approach. For the
purpose to obtain models with bifurcations, all of the time-series data at
different parameter values across the bifurcation point are simultaneously
used for the learning. By taking advantage of continuity, we do not need the
data from many parameter values, but those from a few (a couple of) pa-
rameter values are sufficient to predict the dynamics with correct bifurcation
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types.
Before application to experimental data, verification of the approach by

artificially-generated data is helpful since we can directly compare learned
systems with true ones. In particular, because reduced descriptions in sys-
tems biology are useful, it is beneficial to confirm that the learned systems
with a few variables can approximate dynamics restricted to low-dimensional
sub spaces of original high-dimensional systems. In other words, we try
to automatize a model reduction while keeping the bifurcation type, not
through a detailed biochemical description or unrealistically accurate exper-
iments, but directly from noisy partial time-series data. As shown schemat-
ically in Fig. 2.1, we now test the proposed approach and evaluate the
learned systems in comparison with reduced equations of true systems by
adiabatic approximation.

Observable
variables

Model
estimation

time

Data
generation

Bifurcation
parameter

Figure 2.1: A schematic representation of the process of method evaluation.
Lower-dimensional model system is trained to reproduce partially-observed
dynamics generated from higher-dimensional model.

2.2 Methods

2.2.1 Nonlinear state space model

We introduce a nonlinear state space model composed of state and observa-
tion equations that describe the system dynamics and observation process,
respectively. Let us consider a system that is modeled by a D-dimensional
stochastic differential equations, and d components in the model can be
simultaneously observed. The state equations are discretized in time by
the Euler-Maruyama scheme [54]. We write the time evolution of the ith
variable at a time point t, xti(i = 1, . . . , D), as

xt+1
i = xti +∆tfi({xtj}, s) + σiξ

t
i

√
∆t, (2.1)
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where ∆t is an integration time, σi is the intensity of the system noise, and
s is a bifurcation parameter. System noise ξti is sampled from a standard
normal distribution. To achieve efficient learning, the function fi is con-
sidered to be expressed by a summation of linearly independent functions
as fi({xtj}, s) =

∑Ni
n kni f

n
i ({xj}, s), where Ni is the number of parameters

{kni } and functions {fn
i }.

A problem is in determining state equations, since our aim is to repro-
duce the bifurcation types of systems subjected to unknown equations. Fur-
thermore, in the case of low-dimensional models as are considered below,
function form required to represent the dynamics is complicated through
projection of the original dynamics into the low-dimensional surface. There-
fore, we adopt a polynomial base for the {fn

i }, rather than biochemically
realistic functions like the Michaelis-Menten equation. In other words, the
choice of polynomials is resulting from focusing not on mechanistic modeling
but on approximation of flow projected into a low-dimensional phase space.

The observation value of the i th component at a time point r, yri (i =
1, . . . , d), is written as

yri = gi(x
r
i ) + ηiφ

r
i (2.2)

where ηi is an observation noise intensity, and φr
i is sampled from a standard

normal distribution. In general, a set of observed time points is a part of the
entire set of time points in the numerical integration. Hereafter, θ indicates
the parameters to be estimated: ({kni }, {σi}, {ηi}).

2.2.2 Machine learning algorithm

The learning of dynamical systems is formulated as a maximum likelihood
(ML) estimation, which is summarized below (further details are given in
Appendix A). Let us consider a set of data of Y = {Ya} where each Ya is
a time-series data obtained from independent measurement at bifurcation
parameter value sa. The likelihood is given by the conditional probabil-
ity, p(Y |θ, S) =

∏
a p(Ya|θ, sa). However, a straightforward maximization

of the likelihood is difficult because it requires the untractable summation
of p(Y |X, θ, S)p(X|θ, S) with respect to the set of time series of the state
variables X = {Xa}. Thus, we employ the EM algorithm to maximize the
log likelihood of a model by a two-step iterative method that alternately
estimates the states and parameters as summarized in Fig. 2.2 [49]. In the
first step, the E step, the posterior distribution of the time series of a state
(p(X|Y, θ, S)) is estimated based on the tentative parameter set θold. In
the second step, the M step, the expectation value of log p(X,Y |θ, S) called
complete-data log likelihood is calculated as

Q(θ, θold) = ⟨log p(X,Y |θ, S)⟩p(X|Y,θold,S), (2.3)
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and the parameter estimation is updated as

θnew = argmax
θ

Q(θ, θold). (2.4)

In this step, the optimization problem is reduced to linear simultaneous
equations and thus can be solved easily. However, the problem in the E step
is still analytically unsolvable because the probability distribution of the
time series is necessary. This calculation requires a state estimation at all
time points including the points at which measurements are not conducted.
We therefore obtain a numerical approximation of p(X|Y, θ, S) using a parti-
cle filter algorithm that performs state estimations of nonlinear models using
a Monte-Carlo method [50,51]. The particle filter (a numerical extension of
Kalman filter) approximates a general non-Gaussian state distribution as a
set of particles representing samples from the distribution and evaluates the
log likelihood of the models. Since the use of the particle filter introduces
stochasticity into the learning algorithm, a slight modification of the M step
is required to ensure convergence of the learning [53]. The optimization
function in eq.(2.4) is replaced by Q′

I(θ) = (1 − αI)Q′
I−1(θ) + αIQ(θ, θold),

where I is the iteration index, and {αI} is a sequence of non-increasing
positive numbers converging to zero.

Estimation of time series of states

E step

M step

Estimation of parameters

time

Data:

Estimation:

p(X |Y,    )

Y

θ

θ argmax
θnew

= Expected complete-data
log likelihood(                    )

θ

Figure 2.2: Two optimization steps called E step and M step perform esti-
mation of system states and parameters, respectively.

2.2.3 Generation of artificial data

To validate the method, we apply it to artificial data generated from mod-
els of a eukaryotic cell cycle control system since this system provides an
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illustrative example of cellular dynamics composed of many molecular com-
ponents [18, 21, 55, 56, 57]. The cell cycle is a fundamental biological pro-
cess characterized by repeated events underlying cell division and growth in
which key proteins, Cyclin and Cyclin-dependent kinases, change their con-
centration periodically and activate various cellular functions such as DNA
synthesis.

Two molecular circuit models of the cell-cycle control system in Xenopus
embryos are adopted as the data generators: that proposed by Tyson and
co-workers (the Tyson model) [18, 55], and that proposed by Ferrell and
co-workers (the Ferrell model) [56, 57]. Both models show an oscillation
onset through an increase of synthesis rate of Cyclin which is a bifurcation
parameter as adopted in a classic experiment [58]. On the other hand, they
differ in the type of bifurcation at the onset; the Tyson model exhibits
a saddle-node bifurcation on an invariant circle (SNIC), while the Ferrell
model exhibits a supercritical Hopf bifurcation. We investigate whether
the proposed learning procedure reproduces the correct bifurcation type of
each model. The independent estimations for the two models eliminate the
possibility that a specific type of bifurcation is always estimated regardless
of the data.

Both data generators are composed of 9 variables including Cyclin, cell
division control protein 2 (Cdc2), and other regulatory proteins. We con-
sider the active Cdc2 and Cyclin concentrations to be observable variables
since their levels have been observed in previous experiments [56]. The
time-series data is generated by numerical calculations of these models as
nonlinear Langevin equations at a few values of the Cyclin synthesis rate, s.
We simulate noisy observation by adding Gaussian noise to each observation
value. Artificial data are prepared for three Cyclin synthesis rates across the
bifurcation point and, for each value of the bifurcation parameter, three in-
dependent time-series samples are prepared in which the oscillation exhibits
large fluctuations in amplitude and period among the samples. Figure 2.4
exhibits all the time series data that are used for our estimation below.

Numerical methods of data generation

The model equations and parameter values used in the present study as the
data generators are described below. Each data generators, the Tyson and
Ferrell models, is numerically integrated with white Gaussian noise by using
a stochastic Runge-Kutta II (SRKII) algorithm [59]. To prohibit negative
values of the chemical concentrations as a result of noise, each variable is
reset to a small positive value ϵ (= 0.001) when the value is less than ϵ.
We confirmed that the results of the present study are stable so long as ϵ is
sufficiently small.
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Tyson model

The Tyson model described in Novak & Tyson [55].

d[cyclin]

dt
= k1[AA]− k2[cyclin]− k3[Cdc2][cyclin] + ξ1(t) (2.5)

d[Cdc2-cyclin]

dt
= kPP [Cdc2-cyclin-tp]− (kwee + kcak + k2)[Cdc2-cyclin]

+ kcdc25[Cdc2-cyclin-yp] + k3[Cdc2][cyclin] + ξ2(t) (2.6)

d[Cdc2-cyclin-yp]

dt
= kwee[Cdc2-cyclin]− (kcdc25 + kcak + k2)[Cdc2-cyclin-yp]

+ kPP [Cdc2-cyclin-yptp] + ξ3(t) (2.7)

d[Cdc2-cyclin-yptp]

dt
= kwee[Cdc2-cyclin-tp]

− (kPP + kcdc25 + k2)[Cdc2-cyclin-yptp]

+ kcak[Cdc2-cyclin-yp] + ξ4(t) (2.8)

d[Cdc2-cyclin-tp]

dt
= kcak[Cdc2-cyclin]− (kPP + kwee + k2)[Cdc2-cyclin-tp]

+ kcdc25[Cdc2-cyclin-yptp] + ξ5(t) (2.9)

d[Cdc25∗]

dt
= ka[Cdc2-cyclin-tp]

([Cdc25tot]− [Cdc25∗])

Ka + ([Cdc25tot]− [Cdc25∗])

− kb[PPase]
[Cdc25∗]

Kb + [Cdc25∗]
+ ξ6(t) (2.10)

d[APC∗]

dt
= kc[IEP

∗]
([APCtot]− [APC∗])

Kc + ([APCtot]− [APC∗])

− kd[anti-IE]
[APC∗]

Kd + [APC∗]
+ ξ7(t) (2.11)

d[Wee1∗]

dt
= ke[Cdc2-cyclin-tp]

([Wee1tot]− [Wee1∗])

Ke + ([Wee1tot]− [Wee1∗])

− kf [PPase]
[Wee1∗]

Kf + [Wee1∗]
+ ξ8(t) (2.12)

d[IEP∗]

dt
= kg[Cdc2-cyclin-tp]

([IEtot]− [IEP∗])

Kg + ([IEtot]− [IEP∗])

− kh[PPase]
[IEP∗]

Kh + [IEP∗]
+ ξ9(t) (2.13)

kcdc25 = Vcdc25′([Cdc25tot]− [Cdc25∗]) + Vcdc25′′ [Cdc25
∗] (2.14)

kwee = Vwee′ [Wee1∗] + Vwee′′([Wee1tot]− [Wee1∗]) (2.15)

k2 = V2′([APCtot]− [APC∗]) + V2′′ [APC∗] (2.16)

[Cdc2] = [Cdc2tot]− [Cdc2-cyclin]− [Cdc2-cyclin-yp]

− [Cdc2-cyclin-yptp]− [Cdc2-cyclin-tp] (2.17)

Noise terms are represented by ξi(t) with white Gaussian statistics ⟨ξi(t)⟩ =
0 and ⟨ξi(t)ξj(τ)⟩ = 2σ2

i δi,jδ(t− τ).
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Ferrell model

The Ferrell model is described in Tsai et al. [57].

d[cyclin]

dt
= ksynth − kdest[APC∗][cyclin]

− ka[Cdc2][cyclin] + kd[Cdc2-cyclin] + ξ1(t) (2.18)

d[Cdc2-cyclin]

dt
= ka[Cdc2][cyclin]− kd[Cdc2-cyclin]

− k′wee1[Cdc2-cyclin] + k′Cdc25[Cdc2-cyclin-yp]

− kdest[APC
∗][Cdc2-cyclin] + ξ2(t) (2.19)

d[Cdc2-cyclin-yp]

dt
= k′wee1[Cdc2-cyclin]− k′Cdc25[Cdc2-cyclin-yp]

− kcak[Cdc2-cyclin-yp] + kpp2c[Cdc2-cyclin-yptp]

− kdest[APC
∗][Cdc2-cyclin-yp] + ξ3(t) (2.20)

d[Cdc2-cyclin-yptp]

dt
= kcak[Cdc2-cyclin-yp]− kpp2c[Cdc2-cyclin-yptp]

− k′Cdc25[Cdc2-cyclin-yptp] + k′wee1[Cdc2-cyclin-tp]

− kdest[APC
∗][Cdc2-cyclin-yptp] + ξ4(t) (2.21)

d[Cdc2-cyclin-tp]

dt
= k′Cdc25[Cdc2-cyclin-yptp]− k′wee1[Cdc2-cyclin-tp]

− kdest[APC
∗][Cdc2-cyclin-tp] + ξ5(t) (2.22)

d[Cdc25∗]

dt
= kCdc25on

[Cdc2-cyclin-tp]ncdc25

EC50ncdc25
Cdc25 + [Cdc2-cyclin-tp]ncdc25

([Cdc25tot]− [Cdc25∗])

− kCdc25off [Cdc25
∗] + ξ6(t) (2.23)

d[Wee1∗]

dt
= −kWee1off

[Cdc2-cyclin-tp]nwee1

EC50nwee1
wee1 + [Cdc2-cyclin-tp]nwee1

[Wee1∗]

+ kWee1on([Wee1tot]− [Wee1∗]) + ξ7(t) (2.24)

d[Plx∗]

dt
= kplxon

[Cdc2-cyclin-tp]nplx

EC50
nplx

plx + [Cdc2-cyclin-tp]nplx
([Plxtot]− [Plx∗])

− kplxoff [Plx
∗] + ξ8(t) (2.25)

d[APC∗]

dt
= kapcon

[Plx∗]napc

EC50napc
apc + [Plx∗]napc

([APCtot]− [APC∗])

− kapcoff [APC∗] + ξ9(t) (2.26)

k′Cdc25 = kCdc25[Cdc25
∗] + kCdc25basal([Cdc25tot]− [Cdc25∗]) (2.27)

k′wee1 = kwee1[Wee1∗] + kwee1basal([Wee1tot]− [Wee1∗]) (2.28)

[Cdc2] = [Cdc2tot]− [Cdc2-cyclin]− [Cdc2-cyclin-yp]

− [Cdc2-cyclin-yptp]− [Cdc2-cyclin-tp]

(2.29)

Noise terms are represented by ξi(t) with white Gaussian statistics ⟨ξi(t)⟩ =
0 and ⟨ξi(t)ξj(τ)⟩ = 2σ2

i δi,jδ(t− τ).
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Parameter values

The parameters used in the Tyson and Ferrell models are listed in Tables
2.1 and 2.2, respectively. In the Tyson model, all the parameter values are
the same as those in the original literature [55]. In the Ferrell model, all the
parameter values are the same as those in Pomerening et al. [56] except for
“factor,” which is set as in [57].

Parameter

k1[AA]/[Cdc2tot] s
k3[Cdc2tot] 1.0
kCAK 0.25
kPP 0.025
V2′ [APCtot] 0.015
V2′′ [APCtot] 1.0
Vcdc25′ [Cdc25tot] 0.1
Vcdc25′′ [Cdc25tot] 2.0
Vwee′ [Wee1tot] 0.1
Vwee′′ [Wee1tot] 1.0
ka[Cdc2tot]/[Cdc25tot] 1.0
kb[PPase]/[Cdc25tot] 0.125
kc[IEtot]/[APCtot] 0.1
kd[anti IE]/[APCtot] 0.095
ke[Cdc2tot]/[Wee1tot] 1.33
kf [PPase]/[Wee1tot] 0.1
kg[Cdc2tot]/[IEtot] 0.65
kh[PPase]/[IEtot] 0.087
Ka/[Cdc25tot] 0.1
Kb/[Cdc25tot] 0.1
Kc/[APCtot] 0.01
Kd/[APCtot] 0.01
Ke/[Wee1tot] 0.3
Kf/[Wee1tot] 0.3
Kg/[IEtot] 0.01
Kh/[IEtot] 0.01
σ1,...,5/[Cdc2tot] 0.0024
σ6/[Cdc25tot] 0.0024
σ7/[APCtot] 0.0024
σ8/[Weetot] 0.0024
σ9/[IEPtot] 0.0024
η1/[Cdc2tot] 0.005
η2/[Cdc2tot] 0.005

Table 2.1: Parameters in the Tyson
model

Parameter

ksyn s
kdest 0.006
ka 0.1
kd 0.001
factor 10
kwee1 0.05
kwee1basal kwee1/factor
kCdc25 0.1
kCdc25basal kcdc25/factor
kcak 0.8
kpp2c 0.008
kCdc25on 1.75
kCdc25off 0.2
kwee1on 0.2
kwee1off 1.75
kplxon 1.0
kplxoff 0.15
kapcon 1.0
kapcoff 0.15
EC50Cdc25 40
EC50wee1 40
EC50plx 40
EC50apc 40
ncdc25 4
nwee1 4
nplx 3
napc 3
Cdc25tot 15
Wee1tot 15
Plxtot 50
APCtot 50
Cdc2tot 230
σ1,...,9 0.06
η1 0.4
η2 0.4

Table 2.2: Parameters in the Ferrell
model
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Artificial measurement process

For both the Tyson and Ferrell models, the artificial measurement process
is implemented as follows.

y1 = active Cdc2 =
[Cdc2-cyclin-tp] + η1φ1

[Cdc2tot]
(2.30)

y2 = Total Cyclin

=
(
[cyclin] + [Cdc2-cyclin] + [Cdc2-cyclin-yp] + [Cdc2-cyclin-yptp]

+ [Cdc2-cyclin-tp] + η2φ2
)
/[Cdc2tot]. (2.31)

Here, η1,2 is the observation noise intensity, and φ1,2 is sampled from a
standard normal distribution.

Orbits of the data generators

Figure 2.3 show noiseless orbits of the data generators. We note that each
orbit exhibits no intersection, indicating that the two observable variables
are sufficient to abstract the original high-dimensional dynamics.
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Figure 2.3: Time series generated from the (a) Tyson and (b) Ferrell models
through the artificial measurement process in the case that both system and
observation noises are zero.
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Data set

The all data used for the learning are shown in Fig. 2.4.
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Figure 2.4: Noisy time series generated from the (a-f) Tyson and (g-l) Fer-
rell models through the artificial measurement process. The colors indicate
results from independent trials. The values of the bifurcation parameter are
(a,d) s = 0.002, (b,e) 0.005, (c,f) 0.008, (g,j) 0.005, (h,k) 0.001, and (i,l)
0.0015, respectively. Note that the parameter s is defined in Tables 2.1 and
2.2. (Reprinted from Ref. [40], c⃝ 2013 American Physical Society)

2.2.4 Setting state and observation equations

Considering a polynomial of degree M , we write the system equations to be
learned as

fi({xtj}, s) = k1i + k2i x
t
1 + k3i x

t
2 + · · ·+ kNi

i (xtD)
M (2.32)



20

The observation equations are expressed simply as yri = xri + ηiφr
i . Accord-

ingly, y1 (x1) and y2 (x2) represent the observed (true) concentrations of
active Cdc2 and Cyclin, respectively. The other variables xi (i > 2) rep-
resent the true concentrations of unobservable components. We take the
constant term in the equation for Cyclin to be the bifurcation parameter,
i.e., k12 = s. Note that the observed orbit in the active Cdc2-Cyclin plane ex-
hibits no intersection, as shown in Fig. 2.3, suggesting that the two variables
are sufficient to abstract the original high-dimensional dynamics.

2.3 Results

2.3.1 Model selection based on Information criteria

The simplest polynomial form required for reproducing the observed dy-
namics is determined by starting with linear equations composed of active
Cdc2 and Cyclin (system dimension D = 2 and polynomial order M = 1)
and increasing the M by one. The polynomial order M is determined by
minimizing the information criteria through an optimization of the balance
between the goodness of fit and the model complexity [60, 61]. The Akaike
information criterion (AIC) and Bayesian information criterion (BIC) are
evaluated from the log likelihood, parameter number, and data size for each
model (Fig.2.5). Both the AIC and BIC show a decrease from M = 1 to 3,
but an increase or insignificant decrease at M = 4. Therefore, we analyze
models with D = 2 and M = 3. The learned parameter values are presented
in Table 2.3 (see Section A.4 for detailed settings in the learning algorithm).
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Figure 2.5: The AIC and BIC are plotted against different polynomial orders
M = 1, 2, 3, 4 for the (a) Tyson and (b) Ferrell models. For each evaluation,
20 different initial parameters are sampled to avoid the local minima. After
the learning, the average and standard deviation are calculated from 100
evaluation trials based on the particle filter. (Reprinted from Ref. [40],
c⃝ 2013 American Physical Society)
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Parameter Learned (Tyson model) Learned (Ferrell model)

k11 0.00064 -0.00032

k21 -0.334 -0.343

k31 0.0655 0.0657

k41 -0.8 1.05

k51 2.39 -1.25

k61 -0.639 0.107

k71 -25.3 -47.3

k81 31.1 47.8

k91 -13.1 -3.97

k101 2.22 -0.157

k22 -0.4 -0.57

k32 0.0612 0.0637

k42 -4.62 -0.9

k52 5.47 2.41

k62 -0.805 0.000818

k72 -9 61.4

k82 22.7 -61.3

k92 -15.3 18.3

k92 1.92 -2.73

σ1 0.00646 0.00199

σ2 0.00703 0.00205

η1 0.00334 0.00101

η2 0.00621 0.00133

Table 2.3: Learned parameters of the third-order polynomial systems for
the Tyson and Ferrell models.
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2.3.2 Estimation of bifurcation types

To check whether the learning procedure can capture the bifurcation of the
original data generator system, we compare the bifurcation diagrams of the
learned systems with those of the data generators. Figures 2.6(a) and (b)
show bifurcation diagrams against Cyclin synthesis rate s (red lines) for the
learned systems in the Tyson and Ferrell models, respectively. The bifurca-
tion diagrams for the corresponding noiseless data generators are shown by
the gray lines. Although the data for the learning are given only at three
bifurcation parameter points (indicated by the broken lines), the learned
systems have quantitatively similar diagrams to those of the corresponding
data generators. The sudden appearance of a limit cycle with finite am-
plitude is reproduced for the Tyson model, while the gradual increase in
amplitude from the bifurcation point is reproduced for the Ferrell model.
These features are characteristics of the SNIC and supercritical Hopf bifur-
cation. Nullclines of the learned systems in the vicinity of the bifurcation
points are shown in Figs. 2.6(c) and (d) for the Tyson model and in Figs.
2.6(e) and (f) for the Ferrell model. The results confirm the onset of SNIC
and supercritical Hopf bifurcation, respectively. Thus, each learned sys-
tem inherits the bifurcation type of the original model through the learning
procedure in spite of noisy and partial observations.

When the learning is conducted by using the data on two of the three
bifurcation parameter points, the learned systems still exhibit the correct
bifurcation types, although the points of oscillation onset and amplitudes
are biased (Figs. 2.6(g) and (h)). Note that identification of bifurcation
is possible even by using the data only on one side of a bifurcation point
(as indicated by the green lines). These results indicate the interesting
possibility that the learning procedure can predict the type of bifurcation
that will occur from the data before the bifurcation point only.

2.3.3 Comparison with adiabatic elimination

We also show here how the high-dimensional phase space structures of the
original data generators are mapped onto the lower-dimensional surfaces in
the learned systems. Reduced two-variable models are derived by adiabatic
elimination following a similar procedure by Novak and Tyson [17]. Like the
learned systems, the reduced models are composed of active Cdc2 and total
Cyclin.

We reduce the Tyson and Ferrell models to two-dimensional systems by
the same procedure as described in [17]. By denoting the non-dimensionalized
active Cdc2 and total Cyclin levels as u and v, respectively, the reduced
models are written as follows.
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Figure 2.6: Bifurcation diagrams of the (a) Tyson and (b) Ferrell models.
The active Cdc2 concentration x1 for the learned systems is plotted against
the Cyclin synthesis rate s (red), and corresponding concentrations of the
data generators are also shown for comparison (gray). The broken lines
indicate points at which the data are given. For the Tyson model, there
is another attractor with a tiny basin that is ignored. (c-f) The nullclines
of the learned systems around the bifurcation points are shown. Purple
and orange lines represent nullclines of x1 (active Cdc2) and x2 (Cyclin),
respectively, and the gray arrows indicate the flow direction. (c,d) The
learned system from the Tyson model exhibits SNIC and (e,f) that from
the Ferrell model exhibits a supercritical Hopf bifurcation. The values of
the bifurcation parameter are (c) s = 0.0038, (d) 0.0044, (e) 0.0005, and
(f) 0.0012, respectively. (g,h) Bifurcation diagrams using the data at two of
the three bifurcation parameter points. The learning that lacks data at the
lowest, intermediate, and highest bifurcation parameter values are denoted
by as low−, middle− and high−, respectively. (Reprinted from Ref. [40],
c⃝ 2013 American Physical Society)
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The reduced Tyson model takes the form as

u̇ =
s

1 + kPP /kcak
− (fAPC(u) + fWee(u))u

+ fCdc25(u)(
v

1 + kPP /kcak
− u), (2.33a)

v̇ = s− fAPC(u)v, (2.33b)

where fCdc25, fWee, and fAPC are the functions corresponding to the adia-
batic solutions of eqs. (2.14), (2.15), and (2.16), respectively.

This reduction procedure includes the determination of the level of Cdc2-
Cyclin-tp (i.e., the value of u) from the sum [Cdc2-Cyclin]+[Cdc2-Cyclin-tp]
(see Appendix A in [17]). This is based on a detailed balance assumption of
the phosphorylation reaction between the two molecular species. However,
in the Ferrell model, the absence of the reaction makes the original reduc-
tion procedure inapplicable. Then, we simply assume [Cdc2-Cyclin-tp] ∼
[Cdc2-Cyclin] + [Cdc2-Cyclin-tp], because it is observed that the ratio of
[Cdc2-Cyclin] to the summation is small throughout the dynamics within
the parameter region we consider. Consequently, the reduced Ferrell model
is written as

u̇ = s− (fAPC(u)) + fWee(u))u+ fCdc25(v − u), (2.34a)

v̇ = s− fAPC(u)v, (2.34b)

where fCdc25, fWee, and fAPC are derived from the adiabatic approximation
in the same manner as the Tyson model.

Figure 2.7 shows the nullclines of the learned systems (the solid orange
and purple lines) and the reduced models (the broken lines). In both the
Tyson and Ferrell models, the learned system and reduced model nullclines
for active Cdc2 have a similar N -shaped form (orange lines), indicating the
existence of positive feedback in the molecular circuits. In contrast, those
for the total Cyclin disagree quite significantly. To check the consistency of
the nullclines and dynamics, Fig. 2.7 also shows a noisy time series from
the data generators (blue points) and the orbit of the learned system (red
lines). The nullclines of the learned systems are consistent with the dynam-
ics in the data but the reduced models are not. This failure arises because
the dynamics of a component mediating the inhibition from active Cdc2 to
Cyclin is not fast enough to allow the adiabatic approximation. Higher-
order contribution beyond the adiabatic elimination performed here should
be included, which requires complicated technical work. Nevertheless, the
learning process automatically reproduces the appropriate low-dimensional
dynamics and estimates the bifurcation types without knowledge of the de-
tailed high-dimensional model systems.
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Figure 2.7: Comparison of the learned systems and reduced models for the
(a) Tyson and (b) Ferrell models. The purple and orange lines represent the
nullclines of x1 (active Cdc2) and x2 (Cyclin), respectively, for the learned
systems (solid lines) and reduced models (broken lines). A noisy time series
from the data generators (blue dots) and the orbits of the learned models
(red lines) are also shown. The blue arrows indicate the flow direction. The
values of the bifurcation parameter are (a) s = 0.006, (b) 0.0015. (Reprinted
from Ref. [40], c⃝ 2013 American Physical Society)

2.3.4 Examples of estimation failure

We also investigated how the estimation fails, in order to get insight into
what is required to perform a correct estimation. We briefly demonstrate
examples of the failure in the case of insufficiency in data or model com-
plexity. First, by using third order polynomials as state equations, we carry
out the model estimation from data at only one value of the bifurcation
parameter. Figure 2.8 shows the estimated bifurcation diagrams from data
after the bifurcation, that is, data at the middle or the highest bifurcation
parameter value. Note that the result from the lowest bifurcation parameter
value is not shown, because the time-series data at the fixed point could not
constrain the coefficients of the third order polynomials. The obtained bi-
furcation diagrams deviate from that of the data generators. In particular,
the bifurcation type is incorrectly predicted from the data at the highest bi-
furcation parameter value of the Tyson model, while the other cases in Fig.
2.8 preserve the types. In the incorrect case, the limit cycle collides with a
saddle point and disappears through the homoclinic bifurcation. Such mis-
predictions occur more frequently as sampled bifurcation parameter values
are farther from a bifurcation point.
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Figure 2.8: Estimation failure caused by insufficient data. The bifurcation
diagrams are estimated from data at only one value of the bifurcation pa-
rameter. The red and blue broken lines represent points in which the data is
given for constructing each bifurcation diagram. The SN and Hom represent
saddle-node and homoclinic bifurcations, respectively.

Next, we examine polynomials of degree 1 and 2 as oversimple models in
comparison with degree 3 investigated above. Figure 2.9 shows the estimated
bifurcation diagrams and the flow from the full data set shown in Fig. 2.4.
For the polynomial models of degree 1, any bifurcation is not predicted
simply because linear dynamical systems cannot have a limit cycle. However,
the estimated flow structure is reasonable, that is, the positions of the stable
fixed points and the flow directions around the points reflect the projected
dynamics of the data generators.

On the other hand, for the degree 2, while the Hopf bifurcation is suc-
cessfully predicted for the Ferrell model, the learned system still does not
show any bifurcation for the Tyson model. The correct bifurcation type for
the Tyson model, SNIC, seems to be basically possible in polynomials of
degree 2, although we do not have mathematical proof for this. However,
the nullcline of x1 has a clear N -shaped form in the learned polynomials of
degree 3 (see Fig. 2.7(a)), and this fact indicates that the flow of x1 for a
fixed value of x2 can have three steady points that are impossible for degree
less than 3. The N -shaped nullcline is required to reproduce the upper-
right-pointing flow in the upper portion of the limit cycle. We infer that, for
this reason, the model of degree 2 cannot reproduce limit cycle by learning
and, as a consequence, fails to predict the bifurcation type.
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Figure 2.9: Estimation failures caused by insufficient degree of the poly-
nomial dynamical systems. (a,b) The estimated and original bifurcation
diagrams are presented for the (a) Tyson and (b) Ferrell models. The red
and blue diagrams come from the estimated polynomial models of degree 1
and 2, respectively, while the gray diagrams come from the data generators.
(c,d,e,f) The nullclines and the flows of the polynomial of (c,d) degree 1 and
(e,f) 2 are presented for the (c,e) Tyson and (d,f) Ferrell models. The pur-
ple and orange lines show the nullclines of x1 (active Cdc2) and x2 (Total
Cyclin), respectively. The gray arrows represent flows in the phase spaces,
and the blue dots represent a noisy time-series sample from eahc of the data
generators.
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2.3.5 Phase sensitivity analysis

We have shown that the polynomial dynamical systems reproduced the bifur-
cation types of the data generators. This indicates that the learned systems
captured topological features of the flow in the phase spaces provided by the
data generators. Now, we perform a more quantitative comparison between
the learned systems and the data generators from a view point of phase sen-
sitivity. First the concept of phase sensitivity is briefly introduced [20,62,63].

Let us assume that an attractor of a given system is a limit cycle, which
gives an oscillator. By choosing a reference point on the limit cycle, any
other points can be specified by elapsed time θ from the last passing of the
reference. The time θ is called phase of the oscillator. We also assume that a
single pulse input is applied to the oscillator, and the input instantaneously
changes a value of a state variable. The phase of the perturbed oscillator is
delayed or advanced, and the deviation ∆θ depends on the phase at which
the input is applied. Therefore, we can define a phase response curve (PRC)
to a pulse input, as

PRC(θ) = ∆θ (2.35)

where θ represents the timing of the input. Furthermore, under sufficiently
small inputs, we can decompose the PRC as

PRC(θ, A) ∼ Z(θ)A (2.36)

where A is the height of the pulse. The Z(θ) is called infinitesimal PRC
or phase sensitivity. The concept of phase sensitivity characterizes synchro-
nization behavior of an oscillator to small inputs, and is used in studies on
biological rhythms [64,65,66]. Through these studies, techniques to estimate
a phase sensitivity from noisy data are sophisticated [67]. Here we note that,
in obtaining only a phase sensitivity, there is no reason to use our approach,
and the previous techniques can work. We adopt the phase sensitivity here
to illustrate quantitative differences between the learned systems and the
data generators.

By using the polynomial of degree 3 as the state equations, we calculated
the phase sensitivities of the learned systems and the data generators, and
found a huge difference between them. To examine the error, we performed
20 trials of estimation by using independently and identically distributed
data sets in which each set contains the same amount of data as in the time-
series samples in Fig 2.4. Figures 2.10 (a,b,c,d) show the phase sensitivities
of the learned systems and the data generators. The phase sensitivities of the
polynomial dynamical systems of degree 3 not only show large fluctuations
but also are biased from the sensitivities of the Tyson and Ferrell models.
On the other hand, the time courses are similar to each other as shown
in Figs. 2.10 (e,f,g,h), although the periods of oscillation show significant
fluctuations.
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These results indicate that the learned systems capture the shape of the
limit cycle, but not the flows in the surrounding area of the limit cycle. Since
the phase sensitivities from the independent data sets are clearly biased, fur-
ther increase in the data number might not solve the problem. Instead, we
infer that the low dimensionality of the model or the employment of poly-
nomials may cause the mis-prediction. These points have to be elucidated
in future.
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Figure 2.10: Phase sensitivity analysis for learned systems. (a,b,c,d) Sensi-
tivity functions are obtained from 20 learned systems by independent data
sets (red) and the data generators (blue), in which pulse inputs are applied
to Active Cdc2, x1. The zero point on the x-axis represents the time point
at which x1 takes the maximum value. The delays, the values on y-axis,
are scaled by the oscillation period T and strength of the pulse inputs A,
as Delay/(T × A). The bifurcation parameter values are (a) s = 0.005, (b)
0.008, (c) 0.001, and (d) 0.0015, respectively. (e,f,g,h) Noiseless time courses
of Active Cdc2 (x1) over a period are presented for the learned systems (red)
and the data generators (blue). The bifurcation parameter values in (e,f,g,h)
are the same as in (a,b,c,d), respectively.
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2.4 Discussion

Biological data are generally imperfect, due to intrinsic and observation
noises, partial observation, and a small number of possible experimental
conditions. We can employed a machine-learning procedure based on likeli-
hood maximization that makes use of all the information in the time-series
data, including that in the noise. In particular, we focused on deriving
low-dimensional models with correct bifurcation types, because such models
achieve a balance between biological relevance and model simplicity while
did not require detailed biochemical knowledge for constructing them. By
using synthetic data that share the difficulties found in actual biological
data, we demonstrated that the procedure could construct low-dimensional
model equations that reproduced the noisy time-series data from partial ob-
servations and captured the bifurcation types of the original systems. These
results support the conjecture that the learning procedure will be able to
construct reliable low-dimensional models for real time-series data of ac-
tive Cdc2 and Cyclin levels. The method is expected to be applicable to
analyze data on intracellular processes obtained by imaging techniques for
promoting systems biological understandings.

Unfortunately, employment of polynomial as state equations does not al-
ways works well. A major risk comes from the fact that polynomials diverge
on an unbounded domain. The property impairs extrapolation to a region
where data is not given. The problem can be serious, for example, when
we try to predict system behavior under a strong perturbation. Bounded
functions such as trigonometric functions may help reduce the problem.

We note that the proposed procedure can be interpreted as a reduction
method from high- to low-dimensional systems like adiabatic approxima-
tion. In particular, in the vicinity of the bifurcation points, the systems are
usually reduced to normal forms represented by low-dimensional differential
equations with low-order polynomial forms [41]. However, unlike analytical
reduction methods that require the original high-dimensional equations, the
present learning procedure uses only the time-series data. This is especially
advantageous for studying cell dynamics that involve complex molecular in-
teractions. On the other hand, since the learning method has a less theoreti-
cal basis for interpreting the obtained equations, it should be complemented
by some analytical procedure.

The present method can be used together with other machine-learning
techniques. For example, it was recently shown that compressive sensing ex-
hibits a high performance for learning chaotic systems [45]. Incorporation of
prior distributions for model parameters achieves such a sparse optimization
in statistical framework [68], and it will enable us to extract an appropriate
sub model from an original complex equation by eliminating unnecessary
terms. It is advantageous in the case that complex time-series data is ob-
tained typically from a chaotic system.
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The systems to be learned are assumed to be reducible to the effectively
lower dimensional ones, which limits the applicability of the method. Care-
ful evaluation of how extensible the method is to higher dimensional state
spaces remains an important future task. Notice that this does not exclude
application of the method to spatially-extended systems such as reaction-
diffusion systems, since description of the systems is often simple and the
number of parameters to be determined is small. In summary, the proposed
method will be an efficient way to capture the essential features of the cel-
lular dynamics by mediating dynamical system modeling with experimental
observations.
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Chapter 3

Identifying dynamical
systems by sparse
regularization

3.1 Introduction

The diversity in biochemical interactions between molecules such as protein
is one of the major obstacles to derive a reliable model for cell signaling
dynamics. Even when all of related cell signaling components in a biological
function are known and qualitative interactions between them are clarified,
the complexity in the system makes it difficult to determine model equations
exactly. For example, negative regulation on x by y can be modeled by,
ẋ = −y, −xy2, etc. Besides, as shown dramatically in recent studies [69,70],
molecular crowding in cytoplasm affects not only biochemical parameter
values but also function forms of reaction kinetics. This suggests that cell
signaling dynamics is hard to be estimated only from in vitro experiments
which are more controllable than in vivo ones. Then, determining model
equations is a complicated problem, although the approach is essential to
understand cell behaviors.

Many previous studies have defined simplified models as core architec-
tures of systems under investigation and tried to interpret observed cell
dynamics in the simplified model [16, 17]. To derive the core architectures,
we omit biochemical processes having relatively small effects on the observed
behaviors, and replace unknown molecular interactions by phenomenologi-
cal ones. We can often capture qualitative features of the dynamics by such
a simplified picture. However, since the qualitative features still depend on
parameter values and function forms in the model equations, appropriate
simplifications also require significant information on the underlying bio-
chemistry.

The above approaches focus on explaining system-level dynamics based
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on known elementary biochemical processes. Here a complementary ap-
proach is provided by a machine-learning technique called sparse regulariza-
tion that eliminates unnecessary elements of a model while trains the model
to reproduce data. That is, the sparse optimization enables us to start with
a complex model equation that contains many possible interactions, and to
extract an appropriate sub model from the original equations required for
explaining observed dynamics.

One common method to perform sparse regularization is to maximize
penalized log likelihood with L1 norm of a parameter vector θ, as

logL(θ)− α
∑

i

|θi| (3.1)

where α means strength of regularization. The penalty term, called Lasso,
have a finite differential value by each parameter θi in limit of θi → 0, and
then the method sets values of unnecessary parameters to zero, unlike the
case of L2 norm which is also widely used to prevent over-fitting problem.

Although there are several previous studies on learning sparse dynami-
cal systems from time-series data [45], applications for nonlinear dynamical
phenomena are limited yet. Then, we examine the sparse estimation of
dynamical systems that exhibit chaos and adaptation with input-scale in-
variance, by using artificial data. To this end, we employ the L1 norm as
prior distributions, called Bayesian lasso [68], and extend the algorithm in
Chapter 2.

3.2 Method: MAP estimation by Bayesian lasso

In this section, we combine the method in Appendix A with Bayesian lasso
to perform sparse regularization. Our aim is to extract a simple dynamical
system from a more complex equation. For the purpose, the regularization is
confined to parameters for deterministic dynamics while intensities of noises
are not regularized.

A state space model to be estimated is defined as

xt+1
i = xti +∆tfi({xtj}, s) + σiξ

t
i

√
∆t (3.2)

yri = gi({xrj}) + ηiφ
r
i (3.3)

where xi (i = 0, . . . , D − 1) and yi (i = 0, . . . , d − 1) are a state variable
and an observed variable of ith component, respectively. The function fi is
assumed to be expressed by the summation of linearly independent functions
as

fi({xtj}, s) =
Ni∑

n=1

kni f
n
i ({xtj}, s) (3.4)
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where {kni } are the coefficients to be estimated. Detailed definitions of the
model are in the first section of Appendix A.

The extended algorithm performs maximum a posteriori (MAP) estima-
tion that maximizes

L(θ)×
∏

i

p({kni }|σ2
i )p(σ

2
i ). (3.5)

where θ is the model parameters. Here, the prior distribution for the kinetic
parameters {kni } is an exponential distribution as

p({kni }|σ2
i ) ∝ (σ2

i )
−Ni exp(− α

σ2
i

Ni∑

n

|kni |⟨fn
i ({yri })⟩) (3.6)

where the average ⟨fn
i ({yri })⟩ is taken over the all of data points. Note that

the factor ⟨fn
i ({yri })⟩ is required to equalize the dimensions of the terms

in the summation
∑Ni

n . The parameter α controls sparseness and can be
determined by a cross-validation technique. On the other hand, the prior
distribution for the intensity of system noise σ2

i is an inverse-Gamma distri-
bution as

p(σ2
i ) = p(σ2

i |a
γ
i , b

γ
i ) ∝ (σ2

i )
−aγi −1 exp(−

bγi
σ2
i

) (3.7)

with shape parameter aγi and scale parameter bγi .
The prior distributions, eqs. (3.6) and (3.7), change the M step in the

EM algorithm as follows. The update of the coefficients in eq. (A.18) for
each lth component is altered as

min
kl

1

2
kl ·Alkl − bl · kl +

α

∆t
||kl||L1 (3.8)

where kl is the coefficient vector, and the definitions of the matrix Al and
the vector bl are the same as in Appendix A. By introducing an augmented
coefficient vector Θ as

kl = k+l − k−l , where Θ =

[
k+l
k−l

]
, (3.9)

the minimization problem is converted as

min
Θ

1

2
Θ ·
[

Al −Al

−Al Al

]
Θ+Θ ·

[
α

∆t
1−

(
bl
−bl

)]

such that Θi ≥ 0 for all i (3.10)

where 1 represent a vector filled with ones. Since the problem takes the form
of quadratic programming, the convexity is assured and the global optimal
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solution is easily obtained. We calculate the solution of Θ by an active-set
algorithm (in particular, we utilized Matlab’s quadprog function). Next, the
intensity of system noise is updated as

(σl)
2 =

A(|T |− 1)(σML
l )2 + 2α

∑Ni
n |kni |⟨fn

i ({yri })⟩+ 2bγ
A(|T |− 1) + 2Nl + 2 + 2aγ

(3.11)

where σML
l is the maximum likelihood estimator obtained through eq. (A.20).

The update of the other parameters and the E step remain unchanged.

3.3 Identification of a chaotic system

Chaotic dynamics means non-periodic and bounded behaviors, even though
there are some different definitions [71]. Early studies of chaos date back to
the work on celestial mechanics at nineteenth century by a French mathe-
matician, Henri Poincaré, and his work suggests a possibility of unexpected
complex dynamics by simple systems. Along with the development of com-
puter technology, such complex dynamics becomes visible by numerical cal-
culation of models, and theoretical studies lead to the fundamental concepts
like “sensitivity to initial conditions” that makes long-term prediction im-
possible [72, 73]. Besides, a variety of experiments has demonstrated the
existence of chaotic dynamics in the real world. A well-known example in
chemical reactions is the Belousov-Zhabotinskii reaction [74,75,76].

Although chaotic dynamics can emerges in simple systems, observed
chaotic time series often looks complicated to be analyzed. Then, it is
worthwhile to develop the machine-learning method to analyze such chaotic
dynamics, and there are many studies along this direction. However, esti-
mation of noisy chaotic systems from noisy observation still remains a chal-
lenging problem. Here, we consider this problem as a test case to evaluate
the learning dynamical systems with Bayesian lasso.

Clearly, estimation of chaotic systems is quite difficult even when noise
does not exist, because parametrized model equations like polynomials can-
not reproduce detailed structures of observed orbits in general. Then, as the
first step, we employ the Rössler model [73], one of the simplest polynomial
models exhibiting chaos, as a data generator for examining our method. As
a model equation, we use a set of differential equations with polynomial
terms of variables that contains the Rössler model as its subset. In this
setting, the Rössler model is exactly identified in the best case.

3.3.1 Data generator: Rössler model

The Rössler model, proposed by O. E. Rössler, represents dynamics of an
abstract chemical system. The simple model is known to exhibit chaotic
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dynamics, and there are previous studies on reconstruction of the model
[45,77]. We generate chaotic time series from the Rössler model with noise,

ẋ0 = −x1 − x2 + ξ0(t) (3.12a)

ẋ1 = x0 + ax1 + ξ1(t) (3.12b)

ẋ2 = b+ x2x0 − cx2 + ξ2(t) (3.12c)

where the noise terms ξi (i = 0, 1, 2) satisfy white Gaussian statistics ⟨ξi(t)⟩ =
0 and ⟨ξi(t)ξj(τ)⟩ = 2σ2

i δi,jδ(t − τ). The parameter b is chosen as the bi-
furcation parameter, and time-series data is obtained at b = 0.4, 0.6, 1.2,
and 1.8. These values of b are taken around the period-doubling cascade
of bifurcations from limit cycle to chaos. The other parameters are set as
a = 0.2, c = 5.7 and σi = 0.005. The observation noise is introduced as
yi = xi + ηiφi (i = 0, 1, 2) where ηi = 0.005 is intensity of observation noise
and φi is sampled from a standard normal distribution. The numbers of
independent time-series data are 6, 6, 3, and 3 at b = 0.4, 0.6, 1.2, and 1.8,
respectively. Figure 3.1 shows typical examples of observed orbit at each
value of the bifurcation parameter.
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Figure 3.1: Noisy orbits generated from the Rössler model. These calcula-
tions are performed by a stochastic Runge-Kutta (SRKII) algorithm [59].
The values of the bifurcation parameter are (a) b = 0.4, (b) 0.6, (c) 1.2, and
(d) 1.8, respectively. The other parameter values are set as a = 0.2, c = 5.7,
τ = 10, σi = 0.005, and ηi = 0.005. For reason, the observation values are
scaled as yi/10.
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3.3.2 Model description

Here we define a state space model composed of state equations and obser-
vation equations. By adopting a polynomial of degree 2 with three variables,
the state equations in continuous-time form become

ẋ0 = k0 + k1x0 + k2x1 + k3x2 + k4(x0)
2 + k5(x1)

2

+k6(x2)
2 + k7x0x1 + k8x1x2 + k9x2x0 + noise (3.13a)

ẋ1 = k10 + k11x0 + · · ·+ noise (3.13b)

ẋ2 = b+ k20x0 + · · ·+ noise (3.13c)

where b is the bifurcation parameter, and the noise terms are assumed to be
white Gaussian. Note that we can obtain the Rössler model by setting the
parameters as k2 = −1, k3 = −1, k11 = 1, k12 = a, k22 = −c, k28 = 1 and
the other parameters ki = 0. In the estimation process, the state equations
are used in discrete-time form by the Euler-Maruyama scheme. Then the
form of state equations ẋi = fi({xj}) + noise (i = 0, 1, 2) are converted
to xt+1

i = xti + ∆tf({xtj}) + σiξti
√
∆t where t is each time point, ∆t is an

integration time, σi is an intensity of system noise, and ξti is sampled from
a standard normal distribution.

The observation equations, yi = xi + ηiφi (i = 0, 1, 2), are assumed to
be known except for the intensities of observation noises ηi to be estimated
from the data.

3.3.3 ML estimation with full observation

Before the MAP estimation with Bayesian lasso, we perform the maximum
likelihood estimation for comparison. In this case, the learning algorithm is
identical to that employed in Chapter 2. (see section 4 in Appendix A for
the detailed setting of the learning algorithm)

By considering the condition of full observation in which all of the three
variables are simultaneously observed, we perform the learning at various
settings with respect to initial parameter values sampled from uniform dis-
tribution [−0.01, 0.01]. The results show that, with sufficiently high initial
intensities of system and observation noises, no fine-tuned initial parameter
values are required to reach the maximum likelihood estimation. Then we
set initial values of the coefficients of polynomial terms to zero, as ki = 0
for all i, unless otherwise stated.

On the other hand, it is found that the integration time ∆t strongly
affects the estimation results. To characterize the dependence on ∆t, an
indexNdiv is defined to represent the number of interpolation points between
the observation points, as

Ndiv =
NT − 1

NR − 1
(3.14)
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where NT is the number of time points for calculation, and NR is the number
of observed-time points. Ndiv means number of steps of numerical integra-
tion between two observation points and can be controlled independently of
data. In other words, a value of Ndiv means a fraction of ∆t to sampling
interval. Figure 3.2 show the bifurcation diagrams of learned systems at dif-
ferent values of Ndiv. As the value of Ndiv increases from 2 to 8, the learned
bifurcation diagram is improved drastically and a period-doubling cascade
clearly appears at Ndiv = 8. However, in the particle filter algorithm, the
required number of particle for accurate estimation increases exponentially
as Ndiv because Ndiv roughly corresponds to the dimension of probability
distribution to be approximated at each observation point. Then, with a
limited computational resource, excess increase of Ndiv leads to poor esti-
mation. We found that, with further increase of Ndiv, the estimation of the
system noise particularly gets worse.

Figure 3.2: The bifurcation diagrams of learned systems atNdiv = 2 (blue), 4
(green), and 8 (red) are shown. 100 peak values of x0 by noiseless calculation
are plotted at each value of the bifurcation parameter b. The diagram of
the Rössler model is also shown for comparison (gray). The broken lines
indicate the points at which the data are given.

To overcome the dilemma between the particle number and Ndiv, a two-
step approach is employed. First, we perform the learning with a relatively
low value of Ndiv and second, we fixed the estimated intensities of system
noises, and re-estimate the other parameters with higher value of Ndiv. From
the procedure, an improved learned bifurcation diagram is obtained. Fig-
ure 3.3 shows the learned parameter values and bifurcation diagram at the
best case among 50 trials of the two steps. The used values of N low

div and
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Nhigh
div are 8 and 128, respectively. As shown in Fig. 3.3(a), the procedure

accurately estimates the coefficients of terms in the Rössler model within
1% error approximately. However, the coefficients of polynomial terms that
do not exist in the Rössler model take small non-zero values, and the extra
terms cause significant bias of learned bifurcation diagram in Fig. 3.3(b).
In fact, even when the coefficients involved in the Rössler model are set at
identical values to the data generator, no further improvement in the bifur-
cation diagram occurs. Then, we expect that Bayesian lasso improves the
estimation by suppressing the unnecessary terms.

Before examining Bayesian lasso, we investigate why the learned bifur-
cation diagrams deviate in the common direction from the correct one as
shown in above examples. A period-doubling bifurcation with decrease of b
is delayed in each learned system, and the delay is significant with smaller
Ndiv (Fig. 3.2). First an entropic effect is considered. That is, we infer that
random fluctuations around the Rössler model result in the asymmetric de-
viation. To examine this inference, we calculate such fluctuated bifurcation
diagrams, and find that the deviations are symmetric, as shown in Fig.
3.4(a). One may think that the result is not conclusive because sufficiently
small fluctuations always result in symmetric deviations. However, since
the amplitude of deviations in Fig. 3.4(a) is large enough to include the
deviation in Fig. 3.3(b), we reject the entropic effect as the main cause of
the asymmetric deviation in the bifurcation diagram.
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Figure 3.3: The result of the ML estimation with (N low
div , N

high
div ) = (8, 128) is

summarized. Note that the parameter values are properly scaled in concert
with the scalings of time (t × 10) and state variables (xi/10) for practical
reason. (Left figure) Blue rectangulars and red circles indicate parameter
values of Rössler model and the learned system, respectively. The parame-
ters {ki} are indexed as in eqs. (3.13a), (3.13b) , and (3.13c). (Right figure)
Bifurcation diagrams of the learned system (red) and Rössler model (gray)
are shown. 100 peak values of x0 are plotted at each value of the bifurcation
parameter b. The broken lines indicate points at which the data are given.
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Figure 3.4: (Left figure) 20 bifurcation diagrams of fluctuated Rössler
model (colored circles) are shown on the undisturbed bifurcation diagram
(thick gray line). Each fluctuated system is generated by adding uniformly-
distributed noise ([−0.001, 0.001]) to the rate coefficients that reproduce
Rössler model. We note that the rate coefficients not involved in Rössler
model are also fluctuated. (Right figure) The bifurcation diagrams calcu-
lated from estimations with fixed intensities system noises as σi (i = 0, 1, 2)
= 0.02 (Blue), 0.01 (Green), and 0.005 (Red). The value of Ndiv takes 8 in
all the cases.

Next it is hypothesized that large values of integration time ∆t desta-
bilize calculated dynamics, and then model parameters are estimated to
compensate the effect by stabilizing the dynamics. This explains why, in
the noiseless case, the learned systems exhibit a more stable dynamics than
the data generator at each value of bifurcation parameter b. To examine
this hypothesis, bifurcation diagrams are calculated from estimations with
different fixed intensities of system noises. Figure 3.4(b) show larger inten-
sity of system noise results in larger delay in period-doubling bifurcations
with decrease of b. The results indicate that the estimated coefficients, {ki},
stabilize the dynamics to compensate destabilization by a large noise ampli-
tude. The fact indirectly supports the proposed hypothesis.

3.3.4 MAP estimation with full observation

In this section, we present the results of MAP estimation with Bayesian
lasso on chaotic time-series data. The same data set as in the previous
section is used. In the calculation below, aγi = 0 and bγi = 0 (i = 0, 1, 2) are
employed in the prior distributions for the intensities of system noise, eq.
(3.7). These settings correspond to usage of non-informative prior for scale
type parameters, p((σi)2) ∝ 1/(σi)2, that is derived from the assumption of
uniform distribution of log(σi)2.
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Figure 3.5: Evaluating the learned systems at different values of reg-
ularization strength α with ∆t = 1/8. (a) (Log likelihood) logL(θ)
and (MAP) logL(θ)

∏
i p({kni }|σ2

i )p(σ
2
i ) are presented. The factor

log
∏

i p({kni }|σ2
i )p(σ

2
i ) is calculated as

∑
i−2(Ni + aγi + 1) log σi − (bγi +

α
∑Ni

i |kni |⟨fn
i ⟩)σ

−2
i + const, and the constant term is ignored. The error

bars indicate standard deviation of fluctuation in likelihood evaluation by
the particle filter algorithm. (b) Log likelihood of the learned systems evalu-
ated on two newly generated data sets is presented. Red squares indicate the
results for new data set at bifurcation parameter values b = 0.4, 0.6, 1.2, and
1.8. The numbers of independent time-series data are 6, 6, 3, 3 at the four
values of b. Those values and the number of data are the same as in the data
used for the estimation. Blue circles indicate the results for new data set at
bifurcation parameter values b = 0.3, 0.9, 1.5. The number of independent
time-series data are 6 at each value of b. The inset provides an enlarged view
between α/∆t = 0.01 and 1. Before the evaluation, initial conditions are
re-estimated to fit the new data while the other parameters are fixed. The
error bars indicate standard deviation of fluctuation in likelihood evaluation
by the particle filter algorithm.
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The first problem to be solved for obtaining reliable estimation result
is to choose an appropriate value of regularization strength α in eq. (3.6).
Larger value of α leads simpler model in exchange for decrease of likelihood.
To address the problem of the optimal value of α, we adopt a cross-validation
technique. Learned systems are obtained at different values of α, and each
system is evaluated based on likelihood for newly generated data sets from
the data generator, as shown in Fig. 3.5.

Figure 3.5(a) shows maximum log likelihood (red squares) and log max-
imum a posterior probability (blue circles) depending on α. With the in-
crease of α, the likelihood starts to decrease from α/∆t > 0.1, and reach
the minimum value at α/∆t = 10000. We note that, at α/∆t = 10000, all
coefficients of polynomial terms are eliminated as ki = 0 for all i.

Figure 3.5(b) shows log likelihood for two newly generated data sets.
Red squares indicate the results for a new data set at the same values of
the bifurcation parameter as in the data used for estimation. On the other
hand, blue circles indicate the results for the other data set in which the
values of the bifurcation parameters are different from those in the data set
for estimation. The evaluated values of likelihood depend on α in the same
manner in both cases. As shown in the inset, predictive performance for
the new data is maximum at α/∆t = 0.1, although the difference from the
results at α/∆t = 0.01 is not so large. Then we choose the value 0.1 as an
optimal value.
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Figure 3.6: The result of the MAP estimation based on the full observation
is summarized. The values of N low

div and Nhigh
div are 8 and 128, respectively.

The definitions of colors and symbols are same as in Fig.3.3.

By using the value of α/∆t = 0.1, we take the two-step approach, as in
the previous section, to estimate the coefficients of polynomial terms with
high value of Ndiv. The values of N low

div and Nhigh
div are 8 and 128, respectively.

We note that, in the second step of estimation with Nhigh
div = 128, α/∆t =

0.1 × |T |high/|T |low ∼ 1.6 is employed. The factor |T |high/|T |low represents
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the increase of the number of data points calculated by particle filter at
the E step, and then the increase of α by the same order is expected to be
required to perform estimation in the same effective regularization. Figure
3.6(a) and (b) show the estimated values of parameters and bifurcation
diagram of the learned system, respectively. The unnecessary terms are
eliminated successfully, although some negligible values of the coefficients
remain, probably because of fluctuation in the learning algorithm or the data
set. Correspondingly, the bifurcation diagram of the learned system more
accurately reproduces that of the Rössler model than the case of maximum
likelihood estimation.

3.3.5 MAP estimation with partial observation

We also examine the MAP estimation based on partial observation by as-
suming that a state variable x1 is completely unobservable except at the
initial states. The data at the initial conditions is required to determine
the scale of x1. Figure 3.7 shows an example of observed orbit on the y0-y2
plane. The mapped orbit on the plane degenerates in a part of the chaotic
dynamics, which seems to provide a challenging problem.

As a result of the learning, it is found that transient overestimation of
the system noise of the unobservable component becomes huge in the process
of iterative optimization, and leads poor estimation. Then, by setting the
intensities of system noises to the true values (σ0,1,2 = 0.005), the learning
is performed to estimate the coefficients of polynomial terms only. Con-
sequently, the method successfully estimates the parameter values and the
period-doubling cascade as shown in Fig.3.8(a) and (b), respectively. By
choosing optimal values of aγi and bγi (i = 0, 1, 2), we can expect to obtain as
good estimation as this result. Cross-validation techniques may contribute
to find the optimal prior for the system noises.
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Figure 3.7: A noisy orbit on the y0-y2 plain is shown with b = 0.4.
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Figure 3.8: The result of the MAP estimation based on the partial observa-
tion is summarized. The values of N low

div , N
high
div and α are the same as those

used to obtain the result in Fig. 3.6. The definitions of colors and symbols
are same as in Fig.3.3.

3.3.6 Discussion

The above-mentioned results indicate that the sparse regularization by Bayesian
lasso can improve estimation of chaotic systems in comparison with max-
imum likelihood estimation. However, the accuracy of the estimation de-
pends on intensity of noise and the sampling interval compared to Lyapunov
time, which should be theoretically evaluated in further study.

We examined the case that a part of the model is exactly the same
as the data generator, the Rössler model. The assumption does not hold
perfectly in many realistic applications. Although we can perform the es-
timation procedure and obtain a model exhibiting reasonable behaviors in
the non-ideal cases, there is a delicate problem. Since characteristics of
chaotic dynamics such as attractor dimension and the Lyapunov spectrum
depend on micro-structures of the phase space, the characteristics seems to
be strongly affected by employed model equations. In such cases, in what
sense do we say that a reconstructed chaotic dynamics is similar with the
original one? We hope to clarify this in future, but probably the problem
does not affect quantitative estimation and prediction performances because
noises mask micro-structures of phase spaces anyway.

3.3.7 Note: The Lorenz equations as data generator

Some chaotic attractors appear not through a period-doubling cascade as in
the Rössler model. A well-known example of such an phenomena is provided
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by the Lorenz model [72] described as

ẋ = −px+ py (3.15a)

ẏ = −xz + rx− y (3.15b)

ż = xy − bz. (3.15c)

The equations were introduced as a toy model of atmospheric convection,
and exhibit chaotic dynamics with p = 10, r = 28, and b = 8/3. Here, with
the decrease in r, the chaotic attractor suddenly disappears through a sub-
critical bifurcation by a mechanism called crisis in dynamical systems the-
ory [71]. To validate the learning in such cases, we performed the maximum
likelihood estimation from time-series data around the crisis by adopting the
same procedure as was applied to the Rössler model. Polynomials of degree
2 with three variables are employed as state equations, but a slight modifi-
cation from eqs. (3.13a,b,c) is required due to the different forms to include
the bifurcation parameters, as (k11x0, b) → (rx0, k19) and corresponding
re-allocation of index i in kis.

As a data set, we use time-series data obtained at r = 10, 16, 22, and
28 as shown in Fig. 3.9. Note that the time-series samples reflect the multi-
stability of the Lorenz model at the low values of r. We examined 10 trials
of the estimation by independent datasets. In addition, for each dataset,
we also performed the estimation only from time-series data at r = 28
where chaotic attractor exists, in order to demonstrate advantage of using
data at multiple values of the parameter. Figure 3.10(a) and (b) show the
estimation results for coefficients of polynomial terms in the Lorenz model
and for the other unnecessary coefficients, respectively. Compared with the
data at r = 28 alone, use of the full datasets improves the results, especially
the estimation of the coefficients that should take zero as true values. This
indicates that the estimation of dynamical systems is effective even when the
crisis occurs. Although the coefficients with zero true values remain finite,
the sparse estimation method by L1 norm is expected to eliminate them.

We additionally note that estimated values of some coefficients with zero
true values are biased from zero. The biased coefficients are k8, k9, k17, k23, k24,
and k25. Interestingly, they almost correspond to the terms preserving
the symmetry in the Lorenz model against the transformation (x, y) →
(−x,−y). The symmetry-preserving terms with zero true values are k8, k9,
k17, k19, k23, k24, and k25, while there is only one exception, k19. This sug-
gests that the terms violating symmetry in the original system are eliminated
easily, compared with the other terms preserving the symmetry.
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Figure 3.9: Noisy orbits generated from the Lorenz model by setting the
initial condition as (x0, x1, x2) = (10, 10, 0). The data are obtained after
taking the relaxation interval 600 from the initial condition. These calcu-
lations are performed by a stochastic Runge-Kutta (SRKII) algorithm [59].
The colors indicate results from independent trials. The values of the bi-
furcation parameter are (a) r = 10, (b) 16, (c) 22, and (d) 28, and The
numbers of independent time-series samples at the values are 3, 3, 6, and
18, respectively. The other parameter values are set as p = 10, b = 8/3,
σi = 0.005, and ηi = 0.005. For practical reason, the observation values are
scaled as yi/100.
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Figure 3.10: Maximum likelihood estimation of the polynomial model from
data generated by the Lorenz model. (a) shows estimated coefficients of
polynomial terms in the Lorenz model, {ki} (i = 1, 2, 18, 22, 26), while (b)
shows the other estimated coefficients. Blue, red, and green symbols are
true values, estimated values from the dataset, and estimated values from
the data at r = 28 only, respectively. Note that the parameter values are
properly scaled in concert with the scalings of time (t × 100) and state
variables (xi/100) for practical reason.
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3.4 Identification of an adaptive system

Biological systems from unicellular to multicellular organisms experience
various environmental stimuli during their lives, and respond appropriately
to those in order to survive. The response often exhibits adaptation, in other
words, output arises transiently in response to the input and returns to pres-
timulus level even when the input still holds [78,79]. Biological functions of
the adaptive behaviors are originally considered as extended dynamic ranges
of signaling systems while detection of input temporal changes sensitively.
This nature of response is not fully understood yet.

One of the most well-characterized systems to show adaptation is found
in Escherichia coli cells that regulates flagellar rotation. The system un-
derlies chemotaxis and is essential to search for food and to escape from
toxin. Experimental studies revealed a quite simple structure of the system,
and several models were proposed to reproduce key features of observed
dynamics [80, 81, 82]. The model studies concluded that receptor desen-
sitization by multiple methylation works as negative feedback to suppress
signal transduction, and to achieve adaptation. The mechanism of the ro-
bust adaptation was extracted as integral feedback [83], and the concept
helped to understand other systems like osmo-adaptation in yeast [84]. Be-
sides, it was shown that the adaptive system enables the cells to perform
chemotaxis by integrating temporal changes of concentrations of chemicals
along with the time course, even when spatial gradient of the chemicals
cannot be measured directly because of the short cell length [5].

From the viewpoint of machine learning of dynamical systems, adap-
tive behaviors provide a challenging problem because, unlike oscillatory or
chaotic systems, information extraction from transient dynamics with time-
varying input is essential for system identification. However, by considering
the ubiquity and the biological significance of adaptation, it is essential to
analyze such dynamics to elucidate cell behaviors. Then we apply our algo-
rithm to estimate a model of adaptation by using step stimulus that is most
frequently employed to characterize cellular response experimentally.

In order to choose a specific data generator, we focus on a subclass of
adaptive behaviors called fold-change detection (FCD) that is recently pro-
posed [85, 86]. The definition is that systems with FCD property response
depending on fold change of input, not absolute change. Then FCD is anal-
ogous to Weber’s law in sensory physiology that states relationship between
stimulus and perception as logarithmic, with the exception that FCD is
defined for temporal input-output relations. FCD is considered to provide
robustness in signaling cascades agaist cell-cell variations of the signaling be-
cause such variations sometimes cause fluctuation while keeping fold change
of the response as is actually observed [87].

Along with the experimental works, several theoretical studies are per-
formed mainly by control theory in engineering [88,89]. In particular, Shoval
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and co-workers show that a symmetry property in dynamical systems is suf-
ficient for the adaptive systems to perform FCD. FCD models can be drawn
from the criteria easily.

Below we construct a polynomial model of FCD as shown in Fig. 3.11,
and confirm the symmetry can be identified by the machine learning. In
particular, the state equations are defined to contain another adaptive sys-
tem whose the attractor is the same as the polynomial FCD model, in order
to verify that the learning integrates information in the transient dynamics,
not in the attractor alone.
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Figure 3.11: A definition of FCD and a polynomial model for FCD.

3.4.1 Data generator: A polynomial model of FCD

The FCD condition in simplified form is as follows [88]. Let us consider a
two-dimensional dynamical system under input s as

ẋ0 = f0(x0, x1, s) (3.16a)

ẋ1 = f1(x0, x1, s), (3.16b)

and x0 is defined as output of the system. It is assumed that the system

has a globally stable fixed point. If, for each fold change of input p, there is
some differentiable map φp(x1) with the following properties,

f0(x0,φp(x1), ps) = f0(x0, x1, s) (3.17a)

f1(x0,φp(x1), ps) =
dφp(x1)

dx1
f1(x0, x1, s), (3.17b)
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then the system has FCD property. Based on the condition, we can easily

determine whether a system has FCD property or not.
As the data generator, a polynomial model is constructed to satisfy the

condition as

ẋ0 = c0s(t)x1 − c1x0 + ξ0(t) (3.18a)

ẋ1 = c2x1 − c3x0x1 + ξ1(t) (3.18b)

where the noise terms ξi(t) (i = 0, 1) satisfy white Gaussian statistics

⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(τ)⟩ = 2σ2
i δi,jδ(t−τ). In the case of noiseless dynam-

ics, eigenvalue analysis indicate that the fixed point with a positive constant
input s (x0 = c2/c3, x1 = (c1c2)/(c0c3s)) is stable with positive rate con-
stants c0,1,2,3, and then the system show FCD. In addition, time-varying
input are defined as

s(t) =

{
spre (t < tinput)
spost + (spre − spost) exp(−λ(t− tinput)) (t ≥ tinput).

(3.19)

The input time series comes from dynamics of a chemical concentration in
a perfusion chamber as

s(0) = spre, ṡ =

{
spre − λs (t < tinput)
spost − λs (t ≥ tinput)

(3.20)

where λ is flow rate, tinput is switching time, spre and spost are pre- and
post-stimulus levels of input, respectively.

By using simple observation equations as yri = xri +ηiφr
i , we generates 43

time-series data at various pre- and post-stimulus values, spre and spost, as
shown in Table 3.1. The other parameter values are set as, c0 = c1 = c2 =
c3 = 2, σ0 = σ1 = 0.1, η0 = η1 = 0.002, λ = 32 and tinput = 2.33. As shown
by a subset of the artificial data set presented in Fig. 3.12, the duration time
of each data (0 ≤ t ≤ 7) includes the first peak, while subsequent damped
oscillation is not fully observed. The data provide sufficient information to
identify the data generator as shown below.

(spre,spost) Number of generated time series

(0.03, 0.15) 9
(0.1, 0.3) 14
(0.1, 1) 10
(0.3, 0.9) 5
(0.3, 3) 5

Table 3.1: Input values and corresponding numbers of generated time series.
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Figure 3.12: Time series of (a) x0 and (b) x1 generated from eqs. (3.18a)
and (3.18b) at spre = 0.1 and spost = 0.3. The time-varying input is shown
in the inset of (b). The broken lines indicate tinput.

3.4.2 Learning from transient dynamics

State equations

First we express state equations in a continuous-time form as

ẋi = s(t)gi({xj}) + fi({xj}) + noise (3.21a)

where fi and gi (i = 0 . . . D − 1) are polynomials of degree M and M ′,

respectively. By considering M = 2 and M ′ = 1 in two variables (D = 2),
Discrete-time form of the state equations with integration time ∆t is wrote
down as

xt+1
0 = xt0 +∆t(k0 + k1x

t
0 + k2x

t
1)s

+∆t(k3 + k4x
t
0 + k5x

t
1 + k6(x

t
0)

2 + k7x
t
0x

t
1 + k8(x

t
1)

2)

+σt
0ξ

t
0

√
∆t (3.22a)

xt+1
1 = xt1 +∆t(k9s+ k10sx

t
0 + · · ·+ k17(x

t
1)

2) + σt
1ξ

t
1

√
∆t (3.22b)

where σi is the intensity of the system noise, and ξti is sampled from a

standard normal distribution as previous examples in this thesis.
We emphasize importance to extract information from transient dynam-

ics in this setting. The polynomial state equations contain a linear integral
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feedback system,

ẋ0 = c0c3s(t)x1 − c1c2 (3.23a)

ẋ1 = c2 − c3x0. (3.23b)

This system shows adaptation and has the same fixed point with any con-
stant input s as the data generator, i.e., the values of (x0, x1) at the fixed
point are identical to x0 = c2/c3, x1 = (c1c2)/(c0c3s). Existence of such a
system as a sub model indicates that the data generator cannot be identified
by positions of fixed points alone.

In principle, noisy time series around a fixed point at a constant input
value contains information required to distinguish the different adaptive sys-
tems; however we found that estimation based on such data alone does not
work at least in the setting of data number and sampling interval. This
is reasonable because estimation of dynamical systems based on the noisy
time-series data around the fixed point is known to be difficult even in the
case of the Ornstein-Uhlenbeck process [90] that is simpler than the poly-
nomial FCD model considered here. Then, we conclude that integration of
information in transient dynamics with varying input is practically essential
to identify the data generator by the machine-learning.

Estimation of initial condition for each prestimulus input value

Since the data generator under constant input s has the globally stable fixed
point, initial conditions with common prestimulus input value spre are quite
similar to each other, unlike in the case of oscillatory dynamics in which
the degree of freedom of the phase exists. Then independent estimation of
initial conditions of all time-series data seems to be over-parametrization,
and might cause overfitting problem. To prevent the problem, initial con-
ditions with common spre are estimated by single normal distribution. For
each value of spre, the mean µ and the variance V of the estimated Gaussian
are calculated as µ = 1

n

∑
i µi and V = 1

n2

∑
i Vi, respectively, where the

summation is taken over the initial conditions with the same spre, and n is
number of the condition.

Results

The learning with Bayesian lasso is performed based on adaptive time-series
data on x0 and x1. In the calculations below, aγi = 103 and bγi = 10 (i = 0, 1)
are employed in the prior distributions for the intensity of system noise,
eq.3.7, in order to avoid to be trapped on local maxima although it is not
essential for the estimation. (see section 4 in Appendix A for the detailed
setting of the learning algorithm)
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Figure 3.13: The two-phased learning trajectory with α = 9600 of (a) log
likelihood and (b) parameter values. Colors in (b) indicate different param-
eters. (c), (d), and (e) show comparison between the model behavior and
the data with tentatively estimated parameters at learning iteration I = (c)
20, (d) 180, and (e) 400. Corresponding values of I are indicated in (a) by
black arrows and colored polygon for (c) orange triangle, (d) green square,
and (e) purple pentagon. The input time series used in (c-e) is shown in (f).
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Figure 3.14: Evaluating the learned systems at different val-
ues of α with ∆t = 1/96. (a) (Log likelihood) logL(θ)
and (MAP) logL(θ)

∏
i p({kni }|σ2

i )p(σ
2
i ) are presented. The factor

log
∏

i p({kni }|σ2
i )p(σ

2
i ) is calculated as

∑
i−2(Ni + aγi + 1) log σi − (bγi +

α
∑Ni

i |kni |⟨fn
i ⟩)σ

−2
i + const, and the constant term is ignored. The error

bars indicate standard deviation of fluctuation in likelihood evaluation by
the particle filter algorithm. (b) Log likelihood of the learned systems eval-
uated on newly generated data sets is presented. Red and blue symbols
indicate results from two independently identically distributed (i.i.d.) data
set. Before the evaluation, initial conditions are re-estimated to fit the new
data while the other parameters are fixed. The error bars indicate stan-
dard deviation of fluctuation in likelihood evaluation by the particle filter
algorithm.
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As a result, two-phased learning is observed, where a plateau is visible in
the trajectory of log likelihood along with learning iteration, as shown in Fig.
3.13(a). In Fig. 3.13(b), the tentative parameter estimations along with the
learning trajectory show long-time stay far from the terminal values. This
reflects the two phase in the log likelihood optimization. To understand
the learning, we investigate the model behaviors before the plateau, on the
plateau, and after the plateau. Although the model parameters are com-
plicated to analyze unless the estimation converges, changes of the model
behaviors are interpretable. Figures 3.13(c), (d), and (e) show the noiseless
orbit of x0 with the estimated parameters in comparison with time-series
data at the three points on the learning iteration. Although the basal out-
put and transient response in the data are not reproduced by the model
before the plateau, the basal output is reproduced on the plateau, and the
full output behavior is reproduced after the plateau. The two phases are
interpreted as learning the observed attractors in the first phase and the
transient dynamics in the second phase. Then it is confirmed that informa-
tion in transient dynamics is certainly included in the estimation.

Following the success of the learning, we perform the estimations by
using various values of the regularization strength α to determine the optimal
value as shown in Fig. 3.14. Figure 3.14(a) shows changes in maximum
logL(θ) and logL(θ)

∏
i p({kni }|σ2

i )p(σ
2
i ) from α/∆t = 1 to 1000. The values

of log likelihood are stable against 1000-fold increase of α. On the other
hand, Figure 3.14(b) show the result of cross validation. That is, likelihood
of the learned system is evaluated on newly generated artificial data with
the same settings as the data used for the learning. Although the evaluated
likelihood at α/∆t = 1000 exhibits clear decrease, the learned systems at
α/∆t = 1, 10, 100 predict the new data equally well, and likelihood-based
cross validation alone is insufficient to choose the optimal value between
α/∆t = 1-100.

Therefore, here we focus on the learned system at α/∆t = 100 because
the system is simpler than the other system with α/∆t = 1-10 and can
be expected to be similar to the original data generator in which number
of polynomial terms with non-zero coefficients is small. As shown in Fig.
3.15(a), the parameter values {ki} are correctly estimated at α/∆t = 100.
However, some unnecessary terms that are not involved in the data generator
are also visible, for example, at values of k11 and k12. Furthermore, it is
found that stronger regularizations by larger values of α do not suppress the
unnecessary terms, but amplify them. Figure 3.15(b) demonstrates the case
of α/∆t = 1000 for comparison.

We infer that the unnecessary terms come from time discretization error
as in the case of identifying the Rössler model. Then we consider the division
number between the observed-time points Ndiv = (|T | − 1)/(|R| − 1) once
again, and perform the learning at various values of Ndiv while intensities
of system noise {σi} are fixed. The results are summarized in Fig. 3.16.
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The unnecessary parameters k11 and k12 diminish gradually as increase of
Ndiv, and on the other hand the necessary parameters k2, k4, k14, and k16
converge the true value, 2. Therefore, we finally obtain a learned system
that is nearly identical to the data generator.
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Figure 3.15: The parameter values {ki} (i = 0, . . . 17) of learned systems
(red circle) are shown in comparison with the data generator (blue square)
at α/∆t = (a) 100 and (b) 1000.
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3.4.3 Discussion

The learned system by MAP estimation with Bayesian lasso reproduces se-
quentially the observed adaptive behavior and the transient response through
the two-phased learning trajectory. The results indicate that the method
include information not only in the observed attractors, but in the transient
dynamics with time-varying input. In fact, the learned systems have never
been trapped on the false system described by eqs. (3.23a) and (3.23b) that
exhibits the same base output as the data generator. The success is prereq-
uisite for applications to adaptive behaviors that are ubiquitous among the
cell signaling dynamics.

In particular, we succeeded to extract the adaptive systems having a
type of input-scaling invariance, called FCD. As mentioned in [89], sym-
metries other than the FCD can be considered and may be advantageous
for environmental perception. The human sensory system provide a vari-
ety of examples, such as rotational symmetry that is required for robust
visual object recognition. However, at the single-cell level, there is little
known about what kind of symmetry can be realized or actually exists in
the sensory systems. The machine learning may reveal hidden invariance
properties in cellular perception as principles in evolutionary design of the
signaling systems.

3.5 Summary

The biochemical diversity in cell signaling systems complicates selection of
function forms in the model to reproduce the dynamics. On the other hand,
a statistical technique, called sparse estimation, has been developed to ex-
tract an appropriate sub model from a rather complicated equations. We
implemented a sparse estimation method of dynamical systems and exam-
ined it with applications to nonlinear dynamical phenomena by using artifi-
cial data; one application is for chaotic dynamics and another application is
for adaptation with a type of input-scale invariance called FCD. The sparse
estimation is a simple extension of the algorithm considered in Chapter 2 by
Bayesian lasso. For both cases of chaos and FCD, the method identify the
data generator models by eliminating unnecessary terms in state equations.
The results for the nonlinear phenomena imply a wide range of potential
application of the method to cellular dynamics.

The sparse estimation for dynamical systems focuses mainly on reduc-
ing parameter number, not state dimension. However, the reduction of state
dimension is, if possible, also useful because it corresponds to a procedure
of omitting cell signaling components having relatively small effects on the
dynamics, which is frequently performed in systems biology. Model reduc-
tion techniques in the direction have been developed in control theory and
statistics, and there are applications to models for cell signaling systems.
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We hope that a combined approach of reduction of both parameter number
and state dimension can automatize model simplification processes.



59

Chapter 4

A cell-cell communication
system in a social amoeba

4.1 Introduction

Populations of cellular organisms often exhibit collective behaviors based
on cell-cell communications [91]. The communications rely on intracellular
signaling systems that perceive and transmit extracellular signals. Here we
aim at understanding and predicting collective dynamics of cells by phe-
nomenological modeling of the input-output characteristics of the signaling
systems at single-cell level, even when detailed structures of the intracellular
molecular circuits are unknown. Such procedures have a wide range of appli-
cations, potentially including all of developmental dynamics of multicellular
organisms. In this chapter, we take the first step towards this direction, by
investigating a cell-cell communication system in a social amoeba.

4.1.1 Model organism: Dictyostelium discoideum

Dictyostelium discoidum is a species of amoeba, which lives in soil and eats
bacteria [92]. This model organism is known to have a unique life cycle,
called asexual development, described below (see also Fig. 4.1). Upon
nutrient depletion, Dictyostelium cells undergo transition from vegetative
state to starved state through cell cycle arrest and starting developmental
transcriptional programs. In the starved state, the cells are capable of sens-
ing an extracellular diffusive chemical, cyclic adenosine 3’,5’-monophosphate
(cAMP), and respond to the signal by synthesis and secretion of cytosolic
cAMP. Then the cAMP signal is relayed from cell to cell, and large-scale
wave patterns appear from the multicellular dynamics [93, 94]. After that,
the cells move towards the chemical waves, and form aggregates at the sig-
naling centers. The aggregate shows collective movement and differentiation
of involved cells, finally turn themselves into a reproductive structure, called
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a fruiting body [95].

Figure 4.1: Asexual developement of D.discoideum. The picture is from
Ref. [96].

4.1.2 Signal transduction at a single-cell level

The spatiotemporal dynamics of cAMP in the early phase of the develop-
ment generates spiral pattern of a wavelength ∼ 2 mm in which local cell
populations exhibit regular oscillation with a period of approximately 6 min.
Both of the spatial and temporal patterns are of fundamental importance for
progress of the development, because the spiral waves provide guide signal
for aggregation and the periodic variation induces cell differentiation. How-
ever, measurement of the underlying cAMP dynamics at a single-cell level
was prohibited by technical limitation, which made it hard to understand
how the collective dynamics arise.

Recently S. Sawai and his group succeeded in measuring the the single-
cell dynamics by using a fluorescence resonance energy transfer (FRET)-
based sensor to monitor cAMP in live Dictyostelium cells [97]. They also
employed a perfusion chamber to reveal cAMP dynamics in isolated cells
under various extracellular cAMP concentrations. As a result, they found
adaptive behaviors, that is, transient rise and subsequent decay of cytosolic
cAMP level, with moderate dose of the extracellular cAMP.

4.1.3 Scale invariance in response dynamics

In the previous study, the adaptive behaviors are examined mainly by step
input with zero pre-stimulus level of extracellular cAMP. To characterize the
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adaptive system in more detail, we tried to quantify the response by step
input with various non-zero prestimulus levels [98]. The result indicates that
the adaptive dynamics approximately has a invariance property known as
fold change detection (FCD). FCD is defined by the response whose entire
time course depends on only on fold changes in input but not on absolute
levels. The property is suggested by indirect evidences, and observed in a
population-level response in a bacterial signaling. In addition to that, we
provide the first direct evidence of FCD at a single-cell level.

We also investigated an effect of cell individuality on FCD of the cAMP
relay system. To this end, we sequentially applied two step inputs with
the same fold change, but with different absolute levels, to each single cell.
While the responses show large variation among cells, the two subsequent
responses from each cell are strongly correlated. Therefore, we found that
FCD is robust against cell-cell variation. Since the examined cell population
is clonal, the cell-cell variation seems to come from fluctuation in biochemical
parameter values. This interpretation imply that FCD of the cAMP relay
is originally caused by a structural property in the system, not by a precise
balance between biochemical parameter values.

4.1.4 Modeling single-cell signaling

We hope to explain the multicellular dynamics based on the experimental
results at a single-cell level mentioned above. A straightforward approach is
to construct a model to describe the single-cell dynamics, and to calculate
collective behaviors of the elemental models. However, the whole structure
of the circuit is largely unknown because of the complexity [99], although be-
haviors of some sub systems are quantitatively elucidated especially around
a circuit related to cell polarity formation in chemotaxis [100]. On the
other hand, the M&G model, the most well-known mechanistic model for
the cAMP dynamics, shows response dynamics far from FCD, at least, with
parameter values employed in the original literature [16, 98]. Besides, the
receptor desensitization mechanism assumed in the M&G model seems to
be inconsistent with a recent experiment on the receprtor property [101].
Therefore, no mechanistic model is available in this case.

Instead, we take another approach based on a phenomenological model
for reproducing the input-output characteristics, FCD. Nevertheless, deter-
mining a model is still not trivial because we have a variety of models that
show FCD. Although all the models show FCD, they have different quan-
titative properties and possibly make different predictions for multicellular
dynamics. To overcome the problem of many potential models, we adopt
two strategies focusing on qualitative and quantitative features. First, we
investigate what conclusions can be drawed only from FCD property, not
from quantitative properties of the models. To this end, we analyze a set of
equations for describing multicellular dynamics in which signaling reponse
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in each cell is FCD. Instead of solving the equations, we elucidate qualitative
features in flows in the phase space that are invariant against certain vari-
able transformations representing cell-density fluctuation. Second, we try
to construct a phenomenological model based on quantitative information
in data, and, if possible, select a model for FCD. This is performed by using
time series of the FRET signals, and The model to be estimated is designed
to contain well-known models for FCD as sub models.

4.2 Theory: Robustness in multicellular dynamics
based on FCD

A variety of models for FCD has been proposed, but all of them satisfy a
symmetry condition defined by eqs. (3.17a) and (3.17b). Therefore, it is
beneficial to derive general conclusions that can be drawn only from the
symmetry, not from quantitative feature of each model. To this end, we
analyze a set of equations for describing multicellular cAMP dynamics of
D.discoideum. The analysis leads a hypothesis to answer a question what is
an advantage of the FCD property in the multicellular dynamics.

4.2.1 Robustness to cell density fluctuation

Let us introduce a model of multicellular dynamics as a reaction diffu-
sion system, by considering secretion, dilution, and diffusion of extracellular
cAMP, as

ẋ = f(x, y, z) (4.1a)

ẏ = g(x, y, z) (4.1b)
∂z

∂t
= ρkty − λz +D∆z (4.1c)

where x, y, and z represent concentrations of an intermediate signaling com-
ponent, intra- and extra-cellular cAMP, respectively. The parameters ρ, kt,
λ, andD are cell density, secretion rate, dilution rate, and diffusion constant,
respectively. We assumed that a number of the intermediate components is
just one for simplicity, but the analysis below is easily extended for the case
of more than one intermediate component, as long as the single-cell system
composed of x and y is FCD.

It is found that, when the intracellular dynamics of x and y satisfy the
symmetry condition for FCD, we can remove the cell density ρ from the
model by variable transformations z = ρZ and x = φρ(X), as

Ẋ = f(X, y, Z) (4.2a)

ẏ = g(X, y, Z) (4.2b)
∂Z

∂t
= kty − λZ +D∆Z. (4.2c)
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Here the function φρ is defined in eqs. (3.17a) and (3.17b). This means
that the cell density does not change the topological properties of the mul-
ticelluler dynamics in the phase space such as existence of oscillation and
number of stable states. Therefore, the symmetry property for FCD make
the multicellular dynamics robust against cell density.

Actually it is experimentally observed that the asexual development suc-
cessfully progresses over a wide range of approximately 100-fold change in
cell density [102, 103]. We expect that the symmetry property for FCD at
the single-cell level underlies the robust development.

We note that, although the kinetics of cAMP secretion is modeled as
∝ ρy in the above calculation for simplicity, the discussion holds in general
as long as the secretion is described by a separated form, p(ρ)× q(y).

4.2.2 A possible effect of PdsA on the robustness

Next, we investigate how the robustness is affected by considering a more
realistic equation for kinetics of extracellular cAMP. This is performed by
introducing effect of a phosphodiesterase, PdsA, to the model. The enzyme
is secreted from the cells and degrades extracellular cAMP. Although we
have considered the constant degradation rate of extracellular cAMP, λ, in
above discussion, the rate can changes depending on cell density and kinetics
of secretion of the cAMP-degrading enzyme which remains unclear. Here we
assume the effect of PdsA as a cell-density-dependent constant rate of cAMP
degradation λ(ρ), because the regulation of PdsA depends on transcriptional
control and the time scale is slow compared with the cAMP oscillation (5-6
min). In that case, the robustness based on FCD does not perfectly hold
because of the cell-density dependence in λ.

However, when we adiabatically approximate the dynamics of extracel-
lular cAMP z as

0 = ρkty(r)− λ(ρ)z(r) +D∆rz(r) (4.3)

where r represent a position vector, the cell density ρ can be removed from
the system by variable transformations z = ρZ/λ(ρ), x = φρ/λ(X), and

r = R/
√
λ(ρ). This means that the temporal dynamics of cAMP does not

change with cell density while the spatial pattern is scaled as 1/
√

λ(ρ). The
weak robustness to cell density seems to be still helpful for the cells in the
asexual development because the topological properties of the multicellular
dynamics still remain invariant. Furthermore, the system can control the
scale of the spatial pattern independently of the temporal dynamics, which
propose a possible role of PdsA. It may be interesting to quantify λ and
the wavelength of the spiral pattern on Dictyostelium cells at various cell
densities.

To evaluate the validity of the adiabatic approximation, we separate
z(r, t) into the solution to the steady state equation and deviation from the
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solution, as z(r, t) = z∗(r) + δz(r, t). By Fourier transformation of eq.(4.3),
relaxation dynamics of power spectrum of the deviation is written as

d

dt
|δ ˆz(k)|2 = −2(λ(ρ) +D|k2|)|δ ˆz(k)|2 (4.4)

where k represent a wave number vector. The degradation rate λ set a lower
limit to the decay rate of the deviation, and the decay time scale defined
by typical experimental value of λ (2.5-12.5 min−1) [16, 104, 105, 106] is
faster than a time scale of collective cAMP oscillation of the cells (∼0.2
min−1). From the rough evaluation, the adiabatic approximation seems to
be reasonable, even though not highly accurate. Therefore, we can expect
the robustness based on FCD even under the realistic assumption on the
kinetics of extracellular cAMP, which support the hypothesis.

4.3 Estimation

In contrast to the qualitative approach based only on the symmetry prop-
erty for FCD, model selection from quantitative information in the FRET
time series is also performed. To this end, we define a complex model that
contains a variety of models for FCD as sub models, and train it to repro-
duce the observed adaptive time series. After that, we try to extract a sub
model by sparse regularization.

4.3.1 Data acquisition

We focus on the cAMP relay system that underlies the multicellular chemical
pattern formation in an early phase of the asexual development. By defining
the input and the output of the system as extracellular and intracellular
cAMP concentration, characteristics of the system are quantified as follows
(Fig. 4.2) [98].
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Dictyostelium cells

Figure 4.2: Schematic representation of the experimental setup to quantify
the input-output characteristics of the cAMP relay system in D.discoideum
cells.
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Experimental setup

The extracellular cAMP concentration (input) is controlled temporally by
using a perfusion chamber, while the intracellular cAMP concentration in
live Dictyostelium cells (output) is measured by a fluorescence resonance
energy transfer (FRET)-based sensor [97]. By using the experimental setup,
we apply step stimulus of cAMP to each single cell. The step stimulus is
defined by switching the input level with sufficiently high rate to make the
output independent of the rate. In response to the input, the output exhibits
adaptive dynamics, in other words, returns to the pre-stimulus level even
when the input persists.

Data preparation

The responses to the step input with zero pre-stimulus level are characterized
well in previous studies [97]. In addition to that, we obtain time-series
data of the response to step inputs with various pre-stimulus levels. We
found that the response dynamics still exhibits adaptation as long as the
input level fall below some critical value (< 100-1000 nM). On the other
hand, the response dynamics becomes different from the zero pre-stimulus
case as long as the pre-stimulus level is sufficiently high (> 10-100 pM).
This suggests that the limit of sensitivity of the cAMP signaling system is
lower than 10-100 pM, and that noise in input level may be ignored with
higher extracellular concentration of cAMP. Then we adopt a range of cAMP
concentration (300 pM ≤ s ≤ 10 nM) for estimation.

Sometimes the FRET signal from the microscope exhibits unnatural fluc-
tuations because of out-of-focus effects or cell damage by the laser. To re-
move the fluctuations from data, we limited the observation period to 6.5
minutes, and set selection criteria for time-series data. That is, (i) FRET
signal before a step input should be within [Flow, Fhigh], and (ii) time av-
erage of FRET signal after four minutes of a step input should be within
[Flow, Fhigh]. By adopting Flow = 1.35, and Fhigh = 1.6, we collected 18
time-series data for estimation. The examined pre- and post-stimulus input
levels (spre and spost) used in the subsequent learning are listed in Table 4.1,
and Fig. 4.3 shows representative time courses of FRET signal.

(spre,spost) [nM] Number of time series

(0.3, 1.5) 7
(1, 10) 5

(1.5, 7.5) 6

Table 4.1: Input values and corresponding numbers of time-series data.
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Figure 4.3: Representative time courses of FRET signal with a step input
(spre = 0.3 nM, spost = 1.5 nM, the flow rate in the perfusion chamber
λ = 32 min−1, and the switching time tinput = 2.33 min). Each line comes
from a single-cell measurement.

4.3.2 Model description

State equation: Enzymatic regulatory network including models
for FCD

The concept of FCD in cell signaling is motivated by examples of eukaryotic
cell signaling systems that show fold-change responses; in the examples, an
intermediate signaling component has various basal levels among different
cells, but the responses to a stimulus is proportional to the basal levels at
an equal rate among the cells [85,87]. Then, in order for the cell signaling to
work equally among the cells, FCD is required in the downstream processes.

We give a brief review on model studies for FCD. First, an abstract feed-
forward network model, called incoherent type-1 feedforward loop (I1-FFL)
as one of the network motifs in transcription networks, is shown to achieve
FCD [107]. A recent study shows that a feedback type model, a specific kind
of nonlinear integral feedback mode, also achieve FCD [88]. Furthermore,
the study provides a general condition for dynamical systems that are suffi-
cient for FCD, and also show that a model of bacterial chemotaxis exhibiting
FCD-like behavior satisfy the condition approximately. The sufficient con-
dition also seems to be necessary to achieve FCD perfectly, although it was
shown that a model violating the condition can exhibit adaptive behaviors
similar to FCD [108].

We define an artificial signaling network model that contains the models
for FCD, that is, the I1-FFL, a nonlinear integral feedback system, and the
approximate FCD model. Note that our model does not cover all of possible
models for FCD, because there are models for FCD as many as we want, to
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satisfy the condition for FCD.

To represent the artificial signaling network model, we employ an frame-
work of enzymatic regulatory networks [82, 109]. The state equations in
continuous-time form are written as

ẋi = Ai({xj}, s)
(1− xi)

(1− xi) +KA
i

− Ii({xj})
xi

xi +KI
i

+ noise (4.5)

where xi (i = 0, . . . , D− 1) means fraction of a cell signaling enzyme in the
active form, KA

i andKI
i are Michaelis-Menten constants, Ai and Ii represent

activation and inhibition on each component, respectively. The input level
s is extracellular cAMP concentration in this context. The functions Ai and
Ii are defined as

Ai({xj}, s) = (ki + kAA
i xi)

J s
i + JPA

i +
∑

j J
PA
ij xj

JSA
i +

∑
j J

SA
ij xj

(4.6a)

Ii({xj}) = JPI
i +

∑

j

JPI
ij xj . (4.6b)

The parameters that appear in the equations are defined in Table 4.2. Note
that the model defined here is over-parametrized in order to avoid to be
trapped at local maxima of an optimization function in the parameter space.

Parameter Definition

JPA
ij Promotion of activation of xi by xj

JSA
ij Suppression of activation of xi by xj

JPI
ij Promotion of inhibition of xi by xj

JPA,SA,PI
i Basal regulation of xi

jsi Activation of xi by input s

kAA
i Autoactivation of xi

ki Basal activation of xi

Table 4.2: Definition of parameters in eqs. (4.6a) and (4.6b)

To obtain the state equations in discrete-time form, we first adopted the
Euler-Maruyama scheme [54] and converted the equations as ẋi = fi({xj})+
noise (i = 0, . . . , D−1) → xt+1

i = xti+∆tf({xtj})+σiξti
√
∆t where t is each

time point, and ∆t is an integration time, and σi is intensity of system noise,
and ξti is sampled from a standard normal distribution.
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Observation equation

We define the x0 as a output variable, and assume that the intracellular
cAMP concentration xcAMP is represented as

xcAMP = CcAMPx0 +BcAMP (4.7)

where CcAMP and BcAMP are constants to be estimated. The observation
equation represents the FRET signal as a function of xcAMP. It is known
that the function takes a specific form [110] based on the binding kinetics
between cAMP and the FRET sensor protein, Epac1, as

FRET signal = (Rmax −Rmin)
(xcAMP)n

(xcAMP)n + EC50
n + noise. (4.8)

The noise term is assumed to satisfy white Gaussian statistics, as noise
= ηφr where η is intensity of observation noise and φt is sampled from a
standard normal distribution at each observed-time point r.

The parameters in eq. (4.8) are determined from experiments [98] and
a literature [110] as Rmax = 2, Rmin = 1.375, n = 0.74, and EC50 = 2.5
µM. When taken together, all parameters θ to be estimated are CcAMP and
BcAMP in eq. (4.7), {KA

i } and {KI
i } in eq. (4.5), the parameters listed in

Table 4.2, and intensity of the system and observation noises η. Note that
all of the parameters are assumed to have non-negative values.

Input

As expected, time courses of extracelluler cAMP concentration s in the
perfusion chamber is experimentally confirmed to follow

s(0) = spre, ṡ =

{
spre − λs (t < tinput)
spost − λs (t ≥ tinput).

(4.9)

where flow rate λ = 32 min−1 is employed to obtain the data [98]. Then,
we can calculate the input level at any time point based on this equation.

4.3.3 Estimation algorithm

The state space model defined above is optimized by a machine-learning ap-
proach. Statistical techniques for estimating stochastic nonlinear dynamical
systems have been developed recently, and we can find some examples on
time series data from cellular processes [33, 34, 37]. Although the nonlinear
inclusions of the parameters in the Michaelis-Menten form make it difficult
to apply such methods, a recent study gives a solution based on linearization
of the Michaelis-Menten equations by explicit introduction of fast dynamics
of the intermediate component [34].
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Nevertheless, in this case, the model seems to contain too many param-
eters without available prior knowledge, to obtain reasonable estimation on
the values from the FRET data. On the other hand, our aim is not to know
a biochemical mechanism but to build a simple phenomenological model for
the FCD behavior. Then, we introduce a penalized log-likelihood function to
eliminate unnecessary parameters and maximize it by a simulated-annealing-
like approach, as shown schematically in Fig. 4.4. Sparse estimation is also
performed to estimate gene regulatory networks to reflect sparseness of such
networks [111], while we use it to simplify the model for ease of compre-
hension. The results by the approach should not be regarded as definitive
conclusions, but instead as a step towards rather comprehensive analysis
with additional data.

The detailed procedure of the quasi simulated annealing (quasi-SA) is
described and validated by using artificial data in Appendix B in the case
of optimization of log likelihood. In Appendix B, it is demonstrated that
the quasi-SA can estimate an adaptive system from partial observations of
an adaptive variable only.

:Dense network Sparse network

Maximization of 

Learning

Log likelihood Penalty for interactions

log    (   )  -       penalty(   )θ θαL

Figure 4.4: Schematic representation of the procedure of extraction of simple
systems based on a penalized log likelihood approach.

Penalized log likelihood with L1 norm

Below, we perform maximum likelihood estimation of the enzymatic regu-
latory networks. After that, we extract a simple system from the optimized
densely-connected network model by a penalized log likelihood approach as
shown schematically in Fig. 4.4. In particular, we employ a L1 norm along
with the method in Ch. 3, as

O(θ) ≡ logL(θ)− α
∑

i=0,...,D−1

∑

j∈Jall
i

|θj | (4.10)
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where Jall
i means a set of all parameters in the right hand side of the state

equation governing dynamics of xi (eq. 4.5), as

Jall
i = ({JPA,SA,PD

ij }, JPA,SA,PD
i , Js

i , k
AA
i , ki).

Note that we do not perform non-dimensionalization of each term in the
penalty as in Ch.3, because the variables in the state equations are dimen-
sionless quantities. That is, the state variables mean fractions of signaling
components in the active forms, and the input is scaled by 1/10 nM so that
the level of input s falls within [0, 1] through the estimation. Through the
sparse estimation, the values of KA,I

i , η, and θj ∈ Jall
i are updated, while

the other parameters are fixed.
First we tried to estimate both system and observation noises, but pre-

liminary results indicate that the system noise is drastically overestimated,
so that dynamics of the learned system is far from the observations. It
is probably because of cell-to-cell variation in the cAMP signaling system.
Such a variation has a long-time correlation compared with measurement
time and then is estimated as noisy system dynamics rather than as noise in
observation that has no time correlation. Although estimation techniques
for models with static cell individuality have been studied recently [112],
the number of time-series samples is insufficient to estimate the complex
models. Then, we use the state equations without system noise (σi = 0) to
avoid the problem.

4.3.4 Results

Reconstruction of input-output characteristics

First, maximum likelihood estimation is performed by the quasi-SA with-
out the penalty (α = 0). The enzymatic regulatory network with three
components is employed, and 400 sets of initial parameter values are ex-
amined (see section B.3 for the detail settings in the quasi-SA algorithm).
Figure 4.5(a) shows frequency distribution of log likelihood of the learned
systems. Three peaks in the distribution are visible. Figures 4.5(b-e) show
typical behaviors of the learned systems at the three peaks in comparison
with the data. Note that all of the data used for estimation are presented
in these figures. The simulated time courses of FRET signal by the lowest-
log-likelihood model do not exhibit adaptation at all (purple lines), and the
middle-log-likelihood model adapts only to a subset of the examined inputs
(green lines). On the other hand, the highest-log-likelihood model adapts
to all of the examined inputs (orange lines), and the peak and resting levels
of FRET signal reproduces the data well.
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Figure 4.5: Maximum likelihood estimation by the quasi-SA without the
penalty (α = 0). (a) Frequency distribution of the log likelihood of the
learned systems. (b,c,d,e) Time series of the FRET signal simulated by the
learned systems at the peaks in the frequency distribution are presented in
comparison with the data with (spre, spost, tinput) = (0.3nM, 1.5nM, 2.0min)
(b), (0.3, 1.5, 2.34) (c), (1.5, 7.5, 1.5) (d), and (1, 10, 2.34) (e). Purple, green,
and orange lines represent behaviors of the models at the peaks with the
lowest, the middle, and the highest values of log likelihood, respectively,
and blue lines represent the data.
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Extraction of core architecture

Next, we extract a simple system from the optimized model network. To this
end, we resume the optimization procedure from the model with maximum
log likelihood (the ML model), at various values of penalty strength α. At
each value of α, we perform 10 times of independent optimization trials and
obtain different models because of stochasticity in the procedure. Figure
4.6 (a) shows values of log likelihood and the optimization function O(θ)
of the models at each value of α. Decreases in log likelihood occurs twice
in α = 0.1-10000; the first occurs when α is increased from 10 to 100,
and the second does when α is increased from 300 to 3000. At α ≤ 10,
dynamics of the learned systems looks identical to that of the ML model,
and at 30 ≤ α ≤ 300, it becomes slightly different from the ML model but
is still quite similar to the observed dynamics. Figures 4.6 (b-e) present
a comparison of dynamics between the models at α = 10 and 300. On
the other hand, dynamics at 1000 ≤ α is completely different from the
data. These results are interpreted as follows. The learned systems in
α < 10 contains unnecessary parameters, and the parameters are eliminated
at α = 10. At 30 ≤ α ≤ 300, although some useful parameters are also
eliminated, a core system required for reproducing the data remains. At
α ≥ 1000, the core system breaks down, so that dynamics of the models
does not reproduce the data at all.

Therefore, we expect to obtain a specific model for FCD by investigating
the models at α = 300. It is found that, for all of the models, a component
is eliminated and the state equations are represented as

ẋ0 = k0
s

x1

(1− x0)

(1− x0) +KA
0

− k1
x0

x0 +KI
0

(4.11a)

ẋ1 =
k2x0 + k3s

k4 + k5x1

(1− x1)

(1− x1) +KA
1

− k6
x1

x1 +KI
1

. (4.11b)

At least, one of k2 and k5 values is zero in each model (typical parameter
values of a model with k2 = 0 and a model with k5 = 0 are listed in
Table 4.3). Beside, as shown in Fig. 4.7, removal of k2 or k5 results in
small decrease in likelihood in comparison with that of other parameters ki
(i = 0, 1, 3, 4, 6). Correspondingly, removal of the both parameters does not
change the dynamics qualitatively. Then we conclude that neither of the
two are essential, and define a model with k2 = k5 = 0 as the core system of
the ML model. The core system achieves adaptation by feed forward control
through the inhibitor, x1.
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Figure 4.6: (a) The average values of Log likelihood and the O(θ) of the
models optimized at each value of α are calculated by 10 independent trials.
The error bars indicate the standard deviations. The values of log likelihood
and the O(θ) are evaluated after 300 learning iterations from the ML model
(I1 = 0, I2 = 300, the quantities are defined in Appendix B). The other
settings in the quasi-SA algorithm are the same as in the no penalty case.
(b,c,d,e) Time series of FRET signal simulated by the learned systems (red
lines) and the data (blue lines) are presented at α = 10 (b,c) and 300 (d,e),
with (spre, spost, tinput) = (0.3nM, 1.5nM, 2.34min) (b,d) and (1.5, 7.5, 1.5)
(c,e).
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Parameters Model 1 Model 2

k0 4.75 4.99

k1 2.34 3.24

k2 0.0115 0

k3 0.178 0.229

k4 1 1

k5 0 0.139

k6 0.122 0.169

KA
0 2.71 1.46

KI
0 0.0269 0.0323

KA
1 0.000149 9.87 ×10−7

KI
1 0.875 1.23

CcAMP 6.27 6.27

BcAMP 0.185 0.185

η 0.0729 0.0728

Table 4.3: Parameter values of typical models at α = 300.
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Figure 4.7: Decreases in log likelihood in the models at α = 300 when a
parameter ki (i = 0, . . . , 6) is set to zero.

To understand dynamics of the core system, we attempt further simpli-
fication of the model equations. By considering that the Michaelis-Menten
constant KA

1 (KI
1 ) differ substantially from time average of the substrate

quantity ⟨1− x1⟩ (⟨x1⟩), we approximate the state equation of x1 by

ẋ1 =
k3s

k4
− k6

KI
1

x1, (4.12)

although the later assumption KI
1 ≫ ⟨x1⟩ is less accurate with high level of

the input. One can see that the system described by eqs. (4.11a) and (4.12)
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has a symmetry property discussed in Section 3.4 as sufficient condition for
fold-change detection (FCD), that is, eqs. (3.17a) and (3.17b). Besides, the
simplified form corresponds to the I1-FFL model for perfect FCD. Then, we
finally extract the I1-FFL as the core architecture that performs FCD in the
observed cAMP dynamics.

Additionally, we confirme FCD property of the core system by checking
the time-course behaviors. Figs. 4.6 (d) and (e) present a resemblance
in dynamics of the models with the step inputs that show the same fold
changes, (spre, spost) = (0.3, 1.5) and (1.5, 7.5) (nM). Further, we calculate
L2 norm of difference in the outputs in response to the five-fold changes in
the inputs in order to compute deviation from the FCD property. Figure 4.8
shows the deviation for models at each α value. The deviation shows sharp
decrease when α is increased from 10 to 30, and the model approximate a
FCD system.
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Figure 4.8: L2 norm of difference of the outputs in response to (spre, spost) =
(0.3, 1.5) and (1.5, 7.5) (nM), the five-fold changes in the inputs, is presented.
The blue circles represent the L2 norms of the models at each α values,
and the red symbols represent the mean and the standard deviation. The
responses between tinput and tinput + 3 are used to calculate the L2 norms.

4.4 Discussion

Measurements at a single-cell level have characterized quantitatively the
adaptive dynamics of the cAMP signaling in D.discoideum cells, and revealed
FCD property in the system. However, the complexity in the signaling
system and the abundance of possible models make it difficult to construct
a reliable model for the single-cell dynamics. Towards the goal of explaining
multicellular dynamics from the single-cell level, we examined two strategies,
that is, qualitative and quantitative ones.

First, we attempted to draw conclusions only from the symmetry prop-
erty for FCD. To this end, we define a set of equations for describing multi-
cellular dynamics in which signaling response in each cell is FCD. By ana-
lyzing the equations, we found that FCD at the single-cell level achieves the
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robustness to cell-density fluctuation.
Second, we constructed a phenomenological model to reproduce the

input-output characteristics of the cAMP response dynamics, and compared
it with the known models for FCD. In particular, the two-step method is
adopted to obtain a complex model for quantitative reproduction of the data
and a simple core system in the complex model. As a result, we obtained an
enzymatic regulatory network model that reproduces the observed adaptive
behaviors in the FRET time-series data. Furthermore, the I1-FFL model,
one of the network motifs known to achieve FCD, is extracted as the core
system.

A potential candidate for a molecular realization of the I1-FFL for FCD
is the Ras pathway that is a signaling system in immediately downstream
from the receptors. A recent study shows that the response of the pathway to
cAMP stimuli is adaptive [113], which is prerequisite for FCD, and proposes
that an incoherent feedforward control achieves the adaptation. Besides,
quantitative characterization of the response in the study seems to indicate
FCD property, although the point has not been discussed yet.

Nevertheless, these results should not be regarded as definitive conclu-
sions because sophistication of the optimization method and the amount of
data are insufficient for exhaustive analysis on the complicated model. In
particular, the following point is critical and requires further investigation.
The ML model is found to achieve adaptation by feed-forward inhibition
through the hidden component, but we also extracted systems with feedback
adaptation from the sub-optimal models. Since difference in log likelihood
between the ML and other sub-optimal models is not large, it is difficult
to undoubtedly conclude that the observed adaptation is based on feed-
forward control. Our results support the hypothesis that the cAMP relay
shows FCD, but determination of the detailed mechanism for FCD remains
elusive.

In summary, we successfully related FCD property at the single-cell level
with the robustness in the multicellular dynamics, and obtained a phe-
nomenological model to reproduce the input-output characteristics of the
cAMP relay system. In the next chapter, the quantitative model will be
evaluated in the predictive performance for the multicellular dynamics.
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Chapter 5

Multicellular dynamics of a
social amoeba

5.1 Introduction

In Chapter 4, we obtained an enzymatic regulatory network model for cAMP
relay system in D.discoideum cells by optimization based on the FRET
time-series data, and the learned results reconfirmed FCD property in the
input-output characteristics. In this chapter, we evaluate explanation ca-
pability of our knowledge at a single-cell level for multicellular dynamics
of D.discoideum cells. The evaluation concerns the following two points.
The first point is whether a system with FCD exhibits qualitative features
of experimentally-observed collective dynamics like synchronized oscillation.
In fact, although multicellular systems consisted of FCD cells show robust
behavior against cell-density fluctuations, it is not yet confirmed that there
is a FCD system actually showing oscillatory and excitatory behaviors. The
second point is whether the learned network model reproduces quantitative
behaviors of D.discoideum. The two points are examined below.

5.2 Toy models with perfect FCD

Here we simply demonstrate that several toy models with FCD reproduce
collective dynamics of D.discoideum cells qualitatively.

5.2.1 FCD oscillator

As a most simple collective dynamics in the cells, first we consider syn-
chronized oscillation in spatially homogeneous cases. Such an oscillation is
experimentally observed in cAMP concentration in a cell suspension [114],
and has been investigated for decades.
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Let us consider dynamics of concentrations of an intermediate signaling
component, intra- and extra-cellular cAMP, denoted as x, y, and z, respec-
tively. A toy model with FCD is introduced as follows,

ẋ = axy − bx (5.1a)

ẏ = c
zn

zn + xn
− dy (5.1b)

ż = ρey − λz (5.1c)

where a, . . . , e are rate constants, and the other parameters ρ and λ are
cell density and dilution rate, respectively. The Michaelis-Menten form of
the activation function of y gives threshold-like behavior and amplification
in the cAMP signaling pathway. When nonlinear amplification (n > 1)
occurs as is observed [115], the toy model certainly exhibits oscillation due
to the positive feedback through the extracellular cAMP, as shown in Fig.
5.1. Then it is shown that perfect FCD system can exhibit an oscillatory
behavior.

 0

 0.2

 0.4

 0.6

 0  10  20  30  40

Time

Figure 5.1: Oscillatory time series generated by eqs.(5.1a), (5.1b), and (5.1c)
of x (blue), y (green), and z (red). The parameter values are set as a = 4,
b = 1, c = 1, d = 1.5, ρe = 1, λ = 3, n = 2

Next, the spiral pattern of the cAMP wave is investigated. To this end,
we add diffusion of extracellular cAMP z to the model (Fig. 5.2) while
assuming homogeneous cell density, as

∂z

∂t
= ρey − λz +D∆z (5.2)

whereD the is the diffusion constant. By numerical simulations of the model
in one and two dimensional spaces, we found the model to exhibit spatio-
temporal chaos as shown in Fig. 5.3. In the chaotic dynamics, the spiral
cores are not maintained long time enough to allow for cells to aggregate
into the cores.
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Figure 5.2: Schematic representation of a model of multicelluler dynamics
as a reaction-diffusion system.
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Figure 5.3: Chaotic dynamics generated by eqs.(5.1a), (5.1b), and (5.2) of
x (blue), y (green), and z (red) on (a) one and (b) two dimensional space.
h is the space variable. The diffusion constant is D = 0.048, and the other
parameters are set as in Fig. 5.1
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5.2.2 FCD excitor

The chaos in cAMP pattern can be avoided by a simple and reasonable
modification of the previous model, the FCD oscillator. Here we add a
basal synthesis rate δ of intracellular cAMP as

ẏ = c
zn

zn + xn
+ δ − dy. (5.3)

Figure 5.4 show how the added term changes the nullclines of model. The
modified nullclines give a characteristic feature of excitable system as in the
FitzHugh-Nagumo equations [13, 14]. As a result, excitation waves propa-
gate stably in the modified model, the FCD excitor (Fig. 5.5(a)). How-
ever, the obtained excitation waves seems to have too narrow cAMP pulses
compared with the refractory period. To improve this, we also modify the
dynamics of x slightly without affecting the nullclines, as

ẋ = ax− b
x

y
. (5.4)

This modification drastically broadens the width of cAMP pulses (Fig.
5.5(b)).
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Figure 5.4: It is presented how nullclines of x (blue) and y (green) are
changed from (a) the FCD oscillator to (b) the FCD excitor. In both cases,
the dynamics of z is adiabatically eliminated. The arrows indicate flow
direction. The parameter values in (a) are set as a = 5, b = 1, c = 1, d = 1,
ρe = 1, λ = 1, n = 2. The values are also employed in (b) except for c = 3
and δ = 0.1.
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Figure 5.5: Excitation waves generated from (a) the FCD excitor and (b)
the modified FCD excitor with eq. (5.4) on one dimensional space. In each
case, two waves with minimal spacing defined by the refractory period are
presented. x, y, and z are represented by blue, green, and red, respectively.
The arrows indicate the propagation directions of the waves. The parameter
values are set as a = 0.05, b = 0.01, c = 12, d = 3, n = 2, ρe = 1, λ = 3,
D = 0.048, and δ = 0.3.

5.2.3 FCD chemotaxis

Finally we focus on chemotactic aggregation guided by the cAMP wave in
early phase of the asexual development. To construct a toy model for the
phenomenon, we take a coarse-grained approach with inclusion of spatial
change of the cell density as

∂ρ

∂t
= Dρ∆ρ−∇(ρC(x, y, z)) (5.5)

where the diffusion and advection terms represent random and directional
motions of the cells, respectively [116,117]. The chemotaxis function C(x, y, z)
means velocity of the cells depending on cell states and extracellular cAMP.
Then the first problem is to determine the function.

As a simplest approach, the cell velocity is assumed to be proportional
to cAMP gradient, as C(x, y, z) = C(z) ∝ ∇z. This seems to be reasonable,
especially with stationary extracelluler chemical gradients. However, with
incoming pulses of a signal, the simple model generates backward motion of
the cells in the wavebacks, and results in ineffective chemotaxis. To solve
this paradox, Hofer and co-workers consider a model in which extracellular
signal inhibits chemotaxis through an intracellular signaling component with
a delay [117]. In the Hofer model, chemotactic movement in the waveback
stops by the delayed inhibition, and then, net cell movement occurs towards
incoming waves. Besides, their model explains cell-stream formation during
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the cell aggregation due to instability of the density field under periodic
perturbation by the cAMP pulses.

However in the Hofer model, both the chemotaxis and the intracellu-
lar signaling (the M&G model [16]) are far from FCD, and robustness to
cell-density fluctuation is not assured. Then, we introduce a toy model of
chemotaxis with FCD as

C(p, a) = C
|p|m−1

|p|m + wm
p (5.6)

and

τw
∂w

∂t
= awz − bww (5.7a)

τp
∂p

∂t
= ∇z − p. (5.7b)

where w and p are a chemotactic inhibitor and a cell polarity, and aw, bw,
and C are constant parameters. Since fast polarity formation in response
to cAMP simulation (in seconds) is observed in the chemotaxis system in
D.discoideum cells, eq. (5.7b) is adiabatically elimanted as p = z. By
combining these equations with the FCD excitor model (eqs. (5.4), (5.3),
and (5.2)), we can model the cell aggregation in the cAMP wave (note that
advection terms in the chemical kinetics are also considered). By assuming
the time scale of the chemotactic inhibitor to be comparable with that of
cAMP kinetics, we actually observe excitation wave with cell movement
towards proper direction in the total model as shown in Fig. 5.6. The wave
dynamics is invariant under cell-density fluctuation, which is explained by
the fact that variable transformations (z, x, w) = (ρZ, ρX, ρW ) remove the
cell density parameter ρ from the total model.

5.2.4 Discussion

Above, it is shown that the perfect FCD systems exhibit qualitative features
of collective dynamics of D.discoideum, that is, synchronized oscillation,
propagation of excitation wave, and cell movement with the excitation wave.
These results support the hypothesis of robust collective dynamics based on
FCD. In the bottom part of the investigation, FCD chemotaxis model is
introduced. We found no experimental support for this assumption, partly
because experiments to confirm FCD in chemotaxis require extremely pre-
cise control of extracellular chemical gradient. We expect to elucidate such
property in the chemotaxis of D.discoideum in future.
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Figure 5.6: Excitation wave generated from the total model with homo-
geneous initial cell density ρ(t = 0) = 1 on one dimensional space. The
parameter values in the chemotaxis model are set as m = 3, C = 0.2,
aw = 0.05, and bw = 0.05. The other parameters are set as in Fig. 5.5.

5.3 Learned model with approximate FCD

In contrast qualitative investigation of the toy models for FCD examined
above, we attempt quantitative prediction based on the learned results in
Chapter 4. To this end, the model at penalty strength α = 10 is employed
since the model is expected to show the best predictive performance among
the models we estimated. The model equations are written as

∂x0
∂t

= (k0 + k1x0)
k2x0 + k3s

k4 + k5x1

(1− x0)

(1− x0) +KA
0

− (k6 + k7x0 + k8x1)
x0

x0 +KI
0

(5.8a)

∂x1
∂t

= (k9 + k10x1)(k11x0 + k12s)
(1− x1)

(1− x1) +KA
1

− (k13 + k14x1)
x1

x1 +KI
1

,

(5.8b)

and intracellular cAMP concentration is estimated by

xcAMP = CcAMPx0 +BcAMP [µM]. (5.9)

The parameter values are listed in Table 5.1. By adding dynamics of extra-
cellular cAMP z [µM] to the learned enzymatic regulatory network model,
a reaction-diffusion model is constructed as

∂z

∂t
= ktr(xcAMP)− λz +D∆z (5.10)
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where kt, r, λ, and D are the secretion rate, the ratio of intracellular to
extracellular volumes, the degradation rate, and the diffusion constant. The
values of the secretion and degradation rates of extracellular cAMP are
determined as in the M&G model in which the values are from experimental
works [16], and the diffusion constant is from an experiment [118], as kt = 0.9
min−1, ke = 5.4 min−1, and D = 0.024 mm2 min−1.

Parameters Values Parameters Values

k0 6.9 k11 1

k1 52.9 k12 36.2

k2 1 k13 0.204

k3 199 k14 0.0443

k4 1 KA
0 2.12

k5 25.5 KI
0 0.217

k6 2.88 KA
1 0.23

k7 6.74 KI
1 2.21

k8 1.15 CcAMP 6.27

k9 0.098 BcAMP 0.185

k10 0.145 η 0.0691

Table 5.1: Parameter values of the model at α = 10.

By applying external perturbation to the reaction-diffusion model, we
observed excitation waves and spiral-pattern formation as shown Fig.5.7.
That is, the learned single-cell systems in the model can be excited by inputs
from themselves, even though the learning is based only on the response
dynamics to the step inputs. The self-consistency suggests that the learned
system successfully generalize the input-output relation from the limited
information.

Figure 5.7 (a) present the region of the parameter r where the system
shows excitation wave (the shaded area), and corresponding extracellular
cAMP concentration z at the resting state (the red line). The z value in
this region of excitation behavior agrees with the pre-stimulus input value
in the learning, that is, [0.03,0.15] (10 nM). Therefore, the observed spiral
pattern is certainly a predicted feature from the data through the learning.
However, as shown in Fig. 5.7 (b, c) the predicted wavelength and of spirals
is larger than the experimental observation ∼ 2-3mm. Correspondingly, the
predicted period of cAMP oscillation at each point is also overestimated, in
comparison with the experimental value ∼ 5-6 min, as shown in Fig. 5.7 (d,
e).
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Figure 5.7: Predicted spiral patterns from the reaction-diffusion model. (a)
The region in which spiral-pattern formation occurs on the r axes (the
shaded area) and corresponding extracellular cAMP concentration z (red
line) is presented. The broken lines indicate the values of r examined in
(b-e). (b,c) Spiral patterns evoked by external perturbation are shown at
r = 0.007 (b) and 0.014 (c). (d,e) Temporal variations of intracellular cAMP
concentration are shown at r = 0.007 (d) and 0.014 (e).
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5.3.1 Discussion

The learned system at the single-cell level reproduces spiral-pattern forma-
tion as is observed; however, the quantitative features of the pattern largely
deviate from the observed ones, even though they stay in the same order.
This is not surprising because, as shown in the previous section 5.2 (see Fig.
5.5), properties of excitation wave strongly depend on dynamics of inhibitor
in the system, especially on the de-adaptation kinetics, which is unobserv-
able in this case. Then, to obtain a better prediction, we require data on
the cells to other inputs revealing the hidden dynamics. For example, se-
quential double step inputs may work effectively, because the response to
the second input reflects transient state of the inhibitor depending on the
interval between the inputs.

A reason why a quantitative model is important, in addition to the
qualitative models with perfect FCD, is that a deviation from cell-density
invariant behavior is observed in the multicellular pattern formation. The
deviation is in size of the spiral waves that define aggregation territory of the
cells, and seems to achieve another robustness in the asexual development.
That is, the average size of the spirals negatively correlates with cell density,
and then, the average number of the cells in cell aggregates is stabilized
because the number is determined by the product of cell density and size
of aggregation territory. Identifying origin of the deviation remains a future
task.

5.4 Summary

We investigated relation of our knowledge at a single-cell level to the ob-
served collective dynamics of Dictyostelium cells, by constructing multicel-
lular models from the single-cell models. The explanation capability was
evaluated from the two viewpoints, qualitative features of the toy models
with perfect FCD, and quantitative features of the learned model. We found
that, based on the toy models, FCD systems can reproduce key characteris-
tics of the collective dynamics in an early phase of the asexual development.
Besides, the learned model successfully reproduces an observed spatiotempo-
ral pattern formation, though the learning algorithm and the data collection
have room for improvement to increase the quantitative accuracy.



87

Chapter 6

Summary and Outlook

6.1 Summary

In this thesis, we studied a combined approach of statistical machine-learning
and dynamical-systems analysis, aiming to extract basic characteristics of
cell signaling systems that underlie various biological phenomena. Dynam-
ical systems are employed to model cell signaling dynamics over decades.
In particular, simplified description of a system by low-dimensional model
leads clear explanation of the dynamics. Because of degeneracy in models to
reproduce a dynamical behavior, the explanation by a simple model needs
to be justified by knowledge on the biochemical mechanism. The commonly-
used strategy is to reduce a complicated biochemical model to a simple one
by, for example, adiabatic approximation, phase reduction method, and so
forth. Nevertheless, incompleteness in data on cell signaling dynamics makes
a reliable description on the biochemical mechanisms difficult. To overcome
the difficulty by utilizing quantitative information in data, we propose to
employ statistical techniques to estimate such simple models directly, not
through mechanistic descriptions.

In Chapter 2, we have started the study by employing statistical tech-
niques to identify bifurcation types that characterize qualitative changes in
dynamics. Identification of bifurcation types has been commonly performed
by rigorous, but non-statistical ways that are impractical for cell signaling
dynamics because it requires unrealistically accurate measurements and pre-
cise control of systems. Our strategy drastically relaxes the strict conditions
on data accuracy and experimental design. Of course, we cannot assume a
priori that identifying bifurcation types is fruitful for understanding cell dy-
namics. Still, the successful identification of bifurcation types indicates that
topological features of flow in the phase space can be captured by the esti-
mation procedure, and then we expect the approach to be useful to extract
other biologically-motivated characteristics.

In Chapter 3, we examined sparse estimation of polynomial dynamical
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systems for highly nonlinear dynamics. The setting mimics a practical case
where many possible terms exist in model equations for biological dynam-
ics. For chaotic dynamics and adaptive dynamics with fold-change detection
(FCD) property, the estimation procedure eliminated unnecessary terms. In
addition, the results suggest a possibility to detect symmetry properties in
dynamics. Further studies on this topic are highly demanded. Character-
izing symmetry property and its breaking is of great importance for under-
standing sensory and developmental dynamics, and then further studies on
this topic are highly demanded.

In Chapter 4, input-output characteristics of a cell-cell communication
system in a social amoeba is investigated, with the aim to predict or ex-
plain the multicellular dynamics based on a single-cell level. Experimental
studies have revealed FCD-like behaviors of the system, but determining
a model at a single-cell dynamics is difficult because of the complicated
biochemical mechanism and the abundance of possible models that exhibit
FCD. We tackled this problem by two complementary approaches. First,
we focused on consequences based only on the symmetry property that are
common in the known models for FCD. The symmetry property is shown to
allow robust multicellular dynamics against cell-density fluctuations. The
hypothetical mechanism is similar with developmental robustness based on
scaling in morphogen gradient against body-size fluctuations. We infer that
our mechanism is ubiquitous. Second, we tried statistical reconstruction of
the input-output characteristics in cell signaling dynamics at a single-cell
level based on time-series data by the FRET measurements. The model
to be estimated is designed to contain several well-known models for FCD,
and we hope to select a model by the algorithm-based model reduction.
Although the symmetry property is reconfirmed, the model selection so far
appears to be difficult in this setting, unfortunately

In Chapter 5, we discussed on FCD models at a single-cell level and the
consequences for the multicellular dynamics. FCD property and excitability
are shown to be simultaneously achievable, which is prerequisite for repro-
ducing the collective multicellular dynamics. We also introduced a model of
chemotaxis with the robustness to cell-density fluctuation that is required
for modeling the cell aggregation process in the asexual development of Dic-
tyostelium cells. In addition, we examined quantitative predictions for the
multicellular dynamics based on the estimated input-output characteristics
in Chapter 4. We found large errors in prediction of spatiotemporal pat-
terns. The results seemed to imply a need of data on dynamics of hidden
components that are not revealed by the setting we adopted. The problem
may be solved by experimental design techniques that are recently devel-
oped to determine optimal time-varying input for model estimation on a
statistical ground.

In summary, we examined a few examples of estimation of simple dynam-
ical systems from time-series data on artificial or experimental cell signal-
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ing dynamics. Measurement technologies for cellular dynamics are rapidly
evolving field. For example, two-photon microscopy enables imaging of liv-
ing tissues up to an unprecedented depth. The measurements will not only
contribute to improvements of known biochemically mechanistic models, but
also reveal biological phenomena whose mechanisms are unknown. We hope
our strategy to be an effective way to understand cell signaling dynamics
underlying the newly-discovered phenomena.

6.2 Outlook

Spatial regulation on cell signaling dynamics

So far we did not estimate spatial aspects of cell signaling dynamics. How-
ever, the spatial regulations on cell signaling dynamics, at both intra- and
inter-cellular levels, are known to be essential for proper functioning [1].
Data on spatiotemporal dynamics are inevitably complicated and high di-
mensional, and then machine-learning techniques are useful.

In addition, such techniques are also useful to deal with complicacy in
models, which frequently arises by considering spatial dimension. For exam-
ple, developmental biology has made a great progress to elucidate pattern
formations of morphogens that are signaling chemicals providing positional
information to cells in an organism [119]. In addition to the chemical signal-
ings, “physical” quantities such as force and velocity cannot be ignored to
understand developmental processes in which the body undergoes sequential
deformations. In fact, recent studies indicate strong and mutual couplings
between the chemical signalings and the mechanics [120,121,122]. Therefore,
several attempts have been made to model the mechano-chemical dynam-
ics, but the model complexity easily goes beyond our intuitive controls even
for a phenomenological model such as cell vertex model [123]. Statistical
machine-learning techniques may provide an objective way to choose pa-
rameter values and to select a better model.

Cell individuality

Another aspect we have missed is cell individuality in signaling dynamics.
Although traditional models in systems biology represent signaling systems
on an “average” or “typical” cell, heterogeneity within cell population is
increasingly recognized. The heterogeneity is often static and is not due to
temporal noise. Hence, it is not represented by the noise term in Langevin
equation. In contrast, in dynamical systems modeling, the heterogeneity
is represented by distributions of parameter values. Estimation techniques
for static distributions of parameter values in a population have been ex-
tensively studied, for example, in ecological statistics [124]. Also, similar
techniques have been developed for dynamical systems recently, and applied
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to cellular dynamics [112]. At present, reliability of results by the techniques
is limited because of data insufficiency. Nevertheless, since the heterogeneity
is ubiquitous and biologically significant, the techniques for estimating cell
individuality will be more important as more data are accumulated.

Chatacterizing biological information

In parallel with further applications, cooperations with other theoretical
frameworks will be fruitful. In particular, information theory will be use-
ful to characterize how information processing occurs through cell signaling
dynamics [125]. Information-theoretic approach based on principle of en-
tropy maximization has successfully applied to input-output characteristics
of sensory neurons [126]. Furthermore, a recent attempt to apply such an
approach to developmental signaling in Drosophila has demonstrated that a
transcriptional regulation seems to achieve nearly maximal mutual informa-
tion between transcriptional factor and gene expression [127]. In addition
to the studies focusing on input-output characteristics, analysis of biolog-
ical networks is needed to elucidate cellular dynamics, which, however, is
rare except for a few recent theoretical works [128,129]. It is partly because
characterizations of probability distributions of time series from experiments
are technically difficult for such dynamical systems. Statistical reconstruc-
tions of cell signaling dynamics are requested to create a bridge between
experiments and theories in the field.

So far we discussed a few future directions on the approach of statistical
estimation of dynamical systems in cell biology. However, application of
the approach is not limited to those, but will be essential to answer various
biologcal questions.
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Appendix A

EM algorithm with particle
smoother

A.1 State space model

We first introduce the state space model composed of the state equations
and observation equations describing the system dynamics and observation
process, respectively. Let us consider D-dimensional stochastic differential
equations that describe a system, and d components in the system that are
observed simultaneously. In the model, the state variable xi(i = 1, . . . , D)
evolves under the function fi({xj}, s), where s represents an input to the sys-
tem, and the observation value yi is obtained through the function gi({xj}).
The input s is considered as a bifurcation parameter in Chapter 2.

By discretizing the dynamics in time with the Euler-Maruyama scheme
[54], we can write the space state model as

xt+1
i = xti +∆tfi({xtj}, s) + σiξ

t
i

√
∆t, (A.1)

yri = gi({xrj}) + ηiφ
r
i , (A.2)

where t(∈ T ) and r(∈ R) are time points, ∆t is an integration time, and σi
and ηi are the noise intensities in the dynamics and observation, respectively.
Both ξti and φr

i are sampled from a standard normal distribution. In general,
the set of observed time points R is a subset of the entire time point set T
(i.e., R ⊆ T ) for the numerical integration. We assume that the function
fi can be expressed by the summation of linearly independent functions
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(fn
i (n = 1, . . . , Ni)) as

fi({xtj}, s) =
Ni∑

n=1

kni f
n
i ({xtj}, s). (A.3)

Here, {kni } are the coefficients to be estimated.

Let us consider a data set of Y = {Ya}(a = 1, . . . , A) where each Ya is
a time-series data obtained from independent measurement at input value
sa. The learning procedure estimates the parameters {kni }, {σi}, {ηi}, and
all the true states {xti} for each time-series data. In our method, the ini-
tial condition for the ith component in the ath time-series data is assumed
to obey a Gaussian distribution parameterized by the mean µi,a and the
variance Vi,a. Distributions at other points are automatically estimated by
the particle filter algorithm explained below. Then, the parameters to be
estimated are θ = ({kni }, {σi}, {ηi}, {µi,a}, {Vi,a}). On the other hand, input
values S = {sa} are assumed to be known.

A.2 SAEM algorithm

Our aim is to find model parameters θ by maximizing log likelihood function

logL(θ) = log p(Y |θ, S) = log

∫

X
p(Y |X, θ)p(X|θ, S). (A.4)

Here, X (= {Xa}) denotes the entire time series of estimated states. We em-
ploy an expectation-maximization (EM) algorithm that maximizes logP (X,Y |θ, S)
(the complete-data log likelihood function), which is equivalent to maximiz-
ing the likelihood in eq. (A.4) [49]. By iterating two steps known as the E
and M steps, the states X and parameters θ are estimated alternately. Since
our implement of the E step includes the Monte-Carlo method as described
below, stochastic approximation EM (SAEM) algorithm is adopted [53].
The SAEM procedure is described as follows.
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SAEM

1. Initialize the parameter vector θ = θ0, and set the iteration number I
to zero.

2. (E step) Calculate the posterior distribution of the entire time series
of state variable p(X|Y, θ, S).

3. (M step) Rename θ as θold, and update the parameter vector as

θnew = argmax
θ

QI(θ) (A.5)

QI =

{
Q(θ, θold) (I = 0),
(1− αI)QI−1(θ) + αIQ(θ, θold) (I > 0),

(A.6)

where

Q(θ, θold) = ⟨log p(X,Y |θ, S)⟩p(X|Y,θold,S), (A.7)

and {αI} is a non-increasing sequence of positive values converging to
zero.

4. Increment I by one, and iterate steps 2 and 3 until the estimation of
the parameter vector converges.

The details of the E and M steps are described in the following sections.

A.2.1 E step: particle smoother

Since different time-series data are independent stochastic variables, we can
write

log p(X|Y, θ, S) =
∑

a

log p(Xa|Ya, θ, sa). (A.8)

Then, each log p(Xa|Ya, θ, sa) is evaluated by using a particle filter algo-
rithm that approximates the non-Gaussian distribution of the state xti as
a collection of many particles, each of which represents a sample from the
distribution [50, 51]. Specifically, the algorithm required here is called a
particle smoother. For the ath time series, let xt,pi,a denote the pth particle

for representing xti, and let yti,a denote an observed value at time t. The
procedure of the particle smoother is described as follows.
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Particle smoother

For a = 1, . . . , A

1. For i = 1, . . . , D and p = 1, . . . , P , set the initial states as x0,pi,a ∼
N(µi,a, Vi,a), and normalize the weights as wp

a = 1/P

2. At each t = 0, 1, . . .

• For i = 1, . . . , D and p = 1, . . . , P , calculate xt+1,p
i,a from xt,pi,a by

using the state equations.

• If t = r ∈ R, update the weights of the particles as

wp
a =

wp
a,oldl

r,p
a∑

pw
p
a,oldl

r,p
a

, (A.9)

where

lr,pa =
d∏

i

p(yri,a|{x
r,p
j,a}). (A.10)

• If Peff = 1/
∑

p(w
p
a)2 < Pthres (i.e., if effective number of the

particles fall below a threshold value), resample the particles ac-
cording to the new weights. Note that the history of particles
(x0,pi,a , x

1,p
i,a , . . . , x

r−1,p
i,a ) is resampled in parallel.

3. Finish when all data points have passed (t = max(R)), and estimate
the log likelihood as

logLa(θ) =
∑

r∈R
log(

1

P

P∑

p

lr,pa ). (A.11)

Then, the posterior distribution of the time series of the state is approx-
imated as

p(Xa|Ya, θold, sa) =
P∑

p=1

wp
aδ(Xa −Xp

a), (A.12)

where Xp
a indicates a sample path ({xt,pi,a}, i = 1, . . . , D, t ∈ T ). On the basis

of this approximation, we calculate the average of the complete-data log
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likelihood as

Q(θ, θold) = ⟨log p({Xa}, {Ya}|θ, {sa})⟩p({Xa}|{Ya},θold,{sa})

=
∑

a,p

wp
a log p(X

p
a , Ya|θ, sa)

=
∑

a,p,i

wp
a

(
−1

2
log 2πVi,a −

(x0,pi,a − µi,a)2

2Vi,a

)

+
∑

a,p,t,i

wp
a

(
−1

2
log 2π(σi)

2

−

(
(xt+1,p

i,a − xt,pi,a)−∆t
∑Ni

n=1 k
n
i f

n
i ({x

t,p
j,a}, sa)

)2

2(σi)2∆t

)

+
∑

a,p,r,i

wp
a

(
−1

2
log 2π(ηi)

2 −
(yr,pi,a − gj({xr,pj,a}))2

2(ηj)2

)
.

(A.13)

A.2.2 M step

At the Ith iteration, the parameter-value update is performed by finding
the θ for which d

dθQI(θ) = 0. We describe the case of d
dθQ(θ, θold) = 0 for

simplicity, although the optimization problem can be solved generally by
the same method. The following example demonstrates the determination
of parameters of the system dynamics (kni ) and the strength of the system
noise (σi) in detail.

First, by differentiating the complete-data log likelihood with respect to
kml , we obtain

0 =
∂

∂kml
Q(θ, θold)

=
∑

a,p,t

wp
a

⎛

⎝

(
(xt+1,p

l,a − xt,pl,a)−∆t
∑Nl

n knl f
n
l ({x

t,p
j,a}, sa)

)
∆tfm

l ({xt,pj,a}, sa)

2(σl)2∆t

⎞

⎠

=
∑

a,p,t

wp
a(∆xt,pl,af

m
l ({xt,pj,a}, sa))

− (
Nl∑

n

knl
∑

a,p,t

wp
af

n
l ({x

t,p
j,a}, sa)f

m
l ({xt,pj,a}, sa)), (A.14)

where ∆xt,pl,a = (xt+1,p
l,a − xt,pl,a)/∆t. By defining the vectors bl and kl and a
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matrix Al as

(bl)m =
∑

a,p,t

wp
a(∆xt,pl,af

m
l ({xt,pj,a}, sa)) (A.15)

(kl)m = kml (A.16)

(Al)nm =
∑

a,p,t

wp
af

n
l ({x

t,p
j,a}, sa)f

m
l ({xt,pj,a}, sa), (A.17)

the parameters for system dynamics are determined as follows.

kl = (Al)
−1bl. (A.18)

Next, using the new kni calculated above, we obtain

0 =
∂

∂σl
Q(θ, θold)

=
∑

a,p,t

wp
a

⎛

⎜⎝− 1

σl
+

∆t
(
∆xt,pl,a −

∑Nl
n knl f

n
l ({x

t,p
j,a}, sa)

)2

(σl)3

⎞

⎟⎠ ,(A.19)

and thus,

(σl)
2 =

∆t

A(|T |− 1)

∑

a,p,t

wp
a

(
∆xt,pl,a −

Nl∑

n

knl f
n
l ({x

t,p
j,a}, sa)

)2

. (A.20)

The other parameters are estimated in the same manner. Only for the
variance of the initial condition Vi,a, we define the minimum value Vmin to
avoid an unnaturally small value resulting from a problem called sample
impoverishment [130].

A.3 Algorithm testing

We implement the algorithm described above in C++ and MATLAB. In this
section, the code is tested by using artificial data from a simple dynamical
system, called the Brusselator.

A.3.1 Data generator: Brusselator

The Brusselator was proposed by Ilya Prigogine and co-workers to inves-
tigate an oscillatory behavior in a chemical system with an autocatalytic
reaction [131]. We generate time-series data from the Brusselator with noise,

τ ẋ0 = bx1 − x0(x1)
2 + ξ0(t) (A.21a)

τ ẋ1 = a+ x0(x1)
2 − (1 + b)x1 + ξ1(t) (A.21b)
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where the noise terms ξi (i = 0, 1) satisfy white Gaussian statistics ⟨ξi(t)⟩ =
0 and ⟨ξi(t)ξj(τ)⟩ = 2σ2

i δi,jδ(t − τ). As increase of value of a from 2 to
0.5, the system with b = 2 exhibits oscillation onset through a supercritical
Hopf bifurcation. The data is generated at values of a around the bifurcation
point, that is, at a = 0.5, 1, and 2.

The observation noise is introduced in observation equation by yri = ηiφr
i

(i = 0, 1) where ηi = 0.05 is intensity of observation noise and φr
i is sampled

from a standard normal distribution. Figure A.1 shows the artificial data to
demonstrate how the dynamics fluctuates.
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Figure A.1: Noisy time series generated from Brusselator through noisy
observations of x0 (a,b,c) and x1 (d,e,f). The colors indicate results from
independent trials. The values of the bifurcation parameter are (a,d) a =
0.5, (b,e) 1, (c,f) 2, respectively. The other parameter values are set as
b = 2, τ = 10, σi/τ = 0.05 and ηi = 0.05 (i = 0, 1). These calculations are
performed by a stochastic Runge-Kutta (SRKII) algorithm [59].

A.3.2 Results

Estimation of the Brusselator

First we assume that the equations of the data generator are known. Then
state equations are defined by discrete-time forms of eqs.(A.21a) and (A.21b),
as

xt+1
0 = xt0 +∆t(k0x1 + k1x0(x1)

2) +
√
2∆tσ0ξ

t
0 (A.22a)

xt+1
1 = xt1∆t(a+ k2x0(x1)

2 − k3x1) +
√
2∆tσ1ξ

t
1. (A.22b)

where ξi (i = 0, 1) is sampled from a standard normal distribution. Obser-
vation equations are the same as the data generator, as yri = ηiφr

i (i = 0, 1).
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Here, the parameters k0,...,3, σ0,1, and η0,1 are to be estimated.

We examined whether the parameters are correctly estimated from the
data in Fig. A.1. As a result, it is found that the data is sufficient for
estimation. Figure A.2(a) and (b) show the values of log likelihood and
estimated parameters {ki} at each learning iteration. The learning quickly
converges within several tens of the iterations. Besides, we confirmed that
the algorithm accurately estimates the parameters in the data generator,
including intensities of noise. (see Section A.4 for the detailed setting of the
learning algorithm)
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Figure A.2: The values of (a) log likelihood and (b) estimated parameters
are presented at each learning iteration. The inset provides an enlarged view
on log likelihood from I = 40 to 80, in order to demonstrate the fluctuation
coming from stochastic nature of particle filter algorithm.

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 0  1  2  3  4  5  6  7

pa
ra

m
et

er
 v

al
ue

parameter index

answer
estimation

Figure A.3: The estimated parameter values (red circles) are presented in
comparison with the correct values (blue squares). The parameter indices
0, . . . , 7 correspond to k0,...,3, σ0,1, and η0,1.
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Estimation of a polynomial dynamical system

Next we examine the algorithm with more general state equations, that
is, polynomials. By adopting polynomials of 2 variables with degree 3 as
the state equations, we perform the learning based on the same data and
settings as in the previous case. The state equations in continuous-time
form are wrote as

ẋ0 = k0 + k1x0 + k2x1 + k3(x0)
2 + k4x0x1 + k5(x1)

2 + k6(x0)
3

+k7(x0)
2x1 + k8x0(x1)

2 + k9(x1)
3 + noise (A.23a)

ẋ1 = a+ k10 + k11x0 + · · ·+ k18(x1)
3 + noise. (A.23b)

As shown in Fig. A.4, although a bit complicated and longer transient
process is observed, the learning still converges with several tens of the
iterations.
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Figure A.4: The values of (a) log likelihood and (b) estimated parameters
are presented at each learning iteration. The inset provides an enlarged view
on log likelihood from I = 40 to 80, in order to demonstrate the fluctuation
coming from stochastic nature of particle filter algorithm.

However, quantitative accuracy of estimation is reduced because of large
number of parameters to be estimated. To quantify the accuracy, we newly
generate four data sets, in addition to the data in Fig. A.1, and obtain
estimation result by using each data set. The results are summarized in
Fig. A.5(a) that show the mean values and the standard deviations of
the estimation results. Majority of the parameters is accurately estimated,
although large fluctuations remain for some parameters.

We also investigate an effect of amount of data on the estimation. To
this end, 5 data sets are generated to contain 6 independent time-series
data at each value of the bifurcation parameter, a. The amount of data
is two times that used in Fig. A.5(a). The results are summarized in Fig.
A.5(b). Although some improvements are obtained, biases and fluctuations
in estimation still remain.
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Finally we examine whether the algorithm can utilize information in
transient dynamics, not only dynamics at attractors, as expected. In all of
examples above, the data are obtained after long-time relaxation of dynam-
ics of the data generator. Then the observed orbits certainly stay around
the attractor. In contrast to those data, here we generate data sets in which
initial conditions x0 = 0 and x1 = 0 are adopted. The data contain infor-
mation on transient dynamics near the origin, unlike the previous examples.
As shown in Fig. A.5(c), we can obtain the improved estimation results by
using the excess information.
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Figure A.5: The estimated parameter values (red circles) are presented in
comparison with the correct values (blue squares). The mean values and the
standard deviations are calculated from estimation results by 5 independent
data sets. The parameter indices 0, . . . , 22 correspond to k0,...,18, σ0,1, and
η0,1. (a) 3 independent time-series data at each value of the bifurcation
parameter, a. (b) 6 independent data at each value of a. (c) The data is
generated with initial conditions x0 = 0 and x1 = 0. The amount of data is
the same as in (b).

Conclusion

It is confirmed that the Brusselator is estimated based on noisy time-series
data. All obtained results seem to be reasonable. Then we conclude that the
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algorithm described above works effectively and is properly implemented.

A.4 Settings of learning

Parameters of the learning algorithm used in Appendix A, Chapter 2, Sec-
tion 3.3, and Section 3.4 are listed in Table A.1, A.2, A.3, and A.4, respec-
tively.

Parameters in the learning algorithm

Integration time ∆t 1.0
Entire-time points T {0, 1, 2, . . . , 400}
Observed-time points R {0, 2, 4, . . . , 400}
Decreasing sequence in SAEM αI 1 (I ≤ 50),

1/(I − 50) (otherwise)
Particle number P 1000
Particle number threshold for resampling Pthres 500
Initial system dynamics parameters {kni } 0
Initial system noise strength σi 0.04
Initial observation noise strength ηi 0.5
Minimum value of initial condition variance Vmin 0.01

Table A.1: Pre-determined parameters of the learning algorithm used to
identify Brusselator.

Parameters in the learning algorithm

Number of time series A 9
Integration time ∆t 1.0
Entire-time points T {0, 1, 2, . . . , 400}
Observed-time points R {0, 2, 4, . . . , 400}
Decreasing sequence in SAEM αI 1 (I ≤ 30),

1/
√
(I − 30) (otherwise)

Particle number P 1000
Particle number threshold for resampling Pthres 500
Initial system dynamics parameters {kni } [-0.001,0.001]
Initial system noise strength σi 0.1
Initial observation noise strength ηi 0.2
Minimum value of initial condition variance Vmin 0.001

Table A.2: Pre-determined parameters of the learning algorithm used to
estimate bifurcations in the tyson and the ferrell models.
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Parameters in the learning algorithm

Number of time series A 18
Number of observed-time points |R| 201
Decreasing sequence in SAEM αI 1 (I ≤ 140),

1/(I − 140) (otherwise)
Particle number P 400
Particle number threshold for resampling Pthres 300
Initial system dynamics parameters {kni } 0
Initial system noise strength σi 0.04
Initial observation noise strength ηi 0.5
Minimum value of initial condition variance Vmin 0.01

Table A.3: Pre-determined parameters of the learning algorithm used to
identify Rössler model.

Parameters in the learning algorithm

Number of time series A 43
Number of observed-time points |R| 43
Decreasing sequence in SAEM αI 1 (I ≤ 450),

1/
√
(I − 450) (otherwise)

Particle number P 600
Particle number threshold for resampling Pthres 300
Initial system dynamics parameters {kni } [-0.01,0.01]
Initial system noise strength σi 20
Initial observation noise strength ηi 1
Minimum value of initial condition variance Vmin 0.05

Table A.4: Pre-determined parameters of the learning algorithm used to
identify a polynomial FCD model.
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Appendix B

Quasi simulated annealing

B.1 Method

B.1.1 Model definition

As in the case of EM algorithm described in Appendix A, we define a state
space model composed of state and observation equations. Let us consider
that D-dimensional stochastic differential equations describe a system, and
d-dimensional observation variables are obtained through a measurement of
the system. By discretizing the dynamics in time with the Eular-Maruyam
scheme [54], we write the model as

xt+1
i = xti +∆tf1

i ({xtj}, θ, st) +
√
∆tf2

i ({xtj}, θ)ξti (B.1)

yri = g1i ({xrj}, θ) + g2i ({xrj}, θ)φr
i (B.2)

where xi (i = 0, . . . , D−1) and yi (i = 0, . . . , d−1) are state and observation
variables, respectively, and θ is the parameter vector, and t(∈ T ) and r(∈ R)
are time points, and ∆t is an integration time, and st is the input to the
system. Both ξti and φr

i are sampled from a standard normal distribution.
In general, the set of observed time points R is a subset of the entire time
point set T for the numerical integration (i.e., R ⊆ T ).

We consider a data set of Y = {Ya} (a = 1, . . . , A) where each Ya is
a time-series data obtained from independent measurement at input values
{sta}t∈T that are assumed to be known. The initial condition for the ith
component in the ath time-series data is assumed to obey a Gaussian dis-
tribution parameterized by the mean µi,a and the variance Vi,a. However,
unlike the case in Appendix A, we do not estimate the initial condition sep-
arately from the other parameters, but calculate the conditions as described
in detail below.
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B.1.2 Optimization algorithm

We optimize the model using a simulated-annealing-like method. While sim-
ulated annealing (SA) algorithm optimizes a model with gradually-decreasing
temperature, the quasi-SA uses just two values of temperature. However,
with high initial values of intensities of system and observation noises, the
noises gradually decrease and effectively work as temperature in the learn-
ing process, and then we can expect to find a good solution. The detailed
procedure of the quasi-SA is described as follows.

Quasi simulated annealing

0. Define a model with a parameter vector θ and an optimization function
O(θ)

1. Initialize the parameter vector θ = θ0, and set the iteration number I
to zero.

2. Increment I by one, and

(MCMC)
If I < I1, perform step 3 with β = 1,

(Steepest descent method)
else if I < I2, perform step 3 with β = ∞,

else if I = I2, finish the optimization.

3. For each parameter θi ∈ θ,

3a. generate a random variable as ϵ = exp(δ × e) where e is sampled
from a uniform distribution [−1, 1], and propose a new parameter
vector θ′ by setting θi → ϵθi.

3b. Calculate the optimization function O(θ′) and new initial condi-
tions ({µi,a} and {Vi,a}). After that, generate a random variable
u sampled from a uniform distribution [0, 1], and

If u < exp(β(O(θ′)−O(θ))), accept the θ′ and the new initial
conditions,

otherwise, reject the θ′ and the new initial conditions.

The calculation of new initial conditions in the step 3b is performed as
follows. By using tentatively estimated parameters and initial conditions,
we numerically integrate the model for a time interval tinit in order to confine
the states of the model to a region around the attractor. For each ath input,
we calculate the states {xi} after the integration under the input value at
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the initial time point, and repeat it for P times. The new estimators of
initial conditions {µi,a} and {Vi,a} are obtained as means and variances of
the calculated states, respectively.

B.2 Algorithm Testing

We implement the algorithm described above in C++. In this section, the
code is tested by using artificial data. As in section 3.4, a data set generated
from a polynomial model for fold-change detection (eqs.(3.18a) and (3.18b))
is employed. A state space model is defined as

xt+1
0 = xt0 +∆t(k0s

txt1 + k1x
t
0) + σt

0ξ
t
0

√
∆t (B.3a)

xt+1
1 = xt1 +∆t(k2x

t
1 + k3x

t
0x

t
1) + σt

1ξ
t
1

√
∆t, (B.3b)

and yri = xi + ηiφr
i (i = 0, 1) where ξti and φi are sampled from stan-

dard normal distributions. Then, the parameter vector is defined as θ =
({ki}, {σi}, {ηi}). Below, log likelihood is adopted as the optimization func-
tion (O(θ) = logL(θ)) and evaluated by using the particle filter algorithm
described in Appendix A.

B.2.1 Estimation from the full observation

By considering the case of full observation in which both of the two vari-
ables are simultaneously observed, we perform the learning from an initial
parameter set, (k0, k1, k2, k3) = (5,−1, 1,−3) (other settings are listed in
Table B.1). Figure B.1 shows how a behavior of the initial model deviate
from the correct one.

Number of time series A 43
Number of observed-time points |R| 43
Integration time ∆t 1/96
Particle number P 1000
Particle number threshold for resampling Pthres 500
Initial system noise strength σi 20
Initial observation noise strength ηi 1
Relaxation time interval tinit 14
Step size in parameter proposals δ 0.3
Number of MCMC iteration I1 60
Number of total learning iteration I2 120

Table B.1: Pre-determined parameters used in the quasi-SA.
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Figure B.1: Comparison between the behaviors of the initial model without
noise (red) and data (blue) is presented. (a) and (b) show time series of x0
and x1, respectively.

As a result, we obtain correct esimations while there are cases trapped at
local maxima of log likelihood. Figure B.2(a) and (b) present the values of
log likelihood and estimated parameters {k0,1,2,3} at each learning iteration
in a successful example. The parameters are confirmed to converge to the
correct values.
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Figure B.2: The values of (a) log likelihood and (b) estimated parameters
are presented at each learning iteration in the case of full observation.

B.2.2 Estimation from adaptive time series only

We also validate the quasi-SA in the case of partial observation by assuming
that a variable x1 is completely unobservable. The initial values of parame-
ters and settings in the algorithm are the same as in the case of full observa-
tion, except for I1 = 100 and I2 = 200. We still obtain correct estimations,
although number of cases trapped at local maxima increases compared with
the full observation case. A successful example is summarized in Figs. B.3
and B.4.
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Figure B.3: The values of (a) log likelihood and (b) estimated parameters
are presented at each learning iteration in the case of partial observation
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Figure B.4: The values of intensities of system noise are presented at each
learning iteration for the case of partial observation.

It is found that, through the learning iterations, values of k0 and σ1
continue to fluctuate while other parameters and log likelihood cleary con-
verge. We can explain this fluctuations by a symmetry property in the data
generator and the state equations. That is, by variable transformations as
k0x1 → X1 and ξ1 → k0Ξ1, we can convert the state equations from

ẋ0 = k0s(t)x1 − k1x0 + ξ0(t) (B.4a)

ẋ1 = k2x1 − k3x0x1 + ξ1(t) (B.4b)

to

ẋ0 = s(t)X1 − k1x0 + ξ0(t) (B.5a)

Ẋ1 = k2X1 − k3x0X1 + Ξ1(t). (B.5b)

The converted equations do not include k0, and then it is indicated that
values of k0 and σ1 can change without affecting the observed dynamics
of x0 as long as k0 × σ1 = const. This explains the main cause of the
fluctuations of the values of k0 and σ1, although the product k0 × σ1 is not
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perfectly invariant because evaluation of log likelihood based the particle
filter also has some fluctuation. In fact, we confirm that dynamics of the
observed component x0 looks identical to the data, in a final phase of the
learning (I > 150).

B.2.3 Conclusion

We confirmed that the quasi-SA reasonably estimates the dynamical system
based on the noisy time-series data even when only the adaptive variable
is observed. Then we conclude that the algorithm described above works
effectively and is properly implemented.

B.3 Settings

The settings in the quasi-SA algorithm used in Chapter 4 are listed in Table
B.2.

Number of time series A 18
Number of observed-time points |R| 40
Integration time ∆t 1/192
Initial observation noise strength η 1
Relaxation time interval tinit 26
Step size in parameter proposals δ 0.3
Number of MCMC iteration I1 400
Number of total learning iteration I2 700

Table B.2: Pre-determined parameters used in the quasi-SA in Chapter 4.
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